
THE EFFECT OF THRESHOLD VALUES ON

ASSOCIATION RULE BASED CLASSIFICATION

ACCURACY

Frans Coenen and Paul Leng

Corresponding Author: Frans Coenen

Department of Computer Science, The University of Liverpool,

Liverpool, L69 3BX {frans,phl}@csc.liv.ac.uk

Abstract

Classification Association Rule Mining (CARM) systems operate by applying an

Association Rule Mining (ARM) method to obtain classification rules from a train-

ing set of previously-classified data. The rules thus generated will be influenced by

the choice of ARM parameters employed by the algorithm (typically support and

confidence threshold values). In this paper we examine the effect that this choice

has on the predictive accuracy of CARM methods. We show that the accuracy

can almost always be improved by a suitable choice of parameters, and describe a

hill-climbing method for finding the best parameter settings. We also demonstrate

that the proposed hill-climbing method is most effective when coupled with a fast

CARM algorithm such as the TFPC algorithm which is also described.

Keywords: KDD, Data mining, Classification rule mining, Classification associ-

ation rule mining.

1

1 INTRODUCTION

Classification is concerned with the categorisation of records in a data set, typically

achieved by applying a set of Classification Rules (CRs), also sometimes referred to as

prediction rules. A classification rule has the general form A → C, where A, the an-

tecedent, is the union of some set of attribute values of the records involved: for example

age < 40 and status = married. The consequent, C, is the label of a class to which

records can be assigned. Classification rules are typically derived from examination of a

training set of records that have been previously annotated with appropriate class labels.

Many techniques exist to generate CRs from a given training set including techniques

based on decision trees [17], Bayesian networks [16], and Support Vector Machines [8].

A method for generating classification rules that has attracted recent attention is

to make use of Association Rule Mining (ARM) techniques. ARM is concerned with the

discovery of probabilistic relationships, known as Association Rules (ARs), between binary

valued attributes of database records. ARM algorithms, such as Apriori [1], Apriori-TFP

[5] and FPgrowth [12] have been developed specifically to address the problem of finding

ARs within very large and sometimes noisy datasets, possibly including very large numbers

of attributes.

In general, an AR defines a relationship between disjoint subsets of the overall set of

attributes represented by the dataset. For the purpose of obtaining Classification Rules,

however, we define binary attributes that represent class-labels, and search only for rules

whose consequent is one of these. To distinguish such specialised ARs from more general

ARs we refer to them as Classification Association Rules (CARs).

Classification Association Rule Mining (CARM) offers the following advantages over

2

other CR generation techniques:

• Training of the classifier is generally much faster using CARM techniques than

other classification generation techniques such as decision tree and SVM approaches

(particularly when dealing with N classifiers as opposed to binary classifiers).

• Training sets with high dimensionality can be handled very effectively.

• The resulting classifier is expressed as a set of rules which are easily understand-

able and simple to apply to unseen data (an advantage also shared by some other

techniques, e.g. decision tree classifiers).

Experimental work has also shown that CARM can offer improved classification accuracy

[14]. A significant amount of research effort has therefore been directed at harnessing

ARM algorithms to generate CARs. Examples include PRM and CPAR [19], CMAR

[13], CBA [14] and the ARC suite of algorithms [20].

What all of the CARM algorithms that are most frequently referenced in the literature

have in common is that they all operate using various parameter thresholds (typically

support and confidence thresholds) and thus their operation is very much dependent

on the selection of appropriate values. However, although it is clear that the accuracy

of classification will be influenced by the user’s choice of appropriate values for whatever

thresholds are used, most work in applying and evaluating methods of classification makes

use of threshold values that are chosen more or less arbitrarily. In this paper we examine

the effect of varying the support and confidence thresholds on the accuracy of CARM

algorithms. We show that classification accuracy can be significantly improved, in many

cases, by an appropriate choice of thresholds, and that when this is possible it can lead

3

to a simplified and more efficient rule-generation process. We describe a hill climbing

algorithm which aims to find the “best” thresholds from examination of the training

data. The algorithm is here applied to the support and confidence framework, but can

equally well be directed at any other parameters used to generate a classifier. In this

paper we also demonstrate that the proposed hill-climbing method is most effective when

coupled with a fast CARM algorithm such as TFPC.

In section 2 we summarise some previous work on CARM, and in section 3 we describe

a new algorithm, TFPC which was introduced briefly in [6] and is here described in

detail. In section 4 we describe some experiments that demonstrate the effect of varying

the support and confidence thresholds on the accuracy obtained using this and other

algorithms. In section 5 we describe the hill-climbing algorithm, and in section 6 we

present results of experiments applying the hill-climbing procedure to TFPC, CBA and

CMAR. We show the effect on classification accuracy that can be obtained by a best choice

of thresholds, and discuss how the approach can be applied in practise. Our conclusions

are presented in section 7.

2 PREVIOUS WORK

In general, CARM algorithms begin by generating all rules that satisfy at least two user-

defined threshold conditions. The support of a rule describes the number of instances in

the training data for which the rule is found to apply. The confidence of the rule is the ratio

of its support to the total number of instances of the rule’s antecedent: i.e. it describes the

proportion of these instances that were correctly classified by the rule. Minimum threshold

values for support and confidence eliminate from consideration candidate rules that either

4

describe too few cases or offer too low classification accuracy. Frequently, however, and

especially when working with imprecise and noisy training data, it will not be possible to

obtain a complete classification using only a small number of high-confidence rules. Most

methods, therefore, generate a relatively large number of rules which are then pruned.

Algorithms for generating Classification Rules can be broadly categorised according to

when the required pruning is performed as follows:

1. Two stage algorithms, which first produce a set of candidate CRs, by a CARM

process or otherwise (stage 1). In a separate second stage these are then pruned

and ordered for use in the classifier. Examples of this approach include CMAR [13],

CBA [14] and REP as used for example in [15].

2. Integrated algorithms where the classifier is produced in a single processing step,

i.e. generation and pruning is “closely coupled”. Examples of this approach include

rule induction systems such as FOIL [18], PRM and CPAR [19]. The TFPC algo-

rithm, introduced in this paper, also falls into this category. IREP [10] and RIPPER

[7] are one-stage pruning algorithms which may alternatively be applied also as the

second stage of a two-stage method.

What all of the above have in common is that they all use various parameter thresholds

and thus their operation is very much dependent on the selection of appropriate values.

Several of the above methods prune rules by coverage analysis of the training data. CMAR

[13] uses a threshold for this that determines how many rules are required to cover a case

before it is eliminated from the analysis. The FOIL ([18]) algorithm uses thresholds for the

number of attributes that can be included in an antecedent and also makes use of a Laplace

accuracy threshold. Algorithms including PRM and CPAR ([19]) use three thresholds: a

5

minimum gain threshold, a total weight threshold, and a decay factor. Other proposed

measures include Weighted Relative Accuracy (WRA) which in turn reflects a number

of rule “interestingness” measures and requires a WRA threshold ([9]). A comparison

of interestingness measures used in CARM is presented in Coenen and Leng 2004 ([2]).

Alternatively, some researchers have proposed the use of various heuristics to prune rules

(for example [21]).

For further details regarding the above CARM algorithms interested readers are ad-

vised to refer to the indicated references. However, a brief overview of CMAR and CBA

is presented in the following two subsections as these are two of the algorithms considered

in the experimentation section of this paper.

2.1 CBA (Classification Based on Associations)

The CBA algorithm ([14]) exemplifies the “two-stage” approach, and was one of the first

to make use of a general ARM algorithm for the first stage. CBA uses a version of the

well-known Apriori algorithm [1], using user supplied support and confidence thresholds,

to generate CARS which are then prioritised as follows (given two rules r1 and r2):

1. r1 has priority over r2 if r1.confidence > r2.confidence.

2. r1 has priority over r2 if r1.confidence == r2.confidence and r1.support >

r2.support.

3. r1 has priority over r2 if r1.confidence == r2.confidence and r1.support ==

r2.support and |r1.antecedent| < |r2.antecedent|.

Once the rules are generated the ordered set of rules is pruned (stage 2) as follows:

6

1. For each record d in the training set find the first rule (the one with the highest

precedence) that correctly classifies the record (the cRule) and the first rule that

wrongly classifies the record (the wRule).

2. For each record where the cRule has higher precedence than the wRule, the rule is

included in the classifier.

3. For all records where the cRule does not have higher precedence than the wRule

alternative rules with lower precedence must be considered and added to the classi-

fier.

CRs are added to the classifier according to their precedence. On completion the lower

precedence rules are examined and a default rule selected to replace these low precedence

CRs. CBA illustrates a general performance drawback of two-stage algorithms; the cost of

the pruning stage is a product of the size of the data set and the number of candidate rules,

both of which may in some cases be large. It is clear, also, that the choice of support and

confidence thresholds will strongly influence the operation of CBA. The ordering strategy

seems to work well on some data sets but less well on others.

2.2 CMAR (Classification based on Multiple Association Rules)

The CMAR algorithm ([13]) has a similar general structure to CBA, and uses the same

CR prioritisation approach as that employed in CBA. CMAR differs in the method used

in stage 1 to generate candidate rules, which makes use of the FP-tree data structure

coupled with the FP-growth algorithm [12]; this makes it more computationally efficient

than CBA. Like CBA, CMAR tends to generate a large number of candidate rules. The

set of CRs is pruned by removing all rules with a χ2 value below a user defined threshold

7

and all rules where a more general rule with higher precedence exists. Finally, a database

coverage procedure is used to produce the final set of rules. This stage is similar to

that of CBA, but whereas CBA finds only one rule to cover each case, CMAR uses a

coverage threshold parameter to generate a larger number of rules. When classifying an

“unseen” data record, CMAR groups rules that satisfy the record according to their class

and determines the combined effect of the rules in each group using a Weighted χ Squared

(WCS) measure.

3 TOTAL FROM PARTIAL CLASSIFICATION

The methods referenced above perform some form of coverage analysis, either as a separate

phase or integrated into the rule-generation process, to verify the applicability of rules

generated to the cases in the training data. The cost of this analysis, especially when

dealing with large data sets with many attributes and multiple cases, motivated us to

consider whether it is possible to generate an acceptably accurate set of Classification

Rules directly from an ARM process, without further coverage analysis. The TFPC

algorithm 1 described here is directed at this aim. The principal advantage offered by

TFPC, with respect to threshold tuning using the hill climbing approach described later

in this paper, is that it is extremely efficient (because it dispenses with the need for

coverage analysis).

TFPC is derived from a general ARM algorithm, Apriori-TFP, that we have described

elsewhere [5]. We assume that database records (transactions) comprise the values of a set

of binary attributes; data not in this form is first discretised to make it so. A transaction

1TFPC may be obtained from http : //www.csc.liv.ac.uk/ ∼ frans/KDD/Software.

8

may then be said to “contain” the items corresponding to the non-zero attribute values

present. Apriori-TFP finds in this data all the “frequent” sets, ie sets of items whose

occurrence in the data reaches a defined threshold of support. The method makes use

of two set-enumeration tree structures for this purpose. In a single pass of the data, the

data is first transcribed into a structure we call the P-tree, first described in [11], which

contains a Partial summation of relevant support-counts. The P-tree orders sets of items

according to some defined ordering of the single items, so that each subtree contains only

following supersets of its root node. Previous work has shown that the algorithm works

most efficiently if items are placed in descending order of their frequency in the data set

[3]. As each record in the data is examined, the set of items it contains is inserted into

the P-tree. If a node representing the set already exists, its support count is incremented;

otherwise a new node is created. When two nodes added to the tree share a common

prefix, this prefix is used to create a new parent node for them if this does not already

exist. These additional nodes are required to prevent the tree degenerating into a list

structure. The final P-tree, however, is of the same order of size as the original database,

and may be smaller if there are duplicate records.

As each database record (a set of items) is considered, the current tree is traversed

to find the position of the node at which this itemset is placed and counted. During

this traversal, the algorithm examines each preceding subset of the node that is found in

the tree, and adds to the count of this. The effect is that in the final P-tree, the count

recorded at each node is a summation of the counts of all nodes in the subtree of which

it is the root, i.e. of all the supersets that follow it in the set ordering.

The significance of this structure is that, without any loss of information, it carries

out a significant part of the summation of support counts by a procedure that is efficient

9

in time and conservative in space requirements. To complete the generation of frequent

sets, we apply a second stage of the algorithm that builds a second set-enumeration tree

structure which we call the T-tree (Total support tree). Like the P-tree, the T-tree stores

itemsets at nodes such that each subtree contains only supersets of its parent node, but

in this case the nodes in the subtree are those that precede their parent according to the

ordering of itemsets. The T-tree is constructed by a breadth-first iterative process that

ends with a tree that contains only the frequent sets.

The TFPC algorithm adapts these structures and procedures to the task of generating

classification association rules. For this purpose, class labels are defined as items, and

placed at the end of the ordering of items. The first stage of the algorithm then constructs

a P-tree that contains partial counts of all the sets of items that have been found in records

labelled with one or other of these classes.

To illustrate this, consider a dataset of records each of which comprises some subset

of the attribute-set A, B, C, D that is labelled with a class-label, x or y. For clarity

and simplicity, we will use the notation ACDx, for example, to represent a record with

attributes A,C and D, which has been placed in class x. The training set comprises the

following instances: ABCDx, ABCx, ABCy, ABDx, ABDy, ABDy, ABx, ABy, ABx, ABy,

ACDx, ACx, ACx, ACx, ACx, BCDy, BCDy, BCDy, BDy, CDy. Figure 1 illustrates the

P-tree that would be constructed from this data. Rather than the conventional tree rep-

resentation, we represent child nodes of each parent as an ordered linked list, illustrating

the actual form of the implementation. The form of the final tree is independent of the

order in which the data is presented. Notice that the leaf nodes of the tree each represent

a distinct case in the data, with an associated incidence-count. Parent nodes represent

preceding subsets, with a count that sums the counts in its subtree. This is not, however,

10

yet a full support-count; for example, the count recorded for AC (5) does not incorporate

the count for the sets in the subtree rooted at ABC.

To complete the counting of support, a minimum support threshold is chosen and a

T-tree is constructed. Figure 2 illustrates the tree that would result from this data, with

a support threshold of 30%. The T-tree is built level by level, starting with nodes that

represent single items. In this case, the first level comprises the items A, B, C, and D,

and the class-labels x and y. The P-tree is traversed once to obtain complete support-

counts for all of these: for example the overall support-count for B (14) is the sum of

the partial counts for the sets B (4) and AB (10) found in the P-tree. After completing

the first level, a second level comprising pairs of items is added to the tree. Here, each

pair is appended to the parent representing its second item, so the subtrees now contain

preceding supersets of their root. The support of these sets is counted, and the process

repeated for the third and subsequent levels. At each stage, sets are added to the tree

only if all their subsets reach the required threshold of support, and are pruned if they

are found to lack the necessary support. For example, in this case the set AD will initially

have been appended to the tree. The total number of instances of AD in the data, (5),

does not reach the support threshold (30%, or 6 cases), so this node is pruned after level 2

is counted, and the supersets of AD are not added to the tree at level 3. This procedure,

of course, replicates the well-known Apriori methodology, albeit using a more efficient

counting algorithm that makes use of the tree structures and the counting already done

in constructing the P-tree. The process continues until no more nodes can be added. The

final T-tree contains all the frequent sets with their support-counts.

The description above applies in general to the construction of a T-tree from a P-tree.

In the algorithm TFPC, however, when the structure is being used to generate classifica-

11

tion rules, an additional form of pruning is applied, using the chosen confidence threshold.

Each set appended to the subtrees rooted at x and y defines a possible Classification Rule:

for example, the node labelled Cx leads to a rule C → x, with confidence 7/12 (ie support

of Cx/support of C). Whenever a candidate rule of this kind is found to reach the re-

quired support threshold, TFPC calculates its confidence, and if this reaches the required

confidence threshold, the set is removed from the tree and added to the target set of CRs.

The effect of this is that no further supersets of the set from which the rule is derived are

added to the tree. For example, suppose we define a confidence threshold of 70% for the

data illustrated. The set Dy leads to a rule D → y, with confidence 7/10, which meets

this threshold, so the rule would be accepted. In this event the set Dy would be removed

from the tree and the set BDy would not be appended.

This pruning heuristic has two desirable consequences. The first is that fewer sets need

to be counted, significantly improving the speed of the rule-generation algorithm. The

second is that fewer final rules will be generated, as once a general rule of sufficient confi-

dence is found, no more specific rules (rules with the same consequent, whose antecedent

is a superset) will be considered. This “on-the-fly” pruning replaces the expensive pruning

step that other algorithms perform by coverage analysis.

Table 1 summarises the rule-generation algorithm. When applying the rules to classify

unseen data, the rule set is sorted first by confidence, then by support. Between two rules

of equal confidence and support, the more specific takes precedence. This differs from the

precedence used in CBA and other algorithms, which favours more general rules on the

basis that prioritising more specific rules may lead to overfitting. In our case, however,

the rule generation algorithm does not generate more specific rules when a general rule

exists with sufficient confidence, so overfitting is unlikely, and giving precedence to more

12

specific rules compensates for the initial preference given to general rules. Optionally,

also, we may terminate the T-tree construction at a defined depth, to limit the maximum

size of rule-antecedents.

TFPC provides a very efficient algorithm for generating a relatively compact set of

CRs. Because no coverage analysis is carried out, however, the choice of appropriate

support and confidence thresholds is critical in determining the size of the final rule set.

In the next section we examine the effect of varying these thresholds on this and other

algorithms.

4 The effect of varying threshold values

To examine the effect that may result from different choices of threshold values, we carried

out a series of experiments using test data from the UCI Machine Learning Repository.

The data sets chosen were discretized using the LUCS-KDD DN software 2. In the dis-

cussion and illustrations that follow, we identify each data set with a label that describes

its key characteristics, in the form in which we have discretized it. For example, the

label glass.D48.N214.C7 refers to the “glass” data set, which includes 214 records in

7 classes, with attributes which for our experiments have been discretised into 48 binary

categories.

Using this data, we investigated the classification accuracy that can be achieved using

the TFPC algorithm, and also from CMAR and CBA, across the full range of values for

the support and confidence thresholds. For each pair (support, confidence) of threshold

2Available at http : //www.csc.liv.ac.uk/ ∼ frans/KDD/Software/LUCS −KDD −DN/lucs −

kdd DN.html

13

values we obtained a classification accuracy from a division of the full data set into a

90% training set and 10% test set. All the implementations were written in Java 1.4 by

the authors. Experiments were conducted using a single Celeron 1.2 GHz CPU with 512

MBytes of RAM. The results for a selection of the data sets considered are illustrated in

Figures 4, 5 and 6 (presented at the end of this paper) in the form of 3-D plots. For each

plot the X and Y axes represent support and confidence threshold values from 100% to

0%, and the Z axis the corresponding percentage classification accuracy obtained.

In these figures,the first illustration in each row is the plot for the TFPC algorithm.

These results demonstrate a range of different characteristics of the various data sets.

In some cases, for example flare, the best accuracy is obtained for a very broad range

of threshold values. These represent “easy” cases to classify: those in which all the

necessary rules have high support and confidence in the training data. In other cases,

conversely, such as led7, and letRecog the accuracy obtained is very sensitive to the

choice of thresholds. Even in cases where a near-best accuracy is easily obtained, there

may be small regions in the search space where a better result can be achieved: hepatitis

and heart are examples. Generally, the best accuracy is obtained using a low support

threshold, but there are cases where this is not so. Usually, these arise when the training

set is small so that rules with low support may represent very few cases: see, for example

iris and wine. The choice of confidence threshold, however, is often more critical. Our

experiments include cases (e.g. ticTacToe and waveform) where a high confidence

threshold is required. These represent cases where TFPC can perform badly if a low

confidence threshold is chosen, because a rule that meets this threshold may mean that

a better high-confidence rule is never found. In other cases, however, a low confidence

threshold is required, because otherwise too few candidate rules are identified: letRecog

14

and chess are examples. Usually these are data sets for which classification accuracy is

low, and only low-confidence rules can be found.

The plots for CMAR (second illustration in each row) have a broadly similar pattern.

The illustrations show, however, the way in which the coverage analysis smooths out some

of the influence of the choice of threshold. led7, iris and wine, all cases that for TFPC

are sensitive to the thresholds of support and/or confidence, are good examples of this. In

these cases, provided sufficiently low thresholds are chosen, then CMAR will find all the

necessary candidate rules, and the coverage analysis reliably selects the best ones. This

smoothing effect is not perfect, however; note that for iris, CMAR still has a suboptimal

result if a very low support threshold is chosen, and the examples of ticTacToe and

ionosphere illustrate cases where a choice of a low confidence threshold will lead to poor

rules being selected. Conversely, in cases such as letRecog and chess, where few if any

high-confidence rules can be found, a low confidence threshold is again needed to find

candidate rules.

The illustrations for CBA also, in many cases, demonstrate the “smoothing” effect

obtained as a result of applying coverage analysis to select rules from the initial candidates.

This is especially to be seen in some of the larger data sets: letRecog, ticTacToe and

waveform all illustrate cases where CBA’s accuracy is more stable than that of CMAR. In

other cases, however, usually involving small data sets, CBA may be even more sensitive

than TFPC to the choice of thresholds. The examples of hepatitis and ionosphere are

especially interesting: in both cases, a poor choice of thresholds (even values that appear

reasonable) may lead to a dramatically worse result. This is partly because, unlike CMAR,

CBA’s coverage analysis may sometimes retain a rule that applies only to a single case.

This makes the method liable to include spurious rules, especially if the data set is small

15

enough for these to reach the required thresholds.

5 Finding best threshold values

It is clear from the experiments discussed above that the accuracy and performance of

both TFPC, in particular, and rule-generation algorithms in general, may be very sensitive

to the choice of threshold values used. The coverage analysis used by methods such as

CMAR and CBA sometimes reduces this sensitivity, but does not eliminate it. It is

apparent that the accuracy of the classifiers obtained using any of these methods may be

improved by a careful selection of these thresholds.

In this section we describe a procedure for identifying the “best” threshold values, i.e,

those that lead to the highest classification accuracy, from a particular training set. The

method applies a “hill-climbing” strategy, seeking to maximise accuracy while varying

the thresholds concerned. We will describe this in relation to thresholds of support and

confidence, although the method can be applied in general to other kinds of threshold

also.

The hill climbing technique makes use of a 3-D playing area measuring 100 × 100 ×

100, as visualised in Figures 4, 5 and 6. The axes of the playing area represent: (1)

support thresholds, (2) confidence thresholds and (3) accuracies (all defined in terms of

percentages). The procedure commences with initial support and confidence threshold

values, describing a current location (cl) in the base plane of the playing area. Using

these values, the chosen rule-generation algorithm is applied to the training data, and the

resulting classifier applied to the test data, with appropriate cross-validation, to obtain a

classification accuracy for cl.

16

The hill-climbing procedure then attempts to move round the playing area with the

aim of improving the accuracy value. To do this it continuously generates data for a set of

eight test locations — hence the term 8 point hill climbing. The test locations are defined

by applying two values, δS (change in support threshold) and δC (change in confidence

threshold), as positive and negative increments of the support and confidence threshold

values associated with cl. The current and test locations form a two dimensional 3 × 3

location grid with cl at the center (Figure 3). The test locations are labelled: n, ne, e,

se, s, sw, w, nw and n, with the obvious interpretations. The objective here is to avoid

finding local minima as featured in some of the plots identified in Figures 4, 5 and 6.

The rule-generation algorithm is applied to each of the test locations which is inside

the playing area and for which no accuracy value has previously been calculated. A

classification accuracy is thus obtained for each location. If this stage identifies a point

with a superior accuracy to the current cl, the procedure continues with cl as this point.

Between candidate points of equal accuracy, the algorithm uses a weighting procedure

to select a “best” point from which to continue. If the current cl has the best accuracy,

then the threshold increments are reduced and a further iteration of test locations takes

place. The process concludes when either: (i) a best accuracy is obtained or (ii) a lower

limit on the threshold-increments is reached at which point the current pair of threshold

values which leads to a “best” classification accuracy for the chosen training and test data

are selected. This will not always be a true best value, depending on the choice of the

initial cl and other parameters, but will at worst be a local optimum. The hill climbing

procedure is summarised in Table 2. It should be noted that the hill climbing is performed

by adjusting values in the 2D base plane (as indicated in Figure 3), the third dimension

(accuracy) is used to influence the selection of appropriate values.

17

6 RESULTS

Table 3 summarises the results of applying the hill-climbing procedure described above

to datasets from the UCI repository, for the algorithms TFPC, CMAR and CBA. For

each algorithm, the first two columns in the table show the average accuracy obtained

from applying the algorithm to (90%, 10%) divisions of the dataset with ten-fold cross-

validation. The first of the two columns shows the result for a support threshold of 1%

and a confidence threshold of 50% (the values usually chosen in analysis of classification

algorithms), and the second after applying the hill-climbing procedure to identify the

“best” threshold values. Note that, with respect to the experiments. δS and δC were set

to 6.4 and 8.0 respectively, and minδS and minδC to 0.1 and 1.0; as these parameters

were found to give the most effective operational results. The support and confidence

threshold values selected to obtain the best accuracy are also tabulated.

Table 3 confirms the picture suggested by the illustrations in Figures 4, 5 and 6

(although note the correspondence is not always exact, as cross-validation was not used in

obtaining the graphical representations — see Section 4). In almost all cases, an improved

accuracy can be obtained from a pair of thresholds different from the default (1%, 50%)

choice. As would be expected, the greatest gain from the hill-climbing procedure is in

the case of TFPC, but a better accuracy is also obtained for CMAR in 21 of the 25 sets,

and for CBA in 20. In a number of cases the improvement is substantial. It is apparent

that CBA, especially, can give very poor results with the default threshold values. In the

cases of hepatitis, ionosphere and wine, the illustrations reveal the reason to be that

a 1% support threshold leads, for these small data sets, to the selection of spurious rules.

This is also the case for zoo, and for mushroom, where even a much larger data set

18

includes misleading instances if a small support threshold is chosen. In the latter case the

hill-climbing procedure has been ineffective in climbing out of the deep trough shown in

the illustration for CBA. Notice that here the coverage analysis used in CMAR is much

more successful in identifying the best rules, although TFPC also does relatively well.

As we observed from the illustrations, and as results reported in [13] also show, CMAR

is generally less sensitive to the choice of thresholds. Both CMAR and CBA, however,

give very poor results when, as in the cases of chess and letrecog, the chosen confidence

threshold is too high, and CMAR performs relatively poorly for led7 for the same reason.

The extreme case is chess, where both CMAR and CBA (and TFPC) find no rules at

the 50% confidence threshold. Notice, also, that for the largest data sets (those with

more than 5000 cases) a support threshold lower than 1% almost always produces better

results, although the additional candidate rules generated at this level will make coverage

analysis more expensive.

In general, the results show that coverage analysis, especially in CMAR, is usually

(although not always) effective in minimising any adverse effect from a poor choice of

thresholds. Although TFPC with the default threshold values produces reasonably high

accuracy in most cases, the lack of coverage analysis generally leads to somewhat lower

accuracy than one or both of the other methods. Interestingly, however, the results when

the hill-climbing procedure is applied to TFPC show that high accuracy can be obtained

without coverage analysis if a good choice of thresholds is made. In 18 of the 25 cases,

the accuracy of TFPC after hill-climbing is as good or better than that of CMAR with

the default thresholds, and in only one case (wine) is it substantially worse, the hill-

climbing in this case failing to find the peak of the rather irregular terrain shown in

the illustration. Conversely, the result for penDig demonstrates a case in which the

19

hill-climbing procedure of TFPC works better than the coverage analysis of CMAR in

identifying important low-support, high-confidence rules. The results also improve on

CBA in 14 cases, often by a large margin. Overall this suggests that a good choice of

thresholds can eliminate the need for coverage analysis procedures.

The significance of this is that coverage analysis is relatively expensive, especially if

the data set and/or the number of candidate rules is large, as is likely to be the case

if a low support threshold is chosen. Table 4 gives a comparison of the total execution

times to construct a classifier with ten-fold cross validation, using TFPC, with or without

the hill-climbing procedure, and for CMAR and CBA (for the 1%, 50% thresholds). The

average number of rules generated in each case is also shown. These figures were obtained

using the author’s Java implementations of the algorithms running on single Celeron 1.2

Ghz CPU with 512 MBytes of RAM.

As would be expected, the execution times for TFPC (with default threshold values)

are almost always far lower than for either of the other two methods. Less obviously,

performing hill-climbing with TFPC is in many cases faster than coverage analysis with

CMAR or CBA. In 13 of the 25 cases, this was the fastest procedure to obtain classification

rules, and it is only markedly worse in cases such as chess and letRecog, where the other

methods have failed to identify the rules necessary for good classification accuracy.

TFPC also, in most cases, generates fewer rules that CMAR, leading to faster oper-

ation of the resulting classifier. The case of flare is interesting in this respect. Here, a

single rule is sufficient to identify 84.3% of cases; both CMAR and CBA find select many

more rules, but without improving on this accuracy. Together with the results shown in

table 3, this suggests that TFPC with hill-climbing is an effective way of generating an

accurate classifier which is often less costly than other methods.

20

7 CONCLUSIONS

In this paper we have shown that the choice of appropriate values for the support and

confidence thresholds can have a significant effect on the accuracy of classifiers obtained

by CARM algorithms. The coverage analysis performed by methods such as CMAR and

CBA reduces this effect, but does not eliminate it. CMAR appears to be less sensitive

than CBA to the choice of threshold values, but for both methods better accuracy can

almost always be obtained by a good choice. We have also shown that, if threshold values

are selected well, it is possible to obtain good classification rules using a simple and fast

algorithm, TFPC, without the need for coverage analysis. We describe a procedure for

finding these threshold values that will lead to good classification accuracy. Our results

demonstrate that this approach can lead to improved classification accuracy, at a cost

that is comparable to or lower than that of coverage analysis. The technique can be

applied to all the currently popular CARM algorithms as illustrated in the paper using

the well known CMAR and CBA algorithms — the authors would therefore suggest that

the results obtained are generalisable. It should also be noted that the hill climbing

technique is not dependent on specific properties of the P and T trees used in the TFPC

algorithm, although use of TFPC does make the approach more computationally effective.

References

[1] R. Agrawal and R. Srikant, Fast algorithms for mining association rules, in Proc. 20th

VLDB Conference (Morgan Kaufman, 1994) 487-499.

[2] F. Coenen and P. Leng, An evaluation of approaches for classification rule selection,

in Proc. ICDM 2004 conference (IEEE Press, 2004), 359-362.

21

[3] F. Coenen and P. Leng, Optimising Association Rule Algorithms using itemset order-

ing, In Proc ES2002 conference (Springer, 2002) 53-66.

[4] F. Coenen and P. Leng, Data Structures for Association Rule Mining T-trees and P-

trees, IEEE Transactions on Knowledge and Data Engineering 16(6)(2004) 774-778.

[5] F. Coenen, P. Leng and G. Goulbourne, Tree Structures for Mining Association Rules,

Journal of Data Mining and Knowledge Discovery, Vol 8 (1)(2004) 25-51.

[6] F. Coenen, P. Leng and L. Zhang, Threshold Tuning for Improved Classification As-

sociation Rule Mining, in Proc. PAKDD 2005 conference (Springer LNAI3158, 2005),

216-225.

[7] W.W. Cohen, Fast Effective Rule Induction, in Proc. 12th Int. Conf. on Machine

Learning (Morgan Kaufmann, 1995), 115-123.

[8] N. Christianin and J. Shawe-Taylor, An Introduction to Support Vector Machines and

Other Kernel-Based Learning Methods, (Cambridge University Press, 2000).

[9] N. Lavrač, P. Flach and B. Zupan, Rule Evaluation Measures: A Unifying View,

in Proc. Ninth International Workshop on Inductive Logic Programming (ILP’99)

(Springer-Verlag 1999), 174-185.

[10] J. Fürnkranz, J. and F. Widme, Incremental reduced error pruning, in Proc. 11th

Int. Conf. on Machine Learning (Morgan Kaufmann, 1994), pp70-77.

[11] G. Goulbourne, F. Coenen and P. Leng, Algorithms for Computing Association Rules

using a Partial Support Tree, in Proc ES99 Conference (Springer 1999), 132-147; also

in Jo. of Knowledge-Based Systems 13 (2000), 141-149

22

[12] J. Han., J. Pei, and Y. Yin, Mining Frequent Patterns without Candidate generation,

Proc ACM Sigmod conf, (2000) 1-12.

[13] W. Li, J. Han and J. Pei, CMAR: Accurate and Efficient Classification Based on

Multiple Class-Association Rules, in Proc. ICDM 2001 conference (IEEE 2001), 369-

376.

[14] B. Liu, W. Hsu and Y. Ma, Integrating Classification and Association Rule Mining,

in Proc. KDD-98 conference (AAAI 1998), 80-86.

[15] G. Pagallo and D. Haussler, Boolean feature discovery in Empirical data, Machine

Learning, 5(1) (1990), 71-99.

[16] J. Pearl, Probabilistic Reasoning in Intelligent Systems, (Morgan Kaufmann, San

Mateo 1998).

[17] J.R. Quinlan, Induction of decision trees, Machine Learning (1) (1986), 81-106.

[18] J.R. Quinlan and R.M. Cameron-Jones, FOIL: A Midterm Report. on Proc. ECML

conference (1993), 3-20.

[19] X. Yin and J. Han, CPAR: Classification based on Predictive Association Rules, in

Proc. SIAM Int. Conf. on Data Mining (SDM’03) (2003) 331-335.

[20] O.R. Zaiane and M-L. Antonie, Text Document Categorization by Term Association,

on Proc. ICDM’2002 conference (IEEE 2002),19-26.

[21] O.R. Zaiane and M-L. Antonie, (2005). On Pruning and Tuning Rules for Associative

Classifiers, in Proc KES’05 (2005), 966-973.

23

Inputs: Data set D, support threshold s, confidence threshold c
Output: Set of CRs R

Preprocess input data so that:
i) Unsupported attributes are removed, and
ii) Recast records so that remaining attributes (not

classes) are ordered according to frequency.

Create a P-tree
Create level 1 of T-tree (single items)and count supports by traversing P-tree
Generate level 2 of T-trees (the 2-item candidate sets)

R← null
K ← 2

Loop
pass through P-tree to obtain support counts for level K
remove unsupported elements in level K
for all remaining elements in level K in branches representing a

class, generate a CR with associated confidence value:
if (confidence > c)

R← R ∪ CR
remove corresponding level K element from tree

End if
K ← K + 1
Generate level K nodes (the K candidate itemsets) from the

remaining K − 1 itemsets using the downward closure
property of itemsets

if no level K nodes generated break
End loop

Table 1 Outline of TFPC algorithm

24

Algorithm: 8-Point Hill Climbing
input A Training and Test data set D, and

a Rule Generation Algorithm RGA
output A list of rules R
cl.S ← initial support
cl.C ← initial confidence
δS ← initial support increment
δC ← initial confidence increment
minδS ← minimum support increment
minδC ← minimum confidence increment

Apply RGA to D using thresholds cl.S and cl.C
Evaluate ruleset generated to determine accuracy cl.accuracy
Start loop

Apply δS, δC to cl.S, cl.C to generate test points P
Apply RGA to determine accuracy for all points not previously evaluated
bl ← location with best accuracy in P
If bl is unique then

If bl = cl Then δS ← δS/2, δC ← δC/2
Else cl ← bl

Else If majority of P have best accuracy Then
cl ← bl, Break

Else If cl.accuracy = bl.accuracy Then
δS ← δS/2, δC ← δC/2

Else cl← bl
End If Else
If δC < minδC and δS < minδS Then Break End loop

R← Rulesgeneratedatpointcl

Table 2 Hill-climbing algorithm

25

TFPC CMAR CBA

Data set Def. “best” Def. “best” Def. “best”

val. HC t’hold val. HC t’hold val. HC t’hold

S C S C S C

adult.D97.N48842.C2 80.8 81.0 0.2 50.1 80.1 80.9 0.7 50.0 84.2 84.6 0.1 48.4

anneal.D73.N898.C6 88.3 90.1 0.4 49.1 90.7 91.8 0.4 50.0 94.7 96.5 0.8 46.8

auto.D137.N205.C7 70.6 75.1 2.0 52.4 79.5 80.0 1.2 50.0 45.5 77.5 2.7 50.8

breast.D20.N699.C2 90.0 90.0 1.0 50.0 91.2 91.2 1.0 50.0 94.1 94.1 1.0 50.0

chessKRK.D58.N28056.C18 0.0 38.0 0.1 25.2 0.0 34.6 0.1 11.0 0.0 39.8 0.1 24.0

cylBands.D124.N540.C2 68.3 74.4 1.2 49.8 75.7 77.8 1.3 49.9 75.7 78.0 1.9 50.0

flare.D39.N1389.C9 84.3 84.3 1.0 50.0 84.3 84.3 1.0 50.0 84.2 84.2 1.0 50.0

glass.D48.N214.C7 64.5 76.2 2.6 45.6 75.0 75.0 1.0 50.0 68.3 70.7 3.0 51.6

heart.D52.N303.C5 51.4 56.0 4.2 52.4 54.4 54.8 1.6 50.0 57.3 60.0 4.2 49.2

hepatitis.D56.N155.C2 81.2 83.8 1.6 51.6 81.0 82.8 2.9 50.0 57.8 83.8 7.1 48.4

horseColic.D85.D368.C2 79.1 79.9 1.2 50.2 81.1 81.9 2.9 50.0 79.2 83.9 5.5 49.2

ionosphere.D157.N351.C2 85.2 92.9 9.8 50.0 90.6 91.5 2.6 50.0 31.6 89.5 10.0 49.2

iris.D19.N150.C3 95.3 95.3 1.0 50.0 93.3 94.7 2.3 50.0 94.0 94.0 1.0 50.0

led7.D24.N3200.C10 57.3 62.7 2.2 49.4 62.2 67.4 1.3 40.4 66.6 68.0 1.0 46.0

letRecog.D106.N20000.C26 26.4 47.6 0.1 32.3 25.5 45.5 0.1 31.8 28.6 58.9 0.1 13.7

mushroom.D90.N8124.C2 99.0 99.7 1.8 69.2 100.0 100.0 1.0 50.0 46.7 46.7 1.0 50.0

nursery.D32.N12960.C5 77.8 89.9 1.0 73.2 88.3 90.1 0.8 62.6 90.1 91.2 1.5 50.0

pageBlocks.D46.N5473.C5 90.0 90.0 1.0 50.0 90.0 90.3 0.2 50.0 90.9 91.0 1.6 50.0

penDig.D89.N10992.C10 81.7 88.5 0.1 62.3 83.5 85.2 0.8 50.0 87.4 91.4 0.1 50.9

pima.D38.N768.C2 74.4 74.9 2.3 50.0 74.4 74.5 1.6 50.0 75.0 75.7 2.8 50.0

soybeanLrg.D118.N683.C19 89.1 91.4 1.1 49.1 90.8 91.8 0.8 51.6 91.0 92.9 0.6 52.2

ticTacToe.D29.N958.C2 67.1 96.5 1.5 74.2 93.5 94.4 1.6 50.0 100.0 100.0 1.0 50.0

waveform.D101.N5000.C3 66.7 76.6 3.2 64.3 76.2 77.2 0.6 50.0 77.6 78.2 2.6 50.0

wine.D68.N178.C3 72.1 81.9 4.5 51.2 93.1 94.3 2.3 50.0 53.2 65.5 4.8 50.0

zoo.D42.N101.C7 93.0 94.0 1.0 49.2 94.0 95.0 1.6 50.0 40.4 93.1 7.4 50.0

Table 3. Accuracy results (Default values: confidence = 50%, support = 1%)

26

Data set TFPC TFPC-HC CMAR CBA

Time # CRs Time # CRs Time # CRs Time # CRs

adult.D97.N48842.C2 2.9 63.8 20.0 93.6 78.0 685.1 230.0 226.1

anneal.D73.N898.C6 0.5 65.6 2.7 108.0 2.3 168.9 5.8 25.3

auto.D137.N205.C7 3.3 4110.7 61.7 2903.1 703.9 243.4 536.3 31.5

breast.D20.N699.C2 0.3 14.0 0.3 14.0 0.4 66.8 0.6 13.7

chessKRK.D58.N28056.C18 2.1 0.0 46.7 791.0 2.0 0.0 2.0 0.0

cylBands.D124.N540.C2 4.0 573.0 163.9 586.6 206.9 617.5 923.6 133.6

flare.D39.N1389.C9 0.4 1.0 0.5 1.0 1.0 210.4 2.4 95.1

glass.D48.N214.C7 0.4 208.7 1.1 140.0 0.8 233.7 0.8 55.7

heart.D52.N303.C5 0.6 98.8 2.7 47.8 0.9 290.4 1.4 52.9

hepatitis.D56.N155.C2 0.6 72.9 2.4 74.0 2.4 153.1 10.0 15.8

horseColic.D85.D368.C2 0.5 158.5 2.1 169.6 10.5 433.6 66.5 114.5

ionosphere.D157.N351.C2 2.3 297.6 16.3 91.3 3066.8 274.7 2361.1 5.7

iris.D19.N150.C3 0.3 14.8 0.4 14.8 0.3 61.6 0.3 11.6

led7.D24.N3200.C10 0.4 22.7 1.4 40.8 0.6 72.3 0.7 27.1

letRecog.D106.N20000.C26 3.7 92.2 196.2 4483.6 17.2 293.8 20.5 81.1

mushroom.D90.N8124.C2 1.4 134.3 30.6 354.6 269.0 93.4 366.2 2.0

nursery.D32.N12960.C5 1.3 39.7 21.3 19.6 5.8 298.6 6.9 78.4

pageBlocks.D46.N5473.C5 0.3 12.8 0.7 12.8 0.8 37.3 2.2 6.0

penDigits.D89.N10992.C10 3.7 2633.2 227.8 7436.5 39.3 1238.0 43.6 295.1

pima.D38.N768.C2 0.3 25.0 0.4 20.3 0.4 87.9 0.7 26.6

soybeanLrg.D118.N683.C19 9.8 3815.5 644.3 3822.7 405.6 290.1 273.8 64.2

ticTacToe.D29.N958.C2 0.4 67.2 4.5 146.2 1.0 362.0 1.6 9.0

waveform.D101.N5000.C3 3.7 375.7 210.8 708.2 167.3 880.9 93.4 315.7

wine.D68.N178.C3 0.3 186.9 1.0 109.6 7.3 117.1 11.7 4.6

zoo.D42.N101.C7 0.5 314.9 2.5 314.7 3.1 43.6 3.2 2.0

Table 4. Performance

27

Figure 1 Example of a P-tree

28

Figure 2 T-tree derived from Figure 1 with 30% support

29

Figure 3 8 point location grid within hill climbing playing area on plane of support and
confidence axes

30

TFPC CMAR CBA

(a)

(b)

(c)

(d)
Figure 4 3-D Plots I: (a) chessKRvK.D58.N28056.C18, (b) flare.D39.N1389.C9, (c)

mushroom.D90.N8124.C2 and (d) heart.D52.N303.C5

31

TFPC CMAR CBA

(a)

(b)

(c)

(d)
Figure 5 3-D Plots II: (a) hepatitis.D56.N155.C2, (b) ionosphere.D157.N351.C2, (c)

iris.D19.N150.C3 and (d) led7.D24.N3200.C10

32

TFPC CMAR CBA

(a)

(b)

(c)

(d)
Figure 6 3-D Plots III: (a) letRecog.D106.N20000.C26, (b) ticTacToe.D29.N958.C2,

(c) waveform.D101.N5000.C3 and (d) wine.D68.N178.C3

33

