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Outline of the Presentation
Organised as follows:
 Introduction

 Classical Association Rule Mining (ARM)
 Quantitative Association Rule Mining
 Fuzzy Association Rule Mining (FARM)

 Problem definition
 Methodology
 Example
 Conclusion & Further work
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Introduction

 Association Rule Mining (ARM)
 Data Mining Technique for finding “interesting” patterns

in binary valued data sets.
 Patterns usually translated into Association Rules (ARs)

of the form

X  Y
where X and Y are item sets.

 ARM algorithms usually operate using the support-
confidence frame work, and utilise the Downward
Closure Property (DCP) of itemsets.
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Quantitative Association Rule
Mining

 Quantitative ARM
 Applied to non-boolean data.
 Data is discretized.
 In the case of numeric quantiutative data items

this causes what is known as the “crisp
boundary” problem.
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 Fuzzy sets used to resolve the Crisp Boundary problem  by
providing a smooth change between boundaries.

 Fuzziness is defined by a membership mapping function.

 Example (Trapezoidal membership function):
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FARM using composite attributes

 FARM extended to composite Attributes
 Composite Attributes

 Objects (items) with collections of  properties (set
of values).

 Properties can be quantitative or categorical.
 Properties are shared across the attribute set.
 Quantitative properties can be fuzzified into

several ranges (fuzzy sets).
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FARM using composite attributes
(Example)
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Problem definition

 Given a Dataset D consisting of a set of
transaction t={t1,t2,t3,..,tn}, a set of composite
items I={i1,i2,i3,..,i|I|} and a set of properties
P={p1,p2,p3,..,pm}.

 Each transaction ti is subset of I, and each
item ti[ij] is a subset of P.

 Thus each item ij will have associated with it
a set of numeric values corresponding to the
set P, i.e. ti[ij]={v1,v2,v3,..,vm}.
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Problem Definition
 Example

{<b,{4,5,3}>, <d,{4,1,3}>}4

{<a,{2,4,6}>, {<c,{1,2,5}>, <d,{4,1,3}>}3

{<c,{1,2,5}>, <d,{4,1,3}>}2

{<a,{2,4,6}>, <b,{4,5,3}>}1

RecordTID

D={t1, t2, t3, t4}
I={a, b, c, d}
P={1,2,3,4,5,6}
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Problem Definition
 Property Dataset

 D is initially transformed into a Property dataset DP.

 DP consists of “Property Transactions” TP={tP1,tP2,tP3,..,tPn}.

 Each transaction tPi , is subset of P={p1,p2,p3,..,pm}.

 The value for each Property attribute tPi[Pj] is obtained by summing
the numeric values for all pj in ti. Thus
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Problem Definition
 Fuzzy Dataset

 DP is further transformed into a fuzzy dataset D/.

 A fuzzy dataset D/ consists of fuzzy transactions T/={t/1,t/2,t/3,..,t/n} and
fuzzy property attributes P/.

 Each P/ has a number of fuzzy sets associated with it, identified by a set
of linguistic labels L={l1,l2,l3,..,l|L|} e.g. {small, medium, large}.

 Each property attribute tPi[Pj] is associated (to some degree) with several
fuzzy sets, with a membership degree in the range [0,1].

 Membership degree indicates the correspondence between the value of
a given tpi[pj] and the set of fuzzy linguistic labels.
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Problem Definition
 Composite Item Value Table

 A composite item value table is a “look-up” table that
allows us to get property values for specific items.

 Properties Table
 A properties table is a table that maps all possible

values for each property attribute tPi[Pj] onto
fuzzy/overlapped ranges.
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Problem definition
 Fuzzy Normalisation Process (total membership degree

value for properties to add up to 1)
 The process of finding the contribution to the fuzzy support value, m/, for

individual property attributes t/i[pj[lk]] such that a partition of unity is
guaranteed.
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Problem definition

 Fuzzy Support
 Fuzzy support is calculated as
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Problem definition

 Fuzzy Confidence
 Fuzzy confidence (FC) is calculated in the same manner that

confidence is calculated in traditional ARM.

 Fuzzy confidence is calculated as:
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Methodology

 Data Transformation
 Transformation of raw dataset T into property dataset Tp.

 Transformation of property dataset Tp into a database containing
fuzzy extensions T/.

 Normalization of fuzzy dataset.

 Candidate Generation i.e. search for all fuzzy frequent itemsets
that have support higher than user specified threshold.

 Use frequent itemsets to generate all possible rules using fuzzy
confidence or fuzzy correlation interestingness measures.



IFIP 2008, Milano, Italy

Example Application
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Example Application
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Experimental Results
 Some example fuzzy rules produced by our

approach (30% support, 50% confidence and 25%
correlation) are as follows:

 IF Protein intake is Ideal THEN Carbohydrate intake is low.
 IF Protein intake is Low THEN Vitamin A intake is High.
 IF Protein intake is High AND Vitamin A intake is Low

THEN Fat intake is High.

 It is suggested that these rules are useful in
analysing customer buying behavior concerning
their nutrition.
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Conclusion & Further Work
 We have presented an approach for extracting hidden information

from composite items.
 We showed that with such items, common properties can be defined

as quantitative itemsets themselves, which are transformed into
fuzzy sets.

 Overall, the approach presented is effective and efficient for
analysing databases with composite items.

 Further work will evaluate our approach on real and larger datasets
and compare real performance with other common fuzzy ARM
algorithms.

 There is potential to apply this to other applications with composite
items or attributes even with varying fuzzy sets between attributes
e.g. image analysis and inventory control database.

 We are expanding our work with the possibilities to extend it for
Fuzzy Utility and Weighted Association Rule Mining.


