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Abstract. A well-known approach to Knowledge Discovery in Databases involves the identification of
association rules linking database attributes. Extracting all possible association rules from a database,
however, is a computationally intractable problem, because of the combinatorial explosion in the number
of sets of attributes for which incidence-counts must be computed. Existing methods for dealing with this
may involve multiple passes of the database, and tend still to cope badly with densely-packed database
records. We describe here a class of methods we have introduced that begin by using a single database
pass to perform a partial computation of the totals required, storing these in the form of a set enumeration
tree, which is created in time linear to the size of the database. Algorithms for using this structure to
complete the count summations are discussed, and a method is described, derived from the well-known
Apriori algorithm. Results are presented demonstrating the performance advantage to be gained from

the use of this approach. Finally, we discuss possible further applications of the method.
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1 Introduction

Knowledge Discovery in Databases (KDD) is concerned with the extraction of previously unrecognised
and “interesting” information contained within (usually large) data repositories. “Interest” is of course
a subjective concept, and a definition of what is interesting is required: it is usually taken as an overall
measure of pattern value, combining validity, novelty, usefulness and simplicity [?]. Almost always, what
is being sought is some relationship which can be observed between categories of information in the
data. A particular way to describe such a relationship is in the form of an association rule which relates
attributes within the database.

An association rule [?] is a probabilistic relationship, of the form A — B, between sets of database
attributes, which is inferred empirically from examination of records in the database. In the simplest case,
the attributes are boolean, and the database takes the form of a set of records each of which reports the
presence or absence of each of the attributes in that record. The paradigmatic example is in supermarket
shopping-basket analysis. In this case, each record in the database is a representation of a single shopping
transaction, recording the set of all items purchased in that transaction. The discovery of an association

rule, PQR — XY, for example, is equivalent to an assertion that “shoppers who purchase items P, Q



and R are also likely to purchase items X and Y at the same time”. This kind of relationship is potentially

of considerable interest for marketing and planning purposes.

While the shopping-basket example is useful in illustrating both the principal characteristics of the
approach and its practical utility, there are many other applications which are susceptible to the method,
and even when attributes are not essentially boolean, it may be possible to transform the data into a
suitable form. For the purpose of this paper, however, we will assume a set I of n boolean attributes,
{a1,---,an}. Eachrecord in the database contains some subset of these attributes, which may equivalently

be recorded as a n-bit vector reporting the presence or absence of each attribute.

An association rule R is of the form A — B, where A, B are disjoint subsets of the attribute set I.
The support for the rule R is the number of database records which contain AU B (often expressed as a

proportion of the total number of records). The confidence in the rule R is the ratio:

support for R
support for A

These two properties, support and confidence, provide the empirical basis for derivation of the infer-
ence expressed in the rule, and a measure of the interest in the rule. The support for a rule expresses
the number of records within which the association may be observed, while the confidence expresses this
as a proportion of the instances of the antecedent of the rule. In practical investigations, it is usual to
regard these rules as “interesting” only if the support and confidence exceed some threshold values. Hence
the problem may be formulated as a search for all association rules within the database for which the
required support and confidence levels are attained. Note that the confidence in a rule can be determined
immediately once the relevant support values for the rule and its antecedent are computed. Thus the
problem essentially resolves to a search for all subsets of I for which the support exceeds the required

threshold. Such subsets are referred to as “large”, “frequent”, or “interesting” sets.

For the databases in which we are most interested, the number of attributes is likely to be 500 or
more, making exhaustive examination of all subsets computationally infeasible. In section 2 we review
methods described in the literature for avoiding this exponential scaling of the search space. We go on to
describe a new class of methods we have developed, which begin by performing a single database pass to
carry out a partial computation of the support counts needed, storing these in a tree structure. Section 3
describes this structure, first presented in [?], and the algorithm for its construction, which is conservative
in both space and time. In section 4 we extend the work previously presented to describe algorithms to
complete the summation of support totals. These algorithms are generic, in that they can be applied in
versions corresponding to many existing methods for computing association rules, making use of the tree
of partial supports as a surrogate for the original database. In section 5 we describe results arising from
an implementation of one such algorithm. These demonstrate that the use of the method we describe can
offer significant performance advantages. Finally, we review the conclusions we draw from this research

and suggest some future directions.



2 Algorithms for computing support

2.1 Exhaustive computation

It is instructive to begin by examining methods for computing the support for all subsets of the attribute
set I. While such “brute force” algorithms are infeasible in most practical cases, they provide a benchmark

against which to measure alternatives. The simplest such algorithm takes the form:

Algorithm BEF :
Y records in database do
begin ¥V subsets of record do
add 1 to support — count for that subset;

end

Three properties of this algorithm are of interest in considering its performance:

1. The number of database accesses required.
2. The number of computation steps involved in counting subsets of records.

3. The memory requirement.

For a database of m records, the algorithm involves a single database pass requiring m database
accesses to retrieve the records. Assuming the obvious binary encoding of attributes in a record, the
enumeration of subsets is straightforward, and will involve a total of up to m x 2" computation steps,
the actual number depending on the number of attributes present in each record. For each subset,
the corresponding binary encoding may be used to reference a simple array of support-counts, so the
incrementation is trivial, but will require an array of size 2™.

For small values of n, this algorithm is simple and efficient. However, in applications such as shopping-
basket analysis values of n in excess of 1000 are likely, making brute-force analysis computationally
infeasible. Even in cases in which the actual number of attributes present in a record is small, making
exhaustive enumeration practicable, the size of the support-count array is a limiting factor.

For these reasons, practicable algorithms for determining association rules proceed in general by
attempting to compute support-counts only for those sets which are identified as potentially interesting,
rather than for all subsets of I. To assist in identifying these candidates, it is helpful to observe that the
subsets of the attribute set may be represented as a lattice. One form of this is shown as Figure 7?2, for
a set of four attributes, {4, B,C, D}.

For any set of attributes to be interesting, i.e. to have support exceeding the required threshold level,

it is necessary for all its subsets also to be interesting. For example, a necessary (although not sufficient)
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Figure 1: Lattice of subsets of {4, B,C, D}

condition for ABC to be an interesting set is that AB, AC and BC are all interesting, which in turn
requires that each of A, B and C are supported at the required level. This observation, originally made in
[?] and [?], provides a basis for pruning the lattice of subsets to reduce the search space; if, for example,
it is known that D is not supported, then it is no longer necessary to consider AD, BD, CD, ABD,
ACD, BCD or ABCD. Algorithms which proceed on this basis reduce their requirement for storage and
computation by eliminating candidates for support as soon as they are able to do so. The tradeoff for

this is usually a greater requirement for access to the database in a series of passes.

2.2 Breadth-first traversal algorithms

The best-known algorithms which reduce the search space in this way proceed essentially by breadth-
first traversal of the lattice, starting with the single attributes in I. A number of such algorithms were
described by Agrawal and Srikant [?]. The general form of these is that they perform repeated passes
of the database, on each of which a candidate set Cj of attribute sets is examined. The members of
Cy are all those sets of k attributes which remain in the search space. Initially, the set Cy consists of
the individual attributes in I. In the “Apriori” algorithm of [?], the kth cycle proceeds as follows (for
k=1,2,.. until Cy = empty set):

1. Perform a pass over the database to compute the support for all members of Cf.
2. From this, produce the set Ly of interesting sets of size k.

3. Derive from this the candidate set Cy1, using the downward closure property, i.e. that all the

k-subsets of any member of Cy41 must be members of Ly.

Other algorithms, AIS [?] and SETM [?], have the same general form but differ in the way the
candidate sets are derived. The procedure in Apriori may be visualised as a downward iteration over the
lattice of figure ??. On each cycle, the support-counts for members of a row are computed, and then
those which fail to reach the threshold level are used to prune the next row of the lattice.

Two aspects of the performance of this algorithm are of concern. The first is the number of passes of
the database that are required, which will in general be one greater than the number of attributes in the

largest interesting set. The second is the size of the candidate sets which may be generated, especially



in the early cycles of the algorithm. A number of simulation results are presented in [?], for databases
of 1000 attributes within which each record is usually small and the expected maximal interesting sets
have no more than 6 attributes. Even with these constraints, the sizes of C} may initially become very

large; an example illustrated, for a database with the following characteristics:

e Average record-size = 10 attributes
e Expected maximal interesting set = 4 attributes

e Support threshold = 0.75%

led to a size of C in excess of 100,000 for the best algorithm. Large candidate-set sizes create a problem
both in their storage requirement and in the number of computation steps involved as each record is
examined. The implementation described for the Apriori algorithm stores the candidate set in a hash-
tree, which is traversed for each record in the database in turn, to identify all members of Cj contained
in that record.

A variant of Apriori, AprioriTid, attempts to reduce the number of database accesses by replacing
each database record by the subset of C}, whose members were included in that record. The advantage of
this is that as the size of C}, reduces, database records which include no further potentially interesting sets
are eliminated, making later scans of the reduced database relatively fast. In the early stages, however,
while C}, is large, the modification is counterproductive because of the large expansion in the size of the
restructured database.

Versions of these algorithms perform well in cases for which the candidate sets remain small enough
to be contained in memory, and reduce rapidly as the iteration proceeds. It is easy to envisage instances,
however, for which this may not be so. As an example, consider a database of n attributes, most of which
occur individually in about 2% of all records. Suppose also that I contains a relatively small subset F' of
f common attributes, each of which occurs in about 50% of all records. For n = 1000 and f = 40, this
corresponds to a typical “shopping basket” of about 20 common items and 20 other items. In this (not
improbable) scenario, a support threshold of 0.5% would result in most of the members of F' x I being
included in L,, leading to a C3 of size about f2 x 5, i.e. 800,000 candidates. Moreover, since each pair
in F is likely to occur in about 25% of records, the combinations of these with each other attribute are
likely to be supported at about the 0.5% level. Hence most of F' x F' x I may be included in L3, leading
to Cy of size about f3 x %> i-e. about 107 in our example.

It is clear that examples of this kind may lead to candidate sets which exceed main memory capacity,
or, indeed, the original size of the database. Even if this is not so, the cost of identifying candidates which
are subsets of a record being examined will result in several very computationally expensive cycles of the
algorithm. The usual response to an explosion in the size of candidate sets is to increase the support
threshold, but this risks eliminating many potentially interesting combinations of less common attributes.

A further (related) disadvantage arises from the implication that a common support-threshold is ap-
propriate in all cases. Intuitively, a support- level of, say, 1% for a combination of attributes ABCDEFG

is more interesting than the same support for the pair AB alone. Especially will this be so if the support



for ABCDEFG is almost as high as that for AB, with the implication that AB— > CDEFG with high
confidence. If the support threshold is set low enough to catch such cases, then the price is likely to be

large candidate sets in the early cycles of the algorithm.

2.3 Lattice partitioning algorithms

Breadth-first algorithms derive from the observation that sets of size k can be interesting only if all their
subsets of size k — 1 are supported at the required level. A corollary of this condition is that once a
set of size k has been found to be interesting, this must be so also for all its subsets. It is tempting,
consequently, to look for methods which seek to identify maximal interesting sets without first examining
all their smaller subsets. This may be visualised as a depth-first traversal of the lattice of figure ?? to
find the largest interesting set in each path. Depth-first search strategies are described by Zaki et al [?]
and Bayardo [?].

An exhaustive depth-first traversal is, of course, computationally infeasible for large n. Zaki et al
address this issue by partitioning the lattice using clusters of associated attributes. For example, suppose
for the set I = {4, B,C, D, E}, the pairs AB, AC, AD, AE, BC, BD, BE and DE are all frequent sets.

These can be grouped into three equivalence classes:

[A] = {B,C,D,E}
(8] = {C,D,E}
(bl = {E}

The members of each equivalence class are the attributes which are paired in frequent sets with the
class identifier, and which follow it in the lexicographic order. Thus each equivalence class defines a subset
of the search space, the members of which are all those subsets of the equivalence class concatenated with
the class identifier. This in turn allows us to identify ABCDE, BCDE and DE as a covering set of
maximal potentially interesting sets, i.e. every interesting set must be a subset of at least one of these.

The clustering effect of these classes may be relatively weak: note that in this example, the set
ABCDE is itself in fact a covering set, and is also, of course, the maximal set of I. A more efficient
clique clustering technique partitions the sets further, using the downward closure condition. In the above
example, this allows us to identify ABC, ABDE, BC, BDE and DE as a set of cliques which define
maximal targets for our search, within which {ABC, ABDE} form a covering set.

A number of algorithms based on this clustering approach are described in [?]. In practice, these
require a preliminary preprocessing of the database to identify Lo, the set of frequent pairs. This is then
used to identify a covering set of clusters of attributes, using either equivalence class clustering or the
more refined clique clustering outlined above. Each cluster generates a subset of the lattice, for which
a number of traversal methods are described. A bottom-up traversal algorithm, “ClusterApr”, proceeds
in the same way as the Apriori algorithm described above, applied to each cluster in turn. Top-down

traversal begins by examining the maximal potentially interesting set defined by the cluster, followed



recursively by all its maximal proper subsets, the recursion terminating when interesting subsets are

found. A “Hybrid” algorithm is also described, which combines some elements of both approaches.

The common feature of these algorithms is that they enable each cluster to be examined in turn. This

has two advantages:

1. Each cluster defines a subset of the total search space, reducing the memory required to store this

and the computation involved in counting the support of its members.

2. Because each cluster includes only a subset of I, it is possible to compute the support counts using

only a portion of the database.

To enable this, it is necessary for the database to be stored in inverted form, i.e. for each attribute in I
to be stored with a list of records containing that attribute as a column of the database. The support
for a combination of attributes can be determined by intersecting the relevant database columns. This
allows the algorithms to proceed in a single pass of the database, within which the relevant columns
of the database are used to determine the interesting sets in each cluster in turn. Note, however, that
the computation for each cluster involves multiple intersections of columns of the database to determine
the support for combinations of attributes. For large databases and/or large clusters, this may again be

impossible without repeated I/O operations.

Experimental results presented in [?] demonstrate the effectiveness of these approaches in comparison
with breadth-first and other methods. As with the breadth-first algorithms, however, it is not difficult to
identify patterns of data which will cause problems. In particular, the approach depends critically on the
ability to partition the attributes into relatively small clusters. Note that the clustering algorithms gen-
erally begin by computing Lo, which in itself involves a pass of the database and significant computation.
Further problems arise, however, if Lo is large and especially if it contains large clusters. In principle, it
is possible to apply the algorithms to clusters derived from Lj (or larger sets of attributes) rather than
Lo, but this implies further preliminary passes of the database which, as for the breadth-first algorithms,

can be very computationally demanding.

The MaxMiner algorithm described by Bayardo [?] also searches for maximal sets, using Rymon’s set
enumeration framework [?] to order the search space as a tree. This structure is central to the methods
which are the basis of the present work, and will be described fully below. In respect of Max-Miner,
the method has some similarities to that of Zaki et al in that the set enumeration tree defines a kind of
equivalence-class ordering on the candidate sets. Max-Miner reduces this search space by pruning the tree
to eliminate both supersets of infrequent sets (as in the breadth- first strategies) and subsets of frequent
sets (which are known to be themselves frequent). In a development from Max-Miner, the Dense-Miner
algorithm [?] imposes additional constraints on the rules being sought to reduce further the search space
in these cases. These algorithms cope better with dense datasets than the others algorithms described,

but again require multiple database passes.



2.4 Database partitioning algorithms

The complexity of the problem of finding association rules is essentially a product of two terms: the size
of the database (m) and the size of the candidate set search space (2"). The algorithms described above
focus on the latter term, deriving a smaller search space of candidate sets which can be feasibly counted.
An alternative approach is to reduce the first term, working with a subset of the database which is small
enough to contain in main memory.

The Partition algorithm [?] divides the database into a number of non-overlapping partitions of equal
size, and proceeds in two passes. In the first pass, each partition is taken in turn, and all the locally
frequent sets computed. A locally frequent set is a set the support for which exceeds the required
(proportional) threshold within at least one partition. It is easy to see that any globally frequent set must
be locally frequent in some partition, so the set L of locally frequent sets is a superset of the set of all
(globally) frequent sets. This set, L, becomes the search space in a second full pass of the database, in
which the support-counts of all its members are computed.

An alternative approach, also using a subset of the database, is described by Toivonen [?]. In this
method, a single sample of the database is taken from which is derived a candidate set for the full database
search. To ensure (with high probability) that this candidate set contains all the actual frequent sets,
two devices are used. Firstly, the support threshold is lowered when the database sample is processed,
leading to a candidate set S which is a superset of the actual (locally) frequent set. Secondly, the set
is further extended by adding its negative border. The negative border of the set S is the collection of
sets which are not members of S, but all of whose subsets are included in S. For example, suppose
I={A,B,C,D,E}, and the maximal sets in S are ABC, AD and BD. Then the negative border of S
contains the sets ABD, CD and E. Referring to the lattice of subsets of I, the negative border may be
visualised as the external boundary of the subset of the lattice which has been found to be supported.

This extended set is then used as the candidate set in a single full pass of the database. If no members
of the negative border are found to be frequent, then the algorithm terminates after one database pass.
However, the candidate generation process cannot guarantee this, and an extra pass may be needed to
deal with candidates formed by extending, in the usual way, the frequent sets found in the first pass. For
the example given, if the set C'D which is on the negative border is found to be frequent, in addition to
the sets AC and AD, then it will be necessary to return to the database to consider the set AC' D which
was originally overlooked.

The advantage gained by these partitioning/sampling methods is that by working with a subset of the
database which can be contained in main memory, algorithms which involve repeated access to database
records become acceptable. The penalty is that the candidate set derived is necessarily a superset of
the actual set of frequent sets, and may contain many “false positives”. In the Partition algorithm,
this will especially be the case if there are a large number of partitions and/or the database is unevenly
distributed, and in these cases it may not always be possible to contain the sets in main memory. Similarly,
the candidate set generated by the Toivonen method is potentially much larger than the actual frequent

set. Again, for databases in which a significant number of attributes are very frequent, the algorithms



may lead to an unacceptably large search space.

3 PARTIAL SUPPORT

Most of the methods described above proceed essentially on each database pass by defining some candidate
set and then examining each record to identify all the members of the candidate set that are subsets of
the record, incrementing a support-count for each. The computational cost of this increases with the
density of information in database records, i.e. when the average number of attributes present in a record
is high, leading to an exponential increase in the number of subsets to be considered, and when candidate
sets are large. In principle, however, it is possible to reduce this cost of subset-counting by exploiting the
relationships between sets of attributes illustrated in the lattice (Figure ?7). For example, in the simplest
case, a record containing the attribute set ABD will cause incrementation of the support-counts for each
of the sets ABD, AB, AD, BD, A, B and D. Strictly, however, only the first of these is necessary, since
a level of support for all the subsets of ABD can be inferred subsequently from the support-count of
ABD.

Let i be a subset of the set I (where I is the set of n attributes represented by the database). We
define P;, the partial support for the set i, to be the number of records whose contents are identical with

the set ¢. Then Tj;, the total support for the set i, can be determined as:
T,=» P (Vjj2i)

This allows us to postulate a general algorithm for computing total supports. Let P be the set of
partial support counts P; corresponding to sets ¢ which appear as records in the database, and T' be the
set of total support counts in which we are interested (however this is defined). With the members of P
and T initialised to zero:

Algorithm A(Inputs : dataset DS, countset P,T) :
— — Returns P and T counting sets in DS — —
Al : Vrecords jin DS do
begin add 1 to P;
insert j to P
end;
A2: Vjin P do
beginViinT, i Cjdo
begin add P; to T;
end

end



For a database of m records, stage 1 of the algorithm (A1) performs m support-count incrementations
in a single pass, to compute a total of m' partial supports, for some m’ < m. The second stage of the
algorithm (A2) involves, for each of these, the examination of subsets which are members of the target
set T. In an exhaustive version of the method, 7" will be the full set of subsets of I. If the database
contains no duplicate records, then the method will be less efficient than our original “Brute Force”
algorithm, which enumerates subsets of each record as it is examined. Computing via summation of
partial supports, however, offers three potential advantages. Firstly, when n is small (2" <« m), then A2
involves the summation of a set of counts which is significantly smaller than a summation over the whole
database. Secondly, even for large n, if the database contains a high degree of duplication (m' < m)
then the stage 2 summation will again be significantly faster than a full database pass, especially if the
duplicated records are densely-populated with attributes. Finally, and most generally, we may use the
stage A1l to organise the partial counts in a way which will facilitate a more efficient stage 2 computation,

exploiting the structural relationships inherent in the lattice of partial supports.

Consider again the lattice of Figure ??. An idealised version of our method would involve, in Al,
incrementing a count at a unique position on this structure, then, in A2, summation through all the sub-
lattices. For small values of n an exhaustive computation of this kind is efficient, but the method has
an implied storage requirement of order 2" and a corresponding time complexity which in general will
make it infeasible. Before considering practical summation algorithms, we will first describe a method of

storing the counts which has a linear storage requirement.

Figure ?? shows an alternative representation of the sets of subsets of I, for I = {4, B, C, D}, in the
form of Rymon’s [?] set enumeration tree. In this structure, each subtree contains all the supersets of
the root node which follow the root node in lexicographic order. For convenience of drawing, we have
represented the children of a node as a linked list of siblings, rather than drawing separate arcs to each
child from its parent. This representation also expresses the form of an implementation which requires

only two pointers to be stored at each node.

We may also see each subtree as a representation of the equivalence class of its root node. This
organisation contains all the sets stored in the original lattice, while retaining only part of the structure
of the latter. A set-enumeration tree of this kind is used in Bayardo’s MaxMiner algorithm [?] to order
candidate sets when searching for maximal frequent sets. In MaxMiner, the tree is ordered by increasing

frequency of its elements to maximise the clustering effect obtained; this is a point we will return to later.

Using this tree as a storage structure for support-counts in stage 1 of the algorithm is straightforward
and computationally efficient: locating the required position on the tree for any set of attributes requires
at most n steps. We may go further, however, and begin to take advantage of the structural relationships
implied by the tree to begin the computation of total supports. This is because, in locating a node on
the tree, the traversal will pass through a number of nodes which are subsets of the target node. In doing
so, it is inexpensive to accumulate interim support-counts at these nodes. A (stage 1) algorithm for this

has the following form:

10
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Figure 2: Tree storage of subsets of {4, B,C, D}

Algorithm B1 (Inputs : dataset DS, P —tree P):
— — Returns P — tree with interim counts added — —
Y nodes i in P do Q(i) =
Y records j in DS do
1 = root node of P :
while i not null do
begin if j D i then increment Q(4);
if j =1 then exit
elseif j D i then i = eldestchildof (i)
else i = youngersiblingof (i);

end

This algorithm will compute interim support-counts @); for each subset ¢ of I, where @; is defined

thus:
Q; = Z P; (V4,7 D i,j follows i in lexicographic order)

It then becomes possible to compute total support using the equation:
T, =Q; + Z P; (V4,7 Di,j precedes i in lexicographic order)

The numbers associated with the nodes of Figure ?? are the interim counts which would be stored
in the tree arising from a database the records of which comprise exactly one instance of each of the 16

possible sets of attributes; thus, for example, Q(BC) = 2, derived from one instance of BC and one of

BCD. Then:

11



T(BC) = Q(BC) + P(ABC) + P(ABCD)
= Q(BC) + Q(ABC)

To store counts for the complete tree, as in Figure ?7, of course implies a storage requirement of
order 2". We can avoid this, however, by observing that for large n it is likely that most of the subsets i
will be unrepresented in the database and will therefore not contribute to the partial-count summation.
A version of the algorithm to exploit this builds the tree dynamically as records are processed, storing
interim totals only for records which appear in the database. Nodes are created only when a new subset
1 is encountered in the database, or when two siblings ¢ and j share a leading subset which is not already
represented. The latter provision is necessary to maintain the structure of the tree as it grows. The
formulae for computing total supports still apply, and we need only to sum interim supports that are
present in the tree.

We will use the term P-tree to refer to this incomplete set-enumeration tree of interim support-counts.
A detailed description of the algorithm (C1) for building the P-tree in a single database pass is given in
[?]. Building the tree dynamically in this way implies a storage requirement of order m rather than 2".
This will be reduced further, perhaps substantially, if the database contains a high incidence of duplicates.
The computation involved in creating the tree is also linear in n and m.

A simple example illustrating the generation of a P-tree is given in figure 77, illustrating the tree

derived from the four-attribute sample database given in Table 1.

ABCD
A 1000
ABC | 1110
BD 0101
CD 0011
BCD | 0111
BD 0101
BD 0101
ACD | 1011

Table 1

The algorithm begins by creating the node A with support 1, then adds ABC as a child of this node
incrementing the support for A by one en route. BD is added, initially, as a sibling of A, but when BC'D
is added, the “dummy” node B is created, with BCD and BD becoming its children. In this manner we
prevent the tree from degenerating into a linked-list. The dummy node B initially inherits the support
of its children, and subsequently is treated as a normal node.

A rather similar structure to our P-tree has been described independently in contemporaneous work

reported in [?]. This structure, the FP-tree, has a different form but quite similar properties to the P-tree,

12



Figure 3: P-tree generation example

but is built in two database passes, the first of which eliminates attributes that fail to reach the support
threshold, and orders the others by frequency of occurrence. Each node in the F' P-tree stores a single
attribute, so that each path in the tree represents and counts one or more records in the database. The
F P-tree also includes more structural information, including all the nodes representing any one attribute
being linked into a list. This structure facilitates the implementation of an algorithm, “FP- growth”,
which successively generates subtrees from the FP-tree corresponding to each frequent attribute, to
represent all sets in which the attribute is associated with its predecessors in the tree ordering. Recursive
application of the algorithm generates all frequent sets.

Unlike the P-tree, which is essentially a generic structure which can subsequently be used as a basis
for many algorithms to complete the count-summation, the F P-tree is closely tied to the FP-growth
algorithm. Results presented for FP-growth demonstrate its effectiveness in cases when the tree is
memory-resident, but the linkage between nodes of the tree makes it difficult to effect a comparable
implementation when this is not the case. The problem is exacerbated because of the additional storage
overheads of the F'P-tree, which in general will store many more nodes than the P-tree, and needs more
pointers to be stored at each node. The simpler P-tree structure, conversely, requires only that each
node be linked to its parent. In fact, in the algorithm we describe in the next section, completion of
the summation is effected by processing the nodes of the tree in any order, so in this case it is possible
to store the “tree” on disk as an unordered and unlinked set of nodes. In this case the implementation

scales to deal with non-store-resident data simply and efficiently.

4 COMPUTING TOTAL SUPPORTS

Algorithm C1 essentially performs, in a single pass, a reorganisation of the relevant information in the
database into a sparse set-enumeration tree, the nodes of which record interim support-counts only for
those sets which appear as distinct records in the database or are parent nodes required to maintain the
tree structure. For any candidate set T' of subsets of I, the calculation of total supports can be completed
by walking this tree, adding interim supports as required according to the formulae above.

Consider again the set BC with reference to Figure ??. The stage 1 computation has already added
into the interim support-count the contribution from supersets which follow BC' in the tree-ordering,
i.e. the contribution from BCD. To complete the summation of total support, we must add in any
contribution from preceding supersets, i.e. ABC and ABCD. But any contribution from ABCD has

already been accumulated in ABC, so the latter is the only addition needed. Now consider the converse
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of this. The partial total accumulated at ABCD makes a contribution to the total support for all the
subsets of ABC'D. However, the contribution in respect of the subsets of ABC' is already included in the
interim total for ABC, so, when considering the node ABC D, we need examine only those subsets which
include the attribute D. In general, for any node j, we need consider only those subsets of j which are
not also subsets of its parent.

Thus, the following algorithm completes the summation of total supports for a candidate set T":

Algorithm C2 (Inputs P — tree P,candidate set T) :
— — Returns counts T; for all sets i in T — —
VsetsiinT doT; =0
V nodes j in P do
begin k = j — parent (j);
ViinT ,iCj, iN k not empty, do
begin add Q); to T;
end

end

Note that this algorithm is essentially generic, in that it can be applied in different versions depending
on how the candidate set is defined. In general, methods like Apriori which involve multiple database
passes should gain from using the P-tree to replace the original database, for two reasons: firstly, because
any duplicated records are merged in the P-tree structure, and secondly, because the partial computation
incorporated in the P-tree is carried out once only, when the tree is constructed, but reduces the com-
putation required on each subsequent pass. Thus, in the second pass of Apriori, using the P-tree would
in the best case require only r — 1 subsets of a record of r attributes to be considered (i.e. those not
covered by its parent) rather than the r(r — 1)/2 required by the original Apriori. For example, consider
the case of a set ABCD that is present in the P-tree as a child of ABC. When the parent node ABC is
processed in the course of algorithm C2, its interim support will be added to the total support of all its
subsets. But, this interim support incorporates the support for its child ABC'D. So, when the latter node
is processed, we need add its support only to that for the sets AD, BD and C'D that have not already
been counted. This advantage becomes greater, of course, the larger the sets being considered. It is this
property that is the key performance advantage gained from using the P-tree: although the candidate
set being considered is not reduced, the number of candidates within the set that need be examined at
each step is reduced, reducing the overall time required to search the candidate set.

We can also take advantage of the structure of the P-tree to organise the candidate set to enable

computation of total supports to be carried out more efficiently. Figure ?? illustrates the dual of Figure ??,
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Figure 4: Tree with predecessor-subtrees

in which each subtree includes only supersets of its root node which contain an attribute that precedes
all those of the root node. We will call this the T-tree, representing the target sets for which the total
support is to be calculated, as opposed to the interim-support P-tree of Figure 7?7. Observe that for any
node t in the T-tree, all the subsets of ¢ which include an attribute ¢ will be located in that segment of
the tree found by a depth-first traversal starting at node ¢ and finishing at node ¢. This allows us to use

the T-tree as a structure to effect an implementation of algorithm C2:

Algorithm TFP (Compute Total — from Partial — supports) :
(Inputs P —tree P, T —tree T)
— — Returns total support counts for a given T — tree — —
Y nodes j in P do
begin k = j — parent(j);
i = first attribute in k;
starting at node i of T do
t=1
Countsupport( Inputs set j,T — tree T, startnode t) :
while t not null do
begin if t C j then add Q; to Ty;
if t =7 then exit
else t = eldestchildof (t); Recursivelycall Countsupport(j,T,t)
t = youngersiblingof (t);
end

end

Again, of course, to construct the entire T-tree would imply an exponential storage requirement. In

any practical method, however, it is only necessary to create that subset of the tree corresponding to the
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current candidate set being considered. Thus, a version of the Apriori algorithm using these structures
will consider candidates which are singletons, pairs of attributes, triples, etc., in successive passes. This

algorithm, Apriori-TFP, has the following form:

1. K=1
2. Build level K in the T-tree.

3. “Walk” the P-tree, applying algorithm TFP to add interim supports associated with individual
P-tree nodes to the level K nodes established in (2) .

4. Remove any level K T-tree nodes that do not have an adequate level of support.
5. Increase K by 1.

6. Repeat steps (2), (3), (4) and (5); until a level K is reached where no nodes are adequately
supported.

The algorithm begins by constructing the top level of the T-tree, containing all the singleton subsets,
i.e. the single attributes in I. A first pass of algorithm TFP then counts supports for each of these in a

single traversal of the P-tree:

VP € Ptree
P :P\Pparent
VT € Ttree where (level(T) =1)

if (TCP") Toup=Teup+ Prup

Note again that identification of the relevant nodes in the T-tree is trivial and efficient, as these will
be located in a (usually short) segment of the level-1 list. In practice, it is more efficient to implement
level 1 of the T-tree as a simple array of attribute-counts, which can be processed more quickly than
is the case for a list structure. A similar optimisation can be carried into level 2 and succeeding levels,
replacing each branch of the tree by an array, and again this will be more efficient when most of the level
2 nodes remain in the tree, and continue to be an effective device as long as its storage requirements
remain practicable. In this form, the T-tree is not fundamentally different from the hash-tree used in [?],
except that the ordering of the structure provides a more effective localisation of the candidates we need
to count.

Following completion of the first pass, the level 1 T-tree is pruned to remove all nodes that fail to reach
the required support threshold, and the second level is generated, adding new nodes only if their subsets
are contained in the tree built so far, i.e. have been found to have the necessary threshold of support.
This procedure, applied similarly at each subsequent level, implements the “downward closure” property

of Apriori. The new level of the tree forms the candidate set for the next pass of the algorithm TFP. As
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in the first pass, this proceeds via a traversal of the P-tree, from each node P of which is constructed a
search node P' made up of those digits that are in P but not in Ppgrent.

The algorithm for levels after the first comprises two parts:

Part 1 Process the top level of the T-tree and identify those nodes which merit consideration (by virtue

of being a subset of the search node P’).

Part 2 Proceed down the child branches of each of the nodes identified in Part 1 until the required level
is reached and then apply the appropriate support updates.

The search continues in this manner until there are no characters left in the search node. The complete
algorithm is described formally in Table 2 (Part 1) and Table 3 (Part 2). In these descriptions, Tj ;

denotes a node at level i of the T-tree.

Inputs P — tree Ptree,integer requiredLevel, T — tree Ttree

VP € Ptree where (numDigits(P) > requiredLevel)
P' = P\ Pparent
VT:,; € Ttree (nodes at level 1)
loop while P' # null
ifTh; <P j++
if Ty ;=P
if (requiredLevel = 1) Tsyp = Toup + Poup
else Part 2 (currentLevel = 2)
P =null
if (T;CP)
if (requiredLevel = 1) Tsyp = Tsup + Psup
else Part 2 (currentLevel = 2)

P' = P'\ firstDigit(P')-j + +

Table 2: Total Support Algorithm (Part 1)

Part 2 is only invoked when the required level is not level 1 and some level 1 T-tree node is equal
to or a subset of P’. Again we wish to minimise the work required to search the subtree; to do this
we can again make use of the lexicographic ordering of the nodes. We proceed in a similar manner to
that described for identifying individual branches but using a termination search node equivalent to the

last NV digits of the discovered P-tree node (where N is equivalent to the current level in the branch of

17



the T-tree we are investigating). Thus if P is equivalent to ABC and we are currently at level two (the
“doubles” level) the termination search node (P") will be equivalent to BC; and so on. We define a
function, endDigits, that takes two arguments P and N (where N is the current level) and returns an
identifier comprising the last N digits of P; thus endDigits(ABC,2) = BC. The significance of this is
that BC is the last subset of ABC at level 2 that need be considered.

The algorithm is described formally in Table 3. The recursive calls in each case terminate when the
required level is reached, at which point we step along the nodes at this level, updating the supports as

appropriate, until the termination search node P" is reached.

Input integer currentLevel

P" = endDigits(P, currentLevel)
i = currentLevel
loop while T; ; # null
if T;; <P"
if(Ti; C P)
if currentLevel = requiredLevel Tyyp = Tsyp + Psyp
else recursively call Part 2 with currentLevel =1+ +
Jj++
if T,; =P"
if currentLevel = requiredLevel Ty, = Tsup + Psup
else recursively call Part 2 with currentLevel = ¢+ +
stop
if T;; > P"

stop

Table 3: Total Support Algorithm (Part 2)

5 RESULTS

To evaluate the algorithms we have described we have used synthetic databases constructed using the
generator described in [?]. This uses parameters T, which defines the average number of attributes found
in a record, and I, the average size of the maximal supported set. Higher values of T' and I in relation

to the number of attributes IV correspond to a more densely-populated database.
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The first set of experiments illustrate the performance characteristics involved in the creation of the
P-tree, arising from an unoptimised, low-performance prototype implementation in Java. Graph 1 shows
the time to build the tree, and Graph 2 its storage requirements, for databases of 200,000 records with
varying characteristics. These results show that the cost of building the P-tree is almost independent of N,
the number of attributes. The three cases illustrated represent different combinations of the parameters
T and I as defined above. As is the case for all association-rule algorithms, the cost of the P-tree is
greater for more densely-populated data, but in this case the scaling appears to be linear. Graph 3 and
Graph 4 examine the performance for databases of 500 attributes, with the same sets of parameters, as
the number of database records is increased. These show, as predicted, that the size of the tree and its

construction time are linearly related to the database size.
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Graph 1. Effort (time) to generate P-tree for data sets with number of rows fixed at 200000

These results all relate to cases in which it is possible to build the complete P-tree in main memory.
For larger databases, however, it is easy to describe a construction process which will build separate
trees for manageable segments of the database, prior to a final merging into a single tree. Note also,
again, that the Total-support algorithms we have described do not require the P- tree to be traversed
in any particular order. Indeed, it is not necessary to maintain the tree structure in storage; the only
structural information required by Algorithm TFP is the difference of a node from its parent. Provided
this information is stored with each node, then the “tree” can finally be stored as a simple array and
processed element-by-element in any order. These properties make it straightforward to envisage efficient
implementations for cases in which the data is too large to be contained in main memory. A simple
implementation would construct a separate P-tree for store-resident partitions of the data, storing each
on disk in array form, and would then proceed to apply Apriori-TFP to this set of stored nodes. Note
that the algorithm will work correctly even if the same set is represented in more than one tree, and in

this simplest form of implementation, it will probably not be cost-effective to merge the separate trees.
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Graph 2. P-tree storage requirements for data sets with number of rows fixed at 200000
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Graph 3. Effort (time) to generate P-tree for data sets with number of columns fixed at 500

Finally, to evaluate the performance of the method for computing final support-counts, we have
compared the Apriori-TFP algorithm we have described with a version of the original Apriori.
provide a basis for comparison, this implementation of “Apriori” also uses the same T-tree structure
as Apriori-TFP for storing the candidates being considered with their support- counts, rather than the
hash-tree structure described in [?]. The candidate generation method is the same for both algorithms,
so the comparison examines only the effect of using the Apriori-TFP algorithm with the P-tree as a
surrogate for the database, instead of the original Apriori applied to the original database. This effect
arises from the lower number of support-count updates that may be required when examining a P-tree

node, as opposed to the number required in Apriori from examination of the records from which the node
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is made up.
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Graph 4. P-tree storage requirements for data sets with number of columns fixed at 500

Graph 5 plots the number of support-count updates for the two methods, for databases of 200,000
records and 500 attributes, with the parameters T = 16, I = 8, as the support threshold is varied from
2% down to 0.5%. As can be seen, the Apriori-TFP algorithm shows a consistent but relatively small
advantage in all cases. The gain is slight because a data set of this relatively low density is likely to contain
very few duplicated records, and will also tend to have a rather sparse distribution of sets. Using the
P-tree, conversely, will be most effective when there are clusters of records including significant numbers
of shared attributes (as we might hope to find when mining potentially interesting data), and, especially,
if there are significant numbers of duplicated records. A simple illustration of the latter effect is provided
in Graph 6, which shows the results obtained when the dataset of Graph 5 is simply doubled, to create a
database of 400,000 records, in which each distinct record occurs at least twice. In this rather artificial
example, the P-tree constructed will be exactly the same as that for the original dataset of Graph 5,
giving rise to the same performance curve for Apriori-TFP. The Apriori algorithm, conversely, takes no

advantage from the duplication of records.

The performance of the method when applied to much more densely-packed data is illustrated in
Graph 7, which uses the parameters T = 10, I = 5, for a database of 200,000 records and only 20
attributes, so that the typical record will include half of all attributes. With this high density of data,
the number of updates increases corresponding to the increase in the size of the candidate sets. For
Apriori-TFP, however, this increase is offset by savings resulting from the number of duplicates and

near-duplicates in the P-tree, giving rise to a significant performance advantage.
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Graph 5. Number of T-tree node support count updates (T16.18.D200k.N0.5k)
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Graph 6. Number of T-tree node support count updates (T16.18.D200k.N0.5k doubled, i.e.
T16.18.D400k.N0.5k)

Of course, the number of attributes in this example is too small to demonstrate a practical advantage
from the method; we include it only to illustrate that using the P-tree will tend to show markedly
greater advantage when applied to the more dense datasets which give rise to the greatest problems for
all methods. A more realistic case is provided by the final experiment, illustrated in Graph 8. Here, the
data generated for the experiments of Graph 5 and Graph 7 was merged, to create a database of 200,000
records and 500 attributes, in which each record comprises the union of one record taken from each of the
original databases. This exemplifies a case in which a relatively small subset of a large set of attributes

occurs much more frequently than the others. Note, however, that the method by which this data was
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constructed will give rise to no more duplicates than occurred in the data of Graph 5. The advantage for
Apriori-TFP in this case arises almost wholly because of the clustering effect in the P-tree induced by
the subset of more common attributes. The gain, although less than for the very dense data of Graph 7,

is still substantial.
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Graph 8. Number of T-tree node support count updates using a dataset produced by merging (Graph 5)
T16.18.D200k.N0.5k and T10.15.D200k.N0.02k (Graph 7)

6 CONCLUSIONS

We have presented here an algorithm for computing support counts using as a starting point an initial,

incomplete computation stored as a set- enumeration tree. Although the actual algorithm used to compute
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Figure 5: Partitioned support-count tree

the final totals is based on the Apriori algorithm, the method itself is generic, in that, once the P-tree has
been created, a variety of methods may be applied to complete the summation. Many of these methods,
like the one we have illustrated, will be able to take advantage of the partial computation already carried
out in the initial database pass to reduce the cost of further multiple passes.

Note, however, that the advantage gained from this partial computation is not equally distributed
throughout the set of candidates. We have observed previously that the tree structure of Figure ??
may be seen as an organisation of the lattice into equivalence classes. The interim support calculation
of algorithm C1 computes the support for a subset from within its equivalence class, i.e. the support
deriving from the subtree of which it is the root. For sets early in the lexicographic order, most of the
support calculation is completed at this stage; in particular, for the attributes of Figure ??, support for
the sets A, AB, ABC and ABCD will be counted totally in stage 1 of the summation.

We can increase the proportion of the summation which is completed in stage 1 by a partitioning of
the tree. For example, it would be possible to separate the tree of Figure ?7? into four subtrees, rooted
at the nodes A, B, C' and D, and for stage 1 of the algorithm (C1) to accumulate interim supports
within each of these subtrees independently. In this case, a record containing the set ABD, for example,
would increment the support-counts for ABD within the A-tree, BD within the B-tree, and D within the
(single-node) D-tree. The advantage of this is that completion of the summation, to obtain total supports,
can also be carried out independently within each of the subtrees used for the interim summation, rather
than across the whole structure.

More generally, suppose our attribute-set I = {a1,--,a,} is partitioned into a disjoint set of subsets,
retaining the original order; i.e each subset ¢ may be a single attribute, or a sequence of attributes from
within the original ordering. Corresponding to each subset i we will define a set-enumeration tree, labelled
with 4, within which supports for the equivalence classes of the members of ¢ will be counted. For this,

the following generic algorithm may be described:

Algorithm D(Inputs : dataset DS, set of P —trees PP,T —tree T) :
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— — Returns total support counts for a given T — tree — —
D1:V records j in DS do
begin j' = j
Y trees i in PP while j' not empty do
begin if iMN j' not empty

then increment support — count for j' within i — tree;

i'=i =i
endi f
end

end,;
D2 :V trees i in PP do
C2(i,T)

— —compute total support for all sets within tree i — —

The algorithm is generic in two respects. Firstly, the degree of partitioning is undefined, so that, at one
extreme, only one tree is used, representing the full attribute-set: in this case, the algorithm corresponds
to C. Conversely, separate trees may be defined for each attribute of I. Secondly, the actual procedures
used to increment partial support-counts in D1, and subsequently to complete the computation in D2, are
essentially orthogonal to this algorithm, so it is possible to envisage the application of different algorithms
to the computation of supports within each of the trees defined. For example, it would be possible to
apply an exhaustive version of algorithm A to part of the structure, and the Apriori-TFP algorithm to
another, or indeed to use other storage structures and counting procedures. In general, each “tree” may
in fact be any storage organisation within which partial supports for a class of subsets are counted.

Consider the case in which separate trees are defined for each attribute, illustrated in Figure ??. The
size of tree required for the complete storage of support-counts for the equivalence class of attribute a; is
27—t However, if the support-count storage is conservative, i.e. counts are accumulated only for the sets
of attributes j' that are encountered as the database is examined, then the storage for the equivalence-
class of a; will be of order m’, where m’ < the number of records in the database which contain a; (again,
reduced by the existence of duplicates). Thus, the storage requirement for each equivalence class is less
than or equal to min {2"~¢, T,,}.

Partitioning the tree in this way allows us (in one pass) to organise the data into sets each of which
can be processed independently and may be small enough to be retained in central memory. At the
high-order end of the organisation, i.e. for values of i close to n, the 2% limit becomes computable.
Thus, for large i, the appropriate storage regime may be a complete array of subset-counts, using the

exhaustive algorithm A for efficient counting. Conversely, for small ¢, the conceptual support-count tree

25



is large but sparse, enabling us to employ a method such as Apriori-TFP or another conservative storage
method which will record only those sets that are encountered.

The gain from this approach can be maximised by applying an ordering heuristic similar to that used
by Bayardo [?] and also in DIC [?]. Suppose that the order of frequency of each attribute is known, at
least approximately. Then, if we order I so that a; is the least common attribute, through to a,, the
most common, then the most common attributes will be clustered at the high-order end of the structure
of Figure 7?7, at which efficient exhaustive computation is feasible. Conversely, the sparseness of storage
at the low-order end of the structure is increased, enabling a number of conservative storage strategies
to be considered.

Essentially, this approach is a combination of two heuristics:

1. For combinations of a small set of very frequent attributes, the exhaustive computation of total

supports from partial supports using algorithm A is efficient.

2. For less frequent sets of attributes, a partitioning of the database corresponding to equivalence
classes can be done in a single pass. Each resulting partition will contain at most T, records, and

can subsequently be processed independently.

Algorithms using this approach may therefore be categorised as 14+ pass. In one full pass of the
database, computation of support for the commonest attributes is completed, while at the same time the
database is reorganised into partitions to facilitate consideration of less common attributes. Because each
of these partitions contains a relatively small fraction of the database, it may become possible to carry
out all the stage 2 summations, for each partition in turn, within main memory. A further advantage is
that, as the most common attributes have been processed separately, many of the remaining database
partitions may contain relatively few frequent sets. For example, it may be that within the a;-partition
of Figure ??, the only set reaching the support threshold is the root node, a; itself. This likelihood
allows us to consider various alternative heuristic storage and evaluation strategies for dealing with these
partitions efficiently. For example, the a; “tree” may in fact be most conveniently stored as a simple
unordered set of records which is processed subsequently with the expectation that it will contain only a

few short combinations that are frequent.
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