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Abstract

Many approaches to case based reasoning (CBR) exploit feature weight setting algorithms to reduce the sensitivity to distance functions. In
this paper, we demonstrate that optimal feature weight setting in a special kind of CBR problems can be formalised as linear programming
problems. Therefore, the optimal weight settings can be calculated in polynomial time instead of searching in exponential weight space using
heuristics to get sub-optimal settings. We also demonstrate that our approach can be used to solve classification problems. © 2002 Elsevier

Science B.V. All rights reserved.
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1. Introduction

Case based reasoning (CBR) is a multi-disciplinary
subject that focuses on the reuse of experiences [2]. Typi-
cally, a CBR approach retains a fairly large number of
previous experiences (which are usually called cases) in a
database (which is usually called the case base). When a
new problem occurs, it will be represented as a new case and
compared to the cases in the case base. Thus, the cases
similar to the new cases will be used to suggest to users a
solution for the new problem. Usually, the solved new case
will also be added into the case base. The underlying
assumption for CBR is that similar cases will have similar
solutions. Many CBR approaches have been reported for
solving problems in various domains, such as planning
[11], design [14], software engineering [4,42], image
processing [21,40], and diagnosis [8,31,49].

Cases can be represented in various forms. In this paper,
we focus on the well-structured form. Other forms of case
representation include directed acyclic graphs [30] and
examplars [9,41]. A well-structured case is defined as a
vector of features: x = {x, x,, ...xq}, where ¢ is the number
of features. Therefore, an algorithm such as k-nearest neigh-
bour (k-NN) [18,22] can be exploited through calculating
the distance between case x = {x;,x,,...x,} and case y =
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{¥1,2,...y4} using a distance function. However, a univer-
sal distance function may not be suitable for solving
problems in different domains. One solution is to investigate
multiple distance functions [55,56]. The other is to parame-
terise the distance function with feature weights [3,53]. For
a feature weighting approach, a main research topic is to
determine  feature = weight  settings (see  e.g.
[16,32,34,48,54]).

In particular, CBR approaches can also be applied to
diagnosis problems. In a diagnosis problem, the solution
to a case is a set of faults, which is usually easy to be
compared with the set of faults of another case. For two
cases whose solutions have been found, the similarity in
each feature, the calculated overall similarity, and the real
similarity between the two sets of faults can be obtained.
However, when diagnosing a new case, only the similarity
in each feature and the calculated overall similarity between
the new case and an existing case can be obtained. The
calculated overall similarity is used to predict the fault simi-
larity.

Linear programming (LP) [17] has been a rapidly devel-
oping mathematical discipline since it started in 1947. Theo-
retically, LP problems have been proved to be polynomial
time solvable [26,27]. Practically, the simplex algorithm
[17] and its derivatives and the interior point algorithm
[26] and its derivatives are fast enough to be used in real
world applications. Therefore, many realistic problems that
have been expressed as LP problems have been well solved,
and there is also a lot of commercial or free software for LP
problems available from vendors and/or on the Internet.
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In this paper, we demonstrate that optimal feature weight
setting in a general form of case based diagnosis can be
formalised as LP problems. Therefore, available LP soft-
ware can be used to solve case based diagnosis problems.

The organisation of the remainder of the paper is as
follows. Section 2 gives a brief overview of LP problems,
and presents a general form of case based diagnosis. Section
3 demonstrates that calculation of optimal initial weights
can be formalised as an LP problem. Section 4 demonstrates
that calculation of new case weights can also be formalised
as an LP problem. Section 5 provides some preliminary
empirical results. Section 6 further discusses some related
works of our approach. Section 7 concludes this paper.

2. Preliminaries
2.1. Linear programming problem

In general, an LP problem is to calculate the maximum or
minimum value of a linear combination of a set of variables
subject to a set of linear equations and/or linear inequalities
as constraints. Therefore, an LP problem can be represented
in the following form [12]:

maximise or minimise

n
Z Cjxj
Jj=1

subject to Constraint; (i = 1,2,...m)
Constraint; is of one of the three forms:

D ayx; = b, or 1)
Jj=1

n
Z agx; = b;, or
J=1

n

Zaij.xj' = bi

j=1
x;=0(G=12,..n)

In Eq. (1), x{, x5, ...x,, are the decision variables; c{, c,...c,
are the cost coefficients; Y| cx; is the objective function;
bi,b,,...b, are the right-hand-side constants; n is the
number of decision variables; and m is the number of
constraints.

There have been many efficient algorithms for LP
problems reported in the literature. Algorithms that can
solve the problem in Eq. (1) in polynomial time of m + n
have been reported in the literature (see e.g. [26,27]).
Although the simplex algorithm [17] has been proved to
be exponential in the worst case [29], there is strong empiri-
cal evidence suggesting that it typically takes O(m + n)
time to solve the problem in Eq. (1) [12]. In Ref. [37], it
is also demonstrated that some interior point algorithms are

even faster than the simplex algorithm when dealing with
problems of large sizes. However, a thorough theoretical
analysis of the exact complexity of interior point algorithms
is still on its way. Other material concerning the complexity
of algorithms for LP problems can be found in Refs. [5,35].

2.2. A general form of case based diagnosis

A feature weighting approach to the case based diagnosis
problem can be summarised as follows. Every case is fully
structured as a vector of features. Given a case x in the case
base, we can obtain the similarity between x and any other
case in any feature. Therefore, we can calculate the overall
similarity between x and the other case as a linear combina-
tion of the similarity in each feature. Supposing there are g
features in a case, the overall similarity between x and the
other case i can be calculated as formula (2) [51].

q
Z Syik War @
=

In Eq. (2), S is the similarity between case x and case i in
feature k and Wy, is the weight for case x in feature k. Each
weight for one case represents the contribution of the simi-
larity of the corresponding feature to the overall similarity.
Informally, we would say that Wy, represents the influence of
feature k in using case i to diagnose another case. When
diagnosing a new case f, we will calculate every overall
similarity between any case x in the case base and ¢. The
most similar / cases will be used to suggest the faults for 7.
After diagnosis, case t may be also added into the case base
to diagnose future cases.

We call this form of case based diagnosis a general form;
because we assign each feature in each case a weight, rather
than assigning each feature a weight for all the cases. This
distinction was previously referred as local weighting (i.e.
different feature weights for different cases) and global
weighting (i.e. same feature weights for all cases) [23,54].
In this paper, it is not our aim to discuss which form is
preferable. We use the general form only because global
weighting is a simplification of local weighting for our
method.

In the general form, the calculated overall similarities rely
heavily on the weights. Therefore, to calculate the initial
weights for the training cases and to calculate the weights
for the new case to be added into the case base are two main
tasks, which will be discussed in Sections 3 and 4.

3. Calculation of initial set of weights

3.1. The problem

There are n training cases in the case base, each having a
value in each of g features. For any two cases, the similarity
between the two cases in each feature and the real similarity
between the two cases can both be obtained. The overall
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Table 1
Symbols used in formalising initial weight calculation

Symbols Meanings and constraints

S,-jk(i,j =1,2..n,i <jk=
1,2...q)

Sji is the similarity
between case i and case j
in feature k, and 0 =

Sip =1

Rj; is the real similarity
between case i and case j,
and0 =Ry =1

Wy is the weight of case i
in feature k, 0 = W = 1,
and 3 Wy =1

Ry(ij = 1,2...n,i < j)

Wili=1,2..mk=1,2..9)

similarity between the two cases can be calculated using
formula (2). The problem is to determine the optimal
value of each initial weight for each case in each feature.
The optimal values of the weights should satisfy the follow-
ing condition. When diagnosing any case in the training set
using the other n — 1 cases, the similarities calculated using
the similarity function in formula (2) should be well in
accordance with the real similarities.

3.2. Symbols

We summarise the symbols in our formalisation, their
meanings and their constraints in Table 1. Here we only
use normalised similarities and weights. Therefore, any
similarity is a value between 0 and 1, and so is any weight.
The sum of all the weights for any case should be 1, because
each weight represents the contribution of the similarity of
the corresponding feature to the overall similarity.

3.3. Formalisation

The set of satisfactory initial weights should have the
following property. For cases i and j, both >7_, St Wik
and Y7, S;xW; should be approximately equal to Rj.
This property means that when comparing case j with case
i, the value calculated from the similarity function using the
weights of case i will be similar to the real similarity, and
vice versa.

Therefore, the calculation of optimal initial weights can
be formalised as an LP problem by introducing some margin
variables. For i,j = 1,2...n(i <j), we introduce margin
variables L;, Lj;, G; and Gj;, each of which has a non-
negative value. Then we can set up the following constraint
equations in Egs. (3) and (4):

q
Z SiWi + Ly — G; = R;; (3)
k=i

z ! !

D SuWu + Lij = G =Ry 4)
=1

In Egs. (3) and (4), each L; or Lﬁj stands for the part by
which the predicted similarity is less than the real similarity,

and each G or Gﬁj stands for the part by which the predicted
similarity is greater than the real similarity. The goal is to
minimise the sum of the margin variables, which means to
minimise the sum of predictive errors in similarity. There-
fore, we can use the function in Eq. (5) as the objective
function.

n n
minimisez Z (L + L + Gy + Gj; )
=1 =it

In an optimal solution, for any i,j = 1,2,...n(i <), either
L;;is 0 or Gj; is 0 and either Lﬁj is 0 or Gﬁj is 0, because any
predicted similarity can only be either greater or less than
the real similarity. A simple proof is as follows. When both
L; and Gj; are greater than 0, if L; = Gy, setting L;; to L; —
G;; and Gy to 0 will both satisfy the constraints in Egs. (3)
and (4) and make the result in Eq. (5) less; and similar for
L; < Gy.

3.4. Complexity

From the above formalisation, there are n * g weight vari-
ables and 2n * (n — 1) margin variables. The number of the
constraints presented in Egs. (3) and (4) is n* (n — 1) and
there are n constraints in the form of > /_, Wy = 1. There-
fore, the problem of calculating the optimal initial weights
for the n cases, each of which is represented as a vector of ¢
attributes, can be formalised as an LP problem with n *
(2n + g — 2) variables and n* constraints. As LP problems
are polynomial time solvable, the problem of calculating the
optimal initial weights is also polynomial time solvable.

If we require that each feature has only one weight for all
the cases, we need only equations in Eq. (4) or equations in
Eq. (5). Therefore, we will have g weight variables,
n#*(n—1) margin variables and (n*(m—1))/2+1
constraints. Then, the optimal initial weight setting problem
becomes an LP problem with n * (n — 1) + ¢ variables and
(n*(n — 1))/2 + 1 constraints.

3.5. Sub-optimal simplification

In the formalisation, each case is compared with all the
other cases. Therefore, we have O(nz) constraints and O(nz)
margin variables. If we only compare each case with a
subset of other cases, we can reduce the complexity of the
problem of calculating the initial weights. Obviously, this is
only a sub-optimal simplification.

Supposing a case is only compared with another
p(p=n — 1) cases, we will have n* g weight variables
and 2n* p margin variables. The number of constraints
will be n* (p + 1). Therefore, the problem of calculating
the initial weights can be further simplified as an LP
problem with n*(2p + g) variables and n=*(p + 1)
constraints.
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Table 2
Symbols used in formalising new case weight calculation

Symbols Meanings and constraints

Sui=1,2..n5k =1,2...q) Six is the similarity
between case i and the
new case in feature k, and

0=S;=1.

Ri(i=1,2...n) R; is the real similarity
between case i and the
new case, and 0 = R; =
1.

Wik =1,2...q) W, is the weight of the

new case in feature k, 0 =
Wk =1, and ZZ:I Wk =
1.

4. Calculation of new case weights
4.1. The problem

As different cases have different feature weights, the
weights of a new case to be added into the case base should
also be calculated. There are already n cases in the case
base, each having a value in each of g features. For each
feature in each case in the case base, the weight has been
determined. There is a new case whose solution has been
acquired. Therefore, the similarity between the new case
and any case in the case base in each feature and the real
similarity between the two cases can also both be obtained.
The overall similarity between the two cases can be calcu-
lated using formula (2). The problem is to calculate the
optimal value of each weight for the new case in each
feature. The optimal values of the weights should satisfy
the following condition. When diagnosing any existing
case using the new case, the similarities calculated using
the similarity function in formula (2) should be well in
accordance with the real similarities.

We will also note here that the above condition may not
be the optimal condition for all the n + 1 cases, because
adding a new case may make the previous determined
weights become not optimal and thus the previous weights
should also be adjusted to be optimal. To cope with this, we
can formalise this problem in the same way as described in
Section 3 using all the n + 1 cases as the training cases.
However, that will increase the computational complexity.

4.2. Symbols

We summarise the symbols in our formalisation, their
meanings and their constraints in Table 2. Here we also
only use normalised similarities and weights. Therefore,
any similarity is a value between O and 1, and so is any
weight. The sum of all the weights for any case should be
1, because each weight represents the contribution of the
similarity of the corresponding feature to the overall simi-
larity.

4.3. Formalisation

The set of new case weights should have the following
property. For case i, > /_, Sy W, should be approximately
equal to R;. This property means that when comparing case i
with the new case, the value calculated from the similarity
function using the weights of the new case would be similar
to the real similarity.

Therefore, the calculation of new case weights can be
formalised as an LP problem by introducing some margin
variables. For i = 1,2...n, we introduce margin variables
L;(L; = 0) and G;(G; = 0). Then we can set up the follow-
ing constraint equations in Eq. (6).

q
> SuWi + L — G, =R, (6)
k=1

The goal is to minimise the sum of the margin variables.
Therefore, we can use the function in Eq. (7) as the objective
function.

minimise Z L; + Gy @)

i=1

In an optimal solution, for any i = 1,2,...n, either L; is 0 or
G,‘ is 0.

4.4. Complexity

From the above formalisation, there are g weight vari-
ables and 2n margin variables. The number of the
constraints presented in Eq. (6) is n and there is another
constraint in the form of ZZZI W, = 1. Therefore, the
problem of calculating the weights for the new cases, each
of which is represented as a vector of g attributes, can be
formalised as an LP problem with 2n + g variables and
n + 1 constraints. As LP problems are polynomial time
solvable, the problem of calculating new case weights is
also polynomial time solvable.

4.5. Sub-optimal simplification

In the formalisation, the new case is compared with all the
existing cases. Therefore, we have O(n) constraints and
O(n) margin variables. If we only compare each case with
a subset of existing cases, we can reduce the complexity of
the problem of calculating the new case weights. Again, this
is a sub-optimal simplification.

Supposing a case is only compared with other p(p = n)
cases, we will have g weight variables and 2p margin vari-
ables. The number of constraints will be (p + 1). Therefore,
the problem of calculating the new case weights can be
further simplified as an LP problem with 2p + ¢ variables
and p + 1 constraints.
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Table 3
Preliminary empirical results

Number of training cases Training time (s)

Average deviation of estimation

Average value estimation (%)

Training case estimation (%) Previous case estimation (%)

50 3.30 42.68
76 19.00 40.90
100 64.30 37.96

15.48 11.41
14.43 11.62
12.48 10.67

5. Preliminary empirical results
5.1. Experimental method

To evaluate the effectiveness of our approach, we imple-
ment a simplified version of our approach on a Pentium III
500 MHz PC with 128M RAM running Windows NT 4.0,
and apply it to solve the ‘Auto-Mpg’ problem provided by
Ref. [13]. The problem, which is originally proposed in Ref.
[44], is to predict the fuel consumption in miles per gallon in
terms of three multi-valued discrete and five continuous
features. This problem can be viewed as a diagnosis
problem by viewing the fuel consumption as the faults to
diagnose. There are totally 398 cases including six cases that
have missing feature values. In our experiment, we only use
the 392 cases that have no missing feature values.

We randomly select some cases as training cases and the
others as test cases. Due to the ease of implementation, we
require only one weight for each feature for all cases in the
simplified version. Therefore, we only need to solve one LP
problem while training and no other LP problems while
diagnosing. This makes us to be able to use an off-the-
shelf LP software product to calculate the optimal weights
instead of implementing our own LP algorithm in our
experiment.

While training, we first generate the corresponding LP
problem using the training cases. Then we solve the LP
problem using IBM OSL [25], and thus get the optimal
feature weight setting. Finally, we use the calculated opti-
mal weights to diagnose the test cases. While diagnosing,
the fuel consumption of the most similar case is used to
predict the case under diagnosis. Actually, we test two
methods of diagnosis. One is to diagnose a new case only
using the training cases (which is called the training case
estimation in Table 3). In this kind of diagnosis, none of the
test cases under diagnosis will be added into the case base.
The other is to diagnose a new case using the training cases
and all the previously diagnosed cases (which is called the
previous case estimation in Table 3). In this kind of diag-
nosis, each diagnosed test case will be added into the case
base and thus used for diagnosing the next cases.

We perform the experiment three times each, respec-
tively, using 50, 76 and 100 training cases. For each time,
we record the average deviations of the estimated fuel
consumption from the real consumption for the two diag-
nosis methods. As a comparison, we record the average

deviation of merely using the average fuel consumption of
the training cases as the estimation of the fuel consumption
of each test case. We also record the running time reported
by IBM OSL as the training time. The results are
summarised in Table 3.

5.2. Results

From Table 3, we can find the following trends. First,
typically the larger the training case number is, the more
accurate the estimations are, which, we think, is due to the
following reason. The larger the training case number is, the
more the representability of the training cases is. Secondly,
applying our approach can dramatically improve the accu-
racy of estimation, because the average deviations of esti-
mation in our approach are about only one third of that of
the average value estimation. Thirdly, using all previous
cases in diagnosis is more accurate than merely using train-
ing cases, which, we think, implies that the feature weights
calculated from the training cases can well fit into the test
cases. Finally, the training time for our approach is quite
acceptable, and it may be predicted that training larger
number of cases should still be feasible.

6. Related work
6.1. Classification

Classification is a research focus, mainly investigated in
the domain of data mining. A classification problem can be
summarised as follows. Each instance x is structured as a
vector of attributes x = {xy, x,...x,}, where g is the number
of features. Each existing instance will be assigned to a
class, which is noted as C(x). When inputting a new instance
Yy = {y1,¥2...y4}, a classifier using some learning algorithm
will predict its class.

The aim of classification is to predict the class rather than
the faults of a new instance. When predicting the class of a
new instance, the new instance can be compared with exist-
ing instances, and the class of the most similar instance is
the predicted class of the new instance or the k most similar
instances are used to determine the predicted class via some
voting rules. Investigations about voting rules can be found
in Refs. [20,47,50]. If each class is viewed as a fault, a
classification problem can be viewed as a special case
based diagnosis problem.
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Therefore, our approach to case based diagnosis can also
be applied to classification. The calculated overall similarity
of the two instances can be defined as a linear combination
of the similarity in each feature. The real similarity between
two instances whose classes have been assigned can be
defined as the similarity between the corresponding classes.
For example, in Eq. (8), similarity between two instances in
the same class is defined as 1, and similarity between two
instances in different classes is defined as O.

SA. =

i
{ 1, if instance i and instance j belong to the same class

0, if instance i and instance j belong to different classes
3

Discussions about the relationship between case based diag-
nosis and classification can also be found in Refs. [31,43].

6.2. Distance functions

In many approaches, distance functions are used to
measure the similarity between two cases. Actually, there
are many distance functions reported in the literature,
including Euclidean [18], Minkowsky [10] and Camberra
and Chi-square [38] etc. More comprehensive discussions
about distance functions can be found in Refs. [55,56]. In
this paper, we directly use a similarity function instead of
distance functions. Although the similarity function used in
this paper is a linear combination of feature similarities,
many different distance functions can be represented by
our similarity function using properly defined normalisation
functions. We demonstrate here as an example that the
widely used Euclidean distance function can be represented
by our similarity function.

The Euclidean distance function is represented as Eq. (9).

©))

In Eq. (9), Dj; is the distance between case i and case j, g is
the number of features, and A;, is the value of case i in
feature k. Supposing Max, is the maximum value difference
in feature k, we define the normalisation function for overall
similarity between case i and case j in Eq. (10) and the
normalisation function for similarity between case i and
case j in feature k in Eq. (11).

q
2 2
Z Max; — Dj;

_ k=

Sy == (10)
Z Max,%
k=1
Maxj — (Ag — Ag)’
Six = / 11
ik Max? (i
From Eq. (10), we can have D?j = ZZ:I Max,% -

SU Zk 1Maxk, and from Eq. (11), we can have (A; —
k) = Maxk S,jkMaxk By substituting D; and (A —
/k) in Eq. (9) with the above results, we can get the equa-

tion in Eq. (12), and therefore, we can get the similarity
function in Eq. (13). Therefore, using the distance function
in Eq. (9) is actually using special weight settings in our
similarity function, in which formula (11) is used to calcu-
late similarity in each feature and formula (13) is used to
calculate the overall similarity.

Sl] Z Maxk i (Man

kMaxi) (12)

k=1 k=1 k=1
Max,%
Si =2 St — (13)
k=1 Z Max;]

6.3. Feature weight setting algorithms

Good surveys of previous works on feature weighting can
be found in Refs. [3,53]. We only summarise the main
results in them. In most methods, each feature will usually
be assigned only one weight. Therefore, the feature weight
setting problem is usually viewed as a search problem in the
weight space, which is exponential in the number of features
(i.e. O(y7), where y is the number of different weight
settings a feature can have and ¢ is the number of features.
Most approaches use the hill climbing technique or its
variants to do the search, such as Refs.
[1,15,28,34,36,45,54]. Some other approaches directly
calculate weights using the training cases and/or some
other knowledge, such as Refs. [16,48]. None of them can
definitely get the optimal weight settings. In Ref. [32], an
optimal weight setting method in the sense of minimising
predictive errors is reported, but this method is restricted to
two features and is optimal only for predicting the most
similar case. Other efforts on optimal weight settings can
be found in Refs. [39,46], which are based on other optimal
criteria.

An alternative approach to feature weighting is to assign a
case weight to each case besides feature weights. The under-
lying assumption is that some cases are more important than
others are. Efforts on case weighting can be found in Refs.
[6,7,45,52]. In our approach, if we remove the constraints on
the sum of the weights of one case (see Tables 1 and 2), or
let the constraints tobe > {_, Wy = land Y'7_, W, = 1, the
effect of letting different cases have different importance
will also be achieved. The larger the sum of the weights
of the case is, the more important the case is. Therefore,
our approach can also address the issues previously
addressed by case weighting approaches.

6.4. Linear discriminant functions

In the literature, there have been reports on using linear
discriminant functions to solve classification problems (see
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e.g. [24,33]). The basic idea of linear discriminant function
approaches is to use the linear combination of the values in
the features of an instance to estimate the class of the
instance. A main task of a linear discriminant function
approach is to calculate the combinatory coefficients in
the linear discriminant function using the training data,
and therefore, the LP technique can be used for the calcula-
tion [19]. In this paper, we use linear combination of feature
similarities to calculate the similarity between two cases.
The main difference between our approach and the of linear
discriminant function approaches is that the feature weights
in our approach are influence coefficients in the similarity
function rather than the coefficients in the discriminant
function.

7. Concluding remarks

In this paper, we have proved that the two kinds of opti-
mal weight setting in a general form of case based diagnosis
can be formalised as LP problems. As LP problems are
polynomial time solvable, optimal weight settings can be
calculated in polynomial time rather than searching the
exponential weight space using heuristics to get sub-optimal
settings. Optimal weight settings calculated in our method
are in the sense of minimising predictive errors, which is
quite in accordance with common sense. Our preliminary
empirical results also show that our approach can not only
calculate the theoretically optimal feature setting, but also
be used to solve real world problems quite accurately.

We demonstrate that we have solved the optimal feature
weight setting problem in a general form of case based
diagnosis, and therefore, some alternative approaches focus-
ing on various distance functions and case weight setting
can actually be represented by our approach. On the basis of
our approach, the global weighting can be treated as a
simplification of the local weighting, and therefore, the
two approaches can be directly compared with each other
on the same ground. We also demonstrate that classification
problems can be viewed as a subset of case based diagnosis
problems, and therefore, our approach is also applicable to
classification.

Future works include further testing the performance of
our approach using more real world data and investigating
LP algorithms that are particularly efficient for weight
setting in case based diagnosis.
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