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Abstract 

 
Classification Association Rule Mining (CARM) is a 

recent Classification Rule Mining approach that builds 
an Association Rule Mining based classifier using 
Classification Association Rules (CARs). Regardless of 
which particular CARM algorithm is used, a similar 
set of CARs is always generated from data, and a 
classifier is usually presented as an ordered CAR list, 
based on a selected rule ordering strategy. In the past 
decade, a number of rule ordering strategies have been 
introduced that can be categorized under three 
headings: (1) support-confidence, (2) rule weighting, 
and (3) hybrid. In this paper, we propose an 
alternative rule-weighting scheme, namely CISRW 
(Class-Item Score based Rule Weighting), and develop 
a rule-weighting based rule ordering mechanism based 
on CISRW. Subsequently, two hybrid strategies are 
further introduced by combining (1) and CISRW. The 
experimental results show that the three proposed 
CISRW based/related rule ordering strategies perform 
well with respect to the accuracy of classification. 
 
1. Introduction 
 

Classification Rule Mining (CRM) [12] is a well-
known Data Mining technique for the extraction of 
hidden Classification Rules (CRs) from a given 
database that is coupled with a set of pre-defined class 
labels, the objective being to build a classifier to 
classify “unseen” data records. One recent approach to 
CRM is to employ Association Rule Mining (ARM) 
[1] methods to identify the desired CRs, i.e. 
Classification Association Rule Mining (CARM) [2]. 
CARM aims to mine a set of Classification Association 
Rules (CARs) from a class-transaction database, where 
a CAR describes an implicative co-occurring 
relationship between a set of binary-valued data 

attributes (items) and a pre-defined class, expressed in 
the form of an “〈antecedent〉 ⇒ 〈consequent-class〉” 
rule. CARM seems to offer greater accuracy, in many 
cases, than other classification methods such as 
decision trees, rule induction and probabilistic 
approaches [8] [13]. 

In the past decade, a number of CARM approaches 
have been developed that include: TFPC (Total From 
Partial Classification) [7] [8], CBA (Classification 
Based Associations) [11], CMAR (Classification based 
on Multiple Association Rules) [10], CPAR 
(Classification based on Predictive Association Rules) 
[15], etc. Although these CARM approaches employ 
different ARM techniques to extract CARs from a 
given class-transaction database, a similar set of CARs 
is always generated, based on a pair of specific values 
for both support and confidence thresholds. Regardless 
of which particular CARM method is utilized, a 
classifier is usually presented as an ordered list of 
CARs, based on a selected rule ordering strategy. 
Hence, it can be indicated that the essential to produce 
a more accurate CARM classifier is to develop a better 
(more rational) rule ordering approach. 

Coenen and Leng [7] identify (1) three common 
CARM case satisfaction approaches: Best First Rule, 
Best K Rules, and All Rules; and (2) five established 
CARM rule ordering mechanisms: Confidence Support 
size-of-rule-Antecedent (CSA), size-of-rule-
Antecedent Confidence Support (ACS), Weighted 
Relative Accuracy (WRA), Laplace Accuracy (LAP), 
and Chi-square Testing (χ2). Due to the sake of 
simplicity, the Best First Rule case satisfaction 
mechanism is widely applied in CARM classifiers. In 
[14] the authors divide the above rule ordering 
mechanisms into two groups: (type 1) support-
confidence based which includes CSA and ACS; and 
(type 2) rule weighting based which includes WRA, 
LAP and χ2. Wang et al. in [14] also propose a hybrid 



based ordering approach by combining one rule 
ordering mechanism taken from the (type 1) group and 
another rule ordering mechanism taken from the (type 
2) group. 

In this paper, we introduce a novel rule weighting 
scheme, namely CISRW (Class-Item Score based Rule 
Weighting), which assigns a weighting score to each 
CAR by assigning a weighting score to each CAR 
item. Then a rule ordering mechanism is proposed that 
simply sorts CARs in a descending order, based on 
their assigned CISRW score. As a consequence, two 
hybrid rule ordering strategies are further developed: 
(1) Hybrid CSA/CISRW, and (2) Hybrid ACS/CISRW. 
The experimental results show good performance 
regarding the accuracy of classification when using the 
proposed CISRW based/related rule ordering strategies 
with the Best First Rule case satisfaction. 

The rest of this paper is organized as follows. 
Section 2 outlines the existing rule ordering strategies 
in CARM. The proposed rule weighting/ordering 
approach is described in section 3. In section 4 we 
present experimental results, and in section 5 our 
conclusions and open issues for further research. 
 
2. Overview of Rule Ordering Approaches 
 
2.1. Support-Confidence Based Ordering 
 
• CSA: The CSA rule ordering strategy [11] sorts 

the CAR list in a descending order based on the 
value of conference of each CAR. For these CARs 
that share a common value of confidence, CSA 
sorts them in a descending order based on their 
support value. For these CARs that share common 
values for both confidence and support, CSA sorts 
them in an ascending order based on the size of the 
rule antecedent. 

• ACS: The ACS rule ordering strategy [7] is a 
variation of CSA. It takes the size of the rule 
antecedent as its major factor (using a descending 
order) followed by the rule confidence and support 
values respectively. 

 
2.2. Rule Weighting Based Ordering 
 
• WRA: The WRA rule ordering strategy [9] 

assigns an additive weighting score to each CAR. 
The original CAR list is then sorted in a 
descending order based on the assigned scores. 
The calculation of the WRA score of a CAR R, 
confirmed in [7], is: support(R.antecedent) × 
(confidence(R) – support(R.consequent-class)). 

• LAP: The use of the Laplace Expected Error 
Estimate [5] can be found in [15]. The principle of 

applying this rule ordering mechanism is similar to 
WRA. The calculation of the LAP score of a CAR 
R is: (support(R) + 1) / (support(R.antecedent) + 
|C|), where |C| denotes the number of pre-defined 
classes. 

• χ2: In χ2 Testing a set of observed values O is 
compared against a set of expected values E – 
values that would be estimated if there were no 
associative relationship between the variables. The 
value of χ2 is calculated as: ∑i = 1…n (Oi – Ei )2 / 
Ei, where n is the number of entries in the 
confusion matrix, which is always 4 in CARM. 
After assigning a χ2 value to each CAR, the 
original CAR list is then sorted in a descending 
order based on the assigned values. 

 
2.3. Hybrid Rule Ordering Schemes 

 
From the foregoing we can identify six hybrid rule 

ordering schemes [14]: 
• Hybrid CSA/WRA: Selects the Best K Rules (for 

each pre-defined class) in a WRA manner, and re-
orders both the best K CAR list and the original 
CAR list in a CSA fashion. The best K CAR list is 
linked at front of the original CAR list. 

• Hybrid CSA/LAP: Selects the Best K Rules (for 
each pre-defined class) in a LAP manner, and re-
orders both the best K CAR list and the original 
CAR list in a CSA fashion. The best K CAR list is 
linked at front of the original CAR list. 

• Hybrid CSA/χ2: Selects the Best K Rules (for 
each pre-defined class) in a χ2 manner, and re-
orders both the best K CAR list and the original 
CAR list in a CSA fashion. The best K CAR list is 
linked at front of the original CAR list.  

• Hybrid ACS/WRA: Selects the Best K Rules (for 
each pre-defined class) in a WRA manner, and re-
orders both the best K CAR list and the original 
CAR list in an ACS fashion. The best K CAR list 
is linked at front of the original CAR list. 

• Hybrid ACS/LAP: Selects the Best K Rules (for 
each pre-defined class) in a LAP manner, and re-
orders both the best K CAR list and the original 
CAR list in an ACS fashion. The best K CAR list 
is linked at front of the original CAR list. 

• Hybrid ACS/χ2: Selects the Best K Rules (for 
each pre-defined class) in a χ2 manner, and re-
orders both the best K CAR list and the original 
CAR list in an ACS fashion. The best K CAR list 
is linked at front of the original CAR list. 

 



3. Proposed Rule Weighting/Ordering  
 

In this section, we describe the proposed CISRW 
rule weighting scheme, which assigns a weighting 
score to each CAR, by computing a score for each rule 
item and averaging the sum of all rule item scores. 
Then a rule weighting based rule ordering strategy is 
introduced founded on CISRW. As a consequence, two 
further hybrid rule ordering strategies that combining 
either CSA or ACS with CISRW, are proposed. 
 
3.1. Proposed Rule Weighting Scheme 
 
3.1.1. Item Weighting Score 

 
There are n items involved in a given class-

transaction database DCT that is coupled with a set of 
pre-defined classes C = {c1, c2, …, cm–1, cm}. For a 
particular pre-defined class A, a score is assigned to 
each item in DCT that distinguishes the significant items 
for class A from the insignificant ones. 

Definition 1. Let ÇA(Itemh) denote the contribution of 
each itemh ∈ DCT for class A, which represents how 
significantly itemh determines A, where 0 ≤ ÇA(Itemh) ≤ 
|C|, and |C| is the size function of the set C. 

The calculation of ÇA(Itemh) is: TransFreq(Itemh, A) 
× (1 – TransFreq(Itemh, ¬A)) × (|C| / ClassCount(Itemh, 
C)), where 
• The TransFreq(Itemh, A or ¬A) function computes 

how frequently that Itemh appears in class A or the 
group of classes ¬A (the complement of A). The 
calculation of this function is: (number of 
transactions with Itemh in the class or class-group) 
/ (number of transactions in the class or class-
group); and 

• The ClassCount(Itemh, C) function simply counts 
the number of classes in C which contain Itemh. 

 
The rationale of this item weighing score is 

demonstrated as follows: 
• The weighting score of Itemh for class A tends to 

be high if Itemh is frequent in A; 
• The weighting score of Itemh for class A tends to 

be high if Itemh is infrequent in ¬A; 
• The weighting score of Itemh for any class tends to 

be high if Itemh is involved in a small number of 
classes in C. (In [4], a similar idea can be found in 
feature selection for text categorization.) 

 

3.1.2. Rule Weighting Score 
 

Based on the item weighting score, a rule weighing 
score is assigned to each CAR R in the original CAR 
list. 

Definition 2. Let ÇA(R) denote the contribution of each 
CAR R in the original CAR list for class A that 
represents how significantly R determines A. 

The calculation of ÇA(R) is: (∑h = 1…|R.antecedent| 

ÇA(Itemh ∈ R.antecedent)) / (|R.antecedent|), where 
|R.antecedent| is the size function of the antecedent of 
this CAR. 
 
3.2. Proposed Rule Ordering Strategies 
 
• CISRW: The CISRW weighing score is assigned 

to each CAR, which represents how significantly 
the CAR antecedent determines its consequent-
class. The original CAR list is then simply sorted 
in a descending order based on the assigned 
CISRW score of each CAR. 

• Hybrid CSA/CISRW: Selects the Best K Rules 
(for each pre-defined class) in a CISRW manner, 
and re-orders both the best K CAR list and the 
original CAR list in a CSA fashion. The best K 
CAR list is linked at front of the original CAR list. 

• Hybrid ACS/CISRW: Selects the Best K Rules 
(for each pre-defined class) in a CISRW manner, 
and re-orders both the best K CAR list and the 
original CAR list in an ACS fashion. The best K 
CAR list is linked at front of the original CAR list. 

 
In Figure 1, a common procedure for both proposed 

Hybrid CSA/CISRW and Hybrid ACS/CISRW 
strategies is outlined. 
Procedure Hybrid CSA(or ACS)/CISRW 
Input:  (a) A list of CARs ℜ (either in CSA or ACS 

ordering manner); 
(b) A desired number (integer value) for the best 
rules K; 

Output: A re-ordered list of CARs ℜNEW (either in Hybrid 
CSA/CISRW or Hybrid ACS/CISRW ordering 
manner); 

(1) begin 
(2) ℜNEW := {∅}; 
(3) ℜCISRW := {∅}; 
(4) for each CAR ∈ ℜ do 
(5)      calculate the CISRW score (δ) for this CAR; 
(6)      ℜCISRW  ℜCISRW ∪ (CAR ⊕ δ);  

 // the ⊕ sign means “with” an additive CAR attribute 
(7) end for 
(8) sort ℜCISRW in a descending order based on δ; 
(9) ℜCISRW  remain the top K CARs (for each pre- 

defined class) ∈ ℜCISRW; 



(10) sort ℜCISRW either in CSA or ACS ordering manner;  
// keep it consistent with ℜ 

(11) ℜNEW  link ℜCISRW at front of ℜ; 
(12) return (ℜNEW); 
(13) end 
Figure 1. The Hybrid CSA(or ACS)/CISRW procedure 
 
4. Experimental Results 
 

In this section, we aim to evaluate the proposed 
CISRW based/related rule ordering strategies with 
respect to the accuracy of classification. All 
evaluations were obtained using the TFPC algorithm 
coupled with the Best First Rule case satisfaction, 
although any other CARM classifier generator, 
founded on the Best First Rule mechanism, could 
equally well be used. Experiments were run on a 1.86 
GHz Intel(R) Core(TM)2 CPU with 1.00 GB of RAM 
running under Windows Command Processor. 

The experiments were conducted using a range of 
datasets taken from the LUCS-KDD 
Discretised/Normalised ARM and CARM Data 
Library [6]. The chosen databases are originally taken 
from the UCI Machine Learning Repository [3]. These 
datasets have been discretized and normalized using 
the LUCS-KDD Discretised Normalised (DN) 
software, so that data are then presented in a binary 
format suitable for use with CARM applications. It 
should be noted that the datasets were re-arranged so 
that occurrences of classes were distributed evenly 
throughout. This then allowed the datasets to be 
divided in half with the first half used as the training 
set and the second half as the test set. Although a 
“better” accuracy figure might have been obtained 
using Ten-cross Validation, it is the relative accuracy 
that is of interest here and not the absolute accuracy. 

The first set of evaluations undertaken used a 
confidence threshold value of 50% and a support 
threshold value 1% (as used in the published 
evaluations of CMAR [10], CPAR [15], TFPC [7] [8], 
and the hybrid rule ordering approach [14]). The 
results are presented in Table 1 where 120 
classification accuracy values are listed based on 20 
chosen datasets. The row labels describe the key 
characteristics of each dataset: for example, the label 
adult.D97.N48842.C2 denotes the “adult” dataset, 
which comprises 48,842 records in 2 pre-defined 
classes, with attributes that for the experiments 
described here have been discretized and normalized 
into 97 binary categories. 
Table 1. Classification accuracy  support-confidence & 

rule weighting strategies vs. the CISRW strategy 
DATASETS CSA ACS WRA LAP χ2 CISRW 

adult.D97. 
N48842.C2 80.83 73.99 81.66 76.07 76.07 81.61 

breast.D20. 
N699.C2 89.11 89.11 87.68 65.62 65.62 87.68 

chessKRvK.D58 
.N28056.C18 14.95 14.95 14.95 14.95 14.95 14.95 

connect4.D129. 
N67557.C3 65.83 64.83 67.93 65.83 65.83 66.94 

flare.D39. 
N.1389.C9 84.44 83.86 84.15 84.44 84.44 84.44 

glass.D48. 
N214.C7 58.88 43.93 50.47 52.34 50.47 55.14 

heart.D52. 
N303.C5 58.28 28.48 55.63 54.97 54.97 57.62 

horseColic. 
D85.N368.C2 72.83 40.76 79.89 79.89 63.04 79.89 

ionosphere. 
D157.N351.C2 85.14 61.14 86.86 64.57 64.57 83.43 

iris.D19. 
N.150.C3 97.33 97.33 97.33 97.33 97.33 97.33 

led7.D24. 
N3200.C10 68.38 61.38 63.94 63.88 66.56 60.50 

letRecog.D106. 
N20000.C26 31.13 26.21 26.33 26.33 28.52 26.38 

mushroom.D90. 
N8124.C2 99.21 65.76 98.45 98.45 49.43 98.45 

nursery.D32. 
N12960.C5 80.35 55.88 70.17 70.17 70.17 70.17 

pageBlocks.D46. 
N5473.C5 90.97 90.97 90.20 89.80 89.80 91.56 

pima.D38. 
N768.C2 73.18 71.88 72.92 65.10 65.10 72.92 

soybean-large. 
D118.N683.C19 86.22 79.77 36.36 36.07 77.42 63.93 

ticTacToe.D29. 
N958.C2 71.61 36.12 68.06 65.34 65.34 68.27 

waveform.D101 
.N5000.C3 61.56 47.96 56.24 57.84 57.28 56.08 

zoo.D42. 
N101.C7 80.00 42.00 56.00 42.00 42.00 86.00 

Average 72.51 58.82 67.26 63.55 62.45 70.16 

From Table 1 it is clear that with a 50% confidence 
threshold and a 1% support threshold the CSA 
mechanism worked better than other alternative non-
hybrid rule ordering strategies. When applying CSA, 
the average accuracy of classification throughout the 
20 datasets is 72.51%. The performance rank of the 
five established rule ordering mechanisms is specified 
as follows: (1) CSA  the average accuracy of 
classification is 72.51%; (2) WRA  the accuracy is 
67.26%; (3) LAP  63.55%; (4) χ2  62.45%; and 
(5) ACS  58.82%. It should be noted that this 
ranking result corroborates to the results presented in 
[14] although both investigations involve different 
datasets in their experimentation section. With respect 
to the group of rule weighting based rule ordering 
mechanisms, the proposed CISRW performed better 
than other rule weighting mechanisms, where its 
average accuracy of classification throughout the 20 
datasets is 70.16%. 

The second set of evaluations undertaken used a 
confidence threshold value of 50%, a support threshold 
value of 1%, and a value of 5 as an appropriate value 
for K when selecting the Best K Rules (K = 5 was also 
used in [15]). The results are demonstrated in Table 2 
where 80 classification accuracy values are listed based 
on 20 chosen datasets. 
Table 2. Classification accuracy  CSA based hybrid 

strategies vs. the Hybrid CSA/CISRW strategy 
DATASETS Hybrid 

CSA/WRA 
Hybrid 

CSA/LAP 
Hybrid 
CSA/χ2 

Hybrid 
CSA/CISRW 



adult.D97. 
N48842.C2 83.33 79.95 79.95 81.46 

breast.D20. 
N699.C2 89.11 88.54 89.11 89.11 

chessKRvK.D58. 
N28056.C18 14.95 14.95 14.95 14.95 

connect4.D129. 
N67557.C3 67.67 65.83 65.83 66.71 

flare.D39. 
N.1389.C9 84.29 54.44 84.44 84.15 

glass.D48. 
N214.C7 66.36 66.36 66.36 65.42 

heart.D52. 
N303.C5 55.63 56.95 58.94 58.28 

horseColic. 
D85.N368.C2 83.15 83.15 79.89 83.15 

ionosphere. 
D157.N351.C2 90.29 89.71 88.00 89.14 

iris.D19. 
N.150.C3 97.33 97.33 97.33 97.33 

led7.D24. 
N3200.C10 68.19 68.19 68.38 68.38 

letRecog.D106. 
N20000.C26 31.49 31.49 31.56 30.87 

mushroom.D90. 
N8124.C2 98.45 98.82 98.45 98.82 

nursery.D32. 
N12960.C5 78.86 78.86 78.86 78.26 

pageBlocks.D46. 
N5473.C5 90.97 90.97 90.97 90.97 

pima.D38. 
N768.C2 73.18 73.18 72.66 73.44 

soybean-large. 
D118.N683.C19 80.94 80.94 82.11 83.58 

ticTacToe.D29. 
N958.C2 74.95 74.74 72.65 73.90 

waveform.D101. 
N5000.C3 57.96 57.96 60.60 58.40 

zoo.D42. 
N101.C7 84.00 90.00 72.00 88.00 

Average 73.56 73.62 72.65 73.72 

From Table 2 it can be seen that with a 50% 
confidence threshold, a 1% support threshold, and K = 
5, the proposed Hybrid CSA/CISRW strategy 
preformed better than other alternative CSA related 
hybrid rule ordering mechanisms. When applying 
Hybrid CSA/CISRW, the average accuracy of 
classification throughout the 20 datasets is 73.72%. 
The performances of other CSA related hybrid 
strategies were ranked as: (1) CSA/LAP  the average 
accuracy of classification is 73.62%; (2) CSA/WRA  
the accuracy is 73.56%; and (3) CSA/χ2  72.65%. 
This ranking result is consistent to the experimental 
results shown in [14] even different datasets were used. 

With regard to the first two sets of evaluations, the 
third set of evaluations undertaken used a confidence 
threshold value of 50% and a support threshold value 
of 1% as well. Again, a value of 5 was considered as 
an appropriate value for K. In Table 3, 80 classification 
accuracy values are listed based on 20 chosen datasets. 

Table 3. Classification accuracy  ACS based hybrid 
strategies vs. the Hybrid ACS/CISRW strategy 

DATASETS Hybrid 
ACS/WRA 

Hybrid 
ACS/LAP 

Hybrid 
ACS/χ2 

Hybrid 
ACS/CISRW 

adult.D97. 
N48842.C2 78.56 83.76 80.14 81.95 

breast.D20. 
N699.C2 89.11 88.54 89.11 89.11 

chessKRvK.D58. 
N28056.C18 14.95 14.95 14.95 14.95 

connect4.D129. 
N67557.C3 64.88 64.88 64.88 64.88 

flare.D39. 
N.1389.C9 83.86 83.86 83.86 83.86 

glass.D48. 
N214.C7 65.42 65.42 68.22 63.55 

heart.D52. 
N303.C5 52.32 50.33 50.33 52.32 

horseColic. 
D85.N368.C2 75.00 83.15 71.20 78.80 

ionosphere. 
D157.N351.C2 90.29 89.71 88.00 89.14 

iris.D19. 
N.150.C3 97.33 97.33 97.33 97.33 

led7.D24. 
N3200.C10 62.06 62.06 62.31 65.69 

letRecog.D106. 
N20000.C26 27.39 27.39 28.41 28.58 

mushroom.D90. 
N8124.C2 98.45 98.82 98.45 98.82 

nursery.D32. 
N12960.C5 66.73 66.73 66.73 71.28 

pageBlocks.D46. 
N5473.C5 90.97 90.97 90.97 90.97 

pima.D38. 
N768.C2 73.18 73.18 72.66 71.61 

soybean-large. 
D118.N683.C19 75.66 75.66 78.01 78.59 

ticTacToe.D29. 
N958.C2 60.75 70.35 67.22 67.22 

waveform.D101. 
N5000.C3 59.20 59.20 60.60 58.40 

zoo.D42. 
N101.C7 80.00 80.00 80.00 76.00 

Average 70.31 71.31 70.67 71.15 

From Table 3 it can be seen that with a 50% 
confidence threshold, a 1% support threshold, and K = 
5, the best-performing hybrid ACS related rule 
ordering strategy is the Hybrid ACS/LAP mechanism. 
When applying this mechanism, the average accuracy 
of classification throughout the 20 datasets is 71.31%. 
The proposed Hybrid ACS/CISRW approach 
demonstrated a comparable performance to Hybrid 
ACS/LAP, where its average classification accuracy is 
71.15%. The performances of three existing ACS 
related hybrid strategies were ranked as: (1) ACS/LAP 
 71.31%; (2) ACS/χ2  the average accuracy is 
70.67%; and (3) ACS/WRA  70.31%. This ranking 
result corroborates to the experimental results provided 
in [14] although different datasets were concerned. 
 
5. Conclusion 
 

CARM is a recent CRM approach that aims to 
classify “unseen” data based on building an ARM 
based classifier. A number of literatures have 
confirmed the outstanding performance of CARM. It 
can be clarified that no matter which particular ARM 
technique is employed, a similar set of CARs is always 
generated from data, and a classifier is usually 
presented as an ordered list of CARs, based on an 
applied rule ordering strategy. In this paper a novel 
rule weighting approach was proposed, which assigns a 
weighting score to each generated CAR. Based on the 
proposed rule weighting approach, a straightforward 
rule ordering mechanism (CISRW) was introduced. 
Subsequently, two hybrid rule ordering strategies 



(Hybrid CSA/CISRW and Hybrid ACS/CISRW) were 
further developed. 

Table 4. Ranking of rule ordering strategies 

Rank No. Rule Ordering Strategy Average 
Accuracy  

Rank No. 
in [14] 

1 Hybrid CSA/CISRW 73.72  
2 Hybrid CSA/LAP 73.62 1 
3 Hybrid CSA/WRA 73.56 2 
4 Hybrid CSA/χ2 72.65 3 
5 CSA 72.51 4 
6 Hybrid ACS/LAP 71.31 5 
7 Hybrid ACS/CISRW 71.15  
8 Hybrid ACS/χ2 70.67 6 
9 Hybrid ACS/WRA 70.31 7 

10 CISRW 70.16  
11 WRA 67.26 8 
12 LAP 63.55 9 
13 χ2 62.45 10 
14 ACS 58.82 11 

From the experimental results, it can be seen that 
the average accuracy of classification, using the 20 
chosen datasets, obtained by the proposed Hybrid 
CSA/CISRW rule ordering strategy can be better than 
other alternative rule ordering mechanisms, where the 
accuracy is 73.72%. In Table 4, the rank of 
classification accuracies for all fourteen rule ordering 
strategies is presented. The proposed Hybrid 
CSA/CISRW, Hybrid ACS/CISRW and CISRW rule 
ordering mechanisms were ranked as No.1, No. 7 and 
No. 10. Furthermore the performances of eleven 
existing rule ordering strategies were ranked in 
accordance with the results presented in [14] although 
different datasets were used in both investigations. 

Further research is suggested to identify the 
improved rule weighting/ordering approach in CARM 
to give a better performance. 
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