
Cross-datasets evaluation of machine learning
models for intrusion detection systems

Said Al-Riyami, Alexei Lisitsa, and Frans Coenen

Department Of Computer Science, University of Liverpool, Liverpool, UK
{said.alriyami,lisitsa,coenen}@liverpool.ac.uk

Abstract. The conventional way to evaluate the performance of ma-
chine learning models intrusion detection systems (IDS) is by using the
same dataset to train and test. This method might lead to the bias from
the computer network where the traffic is generated. Because of that,
the applicability of the learned models might not be adequately evalu-
ated. We argued in [1] that a better way is to use cross-datasets evalua-
tion, where we use two different datasets for training and testing. Both
datasets should be generated from various networks. Using this method
as it was shown in [1] may lead to a significant drop in the performance
of the learned model. This indicates that the models learn very little
knowledge about the intrusion, which would be transferable from one
setting to another. The reasons for such behaviour were not fully un-
derstood in [1]. In this paper, we investigate the problem and show that
the main reason is the different definitions of the same feature in both
models. We propose the correction and further empirically investigate
cross-datasets evaluation for various machine learning methods. Further,
we explored cross-dataset evaluation in the multi-class classification of
attacks, and we show for the most models that learning traffic normality
is more robust than learning intrusions.

Keywords: Network Intrusion Detection System, Machine Learning,
Model Evaluation, Network Security, Security and Privacy

1 INTRODUCTION

The number of cybersecurity attacks keeps increasing and changing every year.
This makes the work to find them harder and makes it more challenging to
evaluate any intrusion detection model obtained by machine learning methods.
How can we make sure that the result obtained is not out of outfitting? And
how can we measure the practicality of the models?

The paper [1] proposed a new cross-datasets evaluation method to address
such a problem. The idea of the method is to use two different datasets generated
in two different computer network settings. We use the first dataset in training of
the machine learning models and use the other in testing. Then, we reverse the
process by swapping the training and testing datasets. The method allows one
to evaluate the quality of the detection models and the quality of the datasets



2 Said Al-Riyami et al.

used. The paper [1] shows that training and testing by using the same dataset
may produce F1 score of 99% (conventional way of evaluation), while the same
machine learning models downgraded dramatically to around 36% score by us-
ing Cross-datasets Evaluation. The problem reported was a binary classification
(Normal and Attack), and the datasets used were NSL-KDD [2] and gureKDD
[3]. The paper [1] used Random forest [4], Artificial neural networks (ANN), and
Long short-term memory (LSTM) [5] as machine learning algorithms.

In this paper, we will follow the same evaluation method and investigate the
drop in accuracy when we change the datasets. We explain the results of [1] and
propose a correction that leads to an increase in the accuracy of the machine
learning models.

We also examine the cross-datasets evaluation methodology in multi-class
classification for the same datasets. Since not all the attacks are common to
both datasets, we map data labels into five groups (Normal Traffic, DoS, R2L,
U2R, and Probe).

Further, we expand in the number of machine learning models to evaluate.
These include: Decision tree learning, Random forest [4] (with a different number
of trees), AdaBoost [6], Gradient boosting [7], Logistic regression, Naive Bayes,
Linear Support Vector Machine (SVM) [8], K-Nearest Neighbours Algorithm (k-
NN), Discriminant Analysis, Artificial neural networks (ANN), Convolutional
neural network (CNN), Long short-term memory (RNN LSTM) [5] and Gated
Recurrent Units (RNN GRU) [9].

The rest of the paper organized as follows. In section 2 we discuss different
evaluation methodologies. Section 3 focuses on the binary classification and pro-
vides an explanation and a fix for performance drop from [1]. In section 4, we
report the results on a multi-class classification problem and show the perfor-
mance for each class. In section 5, we discuss the overall results, limitations, and
future work.

2 Evaluation Methodologies

One of the main processes of machine learning is model evaluation. It measures
how the model is performing. One of the goals of the evaluation is to have a
good picture of the model performance during the deployment. We try we have
a model that has less bias. This process consists of different dimensions:

– Stages: There are two main phases of creating the model: (1) training (where
the model learns from part of the data) and (2) testing (where the model
tries to predict from unseen data). Typically, we want to check how the
model is performing during the testing phase.

– Data Splitting: Which part of the data used in training, validation (if any)
and testing. There are two popular methods: Holdout method and K-fold
cross-validation. We will discuss the splitting in more details later.

– Scoring Metric: used to measure the result (Accuracy, Confusion Matrix,
Precision, Recall, Precision, F1 score, AUC, Loss, Root Mean Squared Error
(RMSE), etc.).



Cross-datasets validation IDS 3

– External Evaluation: all other measures like the processing time (How
long it takes to train, re-train and deploy the model), and size of the model
(and how many parameters contains).

2.1 Data Splitting Methods

The idea of splitting the data is to assess how the model will perform in unseen
data after training in part of the data. There are two main ways to split the
data: (1) Holdout cross validation, and (2) K-fold cross-validation.

Holdout cross validation In this method, we split the data into different
parts, each having its own purpose. Figure 1 shows simple illustration of this
method. The following is the common split [10, 11]:

– Training set: Part of the data that the model will use to learn from during
training phase.

– Testing set: The data that will be used to test the performance of the model
after the training phase.

– Dev (development) set: also known as validation set or holdout cross-
validation set. This part is used during the training phase to tune the hyper-
parameters of the model. The distribution of in the validation set should be
the same as the distribution of the testing set [12]. This set helps in avoid-
ing overfitting while hyperparameters tuning by giving feedback on how the
change affects the performance. We stop training phase after we reach to
performance of training set as good as validation set performance. In an-
other words, stop the training when the error of the validation set starts to
increase [11].

Fig. 1. Simple illustration of Holdout method

K-fold cross validation The following are the steps in how it works:

1. Divide the dataset into k number of fold or group.
2. Make one group a validation group and the rest of the groups a training set.

Calculate the performance score.
3. Repeat step 2 until all group used as a validation set.
4. The result is the average of all scores.



4 Said Al-Riyami et al.

2.2 Scoring Metrics

There are many scoring metrics to measure performance. For our work, the
following four metrics are relevant:

– Accuracy: this might be the most used metric. The accuracy is calculating
the ratio of the total number of correct predictions by the total number of
predictions. Equation (1) shows how it is calculated.

– Precision: also known as positive predictive value. Precision metric try to
answer the question: what proportion of positive identifications was actually
correct?[13] Equation (2) shows how it is calculated.

– Recall: also known as sensitivity. Recall metric try to answer the question:
what proportion of actual positives was identified correctly?[13] Equation
(3) shows how it is calculated.

– F1 Score: also known as F-measure or balanced F-score. It is a harmonic
mean of precision and recall. Equation (4) shows how it is calculated.

For a multiclass classification problem, there are different ways to calculate
the average of the score [14]:

– Micro Average: Calculate metrics globally by counting the total true pos-
itives, false negatives and false positives.

– Macro Average: Calculate metrics for each label, and find their unweighted
mean. This does not take label imbalance into account.

– Weighted Average: Calculate metrics for each label, and find their average
weighted by support (the number of true instances for each label). This alters
‘macro’ to account for label imbalance; it can result in an F-score that is not
between precision and recall.

Accuracy =
TruePositive + TrueNegative

TotalPrediction
(1)

Precision =
TruePositive

TruePositive + FalsePositive
(2)

Recall =
TruePositive

TruePositive + FalseNegative
(3)

F1 = 2.
P recision.Recall

Precision + Recall
=

2TP

2TP + FP + FN
(4)

2.3 Conventional way to evaluate ML models in intrusion detection

Most of the publications on machine learning in intrusion detection follow the
same procedure when evaluating the performance:

– Select an available public dataset;



Cross-datasets validation IDS 5

– Use the dataset and follow one of the method mentions in data splitting
methods. This includes holdout or k-fold cross-validation.

– Report the performance result by using one or more scoring metrics.

The drawback of this setting is we don’t know how much the model learns
about the intrusion compare to how much about the particular computer network
environments. It might be just a result of the overfitting of a particular dataset.
This may make the reported results about the accuracy of the intrusion detection
overly optimistic and suspiciously looking. Most of the reported results reach
99% precision [1]. To address this problem, we proposed in [1] the Cross-datasets
Evaluation method.

2.4 Cross-datasets Evaluation

Cross-datasets Evaluation method tries to make the evaluation of ML-based
NIDS more practical. The idea is to use two different datasets generated from two
different computer networks. We train in one dataset and test the model in the
other dataset (and swap between the datasets). This gives a better understanding
of the actual performance of the machine learning models when the computer
network changes. That will allow us to see how our model can adapt to the
change in network architecture. By using this method, we also gain insight into
the quality of the datasets used in the training. If we get a high performing, this
means that the dataset used in training contains more information about the
intrusions. Figure 2 shows an illustration of the method.

We use F1 score 4 as a metric for evaluate the performance. This will help
to avoid the accuracy paradox that might be there because of the imbalance of
the data [15].

Fig. 2. Cross-dataset validation

2.5 Datasets

In this work, we will use two datasets: NSL-KDD [2] and gureKDD [3]. Both
datasets generated from two different networks.



6 Said Al-Riyami et al.

NSL-KDD is a refined version from a famous KDD cup 1999 dataset, which
reported having some problems [16][17]. NSL-KDD dataset comprises 148,517
connections with 40 distinct attacks.

The gureKDDdatasets dataset created from scratch followed the specifica-
tions of KDD cup 1999 dataset. The gureKDDdatasets contains 2,759,494 con-
nections with 28 distinct attacks. NSL-KDD dataset contains more distinct at-
tacks, but less number of connections.

2.6 Machine learning models

In this work, we tried to include a wider range of machine learning models.
This will allow us to compare the performance of each model. The machine
learning models that we used are: Decision tree learning, Random Forest (RF) [4]
(with a different number of trees), AdaBoost [6], Gradient Boosting Algorithm
(GBM) [7] (deviance and exponential), Logistic regression (LR), Naive Bayes
(Gaussian -GNB- and Complement -CNB-), Linear Support Vector Machine
(SVM) [8], K-Nearest Neighbours Algorithm (k-NN), Quadratic Discriminant
Analysis (QDA), Linear Discriminant Analysis (LDA), Artificial neural networks
(ANN), Convolutional neural network (CNN), Long short-term memory (RNN
LSTM) [5] and Gated Recurrent Units (RNN GRU) [9].

3 Binary classification

3.1 Problem overview

The binary classification problem is when we have two classes of labels. In our
scenario, all labels of both datasets mapped to Normal and Attack.

The result of binary classification reported in [1] shows that the machine
learning models reach high accuracy and F1 score by using holdout cross valida-
tion method of the same dataset to around 99%. When we change the evaluation
method of the same machine learning algorithms to cross-datasets evaluation,
all models fail. While the accuracy metric reaches up to 97.65% (highest case),
the highest F1 score reported is 36.08%. And the majority of the F1 score cases
are below 10%. The result here shows that the machine learning models did
not learn anything about the intrusion since the performance is less than 50%.
Random forest model performs slightly better than an artificial neural network
(ANN) and Long short-term memory (LSTM) models.

3.2 Investigation and correction

We used tree-based classification methods to investigate the problem of low F1
score. We added AdaBoost Classifier, Gradient Boosting Classifier beside the
use of Random Forest Classifier.

The initial results of each model by using cross-datasets evaluation shown in
table 1. GradientBoost result is better than other models reported in [1], but



Cross-datasets validation IDS 7

Table 1. Result before the fix (Train → Test).

NSL-KDD → gureKDD gureKDD ->NSL-KDD
Accuracy F1 Accuracy F1

Random Forest 0.9687 0.2969 0.5273 0.0362

AdaBoost 0.7460 0.1378 0.5340 0.0673

GradientBoost 0.9727 0.3755 0.9727 0.3757

still, it falls when considering F1 score. All F1 score is less than 48%. This means
that the models still do not learn about the intrusion.

We use feature importance as a method to check the features as following:

– Run 5000 estimators/trees in Random Forest Classifier for both the datasets
as training. So, we have 2 Random Forest Classifier and each one has 5000
estimators/trees.

– Check the performance estimators/trees inside Random Forest Classifier in-
dependently in the testing set by using F1 score.

– report the top features each of best and worst performing estimators. The
top feature is the sum of importance value of each feature that estimators
group.

– analysis each feature in both datasets.

After running the experiment and analysing the features, we found that there
is a mismatch between both datasets on service feature naming. NSL-KDD con-
tains 70 distinct labels of service, while gureKDD contains 24 labels. For ex-
ample, the HTTP protocol service label as ’http’ in gureKDD, but it has 4
different labels in NSL-KDD based on the used port number (http, http 2784,
http 443, http 8001). We conjectured that this was the reason for the dramatic
drop in performance in cross-datasets validation results reported in [1]. To check
the conjecture we modified the datasets to have a compatible service feature
naming.

The service feature was labelled differently in both datasets. There is no
standard to label the service feature. To match the label of this feature, we
need the port number (sending and responding) and the protocol used in the
transport layer. Since that pieces of information are not available in NSL-KDD,
we decided to match the gureKDD to the one in NSL-KDD. Each service needs
to be mapped carefully since there is no documentation from original KDD on
the meaning of each label. So service is more straightforward to change based on
the specifications in [18], other labels need more understanding of the connection
to decide on the meaning.

3.3 New results

After the fix, that is uniform relabelling, the performance rose dramatically in
both datasets. The result of this fix shows in Table 2 with different machine
learning models.



8 Said Al-Riyami et al.

Table 2. Result of testing of all models after the fix in binary classification (Train →
Test).

NSL-KDD → gureKDD gureKDD → NSL-KDD Average
Accuracy F1 Accuracy F1 Accuracy F1

Decision Tree 0.979329544 0.98254637 0.89352734 0.88096654 0.9364 0.9317
RF (50) 0.992732726 0.993862766 0.937441505 0.930948116 0.9651 0.9624
RF (100) 0.992117395 0.993347618 0.933441963 0.92603982 0.9627 0.9596
RF (300) 0.994688157 0.995507977 0.923591239 0.914079772 0.9591 0.9547
AdaBoost(100) 0.98604708 0.98829732 0.940659992 0.936725038 0.9633 0.9625
GBM(50 dev) 0.990704093 0.992165347 0.891588168 0.875542054 0.9411 0.9338
GBM(50 exp) 0.992828758 0.993945005 0.893608139 0.877039804 0.9432 0.9354
LR(lbfgs) 0.959154831 0.966101389 0.794737303 0.732922737 0.8769 0.8495
GNB 0.424640532 0.051422805 0.792764465 0.753124248 0.6087 0.4022
CNB 0.316152527 0.00119196 0.791491883 0.808072043 0.5538 0.4046
Linear SVC 0.91628429 0.931950544 0.861470404 0.839516381 0.8888 0.8857
k-NN 0.95732406 0.964246723 0.897311419 0.885911563 0.9273 0.9251
QDA 0.45256268 0.170958267 0.640916528 0.405144336 0.5467 0.2881
LDA 0.920531445 0.93568379 0.852218938 0.833302953 0.8863 0.8844
ANN Model 0.983080231 0.985854019 0.919948558 0.911263537 0.9515 0.9485
CNN Model 0.951199387 0.959975533 0.95345314 0.951141078 0.9523 0.9555
LSTM Model 0.958949358 0.966230262 0.894799922 0.87976174 0.9268 0.9229
GRU Model 0.990871515 0.992313945 0.907519005 0.897989498 0.9491 0.9451
Best Result 0.994688157 0.995507977 0.95345314 0.951141078 0.9651 0.9625

3.4 Analysis

Fixing the Service label shows how important this feature in the learning process.
The previously reported result [1] mostly did not reach over 10% of the F1 score
with Cross-datasets evaluation method. Now we can gain more insight into the
models and the datasets used.

When we use NSL-KDD for the training, most of the models getting over
95% of F1 score in the testing. 15 classifiers out of 18 get over 90%. The best
model here is Random Forest classifier with 300 trees, which get 99.55% of F1
score.

When we use gureKDD for the training, the result differs from each classifier.
Only 6 models out of 18 get over 90% of testing F1 score. The best classifier
in the scenario is the Convolutional neural network (CNN) with an F1 score of
95.35%.

The best average model from both scenarios was AdaBoost (96.25% of F1
score in testing). Most of the times based Decision classification methods (De-
cision tree, Random Forest Classifier, AdaBoost Classifier, Gradient Boosting
Classifier) perform better in both scenarios.

As to the datasets, the NSL-KDD is a better dataset to learn compared with
gureKDD. Interestingly, gureKDD contains 18 times the number of connections
of NSL-KDD, but a smaller number of distinct attacks.

For the feature importance, we notice that src bytes shows before the fix and
after the fix as one of the top 10 important features.



Cross-datasets validation IDS 9

4 Multiclass Classification

4.1 Problem Overview

In this section we investigate cross-datasets evaluation for multiclass classifica-
tion for intrusion detection tasks.

The labels on NSL-KDD and gureKDD are for several type attacks. The
problem is that those labels are not matching. There are several different attacks
in both datasets. We can remove data that have no matching label in the other
datasets. But, we prefer not to lose any data, so we can compare the results with
the results from binary classification.

Another option we have is to map the attacks label to the category of the
attacks. Since the original KDD datasets give a specification of grouping the
attacks, we decided to follow the same grouping/categories.

4.2 Mapping into 5 categories

Based on the original KDD datasets [19], there are 5 groups (Normal and 4
group of attacks) as following:

– Normal: Normal traffic.
– DoS: Denial of Service attacks, e.g. syn flood
– R2L R2L: unauthorized access from a remote machine, e.g. guessing pass-

word;
– U2R U2R: unauthorized access to local superuser (root) privileges, e.g.,

various “buffer overflow” attacks;
– Probing probing: surveillance and other probing, e.g., port scanning.

The grouping process was not straightforward since mismatch or lack of the
documentation. So we needed to understand each attack before categorised it.
The final list of groups is as following:

– DoS:’back’, ’land’, ’neptune’, ’pod’, ’smurf’, ’teardrop’, ’syslog’, ’mailbomb’,
’udpstorm’, ’apache2’, ’processtable’.

– R2L:’ftp write’, ’ftp-write’, ’guess passwd’, ’imap’, ’multihop’, ’phf’, ’spy’,
’warezclient’, ’warezmaster’, ’warez’, ’sendmail’, ’named’, ’snmpgetattack’,
’snmpguess’, ’xlock’, ’xsnoop’, ’worm’, ’dict’, ’dict simple’, ’guest’.

– U2R: ’buffer overflow’, ’loadmodule’, ’perl’, ’ps’, ’perl clear’, ’perlmagic’,
’rootkit’, ’httptunnel’, ’sqlattack’, ’xterm’, ’eject’, ’eject-fail’, ’ffb’, ’ffb clear’,
’format’, ’format-fail’, ’format clear’, ’load clear’.

– Probing: ’ipsweep’, ’nmap’, ’portsweep’, ’satan’, ’mscan’, ’saint’.

4.3 Results

Table 3 and 4 summarise the results of testing F1 score for NSL-KDD, respec-
tively, gureKDD used as training sets. The result of F1 score are in terms of
Micro Average, Macro Average and Weighted Average.



10 Said Al-Riyami et al.

Learning normality of the traffic getting the highest result on both sides.
followed by the DoS attacks. The rest of the groups (R2L, U2R, and Probe) was
difficult for all models to detect. The worst label to detect is Probe, even though
the Probe label is third largest sample in both datasets (After normal and DoS
labels).

Tree-based models perform well in this task most of the time. If we consider
macro average and weighted average as a metric, then tree-based models will
win here. k-NN model was not in the top of the list for the binary classification,
but in this task performs better.

Learning from NSL-KDD gives better results than gureKDD in all metric of
best results. This might be because the NSL-KDD contains more distinct number
of attacks compared with gureKDD, even though that gureKDD is larger dataset
(2,759,485 data points compare with 148,517 in NSL-KDD).

Table 3. Result of testing F1 score - NSL-KDD as training set

ML Models Normal DoS R2L U2R Probe Micro Avg Macro Avg W. Avg
Decision Tree 0.9268 0.8830 0.0973 0.0055 0.2140 0.8507 0.4253 0.8858
RF(50) 0.9936 0.9779 0.0037 0.0484 0.6159 0.9718 0.5279 0.9756
RF(100) 0.9814 0.9474 0.0000 0.0508 0.4664 0.9399 0.4892 0.9501
RF(300) 0.9941 0.9479 0.0000 0.0541 0.4161 0.9403 0.4824 0.9545
AdaBoost(100) 0.8913 0.5627 0.1455 0.0938 0.0927 0.5996 0.3572 0.6868
GBM(50 dev) 0.9923 0.9279 0.4595 0.0339 0.3482 0.9190 0.5524 0.9413
GNB 0.0690 0.7488 0.0094 0.0002 0.1937 0.5843 0.2042 0.4578
CNB 0.7221 0.9678 0.0499 0.0000 0.0016 0.8025 0.3483 0.8456
Linear SVC 0.8935 0.7016 0.0369 0.0000 0.1061 0.6619 0.3476 0.7667
k-NN 0.9473 0.9830 0.0749 0.3441 0.7471 0.9527 0.6193 0.9624
QDA 0.5798 0.0906 0.0136 0.0011 0.1825 0.4223 0.1735 0.2928
LDA 0.8718 0.0454 0.3271 0.0284 0.0625 0.3547 0.2670 0.3844
ANN 0.9268 0.8830 0.0973 0.0055 0.2140 0.8507 0.4253 0.8858
CNN 0.8990 0.1330 0.1547 0.0230 0.0472 0.5403 0.2514 0.4448
LSTM 0.7531 0.2167 0.1638 0.0624 0.0864 0.4915 0.2565 0.4335
GRU 0.9885 0.8841 0.2361 0.0711 0.1598 0.8730 0.4679 0.9107
Best Result 0.9941 0.9830 0.4595 0.3441 0.7471 0.9718 0.6193 0.9756

5 Discussion

The applicability of the machine learning-based intrusion detection systems
should be given more attention in the research done in this area. Using cross-
datasets evaluation is one approach to measure the practicality of detection
classifiers.

Using two different datasets that have been generated from two different com-
puter network should give us a clearer picture of how much should we trust the
model. And since we want to understand the behaviour of the attack, different
attacks in both datasets will pose a more challenging task.

The result from both classification problems (binary and multiclass) tend to
give a higher result for detecting the normality. This might give an insight for a
better intrusion detection system based on normality detection (as a variant of
anomaly-based intrusion detection based on machine learning).



Cross-datasets validation IDS 11

Table 4. Result of testing F1 score - gureKDD as training set

ML Models Normal DoS R2L U2R Probe Micro Avg Macro Avg W. Avg
Decision Tree 0.9199 0.9210 0.4266 0.1789 0.7552 0.8955 0.6403 0.8910
RF(50) 0.9242 0.9183 0.0064 0.0000 0.7739 0.8980 0.5246 0.8831
RF(100) 0.9220 0.9151 0.0043 0.0000 0.7290 0.8926 0.5141 0.8765
RF(300) 0.9169 0.9164 0.0027 0.0000 0.6763 0.8870 0.5025 0.8693
AdaBoost(100) 0.8194 0.8730 0.2023 0.0000 0.4140 0.7785 0.4618 0.7833
GB(50 dev) 0.9178 0.8821 0.2308 0.0127 0.4894 0.8635 0.5066 0.8455
GNB 0.7394 0.1034 0.0608 0.0713 0.2166 0.4175 0.2383 0.4430
CNB 0.7814 0.7445 0.1198 0.0000 0.0000 0.6973 0.3291 0.6761
Linear SVC 0.9019 0.9092 0.0594 0.0087 0.2367 0.8490 0.4232 0.8187
k-NN 0.9067 0.8708 0.2719 0.1600 0.6493 0.8601 0.5717 0.8521
QDA 0.8146 0.0175 0.2216 0.0098 0.2050 0.5235 0.2537 0.4540
LDA 0.8956 0.8790 0.2012 0.0114 0.0644 0.8242 0.4103 0.7918
ANN 0.9256 0.8220 0.0000 0.0000 0.0000 0.8282 0.3495 0.7757
CNN 0.9228 0.9221 0.0418 0.0000 0.1978 0.8670 0.4169 0.8300
LSTM 0.9151 0.8874 0.1420 0.0000 0.5715 0.8639 0.5032 0.8515
GRU 0.9079 0.8818 0.1499 0.0000 0.4645 0.8562 0.4808 0.8358
Best Result 0.9256 0.9221 0.4266 0.1789 0.7739 0.8980 0.6403 0.8910

Our result indicates that when we use two different datasets, the dataset that
contains more distinct attacks will perform better than more connections. The
observation is that the NSL-KDD provides more attacks but fewer connections
than gureKDD. When we use NSL-KDD as a training set, it will give a better
result on the testing set across most models. This reflects the quality of leaning
set. We speculate that more attacks in the dataset will provide better learning
for the model, but this observation needs further investigation.

Based on our work here, deep learning models don’t give an advantage when
compared with classical machine learning models like tree-based. And by using
tree-based models we have the advantage of easier interpretation of the learned
model.

6 Conclusions

In this work, we demonstrate the results of the cross-datasets evaluation of dif-
ferent machine learning models after adjusting the datasets to reduce difference
in the interpretation of the same feature names.

We have argued that Cross-datasets evaluation is a better evaluation strategy
for the intrusion detection system to test practicality. We provided the explana-
tion of the previously reported results that the models tested by this method fail
to learn anything about the intrusion. We investigated the issue and provided a
correction for the datasets. We have also examined many machine learning algo-
rithms and reported their performance based on the cross-datasets evaluation.
We show the performance of the different models in multiclass classification,
after mapping the label of both datasets into 5 groups.

References

1. S. Al-Riyami, F. Coenen, and A. Lisitsa, “A re-evaluation of intrusion detection ac-
curacy: Alternative evaluation strategy,” in Proceedings of the 2018 ACM SIGSAC



12 Said Al-Riyami et al.

Conference on Computer and Communications Security. ACM, 2018, pp. 2195–
2197.

2. M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of
the kdd cup 99 data set,” in Computational Intelligence for Security and Defense
Applications, 2009. CISDA 2009. IEEE Symposium on. IEEE, 2009, pp. 1–6.

3. I. Perona, I. Gurrutxaga, O. Arbelaitz, J. I. Mart́ın, J. Muguerza, and J. M. Pérez,
“Service-independent payload analysis to improve intrusion detection in network
traffic,” in Proceedings of the 7th Australasian Data Mining Conference-Volume
87. Australian Computer Society, Inc., 2008, pp. 171–178.

4. T. K. Ho, “Random decision forests,” in Proceedings of 3rd international conference
on document analysis and recognition, vol. 1. IEEE, 1995, pp. 278–282.

5. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

6. Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-line learn-
ing and an application to boosting,” in European conference on computational
learning theory. Springer, 1995, pp. 23–37.

7. J. H. Friedman, “Greedy function approximation: a gradient boosting machine,”
Annals of statistics, pp. 1189–1232, 2001.

8. V. N. Vapnik, “The nature of statistical learning,” Theory, 1995.
9. K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for
statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

10. N. Hjort, Pattern recognition and neural networks. Cambridge university press,
1996.

11. C. M. Bishop et al., Neural networks for pattern recognition. Oxford university
press, 1995.

12. A. Ng, “Machine learning yearning: Technical strategy for ai engineers in the era
of deep learning,” Retrieved online at https://www. mlyearning. org, 2019.

13. G. M. L. C. Course. (2020) Classification: Precision and recall. [On-
line]. Available: https://developers.google.com/machine-learning/crash-course/
classification/precision-and-recall

14. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

15. Wikipedia. (2018) Accuracy paradox. Accessed: 2018-04-17. [Online]. Available:
https://en.wikipedia.org/wiki/Accuracy paradox

16. J. McHugh, “Testing intrusion detection systems: a critique of the 1998 and 1999
darpa intrusion detection system evaluations as performed by lincoln laboratory,”
ACM Transactions on Information and System Security (TISSEC), vol. 3, no. 4,
pp. 262–294, 2000.

17. M. V. Mahoney and P. K. Chan, “An analysis of the 1999 darpa/lincoln laboratory
evaluation data for network anomaly detection,” in International Workshop on
Recent Advances in Intrusion Detection. Springer, 2003, pp. 220–237.

18. M. Cotton, L. Eggert, J. Touch, M. Westerlund, and S. Cheshire, “Internet assigned
numbers authority (iana) procedures for the management of the service name and
transport protocol port number registry.” RFC, vol. 6335, pp. 1–33, 2011.

19. S. Stolfo, W. Fan, W. Lee et al., “Kdd-cup-99 task description,” 1999.


