A Sliding Windows based Dual Support Framework for Discovering Emerging Trends from Temporal Data

M Sulaiman Khan^{1,2} Dr Frans Coenen² Dr David Reid¹ Reshma Patel³ Lawson Archer³

¹Liverpool Hope University ²University of Liverpool ³Transglobal Express Ltd. Wirral, UK

Outline of the Presentation

- Association Rule Mining
 - Downward closure property
- Temporal Association Rule Mining
- Jumping and Emerging Patterns
- Issues in Discovering JEPs
- Sliding Windows
- Dual support mechanism
 - DSAT Algorithm
 - Evaluation
- Conclusion & Future Work

Association Rule Mining

- Data Mining Technique for finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.
- Example: Customer buying Patterns from large market basket data/Transactions.
- Association rules are expressions of the form $X \rightarrow Y$
- where X and Y are item sets and $X \cap Y = \phi$

Interestingness Measures

Rule form: "Body \rightarrow Head [support, confidence]".

We wish to find all rules of this form using the support confidence framework.

- Given a rule $X \& Y \Rightarrow Z$
 - support, s, probability that a transaction contains
 {X & Y & Z}
 - confidence, c, conditional probability that a transaction having {X & Y} also contains Z

Downward Closure Property

- Downward Closure Property (DCP)
 - Subsets of a frequent set are also frequent.
 e.g. if {A,B,C} is a frequent set then {A,B}, {A,C} and {B,C} will also be frequent.
 - Applications
 - Allows algorithms to <u>efficiently</u> generate frequent itemsets of increasing size by adding (K+1)-items to K-itemsets that are already ascertained to be frequent.
 - If itemsets {A,B} and {B,C} are not frequent, then (for example) {A,B,C} and {B,C,D} cannot be frequent, therefore there is no need to generate such "candidate" itemsets.

Temporal ARM (1)

- Temporal ARM (TARM) deals with the mining of time stamped databases, such as:
 - web server logs
 - super market transactional data
 - network traffic
- A TAR is an AR that exists during specific time intervals, for example:
 - flowers and chocolates are frequently sold together on the valentine day.
 - pumpkin and sweets are frequently sold together on Halloween.

Temporal ARM (2)

- Data mining technique directed at the identification of hidden trends in time series data
- In temporal ARM the attributes in the data are time stamped in some way as shown in table below:

Period	TID	Items	Period	TID	Items
January-0 9 (D1)	t ₀₁	1,2,4	March-09 (D3)	t ₀₉	4 6 8 10
	t ₀₂	2,3		t ₁₀	369
	t ₀₃	1,2,3,4		t ₁₁	1 3 4 7 8 9
	t ₀₄	2,3,4		$t_{12}^{}$	235689
February- 09 (D2)	t ₀₅	1 3 5 7 9	April-09 (4)	t ₁₃	4 9 10
	t ₀₆	246810		t_{14}	189
	t ₀₇	124578		t ₁₅	2357
	t ₀₈	9		t ₁₆	1

Jumping and Emerging Patterns

- One category of Temporal ARM is known as Jumping and Emerging Patterns (JEP) mining.
- An **Emerging Pattern** (EP) is usually defined as an itemset whose support increases over time according to some "change ratio" threshold.
- A **Jumping Pattern** (JP) is an itemset whose support changes much more rapidly than that for an EP.

Jumping Emerging Patterns

- Patterns whose frequency increases significantly from one data set to another
- Growth Rate of X (patterns) from D_2 to D_1

THE UNIVERSITY

of LIVERPOOL

Growth Rate

$$GrowthRate(X) = \begin{cases} 0 & if(supp(X, D_1) = 0 \text{ and } supp(X, D_2) = 0) \\ \infty & if(supp(X, D_1) = 0 \text{ and } supp(X, D_2) \neq 0) \\ \frac{supp(X, D_2)}{supp(X, D_1)} & otherwise \end{cases}$$

$$GR(X) = \frac{supp(X, D_2)}{supp(X, D_1)} \longrightarrow GR(X) = \frac{supp(X, D_2)}{supp(X, D_1)} \times \frac{|D_1|}{|D_2|}$$

JEPs Example

Tid	Items	
T1	A, B, C	D ₁
T2	B, C, D, E	
Т3	B, C, E	
T4	B, E	
T5	A, B, C, D	D ₂
Т6	A, B, C, D	
Τ7	A, B, C	
Т8	A, D, E	

- 2 datasets: D₁ & D₂
- 5 items: A, B, C, D, E
- *Supp*(ABC, D₁) = 1
- $Supp(ABC, D_2) = 3$
- $Supp(BCD, D_1) = 1$
- $Supp(BCD, D_2) = 2$

- GR threshold = 2, JEPs from D_2 to D_1
 - ABC is an emerging pattern (GR(ABC)=3)
 - BCD is not an emerging pattern (GR(BCD)=2)
 - ABCD is a jumping emerging pattern (GR(ABCD)=infinity)

Issues in Discovering JEPs

- Discovering JEPs entails a significant computational overhead:
 - Large number of itemsets to compare (due to low threshold)
 - Data handling
 - Computational cost
 - Efficient memory management
- TARM processing models:
 - Landmark
 - Damped
 - Sliding Windows
- Maximal frequent set approach
 - Discovering of all JEPS is not guaranteed

Temporal ARM processing models

- Landmark Model
 - The Landmark model discovers all frequent itemsets over the entire history of data from a particular time called landmark to the current time.

Damped Model

- It is also known as Time-Fading model, finds frequent itemsets from temporal data in which each transaction is assigned a weight and this weight decreases with age. Older records contribute less weight toward itemset frequencies.
- Sliding Windows Model
 - The Sliding Windows model mines frequent itemsets in sliding windows.
 Only part of the transactions from a specific time period are stored in the sliding window and processed at the time when the window slides.

Sliding Windows Example

Liverpool Hope University (1994

Dual Support Apriori for Temporal data (DSAT)

- Novel technique for discovering Jumping Emerging Patterns
- Mines time series data using a sliding window technique
- Utilizes the entire "data space" by avoiding itemsets borders with a constrained search space
- Avoids the computational overhead by exploiting previously mined time stamped data
- Discovers all JEPs, as in "naïve" approaches but utilises less memory and scales linearly with large datasets

Dual support mechanism

- Each itemset holds two support counts called
 - Supp₁
 - supp₂
- supp₁ holds the support counts of itemsets in the "oldest" data segment that disappears whenever the window "slides"
- supp₂ holds support counts for itemsets in the overlap between two windows and the recently added data segment.

JEPs with dual support framework

DSAT Benefits

- The dual support mechanism utilises the already discovered frequent itemsets from the previous windows and avoids re-calculating support counts for all itemsets that exist in the overlapped datasets between two windows
- It only required databases access for the most resent segment, thus
 - less IO operations
 - less computation cost and
 - less memory utilization.

The DSAT Algorithm

- Dual Support Apriori Temporal (DSAT) algorithm comprises of two major steps:
 - Apply Apriori to produce a set of frequent itemsets using the sliding window approach.
 - Process and generate a set of JEPs such that the interestingness threshold (Growth Rate) is above some user specified threshold.

(Detail provided in paper)

Evaluation

- DSAT algorithm is evaluated with different datasets order to asses the
 - quality
 - efficiency and
 - effectiveness
- Datasets (server logs, point of sale, customer, synthetic)
 - Real and synthetic
 - Sparse and dense
 - Binary and quantitative

Experiments

- DSAT Performance
 - Comparisons with Apriori
 - Effect of varying data size
 - Effect of varying support threshold
 - Temporal effects of varying windows
 - Temporal effects of varying threshold
- Trend analysis example

Conclusions

- DSAT, a novel approach for
 - efficiently extracting JEPs
 - using sliding window
 - coupled with dual support mechanism
- Addressed issues in discovering JEPs
- Advantages of the framework:
 - less memory utilization
 - limited IO
 - fewer computations

