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Abstract An approach to classifying Magnetic Resonance (MR) image dade-
scribed. The specific application is the classification oflidéan data according to
the nature of the corpus callosum, however the approach bas general appli-
cability. A variation of the “spectral segmentation with tingcale graph decom-
position” mechanism is introduced. The result of the sedatem is stored in a
quad-tree data structure to which a weighted variatioro(developed by the au-
thors) of the gSpan algorithm is applied to identify frequsub-trees. As a result
the images are expressed as a set frequent sub-trees. Téebera great many of
these and thus a decision tree based feature reductionideehis applied before
classification takes place. The results show that the pezpapproach performs
both efficiently and effectively, obtaining a classificatiaccuracy of over 95% in
the case of the given application.

1 Introduction

The application of data mining techniques to image datalwega number of chal-
lenges relating to the representation of images into ancgpiate format that per-
mits the application of data mining techniques. This preepssing typically in-
volves some form of image segmentation to identify imageufes/objects; fol-
lowed by the recasting of the image set into some approdoateat.

This paper is focused on a particular application domaia,dlassification of
Magnetic Resonance (MR) image data, more specifically thgsiflcation of MR
image data according to the nature of tmepus callosum. The corpus callosum
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is a highly visible structure in MR images whose functionascbnnect the left
hemisphere of the brain to the right hemisphere, and be nsfe for communi-
cation between these two hemispheres. The specific appticased to illustrate
the described classification process is the categorisafiMR images into one of
two classes: (i) musicians and (ii) non-musicians. Howetrex process has more
general applicability.

The classification process commences with the segmentatiba inputimages.
With respect to the specific application reported here #hi® iidentify the corpus
callosum. For this purpose a variation of a standard imagmeatation technique,
spectral segmentation, is introduced. A registration process is then appliedhso t
each identified corpus callosum is founded upon the sam@ofige pixel repre-
sentations, for each corpus callosum, is then tessellatddst@red in a quad-tree
data structure, one tree per image. The advantage offergelmuad tree represen-
tation, unlike some other representations, is that inféionaabout the spatial rela-
tionships between individual pixels is maintained. Theseg are then processed to
identify frequent sub-trees that occur across the inpugerset. For this purpose
a weighted graph mining algorithm was developed to take éotasideration that
greater significance should be assigned to quad-tree ndéaleer ¢o the root than
nodes further away. The identified sub-trees then formefltngamental elements
of the feature space. Each image was then represented is ¢éthis feature space
using individual feature vectors.

From experimentation it was discovered that the number atfufes (frequent
sub-trees) could be substantial and that many featuresesktorplay no part in
the resulting classification. To reduce the number of femttm a more manageable
number a feature selection mechanism was applied usingisiatetree algorithm;
features that did not appear in the decision tree were rethfsoen the input set.
A second application of the decision tree algorithm thetdgié the final classifier
(although any other appropriate classifier generator coale been used). The re-
sults, in terms of the specific application under investayatwere found to be very
good.

This paper makes a number of contributions:

e Anew approach to image pre-processing (forimage mining)ded on weighted
frequent sub-graph mining, is described; an approach #mabhiuch broader po-
tential application.

e Aninteresting image mining application which offers clesdical benefits with
respect to medical diagnosis (e.g. neurological disojderdescribed. To the
best knowledge of the authors there are no corpus calloautiiestthat take the
“shape” of the callosum into consideration (most studipsried in the literature
concentrate of the size of the callosum).

e A new variation, founded on an intensity threshold, of thalelsshed spectral
segmentation with multi-scale graph decomposition apgroa

The rest of this paper is organised as follows. The apptoatiomain is de-
scribed in Section 2 and some relevant previous work in 8e@&i The proposed
classification process is described in Section 4. The vargeps in the process:
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segmentation, registration and tessellation, weighteglgmining, feature selec-
tion and image classification are described in Sections B, & and 9 respectively.
An evaluation of the approach is reported in Section 10p¥edld by some conclu-
sions in Section 11.

2 The Application Domain

The focus of the work described here is brain MR images, apdiiticular a specific
structure in these images called the corpus callosum. Ampleaimage is given in
Figure 1. The corpus callosum is located in the centre ofrttege, the fornix is a
related structure which often “blurs” into the corpus caill and presents a partic-
ular challenge in the context of segmentation. The corpliestan is of interest to
medical researchers for a number of reasons. The size apd ehthe corpus callo-
sum have been shown to be correlated to sex, age, neurodatijendiseases (such
as epilepsy) and various lateralized behaviour in peopie.donjectured that the
size and shape of the corpus callosum reflects certain huheaateristics (such
as a mathematical or musical ability). It is a very distimetfeature in MRI brain
scans.

Several medical studies indicate that the size and shape obtpus callosum, in
humans, are correlated to sex [1, 6, 19], age [19, 21], brawit and degeneration
[9, 14], handedness [5] and various types of brain dysfoncfv, 11]. In order
to find such correlations in living brains, Magnetic Resa®(VIR) is regarded
as the best method to obtain cross-sectional area (and)sinfpenation of the
corpus callosum. Since manual tracing of the corpus catideuMRI scans is time
consuming, operator dependent, and does not directly giaatgative measures of
shape; there is a need for automated and robust methodsé&iztation, delineation
and shape description of the corpus callosum. This is thenmbtivation for the
work described here.

3 Previous Work

Image classification systems tend to rely on a pre-procgssap, specific to an
application, to extract a (reduced) set of “interestingittees from the image data.
This set is then used as the input to a classification algostfhere is a significant
body of literature covering the domain of image mining anég® classification
with application in many areas.

There is also a substantial body of work directed at the rgioihMR images.
For example Chen and Herskovits [2] present a Bayesianeamktfor joint clas-
sification founded on voxelwise MR image analysis. This wooksiders associ-
ations between cerebral morphology of all brain voxels agel @ sex. The ap-
proach includes an embedded feature selection phase sifidakearning. Ruan et
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Corpus Callosum

Fig. 1 corpus callosum in a midsagittal brain MR image.

al. [18] present a fully automatic three-dimensional dfasgtion of brain tissues
for MR images into three types of main tissues: Gray Mattehjté&/Matter, and
Cerebrospinal fluid and mixtures of these brain tissuesnGima Greenshields [3]
describe a three dimensional image classification teclenfgunded on the Markov
and Gibbs Random Field models. A Bayesian context decisienis adopted and
an MRF-GRF stochastic model is used for the classificatiadwfi-Echo MR im-
ages. This work, and similar work, is directed at the classiibn of MR images
in their entirety; the work described here concentratesegions of interest within
MR images.

To the best knowledge of the authors there has been little mothe application
of data mining techniques to study the corpus callosum. Twdias of note are
that of Herskovits and Gerring [10] and that of Machado efldl]. Herskovits and
Gerring describe a Bayesian network approach to LesiorciDéfihalysis (LDA)
that identifies associations between elements of the bmalading the corpus cal-
losum. Machado et. al apply a visual data mining method MRhatata to reveal
differences in the callosal morphology between male an&fersamples.
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4 Methodology

In this section an overview of the proposed MR image clasgifio process is pre-
sented, further detail is given in the following sectionsblack diagram outlining
the process is given in Figure 2 (the directed arcs indicata flow). The process
commences with image segmentation to extract the objeetgofrs) of interest,
in the case of the application under consideration hereighise corpus callosum
midsagittal slice of a 3D brain MR image. The next step is fresent the pixel
defined corpus callosum segments as quad-trees (one qeaper image), using
a predefined level of decomposition. For this represemtdbadoe effective a reg-
istration process must first be applied to the corpus caitosegments. The third
step is to apply a weighted graph mining technique to idgftEfiquently occurring
sub-trees within the quad-tree data set. The identifiedgsaphs are then the at-
tributes/features used to define each corpus callosumrmstef afeature vector.
As there may be a great many of these, and it is conjecturéddmae may be re-
dundant or superfluous, the fourth step is to apply a featlezton technique (to
reduce the number of attributes by removinggevant features from the features
vector). In the final step, the reduced data set is submibtéuet classifier generator
(A decision tree algorithm in Figure 2).

Corpus Callosum
segments

Graph
Generation

Fig. 2 Proposed methodology

5 Image Segmentation

The objective of image segmentation is to partition imagéesmeaningful regions.
For the work described here a variation of thelti-scale spectral image segmen-
tation algorithm by Cour and Shi (2005) was used [4]. Cour and Shgsrithm
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works on multiple scales of the image in parallel, withoatdtion, to capture both
coarse and fine level details, using the Normalized Cutstipaihg framework for
each image segmentation [20]. The algorithm has been stowark well in many
studies; however it was found that, in the context of the gsigallosum, the algo-
rithm did not work as well as expected. This was because idwsreasons: firstly
medical MR images have a lot of noises, secondly in MR imagegitensity-level
distributions between different soft tissues are not widks$tributed and moreover
the complexity of tissue boundaries cause many pixels ttafomixtures of tissues.
For this reason, we need to enhance the contrast of the MRegn&gvariation of
Cour and Shi's algorithm was therefore developed that egg@ithreshold interval
to extract objects with the same intensity values (suchasdhpus callosum) dur-
ing the application of the segmentation. This was found ¥ gi much improved
result.

Our proposed variation of Cour and Shi’s algorithm is fouhda the observa-
tion that the corpus callosum, which is located at the cesftthe brain, comprises
white matter tissue (i.e. the pixel represented corpus callosum has high iittens
values). Although one can visually recognize the outlinghaf corpus callosum
(Figure 1), portions of its boundary are indistinct, whigmaenake it difficult to ap-
ply segmentation algorithms based on edge informationeal®his is particularly
the case at the top portion of the corpus callosum, and bettieecorpus callosum
and the Fornix (see Figure 1). A further problem is that,joiten, intensity vari-
ations within the corpus callosum can be comparable or ekiteedifference with
the surrounding tissues.

1200 4

1000

Fig. 3 Histogram of the pixel grayscale values of the corpus caftos

Figure 3 shows a pixel intensity value histogram of the cemgallosum derived
from 30 selected MR images (256 gray levels were used) wheredrpus callosum
was very well defined and easy to detect using Cour and Skigighm. From the
figure it can be seen that:

e The corpus callosum tends to have relatively high intensityes, and
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Fig. 4 Probability plot of the corpus callosum pixel values.

e The distribution of intensity values seems to follow themat distribution.

The latter is demonstrated in Figure 4 which shows that tmpusbcallosum pixel
values follow the normal distribution with meafi= 160 and standard deviation
S=20. Figure 5a shows that with a threshold intervaXat S, the corpus callosum
can barely be recognized. With a threshold inteXat 2S a relatively distinct cal-
losum shape is evident with a few other non-adjacent strestusible as shown in
Figure 5b. With the threshold interval setXtt 3S, the corpus callosum is clearly
defined, although additional non-adjacent structures ke \asible (Figure 5c).
In Figure 5d, the corpus callosum starts to “blur” into thersunding tissues us-
ing a threshold interval wider thaX 4+ 3S. The significance here is that although
the threshold values may differ depending on individualge®s the high intensity
property of the corpus callosum can be exploited to yieldgarsmntation algorithm
that is both effective and efficient across the input imageTseerefore the interval
X 4+3Swas chosen, so as to exclude intensity values outside thevaht This strat-
egy was incorporated into Cour and Shi’s algorithm and usedtcessfully extract
the corpus callosum (and other incidental objects with #mesintensity values).

6 Registration and Tessellation

After segmentation a registration process was appliede@tkel represented im-
ages which were then tessellated and stored in a quad-pessentation. Prior to
the registration process sordata cleaning was also undertaken to remove the “in-
cidental objects” discovered during segmentation. Theikiéeiused was that the
object representing the corpus callosum can be identified) s$atistical measures
(itis the largest object and is locate in roughly the centtb@brain). Having identi-
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Fig. 5 Thresholding with various threshold intervals.

fied the corpus callosum object any other high intensity abjevere not considered
to be part of the corpus callosum and were removed.

On completion of data cleaning the registration processwmaertaken by fit-
ting each identified corpus callosum into a Minimum BoundRegtangle (MBR).
The tessellation process then comprised recursively dposimg the given MBR
space into quadrants. Each quadrant was represented byeamtite quad-tree
(with colour black or white), with the root of the quad-trespresented the entire
MBR space. The tessellation process continued with eadheofitiadrants “sofar”
being again partitioned into sub-quadrants, and so on. Tteeps was terminated
when a predefined level of granularity was reached, or aquéati sub-quadrant was
sufficiently homogeneous (95% black or white).

The advantage of the quad-tree representation was thatirtaimeed informa-
tion about the relative location and size of groups of piXeks the shape of the
corpus callosum). Nodes nearer the root of the tree repiedenlarger group of
pixels than nodes further away from the root. The use of tlaelegree data structure
was considered to be of particular relevance in the contettteocorpus callosum
as medical opinion suggested that the shape and size of thescoallosum is of
interest [1, 6, 19, 21].

The next stage was to process the quad-tree representeddnmaiglentify sig-
nificant features that occur across the image set (i.e. thefspiad- trees). This
was achieved using a bespoke frequent sub-graph miningitpehdescribed in the
following section.
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7 Weighted Graph Mining

There are various forms of graph/tree mining. In the coméxtis paper the form
of graph mining of interest is transaction graph mining, rettee images are repre-
sented as a collection of small graphs or trees. Graph misibgpadly concerned
with the discovery of interesting patterns in graph or tratdthe interesting pat-
terns are typically frequent sub-graphs. and thus the phifasquent sub-graph
mining” is often used. The challenge of frequent sub-grapting is that it necessi-
tates the repeated generation and comparison of candidaigraphs, the so called
graph isomorphism checking problem. The basic approaadah‘igrow” candidate
sub-graph that occur frequently in the graph set, howevegiigta computationally
expensive process.

Given the quad-tree representation advocated in this papées nearer the root
node are considered to be more significant than others. Ahaegigfrequent sub-
graph mining algorithm was therefore developed. The wéigktwere calculated
according to the proximity of individual nodes to the rootdedn each tree. This
weighting concept was built into a variation of the well kmowSpan algorithm
[22]. The algorithm operates in a depth first search maneee] by level, follow-
ing a “generate, calculate support, prune” loop. Candidabegraphs are pruned if
their support (frequency with which they occur across the graph set) isvbal user
defined “support threshold”. Note that a lower threshold @éntify a greater num-
ber of frequent sub graphs. Space restrictions precludieeiudetailed discussion
of this algorithm here, however, interested readers asgned to Jiang and Coenen
(2008) [12].

Application of the Weighted gSpan algorithm allowed for ttentification of
frequent sub-graphs (trees), within the quad-tree reptedecorpus callosum seg-
ments, representing common substructures (featuresjnvitile data set. Exper-
imentation indicated that, to capture the necessary leivdetail, a low support
threshold was required. However this produced a large numb&equent sub-
graphs many of which were redundant. A feature selectiomatios (discussed in
the following section) was thus applied to the identifiedjfrent sub-graphs.

8 Feature Selection

Feature selection is a well understood process used in Datgdv/for removing
irrelevant features from the feature space so as to enhangeutational efficiency.
Feature selection has attracted a great deal of attentibinwie data mining com-
munity, especially in the context of classification and jrgon where the aim is to
identify features that are “strong discriminators”. Clagsature selection methods
select individual features whose distribution has a sticmrgelation with individual
class labels. Reported methods [23] include: frequenastiolding, information
gain, mutual information, Pearson Correlation, and ¢Restatistic. An acknowl-
edged shortcoming of these methods is that redundant é&satusy be selected due
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to ignorance of the dependency between features. In ordset@ome this “wrap-
per methods” have been proposed that adopt a classifier nwdatle the feature
subsets and determine highly discriminative features. [Hi8jvever, such wrapper
methods can be computational expensive. A straightformaeghper method is to
apply a decision tree generator to the features [8]. In tbigext decision tree al-
gorithms offer the advantage that they inherently estinfaesuitability of features
for separation of objects representing different cladseatures that are included as
“choice points” in the decision tree are thus selected, evhil remaining features
are discarded.

For the work described here, the well established C4.5 éitgn{17] was used.
The objective was to select a sub-set of features (frequimgsaphs) with strong
discriminative power. The results presented in Sectiond6vb indicate that this
strategy was particularly effective.

9 Classifier Generation

The final stage in the process was to build the desired clasaging the identified
set of discriminating features. Any appropriate classijienerator can be used for
this purpose, however in the reported experiments (SedrQuinlan’s C4.5 al-
gorithm was used. The reasons for selecting a decisioralgeeithm were that they
are: (i) a very popular and effective data-mining technjdienon-parametric and
(iif) computationally fast[17].

10 Experimentation and Evaluation

A number of experiments were undertaken to analyse the qpeaface of the pro-
posed method in terms of classification accuracy. The exyaris described here
used an MR image set comprising 106 brain images dividedliggoto two cat-
egories (53 images per category): musician and non-musiltiss acknowledged
that, in data mining terms, a data set of 106 records is sa#.of the challenges of
the work described here is the limited amount of raw datal@ks for experimen-
tation. This is because of a number of difficulties that asspnted when collecting
MR image data, namely: (i) they are extremely expensive talypece, and (i) the
time consuming nature of MRI scanning. Consequently the kBge data sets
available for research are relatively small, compared ¢ousual data sets used for
the evaluation of data mining techniques.

As noted above each pixel represented corpus callosum sggeneganslated,
using the described process, into a quad-tree represantéitie maximum number
of leaf nodes in any quad-tree is given by whereN is the quad-tree level. The
quad-tree levels applied in the experiments were 4, 5, 6 gedUating to a max-
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imum number of nodes of 256, 1024, 4096 and 16384 respegtiiedte that the
level of detail increases with the number of quad-tree kevel

Table 1 shows the classification results obtained using Ters<CValidation
(TCV) with a quad-tree level of 4. Thie-before andF-after columns indicate the
number of features before and after the application of feaselection. TheC-
before andC-after columns give the classification accuracy before and aftdufe
selection. The support threshold is the minimum frequently which a sub-graph
must occur across the data set for the sub-graph to be coeditfeequent”.

Table 1 Classification accuracy for corpus callosum segments septed as 4-Level Quad-trees
(maximum of 256 tree nodes)

Levelg SupportF-beforg C-before F-after C-afte

4 20 24549 | 46.23 | 15 |70.75
30 4264 | 46.23 | 16 |69.81
40 1193 | 50.94 [ 18 | 68.87
50 639 | 50.94 | 19 | 71.7
60 262 | 5472 | 16 |68.87
70 151 50.94 [ 21 |61.32
80 86 51.89 | 16 |52.83
90 54 52.83 | 17 |50.94

R R R R R

Table 2 Classification accuracy for corpus callosum segments septed as 5-Level Quad-trees
(maximum of 1024 tree nodes)

Levelg SupportF-beforg C-before F-after C-afte

5 20 | 16094| 56.6 12 |90.57
30 4630 | 51.89 | 12 |83.96
40 2100 | 48.11 | 10 |80.19
50 1155 | 53.77 | 13 | 85.85
60 637 | 65.09 | 14 |80.19
70 405 | 55.66 | 14 |81.13
80 252 | 55.66 | 18 [80.19
90 130 54.72 17 | 70.75

oy oifoy oo ol o

Tables 2, 3 and 4 show the classification obtained using TCOY giiad-tree
levels of 5, 6 and 7 respectively. The column headings shioelichterpreted in the
same way as for Table 1.

Inspection of Tables 1, 2, 3 and 4 demonstrate that the dwetmasification accu-
racy improves after the application of the feature selecsivategy. The best classi-
fication accuracy of 928% (19 correct classifications per 20 images) was obtained
using a quad-tree level of 6 coupled with a 30% support tlolestiRegardless of
the quad-tree level, the trend of the classification acguiraproved as the thresh-
old support decreased. This is because more frequent syihrgyare identified as
can be seen from the-before columns. It is likely that as the support threshold
increases, significant sub-graphs are not discovered byrépd mining algorithm.
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Table 3 Classification accuracy for corpus callosum segments septed as 6-Level Quad-trees
(maximum of 4096 tree nodes)

Leveld SupportF-before C-beforeg F-afterf C-afte

6 20 | 35223| 60.38 [ 11 |85.85
30 9461 | 66.98 | 10 |95.28
40 4059 | 67.92 | 12 |84.91
50 2260 | 50.00 | 11 | 83.96
60 1171 | 60.38 | 11 |90.57
70 741 | 53.77 | 13 |83.96
80 433 | 54.72 | 13 |77.36
90 232 43.40 | 14 |75.47

| O O] OO | OO| O

Table 4 Classification accuracy for corpus callosum segments septed as 7-Level Quad-trees
(maximum of 16384 tree nodes)

Leveld SupportF-before C-beforeg F-afterf C-afte

7 20 |448683| 48.00 [ 13 |83.80
30 | 34440| 50.00 [ 12 |85.85
40 | 11998 45.28 | 11 |89.62
50 6402 | 50.94 | 10 |86.79
60 3317 | 60.38 | 13 |87.74
70 2032 | 53.77 | 13 |75.47
80 1117 | 50.94 | 13 |76.42
90 476 | 52.83 | 12 |78.30

ENIEN] IEN] BN IENT BN N

From the tables it can also be observed that accuracy ireseasthe quad-tree lev-
els are increased, up to level 6, and then begins to fall af.dbnjectured that this
is because “over fitting” starts to take place as the quaglrgpresentation starts to
get too detailed.

The results presented in Tables 1, 2, 3 and 4 are summaristet lgyraph pre-
sented in Figure 6, which plots classification accuratyakis) against support
threshold X axis) for the sequence of quad-tree levels featured in thergxents.

Image segmentation and graph mining are both computaljoergbensive pro-
cesses. The time complexity for the image segmentation Wwast® minutes per
image. For the given data set the graph mining algorithm smwke 2 minutes to
process and identify several thousand frequent sub-graptesgraph mining al-
gorithm took significantly longer to identify much largermhbers of frequent sub-
graphs. The worst case was the 4883 frequent sub-graphs found when the quad-
tree level was set to 7 and the support threshold to 20%. ailpithe entire classi-
fication process took several minutes to process the 106& e set.

11 Conclusions

In this paper an approach to MR image classification basedaphgmining has
been described. The work was directed at a particular MR énadagsification ap-
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Fig. 6 Classification accuracy for brain MRI images representetiffarent Quad-tree levels.

plication, the classification of MR images according to tlaune of the corpus
callosum featured within these images. However, the agiprbas more general ap-
plicability. Of particular note is the use of feature vestoonstructed from frequent
sub-graphs identified using a weighted variation of gSp&e. fésults obtained are
extremely encouraging and clearly demonstrate the utifitthe approach. Future
work will include the application of the process to otheribrsiR image applica-
tions, for example to the automated identification of digpsdsuch as Epilepsy. The
research team are also interested in alternative methgol®egirocessing MR im-
age data, and mechanism for post-processing of resultseladntext of the latter
the generation of explanations to support classificatiomesf data is considered to
be significant (i.e. the retracing of a classification reguthe features in the input
image that caused the classification).
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