
Rule Learning with Negation for Text
Classification

Stephanie Chua and Frans Coenen

Department of Computer Science,
University of Liverpool, Ashton Building,
Ashton Street, L69 3BX Liverpool, UK.

Email: {s.chua,coenen}@liverpool.ac.uk

Abstract. Classification rule generators that have the potential to in-
clude negated features in their antecedents are generally acknowledged to
generate rules that have greater discriminating power than rules without
negation. This can be achieved by including the negation of all features as
part of the input. However, this is only viable if the number of features is
relatively small. There are many applications where this is not the case,
for example text classification. Given a large number of features, alterna-
tive strategies for including negated features in rules are desirable. This
paper explores a number of strategies whereby this can be achieved in
the context of inductive rule learning. Eight different strategies are pro-
posed and evaluated by comparison with JRip, NaiveBayes and SMO.
The reported results demonstrate that rules with negation produced a
better classifier and that our rule learning mechanism outperform JRip
and NaiveBayes and is competitive with SMO.

1 Introduction

Text classification is concerned with the allocation of documents to pre-defined
classes according to patterns extracted from a set of labelled training documents.
Originally text classification was conducted manually by reading the documents
and deciding which “class” they should be assigned to. As technology advanced,
expert systems were built, using manually constructed rules to classify docu-
ments. One such system was the CONSTRUE system [11] built by the Carnegie
Group for the Reuters news agency. However, due to the large increase in digital
documents, this method of manual rule construction by experts has become in-
creasingly expensive and consequently, increasingly infeasible. Machine learning
methods have thus become a popular approach to text classification.

Many machine learning methods are described in the literature for text clas-
sification. Among them are decision trees [12, 14], nearest neighbour methods
[22], Support Vector Machines (SVM) [13], probabilistic Bayesian models [17,
22], and neural networks [6]. The technique of interest with respect to this paper
is inductive rule learning (IRL) [2, 5]. What all of these methods have in com-
mon is that they are used to build a classifier, which can then be used to classify
new and unseen records. The generated classifier can be expressed in a number



2 Stephanie Chua, Frans Coenen

of ways; IRL results in what is known as a rule-based classifier. The advantage
of rule-based classifiers over other representations is that they are easily inter-
pretable by humans. In the context of rule-based classifiers, a rule is represented
in the following form:

condition⇒ conclusion

where the condition consists of a conjunction of features that occur together,
and the conclusion is the resulting class label associated with the condition. For
example, if a, b and c are features that appear in documents within a dataset,
and x is a class label, the rule a∧ b∧ c⇒ x is interpreted as “if a, b, and c occur
together in a given document, then classify the document as belonging to the
class x”.

Typically, a classifier built using IRL comprises rules that contain only pos-
itive features. Rules with negation come in the form of a ∧ b ∧ ¬c ⇒ x and
would be interpreted as, “if a and b occur together in a given document and
c does not, then classify the document as belonging to class x”. Negation can
be included (and in some cases is included) by generating the negation of every
feature in the feature space. However, this will substantially increase the size
of the input feature space (in the case of binary-valued feature sets, this will
double the number of features). Increasing the size of the feature space makes
very little difference given a small numbers of features. However, in the event
of having a large number of features, this is not a realistic proposition. This is
especially the case if we recall that the number of potential antecedents is 2n−1
(where n is the number of features) and that the complexity of IRL systems
typically increases exponentially with the size of n. One category of application
that involves a large number of features, and the focus of the work described in
this paper, is text classification. Documents for text classification are typically
represented using feature vectors, where each vector is some subset of a bag-of-
words (or bag-of-phrases). The bag-of-words representation typically comprises
many keywords; therefore, including the negation of these words would double
the number. A mechanism whereby negation can be included in IRL, without
generating all potential negated features, is therefore desirable. This is then the
motivation for the work described in this paper.

The desire to include negation in IRL requires the resolution of two issues.
The first is the process for identifying appropriate negated features. The second
is the decision making process when refining a rule, to decide whether to include
a negated feature or a positive feature. There are a number of potential solutions
to these issues and these are considered and compared in this paper. The rest of
this paper is organized as follows. Section 2 describes some related work on rule
learning. Section 3 discusses our proposed mechanism for inductive rule learning
with negation. Section 4 considers the negated feature identification issue, and
Section 5, the issue of whether to refine a rule with a negated feature or a positive
feature. The datasets used are described in Section 6. Section 7 describes the
evaluation results. Section 8 concludes the paper.



Rule Learning with Negation for Text Classification 3

2 Previous Work

Reported IRL algorithms that have been directed at text classification include:
Reduced Error Pruning (REP) [4], Incremental Reduced Error Pruning (IREP)
[7], Repeated Incremental Pruning to Produce Error Reduction (RIPPER) [5]
and Swap-1 [20]. These algorithms do not explicitly advocate any usage of
negated features in the learning of classification rules1. Instead, these meth-
ods employed a two-stage process where rules are first learnt and then pruned
to improve the effectiveness of the ruleset. All the above systems make use of
the covering algorithm for rule learning. Rules are usually generated using the
sequential covering algorithm where rules are “learned” (sequentially) using a set
of training examples. The “covered” examples are then removed and the process
is repeated until all the examples are covered.

Rullo et al. [18] proposed a system called Olex that used a single stage rule
learning process without pruning. This system is of interest in the context of the
work described here because they investigated using both positive and negative
features for rule learning. They proposed the paradigm of “one positive term,
more negative terms”, where each rule generated is a conjunction of a single pos-
itive feature with none or more negative features. While they reported positive
results in the use of negation, they highlighted that their approach was not able
to express co-occurrences, based on feature dependencies, as a result of allowing
exactly one positive feature in the rule antecedent [18]. Thus, Olex is unable to
generate rules of the form a ∧ b ∧ ¬c⇒ x.

A number of alternative methods for incorporating negated features into
text classification have been reported in the literature, though not all of these
methods are intended for rule-based learning. Antonie and Zäıane [1] and Wu
et al. [21] used both positive and negative association rules in their work on
classification association rule mining. Galvotti et al. [8] used a novel variant
of k-NN with negative evidence. Zheng and Srihari [23] combined positive and
negative features in their feature selection method for text classification and
used a Naive Bayes classifier. Baralis and Garza [3] used negated words in their
associative classifier for text classification. The use of negation in previous work
has served to provide empirical evidence of the effectiveness of the incorporation
of negated features for text classification, thus providing further motivation for
the investigation described in this paper.

3 Inductive Rule Learning with Negation

For the described investigation, a rule learning mechanism founded on the se-
quential covering algorithm was adopted. A high level view of the algorithm
is presented in Table 1. For each class c in the given set of classes C, rules

1 RIPPER appears to generate rules with negation by including all possible values for
each feature during rule learning. Therefore, the case of binary feature c with the
value 0 (c=0) would indicate the absence of c, thus, a rule a = 1∧ b = 1∧ c = 0 ⇒ x
would be interpreted in a similar manner to that described in Section 1.



4 Stephanie Chua, Frans Coenen

are learned sequentially one at a time based on training examples using the
LearnOneRule method. The examples “covered” by a rule learnt are then re-
moved and the process is repeated until some stopping condition is met. The two
possible stopping conditions are: (i) there are no more uncovered documents in
the document set, and (ii) there are no more unused features in the feature set.
Each rule generated is added to the ruleset “sofar”. In the method PostPro-
cess, post-processing is applied to the ruleset to remove rules, with a Laplace
estimation accuracy of less than a pre-defined threshold, which are deemed to
be ineffective.

When a rule covers both positive and negative documents, the rule has to
be refined in order to separate the documents with different class labels. In this
context, positive documents are documents in the training set that are correctly
classified by the current rule while negative documents are documents that are
incorrectly classified. Generating rules without negation is straightforward; fea-
tures that occur together in a positive document are used as conjunctions in a
rule to separate the positive and negative documents. On the other hand, gener-
ating rules with negation requires the identification of the feature to be negated.
This is one of the issues to be addressed in this investigation. Another issue
concerns the strategies to refine a rule. When a rule can be refined with both
positive and negative features, would it be better to refine the rule with a posi-
tive feature, thus generating a rule without negation, or to refine the rule with
a negated feature, thus generating a rule with negation? Proposed solutions for
addressing these two issues are presented in Sections 4 and 5.

Table 1. Pseudocode for the adopted rule learning mechanism founded on the sequen-
tial covering algorithm (adapted from [10])

Algorithm: Learn a set of IF-THEN rules for classification.

Input:
D, a dataset of class-labelled documents;
Feature set, the set of features for class c;
Output: A set of IF-THEN rules.
Method:
Rule set = { }; //initial set of rules learned is empty

for each class c do
repeat

Rule = LearnOneRule(Feature set, D, c);
remove documents covered by Rule from D;
Rule set = Rule set + Rule;

until stopping condition;
endfor
PostProcess(Rule set);
return Rule set;



Rule Learning with Negation for Text Classification 5

4 Identifying Features

The goodness or discriminative power of a feature with respect to a class is
usually evaluated using some statistical measure. In text classification, measures
like chi-square (χ2) and information gain (IG) are commonly used to statisti-
cally evaluate features in the context of feature selection. The χ2/IG value of a
feature is computed with respect to a specific class. The features are ordered in
descending order of their χ2/IG values and a subset of these ordered features
are selected for rule learning. There are two strategies for feature selection: local
and global. In local feature selection, ordered features local to a specific class
are selected for learning a classifier for that specific class. In contrast, global
feature selection involves the selection of features from across all classes in a
dataset. The maximum or weighted-average value of each feature’s class-specific
values can then be used for the ordering and selecting of features. In our experi-
ments, despite a rigorous reduction factor of 0.9 (using only 10% of the features),
the global feature selection method still entails very high computational power.
Therefore, we focus on using the local feature selection method.

In our proposed mechanism, during rule refinement, an appropriate feature is
selected from the search space to be added to the rule. The search space contains
features from both the positive and negative documents that are covered by the
rule. This research proposes that this search space be divided into three sub-
spaces that contain different categories of feature:

1. Unique Postive (UP). Features that only appear in positive documents.
2. Unique Negative (UN). Features that only appear in negative documents.
3. Overlap (Ov). Features that are found in both positive and negative docu-

ments.

This division allows for the effective and efficient identification of features that
can be advantageously negated for the purpose of generating rules with negation.
It should be noted that the UP, UN and Ov sub-spaces may be empty, as the
existence of these features is dependent upon the content of the documents
covered by a rule.

When refining a rule, a feature from either the UP, UN or Ov sub-spaces can
be selected to be added to a rule. If a rule is refined with a UP or Ov feature, then
a rule with no negation is generated. If a rule is refined with a UN feature, then
a rule with negation is generated. When refining a rule with a UP or UN feature,
the feature with the highest document frequency, i.e. the feature that appears
in the most covered documents, is selected. This ensures that the refined rule
will cover the maximum possible number of positive documents at every round
of refinement. When refining a rule with an Ov feature, the feature with the
highest document frequency difference (i.e. positive document frequency minus
negative document frequency) is selected. This is because an Ov feature occurs
in both positive and negative documents and the feature that appears in most
positive documents and least negative documents will result in a refined rule
that covers the maximum possible number of positive documents.



6 Stephanie Chua, Frans Coenen

5 Rule Refinement Strategies

Given the three sub-spaces, UP, UN and Ov, a total of eight strategies for rule
refinement were devised. The first three strategies were directed at utilising only
a single sub-space. The strategies were named after the sub-space used: UP, UN
and Ov. Given that a sub-space may be empty, having an empty set using the UP,
UN and Ov strategies would mean that refinement may be prematurely halted
in the absence of any features to be added. Therefore, two other strategies were
devised to address the empty sub-space problem; UP-UN-Ov and UN-UP-Ov.
These strategies use a sequence of sub-space combinations and were labelled in
the order that the sub-spaces are considered. Thus, the sequence combination
of UP-UN-Ov entails the use of UP features first. If the UP sub-space is empty,
the UN features will be considered instead, and then the Ov features, if the UN
sub-space is also empty. The UN-UP-Ov sequence combination strategy works
in a similar manner, only inter-changing the order of UP and UN. In both cases,
Ov is used last because using Ov features will always result in the coverage
of at least one negative document. In both cases, if the first sub-space is not
empty, then only the first sub-space will be used for rule refinement. This would
mean that the UP-UN-Ov sequence combination strategy may produce the same
results as the UP strategy, and similarly the UN-UP-Ov sequence combination
strategy may produce the same results as the UN strategy. The implementation
of these five strategies are straightforward and are shown in Tables 2, 3, 4, 5 and
6.

Table 2. RefineWithUP algorithm

Algorithm: RefineWithUP

Input: R, a rule that needs refinement
Output: R′, refined rule
Method:

if UPSubSpace is not empty
R′ = addUPFeature(R);

else
R′ = R;

return R′;

For each rule that needs refinement, each of the five afore-mentioned strate-
gies will generate a different final rule. The sixth proposed strategy called Best-
Strategy operates on choosing the best rule from the rules generated by the
first five strategies. The rule with the highest rule accuracy, using the Laplace
estimation, is considered the best rule. The algorithm is shown in Table 7.

A common drawback associated with the first five strategies is that on each
rule refinement round, only one type of sub-space is used. This means that in



Rule Learning with Negation for Text Classification 7

Table 3. RefineWithUN algorithm

Algorithm: RefineWithUN

Input: R, a rule that needs refinement
Output: R′, refined rule
Method:

if UNSubSpace is not empty
R′ = addUNFeature(R);

else
R′ = R;

return R′;

Table 4. RefineWithOv algorithm

Algorithm: RefineWithOv

Input: R, a rule that needs refinement
Output: R′, refined rule
Method:

if OvSubSpace is not empty
R′ = addOvFeature(R);

else
R′ = R;

return R′;

Table 5. RefineWithUP-UN-Ov algorithm

Algorithm: RefineWithUP-UN-Ov

Input: R, a rule that needs refinement
Output: R′, refined rule
Method:

if UPSubSpace is not empty
R′ = addUPFeature(R);

else if UNSubSpace is not empty
R′ = addUNFeature(R);

else if OvSubSpace is not empty
R′ = addOvFeature(R);

else
R′ = R;

return R′;



8 Stephanie Chua, Frans Coenen

Table 6. RefineWithUN-UP-Ov algorithm

Algorithm: RefineWithUN-UP-Ov

Input: R, a rule that needs refinement
Output: R′, refined rule
Method:

if UNSubSpace is not empty
R′ = addUNFeature(R);

else if UPSubSpace is not empty
R′ = addUPFeature(R);

else if OvSubSpace is not empty
R′ = addOvFeature(R);

else
R′ = R;

return R′;

Table 7. BestStrategy algorithm

Algorithm: BestStrategy

Input: R, rule that needs refinement
Output: R′, refined rule
Method: R1 = RefineWithUP(R);
R2 = RefineWithUN(R);
R3 = RefineWithOv(R);
R4 = RefineWithUP-UN-Ov(R);
R5 = RefineWithUN-UP-Ov(R);

repeat
R1 = RefineWithUP(R1);
R2 = RefineWithUN(R2);
R3 = RefineWithOv(R3);
R4 = RefineWithUP-UN-Ov(R4);
R5 = RefineWithUN-UP-Ov(R5);

until R1, R2, R3, R4, R5 do not need refinement

R′ = ChooseBestRule(R1, R2, R3, R4, R5);
return R′;



Rule Learning with Negation for Text Classification 9

every round of rule refinement, there is only one sub-space to consider. This may
result in “forcing” a rule to be refined by one particular sub-space when using
another sub-space may generate a better rule. To address this problem, a further
two strategies were devised.

The first, BestPosRule, generates two refined versions of a rule, one version
using a feature from the UP sub-space and the other using a feature from the
Ov sub-space. The better of the two versions (again using Laplace estimation
accuracy), is selected and is further refined in the same manner if required. Thus,
this strategy uses two sub-spaces in conjunction during each rule refinement
round and will only generate rules without negation.

Table 8. BestPosRule algorithm

Algorithm: BestPosRule

Input: R, a rule that needs refinement
Output: R′, refined rule
Method:

repeat
R1 = RefineWithUP(R);
R2 = RefineWithOv(R);
R = ChooseBestRule(R1, R2);

until R does not need refinement

R′ = R;
return R′;

The second, BestRule, is an extension of the BestPosRule strategy, where
a third version of the rule to be refined is generated using a feature from the
UN sub-space. Thus, this strategy uses all three sub-spaces for each round of
rule refinement and may generate rules with negation. All three rule versions
are compared and the best is selected based on the Laplace estimation accuracy.
Intuitively, using more than one sub-space in conjunction in every round of rule
refinement will generate better rules, as several versions of the rule to be refined
are generated and the best selected. Table 8 and Table 9 shows the BestPosRule
and the BestRule algorithms respectively. Table 10 summarizes all the strategies
described in this section.

6 Datasets

Two well known text classification datasets, the 20 Newsgroups [15] and Reuters-
21578 Distribution 1.0 [16] were used with respect to the evaluation reported
in this paper. The 20 Newsgroups dataset is a collection of 19,997 documents,
comprising news articles from 20 classes. There are 1,000 documents in each class



10 Stephanie Chua, Frans Coenen

Table 9. BestRule algorithm

Algorithm: BestRule

Input: R, a rule that needs refinement
Output: R′, refined rule
Method:

repeat
R1 = RefineWithUP(R);
R2 = RefineWithOv(R);
R3 = RefineWithUN(R);
R = ChooseBestRule(R1, R2, R3);

until R does not need refinement

R′ = R;
return R′;

Table 10. Summary of proposed rule refinement strategies

Strategy Sub-space used

UP UP only
UN UN only
Ov Ov only
UP-UN-Ov either UP, UN or Ov in every round of rule refinement
UN-UP-Ov either UP, UN or Ov in every round of rule refinement
BestStrategy choose the best rule from the above five strategies
BestPosRule UP and Ov in every round of rule refinement
BestRule UP, UN and Ov in every round of rule refinement

with the exception of one class that contains 997 documents. In our experiments,
this dataset was split into two non-overlapping datasets (hereafter, referred to
as 20NG-A and 20NG-B), each comprising 10 classes. Therefore, 20NG-A has
10,000 documents, while 20NG-B has 9,997 documents. The classes in each split
are shown in Table 11.

The Reuters-21578 Distribution 1.0 dataset is widely used to evaluate text
classification tasks. It consists of 21,578 documents and 135 classes. In our ex-
periments for single-labelled text classification, the preparation of this dataset
followed the method suggested by Wang [19], where the top ten most pop-
ulated classes were identified and multi-labelled/non-text documents were re-
moved from each class. This leaves the dataset with only eight classes and 6,643
documents. Hereafter, this dataset is referred to as Reuters8. The classes and
number of documents associated with each, in the Reuters8 dataset are shown
in Table 12.



Rule Learning with Negation for Text Classification 11

Table 11. Class names for 20NG-A and 20NG-B datasets

20NG-A 20NG-B

alt.atheism comp.graphics
comp.sys.ibm.pc.hardware comp.os.ms-windows.misc
comp.windows.x comp.sys.mac.hardware
misc.forsale rec.autos
rec.motorcycles rec.sport.hockey
rec.sport.baseball sci.crypt
sci.electronics sci.space
sci.med soc.religion.christian
talk.politics.mideast talk.politics.guns
talk.religion.misc talk.politics.misc

Table 12. Statistics for Reuters8 dataset

Classes Num. of docs.

acq 2108
crude 444
earn 2736
grain 108
interest 216
money-fx 432
ship 174
trade 425

7 Evaluation Results

The experiments that were conducted compared the use of our proposed rule
learning mechanism and rule refinement strategies with that of JRip, NaiveBayes
and Sequential Minimal Optimization (SMO) from the Waikato Environment
for Knowledge Analysis (WEKA) machine learning workbench [9]. χ2 with a
reduction factor of 0.9 was used as a dimensionality reduction method. Our rule
learning mechanism is denoted as RL with the identifier for the different rule
refinement strategies used appended. Table 13 reports the micro-averaged F1-
measure from experiments using ten-fold cross validation, the overall average
for each method, and the standard deviation (STDN) with respect to the overall
average for the 20NG-A, 20NG-B and Reuters8 datasets. The top two best results
in each case are shown in bold.

Comparison of the rule refinement strategies demonstrated that RL + Be-
stRule is the best method. This is because RL + BestRule has the advantage
of choosing from all three sub-spaces in every round of rule refinement. RL
+ UN (rule refinement using only negative features) seems to be the worst
method. It is suggested that this is because of the structure of the rules pro-
duced by this strategy, where repeated rule refinement results in rules of the



12 Stephanie Chua, Frans Coenen

Table 13. Micro-averaged F1-measure, overall average F1-measure, and standard de-
viation (STDN) for the 20NG-A, 20NG-B and Reuters8 dataset (top two best results
shown in bold)

Method/Dataset 20NG-A 20NG-B Reuters8 Average STND

RL + UP 85.9 86.6 88.8 87.2 1.5
RL + UN 81.8 84.7 81.4 82.6 1.8
RL + Ov 84.8 85.8 81.8 84.1 2.1
RL + UP-UN-Ov 85.9 86.6 88.8 87.1 1.5
RL + UN-UP-Ov 85.6 86.8 91.5 88.0 3.1
RL + BestStrategy 85.4 86.6 92.4 88.1 3.7
RL + BestPosRule 86.0 86.4 89.1 87.2 1.7
RL + BestRule 86.6 87.4 92.4 88.8 3.1
JRip 76.0 80.8 91.8 82.9 8.1
NaiveBayes 63.5 65.6 80.4 69.8 9.2
SMO 84.8 89.2 94.8 89.6 5.0

form a ∧ ¬b ∧ ¬c ∧ ¬d ∧ ¬e⇒ x. If a dataset contains many similar documents
across all classes, where most documents include a and not b, c, d and e, then
rules of this form would result in many misclassifications. RL + UP and RL +
UP-UN-Ov produced the same results in all three datasets, suggesting that on
no occasion was the UP sub-space empty. Thus, using UP or UP-UN-Ov would
result in the same output. In all three datasets, RL + BestRule outperformed RL
+ BestPosRule. Overall, the results demonstrated that the methods that gen-
erate rules with negation perform better than the methods that generate rules
without negation. Thus, rules with negation do indeed improve the effectiveness
of text classification.

As expected, SMO produced good classification results, as support vector
machine have been shown to be one of the best methods for text classification.
SMO gave the best classification results in the 20NG-B and Reuters8 datasets,
followed by RL + BestRule. In the 20NG-A dataset, RL + BestRule produced
the best classification results. In addition, our rule learning mechanism with a
number of strategies seemed to outperform SMO in the 20NG-A dataset. The
best overall average F1-measure was obtained using SMO, however, with a rela-
tively high standard deviation. Much better standard deviations were obtained
using the RL algorithms indicating an element of consistency of operation across
the datasets. In all cases, the performance of NaiveBayes was relatively poor.
JRip did worse than our rule learning mechanism and SMO in the 20NG-A and
20NG-B datasets, but did better than NaiveBayes. In the Reuters8 dataset, JRip
performed much better than a number of our rule refinement strategies, although
RL + BestRule and RL + BestStrategy still did slightly better than JRip.



Rule Learning with Negation for Text Classification 13

8 Conclusion and Future Work

In this paper, we described an investigation into refinement strategies for induc-
ing rules with negated features. We have proposed a rule learning mechanism,
based on the covering algorithm, that uses a number of strategies for rule refine-
ment. The proposed strategies were founded on a division of the search space into
three different sub-spaces: UP, UN and Ov. These strategies enable the learning
of rules with and without negation. The reported evaluation was directed at
determining the effectiveness of rules with negated features for text classifica-
tion. Other methods for text classification, such as JRip, NaiveBayes and SMO
were also used in the comparison. The best performing rule learning mechanisms
was found to be RL + BestRule, which was shown to be better than JRip and
NaiveBayes and competitive with SMO. The results indicate that by including
negation in IRL, a better text classifier can be built. Future work will look into
extending our research from using single keywords to the use of phrases. The use
of phrases within the text representation vector is motivated by the potential
benefit of preserving semantic information that is not present in the use of sin-
gle keywords. Furthermore, we intend to investigate the use of negated phrases,
as well as, the combination of keywords and phrases and their negation in text
classification.

References

1. Antonie, M-L., Zäıane, O. R.: An associative classifier based on positive and nega-
tive rules. In: Proceedings of the 9th ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery, pp. 64-69 (2004)

2. Apté, C., Damerau, F. J., Weiss, S. M.: Automated learning of decision rules for
text categorization. In: ACM Transactions on Information Systems 12, 233-251
(1994)

3. Baralis, E., Garza, P.: Associative text categorization exploiting negated words. In:
Proceedings of the ACM Symposium on Applied Computing, pp.530-535 (2006)

4. Brunk, C., Pazzani, M.: Noise-tolerant relational concept learning algorithms. In:
Proceedings of the 8th International Workshop on Machine Learning, Morgan
Kaufmann (1991)

5. Cohen, W.: Fast effective rule induction. In: Proceedings of the 12th International
Conference on Machine Learning (ICML), pp. 115-123, Morgan Kaufmann (1995)

6. Crestani, F.: Learning strategies for an adaptive information retrieval system using
neural networks. In: Proceedings of the IEEE International Conference on Neural
Networks (1993)

7. Fürnkranz, J., Widmer, G.: Incremental reduced error pruning. In: Proceedings of
the 11th International Conference on Machine Learning (ICML), Morgan Kauf-
mann (1994)

8. Galavotti, L., Sebastiani, F., Simi, M.: Experiments on the use of feature selection
and negative evidence in automated text categorization. In: Proceedings of the 4th
European Conference on Research and Advanced Technology for Digital Libraries,
pp. 59-68 (2000)



14 Stephanie Chua, Frans Coenen

9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I. H.:
The WEKA data mining software: An update. In: SIGKDD Explorations 11 10-18
(2009)

10. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
(2006)

11. Hayes, P. J., Weinstein, S. P.: CONSTRUE/TIS: A system for content-based in-
dexing of a database of news stories. In: Proceedings of the 2nd Conference on
Innovative Applications of Artificial Intelligence (IAAI), pp. 49-66, AAAI Press
(1990)

12. Holmes, G., Trigg, L.: A diagnostic tool for tree based supervised classification
learning algorithms. In: Proceedings of the 6th International Conference on Neural
Information Processing (ICONIP), pp. 514-519 (1999)

13. Joachims, T.: Text categorization with support vector machines: Learning with
many relevant features. In: Proceedings of the 10th European Conference on Ma-
chine Learning (ECML), pp. 137-142 (1998)

14. Johnson, D. E., Oles, F. J., Zhang, T., Goetz, T.: A decision-tree-based symbolic
rule induction system for text categorization. In: The IBM Systems Journal, Special
Issue on AI 41 428-437 (2002)

15. Lang, K.: Newsweeder: Learning to filter netnews. In: Proceedings of the 12th
International Conference on Machine Learning, pp. 331-339 (1995)

16. Lewis, D. D.: Reuters-21578 text categorization test collection, Distribution 1.0,
README file (v 1.3). Available at http://www.daviddlewis.com/resources/

testcollections/reuters21578/readme.txt (2004)
17. McCallum, A., Nigam, K.: A comparison of event model for naive Bayes text

classification. In: Proceedings of the AAAI-98 Workshop on Learning for Text
Categorization, pp. 41-48 (1998)

18. Rullo, P., Cumbo, C., Policicchio, V. L.: Learning rules with negation for text cat-
egorization. In: Proceedings of the 22nd ACM Symposium on Applied Computing,
pp. 409-416. ACM (2007)

19. Wang, Y. J.: Language-independent pre-processing of large documentbases for text
classifcation. PhD thesis (2007)

20. Weiss, S. M., Indurkhya, N.: Optimized rule induction. In: IEEE Expert: Intelligent
Systems and Their Applications 8 61-69 (1993)

21. Wu, Z., Zhang, C., Zhang, S.: Mining both positive and negative association rules.
In: Proceedings of the 19th International Conference on Machine Learning, pp.
658-665 (2002)

22. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proceed-
ings of the 22nd ACM International Conference on Research and Development in
Information Retrieval, pp. 42-49 (1999)

23. Zheng, Z., Srihari, R.: Optimally combining positive and negative features for
text categorization. In: Proceedings of the International Conference on Machine
Learning (ICML), Workshop on Learning from Imbalanced Datasets II (2003)


