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Abstract. A novel framework is described for mining fuzzy Association Rules 

(ARs) relating the properties of composite attributes, i.e. attributes or items that 

each feature a number of values derived from a common schema. To apply 

fuzzy Association Rule Mining (ARM) we partition the property values into 

fuzzy property sets. This paper describes: (i) the process of deriving the fuzzy 

sets (Composite Fuzzy ARM or CFARM) and (ii) a unique property ARM 

algorithm founded on the correlation factor interestingness measure. The paper 

includes a complete analysis, demonstrating: (i) the potential of fuzzy property 

ARs, and (ii) that a more succinct set of property ARs (than that generated 

using a non-fuzzy method) can be produced using the proposed approach.  

Keywords: Association rules, fuzzy association rules, composite attributes, 

quantitative attributes. 

1   Introduction 

Association Rule Mining (ARM) is an important and well established data mining 

topic. The objective of ARM is to identify patterns expressed in the form of 

Association Rules (ARs) in transaction data sets [5, 6, 12]. The attributes in ARM 

data sets are usually binary valued but ARM has also been applied to quantitative and 

categorical (non-binary) data [1, 13, 16]. With the latter, values can be split into 

linguistically labeled ranges (for example “low”, “medium”, “high” etc) such that 

each range represents a binary valued attribute. Values can be assigned to these range 

attributes using crisp or fuzzy boundaries. The application of ARM using the latter is 

referred to as fuzzy ARM (FARM) [1]. Fuzzy ARM has been shown to produce more 

expressive ARs than the “crisp” methods [1, 3, 4,].  

In this paper we introduce the problem of “Composite item” Fuzzy ARM 

(CFARM) whose main objective is the generation of fuzzy ARs associating the 

“properties” linked with composite attributes [15] i.e. attributes or items composed of 

sets of sub-attributes that conform to a common schema. An example could be market 

basket analysis where the attribute set I  is a set of groceries, and P is a set of 

nutritional properties (P) that these groceries posses (i.e. P = {Pr, Fe, Ca, Cu,..} ) 

standing for protein, Iron etc. Note that the actual values (properties) associated with 

each element of I  will be constant.  



The main contributions of this paper are: (i) a framework for the “Composite item” 

mining of property ARs and (ii) an evaluation of the potential of using property ARs. 

In particular we demonstrate that the proposed approach generates a more succinct set 

of property ARs (than that generated using a non-fuzzy method). 

The paper is organised as follows. In section 2 we present the background and 

related work for the proposed composite fuzzy ARM approach. Section 3 presents a 

sequence of formal definitions for the work; and section 4 details the CFARM 

algorithm; section 5 expands the motivation with an example application; section 6 

gives a complete analysis of the CFARM algorithm, and section 7 concludes the 

paper with a summary of the contribution of the work and directions for future work. 

2   Background and Related Work 

The term composite item has been used previously in the context of data mining. In 

[8, 16], a composite item is defined as a combination of several items, e.g. if itemset 

{A, B} and {A, C} are not large then rules {B}�{A} and {C}�{A} will not be 

generated, but by combining B and C to make a new composite item {BC} which may 

be large, rules such as {BC}�{A} may be generated. In this paper we define 

composite items differently, as indicated earlier, to be an item with properties (a 

formal definition is presented in Section 3). The definition concurs with [15], the 

earliest references to composite attributes (that the authors are aware of). ARM 

usually uses binary valued attributes, quantitative attributes usually discretised into 

partitions resulting in the “sharp boundary” problem. Fuzzy ARM [3, 7, 14] has been 

shown to resolve this problem. 

To illustrate the concept of Fuzzy ARM applied to composite ARM, we consider 

super market basket analysis where the set of groceries (I) have a common set of 

nutritional quantitative properties (Table 1). 

Table 1.  Example composite attributes (groceries) with their associated properties (nutrients) 

Items/Nutrients   Protein Fibre Carbohydrate Fat … 

Milk   3.1 0 4.7 .2 … 

Bread 8 3.3 43.7 1.5 … 

Biscuit 6.8 4.8 66.3 22.8 … 

… … … … … … 

3   Problem Definition 

In this section formal definitions are presented to define composite attributes, the 

FARM concept and the normalization process for Fuzzy Transactions (FT) . 

 



3.1   Formal definitions 

 

Definition 1: Fuzzy Association Rules 

A Fuzzy AR [3] is an implication of the form: if XA,  then YB, , where A and 

B are disjoint itemsets and X and Y are fuzzy sets. In our case the itemsets are made 

up of property attributes and the fuzzy sets are identified by linguistic labels.  

 

 

Definition 2: Raw Dataset 

A Raw Dataset D  consists of a set of transactions },..,,,{
321

nttttT = , a set of 

composite items },..,,,{ ||321 IiiiiI =  and a set of properties 

},..,,,{ 321 mppppP = . Thus each item ji will have associated with it a set of 

values corresponding to the set P , i.e. { }mji vvvvvit ,..,,,|][ 321= . The “k
th

” 

property value for the “jth” item in the “ith” transaction is given by ]][[ kji vit .  

Note that a property attribute can take either a categorical or a quantitative value 

and denoted as <label,value> (see Table 2). In the rest of this paper the term “item” 

means an item in an itemset in the manner associated with traditional ARM, and the 

term attribute is used to mean a property item (sub-item). 

Table 2. Example raw dataset D 

 

 

 

 

 

 

 

 

Definition 3: Property Dataset 

In the process described here, the given raw dataset D  is initially transformed into a 

property data set 
pD which consists of property transactions 

},..,,,{
321

p

n

pp
ttttT

pp =  and a set of property attributes P (instead of a set of 

composite items I ). Each transaction 
p

it (the “i
th

” transaction) is some subset of 

},..,,,{ 321 mppppP = . The value for each property attribute ][ j

p

i pt  (the “jth” 

property attribute in the “ith” property transaction) has a value obtained by 

aggregating the numeric values for all jp  in it  (See Table 3). Thus equation 1: 

TID Record 

1 {<a,{2,4,6}>, <b,{4,5,3}>} 

2 {<c,{1,2,5}>, <d,{4,2,3}>} 

3 {<a,{2,4,6}>, <c,{1,2,5}>, <d,{4,1,3}>} 

4 {<b,{4,5,3}>, <d,{4,2,3}>} 



Table 3. Example property data set 
pD generated raw data set given in table 2 

 

 

 

 

 

 

 

Definition 4: Fuzzy Dataset 

Once a property data set
pD  is defined, it is then transformed into a fuzzy dataset 

D′ . A fuzzy dataset D′ consists of fuzzy transactions },...,,,{ 321 n
ttttT ′′′′=′  and a 

set of fuzzy property attributes P′  each of which has fuzzy sets with linguistic 

labels },...,,,{ ||321 LllllL = . Each property attribute ][ j

p

i pt  is associated (to some 

degree) with several fuzzy sets and given by a membership degree value, in the range 

]1..0[ , which indicates the correspondence between the value of a given ][ j

p

i pt  

and the set of fuzzy linguistic labels. The “k
th

” label for the “j
th

” property attribute for 

the “i
th

” fuzzy transaction is given by ]][[ kji lpt ′ .  

The nature of the user defined fuzzy ranges is expressed in a properties table (see 

definition 6 below). The numeric values for each property attribute ti

p[p j ] are 

fuzzified (mapped) into the appropriate membership degree values using a 

membership function )],[( kj

p

i lptµ  that applies the value of ][ j

p

i pt  to a 

label Llk ∈ , e.g.  

)}]],[(),..,]],[(),]],[(),]],[({][ ||321 Lj

p

ij

p

ij

p

ij

p

iji lptlptlptlptpt µµµµ=′

The nature of the function is discussed in more detail in Sub-section 3.2 below. The 

complete set of fuzzy property attributes P′ is then given by LP × . A fuzzy data 

(Table 4) based on the property data set (Table 3) are given. The membership values 

are all normalised to contribute support counts of 0 or 1 for a single attribute in a 

single record . 
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(1) 

TID X Y Z 

1 3.0 4.5 4.5 

2 3.0 2.0 4.0 

3 2.3 2.3 4.7 

4 4.0 3.5 3.0 



Table 4. Example Fuzzy data set ( }largemedium,small,{=L , µ unspecified). 

 

 

Definition 5: Composite Itemset Value Table.  

A Composite Itemset Value (CIV) table allows ac cess to property values for specific 

items. Note that a CIV table is not always required; the values may be included in the 

raw data as in the case of the example raw dataset presented in Table 2 where 

property values are all in the range [1..6]. In some applications specific attributes 

always have the same property values, which is the case in the extended market 

basket analysis example, introduced in Section 1.  

For completeness, the CIV table for the example raw dataset given in Table 2 is 

given in Table 5 below. 

Table 5. Composite Itemset Value Table for raw dataset given in Table 2 

Property attributes Item 

X Y Z 

A 2 4 6 

B 4 5 3 

C 1 2 5 

D 4 1 3 

Table 6. Property Table for raw dataset given in Table 2 

Linguistic values Property 

Low Medium High 

X 3.2≤kv  7.33.2 ≤< kv  kv<7.3  

Y 3.3≤kv  7.43.3 ≤< kv  kv<7.4  

Z 3.4≤kv  7.53.4 ≤< kv  kv<7.5  

 

 

Definition 6: Properties Table 

A Properties Table maps all possible values for each property attribute ti

p[p j ] onto 

user defined (overlapping) ranges, each associated with a linguistic label from labels 

in L . Property tables provide a mapping of property attribute values to membership 

values. An example is given in Table 6 for the raw data set (Table 2). 

 

 

X Y Z TID 

Small Medium Large Small Medium Large Small Medium Large 

1 0.5 0.5 0.0 0.0 0.5 0.5 0.0 0.0 1.0 

2 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 

3 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.5 0.5 

4 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 



Definition 7: Fuzzy Frequent Itemsets 

A property attribute set A , LPA ×⊆ , is a fuzzy frequent attribute set if its fuzzy 

support value is greater than or equal to a minimum support threshold (the notion of 

fuzzy support values is discussed further in sub-section 3.3 below). The significance 

is that fuzzy ARs are generated from discovered frequent attribute sets. 

 

Definition 8: Fuzzy Normalisation 
Fuzzy normalisation is the process of finding the contribution to the fuzzy support 

value, m′ , for individual property attributes ( ti

p[p j[lk ]]) such that a partition of 

unity is guaranteed. This is given by equation 2 ( µ is the membership function). 

Without normalisation, the sum of the support contributions of individual fuzzy sets 

associated with an attribute in a single transaction may no longer be unity.  
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3.2   Membership Function 

The membership degree to a particular fuzzy set, ]][[ kji lpt  is determined by a 

membership function, of which there are many different types. An example, using the 

market basket analysis introduced earlier, is given in Fig 1 with the membership 

functions for the Protein nutrient.  

With respect to the application, the trapezoidal shape was chosen as it best 

captured the intuition (promoted by nutritionists) that nutrient values above or below 

the ideal value 1 are undesirable. A function representing all the membership degrees 

of an input value “x” has the letters α , β , γ  and δ  to refer to the corners of the 

trapezium proceeding in a clockwise fashion starting with the bottom-left corner. The 

value x has an “ideal” value between the points β toγ  along the “X” axis, with the 

lowest value α and the highest valueδ . For missing values or so called “trace” 

elements, the fuzzy function evaluates to zero degree membership. 



0
  
  
.1
  
  
 .
2
  
  
  
.3
  
  
  
.4
  
  
  
.5
  
  
  
.6
  
  
  
.7
  
  
  
.8
  
  
  
.9
  
  
1

M
e
m
b
e
rs
h
ip
 D
e
g
re
e
s

α

β γ

δ

χ

 
Fig. 1. Fuzzy Membership functions 

3.3   Fuzzy Support and Confidence  

The support-confidence framework remains the most popular in traditional ARM. 

With some adjustment the support-confidence framework can be applied to fuzzy 

ARM. Frequent fuzzy attribute sets are identified by calculating fuzzy support 

(significance) values. Fuzzy Support (FS) is typically calculated as follows [1]: 

FS A( )=
Sum of votes satisfying A 

Number of records in T
 

(3) 

where },...,,,{ ||321 AaaaaA =  is a set of property attribute-fuzzy set (label) pairs 

such that A ⊆ P × L. A record 
′ t i “satisfies” Aif itA ′⊆ . The individual vote per 

record ti , is obtaining by multiplying the membership degree associated with each 

attribute-fuzzy set pair Ali ∈]][[ : 

∏
∈∀

′=
Ali

ii litAt
]][[

]][[ satisfying for  vote  (4) 

So we have, 

n

lit

A

ni

i Ali

i∑ ∏
=

= ∈∀

′

=
1 ]][[

]][[

)FS(  

(5) 

Note that by using the product operator (often referred to in fuzzy ARM literature as 

the mul operator) for fuzzy aggregation, the degree of contribution of all items is 

taken into account and thus provides for a more effective result.  

Frequent attribute sets with fuzzy support above the user specified threshold are 

used to generate all possible rules. A fuzzy AR derived from a fuzzy frequent attribute 

set   is of the form: 

BA →  



where A  and B  are disjoint subsets of the set LP × such that .CBA =∪  Fuzzy 

Confidence (FC) (or fuzzy certainty factor) is calculated in the usual manner: 

)(

)(
)(

AFS

BAFS
BAFC

∪
=→  

(6) 

3.4   Fuzzy Correlation 

The Fuzzy Confidence measure (FC) described above does not use )(BFS , the 

fuzzy correlation measure (FCORR) addresses this. The correlation measure is a 

statistical measure founded on the concepts of covariance (Cov) and variance (Var) : 

)()(

),(
)(

BVatAVar

BACov
BAFCORR

×
=→  

(7) 

    The value of correlation ranges from -1 to +1. Value -1 means no correlation and 

+1 means maximum correlation. Thus we are only interested in rules that have a 

correlation value that is greater than 0. As the certainty value increases from 0 to 1, 

the more related the attributes are and consequently the more interesting the rule.  

4 The CFARM Algorithm 

For fuzzy ARM standard algorithms can be used or at least adapted after some 

modifications [12]. Less attention has been given to developing dedicated efficient 

algorithms for fuzzy ARM [5] but still there are some contributions in this area [7]. 

An efficient algorithm is required because a significant amount of processing 

(filtration, conversions, normalization) is undertaken to prepare the raw data prior to 

the application of fuzzy ARM.  

    The proposed Composite Fuzzy ARM (CFARM) algorithm belongs to the breadth 

first traversal family of ARM algorithms and works in a fashion similar to the Apriori 

algorithm [5]. The CFARM algorithm consists of four major steps: 

 

1. Transformation of ordinary transactional data set (T ) into a property data set 

(
pT ).  

2. Transformation of property data set (
pT ) into a fuzzy data set ′ T . 

3. Apply an Apriori style fuzzy ARM algorithm to ′ T using fuzzy support, 

confidence and correlation measures of the form described above to produce a set 

of frequent item sets F . 

4. Process F and generate a set of fuzzy ARs R  such that Rr ∈∀ the certainty 

factor (either confidence or correlation as desired by the end user) is above some 

user specified threshold. 



 

The algorithms for steps 1 and 2 is not shown here but we show examples of its 

application using a fragment of a the raw data set (T ) given in Table 8(a). This raw 

data is then cast into a properties data set (
PT ). This is done, as described above, by 

averaging the property values for each transaction (see definition 3 and table 4). The 

result is as shown in Table 8(b) which is then cast into a fuzzy data set T ′ as shown in 

Table 8(c). An alternative approach is to discretise the data. 

Table 7. Some conventional datasets (raw, property and conventional) 

(a)  Raw data  (T ) (b) Property data set  

(
PT ) 

(c) Fuzzy data set (T ′ ) 

TID Items 

1 a, b 

2 c 

3 a, b, d 

4 …  

TID X Y Z 

1 3.0 4.5 4.5 

2 1 2 5 

3 3.3 3.3 4.0 

4 … … …  

TID X Y Z 

 S M  L S M L S M L 

1 0.0 0.5 0.5 0.0 0.0 1.0 0.0 0.0 1.0 

2 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 

3 0.0 0.2 0.8 0.2 0.8 0.0 0.5 0.5 0.0 

4 … … … … … … … … …  

5   An Example Application 

To evaluate our approach, we used a market basket analysis data set with 600 

composite edible items; the objective is to determine consumers’ consumption 

patterns for different nutrients using RDA. The properties for each item comprised the 

27 nutrients contained in the government sponsored RDA table (a partial list consists 

of Biotin, Calcium, Carbohydrate, .., Vitamin K, Zinc). These RDA values represent  

a CIV table. The property data set will therefore comprise 1620027600 =×  

attributes. The linguistic label set L was defined as {Very Low (VL), Low (L), Ideal 

(I), High (H), Very High (VH)}. Thus the set of fuzzy attributes PXLA =  has 

135527 =×  attributes. A fragment of this data is given in Table 10.  

A representative fragment of a raw data set (T ), comprising edible items, is given 

in Table 11(a). This raw data is then cast into a properties data set (
PT ) using the 

given CIV/RDA table to give the properties data set in Table 11(b). It is feasible to 

have alternative solutions here but we choose to code fuzzy sets {very low, low, ideal, 

high, very high} with numbers {1, 2, 3, 4, 5} for the first nutrient (Pr), {6, 7, 8, 9, 10} 

for the second nutrient (Fe) etc [10]. Thus, data in Table 11(c) can be used by any 

binary ARM algorithm. 



Table 8.  Fragment of market basket composite item data set1. 

Nutrients/Fuzzy 

Ranges 
Very Low Low Ideal High Very High 

 Min Core Max Min Core Max Min Core Max Min Core Max Min Core 

Fiber 0 1 10 15 10 15 20 25 20 25 30 35 30 33 38 39 35 40 … 

Iron 0 .6 8 12 8 12 16 18 16 18 19 20 19 20 22 23 22 23 … 

Protein 0 1 15 30 10 20 35 40 35 40 60 65 60 65 75 80 75 70 … 

VitaminA 0 15 150 200 150 200 300 400 300 350 440 500 440 490 550 600 550 600 … 

Zinc 0 .8 8 10 8 10 15 20 15 20 30 40 30 40 46 50 46 50 … 

 … … … … … … … … … … … … … … … … … … … 

Table 9. Example data fragment from example application 

(a)  Raw data  (T ) (b) Property data set  (
PT ) 

(c) Conventional ARM data 

set 

TID Items 

1 X, Z 

2 Z 

3 X,Y, Z 

4 …  

TID Pr Fe Ca Cu 

1 45 150 86 28  

2 9 0 47 1.5 

3 54 150 133 29.5 

4 … … … …  

TID Pr Fe Ca Cu 

1 3 8 13 16  

2 1 6 12 16 

3 3 8 15 16 

4 … … … ...  
     

This approach only gives us the total support of various fuzzy sets per nutrient and not 

the degree of (fuzzy) support. This directly affects the number and quality of rules 

(see section 6). To tackle this, the fuzzy approach here converts the RDA property 

data set (Table 11(b)) to linguistic values (Table 12) for each nutrient and their 

corresponding degrees of membership reflected in each transaction. Table 12 shows 

only two nutrients, Pr and Fe (i.e. a total of 10 fuzzy sets). The CFARM algorithm 

uses a tree data structure to store itemsets.  

Table 10. Linguistic transaction file 

TID Protein (Pr) Iron (Fe)  

 VL L Ideal H VH VL L Ideal H VH … 

1 0.0 0.7 0.3 0.0 0.0 0.0 0.0 0.8 0.2 0.0 … 

2 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 … 

3 0.0 0.0 0.9 0.1 0.0 0.0 0.0 0.8 0.2 0.0 … 

4 … … … … … … … … … … … 

                                                           
1 Values could be in grams, milligrams, micrograms, International unit or any unit).Here 

Min is the minimum value i.e.α , Core is the core region δβ ,  and Max is the maximum 

value γ  in the fuzzy membership graph.of figure 2. 



6   Experimental Results 

To demonstrate the effectiveness of the approach, we performed several experiments 

using a T10I4N0.6KD100k (average of 10 items per transaction, average of 4 items 

per interesting set, 600 attributes and 100,000 transactions/records) QUEST data set  

[11]. Each of the 600 attributes was matched to one of 600 food items listed in a real 

RDA table. The data is thus a transactional database containing 100K records. 

   Our experiments in the first instance compared CFARM, with and without 

normalisation, against standard (discrete) ARM with respect to: (i) the number of 

frequent sets generated and (ii) the number of rules generated (using both the 

confidence and the correlation measure). Fig 2 shows the results and demonstrates the 

difference between the number of frequent itemsets generated using:  
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Fig. 2. Number of frequent Itemsets 

 

1. Standard ARM using discrete intervals,  

2. CFARM with fuzzy partitions without normalization (CFARM1), and  

3. Fuzzy ARM with fuzzy partitions with normalization (CFARM2).   

For standard ARM, the Apriori-TFP algorithm was used [6] with a range of 

support thresholds. As expected the number of frequent itemsets increases as the 

minimum support decreases. 

In Fig 2, CFARM1 uses a dataset without normalization while CFARM2 uses 

dataset with normalization. From the results, it is clear that standard ARM produces 

more frequent itemsets (and consequently rules) than fuzzy ARM. This is because the 

frequent itemsets generated more accurately reflect the true patterns in the data set 

than the numerous artificial patterns resulting from the use of crisp boundaries in 

standard ARM. At low support threshold levels, the approach with normalization 

(CFARM2) starts to produce less frequent itemsets than the approach without 

normalization (CFARM1). This is because the average contribution to support counts 

per transaction is greater without using normalization than with normalization. Figs 3 

and 4 compares number of rules generated using user specified fuzzy confidence and 



fuzzy correlation values respectively. In both cases, the number of rules is less using 

CFARM2; this is a direct consequence of the fact that CFARM 2 generates fewer 

frequent itemsets. 

   
Fig. 3. No. of Rules (confidence)       Fig. 4. No. of Rules (Correlation) 

 

Note that fewer, but arguably better (succinct) rules are generated using the 

correlation measure (Fig 3) than the confidence measure (Fig 4). The experiments 

show that using the proposed fuzzy normalization process less fuzzy ARs are 

generated.  

In general, we can see that the novelty of the approach is the ability to analyse 

datasets that can be expressed as composite items where each item has a number of 

property values. In addition, the approach shows that a more succinct set of property 

ARs than that generated using a non-fuzzy method) can be produced. 

7.  Conclusion and future work 

In this paper, we have presented a novel framework for extracting hidden information 

from composite items where such have common properties defined as quantitative 

(sub) itemsets. The properties are then transformed into fuzzy sets. The CFARM 

algorithm produces a more succinct set of fuzzy ARs using fuzzy measures and 

correlation as the interestingness (certainty) measure and thus presents a new way for 

extracting ARs from items with properties. This is different from normal quantitative 

ARM. We also showed a practical example with market basket data where edible 

items were used with nutritional content as properties. Of note is the significant 

potential to apply CFARM to other applications where items could have composite 

attributes even with varying fuzzy sets between attributes. Overall, the approach 

presented here is effective for analysing databases with composite items. Further 

work will compare performance of the CFARM algorithm with common fuzzy ARM 

algorithms [1, 3]. 
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