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Abstract. Textual Feature Selection (TFS) is an important phase in the process
of text classification. It aims to identify the most significant textual features (i.e.
key words and/or phrases), in a textual dataset, that serve to distinguish between
text categories. In TFS, basic techniques can be divided into two groups:
linguistic vs. statistical. For the purpose of building a language-independent
text classifier, the study reported here is concerned with statistical TFS only. In
this paper, we propose a novel statistical TFS approach that hybridizes the ideas
of two existing techniques, DIAAF (Darmstadt Indexing Approach Association
Factor) and RS (Relevancy Score). With respect to associative (text)
classification, the experimental results demonstrate that the proposed approach
can produce greater classification accuracy than other alternative approaches.

Keywords:  Associative  Classification, (Language-independent) Text
Classification, Text Mining, Textual Feature Selection.

1 Introduction

1.1  General Background

The increasing number of electronic documents that are available to be explored on-
line has led to text mining becoming a promising school of current research in
Knowledge Discovery in Data (KDD), and is attracting increasing attention from a
wide range of different groups of people. Text mining aims to extract various models
of hidden, interesting, previously unknown and potentially useful knowledge (i.e.
rules, patterns, regularities, customs, trends, etc.) from sets of collected textual data
(i.e. web news, e-mails, research papers, meeting minutes, etc.), where a collected
textual dataset can be sized in Giga-byfes. In a natural language context, a given
textual dataset is commonly refined to produce a documentbase — a set of electronic



documents that typically consists of thousands of documents, where each document
may contain hundreds of words.

One major application of text mining is Text Classification/Categorization (TC) —
the automated assignation of “unseen” documents into predefined text groups. TC, as
a well established research filed, has been studied for almost half a century; early
work on TC can be dated back to the 1960s (see for instance [21]). During the past
decade, TC has been extensively investigated at the intersection of research into KDD
and machine learning. Machine learning based TC focuses on directly assigning
“unseen” documents into text categories without being concerned with presenting to
end users reasons why and how the classification predictions have been made. KDD
based TC typically mines and generates human readable classification rules from
textual data that are further used to build a text classifier for assigning “unseen”
documents into text classes; such generated textual rules can be presented to the end
user. In our study, we concentrate on KDD based TC.

In general, TC can be divided into two groups: (i) single-label TC, which assigns
each “unseen” document into exactly one (predefined) text class; and (ii) multi-label
TC, which assigns each “unseen” document into one or more text class. With respect
to single-label TC, three different approaches can be identified: (i) one-class TC,
which learns from positive document samples only, and either assigns an “unseen”
document into the predefined (text) class or ignores the assignation of this document;
(i1) two-class (or binary) TC, which learns from both positive and negative document
samples, and assigns each “unseen” document into the predefined class or the
complement of this class; and (iii) multi-class TC, which simultaneously deals with
all given classes comprising all document samples, and assigns each “unseen”
document into the most appropriate class. This paper is concerned with the single-
label multi-class TC study.

Usually text mining requires the given documentbase to be first preprocessed so
that it is in an appropriate format. Hence the process of TC, in a general context, can
be identified as documentbase preprocessing plus data classification. The nature of
such preprocessing comprises: (i) documentbase representation, the process of
creating a data model to precisely interpret a given documentbase in an explicit and
structured manner; and (ii) Textual Feature Selection (TFS), the process of extracting
the most significant textual information from the given documentbase.

In documentbase representations, the “bag of *” or Vector Space Model (VSM) [25]
is considered to be appropriate for many text mining applications. The VSM can be
described as follows: given a documentbase D, each document D; € D is represented
by a single numeric vector, and each vector is a subset of some vocabulary V. The
vocabulary V is a representation of the set of textual features (documentbase attributes)
that are used to characterize the documents. The VSM is usually presented in a binary
form, where “each coordinate of a document vector is zero (when the corresponding
attribute is absent) or unity (when the corresponding attribute is present)” [16]. In TC,
there are two major approaches used to define the “bag of *” (vector space) model:
the “bag of words” and the “bag of phrases”. The experimental work, in this paper, is
designed with respect to both approaches.

Theoretically speaking, the textual features of a document can include every word
or phrase that might be expected to occur in a given documentbase. However, this is
computationally unrealistic, so it requires some method of preprocessing documents



to identify the key textual features that will be useful for a particular text mining
application, such as TC. TFS aims to select a limited number of textual features from
the entire set representing the documentbase. With respect to TFS (sometimes
referred to as “textual feature reduction”), techniques can be generally divided into
two groups: linguistic and statistical.

Linguistic TFS methods identify significant textual features depending on the rules
and/or regularities in semantics, syntax and/or lexicology. Typical methods in this
group include: stop-word lists, stemming, lemmatization, part-of-speech tagging, etc.
Such techniques are designed with particular languages and styles of language as the
target, and involve deep linguistic analysis. For the purpose of building a language-
independent text classifier (e.g. [8, 29]) that is generally applicable to cross-lingual,
multi-lingual and/or unknown-lingual textual data collections, the statistical approach
is most appropriate. This is the focus of this paper. A number of statistical TS
mechanisms have been proposed, including: Darmstadt Indexing Approach
Association Factor (DIAAF), Relevancy Score (RS), Mutual Information (MI), etc.

Classification (or “data categorization”) deals with structured data, especially
tabular data, and aims to assign “unseen” data instances into predefined data groups,
based on a classifier constructed from a training set of data instances associating with
(predefined) class-labels. Mechanisms on which classification algorithms have been
based can be separated into two “families”: (i) classification direct learning,
classification without rule generation; and (ii) classification rule mining (e.g. [23]),
classification with rule generation (and presentation).

Classification direct learning algorithms focus on directly categorizing “unseen”
data records into predefined data groups without concern for presenting, to the end
users, why and how the categorization predictions have been made. Typical
mechanisms include: naive Bayes, support vector machine and neural networks.
Classification rule mining algorithms mine and generate human readable
Classification Rules (CRs), again with the objective of building a classifier to classify
“unseen” data instances. Typical approaches include: decision trees (C4.5) [23] and
RIPPER [9] (Repeated Incremental Pruning to Produce Error Reduction).

One approach to classification rule mining other than C4.5 and RIPPER is to
employ Association Rule Mining (ARM) [1] methods to identify the desired CRs, i.e.
associative classification [2]. Associative classification mines a set of Classification
Association Rules (CARs) from a class-transactional database. The authors of [6]
and the authors of [28] together suggested that results presented in the studies of [19,
20, 32] show that in many cases associative classification offers greater classification
accuracy than other classification rule mining methods, such as C4.5 and RIPPER.

During the past decade, associative classification has been applied to TC (e.g. [3, 8,
29, 33]). Note that the binary format of the VSM representation translates easily into
the class-transactional format. The advantages offered by associative classification,
with respect to other classification rule mining approaches, can be summarized by
quoting Antonie and Zaiane [3]:
®  Associative text classifier “is fast during both training and categorization

phases”, especially when handling very large databases [3].
®  An associative text classifier “can be read, understood and modified by humans”.



Given the above advantages offered by associative classification with respect to
TC, this approach has been adopted in this paper to support the study of statistical
TFS for language-independent TC.

1.2 Contribution

A hybrid statistical TFS approach is proposed, which integrates the ideas of two
existing (statistical TFS) techniques: DIAAF (Darmstadt Indexing Approach
Association Factor) and RS (Relevancy Score), namely Hybrid DIAAF/RS. The
evaluation of Hybrid DIAAF/RS, under both the language-independent “bag of
words” and “bag of phrases” documentbase representation settings, was conducted
using the TFPC (Total From Partial Classification) associative classifier [5, 6, 7];
although any other associative classification algorithm could equally well have been
employed. With respect to associative TC, the experimental results demonstrate that
Hybrid DIAAF/RS can produce better classification accuracy than other statistical
TFS approaches (e.g. DIAAF, RS, MI), thus improving the performance of language-
independent TC.

1.3  Paper Organization

The rest of this paper is organized as follows. Section 2 describes some related work
relevant to our study, where both the language-independent “bag of words” and “bag
of phrases” approaches are reviewed. The DIAAF and RS as well as MI statistical
TFS mechanisms are outlined in section 3. In section 4, we propose the Hybrid
DIAAF/RS (statistical TFS) approach. The experimental results are presented in
section 5. Finally our conclusions and open issues for further research are given in
section 6.

2 Documentbase Representation
2.1 Language-independent “Bag of Words”

The “bag of words” approach has been used in TC investigation for a long time. In
this approach, each document is represented by the set of words that are used in the
document. Information on the ordering of words within documents as well as the
structure of the documents is lost. The problem with this approach is how to
effectively and efficiently select a limited, computationally manageable, subset of
words from the entire set represented in the documentbase. Usually the “bag of
words” approach first removes all punctuation marks (sometimes, all non-alphabetic
characters, i.e. numbers, symbols, etc.) from the original documentbase. Then
significant words that contribute to the TC task are selected using TFS.

In [8] the authors introduce a three-phase framework for language-independent
“bag of words” construction (as follows):



1. Words are first defined in a documentbase “as continuous sequences of
alphabetic characters delimited by non-alphabetic characters, e.g. punctuation
marks, white space and numbers”; all non-alphabetic characters are then
removed from the documentbase.

2. Common and rare words are collectively considered to be the noise words in a
documentbase. They can be identified by their support value, i.e. the percentage
of documents in the training dataset in which the word appears. Common words
are words with a support value above a user-defined Upper Noise Threshold
(UNT), and are referred to as upper noise words. Rare words are those with a
support value below a user-defined Lower Noise Threshold (LNT), and are
referred to as lower noise words. Both upper and lower noise words are then
removed from the documentbase.

3. The desired set of significant words is drawn from an ordered list of potential
significant words. A potential significant word also referred to as a key word is a
non-noise word whose contribution value exceeds some user-specified threshold
G. The contribution value of a word is a measure of the extent to which the word
serves to differentiate between classes and can be calculated in a number of
ways. Finally the first K words are selected from the ordered list of potential
significant words, which are further concerned in the CRM stage of TC.

In the third phase, those words whose contribution value exceeds the threshold G
are placed into a potential significant word list, in descending ordered according to
the contribution value. This list may include words that are significant for more than
one class (noted as “all words”), or it may be decided to include only those words that
are significant with respect to one class only (i.e. “uniques”). From the potential
significant word list the final list of significant words are chosen. Two strategies can
be proposed for achieving this. The first is to simply choose the first K words from the
ordered list (the “fop K). This may, however, result in an unequal/unbalanced
distribution of significant words between classes. The second approach chooses the
top “K / |C]” words for each class (referred to as “dist”), so as to include an equal
number of significant words for each class, where C is the set of predefined classes
within a documentbase.

2.2 Language-independent “Bag of Phrases”

Instead of representing a documentbase using words, many TC studies consider the
usage of phrases. In the “bag of phrases” approach, each element in a document
vector represents a phrase describing an ordered combination of words appearing
contiguously in sequence (sometimes with some maximum word gap). The motivation
for this approach is that phrases carry more contextual and/or syntactic information
than single words. For example Scheffer and Wrobel [26] argue that the “bag of
words” representation does not distinguish between “I have no objections, thanks”
and “No thanks, I have objections”.

One “bag of phrases” approach is to use n-grams (see for instance [22]), where
each sequence of n ordered and adjacent words in a document is identified as a phrase



(n < the size of the document). However, the main question with respect to n-grams is
what should the value of n be? This remains a current research issue.

In [8] the authors propose a language-independent “bag of phrases” approach
based on the language-independent “bag of words™ construction (see section 2.1). In
section 2.1, three categories of word were defined:

e Upper Noise Words: Words whose support is above a user-defined UNT
(Upper Noise Threshold);

e Lower Noise Words: Words whose support is below a user-defined LNT
(Lower Noise Threshold); and

o  Significant Words (G): Selected key words that are expected to serve to
distinguish between classes.

In this section, another two categories of word are further defined (also as
introduced in [8]):

® Ordinary Words (0): Other non-noise words that have not been selected as
significant words; and

e  Stop Marks (S): The “key” punctuation marks: ©,” <.” <:* *;” *I” and ‘?’, referred
to as delimiters, and used in phrase identification. All other non-alphabetic
characters are ignored.

It also identifies (in [8]) two groups of categories of words:

e Noise Words (N): The union of upper and lower noise words; and
e  Non-noise Words: The union of significant and ordinary words.

Significant phrases are defined as sequences of words that include at least one
significant word. Four different schemes for determining phrases (and constructing a
“bag of phrases”) were distinguished in [8], depending on: (i) what are used as
delimiters and (i) what the contents of the phrase should be made up of:

® DelSNcontGO: Phrases are delimited by stop marks (S) and/or noise words (N),
and made up of sequences of one or more significant words (G) and ordinary
words (O). Sequences of ordinary words delimited by stop marks and/or noise
words that do not include at least one significant word are ignored.

®  DelSNeontGW: As DelSNcontGO but replacing ordinary words in phrases by
wild card symbols (W) that can be matched to any single word. The idea here is
that much more generic phrases are generated.

® DelSOcontGN: Phrases are delimited by stop marks (S) and/or ordinary words
(O), and made up of sequences of one or more significant words (G) and noise
words (N). Sequences of noise words delimited by stop marks and/or ordinary
words that do not include at least one significant word are ignored.

®  DelSOcontGW: As DelSOcontGN but replacing noise words in phrases by wild
card characters (W). Again the idea of this scheme is to produce generic phrases.



The experimental results presented in [8] show that, with respect to the accuracy of
classification, DelSNcontGO outperforms other alternative schemes. In this paper, the
DelSNcontGO language-independent “bag of phrases” approach will be returned to in
Section 5 (experimental results).

3 Statistical Textual Feature Selection

Statistical TFS mechanisms are desired to automatically calculate a weighting score
for each textual feature in a document. A significant textual feature is one whose
weighting score exceeds a user-supplied weighting threshold. These techniques do not
involve linguistic analysis. With regard to TC, the common intuitions are as follows:

e The more times a textual feature appears across the documentbase in documents
of all classes the worse it is at discriminating between the classes.

e The more times a textual feature uniquely appears in a class the more relevant it
is to this particular class.

In the past, a number of statistical models have been proposed in statistical TFS;
three major ones are introduced as follows: Darmstadt Indexing Approach
Association Factor (DIAAF), Relevancy Score (RS), and Mutual Information (MI).

e DIAAF: Originally, the Darmstadt Indexing Approach (DIA) [13] was
“developed for automatic indexing with a prescribed indexing vocabulary” [14].
In machine learning, the author of [27] indicates that DIA “considers properties
(of terms, documents, categories, or pairwise relationships among these) as
basic dimensions of the learning space”. Examples of such properties include
document length, occurrence frequency between textual features and predefined
classes, training data generality of each predefined class, etc. One pair-wise
relationship in consideration herein is the term-category relationship, noted as
the DIA Association Factor (DIAAF) [27], which can be employed to select
significant textual features for TC problems. The computation of DIAAF score,
also reported in [12], is achieved by using a probabilistic (Pr) form:

diaaf _score(un, C;) = Pr(C: | up) = count(un € C;) / count(up € ),

where D represents a given documentbase, u;, represents a textual feature in D,
C; represents a set of documents (in P) labeling with a particular text class,
count(u;, € C;) is the number of documents containing u, in C;, and count(u;, € D)
is the number of documents containing u, in B. The DIAAF score expresses the
proportion of the feature’s occurrence in the given class divided by the feature’s
documentbase occurrence.

® RS: The initial concept of RS was given by Salton and Buckley [24], as
relevancy weight. It aims to measure how “unbalanced” a textual feature (term)
uy 1s across documents in a documentbase P with and without a particular text
class C;. They define a term’s relevancy weight as: “the proportion of relevant
documents in which a term occurs divided by the proportion of nonrelevant



items in which the term occurs” [24]. In [31] the idea of RS was based on
relevancy weight with the objective of selecting significant textual features in D
for the TC application. A term’s relevancy score can be defined (in logarithm) as:
the number of relevant (the target text class associated) documents in which a
term occurs divided by the number of non-relevant documents in which a term
occurs. Sebastiani [27] and Fragoudis et al. [12] calculate the RS score in
probabilistic (Pr) form using:

relevancy_score(un, Ci) = log((Pr(un | C) + d) / (Pr(un | -C) + d)),

where —C; (equals to P — C;) represents the set of documents labeling with the
complement of the predefined class C;, and d is a constant damping factor. In [31]
the value of d was initialized as 1/6. This formula can also be written in the
following form:

relevancy_score(uy, C;) = log((count(un € C;) / |Ci| + d)
/ (count(une (P—-C))/ |P-Ci| +d)),

where |C}| is the size function of set C;, |D — Cj| is the size function of set ® — C,,
and count(u, € (P — C))) is the number of documents containing u, in D — C;.
MI: Another important existing statistical TFS mechanism other than DIAAF
and RS is Mutual Information (MI). Early study of MI can be seen in [4] and
[11]. This statistical model is applied to determine whether a genuine association
exists between two textual features or not. In TC, MI has been broadly utilized
in a variety of approaches to select the most significant textual features that
serve to classify documents. The computation of the MI score between a textual
feature u), and a predefined text class C;, also reported in [12], is achieved using:

mi_score(un, C;) = log(Pr(un | C)) / Pr(up)) .

This score expresses the proportion (in a logarithmic term) of the frequency with
which the feature occurs in documents of the given class divided by the feature’s
documentbase frequency.

Proposed Textual Feature Selection

With respect to language-independent TC, we propose a novel statistical TFS
technique in this section. In the previous section, two statistical TFS mechanisms
DIAAF and RS were described. The proposed technique is a variant of the original
RS approach that makes use of the DIAAF approach, namely Hybrid DIAAF/RS.

Recall that the formula for calculating the RS score is given by:

relevancy_score(u, Ci) = log((Pr(un | C) + d) / (Pr(un | -C) + d)) .

The core computations here can be recognized as Pr(y, | C;) and Pr(u;, | —C;). The
DIAAF score is calculated using:

diaaf _score(un, Ci) = Pr(C;i | up) .



Substituting for the core computations into the RS score formula using the DIAAF
(related) formula, a new RS fashion formula (Hybrid DIAAF/RS) is defined:

diaaf-relevancy_score(un, C;) = log(Pr(C; | ux) + d) / (Pr(C; | ~up) + d)),

where —u;, represents a document that does not involve the feature u;, and d is a
constant damping factor (as mentioned in the original RS). The formula can be further
expanded as:

diaaf-relevancy_score(un, Ci) = log((count(uy € C;) / count(upe P) +d) /
((count(-un € C;) / count(-un € D) +d)),

where count(—u, € C;) is the number of documents containing no u;, in C; and
count(—uy, € D) is the number of documents containing no u,, in .

The algorithm for identifying significant textual features (i.e. key words in our
situation, with regard to sections 2.1 and 2.2) in P, based on Hybrid DIAAF/RS, is
given in Algorithm 1 (as follows):

Algorithm 1: Key Word Identification - Hybrid DIAAF/RS
Input: (a) A documentbase P (the training part, where the
noise words have been removed);
(b) A user-defined significance threshold G;
(c) A constant damping factor d;
Output: A set of identified key words S,,;
Begin Algorithm:

(1) S,, € an empty set for holding the identified key
words in B;
(2) C € catch the set of predefined text classes
within D;
(3) W, € read D to create a global word set, where the

word documentbase support supp,, is
associated with each word u, in W, ;
(4) for each C, € C do
(5) W, . € read documents that reference C, to
create a local word set, where the local
support supp,,. 1s associated with each
word u, in W,

Loc’!

(6) for each word u, € W, do

(7) contribution € log(((u,.supp,. / Uu,.Supp.,)
+ d) / ((|Cl‘ - uh'suppwc)
/ (1Pl = u,.supp,) + d));

(8) if (contribution = G) then

(9) add u, into S,,;

(10) end for

(11) end for

(12) return (S,);

E

nd Algorithm

An example of Hybrid DIAAF/RS score calculation is provided in Table 1. Given
a documentbase P containing 100 documents equally divided into 4 classes (i.e. 25



per class), and assuming that word u;, appears in 30 of the documents and that the
value of d (constant damping factor) is 0, then the Hybrid DIAAF/RS score per class
can be calculated as shown in the table.

Table 1. An example of the Hybrid DIAAF/RS score calculation.

# docs Hybrid
# docs #does | ihout | 7 docs # docs Pr(C;| Pr(C;| | DIAAF/
Class with u,, with u,, without
per class er class uy, per in D w in D up) t+d —uy) +d RS
p class h Score
1 25 15 10 30 70 0.500 0.143 0.544
2 25 10 15 30 70 0.333 0.214 0.192
3 25 5 20 30 70 0.167 0.286 -0.234
4 25 0 25 30 70 0 0.357 e

The rationale of this approach is that a significant textual feature (term) with
respect to a particular text class should have:

1. A high ratio of the class based term support (document frequency) to the
documentbase term support; and/or

2. A low ratio of the class based term support of non-appearance to the
documentbase term support of non-appearance.

5  Experimental Results

In this section, we present an evaluation of our proposed statistical TFS approach,
using three popular text collections: Usenet Articles, Reuters-21578 and MedLine-
OHSUMED. The aim of this evaluation is to assess the approach with respect to the
accuracy of classification in both language-independent “bag of words” (section 2.1)
and “bag of phrases” (section 2.2) settings. All evaluations given in this section were
conducted using the TFPC! associative classification algorithm; although any other
associative classifier could equally well have been employed. All algorithms involved
in the evaluation were implemented using the standard Java programming language.
The experiments were run on a 1.87 GHz Intel(R) Core(TM)2 CPU with 2.00 GB of
RAM running under Windows Command Processor.

5.1 Experimental Data Description
For the experiments outlined in the following subsections, five individual

documentbases were used. Each was extracted (with regard to the documentbase
extraction idea in [30]) from one of the three above mentioned text collections.

! TFPC software may be obtained from
http://www.csc.liv.ac.uk/~frans/KDD/Software/Apriori-TFPC/aprioriTFPC.html



The Usenet Articles collection is a popular text collection compiled by Lang [17]
from 20 different newsgroups, and is sometimes referred to as the “20 Newsgroups”
collection. Each newsgroup represents a predefined class. There are exactly 1,000
documents per class with one exception, the class “soc.religion.christian” that
contains 997 documents only. In comparison with other common text collections, the
structure of “20 Newsgroups” is relatively “near”, every document is labeled with one
class only, and almost all documents have a “proper” text-content. In the context of
this paper, a proper text-content document is one that contains at least g recognized
words. The value of ¢ is usually small (g is set to be 20 in our study). Previous TC
studies have used this text collection in various ways. For example, in [10] the entire
“20 Newsgroups” was randomly divided into two non-overlapping and (almost)
equally sized documentbases covering 10 classes each. In this paper we adopted the
approach of [10]. The entire collection was randomly split into two documentbases
covering 10 classes each: 20NG.D10000.C10 and 20NG.D9997.C10.

Reuters-21578 is another well known text collection widely applied in text mining.
It comprises 21,578 documents collected from the Reuters newswire service with 135
predefined classes. However, many TC studies (see for example [18, 34]) have used
only the 10 most populous classes. There are 68 classes that consist of fewer than 10
documents, and many others consist of fewer than 100 documents. The extracted
documentbase, suggested in [18] and [34], is referred to as Reuters.D10247.C10 and
comprises 10,247 documents with 10 classes. However this documentbase includes
multi-labeled documents that are inappropriate for a single-label TC investigation (the
approach adopted in our study). In this paper, the processing of the Reuters-21578
based documentbase comprised two stages: (1) identification of the top-10 populous
classes, as in [18] and [34]; and (2) removal of multi-labeled and/or non-text
documents from each class. As a consequence the class “wheat” had only one
“qualified” document, and no document was found for class “corn”. Hence, the final
documentbase, namely Reuters.D6643.C8, omitted the “wheat” and “corn”, classes
leaving a total of 6,643 documents in 8 classes.

The MedLine-OHSUMED text collection, collected by Hersh et al. [15], consists
of 348,566 records relating to 14,631 predefined MeSH (Medical Subject Headings)
categories. The OHSUMED collection accounts for a subset of the MedLine text
collection for 1987 to 1991. The process of extracting a documentbase from
MedLine-OHSUMED in our study can be detailed as follows. First, the top-100 most
populous classes were identified in the collection. These included many super-and-
sub class-relationships. Due to the difficulty of obtaining a precise description of all
the possible taxonomy-like class-relationships, we simply selected two sets (groups)
of 10 target-classes from these classes by hand, so as to exclude obvious super and
sub class-relationships in each group. Documents that are either multi-labeled or
without a proper text-content (containing < g recognized words) were then removed
from each class. Finally two documentbases, namely OHSUMED.D6855.C10 and
OHSUMED.D7427.C10, were created.



5.2  Results using the “Bag of Words” Representation

This section, reports on a set of experiments to evaluate the proposed Hybrid
DIAAF/RS TFS approach, in comparison of alternative mechanisms (i.e. DIAAF, RS,
and MI), with respect to the “bag of words” representation. Accuracy figures,
describing the proportion of correctly classified “unseen” documents, were obtained
using Ten-fold Cross Validation (TCV). A support threshold value of 0.1%, a
confidence threshold value of 35% and a Lower Noise Threshold (LNT) value of
0.2% were used as suggested in [8] and [29]. The Upper Noise Threshold (UNT)
value was set to be 20%. Following the main findings of [8] the evaluations were
conducted using: (i) the “all words” rather than “uniques” strategy in the construction
of a potential significant word list, and (ii) the “dist” rather than “top K strategy for
choosing the final significant words. The parameter K (maximum number of selected
final significant words) was set to 1,000. To ensure that sufficient potential significant
words were generated for each category, the G parameter was given a zero minimal
value so that the parameter could be ignored. In both RS and Hybrid DIAAF/RS, 0
was used as the constant damping factor value.

Table 2. Classification accuracy — comparison of the four statistical TFS approaches in the
language-independent “bag of words” setting.

DIAAF RS MI DIAAF/RS

20NG.D10000.C10 76.72 76.72 76.72 77.01
20NG.D9997.C10 80.61 80.61 80.61 80.75
Reuters.D6643.C8 85.40 86.34 86.56 86.81
OHSUMED.D6855.C10 77.54 79.28 79.27 79.17
OHSUMED.D7427.C10 78.97 77.21 77.45 78.12
Average Accuracy 79.85 80.03 80.12 80.37

# of Best Accuracies 1 1 0 3

The results presented in Table 2 compare 20 classification accuracy values (using
the “bag of words” representation) using the test documentbases. From Table 2 it can
be seen that the proposed Hybrid DIAAF/RS technique worked better than the other
alternative approaches:

1. The overall average classification accuracy throughout can be ranked in order as:
Hybrid DIAAF/RS (80.37%), MI (80.12%), RS (80.03%) and DIAAF (79.85%).

2. The number of cases of best classification accuracies obtained throughout the
five documentbases can be ranked in order as: Hybrid DIAAF/RS (3 out of 5
cases), DIAAF (1 case), RS (1 case), and MI (none of any case).

5.3  Results using the “Bag of Phrases” Representation

In this section, we present the experimental results comparing the proposed Hybrid
DIAAF/RS TFS approach with previously developed TFS methods (i.e. DIAAF, RS,



and MI) using the language-independent “bag of phrases” representation. According
to the results presented in [8], the DelSNcontGO phrase generation scheme
outperforms other alternative schemes, thus DelSNcontGO was selected to be used in
our experiments. All parameters in this section were kept consistent to the parameter
setting described in section 5.2 except that K was set to 900 for the OHSUMED
documentbases. The reason to decrease the value of K was that using K = 1,000
generated more than 2'° while the TFPC associative classifier limited the total number
of identified attributes? (significant words/phrases) to 2"°.

Table 3. Classification accuracy — comparison of the four statistical TFS approaches in the
language-independent “bag of phrases” setting.

DIAAF RS MI DIAAF/RS

20NG.D10000.C10 76.96 76.96 76.96 77.32
20NG.D9997.C10 81.72 81.72 81.72 82.09
Reuters.D6643.C8 87.63 87.94 87.99 88.53
OHSUMED.D6855.C10 79.20 80.16 80.04 80.03
OHSUMED.D7427.C10 78.24 75.80 75.75 77.07
Average Accuracy 80.75 80.52 80.49 81.01

# of Best Accuracies 1 1 0 3

Table 3 gives the 20 classification accuracy values obtained using the given
documentbases. From Table 3 it can be seen that the proposed Hybrid DIAAF/RS
approach outperforms the other alternative approaches:

1. The overall average classification accuracy can be ranked ordered as follows:
Hybrid DIAAF/RS (81.01%), DIAAF (80.75%), RS (80.52%) and MI (80.49%).

2. The number of cases of best classification accuracies obtained throughout the
five documentbases can be ranked in order as: Hybrid DIAAF/RS (3 out of 5
cases), DIAAF (1 case), RS (1 case), and MI (none of any case).

6 Conclusions

This paper is concerned with an investigation of the statistical textual feature selection
for (single-label multi-class) language-independent text classification. An overview of
the language-independent documentbase preprocessing, in terms of the “bag of
words” and the “bag of phrases” documentbase representations, was provided in
section 2. Both the DIAAF and RS statistical TFS techniques were reviewed in
section 3. A Hybrid DIAAF/RS (statistical) TFS approach was consequently
introduced in section 4, which integrates the ideas of DIAAF and RS. From the

2 The TFPC algorithm stores attributes as a signed short integer.



experimental results, it can be seen that the proposed Hybrid DIAAF/RS approach
outperforms other alternative (statistical TFS) mechanisms in both the language-
independent “bag of words” and “bag of phrases” settings regarding the approach of
associative classification, Hybrid DIAAF/RS produced the greatest average
classification accuracy and the highest number of cases of best classification
accuracies throughout the five chosen textual datasets (documentbases). This in turn
improves the performance of language-independent text classification.

The results presented in this paper corroborate that the traditional text classification
problem can be solved, with good classification accuracy, in a language-independent
manner. Further research is suggested to identify the improved statistical textual
feature selection mechanism and further improve the performance of language-
independent text classification.
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