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Motivation: Systems with Selfish Agents

Our Focus
I Problems in which multiple agents interact

Motivation: the Internet
I Billions of users
I Tens of thousands of autonomous systems
I By design, centralized control is impossible

I Technical constraints – resources
I Political constraints – ISP, countries

I Decentralized operation and ownership
I Distributed control by competing entities
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Motivation: Systems with Selfish Agents

Selfish Agents
I Have their own private objectives
I Are rational and selfish

I Make choices to maximize their profit
I Profit depends on choices of all agents

Goal
I Algorithms that account for strategic behavior by selfish agents

Natural Tool: GAME THEORY

I Theory of rational behavior in competitive,
collaborative settings

I [von Neumann/Morgenstern 1944]
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Objectives

This Talk
I Understand consequences of non-cooperative behavior
I What is the “cost” of selfish behavior?

I the price of anarchy [Koutsoupias/Papadimitriou 99]
I the price of stability [Anshelevich et al. 04]

Our Scenario
I General model for non-cooperative sharing of resources
I Congestion games
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Example
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Motivating Example

Example
100 cars need to go from s to t .

f(x)=x

f(x)=100

s t

Question
What will selfish network users do?

Claim
In Nash equilibrium all traffic will take the top link.
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Can we do better?

Example
100 cars need to go from s to t .

f(x)=x

f(x)=100

100

0

s t

Consider instead
traffic split equally

I 50 cars have delay 100 (same as before)
I 50 cars have delay 50 (big improvement!)
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Braess’s Paradox [ BRAESS, 68]

Initial Network

50 50

50 50

s t

x100

100x

delay=150
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Braess’s Paradox [ BRAESS, 68]

Initial Network

50 50

50 50

s t

x100

100x

delay=150

Augmented Network

50 50

50 50

s t0

x100

100x

What now?
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Braess’s Paradox [ BRAESS, 68]

Initial Network

50 50

50 50

s t

x100

100x

delay=150

Augmented Network

100

100

s t0

x100

100x

delay=200
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(Weighted) congestion games

Γ = (N , (wi)i∈N ,E , (Si)i∈N , (ce)e∈E )

I N . . . set of k players
I wi . . . weight of player i ∈ N

I E . . . set of resources
e.g. edges in a graph

I Si ⊆ 2E . . . set of strategies of player i
e.g. set of paths from oi to di

I ce . . . latency function of resource e

vs.
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Subclasses of (weighted) congestion games

I unweighted congestion games (or simply congestion games):

wi = 1 for all player i ∈ N

I symmetric games:

Si = Sj for all player i , j ∈ N

I network congestion games
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I singleton congestion games

s t
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Load and Private Cost

Strategy profile
s = (s1, . . . , sn) ∈ S1× . . .×Sn

Traffic on resource e ∈ E

xe(s) =
∑

i∈N :e∈si

wi

Private cost of player i ∈ N

Ci(s) = wi ·
∑
e∈si

ce(xe(s))

5

3

2

5

3

2

s

a

b

c

d

e

C1(s)=3 · (ca(8) + cd (3))

C2(s)=5 · (ca(8) + cc(5) + ce(7))

C3(s)=2 · (cb(2) + ce(7))
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Nash Equilibrium

Nash Equilibrium
A strategy profile s is a Nash equilibrium if and only if all players i ∈ N
are satisfied, that is,

Ci(s) ≤ Ci(s−i , s′i ) for all i ∈ N and s′i ∈ Si .
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Nash Equilibrium

Nash Equilibrium
A strategy profile s is a Nash equilibrium if and only if all players i ∈ N
are satisfied, that is,

Ci(s) ≤ Ci(s−i , s′i ) for all i ∈ N and s′i ∈ Si .

Remarks
I For simplicity we restrict to pure Nash equilibria.
I Many results hold also for mixed Nash equilibria.

I Players randomize over their pure strategies
I Guaranteed to exist [ NASH, 1951]
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Existence of pure NE: positive result

Theorem [ ROSENTHAL, 1973]

Every unweighted congestion game possesses a pure Nash
equilibrium.

Define Φ : (S1 × ...× Sn)→ N by

Φ(s) =
∑
e∈E

xe(s)∑
j=1

ce(j).

x

ce(.)

0 1 2 3 40 1 2 3 4

Consider two strategy profiles s = (s1, . . . , sk ) and s′ = (s′i , s−i):

Φ(s)− Φ(s′) =
∑

e∈si−s′i

ce(xe(s))−
∑

e∈s′i−si

ce(xe(s′))

= Ci(s)− Ci(s′).

Therefore: Φ(s) minimal⇒ s is Nash equilibrium.
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Existence of pure NE: negative result

[LIBMAN & ORDA 2001, FOTAKIS ET AL. 2004, GOEMANS ET AL. 2005]

Theorem
There is a weighted network congestion game that does not admit a
pure Nash equilibrium.

Consider the following instance:
I 2 players
I w1 = 1
I w2 = 2

models and examples 467

s1
u

w

0

x

x

xx
0

s2

t1

t2 t3 s4

s3v t4

Figure 18.3. The AAE example (Example 18.6). In atomic instances with affine cost functions,
different equilibrium flows can have different costs, and the price of anarchy can be as large
as 5/2.

Example 18.7 (Nonexistence in weighted atomic instances) Consider the net-
work shown in Figure 18.4. Extend this network to an atomic selfish routing game
by adding two players, both with source s and sink t , with traffic amounts r1 = 1
and r2 = 2.

We claim that there is no equilibrium flow in this atomic instance. To prove
this, let P1, P2, P3, and P4 denote the paths s → t , s → v → t , s → w → t ,
and s → v → w → t , respectively. The following four statements then imply the
claim.

(1) If player 2 takes path P1 or P2, then the unique response by player 1 that minimizes

its cost is the path P4.

(2) If player 2 takes path P3 or P4, then the unique best response by player 1 is the

path P1.

(3) If player 1 takes the path P4, then the unique best response by player 2 is the

path P3.

(4) If player 1 takes the path P1, then the unique best response by player 2 is the

path P2.

We leave verification of (1)–(4) to the reader.

On the other hand, Section 18.3.2 proves that every atomic instance in which all
players route the same amount of traffic admits at least one equilibrium flow. We call

s t

w

v

47x

x2 + 443x2

6x2x + 33 13x

Figure 18.4. An atomic instance with no equilibrium flow (Example 18.7).
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Existence of pure NE in weighted games

Theorem [ FOTAKIS, KONTOGIANNIS, SPIRAKIS, 2004]

Every weighted congestion game with linear latency functions
possesses a pure Nash equilibrium.

Proof is based on the following potential function:

Φ̃(s) =
∑
i∈N

wi ·
∑
e∈si

(ce(xe(s)) + ce(wi))

=
∑
e∈E

xe(s) · ce(xe(s)) +
∑
i∈N

wi ·
∑
e∈si

ce(wi).

If s = (s1, . . . , sk ) and s′ = (s′j , s−j) for some j ∈ N and s′j ∈ Sj , then

Φ̃(s)− Φ̃(s′) = 2 · (Cj(s)− Cj(s′)).
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Existence and Complexity of Pure NE

I Do weighted congestion games always possess pure Nash
Equilibria?

I Yes, for unweighted players. [ ROSENTHAL, ’73]

Rosenthals Potential Function

Φ(s) =
∑
e∈E

xe(s)∑
i=1

ce(i)

If a player decreases her cost by ∆ then also the potential decreases by ∆.

I No. [ LIBMAN, ORDA, ’01]
[ FOTAKIS, KONTOGIANNIS, SPIRAKIS, ’04]

[ GOEMANS, MIRROKNI, VETTA, ’05]

I Characterisation. [ HARKS, KLIMM, ’12]

I Complexity of deciding for pure Nash equilibria?
I NP-complete [ DUNKEL, SCHULZ, ’06]

I Complexity of computing pure Nash equilibia (unweighted)?
I PLS-complete [ FABRIKANT, PAPADIMITRIOU, TALWAR, ’04]
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Price of Anarchy

http://thetyee.ca/News/2007/10/10/ChinaAutoMad/
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Price of Anarchy

Social Cost
I Different definitions possible
I Here: Total Latency

SC(s) =
∑
i∈N

Ci(s)

=
∑
e∈E

xe(s) · ce(xe(s))

I Let G be a class of games.

Price of Anarchy [ KOUTSOUPIAS, PAPADIMITRIOU, STACS’99]

PoA(G) = sup
Γ∈G,

s is NE in Γ

SC(s)

OPT
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Price of Anarchy: Example

Network with 2 (unweighted) players

Symmetric

OPT

SC = 14 + 10 = 24

Price of Anarchy = 28/24 = 7/6
If multiple equilibria, look at worst one
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Price of Anarchy: State of the Art

(1) Analytical simple classes of cost functions
⇒ exact formula for PoA.

I linear [ CHRISTODOULOU, KOUTSOUPIAS, STOC’05]
[ AWERBUCH, AZAR, EPSTEIN, STOC’05]

I bounded degree polynomials [ ALAND ET AL., STACS’06]

(2) For every set of allowable cost functions
⇒ recipe for computing PoA.

I non-atomic (Wardrop model) [ ROUGHGARDEN, TARDOS, JACM’00]
I unweighted [ ROUGHGARDEN, STOC’09]
I weighted [ BHAWALKAR, GAIRING, ROUGHGARDEN, ESA’10]

(3) Understanding of game complexity required for worst-case PoA to
be realized.

I Ideally independent of cost functions.
I e.g. symmetric strategy sets, singleton strategy sets
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Abstract Setup

I n players, each picks a strategy si

I player i incurs cost Ci(s)

I Important Assumption:
objective function is SC(s) =

∑
i Ci(s)

Definition: [ ROUGHGARDEN, STOC’09]

A game is (λ, µ)− smooth if for every pair s, s∗ of outcomes:∑
i
Ci(s−i , s∗i ) ≤ λ · SC(s∗) + µ · SC(s).

(λ > 0, µ < 1)
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Smoothness =⇒ PoA bound

Theorem
If a game G is (λ, µ)− smooth, then

PoA(G) ≤ λ

1− µ
.
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Smoothness =⇒ PoA bound

Theorem
If a game G is (λ, µ)− smooth, then

PoA(G) ≤ λ

1− µ
.

Proof: s is a NE, s∗ is optimum

SC(s) =
∑

i

Ci(s)

≤
∑

i

Ci(s−i , s∗i )

≤ λ · SC(s∗) + µ · SC(s)
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Smoothness =⇒ PoA bound

Theorem
If a game G is (λ, µ)− smooth, then

PoA(G) ≤ λ

1− µ
.

BUT: smoothness is stronger
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Back to congestion games

I C ... arbitrary class of cost functions

Consider the set:
I A(C) = {(λ, µ) : x∗ · c(x + x∗) ≤ λ · x∗ · c(x∗) + µ · x · c(x)}

where
I 0 ≤ µ < 1 and λ > 0
I constraints range over all c ∈ C and x ≥ 0 and x∗ > 0.

Local smoothness implies global smoothness
For a class of functions C, if (λ, µ) ∈ A(C) then every weighted
congestion game with cost functions in C is (λ, µ)-smooth.

For unweighted congestion games: redefine A(C):
I A(C) = {(λ, µ) : x∗ · c(x + 1) ≤ λ · x∗ · c(x∗) + µ · x · c(x)}
I and restrict x , x∗ to be integer
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I and restrict x , x∗ to be integer
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Example

I Unweighted congestion games with C = {c1}
I c1(x) = x

I A(C) = {(λ, µ) : λ ≥ c(x+1)
c(x∗) − µ ·

x ·c(x)
x∗·c(x∗)}
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I 0 ≤ µ < 1 and λ > 0
I Constraint for each (c1, x , x∗)
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Best possible upper bound on PoA:

I ζ(C) = inf
{

λ
1−µ : (λ, µ) ∈ A(C)
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Exercise

I Unweighted congestion games with C = {c1, c2}
I c1(x) = x , c2(x) = min{9, (x + 1)2}
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Questions

Questions:
I Are such upper bounds tight?

I Yes, for unweighted. [ ROUGHGARDEN, 2009]
I Yes, for weighted with mild assumption on C.

[ BHAWALKAR, GAIRING, ROUGHGARDEN, 2010]

Closure under scaling and dilation:
If c(x) ∈ C and r ∈ R+ then

I r · c(x) ∈ C
I c(r · x) ∈ C

I ζ(C) for linear/polynomial cost functions?
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PoA for linear/polynomial

I Polynomial latency functions: Cd =
{

c | c(x) =
∑d

i=0 ai · x i
}

I Φd is solution to (Φd + 1)d = Φd+1
d .

I k = bΦdc

Theorem
If all latency functions are from Cd , then for
(a) weighted congestion games: PoA = Φd+1

d

(b) unweighted congestion games: PoA = (k+1)2d+1−kd+1(k+2)d

(k+1)d+1−(k+2)d +(k+1)d−kd+1

Corollary
For the linear case (d = 1) we have:

(a) weighted congestion games: PoA = Φ2 = 3+
√

5
2 ≈ 2.618

(b) unweighted congestion games: PoA = 2.5
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Lower bound for unweighted games

Proof Sketch.
I n ≥ bΦdc+ 2 player
I E = {g1, . . . ,gn} ·∪{h1, . . . ,hn}
I cg∗(x) = a · xd , ch∗(x) = xd

I Si = {Qi ,Pi} with
- Qi = {gi , hi}
- Pi = {gi+1, . . . , gi+k , hi+1, . . . , hi+k+1}

2

1

4

g2

h3

g3

h1

g1

h2

2

43

3

g4

1

h4

d = 2, n = 4,
k = bΦdc = b2.148c
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Price of Anarchy vs. Price of Stability

Price of Anarchy:
I assumes that worst-case NE is reached
I we might be able to guide the players to a good NE

Price of Stability
I optimistic approach
I What is the best we can hope for in a NE?
I Much more accurate for instances with unique NE.

Definition: Price of Stability
For a game G:

PoS(G) = min
s is NE

SC(s)

OPT

For a class of games G:

PoS(G) = sup
G∈G

PoS(G)
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Price of Stability: State of the Art

(1) Analytical simple classes of cost functions
⇒ exact formula for PoS.

I linear (PoS ≈ 1.577) [ CHRISTODOULOU, KOUTSOUPIAS, ESA’05]
[ CARAGIANNIS ET AL., ICALP’06]

I bounded degree polynomials [ CHRISTODOULOU, GAIRING, ICALP’13]

(2) For every set of allowable cost functions
⇒ recipe for computing PoS.

???
(3) Understanding of game complexity required for worst-case PoS to

be realized.
I Ideally independent of cost functions.
I e.g. symmetric strategy sets, singleton strategy sets

???

This is still a very open field.
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Price of Stability: Why is this harder?

I PoA methodology bounds cost of any NE
I PoS needs to capture the worst-case instance of the best NE

I useful characterisation of best-case NE is missing
I not straightforward to transfer techniques from PoA

Approach to bound PoS
1) Define a restricted subset R of NE
2) Find PoA w.r.t. NE that belong to R

New challenges
I What is a good choice for R?
I How can we incorporate the description of R in the PoA

methodology?
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Potential Games and Price of Stability

Exact Potential Games:
I All games that admit a potential function Φ, s.t. for all outcomes s,

all player i , and all alternative strategies s′i ,

Ci(s′i , s−i)− Ci(s) = Φ(s′i , s−i)− Φ(s).

I Every congestion game is an exact potential game.
[ ROSENTHAL, 1973]

I For every exact potential game there exists a congestion game
having the same potential function. [ MONDERER, SHAPLEY, 1996]
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Potential Games and Price of Stability

Theorem
Suppose that we have a potential game with potential function Φ, and
assume that for any outcome s, we have

SC(s)

A
≤ Φ(s) ≤ B · SC(s)

for some constants A,B ≥ 0. Then the price of stability is at most A · B.

Corollary
Let G be the class of unweighted congestion
games with polynomial cost functions of
maximum degree d . Then,

PoS(G) ≤ d + 1 . x

ce(.)

0 1 2 3 40 1 2 3 4
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PoS for polynomial (unweighted) congestion games

Theorem [ CHRISTODOULOU, GAIRING, 2013]

For polynomial congestion games with cost functions from Cd we have

PoS = max
r>1

(2dd + 2d − 1) · rd+1 − (d + 1) · rd + 1
(2d + d − 1) · rd+1 − (d + 1) · rd + 2dd − d + 1

.

I d = 1:

max
r>1

3 r2 − 2 r + 1
2 r2 − 2 r + 2

= 1 +

√
3

3
≈ 1.577

I d = 2:

max
r>1

11 r3 − 3 r2 + 1
5 r3 − 3 r2 + 7

≈ 2.361

d PoS
1 1.577
2 2.361
3 3.321
4 4.398
5 5.525
6 6.656
7 7.765
8 8.847
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Upper bound high level proof idea:

I Consider NE s with Φ(s) ≤ Φ(s∗)

⇒ SC(s) ≤ SC(s) + Φ(s∗)− Φ(s) (1)

I Since s is a NE

SC(s) =
∑

i

Ci(s)≤
∑

i

Ci(s−i , s∗i ) (2)

I Use linear combination (1− ν) · (1) + ν · (2) of the above and
apply smoothness techniques.
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Upper Bound: Key Insights

I Suffices to show local smoothness; i.e. ∀x , x∗ ∈ N and c ∈ Cd :

f (x , x∗, c, ν) ≤ µ · x · c(x) + λ · x∗ · c(x∗)

I Sufficient to consider c(x) = xd .
I Tight constraints (x , x∗) are (0,1), (1,1) and (k · r , k) for k →∞
I λ, µ and ν can be determined (in terms of r ) as the “solution” of

those 3 constraints.
I The hard part is to show that all other constraints are satisfied.

I Without determining roots of high order polynomials.
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Price of Stability: Structure of Lower Bound

← k ≈ n
r additional players

a b c d e

f g h i j

k l m n o

p q r s t

u v w x y

z

(k + 1)d

(k + 2)d

(k + 3)d

(k + 4)d

(k + 5)d

2dT2 2dT3 2dT4 2dT5

T2 2dT3 2dT4 2dT5

T3 T3 2dT4 2dT5

T4 T4 T4 2dT5

T5 T5 T5 T5

1

Here: n = 5

All cost functions of
the form:

ce(x) = αe · xd

Ti = (k+i)d−(k+i−1)d

22d−1
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PoS for weighted congestion games

I All PoS results presented are for unweighted players.

I How about the weighted case?

I Lower Bounds?
I Those from unweighted case hold also here.
I No better lower bounds known.

I Upper Bounds?
I Except for linear case PoA upper bounds are the best known.
I for linear, recall potential [ FOTAKIS, KONTOGIANNIS, SPIRAKIS, 2004]

Φ̃(s) =
∑
e∈E

xe(s) · ce(xe(s))︸ ︷︷ ︸
=SC(s)

+
∑
i∈N

wi ·
∑
e∈si

ce(wi )︸ ︷︷ ︸
≤SC(s)

.

I ⇒ SC(s) ≤ Φ̃(s) ≤ 2 · SC(s)
I ⇒ PoS(C1) ≤ 2
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Conclusion and open problems

Take Home Points
I There is a strong theory on the PoA in congestion games

I Exact values for polynomial cost functions.
I Recipe for general functions.

I PoS has been studied to a much lesser extend.

Interesting open problems:
I PoS for general cost functions
I PoS for weighted players

I main challenge: no potential function.
I PoA for instances with dominating strategy equilibrium

I We showed separation. (For d = 2 smaller than PoS.)

Thanks. Any questions?
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