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ARTICLE INFO ABSTRACT

Keywords: Advances in the Internet of Things have enabled the development of many smart city applications
Multi-modal learning and expert systems that help citizens and authorities better understand the dynamics of the cities, and
Semi-supervised learning make better planning and utilisation of city resources. Smart cities are composed of complex sys-
Traffic event detection tems that usually process and analyse big data from the Cyber, Physical, and Social worlds. Traffic
Generative adversarial network event detection is an important and complex task in smart transportation modelling and management.
Smart transportation We address this problem using semi-supervised deep learning with data of different modalities, e.g.,
Deep learning physical sensor observations and social media data. Unlike most existing studies focusing on data of

single modality, the proposed method makes use of data of multiple modalities that appear to com-
plement and reinforce each other. Meanwhile, as the amount of labelled data in big data applications
is usually extremely limited, we extend the multi-modal Generative Adversarial Network model to a
semi-supervised architecture to characterise traffic events. We evaluate the model with a large, real-
world dataset consisting of traffic sensor observations and social media data collected from the San
Francisco Bay Area over a period of four months. The evaluation results clearly demonstrate the
advantages of the proposed model in extracting and classifying traffic events.

1. Introduction ing problem is how to design a unified framework for pro-
cessing such multi-modal data which differs greatly in the
level of granularity and semantic meaning. Our work aims
to exploit data of different modalities while complementary
to each other to extract trustworthy knowledge and improve
classification performance.

With the rapid development of ITS, the generated traf-
fic data collected from loop sensors, GPS, cameras and so-
cial media, is exploding. Researchers believe that we have
entered the era of big data transportation (Lv et al., 2015).
Much of the transportation research focus has shifted to-
wards the processing of massive amounts of data continu-
ously generated within a city environment. However, most
of the existing studies only process data of single modality
and require a large amount of labelled data, which is usu-
ally not practical in real-world, big data applications. This
inspires us to design a semi-supervised learning framework
for traffic event detection with the rich amount of unlabelled
data and the extremely limited amount of labelled one.

Deep learning is a popular paradigm in the machine
learning family. It allows computational models that are
composed of multiple processing layers to learn representa-
tions of data with multiple levels of abstraction, and is able
to discover intricate structures from natural data in its raw
forms without the need for sophisticated feature engineering
and tuning (LeCun et al., 2015). Studies based on deep mod-
els have significantly improved the state-of-the-art in var-

Today, technologies from the Internet of Things (IoT)
have been widely used to address challenges that modern
cities face, e.g., traffic congestion, air pollution, energy con-
sumption and public safety. Intelligence Transportation Sys-
tems (ITS), as an instance of smart city applications, aim to
discover knowledge from traffic related data collected from
a city environment for efficient management of transporta-
tion and mobility in a city. For example, Lv et al. exploited
historical traffic flow data for traffic prediction (Lv et al.,
2015); Song et al. engaged GPS records with millions of
anonymous users for human mobility prediction (Song et al.,
2016); Anantharam et al. collected social media data for
traffic event detection (Anantharam et al., 2015). However,
most of these existing studies collect and analyse data from
either the physical world (Lv et al., 2015; Song et al., 2016)
or social world (Anantharam et al., 2015; Gu et al., 2016).

Smart city is a typical Cyber-Physical-Social (CPS) sys-
tem, which usually collects, processes and analyses data of
different types and modalities. It is common that different
sources may publish incomplete data in different modalities
about the same physical phenomenon. Obviously, data from
different sources should complement and knowledge discov-
ered should reinforce each other, e.g., a traffic anomaly that is
not inferred from traffic sensor observations might be clearly
explained by a number of tweets. Nevertheless, the challeng-
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Figure 1: Overview of a traffic event detection system.

search (Wang et al., 2018b; Hou et al., 2018) fuses represen-
tations learned from text, visual and audio. Generative Ad-
versarial Network (GAN) (Goodfellow et al., 2014) is one of
the most influential models in recent deep learning research.
The adversarial learning framework has been adopted in a
number of tasks, such as learning representations for realis-
tic image generation (Goodfellow et al., 2014), novelty de-
tection (Sabokrou et al., 2018), and semi-supervised learn-
ing (Springenberg, 2015).

Figure 1 depicts the overview of the proposed multi-
modal traffic event detection system. Itis assumed that when
a traffic event occurs, some kind of data characterising the
event might be generated at different sources, e.g., pedes-
trians might post incident information on Twitter, or read-
ings of the traffic sensor might show some different patterns.
With the historical data, an event detection model (based
on semi-supervised deep learning) can be effectively trained
and used to detect future traffic events in real time. Conse-
quently, detail about the event could be transferred to a traffic
management centre (TMC) and disseminated to transporta-
tion users after verification.

The main contribution of this study is the design and
evaluation of a multi-modal Generative Adversarial Network
(mmGAN) for the traffic event detection and classification.
The proposed network attempts to address the two main lim-
itations of existing studies on integrating data analysis of dif-
ferent modalities and extremely limited amount of labelled
data in big data applications. A particularly novel aspect of
the network is the employment of semi-supervised learning
based on generative adversarial training. To our best knowl-
edge, this is the first work to identify and classify traffic
events with both sensor and social media data in a semi-
supervised manner. The model has been evaluated on a
large, real-world dataset, which contains 20 millions traf-
fic flow readings and 8 millions tweets from the San Fran-
cisco Bay Area over a period of 4 months. The results con-
firmed that mmGAN can effectively learn useful representa-
tions characterising the multi-modal data simultaneously.

The rest of the paper is organised as follows. In Section
2, we review some of the representative methods in process-
ing and analysing sensor data and social media textual data

in the intelligent transportation domain. In Section 3, we
describe in detail the design of the semi-supervised, multi-
modal Generative Adversarial Network for traffic event
detection and classification, and the algorithm for semi-
supervised training. In Section 4, we conduct a number of
experiments with the proposed method as well as several
baseline models on the same dataset, and discuss the eval-
uation results. Finally, in Section 5, we conclude the paper
and point out some of the future research tasks.

2. Related Work

Traffic events may be caused by many factors, e.g., ac-
cidents, traffic hazards, weather conditions, and traffic con-
trol. By analysing data collected from the cyber, physical
and social worlds, traffic events can be detected and clas-
sified. These events are normally reported by transportation
authorities, with a possible delay in most of the cases. Figure
2a shows some events reported by the Department of Trans-
portation on November 1st, 2013 (marked in blue and red).
Usually, the same event (i.e., the red one in Figure 2a) is sig-
nified by data of a single modality, e.g., either sensor data
or social media data, as shown in Figure 2b and Figure 2c.
However, data from one source of a single modality might
be missing, incomplete or even erroneous. Traffic even de-
tection from multi-modal data, e.g., GPS, smartphones, and
cameras, has shown impressive performance (Wang et al.,
2018b; Hou et al., 2018). In relation to data used in our cur-
rent work, we discuss the existing work in three categories:
sensor data based, social media data based, and multi-modal
data based.

Methods using sensor data: With the rapid develop-
ment in ITSs, the amount of traffic sensor data collected
from GPS (Zhang et al., 2015), loop sensors (Lv et al., 2015),
smartphones (D’Andrea and Marcelloni, 2017) and cameras
(Zhang et al., 2017), is exploding and much of such data has
been made publicly available. Sensor observations usually
follow a recurring pattern, but may vary abnormally due to
traffic incidents, road conditions, social events, and other
factors. As illustrated in Figure 2b, the blue curve shows
the actual traffic flow, while the orange one depicts the pre-
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Figure 2: lllustration of the traffic events detected from cyber, physical and social worlds.

dicted traffic flow series. A sudden drop of actual traffic
flow at around 9 AM may indicate a potential event and can
be detected by anomaly detection applications. Studies in
(Zhang et al., 2015) and (D’Andrea and Marcelloni, 2017)
develop methods to detect sudden changes in GPS data col-
lected from smartphones and taxi traces to identify incidents,
traffic jams, and social events, and further discover when,
where and how the events happened.

Methods using social media data: As of 2020, there
are around 200 billion tweets posted on Twitter each year.
The large amount of social media data, covering nearly ev-
erything happening around the world, is easily accessible
and has become valuable for research in data mining and
knowledge discovery, e.g., sentiment analysis, event detec-
tion, and recommendation. In contrast to sensor observa-
tion data, social media data has some attractive features, e.g.
it covers far more areas and topics, can be collected at low
cost, and has high-level semantics understandable to human
users. For traffic event detection purpose, millions of geo-
tagged tweets can be acquired from Twitter in real-time and
classified using various methods, e.g., Conditional Random
Fields (Anantharam et al., 2015), Latent Dirichlet Alloca-
tion (Wang et al., 2017), and deep neural networks (Dabiri
and Heaslip, 2019).

Methods using multi-modal data: Recent studies
(Wang et al., 2018b; Hou et al., 2018) apply deep learn-
ing models that fuse representations learned from text, vi-
sual and audio, and show superior performance over mod-
els based on data of single modality. However, the use of
multi-modal data in smart city applications, more specifi-
cally, traffic event detection, is still very limited. City CPS
data from different sources usually has completely different
characteristics. For example, the trustworthiness of the data
collected from the social world may be questionable because
of social spams. Data from the physical world usually has
low-level semantics and may not be always available due to
sensor faults or communication failure; furthermore, cov-
erage of the sensor deployment may be limited. In many
situations, data from the two worlds can be complemen-
tary. By analysing such data together, it is argued that more
comprehensive and trustworthy knowledge can potentially
be discovered. Previous approaches, i.e., (Pan et al., 2013)
and (Anantharam et al., 2016) exploit sensor data for traffic

anomalies detection, then search social media data with the
detected time and location, and further describe or explain
the anomalies with the social media textual data. However,
these studies do not consider and process the data of different
modalities simultaneously. In a sense, they have not fully ex-
ploited the potential of the complementary data. Their lim-
itations are similar to those that process and analyse data of
individual modalities. In this paper, we address this issue by
designing a multi-modal feature learning component which
processes both sensor and social media data simultaneously.

3. multi-modal Generative Adversarial
Network (mmGAN) Architecture

The overall architecture of the proposed multi-modal
Generative Adversarial Network (mmGAN) is shown in Fig-
ure 3. In this architecture, the multi-modal feature learning
component is used to encode the input data into numerical
vectors and transform the data of different modalities into
representations which can be simultaneously processed by
one network. The output from each encoders is concatenated
to form a multi-modal feature representation for the gener-
ative adversarial learning. The semi-supervised Generative
Adversarial learning process takes as input the data of mul-
tiple modalities and attempts to not only discriminate if the
the data is real or generated, but also classify it. It aims to
exploit the complementary sensor and social media data for
better traffic event detection and classification, with limited
amount of labelled data and large amount of unlabelled one.

3.1. Multi-modal Feature Extraction

Our current study considers traffic related data of two
different modalities, i.e., sensor data which is usually rep-
resented as time series, and social media tweets which are
represented as short texts. The multi-modal feature learning
architecture transforms different data into a unified multi-
modal feature representation as shown in Figure 3. There
are two types of encoders: the Sensor Data Encoder com-
ponent is for sensor input processing (shown in Figure 4)
and Social Data Encoder for social media text (shown in
Figure 5). The two deep network components extract fea-
tures from the sensor time-series and twitter messages, re-
spectively. The extracted features are concatenated to form

Qi Chen et al.: Preprint submitted to Elsevier

Page 3 of 9



________________

Sensor
Feature

Discriminator D

Multi-Modal:

2064,
1746,
582, Sensor Data
Encoder
A

336,

7 —» Generator G

368, >

Trlar#ic, O

and, N O L5 Social Data

Y

Feature

i «| Fully Connected '
g Layers ;

Layers

low, | Encoder
gas, Q H
Word E
Embedding;

0%
| Fully Connected @
9%
S

Y

O-COb®H0-00
0000

Text
Feature

Classifier C

Multi-modal feature learning

Figure 3: Multi-modal feature learning from both sensor time series and text embeddings

one multi-modal feature representation, which is used in the
multi-modal Generative Adversarial Network for detecting
and classifying traffic events.

3.1.1. Sensor Data Encoder

To extract features from time-series data, we use the Re-
current Neural Network (RNN) as the core module. A RNN
contains directed links among neurons, which makes it es-
pecially suitable to process data modelled as temporal se-
quences, X = (X, X,,..., X7). At each time step ¢, the
hidden state i, of the RNN is updated by A, = f(h,_,x,),
where f is a non-linear function. We select the LSTM
unit in this study which can solve the exploding and vanish-
ing gradient problems of vanilla RNNs. A standard LSTM
(Hochreiter and Schmidhuber, 1997) updates the hidden
state iteratively with Equation 1:

Ji=oWx,+Ush,_y +by)
i, =c(Wx;+Uh,_, +b)
C, = f; % Ci_y + i, ¥ tanh(Wex; + Uch,_; + b)) (1)
0, =o(W,x, + Uyhy_y +b,)
h, = o, * tanh(C,)

where the output of the forget gate, input gate, and output
gate are denoted as f;, i, and o,, respectively. C; denotes the
cell state and h, denotes the hidden state. The weight W,
bias b and sigmoid functions ¢ are utilised to build connec-
tions among input, hidden and output layer.

In Figure 4, two RNN layers are used in the Sensor Data
Encoder to extract representations. As traffic sensor obser-
vation may vary abnormally due to traffic events, the first
RNN layer is pre-trained and aims to predict traffic flow
sequences given historical observations. Potential traffic
events are represented by the difference between the actual

sensor reading and predicted values (referred to as residu-
als). The calculated residual values during traffic event usu-
ally should be much larger than the one at normal period, as
shown in Figure 2b. The residual values are the input to the
second RNN layer, which aims to extract the representation
for the potential events.

Sensor
readings

LSTM - RNN 1 >

residuals

TNNY - INLST

0000

- J L - )
LSTM-RNN 12 . LSTM-RNN 2:
- pre-trained with all sensor readings

. - extract event features
- calculate residuals to represent events

Figure 4: Sensor Data Encoder Architecture

3.1.2. Social Data Encoder

The Social Data Encoder component attempts to extract
an effective representation for the short social media texts.
The input to the Encoder is a sequence of words in a tweet,
each of which is represented as a word embedding vector.
They are initialised with the word embedding pre-trained on
400 million twitter posts (Godin et al., 2015). A tweet with n
words can be represented as .S., = (Sd, Sg, . S:,i)’ where
d is the dimension of the embedding vector.

The architecture of encoder is shown in Figure 5. The
way that it extracts textual representations from tweets is
similar to the one proposed in (Kim, 2014). It consists of
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a convolutional layer and a max pooling layer. In the convo-
lutional layer, a convolution filter has a size of A X d, where
h is the window size and d is the width of filter equal to the
word-vector dimension. Sliding the filter across the matrix
S ., produces a feature map s/ with size (n — h + 1) which
is represented as s = [s1,82, .85 e Sy_py1], Where s; is
calculated with Equation 2.

s;=ReLUW, - S;.iin_1) @

where ReLU is an activation function, W, represents the
weights of filter, S;.,, ,_; represents the contiguous s word
embedding vectors and (-) is the dot product between weights
W, and word vectors S;.;,,_;. As shown in Figure 5, the
coloured dashed lines in the convolutional layer represents
this convolutional learning process, where different colours
denote different filters.
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Figure 5: Social Data Encoder architecture

With K different filters, K feature maps s =
[s!,s?,...,sK] are generated. We apply a max-pooling op-
eration to each feature map with Equation 3.

m = [6(s"), 5(s2), ..., 6(s5)] 3)

where 6(s/) denotes the max-pooling process, which se-
lects the maximum value from the feature map s/. Intu-
itively, the convolution operation extracts local features into
higher level representations in the feature maps, and the
max-pooling extracts the distinguishing aspects of each fea-
ture map while reducing the output dimension. The final so-
cial data representation m with size K is then concatenated
with sensor data representation for further multi-modal clas-
sification.

3.2. Semi-supervised Generative Adversarial
Learning

Due to the fact that only limited amount of labelled data
is available in any big data applications, it is not appropri-
ate to use standard deep learning methods for supervised
tasks. We noticed in our experiments that results gener-
ated using either the Sensor Data Encoder, Social Data En-
coder or Multi-modal feature component is unsatisfactory.
To this end, we extend the model to a semi-supervised archi-
tecture based on the Generative Adversarial Network (GAN)

(Goodfellow et al., 2014). The original GAN sets up an ad-
versarial game between a discriminator and a generator. The
goal of the discriminator is to distinguish whether a sample
is drawn from the true data or generated by the generator. On
the contrary, the generator is optimised to produce samples
that are not distinguishable by the discriminator. In this way,
the generator and discriminator compete with each other to
boost their performance in a seamless manner.

A standard supervised model, e.g., classifiers, can be ex-
tended to a semi-supervised one by adding samples from the
generator G in GAN to the dataset and labelling them with
a new class, “generated”, denoted as y = K + 1 (Springen-
berg, 2015; Salimans et al., 2016; Dai et al., 2017; Zheng
et al., 2017). Inspired by the idea, we design a multi-modal,
semi-supervised adversarial training architecture for traffic
event detection and classification.

As shown in Figure 3, the architecture consists of three
components: a Generator G, a Discriminator D, and a Clas-
sifier C. G and D in mmGAN are trained with conflicting
objectives. G takes in a noise vector z and produces traffic
data of two modalities: sensor observations and social me-
dia texts (both in the form of numerical vectors). D takes in
multi-modal feature vector and predicts if it is a sample from
the real data or G. G is trained to maximise the probability
that D makes a mistake, while D is trained to minimise the
probability that it makes a wrong prediction. Through this
adversarial training process, features that could distinguish
real samples from the generated ones are learned in an un-
supervised way. Meanwhile, the multi-modal feature com-
ponent could learn representations from a large amount of
unlabelled data through this adversarial training process.

C is a standard multi-class classifier that also takes in
multi-modal feature vector and attempts to predict a correct
label for an input. As the multi-modal feature learning com-
ponent is shared by both D and C, the three components can
be jointly optimised. The representations learned from the
unlabelled data could also help improve the performance of
C. The loss function for training the generator L, discrimi-
nator L, and classifier L, are shown in Equation 4, Equation
5, and Equation 6 respectively.

L, = —E,log D(G(z)) “)

L,=- [Exs,xf~pdma(xs»xx) log D(xg, x;) )
—E,log(1 — D(G(2)))

L, = _IExs'xt’prdala(xs’xt’y) log C(x,, x,) (6)

where x and x; represents sensor data input and twitter word
embedding input, respectively. The detailed training process
of the proposed mmGAN is summarised in Algorithm 1.

4. Experiments and Evaluation

We have conducted extensive experiments using a large,
real world, multi-modal dataset, which was prepared by in-
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Algorithm 1 mmGAN Training Algorithm

1: Input: unlabelled multi-modal input (xg, x,), and la-
belled multi-modal input (xg, x,, ¥);
2: for the number of training iterations do
Draw m noise samples;
Draw m samples from unlabelled multi-modal input
(X0 X,);
5: Perform gradient descent on the parameters of D ac-
cording to Eq. 5 on the combined mini-batch of size 2m;
Draw m noise samples;
7 Perform gradient descent on the parameters of G ac-
cording to Eq. 4;
8: Draw m samples from labelled multi-modal input
(X55 X1, ¥);
9: Perform gradient descent on the parameters of C ac-
cording to Eq. 6;
10: end for

terlinking two large datasets that have been widely used in
existing research and a specific dataset constructed by our-
selves. Performance of the proposed method was evalu-
ated and compared to a number of state-of-the-art supervised
learning methods.

4.1. Dataset

The Caltrans Performance Measurement System (PeMS)
(Caltrans, 2019) provides large amount of traffic sensor data
that has been widely used by the research communities. The
data is collected every 30 seconds from many vehicle detec-
tor stations that report at 5-minute interval throughout the
state of California in the United States. We used the traf-
fic flow data in the San Francisco Bay Area from August
2013 to November 2013 and further aggregated the readings
at 15-minute interval. The resulting dataset contains around
20 million traffic flow readings from 1,649 traffic detector
stations and data size is around 13 GB.

We reused the geo-tagged twitter dataset published in
(Anantharam et al., 2015), in which more than 8 million
tweets were collected from August 2013 to November 2013
for the San Francisco Bay Area. The size of the twitter
dataset is around 2 GB. Most of the tweets were posted by
ordinary people that cover a variety of topics. We also col-
lected geo-tagged tweets that report traffic event information
from official accounts, i.e., @TotalTrafficSF, from August
2013 to November 2013 with the twitter API.

To create the multi-modal traffic dataset, we first filtered
traffic-related tweets with a list of keywords, e.g. “traffic,
block, delay, highway, freeway, accident, incident, construc-
tion”. We matched the tweets with the sensor data that has
temporal (two hours) and spatial (one kilometer) overlap-
ping, therefore creating 2,227 pairs of multi-modality sam-
ples. We used the (California Highway Patrol) CHP inci-
dent dataset collected from the PeMS (Caltrans, 2019) to as-
sist the labelling process. The CHP incident dataset contains
the detailed time, location, duration and incident types (e.g.,
traffic hazard, traffic collision, etc.), which we used to la-

Table 1
Distributions of the multi-modal datasets

‘ Training Dataset ‘ Test Dataset ‘ Total

Traffic Event 1390 155 1545
Traffic Info 614 68 682
total | 2004 \ 223 | 2227

bel the multi-modal instances based on spatial and temporal
overlaps. The remaining instances that are not covered in the
incident dataset are manually labelled. Our task is to con-
sider both the sensor and tweet data simultaneously and cat-
egorise it into one of the two classes: (1) Traffic event, rep-
resenting a non-recurring event that generates an abnormal
change in traffic and transportation capacity. The examples
of non-recurring events include traffic crashes, disabled ve-
hicles, road construction, vehicle fire, etc. The current work
is to inform users and agencies the occurrence of an ongo-
ing traffic event if there is any. We will consider the case
of multi-class classification in the future work, which would
provide users more intuitive information with specific event
types; and (2) Traffic information (non-traffic event), re-
porting daily traffic conditions, past traffic events, new traffic
rules, traffic advisory, and any other information on transport
infrastructures. The number of traffic event and the number
of traffic information for both training and test sets are re-
ported in Table 1.

4.2. Setup

Each input sample to the model consists of a sensor ob-
servation sequence and a twitter message (in the form of a
sequence of word embeddings). As there may be multiple
sensors reporting the same event, we built an input block for
sensor data with a block size of 10. The dimension of the
sensor input shape is 16 x 10, where 16 is the number of
time steps in 4 hours. For social media text input, we repre-
sented each word with a word embedding of 400 dimension.
Most of the tweets contain less than 15 words, so we only
considered the first 15 words in each tweet. The dimension
of a twitter input is 15 x 400.

We performed stratified 10-fold cross-validation and
keep each partition containing roughly the same proportions
of traffic event instances and traffic information instances.
The model is trained with 90% of the data and tested with
the rest 10% of the data. We performed a grid search to de-
termine the best parameters for the proposed mmGAN: in
the Social Data Encoder, the window size of filter was set to
2, and the dimension of the hidden units in both Social Data
Encoder and Sensor Data Encoder was set to 32. For the two
fully connected layers in Discriminator D and Classifier C,
the hidden size was set to 32. The number of batch size was
64; the dropout rate was set to 0.5; the Adam optimiser with
early stopping was used to avoid overfitting.
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Table 2
Performance Comparison of Different Models

Data Sensor Data Only Social Data Only Multi-modal Data
Models SVM Sensor Data SVM Social Data RNN CNN mmGAN
Encoder Encoder

Accuracy | 60.83 + 5.34 | 68.23 + 250 | 76.10 + 3.75 | 82.24 + 2.09 | 84.17 + 2.08 | 83.45 + 1.86 | 87.17 + 3.63
Precision | 59.53 + 4.38 | 67.93 + 7.23 | 76.76 + 3.35 | 83.19 + 2.51 | 84.30 + 1.74 | 83.21 + 2.19 | 87.40 + 3.65
Recall 60.83 + 5.34 | 68.28 +2.50 | 76.10 + 3.75 | 82.24 + 2.09 | 84.17 + 2.08 | 83.34 + 1.86 | 87.17 + 3.63
F1 59.87 + 455 | 64.36 + 9.53 | 76.30 = 3.51 | 82.37 +2.18 | 84.05 + 1.92 | 83.21 + 2.14 | 87.16 + 3.53
AUC 60.06 + 7.82 | 64.94 + 7.62 | 82.31 + 3.07 | 90.87 + 1.43 | 91.43 + 2.69 | 91.03 + 2.31 | 93.44 + 2.06

4.2.1. Baseline Models

Data of single modality (i.e., either sensor data or so-
cial media data) can also be used to discover traffic events.
We re-implemented and tested the following two baseline
models with only data of single modality: (1) Support Vec-
tor Machine (SVM) is a popular kernel method for super-
vised learning tasks and has been widely used to process
sensor data and social media data, e.g., time series predic-
tion (Vanajakshi and Rilett, 2007) and twitter classification
(Pereira et al., 2017). We implemented two SVM models
using the sensor time series and social text embeddings, re-
spectively, to detect traffic events; and (2) Sensor Data En-
coder and Social Data Encoder have been explained in Sec-
tion 3, and shown in Figure 4 and Figure 5, respectively.
They were used separately to extract features from sensor
data and social media data. To detect and classify traffic
events, a fully connected layer with hidden size of 32 and a
sigmoid output layer were added at the top of the two mod-
els.

We also re-implemented and tested the following three
baseline models with data multiple modalities for perfor-
mance comparison: (1) Multi-modal Network (MMN) was
implemented as a classifier and its architecture is similar to
the component C in the mmGAN architecture; (2) RNN has
been primarily used to to extract features from data with
strong temporal characteristics, e.g., sensor data (Tian and
Pan, 2015) and social media data (Dabiri and Heaslip, 2019).
In our implementation, after using RNN to process sensor
data and social media data separately, the extracted feature
vectors were concatenated and fed into a fully connected
layer for prediction; and (3) CNN has also been widely em-
ployed in many different types of supervised tasks, e.g., im-
age classification (He et al., 2016), and natural language pro-
cessing (Gehring et al., 2017). It has also been successfully
used to extract features from sensor data (Wang et al., 2018a)
and social media data (Dabiri and Heaslip, 2019). We used
CNN to extract features from sensor and social media data
separately, and concatenated the feature vectors for predic-
tion.

4.3. Evaluation

We used the standard evaluation metrics for assessing
classification performance, i.e., accuracy, weighted average
recall, precision, F1 and AUC score. We report the mean
and and the 95% confidence interval of the testing results on
models trained with 10-fold cross-validation. The evaluation

results of the proposed mmGAN and the baseline models are
shown in Table 2.

The most notable observation is that the overall perfor-
mance of those models that process and analyse multi-modal
data simultaneously is better than those with only data of a
single modality in all metrics. This observation obviously
confirmed our expectation that exploiting complementary
data of different modalities does enable us to extract trust-
worthy knowledge and improve classification performance.
Among the three models that process multi-modal data, mm-
GAN outperformed both CNN and RNN with 3% improve-
ment in accuracy, 3.1% in precision, 3% in recall, 3.11% in
F1and 2.01% in AUC. This showed the effectiveness of the
multi-modal learning and the adversarial training: the sen-
sor and social data encoder learn representations from both
types of data; the generator and the discriminator compete
with each other and improve each others’ performance at the
same time. As a consequence, the classifier making use of
the shared component in the discriminator is able to improve
its own performance with the multi-modal data, even though
its differs greatly in the level of granularities and semantic
meaning.

Table 2 shows that models (i.e., SVM, Social Data En-
coder, and Sensor Data Encoder) which process and analyse
single modality data can also detect and classify events suc-
cessfully with certain degree. In general, as sensor data con-
tains much noise and many missing values, e.g., no nearby
sensors to report such traffic event, models using the sensor
data produced the worst performance among all the methods.
On the contrary, social media data contains more obvious
features, e.g., traffic events related keywords, which helped
extract more informative representations and generate better
results compared with processing sensor data. With single
modality data, the proposed Sensor Data Encoder and Social
Data Encoder outperformed the SVM in terms of all metrics,
which showed that the two models could extract reasonably
good representations from the sensor and text data, respec-
tively.

To evaluate the performance of the mmGAN with a lim-
ited amount of labelled data, we compared mmGAN with
the Multi-modal Network (MMN). MMN is a classifier and
its architecture is identical to the component C in the mm-
GAN architecture. Their performance in terms of accuracy
with different amount of labelled data is plotted in Figure
6. It can be seen that the proposed mmGAN outperformed
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Figure 6: Classification accuracy of mmGAN and MMN with
different amount of labelled data.

MMN when we shrank the size of the training data. When
the size of the labelled data was very small, e.g., 5% — 30%
of the whole labelled data, mmGAN notably outperformed
MMN. This confirmed that the Discriminator D could learn
better representations from both large amount of unlabelled
and very limited amount of labelled data through the gener-
ative adversarial training. Ultimately, it contributed to im-
prove the performance of Classifier C. It can also be seen
that when more and more amount of labelled data was used,
their performance tended to converge. As the number of traf-
fic related tweets that can be matched with sensor readings
is limited, we select a portion of the paired data as labelled
data and treat the rest part as unlabelled data. We will con-
sider using the additional unlabelled data (13GB sensor data
and 2GB tweet data) of each modality separately in an unsu-
pervised manner to further improve the results in the future
work.

4.4. Case Study

We provided 4 examples extracted from the dataset in
Figure 7 and 8. They were misclassified by models using a
single modality data, but correctly classified with mmGAN
using multi-modal data. We show the sensor readings and
social media content in four subfigures. In each subfigure,
the coloured lines show the patterns of real sensor readings,
where x-axis represents time of day and y-axis denotes traffic
flow in 15 minutes. The colours of lines represent different
sensors close to (within 1 kilometer) a particular event, and
the number of sensors reported in each event could be dif-
ferent. The corresponding tweet messages are shown below.

Figure 7 shows two traffic events that were successfully
detected by mmGAN but were missed by single modality
model. The tweet messages did not provide enough evidence
to identify whether it was a traffic event, so the Social En-
coder model wrongly classified the two cases as non traffic
events. By adding the sensor data into the proposed mm-
GAN, the cases were correctly classified as traffic events.

Figure 8 shows two examples misclassified as real-time
traffic events by models using only the social media data,
but successfully classified by mmGAN. As the two tweets
contain traffic event related keywords, e.g. stuck, traffic, and
accident, the Social Encoder model categorised them as traf-
fic events. However, the traffic flow data at the same location
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(a) 2013-09-17 15:01:42

Forgot how much | hate traf-
fic on the 101. And why didn’t
| get a tesla rental at the Avis
counter?

(b) 2013-10-02 19:13:00
Sun is going down. Stuck in traf-
fic. Ugh. Looks like we're going
to be late to #maroon5.

Figure 7: Two traffic events correctly detected by mmGAN
but misclassified by others.
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(a) 2013-09-03 19:08:49
Reporter on the San Jose news
just said higher employment =
more traffic. Now we can get
stuck in traffic.

(b) 2013-09-02 08:29:35
SJPD seek driver after double-
fatal accident.

Figure 8: Traffic related information detected by mmGAN but
misclassified by single modality model

during the same time period showed normal traffic patterns.
By using both type of data, the cases were correctly classi-
fied as non-traffic events by mmGAN.

5. Conclusion and Future Work

Modern expert systems and applications usually process
and analyse big data from different sources, often in mul-
tiple modalities. While the data might be noisy, incomplete
or inconsistent, it is complementary to each other and poten-
tially enables more valuable knowledge to be extracted. In
addition, it is also impractical to obtain large amount of la-
belled data in real-world applications. We propose the multi-
modal Generative Adversarial Network, a semi-supervised,
deep learning based model that can process data of multiple
modalities in a unified framework, for traffic event detection
and classification. The evaluation results clearly showed the
advantages of the mmGAN over other models with or with-
out multi-modal data in terms of precision, accuracy and
F1in classification. Furthermore, the generative adversarial
training process with large amount of unlabelled and limited
amount of labelled data could indeed help extract more use-
ful knowledge than other baseline models.

In the current work, we only focused on traffic sensor
data and textual data. In the future, we plan to further refine
the proposed model so that it can process more types of data
for other smart city applications, e.g., GPS traces, image and
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wearable sensor data. As data from different sources cannot
always be matched, an interesting direction is to extend the
proposed model to be compatible with both single modality
input and multi-modality input. Animportant problem being
considered is to apply the attention mechanisms to model the
temporal interplay of multi-modal data and learn better rep-
resentations from it, rather than simply concatenating repre-
sentations learned from data of individual modality. Another
future work is to extend the current model to support multi-
class or even multi-label classification, which would provide
users more intuitive knowledge.
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