
Extracting Movement Patterns from Video Data
to Drive Multi-Agent Based Simulations

Muhammad Tufail1, Frans Coenen1, and Tintin Mu2

1Department of Computer Science, The University of Liverpool, Liverpool, L69 3BX,
UK; 2Department of Electrical and Electronics Engineering, The University of

Liverpool, Liverpool, L69 3BX, UK

Abstract. Computer simulations are used to create and evaluate real
world scenarios in a manner that is controlled, nonintrusive, cost effec-
tive and safe. One technology for realising computer simulation is Multi
Agent Based Simulation (MABS), the advantage being that the entities
that feature in a simulation can be expressed as agents that have all the
features associated with agents (autonomy, goal driven, etc.). A partic-
ular challenge of MABS is the acquisition of the data required to define
agent behaviour. One approach is to “hand craft” agent behaviour, how-
ever this is error prone and time consuming. In this paper we proposed
a method whereby we can extract, what we have termed “Movement
Patterns” (MPs) which in turn can be used to drive agents in a MABS
environment.

Keywords: Multi Agent Based Simulation (MABS); Movement Pattern
Mining; Movement Patterns;

1 Introduction

Multi-Agent Based Simulation (MABS) harnesses Multi Agent System technol-
ogy to realise computer simulations of real world scenarios. MABS offers the
fundamental advantage that the entities that make up a simulation can be mod-
elled as agents which display all the characteristics of agents. Using MABS each
“player” in the simulation is represented as an agent. These agents posses both
desires and capabilities, which in turn allows autonomous operation and decision
making. MABS is particularly appropriate for modelling scenarios that involve
people or animals [1, 5, 6]; each person (animal) can be modelled as an agent.

The MABS application domain of interest with respect to this paper is be-
haviour analysis, more specifically animal movement behaviour analysis. Exam-
ples where MABS have been used for human behaviour analysis can be found in
[3, 7, 8]. The challenge of behaviour MABS is the modelling of individual agent
behaviours. One approach [1] is to “hand craft” the models on which the agent
behaviour will be based by observing the real world entities to be considered.
However, hand crafting is error prone and resource intensive. An alternative,
and that advocated in this paper, is to use data mining techniques to learn the
desired agent behaviours in an automated manner. More specifically to apply

such techniques to video data, featuring the entities (agents) of interest in the
intended environment, and learning the desired behaviour in the form of pat-
terns as first proposed in [12]. This paper extends the work presented in [12] by
proposing a mechanism for mining video data to extract “Movement Patterns”
(MPs), which in turn can be used in the context of animal movement behaviour
MABS. MPs in this context are spatially referenced patterns that specify poten-
tial follow on locations for a given agent (animal), however MPs can be applied in
the context of other movement behaviour studies such as fire exit simulation and
movement behaviour at rail terminal/station forecourts or airport concourses.
MPs can be defined in absolute terms according to some reference origin; or in
relative terms according to the nature of an agent’s current location. MPs are
selected in a random probabilistic manner so that on each run the behaviour of
agents will not be identical. The main contributions of the work presented in
this paper are thus: (i) a mechanism for capturing MPs, and (ii) a mechanism
whereby MPs can be effectively utilised in a MABS setting.

The rest of this paper is organised as follow. An overview of some previous
work is presented in Section 2. In Section 3 the process of data acquisition and
the nature of the video data used for illustrative purposes with respect to this
paper is discussed. The environment representation, an important precursor to
any discussion on MPs, is presented in Section 4, followed by the pattern mining
framework itself in Section 5. Section 6 discusses a proposed MABS framework
which utilises the concept of MPs. Section 7 then presents an evaluation of
the operation of the proposed MABS in terms of MPs. A summary and some
conclusions are presented at the end of this paper, together with some suggestions
for future work, in Section 8.

2 Previous Work

Computer simulation offers a number of advantages over real life experimenta-
tion. The main challenge of MABS, as in the case of computer simulation in
general, is the acquisition of the knowledge required to build the simulations.
In [?], this was done by hand, an approach found to be very resource intensive;
rodent behaviour was modelled using the concept of a behavioural graph. Hand
crafting is thus both time consuming and error prone. An alternative approach
was considered in [12] where the idea was to learn the behaviours of agents from
video data and then to utilise this in a MABS setting. In [12] only single mouse
scenarios were considered which served to significantly simplify the nature of the
models to be considered. In this paper a more sophisticated mechanism in the
context of multiple agents is presented.

The proposed use of MPs, as will be seen later in this paper, includes the
concept of states to represent the relationship between entities in a MABS. The
idea of states has for some time been used in the context of simulation, and by
extension, MABS; although it should be noted that in previous work the concept
has not been used in the same way as presented in this paper. In previous work
a state typically describes a set of attribute-values that an agent possesses at a
given time t1; a follow on state is then a potential future state that an agent may

adopt at time t2. With respect to behaviour simulation, in [5, 10, 11] the concept
of states has been used to represent the behaviour of entities. For example in
[5] states were used for the representation of animal behaviour, more specifically
foraging of sheep. In [10] states were used to represent the way that a group
of ants selected a “best” nest site, although the group was considered in terms
of a single entity. In our case the state concept is used to capture the relative
position of two mice (as discussed further in Sub-section 4.2 below).

The fundamental idea presented in this paper is that the necessary knowledge
can be derived from video data through a video data analysis process. More
specifically the idea is to extract “movement patterns” from video data and
utilise these patterns to drive a MABS.

3 Data Acquisition And Video Data Collection

When building a MABS the most challenging task (as noted earlier) is the ac-
quisition of the knowledge required to populate the simulation. This section dis-
cusses the acquisition of data; more specifically extracting knowledge from video
data. From the literature different methods have been proposed concerning data
acquisition. The usually process is one of observation or interviews with domain
experts. For example in [10] a set of behavioural rules were derived through a
process of observation, and in [?] surveys of individuals were conducted. In [?]
the following observations were made concerning the manual processes of MABS
data acquisition:

1. It is difficult to translate information gleaned from domain experts (or from
observations) into usable form since such translation typically requires ex-
tensive domain knowledge.

2. Any hypotheses concerning agent behaviour, based on information obtained
from domain experts (or derived from laboratory experiments) needs to be
precise (information gleaned from domain experts is typically “fuzzy”).

3. The manual collection of data from real world scenarios, regardless of how
this is done, is a time consuming and resource intensive process.

The most significant of the above is that manual data acquisition is a resource in-
tensive process and thus some form of automation is desirable. In [?] the authors
briefly discuss the potential for automatically extracting the required data from
existing records (documents); in this paper it is suggested that the automated
extraction of knowledge from video data is the solution.

Recall that the focus for the work presented in this paper is scenarios in-
volving two or more mice in a “box environment” (as in [12]). To this end video
data was obtained in a laboratory setting by suspending a video camera over a
box, whose ground area measured 1.2m2, into which two mice and some objects
(nests, obstructions and so on) were introduced. Two stills from the video data
collected are given in Figures 1 and 2; in the figures the two mice can be clearly
identified. Note that the stills feature slightly different scenarios; the obstruc-
tions are not in the same place in both cases. The circular objects are nests

Fig. 1. Still from rodent video data (exam-
ple 2)

Fig. 2. Still from rodent video data (exam-
ple 2)

wgich mice can enter and exit. The boxes also feature side panels but these are
not of significance with respect to the desired video analysis.

For the work presented in this paper a bespoke software system was devel-
oped, for tracking “mice” in video data, founded on the “blob tracking” technique
described in [2]. The software operates by processing the video data in a “frame
by frame” manner. The software automatically detects the location of each mouse
by detecting movement and then assigning a tracking ID to the identified blob.
Blob locations are recorded at a fixed sample interval time s measured in term
of a number of video frames. With respect to the work presented in this paper
s = 5 frames was used (5 frames equates to 200 milliseconds). On occasion the
blob tracking fails due to noise in the data or because the blob “disappears” into
a nest. Where this happens the initialisation process is repeated and, once the
blob has been re-identified, the tracking ID is reassigned.

The situation where both mice were lost at the same time did not occur, but
erroneous reassignment of IDs would not adversely effect the data collection and
the consequent mining of MPs. At the end of the mouse tracking process two
sets of locations were obtained, one for each ID (more if scenarios featuring a
greater number of mice are considered). The learning process continues until we
have at least one MP for every potential location. In this paper we discuss two
mechanism for representing locations, absolute and relative, both are considered
in further detail in Section 5.

4 Environment Modelling

An important aspect of MABS is the nature of the environment (playing area) to
be modelled [9]. The significance in the context of the proposed approach is that
the mechanism whereby the environment is modelled influences the nature of the
output from the machine learning. The proposed representation is essentially
that of a “tile world” (such as that used in [4, ?]). Using this mechanism the
environment is modelled by dividing it into a collection of grid cells (squares).
Each cell is given a sequential number (address); the set of grid numbers is

then given by L = {l1, l2, l3 . . .}. Grid mechanisms of this form offer the general
advantage that prescribed translations from one cell to another can be achieved
by applying a constant k to the current address (a concept also used in [12]). For
example, in Figure 3, to move one cell to the north k = −14; and to move one
cell to the south east k = 15. Note that the value of k captures both distance and
direction, hence we refer to such values as movement vectors; k = 0 indicates no
movement. For the video data the 1.2m2 environment was divided into 14× 14
grid squares (196 in total); thus each square measured approximately 8.5×8.5cm,
about the size of a mouse.

Fig. 3. Movement vectors

Fig. 4. State Graph

As will become clear later in this paper two kinds of MP are considered, rela-
tive and absolute. For relative MPs each grid cell describing an environment has a
ground type associated with it. Five ground type labels were used {w, n, b, o,−};
where: w indicates a location next to a wall, n indicates a nest site, b indicates an
obstruction of some kind (a “block”), o indicates “open ground” (and is also the
default label) and − indicates an area outside of a playing area. Similar ground
type labels were considered in [12].

4.1 Location Descriptors

A location descriptor is a composite ground type label comprised of the ground
types for the 3 × 3 sub grid surrounding current location of interest linearised
from top-left to bottom right. Recall from Section 4 that we have a ground type
− indicating locations outside of a playing area, this is used in the case of corner
and edge locations.

4.2 States

An important aspect of the proposed framework is the concept of states. As noted
above, in the context of this paper, a state defines the relationship between two
entities (mice in our case) in such a way that this can be incorporated into MPs.
We have four different states {“ignore”, “closeby”,“meeting”, “follow”} arranged
in a graph as shown in the Figure 4. The states are defined on the basis of: the
distance between the two entities in term of “zones” surrounding each entity,
the direction of one to the other and their mutual directions of travel.

5 Movement Pattern Mining Framework

The objective of the proposed MP mining framework is to extract (mine) MPs
from the location data obtained as a result of the video analysis described in
Section 3. For each entity (mouse) and each sample time stamp ti we extract a
MP describing the entity’s movement from ti to ti+1.

As discussed previously, two mechanisms were considered for representing
MPs: (i) absolute and (ii) relative. The distinction between the two, as the
terminology suggests, is that in the first case locations are recorded relative
to the origin of the environment while in the second locations are recorded
relative to the local surroundings. Absolute locations are therefore expressed
in terms of a specific address (a unique number), while when using relative
patterns the locations are represented using descriptors. The significance is that
absolute patterns can only be used with respect to simulations that feature the
same environment as that from which the patterns were mined, while relative
patterns are more versatile and can be used for a variety of simulations. However,
relative descriptors are more complex. The advantages of using relative patterns
over absolute patterns are as follows: (i) fewer location pattern are required
than the number of cells in the grid (given a reasonably sized paying area), (ii)
consequently storage advantages are accrued, (iii) they are more generic than
the absolute mechanism (MBPs represented using the absolute mechanism can
only be used with respect to a playing area identical to that from which they
were extracted) and (iv) they are rotation invariant.

In this section both mechanisms are considered in further detail in the con-
text of MPs. It should also be noted here that the extracted MPs provided a
“knowledge base” with which to drive the desired MABS. The operation of this
MABS is presented in the following section, Section 6.

The fundamental structure of an MP is that of a tuple of the form:

MP = 〈F, S, v, Path〉

Where: (i) F is the “From” location (where the movement represented by the
MP starts); (ii) S is a collection of one or more states describing the spatial
relationship between agents featured in a scenario; (iii) v is a movement vector
(as described in Section 4); and (iv) Path is the path, encapsulated by the MP,
which an agent needs to follow to get to the “To” location. The nature of these
elements is discussed in further detail in the remainder of this section.

The From location (F) is the start location in the grid environment from
where the movement described by a MP commences, defined in terms of a loca-
tion identifier loc ID. The format of loc ID depends on whether we are consid-
ering absolute MPs or relative MPs. In the first case it will simply be a grid cell
number, in the second case it will be a location descriptor of the form described
above in Sub-Section 4.1.

Each state s in S defines the relative relationship between two agents using
a set of labels, {“ignore”, “closeby”,“meeting”, “follow”} defined using a set of
concentric zones as explained in Sub-Section 4.2. An MP can feature one or more
states depending on how many agents feature in a scenario. If we have n agents

then S = {s1, s2, . . . , sn−1}, we are not interested on how an agent relates to
itself hence n−1 . If there is only one agent, then S = ∅. Note that a MP defines
movement in terms of a single entity.

The element v of the MP tuple is a movement vector of the form described in
Section 4. The value for v can be expressed as a single number or as a coordinate
pair 〈x, y〉 depending on whether we are using absolute or relative MPs. The
value of v when applied to an agent’s current location indicates the “To” location
associated with the MP.

The fourth component, Path, as already noted, indicates the “route” that
the MP prescribes whereby an agent adopting the MP can get from its From
location to the indicated To location. The number of elements in Path (|path|)
depends on how far we wish to “look ahead”. With respect to the evaluation and
case studies presented later in this paper |path| = 5 was used. Using |path| > 1
means that our rodent agents have a “memory”, they have a planned route they
wish to follow. The elements of Path are all movement vectors. Thus using ab-
solute movement patterns, where |path| > 1, we have a sequence of movement
vectors of the form {v1, v2,. . . , v|path|} were v|path| indicates the end location
(the To location) and the remaining vectors indicate locations at intermedi-
ate locations referred to as waypoints. In the case of relative movement pat-
terns, where |path| > 1, we have a sequence of movement vectors of the form
{〈x1, y1〉, 〈x2, y2〉, . . . , 〈x|path|, y|path|〉}.

6 Operation of MPs in the Context of MABS
This section describes how MPs are integrated into our proposed MABS frame-
work. Our MABS, like other MABS, operates in an iterative manner. On each
iteration each agent featured in the current scenario of interest updates its lo-
cation, direction and current path. This is done according to whether we have
waypoints pending or not. In the first case |Path| > 1 and the next location
wi ∈ Path can be selected (and removed from Path). This process continues
until |Path| = 0 is reached. When |Path| ≡ 0 a new MP must be selected.

In the evaluation considered later in this paper each MABS agent uses the
same knowledge base, but this does not have to be the case. Agents search the
knowledge base with their current location (described in absolute or relative
terms) and State and identify all relevant MPs and consequent To locations.
Typically there will be a number of these. Given that we do not wish our sim-
ulation to operate in the same manner on each run a specific MP is selected in
a probabilistically weighted random manner. In other words the most likely MP
is the most likely to be selected but not necessarily so. In the case of relative
patterns it is also necessary to carry out additional checks to make sure that
associated To locations are legal locations. A legal location is one within the
environment (thus not a location with ground type −) that is not obstructed in
some way (thus not a location with ground type b). Note that on start up our
mouse agents are placed at some legal location and their states set according to
their relative positions in the simulation environment. Note also that in the case
where no legal follow on location can be found a default next location will be
selected (in practice we found that this situation did not occur).

Simulation time was calculated according to Equation 1. Simulations should
operate so that the agents move in a smooth manner from one location to an-
other location. In Equation 1, q is some constant; with respect to the evaluation
presented later in this paper q = 5 was used as this was found to produce a
smooth simulation. Recall that the sample time was 200 millisecond, thus with
respect to this paper simulation time was 200/5 = 40 milliseconds.

simulation time =
sample time

q
(1)

7 Evaluation
There is no “gold standard” with which to evaluate the operation of simulations
(MABS or otherwise). However, the simulation should be as realistic as possi-
ble. The mechanism adopted with respect to the work presented in this paper
was that the operation of the simulations should be compared with the original
video data. Consequently we could compare the distribution of MPs in the sim-
ulated data with those produced using the real video data. In the case of the
relative mechanism the comparison was conducted by comparing the number of
occasions that each MP was recorded with respect to the simulation and video
data. However, in the case of the absolute mechanism there were too many loca-
tions to provide a meaningful comparison. Recall that the grid size used for the
video data was 14×14, thus we had 196 unique locations. Thus, for the absolute
analysis we divided the environment into 7 × 7 blocks, each block representing
2 × 2 = 4 “standard” grid cells. As a result 49 blocks were used for the com-
parison. For each block of cells, the occurrences count of the number of times
that an agent visited the block was determined both with respect to the video
and simulation data. For the evaluation two scenarios similar to those shown in
Figures 1 and 2, featuring two agents, were used. Both the relative and absolute
representations were considered, with and without the concept of states.

The results for the evaluation using absolute MPs are presented in Figures
5 to 8. Figures 5 and 6 give the results using coarse block grids for videos 1
and 2 using absolute movement patterns without states, while Figures 7 and 8
present the results for the same videos using absolute movement patterns with
states. In each case, the blue bar indicates the occurrence counts extracted from
the video data while the red bar the occurrence counts for the simulation. From
the figures it can clearly be observed that the behaviour of the mice agents in
the simulation is similar to that featured within the video data. We can place a
value on the “similarity” (sim) of a simulated scenario compared with a real life
scenario, given a set of simulated occurrence counts Fs = {s1, s2, . . .} and a set
of real occurrence counts Fr = {r1, r2, . . .}, using:

sim =

∑i=|Fs|
i=1 si ∼ ri
|Fs|

(2)

The similarity value obtained using absolute addressing and no states for Video 1
was 0.08 and for Video 2 was 0.11, and when using states the accuracies obtained
were 0.12 and 0.13 respectively (note that ab accuracy of 0.0).

Fig. 5. Comparison of simulation data with video data in terms of blocks visited using
absolute MPs without states and video 1

Fig. 6. Comparison of simulation data with video data in terms of blocks visited using
absolute MPs without states video 2

For the evaluation using relative movement patterns, with and without states,
the environment featured 109 relative addresses (location descriptors). If we
include states we have 109× 4 state-address combinations. Too many to present
in bar graph form (and in this case it did not make sense to consider a coarse
grid as in the case of the absolute addressing evaluation presented above). A
fragment of the results obtained are presented in Tables 1 and 2. The tables list
location descriptors on the left, followed by the difference in occurrence counts
between the simulation and the real life experiments as recorded in videos 1 and
2. The last column gives the average difference. Totals are given in the last row.
From the tables the overall computed similarity wiyhout using states, for Video
1 and 2, was 0.47 and 0.57 respectively; whilst when using states it was 0.58 and
0.62. For completeness fragments of the frequency count results obtained using
absolute MPs are presented in Tables 3 to 2.

The results obtained are summarised in Table 5. From the summary table,
and the results given above, it can firstly be seen that in general the simulations,
using either absolute or relative MPs, were realistic. Secondly it can be be seen
that the similarity value with respect to the absolute MPs is less than that when
using relative MPs; suggesting that absolute MPs produces a better simulation.
Thirdly it can be seen that not using the state concept produces a better sim-
ulation than when using states, thus calling into question usage of the concept

Fig. 7. Comparison of simulation data with video data in terms of blocks visited using
absolute MPs with states and video 1

Fig. 8. Comparison of simulation data with video data in terms of blocks visited using
absolute MPs with states and video 2

of states. Overall it was thus concluded that the most appropriate mechanism
for our behaviour MABS was the absolute mechanism without states although
the relative mechanism provides more versatility. Whatever the case, from the
foregoing, it can be concluded that the operation of the simulations, using either
absolute or relative MPs, was effective.

8 Conclusion

In this paper a process has been introduced for mining Movement Patterns (MPs)
from video data in such a way that these can be used in the context of MABS.
The idea is to learn the desired MPs from video data, a more efficient and less
error prone mechanism than handcrafting. Two mechanism for representing pat-
terns are considered, absolute and relative. Evaluation was conducted by “closing
the loop” and comparing the operation of the absolute and relative mechanisms,
with and without states, with the original video data. Thus four different repre-
sentations were considered: (i) absolute with state, (ii) absolute without state,
(iii) relative with state and (iv) relative without state. The evaluation indicated
that effective simulations were attained, with the absolute representation with-
out states producing the most realistic MABS simulations although with the
caveat that relative MPs are more versatile (absolute MPS can only be sed with
respect to environments identical to those from which they were generated). For

Table 1. Fragment of differences in
recorded frequency counts using relative
MPs without states (videos 1 and 2)

Location Video Video Avg.
descriptor 1 diff. 2 diff. diff.

wwwoowoow 0.50 1.0 0.75
- - - ssssss 7.00 6.5 6.75
-ss-ss-ss 2.00 3.5 2.75

.

Total Aves. 0.27 0.21 0.24

Table 2. Fragment of differences in
recorded frequency counts using relative
MPs with states (videos 1 and 2)

Location
State

Video Video Avg.
descriptor 1 diff. 2 diff. diff.

- - - ssssss CloseBy 5 3 4.0
boobooooo CloseBy 2 2 2.0
woossosso Ignore 2 3 2.5

.

Total Aves. 0.36 0.30 0.33

Table 3. Fragment of differences in
recorded frequency counts using absolute
MPs without states (videos 1 and 2)

Block Video Video Avg.
No 1 diff. 2 diff. diff.

0 7.50 117.50 110.00
1 32.00 56.00 24.00
2 131.50 106.00 25.50
3 10.50 99.00 88.50

.
Total Aves. 0.06 0.10 0.08

Table 4. Fragment of differences in
recorded frequency counts using absolute
MPs with states (videos 1 and 2)

Block Video Video Avg.
No 1 diff. 2 diff. diff.

0 92.50 89.00 3.50
1 31.50 3.50 28.00
2 28.00 144.50 116.50
3 6.00 125.00 3.00

.

Total Aves. 0.12 0.11 0.11

future work, the intention is to consider the propsed mechanism in the context
of “many mice” scenarios (more than two) and with respect to other domains.

References

1. E. Agiriga, F. Coenen, J. Hurst, and D. Kowalski. A multiagent based framework
for the simulation of mammalian behaviour. In Research and Development in
Intelligent Systems XXX, pages 435–441. Springer, 2013.

2. Anonymous. Opencv-2.3 blob-tracking module, http://www.enl.usc.edu/enl/
trunk/aqua/opencv-2.3.../blob tracking modules.doc, Accessed : 2013-12-01.

3. E. Bonabeau. Agent-based modeling: Methods and techniques for simulating hu-
man systems. Proceedings of the National Academy of Sciences, 99(suppl 3):7280–
7287, 2002.

4. K. Choy, A. A. Hopgood, L. Nolle, and B. O’Neill. Implementation of a tileworld
testbed on a distributed blackboard system. In The 18th European Simulation
Multiconference, 2004.

5. B. Dumont and D. R. Hill. Multi-agent simulation of group foraging in sheep:
effects of spatial memory, conspecific attraction and plot size. Ecological Modelling,
141(1):201–215, 2001.

6. F. Klügl and G. Rindsfüser. Large-scale agent-based pedestrian simulation. In
Multiagent System Technologies, pages 145–156. Springer, 2007.

7. N. Malleson, L. See, A. Evans, and A. Heppenstall. Implementing comprehensive
offender behaviour in a realistic agent-based model of burglary. Simulation, page
0037549710384124, 2010.

8. X. Pan, C. S. Han, K. Dauber, and K. H. Law. A multi-agent based framework
for the simulation of human and social behaviors during emergency evacuations.
Ai & Society, 22(2):113–132, 2007.

Table 5. Summary of Results

Technique
Ave. Diff. Ave. Diff. Net Ave. Diff. Sim. Sim. Avr.
Video 1 Video 2 Video. 1 and 2 Video 1 video 2 Sim.

Absolute 0.06 0.10 0.08 0.08 0.11 0.09
Absolute + state 0.11 0.12 0.11 0.12 0.13 0.12
Relative 0.27 0.21 0.24 0.47 0.57 0.52
Relative + state 0.36 0.30 0.33 0.58 0.62 0.60

9. J. Pavón and J. Gómez-Sanz. Agent oriented software engineering with ingenias.
In Multi-Agent Systems and Applications III, pages 394–403. Springer, 2003.

10. S. C. Pratt, D. J. Sumpter, E. B. Mallon, and N. R. Franks. An agent-based model
of collective nest choice by the ant temnothorax albipennis. Animal Behaviour,
70(5):1023–1036, 2005.

11. C. J. Topping, T. S. Hansen, T. S. Jensen, J. U. Jepsen, F. Nikolajsen, and P. Odd-
erskær. Almass, an agent-based model for animals in temperate european land-
scapes. Ecological Modelling, 167(1):65–82, 2003.

12. M. Tufail, F. Coenen, and T. Mu. Mining movement patterns from video data
to inform multi-agent based simulation. In Agents and Data Mining Interaction,
volume 9145 of Lecture Notes in Computer Science, pages 38–51. Springer Inter-
national Publishing, 2015.

