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ABSTRACT

Discovering how Mesenchymal Stem Cells (MSCs) can be differentiated is an important topic in stem
cell therapy and tissue engineering. In a general context, such differentiation analysis can be modeled as
a classification problem in data mining. Specifically, this is concerned with the single-label multi-class
classification task. Previous studies on this topic suggests the Associative Classification (AC) rather than
other alternative (Classification) techniques, and presented classification results based on the CMAR
(Classification based on Multiple Association Rules) associative classifier. Other AC algorithms include:
CBA (Classification Based on Associations), PRM (Predictive Rule Mining), CPAR (Classification based
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on Predictive Association Rules) and TFPC (Total From Partial Classification). The main aim of this
chapter is to compare the performance of different associative classifiers, in terms of classification
accuracy, efficiency, number of rules to be generated, quality of such rules, and the maximum number
of attributes in rule-antecedents, with respect to MSC differentiation analysis.

INTRODUCTION

Mesenchymal Stem Cells (MSCs) have been
claimed to be an integral part of tissue engineering
due to their pluripotent differentiation potential
both in vivo and in vitro (Beeres, Atsma, van der
Laarse, Pijnappels, van Tuyn, & Fibbe, 2005;
Derubeis & Cancedda, 2004; Zhang, Li, Jiang,
Wu, & Liu, 2004), and have become one of the
most significant research topics in the past few
decades. MSCs are able to differentiate along the
osteogenic, chondrogenic, adipogenic, myogenic,
tendonogenic, and neurogenic lineages under
appropriate stimuli (Pittenger, Mackay, Beck,
Jaiswal, Douglas, & Mosca, 1999; Roelen & Dijke,
2003; Tuan, Boland, & Tuli, 2003), generating
bone, cartilage, fat, muscle, tendon, and neuron
cellsrespectively (Figure 1). Other discoveries on
plasticity and immunologic properties of MSCs
have further increased the interest in their clinical
applications (Krampera, Glennie, Dyson, Scott,
Laylor, & Simpson, 2003; Muller, Kordowich,
Holzwarth, Spano, Isenee, & Staiber, 2006). The
significance of MSCs in clinical therapy has trig-

Figure 1. Differentiation fates of MSCs
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MSC:s in terms of the different lineages to which
the cells committed (Hanadaetal., 1997; Haynes-
worth, Baber, & Caplan, 1996; Kuznetsov, Frie-
denstein, & Robey, 1997; Lennon et al., 1995;
Muller et al., 2006). The scattered experimental
data hence resulted in a large amount of noise in
the database and a discrete data structure, which
cannot take advantage of traditional mathematical
modeling methods. As a consequence, it is ex-
tremely difficultto constructintracellular pathway
models for MSC metabolism, especially for their
differentiation process (Bianco, Riminucci, Gron-
thos, & Robey, 2001).

On the other hand, useful information and
meaningful prediction for MSC differentiation can
be derived based on knowledge discovery viadata
mining techniques. The nature of data mining is to
discover useful, but hidden, information (knowl-
edge) in data. Previous studies under this heading
(Wang, Wang, Banares-Alcantara, Coenen, & Cu,
inpress; Wang, Wang, Banares-Alcantara, Cui, &
Coenen, 2009) model the analysis of MSC dif-
ferentiation as a classification problem (in data
mining) — the task of assigning predefined cat-
egories (differentiation fates) to “unseen” (MSC)
instances. Broadly speaking, classification can
be separated into two divisions: single-label that
assigns exactly one predefined category to each
“unseen” instance; and multi-label that assigns
one or more predefined category to each “unseen”
instance. With regard to single-label classifica-
tion, three distinct approaches can be identified:
one-class which learns from positive data samples
only, and either assigns the predefined category to
a “unseen” instance or ignores the assignation of
the instance; two-class (or binary) which learns
from both positive and negative data samples,
and assigns either a predefined category or the
complement of this category to each “unseen”
instance; and multi-class which simultaneously
deals with all given categories comprising all data
samples, and assigns the mostappropriate category
to each “unseen” instance. The study presented

in this chapter is concerned with the single-label
multi-class classification task.

Mechanisms on which classification algo-
rithms have been based include: decision trees,
naive Bayes, &~-NN (k-Nearest Neighbor), SVM
(Support Vector Machine), genetic algorithm,
neural networks, inductive learners (such as FOIL
(First Order Inductive Learner) and RIPPER
(Repeated Incremental Pruning to Produce Error
Reduction)), association rules, etc. Among these
mechanisms, classification based on association
rules, i.e. Associative Classification (AC) or
Classification Association Rule Mining (CARM)),
was suggested to address the MSC differentiation
analysis problem (Wang et al., in press; Wang et
al., 2009). It seems that AC (or CARM) offers a
number ofadvantages over other classification ap-
proaches (Coenen, Leng, & Zhang,2005; Shidara,
Nakamura, & Kudo, 2007; Thabtah, Cowling, &
Peng, 2005).

Coenen and Leng (2007) indicate:

. “Training of the classifier is generally
much faster using CARM (AC) techniques
than other classification generation tech-
niques such as decision tree (induction)
and SVM (support vector machine) ap-
proaches” (particularly when handling
with the multi-class problem).

. “Training sets with high dimensionality
can be handled very effectively”.
. “The resulting classifier is expressed as a

set of rules which are easily understand-
able and simple to apply to unseen data
(an advantage also shared by some other
techniques, e.g. decision tree classifiers)”.

. In addition Liu et al. (1998) suggest that
“Experimental results show that the classi-
fier built this way (AC) is, in general, more
accurate than that produced by the state-
of-the-art classification system”.
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Since the firstintroduction of AC (Ali, Manga-
naris, & Srikant,, 1997), a number of major (AC)
algorithms have emerged, these include: CBA
(Classification Based on Associations), CMAR
(Classification based on Multiple Association
Rules), PRM (Predictive Rule Mining), CPAR
(Classification based on Predictive Association
Rules), and TFPC (Total From Partial Classifica-
tion). Broadly speaking, these AC algorithms can
be categorized into two groups, described as fol-
lows, according to the way that the Classification
Association Rules (CARs) are generated.

. Two Stage Algorithms, were a set of
CARs are produced first (as “stage 17),
which are then pruned and placed into a
classifier (as “stage 2”). Typical algorithms
of this approach include CBA (Liu et al.,
1998) and CMAR (Li et al., 2001).

*  Integrated Algorithms, were the clas-
sifier is produced in a single processing
step. Algorithms of this kind include PRM
and CPAR (Yin & Han, 2003), and TFPC
(Coenen & Leng, 2004, 2007; Coenen et
al., 2005).

Previous studies in data mining (or knowledge
discovery) based MSC differentiation analysis
reportasatisfactory performance usingthe CMAR
associative classifier, with regard to an online
MSC database (Wang, Wang, Banares-Alcantara,
Coenen, & Cui, in press; Wang, Wang, Banares-
Alcantara, Cui, & Coenen, 2009). In this chapter,
the analysis of MSC differentiation by addressing
a series of AC approaches is developed, and aim
to find the most appropriate associative classifier
for this MSC differentiation study, by comparing
the performance of different (AC) approaches in
several aspects, i.e. classification accuracy, effi-
ciency, number of rules to be generated, quality
of such rules, and maximum number of attributes
in rule-antecedents.
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Chapter Organization

The rest of this chapter is organized as follows.
The following section describes some related data
mining aspects, as the background knowledge of
this chapter, in classification, Association Rule
Mining (Cody, Boctor, Filley, Hazen, Scott, &
Sharma, 2000), and Associative Classification
(AC). In the third section, five existing AC ap-
proaches (i.e. CBA, CMAR, PRM, CPAR and
TFPC) are described in detail. The construction
of a domain-specific (MSC) database, as the
data preparation of the study, is introduced in the
fourth section. Experiments are presented in the
fifth section that compares the performance of
existing AC approaches in MSC differentiation
study. The sixth section gives a discussion of the
study, and further points out some future research
directions there. Finally the chapter ends with the
conclusion.

BACKGROUND

The focus of this chapter is to compare five ex-
isting AC approaches in the application of data
analysis on MSC differentiation. AC in fact lies
at the overlap between classification and ARM,
which solves the traditional classification problem
based on ARM techniques with regard to rule
generation and presentation. As mentioned above,
AC has been selected as a suitable technique for
MSC differentiation analysis. In this section, the
authors concentrate scientifically and technically
onthe depiction of (single-label multi-class) clas-
sification, ARM and AC.

Classification

Classification is a traditional school in the field of
data mining, as well as in machine learning. Itis a
typical form of “data analysis that can be used to
extractmodels describing important data classes”
(Han & Kamber, 2006). Specifically, classification
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aims to assign predefined data categories/classes
to “unseen” data instances, based on the study
of a given set of training data examples — data
instances associating with data category labels.
Early studies of (data) classification can be dated
back to the early 1960s, see for instance (Maron,
1961) withregard to such textual data. The process
of classification consists of two steps: (1) “a clas-
sifier is built describing a predetermined set of
data classes or concepts” — “this is the learning
step (or training phase), where a classification
algorithm builds the classifier by analyzing or
‘learning fromthe training set” (Han & Kamber,
2006); and (2) the classifier model is used for
classifying “unseen’ data samples into predefined
classes as given in the training set — this is the
classification step (or test phase). In step (2), the
measure of accuracy has been widely used to
evaluate the performance of classification, espe-
cially as presented in this chapter when dealing
with the single-label multi-class classification
task. Agrawal, Gadbole, Punjani and Roy (2007)
confirm that “in a classification problem, the
classification system is trained on the training
data and effectiveness is measured by accuracy
on test data”, which is the fraction of correctly
predicted instance-class mappings.

Broadly speaking, mechanisms on which
classification algorithms have been based can be
separated into two “families”: direct classifica-
tion— classification without rule generation; and
rule based classification — classification with
rule generation (and presentation). The “family”
of direct classification focuses on directly clas-
sifying “unseen” data instances into predefined
categories, buthas no concern for presenting to the
end user why and how the classification predictions
have been made. Since this group of mechanisms
only aims to show that machines can learn and
make correct classification decisions, such (Clas-
sification) approaches were proposed under the
machine learning heading. In direct classification,
typical mechanisms include: naive Bayes (Lowd
& Domingos, 2005), SVM (Boser, Guyon, &

Vapnik, 1992), genetic algorithm (Freitas, 2002;
Yang, Widyantoro, loerger, & Yen, 2001), neural
networks (Han & Kamber, 2006), etc.

The “family” of rule based classification mines
and generates human readable Classification Rules
(CRs) from a given class-database D ., with the
objective of building a classifier to categorize
“unseen” data records. Such mechanisms in this
“family” were proposed under the data mining
heading. Generally, D .is described by arelational
database table that includes a class attribute —
whose values are a set of predefined class labels
C={c,c, ..., c‘CH’c‘C‘}. The two-step process
of rule based classification can be described
formally as (1) CRs are generated from a set of
training datainstances D, C D ;and (2) “unseen”
instances in a test dataset D, C D . are assigned
into predefined class groups. A D,.is established
as D, U D,, where D, N D, = ©. Both D, and
D, share the same database attributes except the
class attribute. By convention the last attribute in
each D, record usually indicates the predefined
class of this record, noted as the class attribute,
while the class attribute is missing in D,. Typical
mechanisms in rule based classification include:
Decision Trees (Quinlan, 1993), &-NN (James,
1985), FOIL (Quinlan & Cameron-Jones, 1993),
RIPPER (Cohen, 1995), Association Rules (Liu,
et al., 1998; Wang, Xin, & Coenen, 2008), etc.

Association Rule Mining

Association Rule Mining (Cody et al. 2000),
first introduced by Agrawal et al. (1993), aims to
extract a set of Association Rules (ARs) from a
given transactional database D,. Association Rule
describes an implicative co-occurring relationship
between two sets of binary-valued (i.e. ABSENCE
or APPEARANCE, 0 or 1) transactional database
attributes (items), expressed in the form of an
“antecedent = consequent” rule. As indicated by
Cornelis et al. (2006), the concept of mining ARs
can be dated back to work in the 1960’s (Hajek,
Havel, & Chytil, 1966).
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In a more general form, ARM can be defined
as follows. Let I = {a, a,, ..., a, ,a,} be a set
of items, and ¥ = {7, T,, ..., T, , T } be a set
of transactions (data records), a transactional
database D is described by 7, where each 1; €
F comprises a set of items I’ & I. In ARM, two
threshold values are usually used to determine
the significance of an AR:

*  Support: A set of items S is called an item-
set. The support of S is the proportion of
transactions 7' in ¥ for which § & T. If the
support of S exceeds a user-supplied sup-
port threshold o, S is defined as a frequent
itemset.

. Confidence:Confidence represents how
“strongly” an itemset X implies another
itemset ¥, where X, Y € Jand X N Y =
. A confidence thresholda, supplied by a
user, is used to distinguish high confidence
ARs from low confidence ARs.

An AR X= Yis said to be valid when the sup-
port for the co-occurrence of X and Y exceedso,
and the confidence of the AR exceedsa. The
computation of support is:

support(X U Y) = count(X U Y) /|7,

where count(X U Y) is the number of transactions
containing the set X U Yin 7, and |7] is the size
function (cardinality) of the set . The computa-
tion of confidence is:

confidence(X = Y) = support(XU Y) /
support(X).

Informally, “X = Y can be interpreted as: if
X s found in a transaction, it is likely that ¥ also
will be found.

In general, ARM involves a search for all valid
rules. The most computationally difficult part of
this is the identification of frequent itemsets. Since
its introduction in 1994, the apriori algorithm de-

228

veloped by Agrawal and Srikant (1994) has been
the basis of many subsequent ARM algorithms.
In Agrawal and Srikant (1994) it was observed
that ARs can be straightforwardly generated from
a set of frequent itemsets. Thus, efficiently and
effectively mining frequent itemsets from data is
the key to ARM. The apriori algorithm iteratively
identifies frequent itemsets in data by employing
the “closure property” ofitemsets in the generation
of'candidate itemsets, where a candidate (possibly
frequent) itemset is confirmed as frequent only
when all its subsets are identified as frequent in
the previous pass. The “closure property” of item-
sets can be described as follows: if an itemset is
frequent then all its subsets will also be frequent;
conversely if an itemset is infrequent then all its
supersets will also be infrequent.

With regards to the history of ARM investiga-
tion, many algorithms have been introduced that
mine ARs fromidentified frequent itemsets. These
algorithms can be further grouped into different
“families”, such as Pure-apriorilike, Semi-apriori
like, Set Enumeration Tree like, etc.

. Pure-apriori like were frequent itemsets
are generated based on the generate-prune
level by level iteration that was first pro-
mulgated in the apriori algorithm. In this
“family” archetypal algorithms include:
apriori, apriori-Tid and apriori-Hybrid
(Agrawal & Srikant, 1994), Partition
(Savasere, Omiecinski, & Navethe, 1995),
Sampling (Toivonen, 1996), DIC (Brin,
Motwani, Ullman, & Tsur, 1997), CARMA
(Hidber, 1999), etc.

. Semi-apriori like were frequent itemsets
are generated by enumerating candidate
itemsets but do not apply the apriori gen-
erate-prune iterative approach founded in
(1) the join procedure, and (2) the prune
procedure that employs the “closure prop-
erty” of itemsets. In this “family” typical
algorithms include: AIS (Agrawal et al.,
1993), SETM (Houtsma & Swami, 1995),
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OCD (Mannila, Toivonen, & Verkamo,
1994), etc.

. Set Enumeration Tree like were fre-
quent itemsets are generated through con-
structing a set enumeration tree structure
(Rymon, 1992) from D, which avoids
the need to enumerate a large number
of candidate itemsets. In this “family” a
number of approaches can be further di-
vided into two main streams: apriori-TFP!
based (Coenen, Goulbourne, & Leng,
2001; Coenen & Leng, 2002; Coenen,
Leng, & Ahmed, 2004; Coenen, Leng, &
Goulbourne, 2004), and FP-tree based
(El-Hajj & Zaiane, 2003; Han, Pei, & Yin,
2000; Liu, Pan, Wang, & Han, 2002).

Associative Classification

An overlap between ARM and rule based clas-
sification is AC (Associative Classification) or
CARM (Classification Association Rule Min-
ing), which strategically solves the traditional
classification problem by applying ARM tech-
niques. The idea of AC, first introduced in (Ali,
Manganaris, & Srikant, 1997), aims to extract a
set of Classification Association Rules (CARs)
from a class-transactional database D . . Let D,
be a transactional database, and C = {c, c,, ...,
Cop € C‘} be a set of predefined class labels, D,
is described by D, % C. D, . can also be defined
as a special class-database D ., where all database
attributes and the class attribute are valued in a
binary manner— “Boolean attributes can be con-
sidered a special case of categorical attributes”
(Srikant & Agrawal, 1996). A CAR is a special
AR that describes an implicative co-occurring
relationship between a set of hinary-valued data
attributes and a predefined class, expressed in the
form of an “X = ¢ rule, where X is an itemset
found in D, (as “D_ ,— C”) and ¢, is a predefined
class in C.

AC offers the following advantages with re-
spect to the classification techniques mentioned
above (Antonie & Zaiane, 2002; Yoon & Lee,
2005):

e The approach is efficient during both the
training and categorization phases, espe-
cially when handling a large volume of
data.

. The classifier built in this approach can be
read, understood and modified by humans.

Furthermore, AC is relatively insensitive to
noise data. AC builds a classifier by extracting a
setof CARs from a given set of training instances.
Possible CARs are determined by a large enough
support and a large enough confidence. Usually,
rules derived from noise in the data will fail to
reach these thresholds and will be discarded.

In comparison, classification approaches other
than AC,i.e.naive Bayes, SVM, genetic algorithm,
neural networks, etc. do not present the classifica-
tion in a human readable fashion, so that users do
not see why the (Classification) predictions have
been made by computers. While rules generated
by decision tree classifier, RIPPER classifier, etc.
can be read and understood by humans, however
(Yin & Han, 2003) report that in many cases AC
offers higher classification accuracy than other
rule based classification approaches.

For these reasons it was decided to use an AC
approach to address the prediction of mammalian
MSC differentiation. One of the existing AC
frameworks is the CMAR (Classification based
on Multiple Association Rules) algorithm (Li et
al.,2001). CMAR generates CARs (from a given
setof training instances) through an F'P—tree (Han,
Pei, & Yin, 2000) based approach. Experimental
results using this algorithm show that it could
achieve high classification accuracy for a range
of data sets (Lietal., 2001). Other alternative AC
techniques are CBA, PRM, CPAR, TFPC, etc.
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FIVE ASSOCIATIVE
CLASSIFICATION APPROACHES

Classification Based
on Associations

The Classification Based on Associations (CBA)
algorithm (Liu et al., 1998) exemplifies the “two
stage” approach (as opposite to the “integrated”
approach), and was one of the first to make use
of a general ARM algorithm for “stage 1”. CBA
uses aversion of the well-known apriori algorithm
(Agrawal & Srikant, 1994), using user-supplied
support and confidence thresholds, to generate
CARs which are then prioritized as follows (e.g.
given two rules , and r):

. r, has priority over r, if the confidence
value of r, is greater than the confidence
value of 7.

. r  has priority over r, if the confidence val-
ues of , and r, are equal, but the support
value of 7, is greater than the support value
of r,.

. r, has priority over r, if the confidence
values of r, and r, are equal, the support
values of 7, and r, are equal, but the rule-
antecedent size (the number of items) of »,
is less than the rule-antecedent size of 7.

In “stage 2”, the ordered set of CARs is then
pruned as follows:

. For each data record d in the training set,
find the first CAR (the one with the high-
est precedence) that correctly classifies the
record (the cor-CAR), and the first CAR
that wrongly classifies the record (the
wro-CAR).

. For each data record where the cor-CAR
has higher precedence than the wro-CAR,
such CARs are included in the classifier.

. For all data records where the cor-CAR
does not have higher precedence than the

230

wro-CAR, alternative CARs with lower
precedence must be considered and added
to the classifier.

CARs are added to the classifier according
to their precedence. On completion the lower
precedence CARs are examined and a default
rule selected to replace these low precedence
CARs. CBA illustrates the general performance
drawback of “two stage” algorithms — the cost
of the pruning stage is a product of the size of the
data set and the number of candidate CARs, both
of which may in some cases be large. It is clear,
also, that the choice of support and confidence
thresholds will strongly influence the operation of
CBA. The ordering strategy, noted as Confidence-
Support-Antecedent (CSA), seems to work well
on some data sets.

Classification Based on
Multiple Association Rules

The Classification based on Multiple Association
Rules (CMAR) algorithm (Li et al., 2001) has a
similar general structureto CBA, and uses the same
rule prioritization approach as that employed in
CBA. CMAR differs in the method used in “stage
17’ to generate candidate CARs, which makes use
ofthe FP-tree data structure coupled with the F/P-
growth algorithm (Han et al., 2000); this makes it
more computationally efficient than CBA. Like
CBA, CMAR tends to generate a large number of
candidate CARs. The set of CARs is pruned by
removing all rules with a y squared value below
a user-defined threshold and all rules where a
more general rule with higher precedence exists.
Finally, a database coverage procedure is used
to produce the final set of CARs. This stage is
similar to that of CBA, but whereas CBA finds
only one CAR to cover each case, CMAR uses a
coverage threshold parameter to generate a large
number of CARs. When classifying an “unseen”
datarecord, CMAR groups CARs that satisfy the
record according to their class and determines the
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combined effect of the CARs in each group using
a Weighted y Squared (WCS) measure.

Predictive Rule Mining

Predictive Rule Mining (PRM) (Yin & Han,2003),
as an extension of the FOIL algorithm (Quinlan
& Cameron-Jones, 1993), is a time-efficient al-
gorithm based on the greedy paradigm in which
rules to distinguish positive examples from nega-
tive ones are iteratively learnt. PRM repeatedly
searches for the current “best” rule and decreases
the weights of the positive examples when those
positive examples are correctly covered by this
selected “best” rule until all the positive examples
in the (training) data set are covered. Note that
(in comparison) the positive examples will be
removed if such examples are covered by any
selected “best” rule during each iteration of the
rule selection in traditional FOIL. By performing
such an approach, PRM can produce more rules
than FOIL and each positive example is usually
covered more than once. Consequently, it leads
higher classification accuracy than FOIL. Simi-
larly as the methodologies used in FOIL, a crucial
function gain (p)is used to measure the information
gained from adding the literal p to the current rule
r during selection of literals, e.g. the number of
bits saved inrepresenting all the positive examples
by adding p to r. In order to achieve a better ef-
ficiency than FOIL, PRM employs the standard
approach (Gehrke, Ramakrishnan, & Ganti, 1998)
based on a new data structure called PNArray to
retail the computational burden on evaluation of
every literal during searching stages for the one
with the highest gain in FOIL. For multi-class
(Classification) problems, PRM follows the
standard framework from FOIL: for each class,
its examples are used as positive examples and
those of other classes as negative ones, and the
rules for all classes are merged together to form
the classifier (rule set).

Classification Based on
Predictive Association Rules

Classification based on Predictive Association
Rules (CPAR) (Yin & Han, 2003) inherits the
basic idea of traditional FOIL in rule generation
and integrates the features of associative classi-
fication of PRM. When selecting literals during
the rule building process, PRM selects only one
“best” literal in each iteration and ignores all the
others. In fact, there are usually many rules with
similar accuracy based on the remaining dataset
in each iteration. The “best” rule among them
in the remaining dataset may not be the “best”
rule in the whole (training) dataset. This strategy
may therefore lead to PRM missing some very
important rules. Instead of ignoring all literals
except the “best” one, CPAR keeps all close-to-
the-best literals in each iteration during the rule
building process. By performing such an approach,
CPAR can select more than one literal at the same
time and build several rules simultaneously. In
comparison with PRM, CPAR has the following
advantages: (1) CPAR generates a much smaller
set with high-quality predictive rules directly
from the given dataset; (2) to avoid producing
redundant rules, CPAR generates each rule by
taking into account the set of “already-generated”
rules; and (3) when predicting the class label for
a given example, CPAR uses the best k rules on
which this example satisfies.

Total From Partial Classification

Several of the above AC methods apply coverage
analysis to prune data instances/cases and reduce
the number of rules generated in the training phase.
It can be demonstrated that coverage analysis,
especially whenappliedtoalarge D,. ,comprising
many items and multiple transactions, includes a
significant computational overhead. This is the
motivation behind development of an algorithm
that directly builds an acceptably accurate clas-
sifier without coverage analysis. The Total From
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Partial Classification (TFPC) algorithm, proposed
by Coenen et al. (2005), is directed at this aim.
Coenen and Leng (2007) argue that the principal
advantage offered by TFPC is that “it is extremely
efficient (because it dispenses with the need for
coverage analysis)”.

TFPC is derived from the apriori-TFP ARM
approach (Coenen, 2004; Coenen & Leng, 2004).
It employs the same (set enumeration tree) struc-
tures and (mining) procedures as used in apriori-
TFP to the task of identifying CARs in D .. For
this purpose, predefined class labels in D, , are
considered as items, and set at the end of the item
list (ordered in a descending manner based on the
item frequency).

In its rule generation process, TFPC adopts
the heuristic: “if we can identify a rule X = ¢
which meets the required support and confidence
thresholds, then it is not necessary to look for
other rules whose antecedent is a superset of X
andwhose consequent is ¢” (Coenen et al., 2005).
The advantages of employing this heuristic can
be listed as follows.

. It “reduces the number of candidate rules
to be considered” thus “significantly im-
proving the speed of the rule-generation
algorithm” (Coenen & Leng, 2007).

* It reduces the number of final CARs to be
generated, so that “this ‘on-the-fly’ prun-
ing replaces the expensive pruning step
that other algorithms perform by coverage
analysis” (Coenen & Leng, 2007).

. It reduces the risk of over-fitting — i.e. the
risk of producing a set of CARs that per-
form well on the training dataset but do not
generalize well to the test dataset.

The classifier built by TFPC is finally repre-
sented as a list of CARs in a CSA rule ordering
fashion. When classifying “unseen” cases TFPC
typically uses the best first rule approach.
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DATA PREPARATION

Parameter Selection from
the Online MSC Database

In order to integrate mammalian MSC differentia-
tion data, an online database” containing over 500
parameters that are believed to influence the MSC
differentiation has been built in the previous stud-
ies (Wang et al., 2009). All the data in this online
database have been published in the literature and
marked with their respect references.

The current size of this database is 501 records,
covering four types of MSC differentiation fates
as predefined classes, which are osteogenesis,
chondrogenesis, adipogenesis and proliferation
without differentiation. The total number of pa-
rameters in this database is up to 500, including
those which are believed to be most significant,
such as donor species, in vitro vs. in vivo culture,
culture medium, supplements and growth factors,
culture dimension (monolayer vs. 3D culture),
substrate (for monolayer culture) vs. scaffold
(for 3D culture), those which are believed to be
potentially important, such as age of donor, cell
passage number, cell seeding density, incubation
duration, those which usually actas supplementary
comments, such as donor gender, MSC harvest
place, and those representing cell behaviors as
experimental results, including MSC differentia-
tion fates, population doubling time, expression
of cell markers, gene profiles, expansion fold of
cell number, etc.

Among all the parameters in the database, those
which are believed to be the most essential ones
were abstracted and considered in this study. Table
1 shows all the parameters used for prediction in
the current stage of this study. Consequently, the
number of parameters in the abstracted database
was reduced from 500 to 105.
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Table 1. The abstracted database

Parameter groups

Significance/Description

Donor species

MSCs from different species of mammal in the same culture condition may lead to different results. The current
database covers five different donor species.

Culture medium

The most essential of environment conditions where MSCs grow, proliferate and differentiate. A different cul-
ture medium has different effect on cells. The current database covers 16 types of culture media.

Supplements and
growth factors

Chemicals that maintain MSC differentiation potential or influence their differentiation fates. The functions and
effects of growth factors on MSCs vary from one to another, leading to different experimental results. The cur-
rent database covers 64 types of supplements.

Culture dimension
(2D vs. 3D)

MSC differentiation
sometimes differs
significantly from
monolayer to 3D cul-
ture, even under the
same culture medium
and supplements. This
is one parameter with
two possible values.
Substrate (for 2D)
/scaffold (for 3D)

Influences cell viability. A chemically modified substrate can even change MSCs’ differentiation fate. The cur-
rent database covers 10 types of substrates and 5 types of scaffolds.

Differentiation fate

To what lineage MSCs are committed to after differentiation. It is the most significant result after cell culture.
Used to define the classes in the database; the objective of this study is to predict it. The current database covers
four types of differentiation fates, as four classes.

Data Normalization and Cleaning

After parameter selection, the database was dis-
cretised and normalized using the LUCS-KDD
Discretised Normalized (DN) software?, so that
data was made available in binary form and suit-
able for use by AC applications. In this study, the
discretisation and normalization processes result
inadata file with its number of attributes increased
to 183.

This discretised and normalized data file con-
tains noisy data, generally caused by the absence
of culture condition parameters such as culture
media, supplements & growth factors?, etc. For
example, if the insulin growth factor is absent in a
record, thisrecord will have an attribute represent-
ing “absence of insulin” after the discretisation
and normalization process. This kind of attributes
does not provide any useful information while
increasing the complexity of the data file. Thus,
all the attributes with a value of “absence” were

eliminated, with the resulting data file referred as
the preliminary data file.

Data Pre-Processing

The preliminary data file was not directly used as
input data file to the five AC approaches because
it contains some overlapping attributes. For ex-
ample, some records in the preliminary data file
contain an attribute for the presence of “ITS-plus”,
because in some experiments “ITS-plus” is used
as supplement to the culture medium (“ITS-plus”
is a combination of 6.25 g/ml of bovine insulin,
6.25 g/ml of transferrin, 6.25 g/ml of selenous
acid, 5.33 g/ml of linoleic acid, and 1.25 mg/ml
of bovine serum albumin39). In this case, the at-
tribute for “ITS-plus” overlaps with the attribute
for “insulin”, and hence should be converted into
one attribute for “insulin” plus four more attributes
for the other four chemicals indicated above. On
the other hand, some attributes in the data file are
not useful. For example, it is known that the pres-
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Table 2. Pruning of the attributes in the preliminary data file during data pre-processing

Attributes before pre-processing Attributes after pre-processing Ref.
antibiotic-antimycotic, penicillin, none n/a

streptomycin, gentamicin

L-glutamine, glutamine glutamine n/a

platelet lysate

PDGF-aa, PDGF-BB, TGF-B, VEGF, EGF

(Celotti, Colciago, Negri-Cesi, Pravettoni, Zani-
netti, & Sacchi., 2006; O’Connell, Impeduglia,
Hessler, Wang, Carroll, & Dardik, 2008)

ITS-plus/ITS+permixTX, ITS+1

insulin, transferrin, selenous acid, LA-BSA

(Johnstone, Hering, Caplan, Goldberg, & Yoo,
1998; Mackay, Beck, Murphy, Barry, Chiches-
ter, & Pittenger, 1998)

SITE (from sigma)

selenous acid, insulin, transferrin, ethanolamine | (Liu, Wu, & Hwang, 2007)

ascorbic acid, scorbate-2-phos- “ascorbic acid (-2-phosphate)” n/a
phate/ascorbic acid-2-phosphate

IBMX, 8-MM-IBMX “IBMX or 8-MM-IBMX” n/a
TGF-B1, TGF-B3 TGF-B n/a

ence of the supplement “antibiotic-antimycotic”
is to prevent contamination and has no influence
on MSCdifferentiation. Attributes concerned with
this type of supplements should hence be elimi-
nated from the preliminary data file. As a result
of pruning the attributes according to Table 2, the
preliminary data file became the input data file
to the five AC approaches, with 95 attributes in
total. This step is referred as data pre-processing,
after which the five AC approaches were applied
to segments of the input data file with a Ten-fold
Cross Validation (TCV) accuracy setting (90%
training set, 10% test set) (Schaffer, 1993), with
the results shown in the next section.

EXPERIMENTS

In this work, comparison of five different AC
approaches on the performance in MSC data
analysis hasbeen focused. The five AC approaches
for comparison are CBA, CMAR, PRM, CPAR
and TFPC. Experiments were run on a 2.00 GHz
Intel(R) Core(TM) 2 CPU with 2.00 GB of RAM
running under Windows Command Processor. The
TCV evaluation undertaken used a confidence
threshold value (o) of 50% and a support threshold
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value (o) of 1% for CBA, CMAR and TFPC with
the intension to avoid over-fitting (Coenen & Leng,
2004; Coenen et al., 2005; Li et al., 2001; Wang,
Xin, & Coenen, 2007), while for PRM and CPAR
there is no such notion of support and confidence.

Performance Comparison

After the five AC approaches were applied to the
input data file with TCV, each of them showed
different performance, in terms of (1) classifica-
tion accuracy in each TCV fold and the average
accuracy, (2) number of CARs generated in each
TCV fold and the average number of CARs gener-
ated, (3) maximum number of attributes in CAR
antecedents, and (4) generation time after which
the classification was accomplished.

The average accuracy, average number of
CARs and generation time for each AC approach
are shown in Table 3. Among all, CBA gave the
highestaverage accuracy 0f94.8%, while the low-
est accuracy of 67.6% was obtained from CPAR.
In terms of average number of CARs, CMAR
showed a preeminent result of 290.7, while no
other AC approach gave a number higher than
81.5. The sort ascending order of generation time
for the five AC approaches is PRM, CPAR, CBA,
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Table 3. Performance of the five AC approaches

CBA CMAR PRM CPAR TFPC
Average accuracy (%) 94.8 90.42 69.0 67.6 90.6
Average num of CRs 58.8 290.7 34.6 38.0 81.5
Max. num of attributes in antecedents 4 6 4 4 3
Generation time (seconds) 2.58 57.61 0.33 0.55 2.73
TFPCand CMAR; however, CMAR hasthe largest 2. Rule # CBA40: {transferrin + dexa-

maximum number of attributes in antecedents of
6, remarkably more than the other AC approaches.

Rule Comparison

For every independent AC approach, a number
of rules were generated in each TCV fold, based
on which AC makes classification prediction and
evaluates the accuracy. These rules are important
to this study because they may contain useful and
valuable information (or knowledge) on stem cell
differentiation. For the fairness ofthe comparison,
the authors simply chose to compare the rules in
therespect fold No.10 of each tested AC approach.
Three most interesting rules in each AC approach
were selected manually and listed in a descending
order with the respect interpretation. The reader
1s reminded that for the rules from CBA, CMAR
and TFPC, their confidence values were shown
in square brackets, while the rules from PRM and
CPAR do not have confidence values due to their
algorithms. The evaluation to the rules in terms
of their significance was elucidated in the next
section, based on a priori knowledge.

. In CBA, the following rules were believed
to be most interesting:
1. Rule# CBA20: {FBS + ascorbic acid
+ dexamethasone + TCP} = {osteo}
[100.0%], which can be interpreted as:
in the presence of FBS (Fetal Bovine
Serum), ascorbic acid and dexametha-
sone, MSCs will undergo osteogenesis
onthe substrate of TCP (Tissue Culture
Plastic).

methasone + TGF-B+TCP} = {chon-
dro} [94.73%], interpreted as: with the
help of transferrin, dexamethasone,
TGF-B in the culture medium, MSCs
is most likely to differentiate into car-
tilage on TCP substrate.

Rule # CBA13: {-glycerophosphate
+ BMP-2} = {osteo} [100.0%],
meaning that the combination of
B-glycerophosphate and BMP-2 al-
ways stimuli MSCs to become bone
cells.

In CMAR, the selected rules are listed as
follows:

1.

Rule#CMARS9: {FBS+ascorbicacid
+dexamethasone+-glycerophosphate
+ 2D + TCP} = {osteo} [100.0%],
meaning that MSC cultured on plastic
substrate in monolayer culture will be
induced into osteogenesis if supple-
mented with FBS, dexamethasone,
B-glycerophosphate and ascorbic acid.
Rule#CMARI154: {human +ascorbic
acid + insulin + TGF-B} = {chondro}
[96.42%], meaning thathuman MSCis
most likely to undergo chondrogenic
differentiation under the stimuli of the
combined treatment with insulin and
TGF-p together with ascorbic acid (or
ascorbic acid-2-phosphate).

Rule # CMAR127: {human + FBS +
dexamethasone +insulin+2D+TPC}
= {adipo} [100%], suggesting that the
culture conditions above is supportive
for human MSC adipogenesis.
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In PRM, the selected rules are:

L.

Rule # PRM1: {DMEM + dexa-
methasone + B-glycerophosphate} =
{osteo}, meaning that in the presence
of the culture medium and supple-
ments as above, MSCs will undergo
osteogenesis.

Rule # PRM14: {human + DMEM-
HG + FBS + TCP} = {prolife},
meaning that DMEM-HG and FBS
only helps human MSCs proliferate,
without inducing them to any type of
differentiation.

Rule # PRM9: {TGF- + proline}
= {chondro}, meaning that TGF-
and proline may together promote
chondrogenesis.

In CPAR, the rules were exactly the same
as those in PRM, except that the following
three rules were found not to exist in PRM:

1.

Rule # CPAR27: {UltroserG serum
substitute} = {prolife}, suggesting
that the UltroserG serum substitute
does not induce MSC differentiation.
Rule # CPAR33: {DMEM-F12} =
{osteo}, suggesting that DMEM-F12
may be biased on osteogenesis rather
than other types of differentiation.
Rule # CPAR38: {dexamethasone}
= {chondro}, suggesting thatin the cur-
rent database, dexamethasone appears
more frequently in chondrogenesis than
other differentiation types.

In TFPC, the selected rules are:

1.

Rule # TFPC66: {FBS + dexametha-
sone + insulin} = {adipo} [54.54%],
meaning that in many cases the com-
bination of FBS, dexamethasone and
insulin can differentiate MSCs into fat
cells, but not always.

Rule # TFPC46: {DMEM-HG +
ascorbicacid} = {chondro} [69.44%],
meaning that ascorbic acid in the
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culture medium of DMEM-HG can
promote chondrogenesis.

3.  Rule#TFPCI1: {proline} = {chondro}
[100.0%], suggest that proline may play
a role in chondrogenesis.

As listed above, all the AC approaches can
abstract classification rules containing information
on MSC differentiation. However, the quality of
these rules, in terms of the extent to which they
correlate with a priori knowledge and how well
the rules were integrated, has to be evaluated
manually, as elucidated in the next section.

FUTURE RESEARCH DIRECTIONS

Five AC approaches have been used in this study
with the aim of comparing their performance on
prediction of MSC differentiation by classifica-
tion, and abstraction of hidden rules from currently
available experimental data.

Results from all the five AC approaches have
been derived in terms of both computational per-
formance (i.e. classification accuracy, number of
CARs generated, maximum number of attributes
in CAR antecedents, and time efficiency) and
CARs abstracted from MSC data. From Table
3 it can be seen that all the classifiers gave ac-
curacy higher than 90% except PRM and CPAR.
However, CMAR showed a preeminent result
0f 290.7 on average number of CARs, with the
largest maximum number of attributes in CAR
antecedents of 6, remarkably higher than the
other classifiers. Despite that the generation time
of CMAR is the longest, the best AC approaches
suggested in this study relies on the balance of
the four types of performance and the quality of
the mined CARs.

For CBA, all the three selected rules are con-
sistent with observations in lab; however, the
Rule # CBA20 is obviously not as good as Rule
# CMARS9, because the former one is a subset
of the latter one. In fact, due to the limited size
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of the CBA rules, CMAR excelled CBA in the
similar cases for some otherrules as well (data not
shown). For PRM and CPAR, these two algorithms
gave exactly the same rules, except for Rules #
CPAR27,33 and 38. Afterbeing analyzed, none of
these three rules showed valuable information. For
example, dexamethasone was known to participate
also in osteogenesis and adipogenesis, whereas
Rule # CPAR38 claims it to be only beneficial
to chondrogenesis. Thus, CPAR is close to PRM
on rule quality.

Among all the five classifiers, TFPC gave the
most limited average length of rules, with the
maximum number of attributes in antecedents of
three. This results in the problem that few of the
TFPC rules were well integrated, although their
confidence values were relative high. In fact, over
half of the TFPC rules have only one attribute in
theirrespectantecedent, which makes it extremely
difficult to provide useful biological information.
In contrast to TFPC, CMAR generates CARs in
a most integrated manner. For example, Rule #
CMARS9 gives a more integrated abstraction
for osteogenesis than Rule # CBA20. Rule #
CMARI154 is believed to be better organized
than Rule # TFPC46, as the former one contains
more information. In many more cases, CMAR
also exceeded the other four AC approaches on
the quality of rules.

From the analysis above, an overview of rule
quality for each AC approach can be derived,
which is that CMAR performs best in generat-
ing rules with integrated information. Although
PRM and CPAR cost much less generation time,
CBA provides the highest accuracy and TFPC
has a good balance in time efficiency, accuracy
and number of CARs, CMAR is suggested as the
most suitable classifier to this study due to its
excelling rule quality and satisfactory accuracy.
However, CMAR has the same problem with
the other classifiers, which is that a number of
rules do not make scientific sense. For example,

for Rule # CMAR204: {goat + 2D} = {osteo}
[88.88%], it is obvious that only “Goat MSC”
and “monolayer culture” are not enough to induce
osteogenesis. Similarly, for Rule # CMAR274:
{FBS + 3D} = {osteo} [72.41%], according to
authors knowledge, FBS is not specifically for
promoting osteogenesis but for maintaining cell
survival without promoting effect towards any
differentiation, independently of the fact that the
culture is monolayer or 3D. In fact, all the five
tested AC approaches have some rules without
scientific sense. As a result, all the rules have to
be reviewed by human beings for the rule quality.
The generation of non-scientific rules is due to the
size of the database and the sample properties of
the data. Based on this reason, a conclusion can
be made that if the MSC database is expanded
in the future, the non-scientific rules could be
pruned and more rules with scientific sense could
be identified.

CONCLUSION

In this study, MSC data from an online database
were processed and analyzed by five different AC
approaches in order to compare their performance
with respectto several aspects. Dueto the capacity
of AC, which is to harmonize the vast amount of
experimental data and produce simple but useful
rules, it is recommended as a suitable tool for this
study. After the comparison between the five AC
approaches, CMAR is suggested to be the most
suitable approach for this study, and possibly
also suitable to other similar studies such as the
tissue engineering related data analysis. Due to
the limited experimental data input at this stage,
most of the identified rules are known by stem cell
researchers. However, it will be possible to mine
completely original rules if the size and contents
of the MSC database are expanded in the future.
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KEY TERMS AND DEFINITIONS

Association Rule (AR): A typical knowledge
model in data mining, which describes an implica-
tive co-occurring relationship between two non-
overlapping sets of binary-valued transactional
database attributes.

Association Rule Mining (ARM): Aresearch
field in data mining, which aims to extract asso-
ciation rules from a given transactional database.

Associative Classification (AC): An overlap
between classification and association rule mining
that solves the traditional classification problem
by applying association rule mining techniques.

Cell differentiation: The process by which
a less specialized cell becomes a more special-
ized cell type. For example, a multipotent MSC
becomes an osteoblast (specialized in bone gen-
eration).

Classification Association Rule (CAR): A
special association rule that describes an impli-
cative co-occurring relationship between a set of
binary-valued transactional database attributes and
one or more predefined data categories.

Classification Rule (CR): A typical knowl-
edge model in data mining, which describes an
implicative relationship between data attributes
and predefined data categories.

Classification: Aresearch field in datamining,
which aims to assign predefined data categories
to “unseen” data instances, based on the study of
a given set of training data examples associating
with category labels.

Confidence: The support of an association
rule in relation to the support of its antecedent.

Mesenchymal Stem Cells (MSCs): Multipo-
tentstem cells that can differentiate into a variety of
cell types. Cell types that MSCs have been shown
to differentiate into include osteoblasts, chondro-
cytes, myocytes, adipocytes, endotheliums, etc.

Support: The overall frequency in a given
transactional database where an association rule
applies.

ENDNOTES

! The apriori-TFP and its related softwares

may be obtained from http://www.csc.liv.
ac.uk/~frans/KDD/Software
2 The online MSC database can be visited
from http://www.oxford-tissue-engineering.
org/forum/plugin.php?identifier=publish&
module=publish
3 LUCS-KDD DN software may be obtained
from http://www.csc.liv.ac.uk/~frans/
KDD/Software/LUCS-KDD-DN/lucs-
kdd DN.html
For related information, please find from
http://www.oxford-tissue-engineering.org/
forum/table3.doc
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