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Abstract. A process is described, using the concept of 2D motifs and 2D dis-
cords, to build classification models to classify Cardiovascular Disease using
Electrocardiogram (ECG) data as the primary input. The motivation is that ex-
isting techniques typically first transform ECG data into a 1D signal (waveform)
format and then extract a small number of features from this format for classifi-
cation purposes. It is argued here that this transformation results in missing data,
and that the consequent feature selection means that only a small part of the origi-
nal ECG data is utilised. The approach proposed in this paper works directly with
the image format, no transformation takes place. Instead, motifs and discords
are extracted from the raw data and used as features in a homogeneous feature
vector representation. The reported evaluation demonstrates that more effective
classification results than that which can be achieved using the waveform format.
The proposed 2D motif and discord extraction mechanism is fully described. The
proposed process was evaluated using three distinct ECG data sets. A best ac-
curacy of 85% was obtained, compared with a best accuracy of 68.48% using a
comparable 1D waveform approach.

Keywords: 2D Motifs · 2D Discords · Cardiovascular Disease Classification ·
ECG Classification

1 Introduction

Cardiovascular Disease (CVD) is an umbrella term for a range of conditions that affect
the heart and/or blood vessels, of which heart disease and stoke are perhaps the best
known. Collectively, CVDs are the most common global cause of mortality, and the
major contributor to reduced quality of life in the 21st century [24]. According to the
World Health Organisation (WHO) some 17.9 million people died from CVDs in 2019,
representing 32% (approximately one third) of all global deaths [30]. The majority of
these deaths (85%) were as a result of heart attacks or stroke. CVDs are most com-
monly caused by irregularities in the normal rhythm of the heart, the sinus rhythm. The
sinus rhythm is between 60 and 100 beats per minute (bpm). A rate of less than 60bpm
(sinus bradycardia) or above 100bpm (sinus tachycardia) is considered abnormal. The
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standard tool for monitoring heart rate is the Electrocardiogram (ECG). ECGs are ob-
tained using an ECG machine which detects and records the electrical signals produced
by a patient’s heart as it beats, using sensors attached to the patient’s skin. Clinicians
and cardiologists can then use the ECG data to assist in determining the presence, or
otherwise, of CVD. This is achieved by examining individual heart cycles within the
ECG trace in terms of what are referred to as the P wave, the QRS complex and the T
wave. To speed up the ECG analysis process there has been significant interest in using
the tools and techniques of machine learning. Especially the application of supervised
learning to ECG data to build classification models of various kinds [11, 15, 21, 26].

Supervised learning requires labelled examples to which machine learning can be
applied to generate a model that can then be used to label previously unseen examples.
The labelled examples are usually divided into a training set and a test set. The first is
used to “learn” the desired model, and the second is to evaluate the resulting model. The
process of labelling the examples is often a time consuming and therefore a challenging
task. A second challenge is how best to represent the examples so that machine learning
can be applied. Most machine learning algorithms use a feature vector representation
where the examples are represented using a numeric vector when each numeric value
relates to a data attribute (feature, dimension). Generating such a representation is fairly
straightforward if the data under consideration is in a numeric tabular format where
each row represents a record and each column an attribute. This becomes much more
challenging if our data is in the form of images, as in the case of ECG data.

ECG machines typically produced hard copy printouts. The first stage in the process
of generating training and test data is thus to scan the paper format ECGs so that they
are available in a digitised image format. The second stage is then to extract the ECG
signal trace from the digitised images so that the data is in a waveform format. Once
the transformation has taken place the next stage is to extract features from the wave-
form data so that a feature vector representation can be derived. Usually, the features
identified are associated with the P wave, the QRS complex, and the T wave, used in
the manual analysis of ECG data; examples can be found in [14, 18, 25, 31, 32]. The
consequence, it is argued here, is that the resulting labelling (classification) of previ-
ously unseen examples is not as good as it might be because of: (i) the approximations
used to generate the waveform format and (ii) the small number of features typically
considered.

To address the above, in [1], a solution was presented founded on the use of motifs
[2]. The solution moved away from the traditional idea of applying machine learning to
a small number of features extracted from ECG data that had first been transformed into
a 1D waveform format, by considering the ECG data in its entirety as an image. The
idea presented was to extract 2D motifs directly from ECG image data and use these
motifs as the attributes in a Homogeneous Feature Vector Representation (HFVR). In
this context, a motif is a frequently repeating pattern which is considered to be indicative
of a particular CVD label (class). In 1D a motif is a sub-sequence of points within
a larger point (time) series. In 2D this is sub-matrix within a larger matrix of points
(pixels). The concept of motifs, in the 1D context, is most frequently used in time series
analysis [3, 20, 23, 38]. In the 2D context, motifs have been applied to image analysis
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[4, 13]; although, with the exception of [1], not with respect to ECG data (at least to the
best knowledge of the authors).

In [1] evidence was provided indicating that the use of 2D motifs for generating
CVD classification models, using supervised learning, outperformed models generated
using more traditional approaches. The evaluation was conducted using a subset of
the Guangzhou Heart Study data set [9], a subset directed at Atrial Fibrillation (AF),
a common form of CVD that is indicated by an irregular, and often unusually fast,
heart rate (140 bpm) caused by the “twitching” of the top (atria) chambers of the heart.
AF is the most common form of irregular heart beat. If untreated the presence of AF
increases the risk of stroke and heart failure. However, a criticism of the work presented
in [1] is that the AF versus no AF Guangzhou data set comprised only 120 records.
The work presented in this paper revisits the work presented in [1] by re-analysing the
claims made using a much more rigorous evaluation than was originally presented. Two
additional stages have also been added to the proposed model in [1], for the cases of
large numbers of motifs/discords being generated or when we have imbalanced input
data. For the evaluation presented here three data sets were used: (i) the AF versus no
AF Guangzhou data sets also used in [1], (ii) the entire Guangzhou Heart Study data set
of 1172 records categorised as normal versus abnormal and (iii) the Liverpool Heart and
Chest data set. The later is a recently acquired data set, curated by the authors, directed
at AF with reoccurrence versus AF without reoccurrence (a much more challenging
classification than in the case of the two other data sets considered).

In [1] a Support Vector Machine (SVM) classification model was used. A SVM clas-
sification model was also used with respect to the work presented in this paper. Partly so
that fair comparisons with the work presented in [1] could be made, and partly because
SVMs are frequently used with respect to reported work directed at more traditional
CVD classification, see for example [33].

The rest of this paper is structured as follows. A review of previous work relevant to
the work presented in this paper is given in Section 2. Section 3 then presents a formal
definition of the 2D motif extraction problem (in the context of ECG data). A more
extensive description of the approach to 2D motif feature extraction, and the utilisation
of these motifs, than that presented in [1], is given in Section 4. Section 5 then provides
a critical and comprehensive evaluation of the approach. The paper is completed, in
Section 6, with a summary, some key conclusions and some suggested avenues for
future work.

2 Related Work

Detection and classification of anomalies within ECG data has become a significant
area of research in the context of CVD studies. The motivation is the observation that
the manual interpretation of ECG data is time consuming, and requires prior knowledge
and skills, knowledge and skills that are often in short supply. A range of Machine
Learning (ML) and Deep Learning (DL) algorithms have therefore been proposed with
the aim of addressing the challenge associated with the human interpretation of ECG
data [14, 18, 25, 32].
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As noted in the introduction to this paper, a particular challenge of applying ML
and DL to ECG data is that the raw data is typically in a paper format. Thus the starting
point for any form of classification model generation, using ML or DL, is the scanning
(digitising) of the paper format data into a 2D image format. As also noted earlier, the
practice is then to transform the 2D digitised ECG data into a 1D waveform format.
There are a range of tools available to convert 2D digitised ECG data to a 1D waveform
format [5, 6, 12, 16, 19, 22, 29, 34]. Using these tools the resulting wave forms, gener-
ated from digitized paper ECG data, can be in a variety of formats; both txt or xml are
popular. Some of these tools provide additional functionality. Therefore the tools avail-
able can be divided into three groups according to the functionality that they provide:
(i) Digitization + transformation (no additional functionality) (ii) digitizing + transfor-
mation + feature extraction, and (iii) digitizing + transformation + feature extraction
+ classification. Examples of the first can be found in [5, 6, 12, 29]. Example of the
second can be found in [19, 22]. The idea here is to extract a small number of global
characteristics from the ECG wave form data. As noted earlier, these characteristics are
typically the amplitude and interval values of what are referred to as P wave, the QRS
complex, and the T wave. The extracted characteristics can then be used to build a clas-
sification model. The last of the above tool groupings describes tools that incorporate
classification model generation, not the case with respect to the previous two. Examples
can be found in [16, 34]. In [16], morphological features were extracted to be used with
two classification models, kNN coupled with Dynamic Time Warping (DTW) and Ad-
aboost, to detect three different types of cardiovascular abnormalities. The digitisation
tool used, in this case, was the same as that presented in [12]. In [34], the focus was
on four specific types of waveform. The reported evaluation indicated that SVM model
generation produced the best classification results.

An alternative to the waveform format, and that is explored in this paper, is to extract
discriminatory features from the 2D scanned ECG image data without transformation
to a 1D format, this can avoid the information loss associated with such transforma-
tions. The challenge is then the nature of the image features to be extracted. Classic
approaches which involve the extraction of “low-level” features, such as colour or tex-
ture, are deemed to be ineffective for CVD disease classification [7]; More advanced
feature extraction mechanisms are required. The solution proposed in [1] was to use 2D
motifs. Motifs, as noted earlier, are repeating patterns found in data that can be used
in tasks like clustering, classification, and anomaly detection. The idea of 2D motifs
was first proposed in [4] and used in [13] for the purpose of classifying digital images
featuring buildings, and images extracted from video news clippings, using a K-Nearest
Neighbors (kNN) classification model. The work presented in this paper builds on the
work presented in [3].

3 Problem Definition

This section provieds a formal problem definition for the work presented in this paper.
The main goal is to generate a classification model that can be used to label previously
unseen digital ECG images according to a given set of classes C = {c1,c2}. Each image
I comprises a n×m pixel matrix such that pi j is the pixel at row i and column j. The
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input data D comprises a set of tuples of the from ⟨I,c⟩ where I is an ECG image and
ci is a class label taken from a set of classes C.

To generate the desired CVD classification model we aim to extract a set of fea-
tures from each digital ECG image I. The idea proposed in this paper is that the most
appropriate features to identify are 2D motifs and discords. A 2D motif M is a p× q
sub-matrix of an image I, where p < n and q < m, that occurs with maximal frequency.
The intuition here is that because the sub-matrix occurs frequently it is likely to be a
good discriminator of class. A motif set, M = {M1,M2, . . .}, is a set of 2D motifs ex-
tracted from the images held in D, distributed according to class, one class per set of
motifs. In other words, there is a one to one correspondence between the set M and the
set of classes C, each subset Mi ∈M is the set of motifs associated with the class ci ∈C.
Not all the motifs in M will be good discriminators of class, so it is necessary to prune
M. A two step process was adopted to achieve this, intra-class pruning to give the set
M′ and then inter-class pruning to give the set M′′.

A 2D discord S, in turn, is a p×q sub-matrix of an image I, of width p and height
q, that occurs with minimal frequency (thus the opposite of a motif). The intuition
here is that because the sub-matrix occurs infrequently it is likely to also be a good
discriminator of class. A discord set, S = {S1,S2, . . .}, is set of 2D discords extracted
from the images held in D, again distributed according to class. As in the case of the
motif set of sets M, not all the discords in S are assumed to be good discriminators
of class. Therefore, as in the case of motifs, we apply intra-class pruning to S to give
S′, and then inter-class pruning to give S′′. Further discussion concerning the intra- and
inter-class pruning processes, with respect to the sets M and S, is presented in Sub-
section 4.2.

4 Cardiovascular Disease Classification Model Generation

This section builds on the approach proposed in [1], adding two additional stages re-
quired when large numbers of motifs/discords are generated and/or when we have im-
balanced input data. A schematic of the process is presented in Figure 1. From the figure
it can be seen that the approach comprises seven stages:

1. Data cleaning.
2. 2D motif and discord extraction.
3. Feature selection.
4. Data augmentation.
5. Feature vector generation.
6. Classification Model Generation.
7. Classification Model Usgae.

Of these, feature selection and data augmentation are the two additional stages not orig-
inaly included in the process as first described in [1]. Detail concerning each of these
five stages is presented in the following seven sub-sections, Sub-sections 4.1 to 4.7.
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Fig. 1: Schematic of CVD Classification Model Generation Process

4.1 Data Cleaning (Stage 1)

The first stage in the CVD classification model generation process is the cleaning of the
raw image data. The input to Stage 1 was a set of ECG images D = {⟨I1,c1⟩,⟨I2,c2⟩}
where Ii is an ECG image and ci ∈C. From Figure 1 the Data Cleaning stage comprises
four sub-processes: (i) cropping, (ii) conversion to gray scale, (iii) grid removal and
(iv) noise removal. Each of the four data cleaning sub-processes is considered in the
remainder of this section.

Cropping: Scanned ECG images often include spurious information around the edges
of the scan. The first process was therefore to crop the image so that only the ECG
signals were retained.

Conversion to Gray Scale: The cropped RGB image was then converted to a gray-
scale intensity image.

Grid Removal: The third sub-processes was directed at removing all spurious data
in the gray-scale ECG data, particularly the background grid which is a frequent
feature of ECG digital images. This was achieved using the application of a “bina-
rization” operation designed so that pixels related to the ECG traces were allocated
the value 255 (white) and the rest of the image pixels the value 0 (black). The de-
sired effect was that the graphical grid, and the majority of spurious data points and
noise, would all be encoded as black pixels. The challenge was deciding the value
of the binarisation threshold to be applied to the gray-scale image. To decide the
nature of this threshold, histograms for selected ECG image files were generated.
From these histograms, it was found that the background (high intensity) gray scale
values were in the range 150 to 255, the threshold value was therefore set at 150.
Thus, the proposed binarisation process assigned a value of 0 to each gray scale
pixel whose value was greater than the 150 threshold, and a value of 255 otherwise
(Equation 1).
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Noise Removal: The anticipation was that some spurious small patches of white pixels
(white noise) would be retained after the application of the binarization. To remove
this white noise a morphological erosion operation was applied whereby the pixels
in the boundary of white objects were removed. This also had the effect of reducing
the thickness of the ECG traces. Thus, on completion of the erosion operation a
morphological dilation operation was applied to add pixels back to the boundaries
of the retained white objects, namely the ECG trace.

binary(x,y) =

{
0 if grayscale(x,y)> threshold

255 otherwise
(1)

4.2 Motif and Discord Extraction (Stage 2)

The second stage in the overall process was 2D Motif and Discord extraction (discov-
ery). The pseudo-code for the top-level motif and discord extraction algorithm is given
in Algorithm 1. Note that this algotithm is similar to that given in [1]. The inputs are:
(i) the data set D = {⟨I1,c1⟩,⟨I2,c2⟩, . . .} where each image Ii has been pre-processing
during Stage 1 of the process (see above), (ii) the set of classes C, (iii) the width p
and height q of the motifs and discords to be retrieved, (iv) a pre-specified similarity
threshold σ used to determine whether two pixel sub-matrices are the same or not, and
(v) k the number of motifs and discords to be selected. The output was a set of pruned
motifs and a set of pruned discords, M′′ and S′′, to be used in the following stages.
The algorithm commences (lines 3 to 6) by segmenting the set D into a set of subsets
D = {D1, . . .D|C|} where each subset is associated with a class in C. Note that for the
evaluation presented in Section 5, |C|= 2 was used, hence D = {D1,D2}. Two sets are
then defined, lines 7 and 8 to hold identified motifs and discords, the sets M and S.

The set D is then processed to identify the motifs and discords held in the images as-
sociated with each class (lines 9 to 18). This involves calls to a number of sub-processes
which will be discussed in further detail later in this sub-section. The output is the set
M = {M1,M2, . . .} and the set S = {S1,S2, . . .}; where Mi is the set of motifs associated
with class ci ∈C, and Si is the set of discords associated with class ci ∈C. As noted ear-
lier, for the evaluation presented in Section 5, |C|= 2 was used, hence M = {M1,M2},
and S = {S1,S2}. Note that the proposed approach may result in the same motif being
identified in several images, thus M and S are likely to contain repeat occurrences of
motifs and discords. The intuition here for them being retained was that they would be
given more significance with respect to the generation of the intended prediction model;
conceptually they would be given a higher “weighting”.

The sets M = {M1,M2, . . .} and S = {S1,S2, . . .} are likely to hold some motifs
and discords that are unique to only one image. It was anticipated, that these would
not be good discriminators of class, hence, for each set of motifs Mi ∈M associated
with a particular class ci ∈ C, and each set set of discords Si ∈ S associated with a
class ci ∈ C, intra-class pruning was applied (line 19) and unique motifs and discords
removed, The retained motifs and discords were held in the sets M′ = {M′1,M′2, . . .}
and S′ = {S′1,S′2, . . .} respectively (line 16 in Algorithm 1).
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The last sub-processes in Algorithm 1, line 19, was to conduct inter-class pruning.
The removal of motifs and discords, from M′ and S′ respectively that were associated
with more than one class and hence deemed to not be useful for distinguishing between
classes. The retained motifs and discords were held in the sets M′′ = {m1,m2, . . .}, and
a set of discords S′′ = {s1,s2, . . .}, that were considered to be good discriminators of
class.

Algorithm 1 2D Motif and Discord Extraction [1]
1: Input D,C, p,q,σ,k
2: Output M′′,S′′
3: D = {D1 . . .D|C| where ∀Di ∈ D,Di = /0

4: for ∀⟨Ii,ci⟩ ∈ D do
5: D j = D j ∪ Ii where j = i
6: end for
7: M = /0 ▷ Define the empty set M to hold extracted motifs
8: S = /0 ▷ Define the empty set S to hold extracted motifs
9: for ∀Di ∈ D do

10: for ∀I j ∈ Di do
11: χi← genSubMatrices(I j, p,q) ▷ Algorithm 2
12: DMi← getCandidate2DmotifsAndDiscords(χ,σ) ▷ Algorithm 3
13: Mi,Si← topK 2DmotifsAndDiscords(DMi,k) ▷ Algorithm4
14: M←M∪Mi ▷ Add Mi to the set M
15: S← S∪Si ▷ Add Si to the set S
16: end for
17: end for
18: M′,S′← intraClassPruning(M,S,σ) ▷ Algorithm 5
19: M′′,S′′← interClassPruning(M′,S′,σ) ▷ Algorithm 6
20: return M′′,S′′

From the pseudo code given in Algorithm 1 it can be seen that the proposed 2D
motif and discord extraction process comprises five sub-processes: (i) Generate sub-
matrices, (ii) Generate candidate 2D motifs and discords, (iii) Get Top k 2D motifs and
select discords, (iv) Intra-class pruning and (v) Inter-class pruning. Each of these is
theefore discussed in further detail below.

Sub-matrix generation The pseudo code for the sub-matrix generation sub-process is
given in Algorithm 2 (the algorithm is similar to that presented in [1]). The inputs are: (i)
a pre-processed ECG image I associated with a particular class, and (ii) the desired sub-
matrix window width d and height q. The sub-matrix window is slid over the image I
pixel by pixel. The output is a set of sub-matrices, χ = {Sub1,Sub2, . . .} held within the
image I. The algorithm commences, line 2, by defining the empty set χ in which to hold
the extracted sub-matrices. Then, lines 3 to 7, the p× q sub-matrices in I are defined.
We are only interested in sub-matrices that contain the ECG trace. Sub-matrices located
at the edge of the image tended to be poor discriminators of class. Thus, sub-matrices
that feature only black pixels and those located at the edge of the input image I were
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not selected for inclusion in χ. This is tested for in line 4 of the algorithm. At the end
of the process χ is returned (line 8). Note that if there are only “black” images in I, the
set χ would be empty, although this would be an unlikely occurrence, and indicative of
a faulty ECG input image.

Algorithm 2 Generate Sub-Matrices [1]
1: Input I, p,q
2: χ = /0 ▷ Define the empty set χ to hold pixel sub-matrices
3: for ∀subi of size p×q ∈ I do
4: if Subi ̸= black and Subi not located on the edge of I then
5: χ = χ∪Subi
6: end if
7: end for
8: Return χ

Candidate 2D motifs and Discords The pseudo code for generating candidate 2D
motifs/discords is given in Algorithm 3, a similar algorithm was presented in [1]. The
inputs are: (i) the set χ, associated with class i, of p× q sub-matrices generated using
Algorithm 2, and (ii) the similarity threshold σ. The algorithm returns a set of candidate
motifs/discords of the form MD = {⟨sub1,count1⟩,⟨sub2,count2⟩, . . .} where subi ∈
χ and count is the corresponding occurrence count. The algorithm starts, line 3, by
defining the empty set MD. The algorithm then processes each sub-matrix subi in χ

(lines 4 to 13). First a counter, counti, is defined and set to 0 (line 5), and ⟨subi,counti⟩
added to the set MD (line 6). Sub-matrix subi is then compared to every other sub-
matrix sub j in χ, whenever a similarity between subi and sub j is identified the count
for subi is incremented by one and sub j removed from χ (so that the same sub-matrix
is not counted again later in the process). The similarity between the sub-matrices,
subi and sub j, is determined by calculating the Euclidean distance between the two
matrices using Equation 2 given below. Euclidean distance measurement is frequently
used for 1D motif similarity checking [35], and therefore was deemed to be appropriate
for 2D similarity checking. The calculated Euclidean distance is then compared using
the threshold σ, if the result is less than or equal to σ, subi and sub j are deemed to be
similar. The returned set MD will hold both candidate motifs and discords with respect
to the input image (which will be associated with a particular class ci ∈C).

dist (subi,sub j) =

√√√√h=(p×q)

∑
h=1

(
mdih −md jh

)2 (2)

Top K 2D Motifs and Discords Once a set of candidate motifs and discords for an
image I associated with a class ci, the set MDi, has been identified, the next stage is to
identify individual motifs and discords. Motifs will be the candidates associated with
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Algorithm 3 Candidate 2D Motifs and Discords [1]
1: Input χ,σ
2: Output MDi
3: MD← /0 ▷ Define the empty set MD to hold extracted motifs
4: for ∀subi ∈ χ do
5: counti← 0
6: MD←MD∪⟨subi,counti⟩
7: for ∀sub j ∈ χ, j ̸= i do
8: if dist (subi,sub j)≤ σ then
9: counti = counti +1

10: χ← χ with sub j removed
11: end if
12: end for
13: end for
14: Return MD

the highest counts, and discords with a count of one. The candidates in MDi were thus
ordered according to the associated frequency count and the top k were considered
to be motifs, and those with a count equal to 1 to be discords. The pseudo code for
achieving this is given in Algorithm 4; the algorithm is similar to that presented in
[1]. The inputs are: (i) the set of candidate motifs and discords for an image i, the
set MD = {⟨md1,count1⟩,⟨md2,count2⟩, . . .} as generated using Algorithm 3, and (ii)
the threshold k. The algorithm proceeds by first ordering the candidate motifs in MD
according to their occurrence count (line 3). The top k are then selected as the chosen
motifs and placed in M (line 4). Any candidate motifs with a count of 1 are deemed to
be discords and placed in S (line 5). The sets M = {m1,m2, . . .} and S = {s1,s2, . . .} are
then returned (line 6).

Algorithm 4 topK 2DmotifsAndDiscords [1]
1: input MD,k
2: output M,S
3: MDi←MD sorted in descending order
4: M← top k candidates in MDi
5: S← candidates in MDi with a count of 1
6: Return M,S

Intra-Class Pruning We are interested in motifs and discords that are good discrimi-
nators of class. We are therefore not interested in motifs and discords that only appear
in one image. Recall that Mi is the set of motifs associated with the class ci, and that
Si is the set of discords associated with the class ci. Thus, we wish to remove motifs
and discords, from the sets M = {M1,M2, . . .} and S = {S1,S2, . . .} respectively, that
appear in only one image (intra-class pruning). The sub-process for achieving this is
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shown in Algorithm 5 (an identical algorithm was presented in [1]). The inputs are: (i)
the set M = {M1, . . . ,M|C|}, (ii) the set S = {S1, . . . ,S|C|} and (iii) a similarity threshold
σ. The algorithm commences (lines 3 and 4) by declaring the empty sets M′ and S′
to hold the identified sets of motifs and discords; individual sets for individual classes.
The set M is processed first, lines 5 to 11. For each motif m j in the set Mi ∈M (the set
of motifs associated with class ci ∈C), if m j does nor appear anywhere else in M1 the
motif is discarded, otherwise it is added to M′i . A similar process is followed for the set
S, lines 12 to 18. At the end of the process the sets M′ and S′ will be returned. Note
that it might be the case that the sets M′ and S′ are empty. Note also that determining
whether a motif appears only in a single image requires a similarity comparison with
the motifs for all the other images associated with the current class. This requires the
similarity threshold σ. This is therefore a computationaly expensive task.

Algorithm 5 Intra-class pruning [1]
1: input M,S,σ
2: output M′,S′
3: M′←{M′1 . . .M′|C|} where ∀Mi ∈M′, Mi = /0 ▷ Define the empty set M′

4: S′←{S′1 . . .S′|C|} where ∀Si ∈ S′, Si = /0 ▷ Define the empty set S′

5: for ∀Mi ∈M do
6: for ∀m j ∈Mi do
7: if m j appears in more than one image in Mi then
8: M′i ← M′j ∪m j
9: end if

10: end for
11: end for
12: for ∀Si ∈ S do
13: for ∀s j ∈ Si do
14: if s j appears in more than one image in Si then
15: S′i← S′i ∪m j
16: end if
17: end for
18: end for
19: Return M′,S′

Inter-Class Pruning The last step in Stage 2 is to remove motifs and discords from M′1
and S′1 that are not good discriminators of class. In other words, motifs, and discords
that associated with more than one class. The pseudo code for the inter-class pruning
is given in Algorithm 6; the pseudo code is the same as that presented in [1]. The
inputs are the sets M′ = {M′1,M′2, . . .} and S′ = {S′1,S′2, . . .} from the previous sub-
process, and the similarity threshold σ. The outputs are the sets M′′ = {M′′1 ,M′′2 , . . .},
and S′′= {S′′1 ,S′′2 , }̇, where M′′i is a motif and S′′i is a discord. The algorithm commences
by declaring the sets M′′ and S′′ to hold the “double” pruned sets of motifs and discords.
The set M′ is processing first (lines 5 to 11), and the set S′ second (lines 12 to 18). Line
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7 states that if the the motif m′j does not appear in the set of motifs associated with some
other class, then m′j should be added to M′′. Line 14 should be interpreted in a similar
manner but with respect to discords. On completion, line 19, M′′, and S′′ are returned.
To determine whether a motif or discord appears in the context of another class again
requires similarity checking, which again entails the threshold σ to determine whether
two motifs (discords) are the same or not.

Algorithm 6 Inter-class pruning [1]

1: input M′,S′,σ
2: output M′′,S′′
3: M′′← /0 ▷ Define the empty set M′′ to hold double pruned motifs
4: S′′← /0 ▷ Define the empty set S′′ to hold dooble pruned discords
5: for ∀M′i ∈M′ do
6: for ∀m′j ∈M′i do
7: if ∀M′k ∈M,k ̸= i,m j ̸∈M′k then
8: M′′←M′′∪m j
9: end if

10: end for
11: end for
12: for ∀S′i ∈ S′ do
13: for ∀s′j ∈ S′i do
14: if ∀S′k ∈ S,k ̸= i,S j ̸∈ S′k then
15: S′′← S′′∪ s j
16: end if
17: end for
18: end for
19: return M′′,S′′

4.3 Feature Selection (Stage 3)
The reported evaluation presented in [1] considered a single small data set. The more
extensive evaluation conducted with respect to the work presented here (see Section
5) revealed that if the number of extracted motifs or discords exceeded 3,000 over-
fitting resulted. One solution might have been to reduce the value of the k parameter,
the number of motifs extracted from an image. However, the work presented in [1] had
demonstrated that k = 5 produced the best results. The adopted solution was therefore
to include an additional stage in the overall process, Stage 3, that was invoked should
the situation arise where more than 3,000 motifs were identified. The idea was to use
a Dimensionality Reduction (DR) technique to reduce the number of features while
attempting to keep as much of the variation in the original features set as possible [37].
There are many DR algorithms available for this purpose, for the work presented in this
paper three methods were considered:

Principal Components Analysis (PCA). PCA operates using by performing a linear
combination of the set of features. The combination was conducted in a given data
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set so as to create a smaller set of features, in such a way as to capture as much
information as possible in the smallest number of features. The resulting features
are referred to as “Principal Components”.

Singular Value Decomposition (SVD). SVD decomposes the original features by us-
ing the concepts of Eigenvalues and Eigenvectors into three constituent matrices to
remove redundant features.

T-distributed Stochastic Neighbour Embedding (T-SNE). T-SME reduces the num-
ber of features by combining them into two or three new features. In a high di-
mensional space, the probability similarity of points is calculated. Consequently
similar points are assigned a high probability, and dissimilar points are assigned a
lower probability. Then, nearby points in the high-dimensional space are mapped
to the nearest points in the low-dimensional space so as to achieve dimensionality
(feature) reduction.

4.4 Data Augmentation (Stage 4)

As noted above, the experiment reported in [1] focused on a single, relatively, small data
set (120 records). This data set also offered the advantage that it was balanced (an equal
number of examples for each class considered). In practice balanced training data is
unusual. This is often the case in the context of binary classification where there tends to
be more examples of “normal” cases than “abnormal” cases. To address this issue, with
respect to the work presented here, an oversampling technique was used to augment
the minority class. In “classic” oversampling the minority data is simply duplicated.
However, a criticism of this approach is that it will not add any new information, only
existing information. Thus, the Synthetic Minority Oversampling Technique (SMOTE)
technique [8] was adopted, a technique that can be used to synthesize new examples
from existing examples. For the work presented in this paper three different SMOTE
variations were considered:

The original SMOTE, which operates by first selecting random records from the mi-
nority class and finding the k-nearest neighbours to these records to create “clus-
ters”. Additional synthetic records are then created using these clusters.

Support Vector Machine SMOTE (SVM-SMOTE), which is similar to the original
SMOTE but instead of using the K-nearest neighbours technique, a SVM model is
used.

Adaptive Synthetic (ADASYN) SMOTE, which operates by considering the data den-
sity of the minority class and generating new examples in the less dense “areas”.

4.5 Feature Vector Generation (Stage 5)

The fifth stage in the proposed approach (see Figure 1) was the generation the desired
Homogeneous Feature Vectors Representation (HFVR) H = {V1,V2, . . .}. The idea here
was that the HVRR, comprised of motifs and discords, would also allow for the addition
of other features. In the evaluation presented later in this paper experiments are reported
where clinical data were added. Each Vi ∈ H is of the form {v1,v2, . . . ,c} where vi is a
numerical value, for example an occurrence count of a motif in M′′ or a discord in S′′,
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in an ECG scanned image Ii. The final element, c, is a class label taken from a set of
classes C. A previously unseen record will have a null value for the variable c as this is
the value we wish to predict.

4.6 Classification Model Generation (Stage 6)

Once a suitable set of feature vectors have been generated the final stage was to generate
the desired CVD classification model. The feature vector representation lends it self to
many classification model generators (this was why this representation was selected
with respect to the work presented here. In [33] and [34], SVM model generation was
adopted for CVD classification. SVM model generation was also adopted in [1]. A
SVM classification model was therefore also used with respect to the work presented in
this paper.

4.7 Classification Model Usage (Stage 7)

Once the desired CVD classification model had been generated it could be applied to
new data. In most cases this would be straight forward. However, in some cases, we may
have more than one ECG image per patient, thus multiple learning classification. This
was a feature of one of the evaluation data sets used for evaluation purposes (as reported
on in Section 5). Thus some kind of “conflict resolution” was required where contra-
dictory CVD classifications were produced. Three alternative options were considered
on how to deal with this situation.

Averaging. Average the motif counts for each patient when identifying the motifs to
be used, regardless of the number of ECG images considered, and used

Voting. Produce multiple classifications, one for each ECG image associated with a
patient, and select the class that occurs the most frequently. In the event of a tie-
break situation choose the class with the most serious consequences (in other words
err on the side of caution).

Using only one image input. Thus avoiding the problem all together. In this case, the
most recent ECG image was selected.

5 Evaluation

The extensive evaluation (more extensive than that discussed in [1]) of the CVD classi-
fication model generation mechanism is reported in this section. For the evaluation three
data sets were used: (i) the subset of the Guangzhou Heart Study data set [9] concerned
with AF which was also used in [1], (ii) the Guangzhou Heart Study data set in its en-
tirety and (iii) a data set provided by the Liverpool Heart and Chest Hospital (LHCH).
More detail concerning these data sets is provided in Sub-section 5.1. A SVM classi-
fication model was used with respect to all the experiments reported here, with Grid
Search to choose the best parameters (C, gamma, and kernel). The evaluation metrics
used were: accuracy, precision, recall, F1 score and AUC. Repeated Ten-fold cross-
validation was used throughout. The Friedman Test was used to determine whether
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or not there was a statistically significant difference between the performance. Where a
statistically significant difference was identified, the Nemenyi post-hoc test was applied
to identify the distinctions between the performances of the mechanisms considered. In
[1] the evaluation objectives were focused on identifying the appropriate values for the
parameters σ, k, p, and q. From [1] the most appropriate values were found to be:

– σ: The similarity threshold used to compare two motifs (the maximum distance
between two motifs) σ = 0.2

– k: The number of most frequent candidate motifs to be selected from each image,
k = 5

– p: The pixel matrix row size, p = 30
– q: The pixel matrix column size, q = 90

These were thus the values adopted with respect to the evaluation presented in this
paper. The objectives of the evaluation were:

1. To identify the most appropriate feature selection (dimensionality reduction) and
data augmentation techniques.

2. To identify the most appropriate conflict resolution technique where we have a
“multiple learning classification” issue.

3. To compare the operation of the proposed approach when the motif/discord set was
augmented in various ways with additional data.

4. To compare the operation of the proposed approach with a “traditional” 1D wave-
form approach.

Each of these objectives is discussed in further detail in the following four sub-sections,
Sub-sections 5.2, 5.3, 5.4 and 5.5.

5.1 Data Sets

As noted in the introduction to this section three data sets were used for the evaluation
presented here:

1. Guangzhou Atrial Fibrillation (GAF)
2. Guangzhou Heart Study (GHS)
3. Liverpool Heart and Chest Hospital (LHCH)

Some statistics concerning these data sets are given in Table 1. GAF and GHS,
the first two data sets listed, were extracted from the Guangzhou Heart Study data set
[9]. This comprised 1172 patients; each patient was associated with a 12-leads ECG
scanned image and patient attributes, including age and gender. Each patient record had
been labeled according to arrhythmia type, either sinus arrhythmia (normal) or abnor-
mal. The abnormal category included: (i) Atrial Fibrillation (AF) and Flutter (AFL), (ii)
Premature ventricular contractions, (iii) Premature atrial contractions , (iv) ventricular
tachycardia, (v) Wolff-Parkinson-White syndrome, (vi) pacing rhythm and (vii) border-
line rhythm. Each image was stored using JPEG compression with a resolution of 300
dpi (dots per inch).
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Table 1: Statistics Concerning Evaluation Data Sets
Data c1 c2
Set Label # Rec. # Male # Female Lable. # Rec. # Male # Female
GAF AF 60 32 28 Not AF 60 22 38
GHS Normal 878 283 595 Abnormal 294 116 178
LHCH No recurrence 639 428 211 Recurrence 270 182 88

The GAF data set comprised a subset of Guangzhou Heart Study data set that fea-
tured only two labels, Atrial Fibrillation (AF) and sinus (normal) rhythm. In other words
AF versus not AF. This was the data set used for evaluation purposes with respect to the
work presented in [1]. The AF/not AF class split was 60/60 records (see Table 1)

The GHS data set comprised the entire Guangzhou Heart Study data set of 1172
patients. This was the largest data set considered and therefore Feature Selection was
applied, Stage 3 in the proposed process given in Figure 1. The individual patients
held in the data set were categorised as being either Normal or Abnormal. The Nor-
mal/Abnormal class split was 878/294. Thus, unlike in the case of the GAF data set,
the GHS data set was significantly imbalanced. Data augmentation was therefore also
applied, Stage 4 in the proposed process given in Figure 1. It should also be noted that
the GHS data set was comprised mostly of female patients, 773 (66%) compared to 399
males (34%). The age distribution was as follows: Normal class, 283 males and 595
females; Abnormal class, 116 males and 178 females. The age range of all the patients
in the GHS data set was from 49 to 96, with a mean age 71.4 (a standard deviation of
6.260).

The LHCH data set was collected by the authors in collaboration with the Liverpool
Heart and Chest Hospital. This data set focused on the recurrence of Atrial Fibrillation
(AF) after catheter ablation which is estimated to be between 20% and 45% [10]. Ac-
cordingly, the data set comprised two classes: (i) patients who had AF and a catheter
ablation where there was no recurrence, and (ii) patients who had AF and a catheter
ablation where there was a recurrence. Details of all patients who had AF and a catheter
ablation at the hospital, between June 2013 and December 2019, were recorded in a
prospectively maintained data registry. For the LHCH data set patients were included
if all their clinical and ECG data was available. ECG scanned images were only con-
sidered if they were taken within six months before the ablation. This meant that some
patients had more than one ECG image associated with them. The minimum was one
and the maximum was ten, but the average was two. In other words, the LHCH data set
featured a “multiple learning classification” issue. Each image was stored using TIFF
compression at a resolution of 300 dpi. In total, the LHCH data set comprised 909
patients and 1821 ECG images.

The LHCH data set also included information related to gender, age, body mass
index (high times weight), and the presence of concomitant diseases. These features
were all included because, according to Freming’s study [36], these were risk factors
related to AF recurrence. The following concomitant diseases were considered relevant:
heart failure, hypertension, diabetes mellitus, hypercholesterolaemia, chronic kidney
disease, thyroid dysfunction, and chronic obstructive pulmonary disease. These were
selected because these had been identified in the study reported in [10]. The Left Atrial
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(LA) size was also included, because this is considered to be an effective factor for
predicting AF recurrence [27].

The final LHCH data set was composed of 610 male patients (67%) against 299
female patients (33%), distributed as follows: No recurrence class, 428 males and 211
females; Recurrence class, 182 males and 88 females. Thus, as in the case of the GHS
data set, the LHCH was significantly imbalanced. Therefore, referring back to the pro-
posed process (Figure 1), the application of Data Augmentation (Stage 4) was also
applied to this data set.

Table 2: Descriptive Statistics for LHCH data set
Descriptive Statistics

Risk factor N Minimum Maximum Mean Std. Deviation
Age 909 19 84 60.5 10.711
Height 909 131 197 173.49 9.683
Weight 909 45.50 150 88.47 16.582
LA size 909 20 100 41.36 5.495

Of the total of 909 patients, 176 (19%) had never used alcohol while 733 (81%)
were current drinkers of alcohol. Furthermore, 506 (56%) have never smoked, 66 (7%)
were current smokers and 341 (37%) were ex-smokers. Despite the minimum age of the
patients being 19 years, the mean age was 60.5 years, implying that there were more
elderly patients in the sample than younger. Some further statistical detail concerning
the LHCH data set is given in Table 2. From the foregoing, it is clear that the LHCH
data set was the most sophisticated, in terms of additional features, of the three data sets
considered.

5.2 Most Appropriate Feature Selection and Data Augmentation Techniques
(Objective 1)

The proposed process, as described in Section 4, includes a feature selection stage
(Stage 3) and a data augmentation stage (Stage 4). Neither was included in the orig-
inal process presented in [1]. The first is used where overfitting occurs because a large
number of motifs have been derived. Empirical evidence (not reported here) suggests
that overfitting occurs when the number of motifs exceeds 3000. This was the case with
respect to the GHS data set. The second was used where a significant class imbalance
existed. This was the case with respect to both the GHS and LHCH data sets. Referring
back to Sub-section 4.3 three feature selection techniques were suggested: (i) Princi-
pal Components Analysis (PCA), (ii) Singular Value Decomposition (SVD) and (iii)
T-distributed Stochastic Neighbor Embedding (T-SNE). Referring back to Sub-section
4.4 three data augmentation techniques were suggested: (i) SMOTE, (ii) SVM-SMOTE
and (iii) ADASYN. The operation of all these techniques were compared to determine
the most appropriate.

Table 3 shows the results obtained using SVM classification and the three feature
selection techniques considered when applied to the GHS data set (best results in bold
font). SMOTE data augmentation was used in all three cases because further experi-
ments (reported later in this sub-section) indicated that this produced the best results.
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Inspection of the table indicates that best values were obtained using T-SNE, while
the application of PCA resulted in overfitting. It was thus concluding that for feature
selection T-SNE was the most appropriate choice.

Table 3: Evaluation results, using the GHS data set and SMOTE augmentation, to de-
termine the most appropriate feature selection technique (best results in bold font)

DR Techniques Accuracy Precision Recall F1 AUC
% % % % %

PCA Overfitting
SVD 71.52 65.10 93.20 76.58 71.58

TSNE 81.50 84.00 78.15 80.87 81.54

Table 4: Evaluation results, using the GHS and LHCH data sets and T-SNE feature
selection, to determine the most appropriate data augmentation technique (best results
in bold font)

GHS data set LHCH data set
Technique Accuracy Precis. Recall F1 AUC Accuracy Precis. Recall F1 AUC

% % % % % % % % % %
SMOTE 81.50 84.00 78.15 80.87 81.54 66.82 74.89 52.17 60.62 66.83

SVMSMOTE 78.49 79.86 84.86 82.21 77.17 62.76 57.49 97.15 72.15 62.67
ADASYN 79.24 82.86 75.11 78.68 79.40 64.51 62.47 80.66 70.15 63.78

Table 4 shows the results obtained using SVM classification and the three data aug-
mentation techniques considered, when applied to the GHS and LHCH data sets (best
results in bold font). T-SNE feature selection was used in all three cases because this had
been shown to provide the best results (as reported in Table 3). For the LHCH data set
an averaging technique was used for the multiple instance learning; later experiments,
reported in 5.3, indicated that this produced the best results. From Table 4, it can be
seen that using SMOTE produced best results. A subsequent Friedman Test indicated
a statistically significant difference with respect to all the results obtained. Figures 2a
and 2b show the outcomes obtained from consequent Nemenyi post-hoc tests for the
two data sets (GHS and LHCH). From the figures, it can be seen that there was a sta-
tistically significant difference when using SMOTE compared with the other methods
considered. It was thus concluding that for data augmentation SMOTE was the most
appropriate choice.

5.3 Most Appropriate Conflict Resolution Technique (Objective 2)

As noted earlier in Sub-section 5.1, the LHCH data set, in many cases, features more
than one ECG image for each patient resulting in Multiple Instance Classification re-
quiring some form of conflict resolution should contradictory classifications result. In
Sub-section 4.7 three conflict resolution techniques were suggested: (i) Averaging, (ii)
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(a) Nemenyi post-hoc test for
augmentation techniques us-
ing the GHS data set

(b) Nemenyi post-hoc test for
augmentation techniques us-
ing the LHCH data set

(c) Nemenyi post-hoc test
for conflict resolution using
LHCH data set

Fig. 2: Nemenyi post-hoc test result

Table 5: Evaluation results, using the LHCH data sets, coupled with SMOTE data aug-
mentation and T-SNE feature selection, to determine the most appropriate conflict res-
olution technique (best results in bold font)

DR Techniques Accuracy Precision Recall F1 AUC
% % % % %

Average 66.82 74.89 52.17 60.62 66.83
Voting 52.78 75.67 58.62 55.41 51.46

One Image 59.40 65.57 40.43 49.63 59.45

Voting and (iii) avoiding the problem by using only the most recent ECG image. The
second evaluation objective, Objective 2, was to identify which of these techniques
produced the most effective classification results. The results are presented in Table 5
(best results in bold font). From the table, it can be seen that the averaging produced
the best results. A Friedman Test indicated a statistically significant difference in the
results. The outcome of a consequent Nemenyi post-hoc test is presented in Figure 2c.
From the figure, it can be seen that there was a clear statistically significant difference
in operation when using averaging.

5.4 Operation Using Additional Features (Objective 3)

The previous sub-section described the experiments conducted to determine the best
techniques to be used for: (i) feature selection, (ii) data augmentation and (iii) conflict
resolution (in the event of multiple instance classification). Best results were obtained
using: T-SNE feature selection, SMOTE data augmentation and averaging (where ap-
plicable). In this section, the evaluation results obtained from further experiments, con-
ducted using additional features, are discussed. Combinations of: motifs, discords, and
clinical data such as age and gender. The aim was to determine whether any advantage
would be gained by adding additional features from related sources. Similar experi-
ments were conducted in [2]; but when using 1D time series extracted from ECG traces.
The reported results indicated that adding additional features improved the effectiveness
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Table 6: Evaluation results, coupled with (where required) SMOTE data augmentation,
T-SNE feature selection and averaging conflict resolution, to determine the most appro-
priate data combination (best results in bold font)

Evaluation of Proposed Approach
Data set HFVR Accuracy Precision Recall F1 AUC

% % % % %
GAF Data set Motifs only 84.6 84.00 86.21 83.71 85.61

Discords only 45.00 45.00 43.00 43.98 46.50
Clinical only 56.25 55.50 54.33 53.85 54.67
Motifs+ Discords 77.50 73.48 85.14 76.78 77.99
Motifs+Clinical 86.25 85.83 86.50 84.88 85.87
Discords +Clinical 48.75 51.70 65.67 55.23 51.42
Motifs+Discords +Clinical 78.75 74.83 82.57 77.00 79.62

GHS Data set Motifs only 81.50 84.00 78.15 80.87 81.54
Discords only 52.43 52.36 60.69 55.84 52.77
Clinical only 64.08 64.85 61.10 62.80 63.99
Motifs+ Discords 72.76 74.50 69.54 71.80 72.74
Motifs+Clinical 84.09 87.76 79.20 83.17 84.05
Discords +Clinical 59.87 60.27 59.65 59.56 59.95
Motifs+Discords +Clinical 82.58 87.89 75.74 81.24 82.56

LHCH Data set Motifs only 66.82 74.89 52.17 60.62 66.83
Discords only 46.63 47.80 58.61 51.79 47.45
Clinical only 82.32 78.88 88.22 83.16 82.43
Motifs+ Discords 66.89 66.31 76.47 69.44 67.60
Motifs+Clinical 84.59 79.84 92.29 85.57 84.56
Discords +Clinical 76.61 81.16 69.87 74.79 76.81
Motifs+Discords +Clinical 81.38 86.14 74.89 80.01 81.43

of the CVD classification. Further motivation was provided from work, such as that re-
ported in [17, 28], which suggested that age, gender, smoking status, and so on, were all
risk factors to be considered when classifying ECG data. Experiments were conducted
using all three data sets, the GAF, GHS and LHCH. In each case seven different data
combinations were considered: (i) motifs only (M), (ii) discords only (S), (iii) clinical
data only (C), (iv) motifs and discords (M+S), (v) motifs and clinical data (M+C), (vi)
discords and clinical data (S+C) and (vii) motifs, discords and clinical data (M+S+C).
In each case, were appropriate, T-SNE feature selection, SMOTE data augmentation,
and averaging conflict resolution were used.

The results are presented in Table 6. From the table, it can be observed that in all
three cases, the combination of motifs and clinical data produced the best results. The
worst results were obtained using discords. Indeed, from the results obtained, it can be
argued that the inclusion of discords had a negative effect as evidenced when discords
were added to the motif and clinical data combination. It should also be noted here, with
respect to the results presented in Table 6, that we re-ran the experiments for the GAF
data set to calculate AUC, Unlike the case of the evaluation reported in [1] repeated
Ten-cross validation was used, rather than single Ten-cross validation. Consequently,
the results presented in Table 6 are not identical to the ones presented previously in
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Fig. 3: Box and Whisker plots of the accuracy vs fifteen repeats for Ten-fold-cross-
validation

[1]. The rational for using repeated Ten-fold cross-validation was that a more reliable
estimate of model performance would be obtained. Note that we calculated the mean,
and the standard error of the accuracy on each iteration to minimize the standard error
and stabilize the mean of estimated performance.

Figure 3, shows a sequence of Box and Whisker plots for the recorded accuracy
for the motifs-only model. The Y-axis gives the accuracy and the X-axis the number of
cross validation repeats. From the figure, it can see that the mean seems to be around a
value of 84.6 and that the standard error decreased with the increase in the number of
repeats and stabilized with a value around 0.010.

A Friedman test was also applied with respect to the results obtained using each data
set. The Friedman test demonstrated that there was a statistically significant difference
in performance in all three cases. The results of the consequent Nemenyi post-hoc tests
are presented in Figure 4.

Figure 4a presents the Nemenyi post-hoc test results using the GAF data set. From
the figure, it can be seen that there is a statistically significant difference when using
motifs combined with clinical data compared to many of the other data combinations
considered. The exceptions were the motifs and discords; and the motifs, discords and
clinical data combinations.

Figure 4b shows the Nemenyi post-hoc test results using the GHS data set. The best
overall results were obtained using the GHS data set, and particularly when motifs were
combined with clinical data (an AUC of 84.05%). From the figure it can be seen that
the results obtained when using motifs combined with clinical data were statistically
different from most of the other combinations considered; with the exception of motifs
used on their own, and motifs coupled with discords and clinical data.
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(a) GAF data set (b) GHS data set (c) LHCH data set

Fig. 4: Nemenyi post-hoc test when using different data combinations

Figure 4c presents the Nemenyi post-hoc test results using the LHCH data set. From
the figure, it can be seen that there is also a statistically significant difference when using
motifs combined with clinical data compared to many of the other data combinations
considered. The exceptions were the clinical only, and the motifs coupled with discords
and clinical data.

5.5 Comparison of 1D and 2D motifs Discovery Approaches (Objective 4)

In [1] a comparison between 1D (time series) and 2D (image) approaches for the GAF
data set, using motifs on their own, discords on their own, and motifs and discords com-
bined. These results are presented in the top part of Table 7. The comparison was made
to investigate the hypothesis that using 2D motifs extracted from untransformed ECG
images would produce a better classification than that obtained using features selected
from 1D transformed waveform representations of ECG data. For the work presented
here this experiment was repeated using the GHS and LHCH data sets. To obtain the ID
results the scanned GHS and LHCH images were transformed into a time series format
using a recent algorithm for achieving this [12]. Following the transformation, the 1D
motif approach proposed in [3] was applied. The results are presented in the lower part
of Table 7. In the table best results in each case are highlighted in bold font. From the
table, it can be seen that the outcomes from the experiments using GHS and LHCH
data stes corroborated the results reported in [1]. That the 2D formatted data produced
better results than the 1D format. Interestingly, from Table, the 1D waveform approach
that using a combination of motifs as features, works well in comparison to other 1D
waveform approaches. However, from Table 7, best results for the GAF and GHS data
sets were obtained using 2D motifs only; while for the LHCH data set best results were
obtained using 2D motifs and discords combined.

6 Conclusion

In this paper, the approach to ECG scanned image classification using 2D motifs re-
ported in [1] has been extended and re-analysed using additional data sets and eval-
uation aspects. It was assumed that the “traditional” approach to ECG classification
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Table 7: Comparison of 1D and 2D motifs Discovery Approaches
2D Approach 1D Approach

Data set HFVR Acc. Pre. Rec. F1 AUC Acc. Pre. Rec. F1 AUC
% % % % % % % % % %

GAF Motifs only 85.00 84.00 86.21 83.71 85.61 68.48 70.00 68.49 69.88 69.28
Data set Discords only 45.00 45.00 43.00 43.98 46.50 67.59 76.00 66.59 71.24 68.23

Motifs + Discords 77.50 73.48 85.14 76.78 77.99 72.35 78.74 72.50 75.49 71.92
GHS Motifs only 81.50 84.00 78.15 80.87 81.54 72.119 77.96 70.01 73.22 73.00

Data set Discords only 52.43 52.36 60.69 55.84 52.77 69.59 74.05 68.81 70.53 70.36
Motifs + Discords 72.76 74.50 69.54 71.80 72.74 76.16 83.56 73.28 77.66 77.17

LHCH Motifs only 66.82 74.89 52.17 60.62 66.83 64.69 72.60 62.96 67.08 65.41
Data set Discords only 46.63 47.80 58.61 51.79 47.45 64.14 72.32 62.20 66.36 65.23

Motifs + Discords 66.89 66.31 76.47 69.44 67.60 66.76 73.77 64.96 68.70 66.81

using waveform transformation and limited features resulted in information loss due to
the approximations used, and that a better classification could be obtained if the clas-
sification model was built using the original image without any transformations. To
investigate this, three data sets were tested using the 2D motifs approached. The poten-
tial of including other clinical features such as age and gender were also investigated
and it was found that this provided better results. The reported evaluation demonstrated
that the best results were obtained when 2D motifs were extracted from an entire image
compared with when the image was transformed into a 1D waveform format and 1D
motifs used as features. The best accuracy of 85% was obtained using the proposed
approach, and 86.25% when adding additional clinical features, in comparison with the
best accuracy of 68.48% using the 1D waveform format. For future work, the authors
intend to investigate: (i) improving the performance of the 2D motif extraction from
scanned images process, (ii) the effect of combining 2D motifs and discords with fea-
tures from other formats such as Echo data and patient data, and (iii) the application of
the proposed approach to alternative CVD application domains that feature multi-class
classification.
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