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Motivation: Systems with Selfish Agents

Our Focus
» Problems in which multiple agents interact

Motivation: the Internet
Billions of users

Tens of thousands of autonomous systems
By design, centralized control is impossible

» Technical constraints — resources
» Political constraints — ISP, countries

Decentralized operation and ownership
Distributed control by competing entities

v

v

v

v

v
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Motivation: Systems with Selfish Agents

Selfish Agents

» Have their own private objectives
» Are rational and selfish

» Make choices to maximize their profit
» Profit depends on choices of all agents

Goal
» Algorithms that account for strategic behavior by selfish agents

Natural Tool: GAME THEORY

» Theory of rational behavior in competitive,
collaborative settings

» [von Neumann/Morgenstern 1944]
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Objectives

This Talk
» Understand consequences of non-cooperative behavior
» What is the “cost” of selfish behavior?

» the price of anarchy [Koutsoupias/Papadimitriou 99]
» the price of stability [Anshelevich et al. 04]

Our Scenario

» General model for non-cooperative sharing of resources
» Congestion games
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Example
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Motivating Example

Example
100 cars need to go from s to t.

f(x)=x

f(x)=100

Question
What will selfish network users do?
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Motivating Example

Example
100 cars need to go from s to t.

100 f(x)=x

0 fx)=100

Question
What will selfish network users do?

Claim
In Nash equilibrium all traffic will take the top link.
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Can we do better?

Example
100 cars need to go from s to t.

100 f=x

0 fx)=100
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Can we do better?

Example
100 cars need to go from s to t.

f(x)=x

0 =100

Consider instead

traffic split equally
» 50 cars have delay 100 (same as before)
» 50 cars have delay 50 (big improvement!)
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Braess’s Paradox [Bsraess, s

Initial Network

delay=150
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Braess’s Paradox [Bsraess, s

Initial Network Augmented Network

delay=150 What now?
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Braess’s Paradox [Bsraess, s

Initial Network Augmented Network

delay=150 delay=200
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(Weighted) congestion games

=W, (W)ien E, (S)ienr (Ce)ecE)

» N ...set of k players

» w; ...weight of player i € A/ g VY

4
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(Weighted) congestion games

=W, (W)ien E, (S)ienr (Ce)ecE)

» N ...setof k players P
» w; ...weight of player i € N/ o | ]

» E ...set of resources
e.g. edges in a graph

4
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(Weighted) congestion games

=W, (W)ien E, (S)ienr (Ce)ecE)

v

N ...set of k players
w; ... weight of player i € A/ B
E ...set of resources

e.g. edges in a graph

S; C 2 ... set of strategies of player i

e.g. set of paths from o; to d; @ @

v

v

v
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(Weighted) congestion games

=W, (W)ien E, (S)ienr (Ce)ecE)

v

N ...set of k players
» w; ...weight of player i € A/ &
E ...set of resources

e.g. edges in a graph

S; C 2 ... set of strategies of player i
e.g. set of paths from o; to d;

v

v

v

Ce - .. latency function of resource e
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Subclasses of (weighted) congestion games

» unweighted congestion games (or simply congestion games):

w; =1 forall playeri e N
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Subclasses of (weighted) congestion games

» unweighted congestion games (or simply congestion games):

w; =1 forall playeri e N

» symmetric games:

Si=S; forallplayeri,jeN
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Subclasses of (weighted) congestion games

» unweighted congestion games (or simply congestion games):

w; =1 forall playeri e N

» symmetric games:
Si=S; forallplayeri,jeN

» network congestion games

= d =
= =
=> b e =>
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Subclasses of (weighted) congestion games

» unweighted congestion games (or simply congestion games):

w; =1 forall playeri e N

» symmetric games:
Si=S; forallplayeri,jeN

» network congestion games » singleton congestion games

er e

= » (57 O

2> b e D v
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Load and Private Cost

Strategy profile

S=(81,...,8n) € Sy x...x 5

v

Traffic on resource e € E

>, W

ieN:e€s;

Xe(s) =

Private cost of player i €¢ N

Ci(s) =w; - Z Ce(Xe(S))

ecs;

Quantifying the Efficiency of Congestion Games

= d )4
s> =
E> b e E>
C1(s)=3 " (ca(8) + ca(3))
Ca(s)=5 " (ca(8) + c4(5) + ce(7))
Cs(s)=2" (c(2) + ce(7))
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Nash Equilibrium

Nash Equilibrium

A strategy profile s is a Nash equilibrium if and only if all players i € N/
are satisfied, that is,

Ci(s) < Ci(s_;, s}) forallie N and sj € S,.
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Nash Equilibrium

Nash Equilibrium

A strategy profile s is a Nash equilibrium if and only if all players i € N/

are satisfied, that is,

Ci(s) < Ci(s_;, s}) forallie N and sj € S,.

Remarks

» For simplicity we restrict to pure Nash equilibria.
» Many results hold also for mixed Nash equilibria.

» Players randomize over their pure strategies
» Guaranteed to exist [ NasH, 1951]
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Existence of pure NE: positive result

Theorem

[ ROSENTHAL, 1973]

Every unweighted congestion game possesses a pure Nash

equilibrium.
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Existence of pure NE: positive result

Theorem [ ROSENTHAL, 1973]
Every unweighted congestion game possesses a pure Nash
equilibrium.

Define ¢ : (Sy x ... x Sp) — N by "

Xe(S)
o(s)=>_ > cel))-

ecE j=1
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Existence of pure NE: positive result

Theorem [ ROSENTHAL, 1973]
Every unweighted congestion game possesses a pure Nash
equilibrium.

Define ¢ : (Sy x ... x Sp) — N by "

Xe(S)
o(s) =2 > celi).
ecE j=1

X
0 1 2 3

..,8¢)and s’ = (s,s_)):

®(s) - o(s') = Y. Ce(xe(8)) — > ce(xe(s'))

ecs;—s; ecs|—s;

= Ci(s) — Ci(s).

Consider two strategy profiles s = (sq, .

Therefore: ®(s) minimal = s is Nash equilibrium.
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Existence of pure NE: negative result

[LIBMAN & ORDA 2001, FOTAKIS ET AL. 2004, GOEMANS ET AL. 2005]
Theorem

There is a weighted network congestion game that does not admit a
pure Nash equilibrium.

Consider the following instance:
» 2 players
> wy =1
> Wo = 2
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Existence of pure NE in weighted games

Theorem [ FOTAKIS, KONTOGIANNIS, SPIRAKIS, 2004]

Every weighted congestion game with linear latency functions
possesses a pure Nash equilibrium.

Proof is based on the following potential function:

Z Wi - Z Ce(Xe(8)) + Ce(W;))

ieEN ecs;
= 2 Xe(S) - ColXe(S)) + D wi- ) ce(wi).
ecE ieN ecs;
lfs=(sq,...,8)and s’ = (s s_;j) for some j € N and s € S;, then
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Existence and Complexity of Pure NE

» Do weighted congestion games always possess pure Nash
Equilibria?
» Yes, for unweighted players. [ ROSENTHAL, '73]
Rosenthals Potential Function

Xe(S)

®(s) = Z Z Coli

ecE i=1
If a player decreases her cost by A then also the potential decreases by A.
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Existence and Complexity of Pure NE

» Do weighted congestion games always possess pure Nash
Equilibria?

» Yes, for unweighted players. [ ROSENTHAL,

» No. [ LIBMAN, ORDA,
[ FOTAKIS, KONTOGIANNIS, SPIRAKIS,
[ GOEMANS, MIRROKNI, VETTA,

» Characterisation. [ HARKS, KLIMM,
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Existence and Complexity of Pure NE

» Do weighted congestion games always possess pure Nash
Equilibria?

» Yes, for unweighted players. [ ROSENTHAL,

» No. [ LIBMAN, ORDA,
[ FOTAKIS, KONTOGIANNIS, SPIRAKIS,
[ GOEMANS, MIRROKNI, VETTA,

» Characterisation. [ HARKS, KLIMM,

» Complexity of deciding for pure Nash equilibria®?

» NP-complete [ DUNKEL, SCHULZ,

» Complexity of computing pure Nash equilibia (unweighted)?

» PLS-complete [ FABRIKANT, PAPADIMITRIOU, TALWAR,
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Price of Anarchy

http://thetyee.ca/News/2007/10/10/ChinaAutoMad/
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Price of Anarchy

Social Cost
» Different definitions possible
» Here: Total Latency

SC(s) = ) _ Ci(s)
ieN

=) xe(s) - Co(Xe(S))

» Let G be a class of games.

Price of Anarchy [ KouTsoupriAs, PAPADIMITRIOU, STACS'99]
su SC(s)
Sy OPT

sisNEinT

PoA(G) =
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Price of Anarchy: Example

Network with 2 (unweighted) players

Symmetric
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Martin Gairing -

18



Price of Anarchy: Example

Nash Equilibrium

SC=14+14=28
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Price of Anarchy: Example

Nash Equilibrium

SC=14+14=28
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OPT

SC=14+10=24
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Price of Anarchy: Example

Nash Equilibrium OPT

SC=14+14 =28 SC=14+10=24

Price of Anarchy = 28/24 = 7/6
If multiple equilibria, look at worst one
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Price of Anarchy: State of the Art

(1) Analytical simple classes of cost functions
= exact formula for PoA.

Quantifying the Efficiency of Congestion Games
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Price of Anarchy: State of the Art

(1) Analytical simple classes of cost functions
= exact formula for PoA.

> linear [ CHRISTODOULOU, KOUTSOUPIAS, STOC'05]
[ AWERBUCH, AZAR, EPSTEIN, STOC'05]
» bounded degree polynomials [ ALAND ET AL., STACS'06]
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Price of Anarchy: State of the Art

(1) Analytical simple classes of cost functions
= exact formula for PoA.

> linear [ CHRISTODOULOU, KOUTSOUPIAS, STOC'05]
[ AWERBUCH, AZAR, EPSTEIN, STOC'05]
» bounded degree polynomials [ ALAND ET AL., STACS'06]

(2) For every set of allowable cost functions
= recipe for computing PoA.
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Price of Anarchy: State of the Art

(1) Analytical simple classes of cost functions
= exact formula for PoA.

> linear [ CHRISTODOULOU, KOUTSOUPIAS, STOC'05]
[ AWERBUCH, AZAR, EPSTEIN, STOC'05]
» bounded degree polynomials [ ALAND ET AL., STACS'06]

(2) For every set of allowable cost functions
= recipe for computing PoA.

» non-atomic (Wardrop model) [ ROUGHGARDEN, TARDOS, JACM'00]
» unweighted [ ROUGHGARDEN, STOC’09]
» weighted [ BHAWALKAR, GAIRING, ROUGHGARDEN, ESA'10]
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Price of Anarchy: State of the Art

(1) Analytical simple classes of cost functions
= exact formula for PoA.

> linear [ CHRISTODOULOU, KOUTSOUPIAS, STOC'05]
[ AWERBUCH, AZAR, EPSTEIN, STOC’05]
» bounded degree polynomials [ ALAND ET AL., STACS'06]

(2) For every set of allowable cost functions
= recipe for computing PoA.
» non-atomic (Wardrop model) [ ROUGHGARDEN, TARDOS, JACM'00]
» unweighted [ ROUGHGARDEN, STOC’09]
» weighted [ BHAWALKAR, GAIRING, ROUGHGARDEN, ESA’'10]
(3) Understanding of game complexity required for worst-case PoA to
be realized.
» |deally independent of cost functions.
» e.g. symmetric strategy sets, singleton strategy sets
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Abstract Setup

» n players, each picks a strategy s;
» player i incurs cost Cj(s)

Quantifying the Efficiency of Congestion Games
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Abstract Setup

» n players, each picks a strategy s;
» player i incurs cost Cj(s)
» Important Assumption:

objective function is SC(s) = >,

1

Ci(s)

Definition: [ ROUGHGARDEN, STOC'09]
A game is (A, u) — smooth if for every pair s, s* of outcomes:

Zic,-(s_,-, sf) < \-SC(s*) + i - SC(s).

A>0,u<1)
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Smoothness = PoA bound

Theorem
If agame G is (), 1) — smooth, then

A
POA(G) < =
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Smoothness = PoA bound

Theorem
If agame G is (), 1) — smooth, then

POA(G) < -~

1T—p

Proof: s is a NE, s* is optimum

SC(s) =" Gi(s)
<Y Ci(sis)

< X-S8C(s*) + u- SC(s)
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Smoothness = PoA bound

Theorem
If agame G is (), 1) — smooth, then

POA(G) < ——

BUT: smoothness is stronger

no regret

correlated eq
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Back to congestion games

» C ... arbitrary class of cost functions

Consider the set:

» AC) ={(\p) : x*-e(x+x*) < A-x*-c(x*)+p-x-c(x)}
where

»0<pu<tand A >0

» constraints range over all c € C and x > 0 and x* > 0.
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Back to congestion games

» C ... arbitrary class of cost functions
Consider the set:

> AC) = {(A\ )t X" C(x +X7) S X+ XTo(X*) + - X e(X)}
where

»0<pu<tand A >0

» constraints range over all c € C and x > 0 and x* > 0.

Local smoothness implies global smoothness

For a class of functions C, if (A, 1) € A(C) then every weighted
congestion game with cost functions in C is (\, )-smooth.
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Back to congestion games

» C ... arbitrary class of cost functions
Consider the set:

> AC) = {(A\ )t X" C(x +X7) S X+ XTo(X*) + - X e(X)}
where

»0<pu<tand A >0

» constraints range over all c € C and x > 0 and x* > 0.

Local smoothness implies global smoothness

For a class of functions C, if (A, 1) € A(C) then every weighted
congestion game with cost functions in C is (\, )-smooth.

For unweighted congestion games: redefine A(C):
» AC)={(\p):x*-e(x+1) < A-x*-c(x*)+p-x-c(x)}
» and restrict x, x* to be integer
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Example

» Unweighted congestion games with C = {c1}
» ci(x)=x

1
> AC) = () A > )y ey

25

0.5

0 T T T T ®
0 0.25 0.5 0.75 1
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Example

» Unweighted congestion games with C = {c1}
» ci(x)=x

> AC) = () A = G - )

k=1 »0<pu<tand >0

25

0.5

0 T T T H
0 0.25 0.5 0.75 1
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Example

» Unweighted congestion games with C = {c1}
» ci(x)=x

> AC) = () A = G - )

k=1 »0<pu<tand >0
» Constraint for each (cq, x, x*)

25

(¢1,0,1)

0.5

0 T T T H
0 0.25 0.5 0.75 1
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Example

» Unweighted congestion games with C = {c1}
» ci(x)=x

> AC) = () A = G - )

k=1 »0<pu<tand >0
» Constraint for each (cq, x, x*)

25

(c1,1,1

(¢1,0,1)

0.5

0 T T T H
0 0.25 0.5 0.75 1
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Example

» Unweighted congestion games with C = {c1}
» ci(x)=x

> AC) = () A = G - )

k=1 »0<pu<tand >0
» Constraint for each (cq, x, x*)

25

(c1,1,1

(¢1,0,1)
0.5 1
(c1,2,1)

0 T T LY H
0 0.25 0.5 0.75 1
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Example

» Unweighted congestion games with C = {c1}
» ci(x)=x

> AC) = () A = G - )

k=1 »0<pu<tand >0
» Constraint for each (cq, x, x*)

25

(c1,1,1

(¢1,0,1)
0.5 1
(1,3, 1) (c1,2,1)

0 T T LN ®
0 0.25 0.5 0.75 1
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Example

» Unweighted congestion games with C = {c1}
» ci(x)=x

> AC) = () A = G - )

k=1 »0<pu<tand >0
» Constraint for each (cq, x, x*)

25

(c1,1,1

(¢1,0,1)
0.5 1
(c1,4,\1)  \er,8,1) (c1,2,1)

0 T T LN ®
0 0.25 0.5 0.75 1
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Example

» Unweighted congestion games with C = {c1}
» ci(x)=x

> AC) = () A = G - )

k=1 »0<pu<tand >0
» Constraint for each (cq, x, x*)

25

(c1,1,1

(¢1,0,1)
0.5 1
(c1,4,\1)  \er,8,1) (c1,2,1)

0 T T LN ®
0 0.25 0.5 0.75 1
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Example

25

» ci(x)=x

> AC) ={(A ) :

A\ > c(x+1)

» Unweighted congestion games with C = {c1}

(A, )

(e, 1,1

- C(X*)

0.5

0

(¢1,0,1)

(c1,4,\1) cy,3,1) (c1,2,1)

0

T

0.25

T

N
0.5 0.75

Quantifying the Efficiency of Congestion Games

x-c(x)
71

TR X e(x

»0<pu<tiandA>0
» Constraint for each (cq, x, x*)

Best possible upper bound on PoA:
> ¢(0) =int{ 25 (L) € AC)]
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Exercise

» Unweighted congestion games with C = {c1, ¢}

> ci(x) = x, co(x) = min{9, (x +1)?}
> AC) = {0 ) s A > LRy by
;A k=1 »0<pu<tand >0
25
2 —
1.5 4
1 4
0.5
0 T T T H
0 0.25 0.5 0.75
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Exercise

» Unweighted congestion games with C = {c1, ¢}

> ci(x) = x, co(x) = min{9, (x +1)?}
+1 :
> AC) = {0 ) s A > LRy by
;A k=1 »0<pu<tand >0
» Constraint for each (cq, x, x*)
25
2 —
1.5 1
(cq,1,1
.
(¢1,0,1)
0.5
(4l e.3. 1  \(er.2.1)
0 ™ T LN I
0 0.25 0.5 0.75
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Exercise

» Unweighted congestion games with C = {c1, ¢}

» c1(x) =x, co(x) = min{9, (x + 1)?}
> AC) = {(\ ) : A > G — - )
;A k=1 »0<pu<tand >0
» Constraint for each (cq, x, x*)
25
2 -
1.5 -
1 4
0.5 -
0 T T T H
0 0.25 0.5 0.75 1
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Exercise

» Unweighted congestion games with C = {c1, ¢}

»ci(x)=x,  ca(x) =min{9, (x + 1)?}
> AC) = {(\p) A = L - 2y
;A v=1 »0<pu<tand >0
» Constraint for each (cq, x, x*)
7 » Constraint for each (c,, x, x*)
2 -
c,1,1)
1.5 1
1 4
0.5
0 T T T H
0 0.25 0.5 0.75 1
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Exercise

» Unweighted congestion games with C = {c1, ¢}

»ci(x)=x,  ca(x) =min{9, (x + 1)?}
> AC) = {(\p) A = L - 2y
;A v=1 »0<pu<tand >0
» Constraint for each (cq, x, x*)
7 » Constraint for each (c,, x, x*)
2 -
c,1,1)
1.5 1
1 4
0.5
0 T T T H
0 0.25 0.5 0.75 1
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Exercise

» Unweighted congestion games with C = {c1, ¢}

> ci(x) = x, co(x) = min{9, (x +1)?}
> AC) = {0 ) s A > LRy by
:A v=1 »0<pu<tand >0
» Constraint for each (cq, x, x*)
7 » Constraint for each (c,, x, x*)
(A, )
2 1 Best possible upper bound on PoA:
e, 1,1) .
i > ¢() =inf {2 : (A ) € AC)}
1 4
0.5
(¢1,2,1)
0 T T S w
0 0.25 0.5 0.75

Quantifying the Efficiency of Congestion Games Martin Gairing - 24



Questions

Questions:
» Are such upper bounds tight?
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Questions

Questions:
» Are such upper bounds tight?

» Yes, for unweighted. [ ROUGHGARDEN, 2009]
» Yes, for weighted with mild assumption on C.
[ BHAWALKAR, GAIRING, ROUGHGARDEN, 2010]
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Questions

Questions:

» Are such upper bounds tight?
» Yes, for unweighted.
» Yes, for weighted with mild assumption on C.
[ BHAWALKAR, GAIRING, ROUGHGARDEN, 2010]

[ ROUGHGARDEN, 2009]

Closure under scaling and dilation:
If ¢(x) € C and r € R* then

» r-c(x)ecC

» c(r-x)ecC
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Questions

Questions:

» Are such upper bounds tight?
» Yes, for unweighted.
» Yes, for weighted with mild assumption on C.
[ BHAWALKAR, GAIRING, ROUGHGARDEN, 2010]

[ ROUGHGARDEN, 2009]

Closure under scaling and dilation:
If ¢(x) € C and r € R* then

» r-c(x)ecC

» c(r-x)ecC

» ((C) for linear/polynomial cost functions?
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PoA for linear/polynomial

» Polynomial latency functions: Cy = {c | c(x) = Z}io aj- x’}

» & is solution to (g + 1)9 = q>g+1_
> k= [Pq]
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PoA for linear/polynomial

» Polynomial latency functions: Cy = {c | c(x) = Z,‘-’ZO aj- x’}

» &g is solution to (dy + 1)9 = q>g+1_
> k=[]

Theorem
If all latency functions are from Cq4, then for
(a) weighted congestion games: PoA = d>fj’+1

(k+1 )2d+1 _kd+1 (k+2)d

(b) unweighted congestion games: PoA = )T (k1 2)7 5 (k 11)9 ke

Quantifying the Efficiency of Congestion Games Martin Gairing - 26



PoA for linear/polynomial

» Polynomial latency functions: Cy = {c | c(x) = Z}io aj- x’}

» & is solution to (g + 1)9 = q>g+1_
> k= [Pq]

Theorem
If all latency functions are from Cq4, then for
(a) weighted congestion games: PoA = <I>f1’+1

, , . K1)20+1 _ jd+1 d
(b) unweighted congestion games: PoA = (k+1()df117)(k+2)§+(k(ﬁ)?7kd+1

Corollary

For the linear case (d = 1) we have:

(a) weighted congestion games: PoA = ¢2 = % ~ 2.618
(b) unweighted congestion games: PoA = 2.5
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Lower bound for unweighted games

Proof Sketch.
» n> |[dy] + 2 player
» E={g1,...,gn}U{hy,..., hy}
> Cg.(X)=a-x%, cn(x)=xI

> S,' = {Q,', P,'} with
-Q =19, hi}
- Pi={Git1,- -5 Givks Biay o Piieyr }
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Lower bound for unweighted games

Proof Sketch.
» n> |[dy] + 2 player
> E: {g'],,gn}u{h‘],,hn}
s () =ax9, o (x) = X
> S,' = {Q,', P,'} with
-Q =19, hi}
-Pi=A{0is1,. -, Gitk, Nix1, ..., Rigsr}

Choose a > 0 such that P = (P;)c;y NE
with C;(P) = C;(P_j, Q). d=2,n=4,
=21
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Price of Anarchy vs. Price of Stability

Price of Anarchy:
» assumes that worst-case NE is reached
» we might be able to guide the players to a good NE
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Price of Anarchy:

» assumes that worst-case NE is reached

» we might be able to guide the players to a good NE
Price of Stability

» optimistic approach

» What is the best we can hope for in a NE?

» Much more accurate for instances with unique NE.
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Price of Anarchy vs. Price of Stability

Price of Anarchy:
» assumes that worst-case NE is reached

» we might be able to guide the players to a good NE
Price of Stability

» optimistic approach
» What is the best we can hope for in a NE?
» Much more accurate for instances with unique NE.

Definition: Price of Stability

For a game G: For a class of games G:
. SC(s) PoS(G) = sup PoS(G)
PoS(G) = min. 5pT Geg
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Price of Stability: State of the Art

(1) Analytical simple classes of cost functions
= exact formula for PoS.
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= exact formula for PoS.

» linear (PoS =~ 1.577) [ CHRISTODOULOU, KOUTSOUPIAS, ESA’05]
[ CARAGIANNIS ET AL., ICALP’06]
» bounded degree polynomials [ CHRISTODOULOU, GAIRING, ICALP'13]
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(1) Analytical simple classes of cost functions
= exact formula for PoS.

» linear (PoS =~ 1.577) [ CHRISTODOULOU, KOUTSOUPIAS, ESA’05]
[ CARAGIANNIS ET AL., ICALP’06]
» bounded degree polynomials [ CHRISTODOULOU, GAIRING, ICALP'13]

(2) For every set of allowable cost functions
= recipe for computing PoS.
297
(3) Understanding of game complexity required for worst-case PoS to
be realized.
» |deally independent of cost functions.
» e.g. symmetric strategy sets, singleton strategy sets

777
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Price of Stability: State of the Art

(1) Analytical simple classes of cost functions
= exact formula for PoS.

» linear (PoS =~ 1.577) [ CHRISTODOULOU, KOUTSOUPIAS, ESA’05]
[ CARAGIANNIS ET AL., ICALP’06]
» bounded degree polynomials [ CHRISTODOULOU, GAIRING, ICALP'13]

(2) For every set of allowable cost functions
= recipe for computing PoS.
?77?
(3) Understanding of game complexity required for worst-case PoS to
be realized.

» |deally independent of cost functions.
» e.g. symmetric strategy sets, singleton strategy sets
2?7

This is still a very open field.
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Price of Stability: Why is this harder?

» PoA methodology bounds cost of any NE
» PoS needs to capture the worst-case instance of the best NE
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» useful characterisation of best-case NE is missing

» not straightforward to transfer techniques from PoA
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Price of Stability: Why is this harder?

v

PoA methodology bounds cost of any NE

PoS needs to capture the worst-case instance of the best NE
useful characterisation of best-case NE is missing

not straightforward to transfer techniques from PoA

v

v

v

Approach to bound PoS
1) Define a restricted subset R of NE
2) Find PoA w.r.t. NE that belong to R
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Price of Stability: Why is this harder?

» PoA methodology bounds cost of any NE

» PoS needs to capture the worst-case instance of the best NE
» useful characterisation of best-case NE is missing

» not straightforward to transfer techniques from PoA

Approach to bound PoS
1) Define a restricted subset R of NE
2) Find PoA w.r.t. NE that belong to R

New challenges
» What is a good choice for R?

» How can we incorporate the description of R in the PoA
methodology?
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Potential Games and Price of Stability

Exact Potential Games:

» All games that admit a potential function &, s.t. for all outcomes s,
all player /i, and all alternative strategies s,

Ci(si;s_j) — Ci(s) = &(s},5_j) — ¥(s).
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Potential Games and Price of Stability

Exact Potential Games:

» All games that admit a potential function &, s.t. for all outcomes s,
all player /i, and all alternative strategies s,

Ci(si,s_i) — Ci(s) = ®(s},5_) — (s).

» Every congestion game is an exact potential game.
[ ROSENTHAL, 1973]

» For every exact potential game there exists a congestion game
having the same potential function. [ MONDERER, SHAPLEY, 1996]
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Potential Games and Price of Stability

Theorem

Suppose that we have a potential game with potential function ¢, and
assume that for any outcome s, we have
SC(s)
A

< (s) < B-SC(s)

for some constants A, B > 0. Then the price of stability is at most A - B.
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Theorem
Suppose that we have a potential game with potential function ¢, and
assume that for any outcome s, we have
SC(s)
A

for some constants A, B > 0. Then the price of stability is at most A - B.

~

< (s) < B-SC(s)

Corollary

Let G be the class of unweighted congestion
games with polynomial cost functions of
maximum degree d. Then,

PoS(G) <d+1.

Quantifying the Efficiency of Congestion Games Martin Gairing - 32



Potential Games and Price of Stability

Theorem
Suppose that we have a potential game with potential function ¢, and
assume that for any outcome s, we have
SC(s)
A

< (s) < B-SC(s)

for some constants A, B > 0. Then the price of stability is at most A - B.

Ce(.)

Corollary

Let G be the class of unweighted congestion
games with polynomial cost functions of
maximum degree d. Then,

PoS(G) < d +1. 1

2 3 3
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PoS for polynomial (unweighted) congestion games

Theorem [ CHRISTODOULOU, GAIRING, 2013]

For polynomial congestion games with cost functions from C4 we have

(20 4 28 — ) o 5 — (] 1)) - 7% 4 1
PoS = max .
r>1 (29+d—1)-rdt! —(d+1)-rd+29d — d + 1
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PoS for polynomial (unweighted) congestion games

Theorem [ CHRISTODOULOU, GAIRING, 2013]

For polynomial congestion games with cost functions from C4 we have

(29d+29—1)-r9*" —(d+1)-r9 +1
PoS = max .
r>1 (29+d—1)-rdt! —(d+1)-rd+29d — d + 1

» d=1:
3r2 —2r+1 V3
e aria - T3 O
» d=2:
3 a2
11r 3rc+1 ~ 2 361

max
r>1 5r3—-3r2+7
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PoS for polynomial (unweighted) congestion games

Theorem [ CHRISTODOULOU, GAIRING, 2013]

For polynomial congestion games with cost functions from C4 we have

(29d+29—1)-r9*" —(d+1)-r9 +1
PoS = max .
r>1 (29+d—1)-rdt! —(d+1)-rd+29d — d + 1

»d=1 PoS

1.577
2.361
3.321
4.398
5.525
6.656
7.765
8.847
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3
» d=2:

11r3-3r2 +1

m ~ 2.361
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Upper bound high level proof idea:

» Consider NE s with ¢(s) < ®(s*)

= SC(s) < SC(s) + ®(s*) — d(s) (1)
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» Since sisaNE

SC(s) =) Ci(s)< ) Ci(s-i.s)) (@)
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Upper bound high level proof idea:

» Consider NE s with ¢(s) < ®(s*)

= SC(s) < SC(s) + d(s*) — d(s) (1)

» Since sisaNE

SC(s) =) Ci(s)< ) Ci(s-i.s)) (@)

» Use linear combination (1 —v) - (1) + v - (2) of the above and
apply smoothness techniques.
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Upper Bound: Key Insights

» Suffices to show local smoothness;i.e. Vx, x* € Nand c € Cy4:
f(x,x*,c,v) <p-x-c(x)+ X x*-c(x¥)

Sufficient to consider ¢(x) = x¢.

Tight constraints (x, x*) are (0,1),(1,1) and (k - r, k) for k —

A, 1 and v can be determined (in terms of r) as the “solution” of

those 3 constraints.

The hard part is to show that all other constraints are satisfied.
» Without determining roots of high order polynomials.

v

v

v

v
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Price of Stability: Structure of Lower Bound

297, 297, 247, 297
o o o o
T2 20T, 29T, 2975
o o o o
T3 T3 29T, 20T
o o o o
In T4 T4 2975

@ < K~ Zadditional players
1
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Here:n=5

All cost functions of
the form:

Ce(X) = Qg " Xd

nd_ i—1)d
T gy
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Price of Stability: Structure of Lower Bound

247, 297, 247, 207
o o o o
T2 20T, 29T, 29Ty
o o o o
T3 T3 29T, 29Ty
[ [ o o
T4 T4 Ta 20Ty

@ -k~ 2 additional players
1
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Price of Stability: Structure of Lower Bound

247, 247, 247, 207
@ o o o
T2 297, 247, 297
o [ ] ]
T3 T3 247, 297
@ [ o o
T4 T4 T4 20Ty

@ -k~ 2 additional players
1

Quantifying the Efficiency of Congestion Games

(k29|
(k430 |

(k|

Here:n=5

All cost functions of
the form:

Ce(X) = Qg " Xd

T = (k+1)9—(k+i—1)4

22d 1

Unique NE
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Price of Stability: Structure of Lower Bound

® o o o o Here:n=15
29T, 29T, 297, 29T | (k)9
| | | All cost functions of
e ot o e e the form:
Ip) 207, 24T, 20T 3 | (k+ 2)d 3
i 3 i . d
e o e o e | Ce(X) = e - X
Ts T3 297, 29T U (k+3)° |
e o o o e T — (k) (kti=1)?
In T4 Ty 207, 3 (k+4)7 ! I 22d
o o ([ o o
| Ts Ts Ts Ts 3 ' (k-5)d | )
L 1 Lo 1 Optimum

@ < K~ Zadditional players
1
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PoS for weighted congestion games

» All PoS results presented are for unweighted players.

» How about the weighted case?
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PoS for weighted congestion games

» All PoS results presented are for unweighted players.

» How about the weighted case?

» Lower Bounds?

» Those from unweighted case hold also here.
» No better lower bounds known.

» Upper Bounds?
» Except for linear case PoA upper bounds are the best known.

» for linear, recall potential [ FOTAKIS, KONTOGIANNIS, SPIRAKIS, 2004]
B(s) = > Xe(S) - CelXe(8))+ D _ Wi > Co(W).
ecE ieN ecs;
=SC(s) <SC(s)

Quantifying the Efficiency of Congestion Games Martin Gairing -

37



PoS for weighted congestion games

» All PoS results presented are for unweighted players.

» How about the weighted case?

» Lower Bounds?

» Those from unweighted case hold also here.
» No better lower bounds known.

» Upper Bounds?
» Except for linear case PoA upper bounds are the best known.

» for linear, recall potential [ FOTAKIS, KONTOGIANNIS, SPIRAKIS, 2004]
B(s) = > Xe(S) - CelXe(8))+ D _ Wi > Co(W).
ecE ieN ecs;
=SC(s) <SC(s)

» = SC(s) < ®(s) < 2-SC(s)
» = PoS(Cy) <2

Quantifying the Efficiency of Congestion Games Martin Gairing -

37



Conclusion and open problems

Take Home Points

» There is a strong theory on the PoA in congestion games

» Exact values for polynomial cost functions.
» Recipe for general functions.

» PoS has been studied to a much lesser extend.
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» There is a strong theory on the PoA in congestion games

» Exact values for polynomial cost functions.
» Recipe for general functions.

» PoS has been studied to a much lesser extend.

Interesting open problems:
» PoS for general cost functions
» PoS for weighted players
» main challenge: no potential function.
» POA for instances with dominating strategy equilibrium
» We showed separation. (For d = 2 smaller than PoS.)
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Conclusion and open problems

Take Home Points

» There is a strong theory on the PoA in congestion games

» Exact values for polynomial cost functions.
» Recipe for general functions.

» PoS has been studied to a much lesser extend.

Interesting open problems:

» PoS for general cost functions

» PoS for weighted players
» main challenge: no potential function.

» POA for instances with dominating strategy equilibrium
» We showed separation. (For d = 2 smaller than PoS.)

Thanks. Any questions?
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