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Abstract: In this paper we present the Dual Support Apriori for Temporal data 

(DSAT) algorithm. This is a novel technique for discovering Jumping Emerging 

Patterns (JEPs) from time series data using a sliding window technique. Our ap-

proach is particularly effective when performing trend analysis in order to explore 

the itemset variations over time. Our proposed framework is different from the 

previous work on JEP in that we do not rely on itemsets borders with a con-

strained search space. DSAT exploits previously mined time stamped data by us-

ing a sliding window concept, thus requiring less memory, minimum computa-

tional cost and very low dataset accesses. DSAT discovers all JEPs, as in “naïve” 

approaches, but utilises less memory and scales linearly with large datasets sets as 

demonstrated in the experimental section. 

1 Introduction 

Trend mining is a data mining technique directed at the identification of hidden 

trends in time series data. There are various approaches to trend mining, many of 

them founded on time series analysis techniques, but also other established ap-

proaches such as Association Rule Mining (ARM). ARM, in its most standard 

form, is concerned with the identification of patterns (known as frequent itemsets) 

in data within binary valued attributes. The most common framework for ARM is 

the “support-confidence” framework (Agrawal and Srikant, 1994). In this frame-

work “support” is the frequency with which an itemset appears in the input data 

and “confidence” is a measure of the reliability of the identified Association Rules 
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(ARs). An itemset is said to be frequent if its support exceeds some user defined 

support thresholds.  

In Temporal ARM the attributes in the data are time stamped in some way. One 

category of Temporal ARM is known as Emerging and Jumping Pattern (JEP) 

mining (Dong and Li, 1999). An Emerging Pattern (EP) is usually defined as an 

itemset whose support increases over time according to some “change ratio” 

threshold. A Jumping Pattern (JP) is an itemset whose support changes much more 

rapidly than that for an EP. EPs and JPs are distinguished by their change ratio 

threshold and thus for many purposes can be considered to be synonymous. The 

discovery of JEPs entails a significant computational overhead due to the large 

number of itemsets that must be identified to facilitate comparison. To avoid this 

overhead most JEP mining approaches concentrate on a subset of the potential 

frequent itemsets such as the set of maximal itemsets; that is, the itemsets that 

show the greatest negative or positive change in value. The computational cost of 

comparing all items sets across all time stamps tends to render this approach to be, 

computationally prohibitively, expensive. In this paper we present the Dual Sup-

port Apriori Temporal (DSAT) algorithm, an approach to JEP mining that utilizes 

the entire “data space”, but avoids the computational overhead, by using a sliding 

window mechanism. 

The main novelty of the proposed approach is in the adoption of a dual support 

mechanism in which each itemset holds two support counts, called 1supp  and 

2supp , that benefits: (i) efficient memory utilization, (ii) few IO overheads and 

(iii) less computation cost. Under the dual support framework 1supp  holds the 

support counts of itemsets in the “oldest” data segment that disappears whenever 

the window “slides” and 2supp holds support counts for itemsets in the overlap 

between two windows and the recently added data segment as shown in Figure 1. 

The dual support mechanism utilises the already discovered frequent itemsets 

from the previous windows and avoid re-calculating support counts for all item-

sets that exists in the overlapped datasets between two windows, this is illustrated 

in section 4. Moreover it only required databases access for the most resent seg-

ment, thus less IO operations and less memory utilization. 

The paper is organized as follows. In section 2 the related work and the prob-

lem domain are described in more detail. Section 3 provides a sequence of defini-

tions. To facilitate understanding of the dual support framework a worked exam-

ple is presented in Section 4. The DSAT algorithm, in its entirety, is then 

presented in section 5 and evaluated in section 6. 
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2 Related Work 

There are many commercial applications that produce significant amounts of 

temporal data collected and stored electronically on a daily bases, examples in-

clude: web server logs; supermarket transactional data, and network traffic. There 

are many studies directed at the efficient application of temporal forms of ARM to 

time stamped data sets (Li and Lee, 2009; Lee et al. 2003; Chang and Lee, 2004). 

The main issue in temporal ARM is the high computational cost of the processing 

of the data so as to take account of the temporal dimension. Jiang and Gruenwald 

(Jiang, 2006) compare the temporal data processing models found in temporal 

ARM, such as: Landmark, Damped and Sliding Windows and their usage depend-

ing on the application area. Jiang and Gruenwald also discus issues related to 

memory management, data structures to store frequent sets and various modified 

ARM algorithms for temporal ARM. 

One category of temporal ARM, as noted in Section 1 above, is Jumping and 

Emerging Patterns (JEPs) mining as first proposed by (Dong and Li, 1999). In 

common with many subsequent JEP algorithms Dong and Li compared maximal 

itemsets generated using a Max-Miner style of algorithm (Bayardo, 1998). A max-

imal itemset is a frequent (supported) itemset whose supersets are all infrequent 

(i.e. their support value is below the user specified support threshold). By identify-

ing only maximal itemsets all frequent itemsets can be found by virtue of the DC 

property (although only the precise support values for the maximal sets are 

known). The advantage of identifying only maximal itemsets is one of computa-

tional efficiency. This is particularly important in the context of JEP mining be-

cause of the large number of itemsets that must be identified across time stamps. 

In addition, to facilitate comparison of itemsets, a low support threshold must also 

be used hence adding to the magnitude of the problem. However, the maximal 

frequent set approach does not guarantee the identification of all JEP. 

Many JEP mining algorithms have been reported in the literature (Imberman 

and Tansel, 2004; Bailey et al. 2002; Rioult, 2004; Grandinetti et al. 2005; Tseng 

et al. 2006). Most of these algorithms adopt a maximal frequents itemset approach 

as first proposed by Dong and Li (1999). For example Tseng et al. (Tseng, 2006) 

extends the work of Dong and Li (1999) and proposed EFI-Mine (Emerging Fre-

quent Itemsets) algorithm that discovers JEPs using the technique similar to data 

streams . The main issue with these existing approaches to JEP mining is that they 

tend to use only maximal frequent itemsets to identify JEPs. Thus, although effi-

cient, they do not guarantee to find all JEPs. 

Our proposed DSAT algorithm differs from the previous work in that we con-

sider all identified frequent itemsets across time stamps. The computational over-

head that is normally associated with this approach is avoided by using the dual 

support concept together with a sliding window approach that requires less 

memory and data access than would be required otherwise. 
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3 Preliminaries 

In this section a number of formal definitions are presented to facilitate under-

standing of the rest of the paper.  Firstly it is necessary to define the concept of 

classical ARM. Given a set of items },...,,{ 21 miiiI =  and a database of transac-

tions },...,,{ 21 ntttD =  where },...,,{ 21 pi IiIiIit = , mp ≤  and IIij ∈ ; 

where IX ⊆  with XK =   is a k-itemset or simply an itemset. Let a database 

D  be a multi-set of subsets of I as shown in table 1. Each DT ∈ supports an 

itemset IX ⊆  if TX ⊆  holds. An AR is an expression YX ⇒ , where X, Y 

are itemsets and φ=∩ YX holds. Number of transactions T supporting an item 

X w.r.t D  is called the support of X , ||/|}|{|)( DTXDTXSupp ⊆∈= . 

The strength or confidence for an association rule X => Y is the ratio of the num-

ber of transactions that contain YX ∪ to the number of transactions that contain 

X, Conf (X � Y) = Supp (X U Y)/ Supp (X).  

Emerging patterns, as noted above, are itemsets whose support increases sig-

nificantly from one data set to another i.e. from iw  to 1+iw . An itemset X  is 

called an emerging pattern if the ( ) σ≥Xsupp  and ( ) δ≥XGR  where 

δσ and  are user specified support and growth rate thresholds respectively. 

Jumping patterns are the specialized case of emerging patterns where 

( ) ∞→XGR  and this is when ( ) 0, 1 →DXsupp . The growth rate of an 

itemset X  from 1D  to 2D is defined as: 


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(1) 

Time series databases contain data collected over a period of time and can be 

processed by a sliding window. Each window iw  represents some sequence of 

time stamped data },...,{ 21 wi tttw =  where it is a single time stamp. The 

amount of data contained in the window may therefore very as the window is pro-

gressed along the time series.  



A Sliding Windows based Dual Support Framework for Discovering Emerging Trends from 

Temporal Data 

Table 1. Super market database 

Tid Items  Tid Items  

T1 

T2 

T3 

T4 

A, B, C 

B, C, D, E 

B, C, E 

B, E 

D1 

T5 

T6 

T7 

T8 

A, B, C, D 

A, B, C, D 

A, B, C 

A, D, E 

D2 

 

Suppose we are given a retail dataset covering two days, 1D  and 2D  respective-

ly. The growth rate of an itemset X  from 1D  to 2D  is denoted as 

),,( 1+ii DDXGR and is defined as in (Dong and Li, 1999): 

),(

),(
)(

1

2

DXsupp

DXsupp
XGR =  (2) 

As data in different windows is un-evenly distributed, it is necessary to correct 

the above equation by multiplying it with ||/|| 21 DD , otherwise a bias will fa-

vor the EPs process for the dataset with large number of transactions as mentioned 

in (Cremilleux et al. 2003). Thus equation 1 will become: 

2

1

1

2

),(

),(
)(

D

D

DXsupp

DXsupp
XGR ×=  (3) 

Given 0>σ  as support threshold and 1>δ  as growth rate threshold, a fre-

quent pattern X is said to be an emerging pattern from 1D  to 2D  if 

( ) δ≥XGR . For the data in table 1, if we set 3=δ , then ABC is an EP and 

ABCD is a JP from 1D  to 2D  because 1),( 1 =DABCsupp  and 

3),( 2 =DABCsupp  and by using equation 2 the ( ) δ≥ABCGR , similarly 

0),( 1 =DABCDsupp  and 2),( 2 =DABCDsupp  thus 

( ) ∞→ABCDGR . But 1),( 1 =DBCDsupp  and 2),( 2 =DBCDsupp  

and by using equation 2 the ( ) δ≤BCDGR  thus neither JP nor EP. 

In the proposed dual support framework for discovering JEPs, transactions in 

each window are logically partitioned into three segments as },,{ 321 pppwi =  

except 1w because it only consists },{ 211 ppw =  where ii Dp ≤  as shown in 

figure 1.  
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1p  holds data that disappears in the next increment, 2p  holds data that is 

overlapped between two windows iw  and 1+iw  i.e. 12 +∩= ii DDp  and 3p  

consist of data that is added to 1+iw  after the increment or window slide as shown 

in the figure 1, where }{ 21 tp = , },,{ 5432 tttp =  and }{ 63 tp = for 2w . 

The itemset support counts are denoted as: 21 ii SandS , where iwi = . For 

the first window support count of itemsets in 1p  are recorded into 11S , i.e. 

|| 111 pS = , and support counts of itemsets in 2p  are recorded into 12S , 

|| 212 pS = . After the window is incremented, from 1w  to 2w , 11S  is set to zero 

because the support it holds does not contribute in the next window. 12S  from the 

first window is copied into 22S  in 2w , and the support count of itemsets from 

1w  is decremented by 1p . Itemsets from 3p  are generated using 22S  and then 

integrated into the already generated itemsets from 1w . Also, 22S  of any itemset 

from 1w  is incremented if it exists in 3p . 

 

 

Figure 1 JEPs with dual support framework 

The dual support framework therefore uses less memory, features limited IO 

operations and fewer computations (by utilising the already discovered frequent 

sets from previous windows), and avoids re-calculating support counts for item-

sets that exists between overlapped windows. 
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4 Dual Support Framework Example 

In this section we present an example to illustrate the proposed dual support 

framework using a sliding windows technique. Table 2 shows five datasets 1D  to 

5D  for days starting from 1 to 5. We used days for simplicity but in real applica-

tions this could be any temporal interval. For this application we set window size 

to 3, window slide to 1, support threshold to 25% and growth rate threshold to 2. 

For 1w , data sets 3,2,1D  will be used because || w  is set to 3 as shown in fig-

ure 2a. The supports for an itemset is calculated in such a way that 1supp  under 

1w  holds the number of occurrences of an itemset for 1D  and 2supp  holds the 

number of occurrences of an itemset for the rest of the datasets in 1w . Applying 

DSAT algorithm following 2-frequent itemsets are generated {(A, B), (A, C), (A, 

D), (B, C), (B, D), (C, D)}.  

Table 2. Example transitional data for 5 weeks 

Tid D1 D2 D3 D4 D5 

 Day 1 Day 2 Day 3 Day 4 Day 5 

T1 

T2 

T3 

T4 

A B D 

C D 

B C 

B D 

C D 

A B E 

A C D 

B C D 

A B C D 

C D E 

A C 

A E 

C D 

A B C E 

A C 

A B C D 

A D 

B C E 

A C D E 

C 

 

After generating frequent itemsets the window slides ( 2w ); 4D  is added and 

1D  is removed as shows in figure 2b. Itemsets generated in 1w  are cloned in 2w  

to avoid itemset re-generation. 1supp  for the cloned itemsets in 2w  is set to zero 

as it no longer contributes to the current window. 

 

Figure 2 Sliding Windows for table 2 datasets 
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Frequent itemsets are generated using only 4D  and 2supp , consequently the 

rest of the itemsets are adjusted. 1supp  is then calculated for all generated item-

sets in 2w  from 2D  and is then subtracted from 2supp  so that the accumulative 

support 21 suppsuppsupp ∪=  of itemsets gives the total support count. 2-

Frequent itemsets generated for 2w  are {(A, B), (A, C), (A, D), (A, E), (B, C), (B, 

D), (C, D)}. {A, E} and {A, C} are the discovered JEPs from the frequent sets for 

1w  and 2w . This is shown in equation 3. The same procedure is repeated for 3w  

as shows in figure 2 where the only JEP discovered from 2w and 3w  is {C, E}.  

Note that if we have a high support threshold there is an option to eliminate an 

emerging pattern in 1+iw . This means that a potential frequent itemset in iw  is no 

longer considered. If we do need to consider this itemset then a lower support 

threshold can be used without adversely affecting the efficiency and memory of 

the system. This is demonstrated in the experiment section. 

5 The DSAT Algorithm 

Our DSAT algorithm was developed using tree data structures, in a fashion 

similar to the Apriori algorithm (Agrawal and Srikant, 1994), and comprises of 

two major steps: 

1. Apply Apriori to produce a set of frequent itemsets using the sliding win-

dow approach. 

2. Process and generate a set of JEPs such that the interestingness threshold 

(Growth Rate) is above some user specified threshold. 

Steps involved in the DSAT algorithm are as follows: 

For the initial window 

1. Load the initial dataset \\w1−D  into the memory ( iw ). 

2. Apply ARM algorithm using sliding windows. 

3. Use dual supports for each itemset, 1supp  for 1p , 2supp  for 2p . 

4. Generate frequent sets. 

5. Slide window and carry forward all the frequent sets from iw � 1+iw . 

For the sliding window 

6. Clone the frequent sets from window iw  to incremented window 1+iw . 

7. Decrement 1supp  of itemsets using 1p . 

8. Update itemsets’ 2supp as described in section 4. 

9. Load only the incremented transactions 3p  into memory. 
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10. Calculate the 2supp  for all the existing itemsets and generate any new 

itemsets by only considering the incremented time stamp 3p .  

11. Calculate the growth rate of itemsets using both windows iw and 1+iw . 

12. Those itemsets with growth rate ≥  the threshold are emerging patterns 

and the itemsets those support approaches to zero in iw  and have support 

≥  specified jumping threshold in 1+iw  are the jumping patterns 

13. Store JEPs’ for the current window 1+iw . 

14. Go to step 5.  

6 Experimental Evaluation 

In this section the proposed DSAT algorithm is evaluated with different da-

tasets in order to asses the quality, efficiency and effectiveness of our approach. In 

the experiments, synthetic and real datasets (with binary and quantitative attrib-

utes) are used.  

6.1 Datasets 

Table 3 overviews the evaluation datasets. It should be noted that the datasets 

contains both sparse and dense data, since most AR discovery algorithms were de-

signed for these types of problems. 

Table 3. Real and Synthetic datasets used for experiments 

Dataset Type Time Duration 
Number of 

Transactions 

Distinct 

Items 

Max. Trans. 

Size 

Server Logs (SL) Real 11/04/08–15/04/09 49,577 1,372 16 

Point of Sale (PS) Real 28/09/07–27/09/08 92,685 3,736 19 

Transglobal (TG) Real 12/09/07–08/05/09 8,000 3,000 5 

T10I4D100K (TDK) Synthetic Not specified 100,000 1,000 29 

 

The first three datasets comprising transactions recorded for almost one year. 

All the datasets are time stamped and partitioned, except T1014D100K, so that the 

number of transactions varies in each partition. T1014D100K is divided into ten 

equal partitions of size 10K for experimental purpose. The Transglobal dataset 

contained quantitative attributes and we discretised the quantitative attributes to 

binary ones according to the technique proposed in (Sulaiman et al. 2009). All the 

raw datasets were cleaned and filtered to make them suitable for temporal ARM 

analysis. 
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6.1.1 Data Pre-Processing 

The raw data was pre-processed by cleaning and filtering it to make it suitable 

for temporal ARM analysis. The server logs data included Apache server log files 

comprising of two hundred and thirty files all together with 7,688,244 transac-

tions. The log files were all time stamped and contain plenty of information not 

required for our analysis. Filtration algorithms were developed to extract only the 

relevant information. After cleaning and filtering the log files, only 49,577 useful 

transactions out of 7,688,244 were extracted from April 2008 till April 2009. The 

Point of sale data (supplied by a news agent) comprises of 174,632 transactions 

and after cleaning and filtration this was reduced to 92,685 customer transactions 

from September 2007 till September 2008. The Transglobal data, supplied by a 

freight forwarding enterprise, contained categorical and quantitative attributes 

time stamped from September 2007 till May 2009. In this case the data was dis-

cretised and transformed into a Boolean format. The Transglobal data, unlike the 

other two data sets, also required sequencing in ascending order according to date 

(time stamp). 

6.2 Comparisons with Apriori 

Two sets of experiments were conducted to demonstrate: (i) the efficiency of 

the proposed approach and (ii) the temporal effect on the itemsets (JEPs) as an 

outcome of the ARM analysis. The experiments demonstrated that the proposed 

approach was a useful form of trend analysis. All the experiments were conducted 

on a P4; 1GB, 3GHz machine with windows XP installed using jdk1.4.2.  

6.2.1 DSAT Performance 

To compare the performance of DSAT we modified the classical Apriori algo-

rithm to deal with temporal data in a conventional manner i.e. process each sliding 

window and compare it with the proposed DSAT algorithm. The comparison illus-

trated that DSAT outperformed the Apriori naïve approach for temporal ARM.  

6.2.2 Effect of Varying Data Size and Support Threshold 

Figures 3, 4, 5 and 6 show the execution time for Apriori and the DSAT algo-

rithms on four real and synthetic datasets with quantitative and binary attributes. 

In the figures T1 represents the execution time for the modified classical Apriori 

ARM and T2 represents the execution time for the proposed DSAT algorithm. 
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Figure 3a Execution time for Server Log da-

ta by varying windows 

Figure 3b Execution time for Server Log da-

ta varying support thresholds 
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Figure 4a Execution time for Point of Sale 

data by varying windows 

Figure 4b Execution time for Point of Sale 

data by varying support thresholds 
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Figure 5a Execution time for Transglobal 

data by varying windows 

Figure 5b Execution time for Transglobal 

data by varying support thresholds 
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Figure 6a Execution time for Synthetic data 

by varying windows 

Figure 6b Execution time for Synthetic data 

by varying support thresholds 

 

     For figures 3, 4, 5 and 6 (a), the x-axis represents the varying sliding windows 

and y-axis represent the execution time in seconds for the algorithms for different 

sliding windows. For figures 3, 4, 5 and 6(b), the x-axis represents the percentage 

support threshold for the datasets and y-axis represents the cumulative execution 
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time in seconds for the support thresholds. Support thresholds were selected so 

that the Apriori algorithm could generate frequent itemsets within the given 

memory constraints so that execution time statistics could be obtained. 

Two figures, for each dataset, are displayed in order to show that the DSAT 

outperforms the naïve Apriori approach not only on the cumulative execution time 

but also for each sliding window, regardless of various data sizes.  

The figures demonstrate that DSAT outperforms the modified Apriori ARM 

algorithm because DSAT uses already generated frequent itemsets from the previ-

ous windows and thus only needs to generate frequent itemsets for the “most re-

cent” transactions. The execution times in figures (a) are not linear because of the 

varying data sizes in different windows, but near linear in figures (b) as the accu-

mulative windows execution time varies with the support thresholds. The result al-

so displays the ARM property that by increasing support the execution time de-

creases and vice-versa, algorithm completion time increases (Sulaiman et al. 

2007). 

Moreover the classical ARM algorithm utilises more memory, compared to 

DSAT, because the use of very low support thresholds leads to the generation of a 

high number of frequent itemsets. In contrast, DSAT runs more effectively (be-

cause DSAT utilises already generated frequent sets from the previous windows, 

updates their support count for the current window, and only generate the frequent 

sets from the incremented time stamp as illustrated in Section 4).  

6.3 Temporal Effects of Varying Windows and Threshold 

The experiments described in this section show how the varying sliding win-

dows affect the overall ARM analysis in discovering JEPs. Figures 7, 8 and 9 

show the number of Emerging Patterns discovered (figures a), Jumping Patterns 

(figures b) and frequent itemsets (figures c) respectively for three different real da-

tasets. The JEPs and the frequent itemsets in the figures are generated by varying 

support thresholds. As before the support thresholds were selected so that the clas-

sical Apriori algorithm would be able to generate large numbers of JEPs so that 

statistical comparison data could be obtained.  
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Figure 7a Figure 7b Figure 7c 
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Figure 9a Figure 9b Figure 9c 

In figures 7, 8 and 9 the x-axis represents various support thresholds and the y-

axis the number of EPs, JPs and Frequent items in figures a, b and c respectively. 

Each curve represents a window from 1 to 8.  

From the figures, the numbers of JEPs generated are not linear and there are ab-

rupt differences in the numbers generated due to the number of transactions vary-

ing in each window and that the number of transactions changes as the window 

slides. However there is some linearity for frequent items (Figures 7c, 8c and 9c). 

It can be seen from the figures that more JEPs are generated at lower support 

thresholds as compared to higher ones where in some cases the number approach-

es zero. The major issue in finding the JEPs is that they are normally generated at 

low support thresholds because an itemset could qualify as a JEP once its support 

at 1−iw  is low as compared to iw . A JEP can only be discovered once it becomes 

frequent, or at least is generated in the previous window. 

6.4 Trend Analysis 

The proposed approach can be usefully employed in trend ARM analysis where 

data is gathered for fixed or continuous time stamps. For example, the support of 

an itemset can be monitored over a period of time and it can help end users deter-

mine the causes any increment or decrement. 

For example, figure 10 shows the support for eight different itemsets, i.e. users’ 

clicks (hits), in web log data that has been monitored for almost a year. Each curve 

represents an individual itemset in terms of its support for one year from April 

2008 till April 2009. The x-axis in the figure represents time in terms of sliding 

windows and the y-axis the number of time users hits the web pages (itemset).  
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The website was launched in March 2008, and it can be seen from the figure 

that the support for the itemsets is low at start up. However, the number of hits in-

creased as more users visited the website, thus increasing the itemsets’ support 

count. From the figure, the itemset { }375,318  has support zero in the first two win-

dows and it emerges as a Jumping pattern at the third window slide; the support 

kept increasing till the seventh window until it once again disappear in the eighth 

window. That is because initially page 375  did not exist in the website but was 

later added (as evidenced by the “jump” in support in the third window). Howev-

er, later (in the eighth window) it was again removed from the site and the support 

returns to zero. 
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Figure 10 Varying itemsets supports over time 

The JEP technique described in this paper is relevant for trend analysis because 

it not only explicitly highlight trends, but also gives an indication about what fac-

tors are influential in boosting or decreasing the relationship between items. 

7 Conclusions and Future Work 

We have presented a novel approach to efficiently extract JEPs in temporal da-

ta by using a sliding window coupled with a dual support mechanism. The ad-

vantages of the framework are less memory utilization, limited IO and fewer com-

putations by utilising the previously computed frequent sets. This avoids re-

calculation of support counts that already exist in between overlapped windows. 

The approach has been realized in the form of the DSAT algorithm. The evalu-

ation of this algorithm has produced some very encouraging results. Future work 

will involve enhancing the efficiency of the algorithm by adopting a T-Tree data 

structure (Coenen et al. 2004) that uses indexing to further enhance the computa-

tional efficiency. Furthermore larger datasets and parallelisation of the DSAT al-

gorithm will be investigated. We anticipate that a stream processing technique 

(Kapasi et al. 2003) would be particularly suitable for this purpose. 
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