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Abstract. Zero-one data is frequently encountered in the field of data
mining. A banded pattern in zero-one data is one where the attributes
(columns) and records (rows) are organized in such a way that the “ones”
are arranged along the leading diagonal. The significance is that rearrang-
ing zero-one data so as to feature bandedness enhances the operation of
some data mining algorithms that work with zero-one data. The fact
that a dataset features bhanding may also be of interest in its own right
with respect to various application domains. In this paper an effective
banding algorithm is presented designed to reveal banding in 2D data by
rearranging the ordering of columns and rows. The challenge is the large
number of potential row and column permutations. To address this issue
a column and row scoring mechanism is proposed that allows columns
and rows to be ordered so as to reveal bandedness without the need to
consider large numbers of permutations. This mechanism has been in-
corporated into the Banded Pattern Mining (BPM) algorithm proposed
in this paper. The operation of BPM is fully discussed. A Complete
evaluation of the BPM algorithm is also presented clearly indicating the
advantages offered by BPM with respect to a number of competitor al-
gorithms in the context of a collection of UCI Datasets.
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1 Introduction

Many data sets take the form of a n x m two dimensional, binary (“zero-one”),
matrix whereby a one indicates the presence of some attribute and a zero its
absence with respect to a particular record. More formally if we consider a data
set of abtributes A = {a1,a2,...,an} with the value set {0,1}, and a set of
records B = {ry,rs,...,7,} such that each record is some subset of A, then
we have a binary valued, zero-one, data set. Many application domains exist
where zero-one data is fypically found, examples include: the field of information
retrieval [5], bioinformatics and computational biology (genes, probe mappings)
[3].[18] and paleontology (sites and species occurrences) [4], [10].



Of note with respect to this paper is the field of data mining, especially
frequent pattern mining [1, 2, 8] where it is necessary to process large collections
of zero-one data stored in the form of a set of feature vectors (drawn from a vector
space model of the data). Although outside the scope of this paper, banding will
also have benefits with respect to non-binary data. For example in the context
of co-clustering algorithms where the objective is to simultaneously cluster the
rows and columns in 2D data set (see for example the work presented in [12] and
[16].

A zero-one matrix is fully banded if both the columns and rows can be
presented in such a manner that the “ones” are arranged along the leading
diagonal as illustrated in Figure 1. In practice data can typically not be perfectly
banded, but in many cages some form of banding can be achieved.
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Fig. 1. Banding Example: (a) raw data (b) rearrangement of columns and rows to
reveal a banding

While the concept of banded matrices hag its origins in numerical analysis,
it has been studied within the data mining community. The benefits of banding
may be summarized as follows:

1. The fact that a zero-one data set can be banded is interesting in its own right
as it is indicative of the existence of a relationship between the columns and
rows, for example between records and certain attribute values (assuming
rows equate to records and columns to attribute values).

2. Working with banded data is seen as preferable from a computational point
of view as the computational cost involved in performing certain operations
falls significantly for banded matrices, often leading to significant savings
in terms of processing time [9]. One example where this is the case is the
use of affinity matrices in spectral clustering [15], another example is where
adjacency matrices are used in the context of graph mining [13]. A third
example is in the context of co-clustering algorithms [12] and [16].

3. Related to 2 above, working with banded patterns requires less storage.
When a matrix is banded only the non-zero diagonal need to be stored. Thus,
for the banded storage schemes the amount of memory required to store the
madtrix is directly proportional to the bandwidth. Therefore, finding a row-
column ordering that minimizes the bandwidth is significant with respect
to reducing storage space and consequently results in algorithmic speed up
[17].



The main issue with the identification of banding in data is the large number
of permutations that need to be considered. In this paper we present an approach
whereby bandedness in data can be revealed using a scoring mechanism thus
avoiding the need to consider permutations. This concept has been built into
the Banded Pattern Mining (BPM) algorithm; the central contribution of this
paper. This differs Minimum Banding Augmentation (MBA) algorithm proposed
in [14], see above, which allowed for the discovery of banded structures in binary
matrices by assuming a fixed column permutation.

The rest of this paper is organized as follows. Section 2 disuss related work.
A formalism for the banded pattern problem is then presented in Section 3. This
is followed, in Section 4, with an overview of the proposed scoring mechanism.
Section 5 presents the BPM Algorithm whilst Section 6 provides a worked exam-
ple illustrating the proposed approach. The evaluation of the BPM algorithms
is then reported in Section 7; and finally, in Section 8, some conclusions are
presented.

2 Related Work

The property of bandedness with respect to data analysis was first studied by
Gemma et al. [11]. Where the minimum banding problem was addressed by
computing “how far” a 2-D data matrix (data set) was away from being banded.
The authors in [11] define the banding problem as: given a binary matrix M, find
the minimum number of Os entries that needs to be modified into 1s entries and
the minimum number of 1s entries that needs to be modified into Os entries so
that M becomes fully banded. In [11], the authors use the principle of assuming
“a fixed column permutation” on a given Matrix M. The basic idea is to solve
optimally the consecutive one property on the permuted matrix M and then
resolve Sperner conflicts between each row of the permuted matrix M, by going
through all the extra rows and making them consecutives. While it can be argued
that the fixed column permutation assumption is not a very realistic assumption
with respect to many real world situations, heuristical methods were proposed
in [11] to determine a suitable fixed column permutation.

The current state of the art algorithm is the MBA algorithm [14] which also
adopts the fixed column permutation assumption. The MBA algorithm focuses
on minimizing the distance of non-zero entries from the main diagonal of the ma-
trix by reordering the original matrix. The MBA algorithm operates by “flipping
zero entries (0s) into one entries (1s) and vice versa to identify a banding.

Another Strategy lor transposing a zero-one matrix is the Barycentric (BO)
algorithm that was previously used to draw graphs [20] to seriate paleontological
data [7], and more recently used to reorder binary matrices [19]. In essence, the
Barycentric algorithm finds permutations for both rows and columns such that
1s are as close to each other as possible. It is based on the Barycentric measure,
which is the average position of ls in a row/column. The algorithm first com-
putes the barycenter for all rows, then orders the rows from smallest to largest,



transposes the matrix accordingly and then iterates again until convergence is
reached.

Given the above the MBA and BC algorithms are the two exemplar band-
ing algorithms with which the operation of the proposed BPM algorithm was
compared and evaluated as discussed later in this paper (see Section 7).

3 Problem Definition

A binary matrix is a matrix with entries {0,1}. Let A be an nxm binary matrix
comprising rows {1, 2, ...,n} and columns {1,2,...,m}. We indicate a particular
row ¢ using row; (1 <4 < n), a particular column j using col; (1<j<m)anda
particular element uging a;;. We denote the set of ‘1’ valued elements associated
with row i using R, R; = {r|Vas; € row;, a;; = 1}. Similarly the set of ‘1’ valued
elements associated with column j using C;, C; = {c|Vay; € colj,ay; = 1}. (It
may eagse understanding to note that C; is sometimes referred to as a Transaction
ID list or & TID list, a concept well established in transaction rule mining [1, 2]).
A zero-one maftrix A can be “perfectly banded” if there exist a permutation of
columns {1,2,...,m} and rows {1,2,...,n} such that: (i) for every element in
C; the 1 values occur consecutively at row indexes {ix, 541,542, - .} and the
“starting index” for C; is less than or equal to the starting index for 'y 1; and
(ii) for every element in R; the 1 values occur congecutively at column indexes
{dks Gb+1, Jirzs - - .+ and the starting index for R; is less than or equal to the
starting index for f;41.

4 The Banding Score Mechanisms

The discovery of the presence of banding in zero-one matrices requires the rear-
rangement of the columns and rows in the matrix so as to “reveal” a banding (or
al least an approximate banding il no perfect banding exists). As noted above
the discovery of banded patterns in zero-one data requires some mechanism for
automatically determining whether one potential configuration features a “bet-
ter” banding (according to the above definition) than some other configuration.
The idea presented in this paper is to use the concept of “banding scores” that
reflect the relative position of each “one” value both horizontally and vertically.
Consider the perfect banding given in Figure 2(a) where we have three records
and an attribute set {a,b, ¢}, each record features one of the attributes. We wish
to assign some kind of banding score to this configuration. We achieve this by
considering two types of banding score: (i) column scores (BSgy) and (ii) row
scores (BSpey). Both are determined in a similar manner thus the following
discussion will be focused on column score calculation.

With reference to Figure 2(a), which features a perfect banding, we wish
to assign a greater weight to locations correspending to the first column than
locations associated with the second column, and greater weight to locations
associated with the second column than the third column (etc). In real datasets
a perfect banding may not exist. However, we are interested in revealing the
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Fig. 2. Example zero-one data configurations: (a) perfect banding, and (b) an alterna-
tive banding

arrangement that is as close to a perfect banding as possible. Thus for each
column ¢ we can calculate a Column Score CS as follows (we assume that column
and row numberings start from 1):

k=|Cs|

08 = Z m—ry+1
k=1

where m is the number of rows, C; is the TID list for column ¢, and 7 is the
row index at location k in C;. Thus the column scores for the configuration in
Figure 2(a) will be:

CS84=3—-14+1=3 CSp=3-241=2 CSo=3-3+1=1

However, we would prefer it if our columns scores were normalized. Thus:

k=]

il . ke m—r;+1
s = =[G
ey m—k+1

The normalised column scores will then be:

3—1+1 3 3—-2+1 2
A 3 3 B 3 3
p BB
GS=— = _=10.33
¢ 3 3

We could now simply sum the individual column scores to obtain an overall
column banding score. However, this would mean that the banding score for
the configuration presented in Figure 2(a) would be equal to that for the con-
figuration presented in Figure 2(b) (which features an entirely different kind of
banding). Thus we need to weight the columns as well. Thus the final column
banding score, BS.,, should be calculated as follows:

k=m
B8, = Y CSim—k+1)
k=1

As a result the configuration in Figure 2(a) will have a score of:

BSey=1x(3—1+1)+067x(3—2+1)+033x (3—3+1)



1%3+067x24+033x1=467

The maximum normalized column score is 1, thus the maximum column band-
ing score {BSe), calculated as described above, will be 6. Consequently the
normalized banding score should be calculated as follows:

el m(m+1)/2

which means that the normalized column banding score for the configuration in
Figure 2(a) is 0.78 while that for the configuration in Figure 2(b) is 0.56; thus
the desired effect.

Considering the data set given in Figure 2 this can be configured in 6 ways.
The different configurations are illustrated in Figure 3 together with their asso-
ciated normalized column banding scores (BS!,,). From Figure 3, it can clearly
be seen that the column banding score values serve to differentiate between the
different configurations.
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Fig. 3. Permutations for A = {a,b,c}

With respect to row banding scores (BSyew) we can formulate a similar
argument. We can calculate individual Row Scores (RS) as follows:



k=|1;]
RS = Z n—cp+1
k=1

where n is the number of columns, R; is the “column ID list” for row j, and
¢y, is the column index at location £ in R;. The normalized row scoes (RS') are
then calculated as lollows:

k=| Ry|

S n—c+1
RS = &h=l Tk
';;;llelnkarl

Thus the normalized row scores for the configuration presented in in Figure 2(a)
will be:

3-1+1 3 BBl B
RSQZT*:gzl RS{,:T+Z§:0.67
3-34+1 1
RSQ:T+:§:0.33

In this case the row and column scores are identical, this is because ol the
idealized banding featured in the configuration given in Figure 2(a).
The overall row banding score {BSya) will then be given by:

k=n
BSssii— Z RS,(n—k+1)
k=1

As a result the configuration in Figure 2(a) will have a score of:

BSrow =1x(3—14+1)+067x(3—2+1)+033x(3—-3+1)

1x340.67x24033x1=467

normalizing this:

BS  _ Tkt RSi(n—k+1)
ra n(n+1)/2

The overall normalized banding Score (BS) is then calculated as follows:

_ BSei t BSiou
2

BS

The overall banding score for the configuration given in Figure 2(a) will then be
(.78 while that for the configuration given in Figure 2(b) will be 0.56.



5 Banded Pattern Mining Algorithm

From the above it was noted that to identify the “best” banding we need to
maximize the banding score (BS). In this section the Banded Pattern Mining
(BPM) algorithm is presented. The BPM algorithm was designed to identify
a column and row configuration that serves to maximize BS. The algorithm
proceeds in an iterative manner, on each iteration it sequentially rearranges the
columns and rows according to their individual column and row scores (C'S and
ItS). The process ig continued until a maximum value for BS is reached. The
BPM algorithm ig presented in 1. The input is a zero-one matrix measuring mxn
(linel).The algorithm proceeds in an iterative manner until 85 is maximized or
no changes have been made; initially BS is set to 0 (line 5). On each iteration
the columns in A are first rearranged in descending order of BS!, ; to produce a
new matrix A’ (lines 8-15), and then the rows in A’ are rearranged in descending
order of BS!,,,, to produce a new matrix A” (lines 17-24). The normalized column
and row banding scores are calculated (lines 16 and 25 respectively), and then a
new banding score newBS is determined (line 26). If newBS is greater than the
previously recorded normalized banding score we continue, if not we exit with
matrix A as processed on the previous iteration. Thus if no changes (line 33) are
made we also exit.

A disadvantage of the banding score calculation mechanism, as described
above, might be that sparse data sets will generate very low banding scores as
the normalization is conducted assuming a column and row score of one for every
column and row. In some cases this might make it difficult to conduct compar-
isons depending on the precision of the numeric types used when implementing
the above.

6 Worked Example

To illustrate the operation of the BPM algorithm, as described in the foregoing
section, a worked example is presented in this section using the 5 x 5 input
matrix shown in Figure 4. We commence, on the first iteration, by calculating
the normalized column scores: €S = 0.7500, CSy = 0.7500, CS; = 0.8333,
C8p = 0.5000 and CSy = 0.9167. Using this set of scores the columns are
rearranged to produce the matrix A’ as shown in Pigure 5. The normalized
column banding score is now BS. , = 0.7444. Next we calculate the normalized
row scores: RS| = 1.0000, RS} = 0.9167, RSy = 0.7500, RS} = 0.7500 and
RSL = 0.5000. Using this set of scores the rows are rearranged to produce the
matrix A” as shown in Figure 6. The normalized row banding score is now

BS! ., = 0.8111. The normalized banding score after this first iteration is then:

_ B8t By _ 0T H 08I, oo

BS 5 5

On the second iteration we repeat the process. The normalized column band-
ing scores are now: C'SE = 1.0000, C'S;, = 0.9167, €Sy = 0.6667, CSy = 0.6667



Algorithm 1 The BPM Algorithm

1: Input A, a zero-one malrix measuring n x m

2: Output the maftrix A rearranged so that the columns and rows serve to maximize

BS

3: Column ordering = {1 ... m}
4: Row ordering = {1 ...n}
5 BS+0
6: loop
7.
8
9

change + false
CS’ = empty set of column scores for columns 1 to m
for all j € {1...m} do

10: 8} + Normalized column score for column j
11:  end for

12: A’ < matrix A rearranged with columns in descending ordered as per C'S’
13:  if (A’ # A) then

14: change + true

15:  end if

16:  BS.,, + Normalized column banding score

17: RS’ = empty set of row scores for row 1 to n
18 forallie {1...n} do

19: R.S; + Normalized row score for row i

20:  end for

21: A" + matrix A’ rearranged with rows in descending ordered as per RS’
92:  if (A" # A') then

28 change < true
24:  end if
25:  BSi,w + Normalized row banding score

26: mewBS + BS;LZHS;"“ {Normalized Banding Score}
27:  if (newBS > BS) then

28: BS + newBS

29: A A

30:  else

31: Exit with A

32:  endif

33:  if (—change) then

34 Exit with A

35:  end if

36: end loop
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and C'S}, = 0.5000; with this set of scores the columns remain unchanged.I'he
overall normalized column banding score is BS/ ; = 0.8334 (previously this was
0.7444). The normalized row banding scores are now: RS] = 1.0000, RS} =
0.9167, RS; = 0.6667, RSf = 0.6667 and RSL = 0.5000. Again, with this
set of scores the rows remain unchanged, thus produce the_same matrix A"
as was shown in Figure 6. The overall normalized row banding score is now
BS!.., = 0.8334 (was 0.8111). The normalized banding score after this second
iteration is now:

~ BS!,+ BS],, 083344 0.8334

= = 0.8334
2 2

BS

On the previous iteration it was 0.7776, however no changes have been made on
the second iteration so the algorithm terminates.

7 Ewvaluation

"To evaluate the BPM algorithm, its operation was compared with the established
MBA and BC algorithms, two exemplar algorithms illustrative of alternative ap-
proaches to identifying banding in zero-one data as described on Section 2. For
the evaluation, eight data sets taken from the UCI machine learning data repos-
itory [6] were used, which featured nineteen columns (attributes) or more. The
first set of experiments, reported in sub-section 7.1 below, considered the effi-
ciency of the BPM algorithm in comparison with the MBA and BC algorithms.
The second set of experiments (Section 7.2) considered the effectiveness of the
BPM algorithm, again in comparison with the MBA and BC algorithms. The
third set of experiments, reported in sub-section 7.3 below, considered the effec-
tiveness of banding with respect to a Irequent pattern mining scenario,

7.1 Efficiency

To determine the efficiency of the proposed BPM algorithm with respect to the
MBA and BC algorithms, and with respect to the selected data sets, we recorded
the number of iterations and run time required to maximize the banding score
BS in each case. The data sets were normalized and discretized using the LUCS-
KDD ARM DN Software! to produce the desired zero-one data sets (continuous

Y http:/ /www.cse.liv.ac.uk/~/frans/KDD/Software/LUCS_KDD_DN_ARM.



values were ranged using a maximum of five ranges). Table 1 shows the results
obtained. The table presents the run-time and the final BS value obtained in
each case. The table also records the number of columns (after discretization)
and the number of rows. From the table it can be observed that there is a
clear correlation between the number of rows in the dataset and run time. For
example the largest dataset, Annealing, required considerably less processing
time to identify a banding using BPM than when using either MBA and BC.
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— 0.8404) — 0.7806) dataset (BS = 0.7796)

7.2 Effectiveness With Respect to Banding Score

Note that, unsurprisingly, it was not possible to identify a perfect banding with
respect to any of the UCT data sets. However, in terms ol banding score, Table
1 clearly shows that the proposed BPM algorithm outperforms the previously
proposed MBA and BC algorithms (best scores highlighted using bold font).
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Figures 7, 8, 9 and 10, 11, 12 show the bandings obtained using the Iris and Wine
data sets using the BPM, MBA and BC algorithms respectively. Inspection of
these Figures indicates that a banding can be identified in all cases. However,
from inspection of the figures it is suggested that the bandings produced using
the proposed BPM algorithm are better. For example considering the banding
produced when the MBA algorithm is applied to the Wine dataset (Figure 11)
the resulting banding includes “1”s in the top-right and bottom-left corners while
the BPM algorithm does not (it leatures a smaller bandwidth). When the BC
algorithm is applied to the Wine dataset (Figure 12) the banding is less dense
than in the case of the BPM algorithm. Similar observations can be made with

respect to the Iris data set.

7.3 Effectiveness With Respect to Frequent Pattern Mining

As already noted earlier in this paper banding has application with respect to
increasing the efficiency of algorithms that use zero-one matrices or tabular in-



Table 1. Efficiency Experimental Results (best results presented in bold font), BS =
Banding Score, RT = Run time (secs.)

#| 4| BPM| MBA BC| BPM|MBA| BC
Datasets Rec s|Cols BS BS BS| RT| RT| RT
annealing 898| 73(0.8026|0.7305(0.7374|0.150]0.260{0.840
heart 303 52/0.8B062|0.7785(0.7224/0.050(0.160/0.170
horsecolic 368 85/0.8152|0.6992|0.7425|0.070]0.200|0.250
lympography| 148| 59(0.8365(0.7430(0.7711|0.030/0.140(0.110

wine 178| 68|0.7993|0.7123(0.7021|0.040|0.150|0.110
hepatitis 155 56|0.8393(0.7403)0.7545|0.050|0.150(0.090
iris 150| 19(0.8404/(0.8205(0.7516|0.020(0.080(0.060
700 101| 42|0.8634|0.7806(0.7796|0.020|0.100(0.050

formation stored in the form of 2D data storage structures. One example is
algorithms that use N x N aflinity matrices, such as spectral clustering algo-
rithms [15], to identify communities in networks (where N is the number of
network nods). Another example is Irequent Itemset Mining (FIM) algorithms
[L,2] where it is necessary to process large collections of zero-one data stored
in the form of a set of feature vectors (drawn from a vector space model of
the data). To test the effectiveness of banding with respect to such algorithms a
FIM algorithm was applied to the banded data sets produced using the proposed
BPM and the established MBA algorithm as a result of the experiments reported
in Sub-section 7.1 above. More specifically the Total From Partial (TFP) algo-
rithm [8] was used, but any alternative FIM algorithm would equally well have
sufficed. The results are presented in Tables 2 and 3 (a FIM support threshold,
o, of 2% was used). From the tables it can be seen that FIM is always much
more efficient when using both BPM and MBA banded data than when using
non banded data if we do not include the time to conduct the banding. If we
include the banding time, in 8 out of the 12 cases for BPM and 4 out of the 12
cases for MBA it is still more efficient.

8 Conclusions

In this paper the authors have described an approach to identifying bandings
in zero-one data using the concept of banding scores. The idea is o iteratively
rearrange the columns and rows in a given zero-one maftrix, according to nor-
malized column (C'S’) and row (RS’) scores until an overall banding score BS is
maximized or no more changes can be made. These ideas have been incorporated
into the Banded Pattern Mining (BPM) algorithm which was also described and
illustrated. The BPM algorithm was evaluated by comparing its operation with
the established MBA and BC banding algorithms using eight data sets taken
from the UCI machine learning repository. The reported evaluation established
that the proposed BPM approach could identify banding in zero-one data in a
more effective manner (in terms of Banding score and run time) than in the



Table 2. FIM runtime with and without banding with BPM (o = 2%), best results
highlighted in bold font

Datasets #Rows|# Cols|Banding| FIM time ()| Total FIM time (s)

Time(s)|with Banding without Banding
adult 48842 97| 346.740 2.274( 349.014 5.827
anneal 898 73 0.150 0.736| 0.086 2.889
chessKRvl 28056 58| 95.370 0.082| 95.452 0.171
heart 303 52 0.050 0.294( 0.344 0.387
hepatitis 155 56 0.030 0.055( 0.085 22.416
horseColic 368 85 0.070 0.899| 0.969 1.242
letRecog 20000] 106 42.420 3.004| 45424 6.763
lympography 148 5% 0.030 7.997| 8.022 12.658
mushroom 8124 90 14.400 874.104|888.504 1232.740
penDigits 10992 89| 21.940 2.107 24.047 2.725
waveForm 5000, 101 3.030 119.220(122.250 174.864
wine 178 68 0.010 0.155| 0.165 0.169

Table 3. FIM runtime with and without banding with MBA (o = 2%)

Datasets #Rows|#Cols|Banding| FIM time (s)] Total| FIM time (s)

Time(s)|with Banding without Banding
adult 48842 97| 370.942 10.525| 381.467 5.827
anneal 898 73 0.260 1.733| 1.993 2.889
chessKRvk 28056 58| 97.767 0.075| 97.842 0.171
heart 303 52|  0.160 0.461 0.621 0.387
hepatitis 155 56|  0.150 19.104| 19.254 22.416
horseColic 268 85 0.200 2.134 2.334 1.242
letRecog 20000 106 43.480 6.221| 49.701 6.763
lympography 148 59 0.140 11.187| 11.329 12.658
mushroom 8124 90| 16.304 1595.949/1612.253 1232.740
penDigits 10992 89| 22.002 2.781| 24.733 2.725
wavelForm 5000f 101 3.135 125.624(128.759 174.864
wine 178 68| 0.150 0.211 0.361 0.169

case of the MBA and BC comparator algorithms. The reported evaluation also
confirmed that, ab least in the context of FIM, efliciency gains can be realized
using the banding concept. For future work the authors intend to extend their
research on banding to address firstly banding in the context of 3D volumetric
data, and then in the context of N dimensional data. The authors have been
greatly encouraged by the results produced so far as presented in this paper.
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