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Banner headline [75 words] 

Reservoir simulation methods applied to gas reservoirs are reviewed and the key influencing 

variables identified. Machine Learning (ML) methods can be applied in various ways to improve 

the performance of gas reservoir simulations, especially in respect to history matching and proxy 

modeling. Additionally, ML can assist the CO2 sequestration and enhanced gas recovery, well 

placement optimization, production optimization, estimation of gas production, dew point 

prediction in gas condensate reservoirs, and pressure and rate transient analysis. 

 

Abstract 

Natural gas reservoir simulation, as a physics-based numerical method, needs to be carried out 

with a high level of precision. If not, it may be highly misleading and cause substantial losses, poor 

estimation of ultimate recovery factor, and wasted effort. Although simple simulations often 

provide acceptable approximations, there is a continued desire to develop more sophisticated 

simulation strategies and techniques. Given the capabilities of Machine Learning (ML) and their 

general acceptance in recent decades, this chapter considers the application of these techniques to 

gas reservoir simulations. The aspiration ML technics should be capable of providing some 

improvements in terms of both accuracy and speed. The simulation of gas reservoirs (dry gas, wet 

gas and retrograde gas-condensate) is introduced along with its fundamental concepts and 

governing equations. More specific and advanced concepts of applying ML in modern reservoir 

simulation models are described and justified, particularly with respect to history matching and 

proxy models. Reservoir simulation assisted by machine learning is becoming increasingly applied 

to assess suitably of reservoirs for carbon capture and sequestration associated with enhanced gas 

recovery. Such applications, and the ability to improve reservoir performance via production 

efficiency, make ML-assisted reservoir simulation a valuable approach for improving the 

sustainability of natural gas reservoirs. The concepts are reinforced using a case study applying 

two ML models providing dew point pressure predictions for gas condensate reservoirs. 

 

Keywords: Reservoir simulation; Natural gas; Machine learning; Reservoir characterization; 

Mathematical models; History matching; Proxy modeling; Optimization; Dew point pressure.  

  



1. Introduction 

Petroleum reservoirs can be classified into oil and gas reservoirs with respect to their phase 

behavior; typically illustrated on a pressure-temperature (P-T) diagram. If the reservoir 

temperature exceeds the critical temperature of the hydrocarbon fluid, it is regarded as a natural 

gas reservoir. Gas reservoirs are separated into three groups: (i) dry gas, (ii) wet gas, and (iii) 

retrograde gas-condensate reservoirs. To distinguish these three distinctive reservoirs, the 

cricondentherm point is defined. It is the maximum temperature above which no liquid is produced 

no matter how high the pressure becomes. In both dry gas and wet gas, the reservoir temperature 

is more than the hydrocarbon system cricondentherm. Dry gas reservoirs always remain in the gas 

phase. However, some liquid is formed at the surface conditions when fluids are produced from 

wet gas reservoirs. When the reservoir temperature is between critical temperature and 

cricondentherm, the reservoir is considered as a special case, i.e., described as a retrograde gas-

condensate reservoir [1].  

Reservoir simulation is a strategy, or set of techniques, by which a numerical model of the 

geophysical and geological characteristics of a subterranean resource, and the (single phase or 

multiphase) fluid system is used to investigate and predict how the available fluids flow through a 

porous and permeable medium into the stock tank. It is very hard to perceive the fluid behavior in 

a reservoir, describe the physical and chemical processes, and measure or estimate variables that 

affect the flow behavior. Forecasting how fluid flow from a reservoir proceeds under various drive 

mechanisms over time, and how it reacts to the application of various improved and enhanced 

recovery techniques is always associated with a degree of uncertainty. Reservoir simulation began 

in 1936 by developing the Material Balance Equation (MBE) for petroleum reservoirs. The MBE 

remains a standard tool for the prediction of the fluid flow inside many types of petroleum reservoir 

[2].  

Machine learning algorithms search for complex patterns among large numbers of data records. 

Whilst other industries, such as telecommunication, banking, and automotive have experienced 

considerable benefits, the utilization of ML in the petroleum engineering has only been exploited 

by larger operators and service companies on commercial scales over the past decades or so. In 

our context, the use of ML technology along with an astounding increase in computer power can 

provide far more sophisticated reservoir simulations with a high degree of granulation than was 

possible just a few years ago. Well-constructed ML models help to reduce the uncertainty 



associated with the simulation process and consequently, produce more accurate predictions of 

fluid flow and ultimate resource recovery.   

In Section 2, we present the basic concepts concerning reservoir simulation. Section 3 summarizes 

the importance of ML techniques in modern reservoir simulation models and highlights some of 

the challenges and more advanced approaches and strategies that help to overcome them. Section 

4 describes the case study addressing the simulation of a substantial gas-condensate reservoir. 

 

2. Fundamental concepts and key principles 

We begin by describing the five stages involved in constructing a gas reservoir simulation model. 

The governing equations typically used in the simulation process are then reviewed and explained. 

 

2.1. Reservoir simulation 

Why do we need to create reservoir simulation models? There are in fact several benefits from 

doing so. The main purpose is to forecast the performance of reservoirs (here natural gas) at any 

future point in time and to optimize the petroleum fluid recovery factors under different operating 

conditions and with development and injection wells potentially drilled at different locations and 

at different times over the production life of a reservoir. To this end, inputs from experts in geology 

with three-dimensional perspectives, physics, drilling, petroleum and reservoir engineering, 

mathematics and computer science are needed (Figure 1). From a specific point of view and based 

on [3], reservoir simulation is commonly conducted in five stages: (i) define the simulation 

objectives, (ii) collect and validate the required data, (iii) design the reservoir simulator using 

appropriate software, (iv) tune and validate the developed model(s) using techniques such as 

history matching to ensure that it is robust and reliable, and (v) apply the models to make accurate 

predictions and test various field development plans.  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 (a) Multi-dimensional inputs required to develop a three-dimensional reservoir 

simulation model and progress it from static to a dynamic analysis of fluid movement. 

 

 

 

 

 

 

 

 

 

 

Figure 1 (b) The initial static reservoir model has to capture, with high granularity via its dense 

arrangement of cellular components, the three-dimensional structure, porosity and permeability 

of the mapped reservoir.  



The first stage of a reservoir simulation process is to set reasonable and achievable objectives. 

Depending on the stage of the recovery of the subject reservoir (primary, secondary or tertiary), 

the quantity and quality of data available and timing of the study, reservoir managers can define 

an appropriate set of objectives [4]. 

The second stage is the collection of required data. The essential data in reservoir simulation can 

be divided into three broad and overlapping categories: geophysical data, geological data and 

engineering data [3]. These three sources of input data need to be comprehensively integrated. To 

characterize the envelope of a reservoir, for example, spatially determining the formation top and 

base, and identifying continuity versus heterogeneity, unconformities and faults, we are typically 

guided by a combination of the geological and geophysical data. Seismic data is the most 

commonly employed geophysical data used to spatially define the extent and boundaries to a 

petroleum reservoir in a simulation model. Determination of the distribution of reservoir 

properties, including net formation thickness, fluid contacts, porosity and permeability is typically 

drawn from the geologically and petrophysical datasets (i.e., data from cores, cutting and well 

logs). Such geological data inputs help to determine the internal geometry and connectivity of the 

reservoirs pore space.  

To further refine this data input, information from stratigraphic, geochemical, and thin section 

analysis, plus outcrop studies and mud logging curves typically provide useful complementary 

sources of information [4]. Unlike geological data, which are related mainly to the distribution of 

rock properties and reservoir geometry (i.e., the “static” model), the bulk of the reservoir 

engineering data, such as the gas formation volume factor, gas density, and gas solubility is 

concerned with the fluids and fluid movements through the subsurface reservoir (the “dynamic” 

model). However, the geological and reservoir engineering dataset overlap regarding the definition 

of porosity and permeability characteristics of porous media and in establishing reserve recovery 

factors. The raw data needed in order to establish geological and reservoir engineering models are 

almost the same. However, the techniques applied to process and evaluate the datasets are quite 

distinct with different objectives [4]. 

In the third stage, four major interrelated modeling steps are employed to create the desired 

simulator: (i) construction of a physical model to describe the necessary features of the underlying 

reservoir system, (ii) establishment of a mathematical model through a set of coupled Partial 

Differential Equations (PDEs), (iii) numerical discretization of such models, and eventually, (iv) 



design of corresponding computer algorithms to solve the algebraic equations and optimize their 

performance and aid their interpretation [4]. 

The fourth stage of the reservoir simulation process is the tuning of the model created to better 

replicate reservoir conditions. Unlike a forward-looking forecasting type of exercise, which 

engages a set of reservoir model parameters to predict its performance, backward-looking history 

matching provides a useful benchmark to validate a reservoir simulation; i.e., to confirm that it can 

replicate the production performance (i.e., volumes and flow rates from specific reservoir 

compartments) actually recorded and observed. This is the inverse of a forecasting exercise. In 

other words, it is an essential stage to modify uncertain model variables, such as porosity, 

permeability and water: gas ratio, and reservoir spatial heterogeneities, drive mechanisms, etc., in 

a way that the final model(s) are able to appropriately reproduce the past dynamic response of a 

real reservoir. More specifically, basic factors like historical production rates, water cuts, fluid 

saturations and pressures are matched as closely as possible. If a model is unable to do this 

accurately, its credibility is undermined before forward-looking analysis commences. 

Following the history matching and performance validation, the prediction of the future 

performance of a reservoir can begin (Stage 5). Among the available operating strategies and infill 

drilling programs, assessing their benefits and drawbacks, reservoir managers have to select 

options that would likely to the most profitable and sustainable performance ensuring that 

petroleum fluid recovery is maximized over the production life of the reservoir. 

Reservoir performance prediction is also achievable applying classical techniques that exploit 

analogues, conduct experiments and evaluate mathematical models [4]. The first uses properties 

of mature reservoirs similar to the specified reservoir. Experimental methods use measured 

properties, such as pressure, flow rate and fluid saturation(s) and then scale them up to approximate 

the entire petroleum accumulation. The third category employs material balance, statistical 

analysis, decline curve fitting and other analytical techniques, these methods have similar 

objectives to reservoir simulation and, indeed some are used to help verify some of the outputs of 

simulation models (e.g., decline curve fitting for well flow rates and fluid reservoirs). For instance, 

permeability can be estimated via a pressure build-up analysis, or acquiring some information on 

water encroachment over time and the size of the aquifer during history matching. It is also 

possible to apply material balance calculations to estimate resource recovery volumes to compare 

with reservoir simulation model forecasts [4]. 



 

2.2. Governing equations of gas reservoir simulations 

Typically, the fluid flow in a porous medium is governed by: (i) the equation of mass conservation, 

(ii) momentum law (Darcy’s law) [5], (iii) energy equation plus (iv) fluid phase behavior equations 

(so-called “equations of state”) and certain rock property relationships (such as compressibility). 

For simplicity, the energy equation (conservation of energy) can sometimes be ignored assuming 

isothermal conditions. However, in conditions where the temperature is likely to change, such as 

cold water injection into the reservoir, the energy equation is important and should be regarded. 

For a Newtonian, single phase fluid (such as a pure gas) that passes through a one-dimensional 

and linear system under isothermal conditions, the mass conservation equation is expressed by 

Equation 1: 

𝜕(𝜌∅)

𝜕𝑡
= −

𝜕(𝜌𝑢𝑥)

𝜕𝑥
+ 𝑞 (1) 

where 𝜌 is the density, ∅ is the porosity, t is time, 𝑢𝑥 refers to the Darcy’s velocity in the x-direction 

and q (mass per unit volume per unit time) denotes the external sources and sinks. Notice that 

cross-sectional area is fixed and q is respectively negative and positive for sinks and sources.  

Similarly, this relationship can be expressed for two-dimensional (Equation 2) and three-

dimensional (Equation 3) systems: 

𝜕(𝜌∅)

𝜕𝑡
= −

𝜕(𝜌𝑢𝑥)

𝜕𝑥
−

𝜕(𝜌𝑢𝑦)

𝜕𝑦
+ 𝑞 (2) 

𝜕(𝜌∅)

𝜕𝑡
= −

𝜕(𝜌𝑢𝑥)

𝜕𝑥
−

𝜕(𝜌𝑢𝑦)

𝜕𝑦
−

𝜕(𝜌𝑢𝑧)

𝜕𝑧
+ 𝑞 (3) 

In mathematical sciences, divergence is an operator that acts on a vector field to deliver a scalar 

field. Here, the divergence of  𝜌𝒖 is the scalar-valued function defined by Equation 4: 

∇. (𝜌𝒖) =
𝜕(𝜌𝑢𝑥)

𝜕𝑥
+

𝜕(𝜌𝑢𝑦)

𝜕𝑦
+

𝜕(𝜌𝑢𝑧)

𝜕𝑧
 (4) 

Equation (4) can be converted into Equation 5: 

𝜕(𝜌∅)

𝜕𝑡
= −∇. (𝜌𝒖) + 𝑞 (5) 

The issue of fluid flow formulation in a porous medium is not the same as that of a continuous 

(non-porous) medium. The momentum equation for low velocity currents in a porous medium is 

expressed by a semi-experimental equation called Darcy’s law (Equation 6): 



𝑢𝑥 = −
𝑘𝑥

𝜇
(
𝜕𝑝

𝜕𝑥
− 𝜌𝑔

𝜕ℎ

𝜕𝑥
) 

𝑢𝑦 = −
𝑘𝑦

𝜇
(
𝜕𝑝

𝜕𝑦
− 𝜌𝑔

𝜕ℎ

𝜕𝑦
) 

𝑢𝑧 = −
𝑘𝑧

𝜇
(
𝜕𝑝

𝜕𝑧
−  𝜌𝑔

𝜕ℎ

𝜕𝑧
) 

(6) 

where k, 𝜇 and p are permeability, viscosity and pressure, respectively. It is common to ignore the 

term containing density (𝜌), gravitational acceleration (g) and depth (h). 

The gradient operator for p is marked with ∇p in the form of Equation 7: 

∇p = (
𝜕𝑝

𝜕𝑥
,
𝜕𝑝

𝜕𝑦
,
𝜕𝑝

𝜕𝑧
) (7) 

As a more general form this is expressed as Equation 8: 

𝒖 = −
𝒌

𝜇
∇p (8) 

where 𝒖 = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) and k is a diagonal tensor (𝑘𝑥, 𝑘𝑦, 𝑘𝑧). At least initially, we suppose the 

porous medium is isotropic i.e., 𝑘𝑥 = 𝑘𝑦 = 𝑘𝑧, which leads to Equation 9: 

𝜕(𝜌∅)

𝜕𝑡
= ∇. (

𝜌

𝜇
𝒌∇p) + 𝑞 (9) 

Equation 9 can then be expressed as Equation 10: 

(∅
𝜕𝜌

𝜕𝑝
+ 𝜌

𝜕∅

𝜕𝑝
)

𝜕𝑝

𝜕𝑡
= ∇. (

𝜌

𝜇
𝒌∇p) + 𝑞 (10) 

However, it is typically not reasonable to assume that gas compressibility remains constant. 

Instead, Equation 11 is required: 

𝐶𝑔 =
1

𝜌

𝑑𝜌

𝑑𝑝
=

1

𝑝
−

1

𝑍

𝑑𝑍

𝑑𝑝
 (11) 

By taking into consideration the real gas law, and molecular weight, gas compressibility factor, 

universal gas constant and temperature  respectively by MW, Z, R and T, pressure can be usefully 

established with Equation 12: 

𝜌 =
𝑝𝑀𝑊

𝑍𝑅𝑇
 (12) 

Where more than one phase is involved, 𝑆𝛼 the fluid phase saturation is defined as the fraction of 

the whole void volume of a porous medium occupied by that specific fluid. All the available fluids 

together fill the entire void spaces leading to Equation 13: 



∑ 𝑆𝛼 = 1    𝛼 = 𝑔𝑎𝑠 (𝑔), 𝑤𝑎𝑡𝑒𝑟 (𝑤) 𝑎𝑛𝑑 𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒 (𝑙) (13) 

Another term related to multiphase flow is capillary pressure derived in terms of Equation 14: 

𝑝𝑐𝑔𝑤 = 𝑝𝑔 − 𝑝𝑤 

𝑝𝑐𝑙𝑤 = 𝑝𝑙 − 𝑝𝑤 
(14) 

To model the phase velocity, Darcy’s law for single phase system is expanded to consider 

multiphase flow by applying Equation 15: 

𝒖𝛼 = −
𝒌𝛼

𝜇𝛼
∇𝑝𝛼 (15) 

where 𝒌𝛼 is the phase permeability, which is equal to the phase relative permeability multiplied 

by the absolute permeability i.e., 𝑘𝑟𝛼𝒌, resulting in Equation 16: 

𝜕(𝜌𝛼∅𝑆𝛼)

𝜕𝑡
= −∇. (𝜌𝛼𝒖𝛼) + 𝑞𝛼 

𝜕(𝜌𝛼∅𝑆𝛼)

𝜕𝑡
= ∇. (

𝜌𝛼

𝜇𝛼
𝒌𝛼∇𝑝𝛼) + 𝑞𝛼 

(16) 

To solve the mathematical models described, it is necessary to specify boundary and initial 

conditions. Boundary Conditions (BCs) exert a set of extra constraints to the problem on prescribed 

boundaries. There are typically three types of BC: Dirichlet (the first kind), Neumann (the second 

kind) and Robin or Dankwerts (the mixed or third kind). In the first type, a value is assigned to the 

dependent parameter(s) (for example, pressure) while the derivative of the dependent variable(s) 

is known in Neumann’s condition. Robin’s boundary condition is a weighted combination of the 

first two BCs. An Initial Condition (IC) refers to a value of a parameter at t=0 in the dynamic 

simulation models.   

Analytical solutions for this system of equations can be determined for relatively simple reservoirs 

(i.e., by making multiple assumptions). An alternative is to make use of numerical solutions, such 

as the finite difference method, finite element method, finite volume method, spectral method and 

meshless method. For details of these numerical solutions, see [3]. 

 

3. Advanced research / field applications 

As a subset of Artificial Intelligence (AI), Machine Learning (ML) is a field of study that aims to 

enable systems (namely computers and robots) to learn appropriate responses and/or 

interpretations directly from data. Machine learning algorithms involve computational methods to 



find patterns in datasets with many thousands of data records. The most prevalent ML tool for 

modelling non-linear systems is the Artificial Neural Network (ANN) [6]. Adaptive Neuro Fuzzy 

Inference System (ANFIS) [7], Support Vector Machine (SVM) [8] and Least-Squares Support 

Vector Machine (LSSVM) [9] are other commonly used neural-network-exploiting ML 

algorithms.  

Machine learning algorithms are commonly categorized by how the algorithm learns from the 

available data. There are four general methods: supervised, unsupervised, semi-supervised, and 

reinforcement. Using supervised learning, the training is conducted via labeled instances, while in 

the case of unsupervised learning unlabelled data is used. ANN, ANFIS, SVM and LSSVM are all 

supervised ML algorithms. Semi-supervised learning uses a small amount of labelled data from 

which further labelled data is extrapolated. Reinforcement learning uses a generate and test 

approach to maximize some reward and tends to be concerned more with optimization. Notice that 

the labelling can comprise either continuous or/and discrete values. Machine learning is 

penetrating many fields, including many technical and commercial applications in the gas and oil 

industry [10-16].  

In the context of gas reservoir simulations, ML has application in four different areas: (i) data 

preprocessing, (ii) governing equations and numerical solutions, (iii) history matching and (iv) 

proxy modeling. Each is discussed in further detail in the following four subsections. 

 

3.1. Application of ML in data preprocessing and prediction of properties 

The successful application of ML in reservoir simulation begins with correctly collecting, 

compiling and preprocessing the raw data. Both field (geophysical and petrophysical) and 

experimental (geological and engineering) data are required. However, data-collecting 

methodologies are somewhat loosely controlled in gas reservoir simulations. This can lead to 

producing out-of-range, duplicate, missing and unstructured data records. Entering such data into 

a simulator are likely to yield misleading results. The application of ML to data preprocessing 

assists in improving the quality of data to promote the extraction of better insights from the data. 

Furthermore, multiple sources of data sometimes need to be integrated to best estimate a variable’s 

value. Rolon et al. [17] provide a useful example of how raw data can be effectively preprocessed 

in this manner. The researchers applied a generalized regression neural network to develop 

synthetic well logs using information from four natural gas wells in the Upper Devonian of 



Southern Pennsylvania, taking input data from gamma ray, neutron, density and resistivity well 

logs. Three scenarios were considered. The only output of the first scenario was the resistivity log 

while the inputs were density, neutron and gamma ray logs, the coordinates and depths. In the 

second, the output of the previous stage was replaced with the density log. The neutron log was 

selected as the output for the third scenario. The results confirmed the development of synthetic 

logs with a reasonable degree of precision. 

In addition to quality, the availability of sufficient data is also necessary for conducting a high-

quality simulation study. Modern data recording technologies during drilling (i.e., sensing while 

drilling, logging while drilling and measurement while drilling) have paved the way for acquiring 

massive datasets with often high dimensionality during drilling operations. It is a necessity, for the 

purpose of extracting helpful and practical knowledge from these data, to successfully characterize 

reservoir properties. Despite partly solving some complicated problems of reservoir engineering, 

the issue of optimal features selection still remains a basic challenge. Engineers and geologists are 

often willing to apply linear assumptions to select features, replacing the suspected absence of 

non-linear data. As a specific example, consider the existence of different “expert opinions” on the 

features needed for the prediction of reservoir rock properties. For instance, researchers propose 

various sets of features for a specific output, for example nine input variables were used in [18], 

while only three in [19] for the estimation of permeability. The optimality achieved therefore local 

to the dataset and cannot be applied globally. 

Ensemble learning can be helpful in this regard. Ensemble learning is a ML paradigm which takes 

advantage of several base (or weak) learners to train a model. Unlike common ML methods that 

learn only one hypothesis from a training data set, ensemble techniques attempt to develop multiple 

hypotheses and then to combine them [20]. Specific to our topic, ensemble learning is capable of 

incorporating the result of various base learners fed with distinct locally optimal features to 

construct a single ensemble hypothesis with a global flavor. For instance, an ensemble model for 

the prediction of natural gas reservoir properties was developed to choose the optimal input 

features by Anifowose et al. [21]. Various instances of the ensemble learner were fed with 

variables chosen from multiple bootstrap samplings of the real field data. Based on the results, the 

novel model outperformed existing techniques.  

In the absence of field and experimental data, ML techniques can be effectively applied to extract 

fluid and rock properties. For example, Zendehboudi et al. in [22] presented a particle swarm 



optimization-based ANN method to estimate the condensate to gas ratio for gas condensate 

reservoirs. Dew point pressure, temperature and mixture molecular weight were chosen as input 

parameters. In addition to the high accuracy of this model, it was found that the molecular weight 

had the greatest effect on the output. Amiri et al. [23] developed a hybrid model to predict water 

saturation of tight gas sand reservoirs. They combined an ANN with an imperialist competitive 

algorithm configured to evaluate more than 2000 data samples from 12 wells. They claimed the 

developed model outperformed conventional methods. Singh et al. [24] developed an ANN-based 

model to predict porosity from well log data of Kansas (USA) gas field. They considered the sonic, 

density, and resistivity log data as input parameters. The input/output data was divided into (i) 

training (70%), (ii) testing (15%), and (iii) validation (15%) subsets. By comparing the results of 

empirical relationships and those of the neural network it was found that the new model could be 

reliable with a coefficient of determination (R2) of nearly 0.97. Zhong et al. [25] developed a new 

model based on a mixed kernel function-based support vector machine. In total, 564 measurements 

of dew point pressure in gas condensate reservoirs were used to train and test the model. The error 

analysis demonstrated its acceptable performance with a R2 of 0.915. 

Another geo data-based domain to which machine learning can be usefully applied is seismic 

structural interpretation. This interpretation depends to a large degree on an interpreter’s wisdom 

and experience making it possible to pick up subtle visual clues of geologic structures. With a huge 

amount of data, structural interpretation is demanding in terms of time and computation. Dealing 

with seismic data as images instead of signal traces, machine learning can help interpretation. For 

instance, Xiong et al. [26] developed a deep learning-based model using the Convolutional Neural 

Network (CNN) to discern zones containing fault. Seismic image cubes were used to train the 

model. Then, the constructed model was evaluated with a testing data subset. The classification 

accuracy of the CNN model was respectively 0.99 and 0.74 for the test synthetic data and the test 

real data, demonstrating a good performance of the new model in terms of revealing 

discontinuities.  

 

3.2. Application of ML in governing equations and numerical solutions 

To the best knowledge of the authors, relatively little work has been directed at the application of 

ML techniques to improve the governing equations and numeric solutions. Therefore, only one 



example of previous work is presented here. However, we do present two suggestions where ML 

could be usefully applied to the challenges of this area. 

The only example we have found where ML has been used for governing equations and numeric 

solutions is with respect to the issue that Pressure-Volume-Temperature (PVT) experimental data 

is not directly fed into the simulator. Equations of State (EOSs) are normally used to model the 

phase behavior of a reservoir fluid. These equations have some inherent deficiencies and need to 

be tuned with respect to the measured data. Procedures available to reach an acceptable agreement 

are tiresome and resource intensive. By way of example, one has to try in a trial and error fashion 

many times in the “Regression Panel” of the PVTi module of the Eclipse reservoir simulation 

software. To mitigate against this problem, Zarafi & Daryasafar [27] presented a systematic 

approach based on gas condensate data. In order to recognize the most effective tuning variables, 

they applied a Monte Carlo algorithm. The intended parameters then were fed into the PVT 

analyzer coupled with a genetic algorithm. The measured and predicted results for saturation 

pressure, the constant composition expansion test and the constant volume depletion test confirmed 

the high performance of the developed method.  

In the majority of cases, the fluid flow in porous media is expressed with a linear relationship 

between pressure gradient and velocity applying Darcy’s law. This is reliable only at low flow 

rates. In natural gas reservoirs where the flow rate is often high, this can lead to deceptive results. 

In 1901, Forchheimer [28] suggested the inclusion of a new term, which is a multiplication of the 

second power of velocity, fluid density and the non-Darcy coefficient (𝛽) to Darcy’s law as 

expressed in Equation 17: 

−
𝑑𝑝

𝑑𝑥
=

𝜇𝑢𝑥

𝑘
→ −

𝑑𝑝

𝑑𝑥
=

𝜇𝑢𝑥

𝑘
+ 𝛽𝜌𝑢𝑥

2 (17) 

Although determination of the non-Darcy coefficient is mainly performed by laboratory 

measurements and analysis of multi-rate well tests, these methods are not always accessible. Some 

theoretical equations and empirical correlations have also been proposed. They can fall into two 

categories: one-phase and multi-phase systems. Models for the first category employ only 

permeability [29], permeability and porosity [30] or permeability, porosity and the tortuosity of 

the porous medium [31]. The first formula in a two-phase system of gas and immobile water was 

presented by Geertsma in 1974 [32]. After that, other researchers [33, 34] developed new 

correlations. Such experimental tests are usually expensive and operating companies prefer to 



avoid performing them if possible. On the other hand, the formulae available have their own 

limitations depending on the pore geometry, number of parameters involved and lithology. A 

suggestion is to develop a comprehensive model for the estimation of the non-Darcy coefficient 

using machine learning techniques. To achieve this, large amounts of data covering all conditions 

would be required. 

The second suggestion is in the context of the generalized multiscale finite element method 

introduced by Efendiev et al. in 2013 [35]. This approach includes both fine grids and coarse grids. 

It can handle effectively multiscale phenomenon, which widely exist in gas reservoir simulations 

(e.g. multiple scales in permeability due to the presence of fractures). For instance, in the case of 

the multiscale properties of heterogeneous porous media, standard polynomial basis functions are 

replaced with multiple solutions of local cell problems, which are named multiscale basis 

functions. To produce these bases, it is traditionally necessary to solve some PDEs locally. Instead 

of these PDE solvers, we can implement advanced techniques, such as deep neural networks and 

convolutional neural networks to predict basis functions. Chen et al. [36] provide useful insight to 

this challenge. 

 

3.3. Application of ML in history matching 

Without achieving a good history match, a simulation model cannot be applied practically with 

confidence and reliability. History matching serves as a validation tool of the developed model 

prior to proceeding with the evaluation of various production schemes and generating forward-

looking flow predictions. In this regard, there are multiple options. History matching is 

traditionally done in a trial and error fashion. In such a method, doubtful variables are manually 

updated over a long period of time and its success mainly depends on an engineer’s knowledge 

and experience. This process does not seem sufficiently robust. An alternative is using computers 

to automatically alter the parameters. We can consider two broad categories for automated (or 

assisted) history matching: (i) data assimilation methods and (ii) optimization algorithms. 

The Ensemble Kalman Filter (EnKF) [37] is one of the most widely applied methods of data 

assimilation. Only model variables are traditionally estimated in the history matching process. 

However, in the EnKF both model parameters and responses are estimated. Model parameters are 

static properties such as porosity and permeability that are held constant, while responses, such as 

pressure and fluid saturation change with time. Filters in the EnKF signify the uncertainties 



prevailing in a reservoir model. The static model and its uncertainties are propagated over time in 

keeping with a dynamic system representing fluid flow in porous media. As long as the required 

data is available, a new estimation can be performed via a variance minimization procedure [37]. 

Algorithms for history matching can be divided into four classes: gradient-based methods [38], 

gradual deformation techniques [39], neighborhood algorithms [40] and evolutionary algorithms, 

such as genetic and particle swarm algorithms [41]. 

Gradient-based techniques use optimization methods, including Gauss-Newton and Levenberg-

Marquardt to minimize an Objective Function (OF) that measures the difference between historical 

data and outputs from the simulation process [38]. An objective function strives to quantify the 

overall quality of the match of different responses corresponding to several objects, such as field, 

regions and wells. A positive point is that there are usually a large number of data corresponding 

to the measurements taken at broad ranges of date/depth. If an OF considers all responses/objects 

that need to be tuned, it is referred to as a global objective function. Otherwise, it is marked as a 

partial objective function. There are a wide variety of formulations for the OF and Bouzarkouna 

& Nobakht [42] provide more information. 

In one of the most prevalent forms of gradual deformation, a combination of two Gaussian 

reservoir models 𝑅1 and 𝑅2 with the same mean M and covariance C is defined to develop a novel 

model 𝑅𝑛𝑒𝑤 [39]. This new model (Equation 18) has the same statistical parameters of mean and 

covariance as the initial models but fits data more suitably: 

𝑅𝑛𝑒𝑤 = 𝑀 + (𝑅1 − 𝑀) cos(𝜋𝛼) + (𝑅2 − 𝑀) sin (𝜋𝛼) (18) 

where 𝛼 is the gradual deformation parameter. Equation 18 is periodic in 𝛼, the gradual 

deformation parameter, within the range of -1 to +1. This correlation can be extended to any 

number of Gaussian models. 

The neighborhood algorithm approximates the posterior probability density function by dividing 

the model parameter space into areas of nearly uniform probability density. In the first place, 

history matched models are developed by randomly producing multiple models. The next step is 

to identify the models that achieve high accuracy. Eventually, new models are created by applying 

the uniform random walk techniques in the Voronoi cell for each of the best matched models. All 

steps are repeated several times to meet the acceptable results [40]. 

Evolutionary algorithms are population-based optimization methods that use mechanisms inspired 

by biological evolution. They are mostly applied when the number of uncertain parameters is not 



high. A genetic algorithm uses mutations and recombinations of single reservoir models to develop 

novel models. A fitness function (a specific kind of objective function) can be defined to find out 

which model achieves the best fitness function among multiple candidates [41]. 

Two examples where optimization algorithms have been applied for history matching can be found 

in [43, 44]. A simulation study on a network of 20*20*4 grids was conducted with two wells in a 

single-phase gas reservoir [43]. There were 44 measured data items to be optimized using history 

matching. The researchers applied five optimization algorithms: Broyden-Flecher-Goldfarb-

Shanno (BFGS), limited memory BFGS (LBFGS), modified Levenberg-Marquardt, 

Preconditioned Conjugate Gradient (PCG) with covariance matrix as the preconditioner and PCG 

with LBFGS as the preconditioner (LBFGS-PCG). The behavior of LBFGS and LBFGS-PCG was 

the same and superior to other methods. Branston et al. [44] applied three supervised techniques 

to history match the production profiles of a tight gas carbonate reservoir. Considering the 

measurement of error parameters, it was found that multivariate adaptive regression splines and 

stochastic gradient boosting exhibited superiority over the generalized regression neural network. 

The authors claimed that the developed models do not need re-training while updating with new 

available datasets for history matching.  

 

3.4. Application of ML in proxy modeling and optimization  

Numerical reservoir simulation is an efficient and standard tool for studying fluid flow behavior 

in subsurface reservoirs by combining detailed statistical geological data with dynamic 

engineering information. Gas reservoirs are non-linear systems and their simulation process is 

usually time consuming. The greater the complexity of a simulation model, typically the greater 

the computer resources and computational time required. It is therefore recommended to apply 

proxy modeling aimed at producing output of simulation models in a very short time. In fact, the 

proxy model is employed to accelerate the prediction. Dependent upon their development 

approach, proxy models can be categorized as either statistics-based or machine learning-based. 

In the first category, the principal aim is to develop a function that can capture the input-output 

relationship of the included variables. It is true that the number of inputs is restricted to the 

uncertain parameters of the system but it needs many simulation runs to correctly cover the input-

output space. Statistics-based proxy models can be applied in a broad range of fields. As an 

example, Guan et al. [45] implemented a statistical procedure, the Mosaic Moving Window 



Method (MMWM), to appraise infill production potential in mature, tight gas formations. This 

method did not require significant amounts of data and was also efficient. The results achieved by 

MMWM and the subsequent simulation demonstrated the high accuracy of MMWM , but only for 

a group of infill candidates, meaning that it was not appropriate for individual wells.   

Machine learning-based proxy models are directed at understanding the complex dependency 

between input and output parameters in the numerical simulation. A proxy model with the aid of 

machine learning was developed for a real case carbon dioxide sequestration to investigate the 

effect of pressure, saturation and CO2 mole fraction under different conditions [46]. The 

underlying case was a depleted gas reservoir located 6561 ft underground with a thickness of 110 

ft. The proxy model was able to generate results more quickly than common simulators.  

An important point is that each proxy model is constructed based upon a corresponding specific 

reservoir. In other words, the proxy model is not comprehensive and can only be utilized with 

respect to the corresponding reservoir. To overcome this issue, the Deep Net Simulator (DNS) was 

developed as a more general tool to instantly predict the pressure of hydraulically fractured tight 

gas reservoirs using 140 case studies and applying deep learning [47]. Compared to conventional 

simulators, the DNS depends only on a few factors, such as the properties of the focused grid cell, 

its distance to the wellbore, production settings and initial condition; meaning that this procedure 

is independent of other cells. 

In addition to the application of ML in proxy modeling, it can also be very helpful to reservoir 

simulation in other ways when the governing equations are appropriately understood and the 

simulated model tuned. For instance, ML can be applied in the context of enhanced gas recovery, 

well placement optimization, production optimization, estimation of gas production and pressure 

and rate transient analysis, and examples of such applications are provided in the following 

paragraphs. 

In addition to deep saline formations and depleted oil reservoirs, depleted natural gas reservoirs 

seem to be suitable locations for geologic carbon sequestration because of the integrity of their 

reservoir seals and low risk of gas escape / leakage, provided there is enough information available 

for their historic gas production and the necessary infrastructure (i.e., wells and flowlines) are in 

place. Additionally, the average gas recovery factor for depleted gas fields is approximately 75%, 

implying that enhanced gas recovery methods would be able to mobilize at least some of the 25% 

or so of the gas remaining in a reservoir [46]. Carbon sequestration can hence be linked to enhanced 



gas production by injecting CO2 into gas reservoirs and thereby enhancing natural gas recovery. 

Zangeneh et al. [49] attempted to optimize the key parameters of enhanced gas recovery and carbon 

dioxide storage using a genetic algorithm based on a selected sector of a real gas field in Asia. The 

impact of CO2 solubility in the connate water was also analyzed. The results confirmed the 

possibility of both the production of residual gas and the permanent storage of substantial amounts 

of CO2. The dissolution of CO2 in reservoir connate water could also postpone/delay CO2 

breakthrough in parts of the reservoir. 

Determination of ideal horizontal well trajectories in the Frobisher gas field was performed using 

the well length, azimuth, location and inclination inputs [50]. The optimization approach required 

some manual analysis using a non-fully automatic technique. Schulze-Riegert et al. [51] addressed 

the problem of horizontal well placement optimization considering the statistical geological 

uncertainty for a case study on a North Sea gas condensate field. The authors parameterized the 

search space based on the angular coordinates and selected the start and end point of the well 

trajectory as design variables. A Monte Carlo-based sampling algorithm and a genetic algorithm 

were used respectively for screening purposes and optimization. 

A compositional reservoir simulation in order to optimize the production from gas condensate 

reservoirs was presented by Udosen et al. [52]. To this end, three scenarios of water alternative 

gas, cycling and pressure depletion were considered. After the simulation, it was understood that 

the suggested methods could lead to considerable improvement in the recovery. 

The goal of Al-Fattah & Startzman [53] was to develop a three-layer neural network-based model 

to predict natural gas production in the USA from 1998 to 2020. They forecasted that the 1998 gas 

supply would decrease at a rate of 1.8% per year in 1999 continued to the year 2001. Then, the 

production would increase with an average rate of around 0.5% annually from 2002 to 2012. The 

growth would be approximately 1.3% per year during the period of 2013 to 2020. We cannot 

unfortunately assess the effectiveness and robustness of such a framework because of our limited 

access to the real data. Jin [54] applied several machine learning methods to predict the expected 

ultimate gas recovery of multiple shale gas wells. Jin analyzed 200 Barnett shale gas wells and 

predicted the production profile of each well through the Arps hyperbolic decline model. 

Comparisons of neural network, support vector machine and random forest models revealed that 

neural network achieved the highest accuracy. Lee et al. [55] developed a deep learning-based 

algorithm to estimate shale gas production using just two input parameters (i.e., production volume 



and the shut-in period) from 315 wells located in Canada. The results indicated that the two-feature 

case had a better performance in comparison with the case that only considered gas production 

volumes as input. Ipeka et al. [56] applied two machine learning methods, an ANN and a 

generalized linear model to predict the initial gas production rate of tight gas formations. The 

former resulted in a mean squared error of 1.24, while the latter achieved a mean squared error of 

1.57. 

The principal goal of Gaw [57] was to construct an ANN with the capability of pressure and rate 

transient analyses for dry, wet, and condensate gas reservoirs with a fixed composition. Production 

profiles, well parameters and reservoir characteristics were input to the networks and each variable 

was then predicted by the other two. There was a good match between the output of networks and 

the real data.   

 

4. Case study: dew point prediction for gas condensate reservoirs 

This case applies ML to the simulation of natural gas reservoirs operation, focusing on dew point 

pressure (Pd) prediction. Two ML models are described and their performances compared. 

 

4.1. Dew point pressure 

Dew point pressure (Pd) is a significant parameter for characterizing gas condensate reservoirs. It 

is defined as the pressure at which the first liquid condenses from the gas at a fixed temperature. 

The proper calculation of this property is essential to meet the optimal development and 

management of these reservoirs. The experimental determination of Pd is typically conducted by 

the constant volume depletion and/or constant composition expansion tests [58, 59]. Such tests are 

authentic, but time-consuming and costly. The empirical equations [60], and graphical and matrix 

methods for estimating Pd [61] cover limited operational conditions and are useful for only a few 

specific cases. Equations of state require tuning against experimental data, which is usually done 

in a trial and error manner. In this context, the incorrect characterization of the heptane plus (C7+) 

fraction and the convergence problem may be encountered [62]. The case study presented here 

considers two models to predict Pd over a wide range of conditions. The first model is an Artificial 

Neural Network (ANN) which is trained using the Teaching-Learning-Based Optimization 

(TLBO) algorithm. The second is constructed with a Convolutional Neural Network (CNN), a 



class of deep neural networks. The performance of both models is evaluated using graphical and 

statistical analyses.     

4.2. Data analysis 

The input parameters for a neural network should be selected carefully and with high sensitivity 

so as to construct a trustworthy model. It is generally accepted [58, 59] that the mole fraction of 

hydrocarbon and non-hydrocarbon components, characteristics of C7+, as well as temperature 

influence the dew point pressure. For this case study, 632 data records over a wide temperature 

range of [40 – 320 ˚F] were compiled from the literature [58, 59]. Table 1 presents details of the 

dependent and independent variables considered.  

Table 1 Statistical summary of the data variables associated with 632 data records from 

several gas condensate fields evaluated in the case study. 

Parameter Type Unit Minimum Average Maximum 

Pd Output Psia 1405 4668.23 10500 

T Input Fahrenheit 40 204.34 320 

C1 Input Mole fraction 0.0349 0.8009 0.967 

C2 Input Mole fraction 0.00102 0.0056 0.151 

C3 Input Mole fraction 0.00061 0.0289 0.109 

C4 Input Mole fraction 0.00041 0.024 0.375 

C5 Input Mole fraction 0 0.012 0.123 

C6 Input Mole fraction 0 0.009 0.111 

C7+ Input Mole fraction 0 0.035 0.136 

N2 Input Mole fraction 0 0.013 0.432 

CO2 Input Mole fraction 0 0.0155 0.919 

H2S Input Mole fraction 0 0.006 0.3 

SGC7+ Input Unitless 0 0.775 1 

MWC7+ Input Gr/mol 0 144.48 235 

 

4.3. ANN-TLBO model design 

Seven basic steps were employed in the development of the ANN-TLBO model coded using 

MatLab software. Step 1 involves data loading in the form of an ‘xlsx’ Microsoft Excel file. Step 

2 normalizes the loaded data with each variable scaled into the range of [0 – 1]. Step 3 divides the 



data into three subsets: (i) training (70%), (ii) validation (5%) and (iii) testing (25%). The model 

learns based on the information contained in the training subset. The validation subset is utilized 

to appraise the model during training process; it indirectly influences the given model. The testing 

subset data is only used to evaluate the model’s accuracy once the model has been trained. Step 4 

constructed a four-layer neural network comprising of (i) an input layer with 13 neurons 

(independent variables), (ii) two hidden layers with 8 and 6 neurons respectively and (iii) an output 

layer with one neuron (representing the dependent variable Pd). The activation functions applied 

to the input to first hidden layer, first to second hidden layers, and second hidden layer to output 

layer were respectively ‘tansig’, ‘logsig’, and ‘purelin’. Step 5 was the training phase conducted 

using the TLBO algorithm [63]; comprising two main elements, teacher and learners, which 

together train the ANN. TLBO, like other evolutionary algorithms, is initialized by a set of random 

solutions; for this case study 400 solutions and maximum iteration of 1000 were selected. 

However, TLBO has no tuning parameters, unlike other network training algorithms. Steps 6 and 

7 evaluate the model’s performance by calculating various prediction accuracy parameters and 

data visualization.  

 

4.4. CNN model design 

The CNN model [64] used is available with the Anaconda Distribution of the Python programing 

language. Although CNN was designed for problems with two-dimensional arrays such as image 

data, it is also applicable for one-dimensional regression-type problems. Before coding, the 

‘numpy’, ‘pandas’, ‘sklearn’ and ‘keras (using tensorflow backend)’ libraries were loaded into the 

‘Spyder’ module of Anaconda. The first three steps of the ANN-TLBO model were repeated after 

loading the required libraries. Note that the input data has two dimensions consisting of the number 

of samples (i.e., 632) and the number of features (i.e., 13). A third dimension was added to 

represent the number of the single input row, resulting in an input data array in the form [632, 13, 

1]. Step 4 defines a sequential model by adding (i) a one-dimensional convolutional layer 

(‘Conv1D’), (ii) a ‘Flatten’ layer and (iii) three ‘Dense’ layers with 10, 14 and 1 neurons, 

respectively. The single neuron in the dense layer represents the estimate of the dependent variable 

Pd. Then, the model was compiled with mean squared error as the loss (objective) function, and 

‘Adam’ [65] as the optimizer. The intuition behind the Adam optimization algorithm comes from 

the concept of adaptive moment estimation. It is a combination of Root Mean Square Propagation 



(RMSProp) and Stochastic Gradient Descent (SGD) with momentum. Like RMSProp, Adam 

utilizes the squared gradients to scale the learning rate. Rather than using gradient alone, it 

simultaneously makes use of the momentum via the moving average of the gradient, in a similar 

way to SGD  but with the additional aid of momentum. Step 5 trains the model with the training 

subset evaluating 1000 epochs. Steps 6 and 7 evaluate prediction accuracy and visualize the results. 

The latter was achieved using the Microsoft Excel.  

 

4.5 Overfitting and Appropriate Remedies 

The statistical term of ‘goodness of fit’ refers to how well a model’s predicted values fit the 

measured (actual) ones. A predictive model that performs unfavorably on a training data set is 

considered to ‘under-fit’  that data, because it is not able to establish a sufficiently accurate 

relationship between predicted and actual values. On the other hand, a model that fits the noise in 

present in the training data records, typically does not generalize very well when applied to other 

data points (e.g. an independent validation or testing subset), because it has over-fitted the training 

subset data records. Inspection of the prediction errors obtained for the different subsets evaluated 

in this case study (Table 2) indicate that neither under-fitting (under-training) nor over-fitting 

(over-training) is an issue for the ANN-TLBO and CNN models applied to the dataset considered..  

 

However, if over-fitting occurs with other data sets, there are some techniques that can be applied 

to reduce its impacts. The performance of a model can be, in some cases, influenced by the number 

of data records being too few, especially when applying deep learning algorithms. Hence, 

expanding the number of data records evaluated, if possible, is a solution to improve a model’s 

accuracy in such cases. Another strategy to mitigate over-fitting is to initiate early stopping criteria 

during the execution of the algorithm. The training process proceeds iteratively, and it is possible 

to measure how well a model performs on different data subsets in each iteration. The accuracy 

that can be achieved by a model on independent testing data records (i.e. those data records not 

considered as part of the training subset) might be limited beyond a certain point. Early stopping 

rules can provide guidance as to the maximum number of iterations that should be run, thereby 

preventing the  algorithm from over-fitting the training dataset. An over-fitted model usually takes 

all input variables into account, while some have a limited effect on output(s). Determining and 

removing less-important features (feature selection) is another way to prevent overfitting and 



simplify models but is not always feasible. Alternatively regularization methods can be applied, 

such as minimizing the complexity of a model by penalizing its loss (cost) function.           

    

4.6. Evaluation and discussion 

The accuracy of predictions of dew point pressure from the two ML models evaluated are 

compared graphically and statistically. The predictions of the two models distinguishing the 

training, validation and testing subsets are shown in Figures 2 and 3. The closer a data point plots 

to the unit slope line, the more precise it is. Figure 2 displays a good match between the actual data 

and estimated values using the ANN-TLBO at low and medium dew point pressures. Nonetheless, 

the model does not work appropriately for high and very high dew point pressures. The most 

possible reason is that there are only 13 data points with pressures above 8500 psia. Hence, it is to 

be expected that lower precision is obtained for this range. Figure 3 plots the actual values against 

the predicted values produced using the CNN model. It demonstrates superior accuracy for its dew 

point pressure predictions compared to the ANN-TLBO model. Again, the CNN does not perform 

that well for very high pressures, for the same reason given for the ANN-TLBO model.  

 

Figure 2 Comparison between the measured dew point pressure values and the predicted 

values from the ANN-TLBO model. 
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Figure 3 Comparison between the measured dew point pressure values and the predicted 

values from the CNN model. 

In Figure 4, the cumulative frequency versus the absolute relative error (%) (Equation 19) for the 

ANN-TLBO is depicted with respect to the training, validation and testing data subsets. The graph 

indicates the same trend for all data subsets. More specifically, approximately 60% of the data 

points achieve an absolute relative error of less than 10%. Roughly 30% have an error between 

10% and 20%. Only 2 data records of the training subset have an error higher than 70%. This is 

also the case for the testing data set. A comparison of Figures 4 and 5 highlights the superior 

performance, in terms of frequency distribution, of the CNN model compared to the ANN-TLBO. 

More than 85% of the validation data has an absolute relative error of less than 10%. In the case 

of the training set, only two points have an error above 30%. This analysis also indicates that the 

CNN model accurately predicts all of the testing subset data records, except for five records.  

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 (%) = 100 ∗ 𝑎𝑏𝑠((𝑝𝑑,𝑖/𝑃 − 𝑝𝑑,𝑖/𝑀)/𝑝𝑑,𝑖/𝑀) (19) 

where ‘abs’ refers to the absolute value. 
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Figure 4 Cumulative frequency versus absolute relative error (%) for the ANN-TLBO model. 

 

 

Figure 5 Cumulative frequency versus absolute relative error (%) for the CNN model. 

Analysis of a range of extensively used prediction error accuracy parameters provides further 

insight into the performance of two models. The error statistics considered are: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 (𝐴𝑅𝐸 %) =

100 × ∑
(𝑝𝑑,𝑖/𝑃 − 𝑝𝑑,𝑖/𝑀)

𝑝𝑑,𝑖/𝑀

𝑁
𝑖=1

𝑁
 

(20) 
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𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) = √∑ [(𝑝𝑑,𝑖/𝑃 − 𝑝𝑑,𝑖/𝑀)]
2𝑛

𝑖=1

𝑁
 

(21) 

𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (𝑅2) = 1 −
∑ (𝑝𝑑,𝑖/𝑃 − 𝑝𝑑,𝑖/𝑀)2𝑁

𝑖=1

∑ (𝑝𝑑,𝑖/𝑃 − 𝑝𝑑,𝑎𝑣𝑔/𝑀)2𝑁
𝑖=1

 (22) 

𝑝𝑑,𝑖/𝑀, 𝑝𝑑,𝑖/𝑃 and 𝑝𝑑,𝑎𝑣𝑒/𝑀 are measured 𝑝𝑑, predicted 𝑝𝑑 and average of measured 𝑝𝑑, 

respectively. In all cases, 𝑝𝑑 is expressed in psia. These three error parameters calculated for the 

training, validation, and testing data subsets and the total dataset are listed in Table 2. According 

to the last column, there is a slight improvement in R2 when the CNN model is applied to the entire 

data set, and considerable improvement with respect to the RMSE value as it decreases from 646 

to 455. However, Table 1 reveals the superior performance of the ANN-TLBO model, compared 

to the CNN, in terms of the ARE error parameter. Considering all the error parameters calculated, 

it is concluded that the accuracy of both models is satisfactory for all data subsets evaluated with 

the CNN model outperforming the ANN-TLBO overall.  

 

Table 2 Performance of the developed models based upon three statistical error metrics. 

Error statistic Model Training set Validation set Testing set Total 

ARE(%) ANN-TLBO 1.86 -0.69 2.72 1.948 

CNN 4.29 1.72 5.09 4.36 

RMSE ANN-TLBO 643.5 803.7 616 646 

CNN 424 490 528 455 

R2 ANN-TLBO 0.983 0.971 0.983 0.982 

CNN 0.993 0.99 0.989 0.992 

 

In summary, comparison between the two models using the measured Pd values and their 

corresponding estimated values showed that, although both models could yield satisfactory results, 

the CNN model had better performance overall with an ARE of 4.36, RMSE of 455 and R2 of 

0.992. Ensuring there are sufficient numbers of data records across the entire Pd data range of 

interest is essential for establishing a model with R2 of very close to 1. The addition of data points 

to the dataset with Pd > 8500 psi could further improve the accuracy achieved by these two models. 

 



Retrograde gas condensate reservoirs are thermodynamically more complex than other types of 

subsurface gas reservoir. When the bottom-hole pressure falls below the dew point pressure (Pd), 

condensate begins to condense in the reservoir zone  surrounding the well bore. That condensed 

liquid does not flow and remains trapped in the reservoir as long as its saturation remains the 

critical saturation level. In order to design effective production schemes for gas condensate 

reservoirs production and accurately simulate the behavior of such reservoirs as pressure changes, 

accurate determination of Pd using the two models of ANN-TLBO and CNN should be beneficial. 

Accurate Pd measurements help to maximize gas production and condensate recovery in such 

reservoirs. 

 

5. Summary 

This chapter describes how the tools and techniques of machine learning can be employed to 

support and enhance natural gas reservoir simulations. The fundamental concepts and key 

principles involved in reservoir simulation are well established and the basic governing equations 

applicable for gas reservoir simulations are described. Applying machine learning methods to gas 

reservoir simulations adds enhancements and advanced benefits. In this context, the benefits fall 

into four distinct areas of application: (i) the preparation of the data required to realize reservoir 

simulation, (ii) the tuning of the governing equations, (iii) the application of ML techniques to 

history matching, and (iv) the support that ML can provide for proxy modeling. Additionally, ML 

can assist reservoir simulation analysis in assessing CO2 sequestration and enhanced gas recovery, 

well placement optimization, production optimization, estimation of gas production, dew point 

prediction in gas condensate reservoirs and pressure and rate transient analysis. Achieving 

improvements in many aspects of reservoir performance make ML-assisted reservoir simulation a 

useful tool in ensuring the long-term sustainability of natural gas reservoirs. A case study directed 

at dew point pressure prediction reinforces the benefits that ML can bring to reservoir simulation 

analysis. Two learning models are compared in the case study, (i) an Artificial Neural Network 

trained using Teaching-Learned-Based Optimization, ANN-TLBO model, and (ii) a Convolutional 

Neural Network (CNN) model. The CNN model was found to provide more accurate and reliable 

prediction performance. 
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