A BRUTE FORCE ALGORITHM FOR “BASKET
ANALYSIS” (GCL-BF1)

Frans Coenen

Department of Computer Science
The University of Liverpool
Liverpool, L69 ZF, UK.
email: frans,@csc.liv.ac.uk
tel: +44 (0)151 794 3698
fax: +44 (0)151 794 3715

1 INTRODUCTION

A brute force algorithm (GCL-BF1) is described to identify “interesting data sets” given a standard
“basket analysis” database where the columns represent “products”; and the rows “transactions”,
i.e. groups of products purchased in a single (supermarket) transaction. A typical database of
this form is given in Table 1.

The objective of all basket analysis algorithms is to firstly identify sets of two or more at-
tributes/products for which there is sufficient support. Some authors refer to such sets as “large”
sets. The support for a set is calculated using the identity:

b in table wh
number of rows in table where o appears « 100

Total number of rows in table

where a represents a set of attributes/products. A set has sufficient support if it is featured in
a given percentage of rows in the database, typically a threshold of 20% is used. Thus in the
example database given in Table 1 the set {4, B} appears in 2 out the 10 given rows, i.e. 20% of
the total number of rows include both attributes A and B and thus we say that the set {4, B}
has a support of 20%. assuming a support threshold of 20% we can now say that the set {A, B}
has sufficient support.

Given any large set (group of attributes for which there is sufficient support) “association
rules” can be derived from the set. An association rule is a relation of the form a = 3 where a
and S represent groups of one or more attributes such that the union of @ and f represents a large
attribute set. Thus, given the database in Table 1 two example candidate association rules are:

A— B
B> A

These can be read as “if A is true then B is true” and “if B is true then A is true” (or “A implies
B” and “B implies A”). However, these rule are only candidate association rules. For a rule to
be considered valid it must have an appropriate confidence level. Confidence in a rule is again
expressed as a percentage; if this percentage is over a certain level (typically 80%) we say that we
have sufficient confidence in the rule and therefore the rule is deemed to be valid. The confidence
for a rule is calculated using the identity:

support for A= B
Support for A

* 100

Thus given the rule A — B the confidence in the rule will be equivalent to % x 100 = 40%, i.e.
less than the suggested 80% threshold, hence the rule has not got sufficient confidence for it to be
considered a valid rule. Similarly the confidence in the rule B — A will be % % 100 = 50%, this is
also less than the 80% threshold.

Transaction Attribute identifiers
Number ABCDEFGHTIJ
1 0010001100
2 1111100101
3 0001101100
4 1001000000
5 0101110010
6 1000010000
7 0010101110
8 0101000110
9 1101101011
10 1001000100

Table 1: Example basket analysis database table

The algorithm described here calculates the support for all possible combinations of one or
more attributes and determines whether this support is sufficient assuming a 20% threshold. To
determine association rules we are of course only interested in sets of two or more attributes, how-
ever to determine rule confidences we will also need to know the support for individual elements.
The algorithm also does this. The algorithm does not go on to determine “interesting” association
rules. The aim is to establish a bench mark with which other, more computationally efficient,
algorithms can be compared. To this end the most naive (and therefore computationally costly)
approach possible has been adopted, i.e. a “brute force” approach. With this aim in mind the
algorithm is presented in significant detail so that all implementational aspects are covered, as
well as the more high level operational details.

This document is organised as follows. Section 2 describes the software purely in terms of
input and output including the data structures used. A general overview of the algorithm is then
presented in section 3. In section 4 a much more detailed description is given — this section can
be omitted by readers who do not wish to be concerned with the implementational detail of the
algorithm. An analysis of the algorithm is then presented in section 5, followed by the code in the
Appendix.

2 INPUT AND OUTPUT

The brute force program is executed as follows:
./bruteForceAlg <INPUTFILE> > <QUTPUTFILE>

where the input is in the form of a file of the following form:

Number of rows = 10, number of columns = 10

ABCDEFGHTIJ
0010001100
1111100101
0001101100
1001000000
0101110010
1000010000
0010101110
0101000110
1101101011

1001000100

The above file shows details of 10 attributes (columns) and 10 individual transactions (rows). The
nature of the software is such that the maximum possible number of columns/attributes is limited
to 26. There is no limit on the number of rows. A “test case” generator program has also been
produced to randomly generate basket analysis tables of the above form given a desired number
of rows and columns.

From the above it can be seen that the file contains no transaction numbers as these can be
deduced from the line number where required. Note also that the first three lines in the input
file can safely be ignored. It should also be noted that each row can be interpreted as a binary
number which has a decimal equivalent. This feature is used extensively in the algorithm described
in that such decimal equivalents are used as codes to describe (a) table rows and (b) each possible
attribute set (large or otherwise) that we are interested in. For example, assuming that the least
significant bit is represented by column A the first row in Table 1 will be equivalent to the decimal
number 196. The remainder of the rows will then have the codes; 671, 216, 9, 314, 33, 468, 394,
859 and 137 respectively.

Output from the algorithm is as follows:

Minimum support = 2

A (code = 1) support = 5 (Interesting set)
B (code = 2) support = 4 (Interesting set)
AB (code = 3) support = 2 (Interesting set)
C (code = 4) support = 3 (Interesting set)
AC (code = 5) support = 1

BC (code = 6) support = 1
ABC (code = 7) support = 1
D (code = 8) support = 7 (Interesting set)

AD (code = 9) support = 4 (Interesting set)

BD (code 10) support = 4 (Interesting set)
ABD (code = 11) support = 2 (Interesting set)
CD (code = 12) support = 1
ACD (code = 13) support =
BCD (code = 14) support =
ABCD (code = 15) support = 1

1
1

There are four elements to this output (other than the initial Minimum support = 2 statement):

e A possible subset of the attribute/product set under consideration described as a character
string of identifying letters, e.g. A, B, AB, Etc.

e The integer code derived from the bit pattern associated with the attribute; hence A =
1 (0000000001), B = 2 (0000000010), AB = 3 (0000000011) and so on.

e The support for the attribute set in question.

e Whether the set is an “interesting set” or not, i.e. whether the set has a minimum support
equivalent to or above a given default threshold (20% in the above case).

The number of possible attribute sets of one element or more that can be described by a
database (i.e. the cardinality of the power set associated with a given set of attributes) is
dependent on the number of columns in the database and can be calculated using the identity:

2" —1

where n is the number of columns. Thus in the above example there will be 1023 possible alter-
natives, and consequently there will be a 1023 lines of output (one for each possible combination),
plus a line stating the minimum support (Minimumsupport = 2).

The output (other than the initial Minimum support = 2 statement) is stored in a linked list
of structures defined as follows:

typedef struct set {
char name[32];

int code;

int support;

struct set *next;

} SET, *SETPTR;

where the first three fields are equivalent to the first three items listed above (whether the support
is sufficient or not, is not stored but determined on output).

3

ALGORITHM OVERVIEW

Broadly the algorithm operates as follows:

4

Read first line in the table describing a transaction.

From this line determine the number of columns/attributes in the table and then use this
information to generate a linked list of structures — one structure for each possible combi-
nation of one or more attributes.

Read in the rest of the table starting with the second transaction and continuing until the
end of the table is encountered. On each iteration analyse the row and for each possible
combination of one or more attributes in the row and increment the support count in the
linked list of structures where appropriate. To assist in this use is made of the integer codes
described by each row and the Boolean operators available in C so that comparisons can be
made using a binary ‘and’ operation.

On completion of this iterative process the linked list structure will contain details of all
the support that the given table provides for every possible combination of the attributes
described by the table columns.

Output the linked list structure by looping through it and on each iteration determine
whether there is adequate support for the attribute set in question according to the given
support threshold.

DETAILED DESIGN OF ALGORITHM

The algorithm is implemented in C using seven functions/procedures as follows:

1.

S otk W

main

processInput
generateBitPattern
addToSupport
createLinkedList

createSetStruct

7. outputSetStructLinkedList

The main procedure is used to open and close the input file and instigate the processing. The
processing is actually achieved by the processInput procedure. The generateBit Pattern function
is used to generate an integer code from a given row in the table. The addT oSupport procedure
is used to update the linked list structure given a particular integer code. The createLinkedList
procedure and the createSetStruct function combine to create the desired linked list structure.
Finally the outputSetStructLinkedList is used to output the final result.

The code includes four global variables:

[NAME [TYPE | DESCRIPTION

startPtr SETPTR | Global pointer to start of linked list of structures
of the form described in section 2.

endPtr SETPTR | Global pointer to end of linked list of structures
of the form described in section 2.

total Rows Integer Global variable in which the total number of rows in the
input table is stored.

supportT hreshold | Integer Global variable which holds the desired support threshold
(20% by default).

In the following sub-sections the detailed design of each of the above functions is presented.
The designs are given in the form of Nassi-Shneiderman charts. This part of the document can
be omitted by readers who are not concerned with the implementational details of the algorithm.

4.1 MAIN

The main top level procedure takes as input a command line argument which should be the name
of an input file. The function then checks for such an argument and if found opens the named
input file for “reading”. Should no such argument be presented, or if the named file cannot be
open (for example because no such file exists), an error message is produced. Once the input file
has been opened the processInput function is called to carry out the necessary calculations on
completion of which the input file is “closed”. Finally the outputSetStructLinkedList function is
called to output the linked list of structures in which the results are contained.
The top level procedure includes only a single data item:

NAME | TYPE DESCRIPTION
ingile | FILE pointer | Local variable which is assigned the input file name.

The complete design for the main procedure is presented in Figure 1.

4.2 PROCESS INPUT

The processInput procedure is the principal procedure for calculating support values. The func-
tion operates as follows:

e Read and “throw away” first three lines of input (these contain only the headings for the
table).

e Read fourth line and from this line determine the number of columns in the table; this
is equivalent to the line length divided by two (to allow for spacing). Each input line is
temperarily stored as a string — remember that a C string is always terminated by a “null
terminator” (‘\0’); therefore a string is always one longer than it appears to be.

Noinpur file name

Cannot open input file for
reading
B F

processlnput(in_file)
Error megsape

Error message cloge input file

cutputsetStructlinkedl ist

Figure 1: Nassi-Shneiderman chart for main procedure

e Call the createLinkedList function to produce the linked list of structures for each possible
set of one or more attributes according to the number of columns in the table.

e Call the function generateBitPattern to convert the current input string into an integer
(the string length minus 2 is used for this purpose).

e Call the addToSupport function to update the support values for the sets in the linked list
of sets according to the nature of the current input string.

e Continue the process of (a) reading rows, (b) generating bit patterns and (c) updating the
linked list structures until the end of the file is encountered. At the same time maintain a
running total (stored in the global variable total Rows) of the number of rows found in the
table.

The function includes the following data items:

| NAME | TYPE | DESCRIPTION |

ingile FILE pointer Formal parameter, pointer to current location in
input file.

input Array of 64 characters) | Local variable in which current input line is stored
as string (64 is the maximum size of the string).

stringLength | Integer local variable in which to store the actual length
of the input string.

cols Integer Local variable containing the number of columns in
the input table.

bit Pattern Integer Local variable describing the bit pattern associated
with the binary digits of the input string.

A detailed design for the processInput function is presented in Figure 2.

4.3 GENERATE BIT PATTERN

The generateBit Pattern function returns an integer generated according to the input pattern at
the current row in the table (assigned to the input string variable). The left most digit is assumed

to be the least significant digit. Thus, for example, given a bit pattern 11100 this will be equivalent
to the integer 7. The function uses a loop construct to step through the input string (a character
array) and build up the final number to be returned. Note that the index is incremented in steps
of 2 so as to skip over the white space known to separate digits in the input string. The function
includes the following data items:

| NAME | TYPE | DESCRIPTION |

input Character pointer | Formal parameter pointing to the start of the current input
string.

length Integer Formal parameter containing the expected length of the
input string (minus the null terminator).

index Integer Local variable that acts both as the Loop counter and the
index for input character array (string).

number Integer Local variable to be eventually returned from the function
and which will hold decimal number represented by the
current input string. Initialised with the value 0.

increment | Integer The amount that the current value in number must be
incremented by to take account of the current digit in the
input string. This data item is initialised with the value 1.

A detailed design for the generateBit Pattern function is presented in Figure 3.

Thus given the input string 11100 the procedure will operate as follows:

First digit is a ‘1’ thus number = number+increment = 0+1 = 1

increment =

Second digit is a ‘1’ thus number = number+increment

increment =

Third digit is a ‘1’ thus number = number+increment = 3+4

increment =

increment =

increment =

increment*2 = 1%2 = 2

142

1]
w

increment*2 = 2*%2 = 4

Il
~

increment*2 = 4%x2 = 8
Fourth digit is a ‘0’

increment*2
Fifth digit is a ‘0’

8x2 = 16

increment*2 = 8%2 = 16

index > length exit loop and return number

4.4 ADD SUPPORT

The addT oSupport procedure updates the support totals contained in the linked list of structures.
The support total is incremented by 1 if the attribute grouping represented by the binary bit
pattern associated with the code is a subset (or equal to) the grouping represented by the bit
pattern (code) of the current input line (row). This is determined using a binary ‘and’ operation
between the integer bit code for the set and the bit code for the row. If the result of the ‘and’ is
equivalent to the bit code the support is incremented by 1. The procedure includes the following

data items:
| NAME | TYPE | DESCRIPTION
bit Pattern | Integer Formal parameter containing the bit pattern associated with the
current row in the table.
linkPtr SETPTR | Local variable instantiated with the global variable startPtr which
points to the start of the linked list of structures described in section 2.

A detailed design for the addT oSupport function is presented in Figure 4.

Read and ignore first three hines

et next line and gtore in i nput

Determine length of i nput string and asmgn to stringlength

cols = stringlength:/2

stringlength = stringlength-2

createlinkedList (cols) [

kitPattern =

qen&ratEEitPattern{input,strinqLenEEEl__Fﬂ;g

addTeSupport (bitPattern) e

Loop till end of file, 1.e. input == %07

bitPattern =

generatEBitPattern{input,5tringLEEEEElffﬂg

addToSupport (bitPattern) | g il

totalRows++

Figure 2: Nassi-Shneiderman chart for processInput function

index = 10

number = (]

increment = 1

loop while index <= length

input [index] == ‘17

T F

number = mumnber + increrment

increment = increment*2

index = index+2

remirn number

Figure 3: Nassi-Shneiderman chart for generateBitPattern function

linkPtr = startPtr

loop through hnked Iist of srucmves (while 1inkPtr != WULL)

{linkPtr—»code & bitPattern) ==
linkPtr—>code

linkPtr—>support =
linkPtr—>*support+1

linkPtr = linkPtr—=>next

Figure 4: Nassi-Shneiderman chart for addT oSupport function

4.5 CREATE LINKED LIST

The createLinkedList procedure produced a linked list of structures describing the power set for
the set of attributes in a basket analysis database. This power set then represents all the candidate
sets from which association rules may be derived provided that there is sufficient support. The
linked list is produced by first creating a single structure to represent the column/attribute A.
This initial “linked list” is then appended to by determining and adding new sections of the list in
an iterative manner according to the number of columns. Thus the next attribute to considered
is the attribute B. This is then used to create the next section of the list by pairing B with
the linked list as constructed so far, i.e. the list A. The new section of the linked list will thus
comprise AB. These three parts (A and B and AB) are then brought together to create a new
“sofar” linked list — A, B, AB. The next column represents the attribute C . When coupled with
the list to date we then get AC, BC, ABC. Combining these latest three parts (A4, B, AB and C
and AC,BC,ABC) we get A,B,AB,C,AC,BC,ABC. And so on until all columns/attributes
have been considered.

The procedure has a sizable number of data items as follows:

| NAME | TYPE | DESCRIPTION

cols Integer Formal parameter giving the number of columns
in the table (this in turn defines the number of
attributes).

code Integer Local variable. The decimal number described by
the bit pattern.

count Integer Local variable. The loop counter to step through
the columns.

newCode Integer Local variable. Holds the next code in the
sequence calculated from the previous code.

newString 2 Element Character array | Local variable to hold the current attribute/
column letter under consideration (the second
element is for the C null terminator).

name 32 Element Character array | Local variable describing an attribute set in
string form.

newPtr SETPTR Local variable to hold address of start of current
newly created structure.

link Ptr SETPTR Local variable that act as a loop control variable
to step through any linked list developed to date.

tempPtr SETPTR Local variable to temporarily hold a pointer to a
newly created structure.

newStartPtr | SETPTR Local variable to point at the start of a new
section of the linked list.

markerPtr SETPTR Local variable. Points at the current location in

a new section of the linked list.

The procedure operates as follows:

e Create the first structure in the linked list (i.e. the start of the linked list) using a call to the
createSetStruct function which returns a pointer to the start of the newly created structure.
Cause the global pointers startPtr and endPtr to point at this structure.

e Loop for a number of iterations equal to the number of columns (the formal parameter cols
for the function) minus one because column “A” has already been considered.

e On each iteration:

10

— Assign the value NULL to newSetPtr and assign to newString the attribute/column
letter under consideration. The “A” column has already been considered so on the first
iteration this will assigned the string “B".

— Determine the code for this letter (i.e. the code for B will be ...00010 = 2).

— Create a new set structure for this single letter attribute through a call to createSetStruct.
Assign the newly returned pointer to newPir.

— Now loop through the linked list built up so far (the start of which is pointed to by
startPtr) and on each iteration (i.e. for each record contained in the linked list built
up to date) perform the following:

* Copy the alphabetic identification for the current structure to the string name
and catenate this with newString (which will contain the letter representing the
current column) so that the result is stored in name.

% Calculate a new code (newCode) by adding the code for the current column (code)
to the existing code for the attribute set described by the current structure.

* Create a new set structure for the attribute set now described by newString and
newCode through a call to createSetStruct. Assign the newly returned pointer to
tempPtr.

x If there are no structure in the new section of the linked list (newStartPtr ==
NULL) assign tempPtr to newStartPtr; otherwise marker Ptr— > next = tempPtr.

x Update markerPtr so that it points at the current structure in the new section of
the linked list.

— Put the three parts together to determine the new linked list sofar (the variable endPtr
is used here).

A detailed design for the createLinkedList function is presented in Figure 5.

4.6 CREATE SET STRUCTURE

The createSetStruct function is a "house keeping” function linked to the foregoing. It is used to
create and instantiate a structure of the form defined in section 2 and return a pointer to this
structure. The function includes the following data items:

| NAME | TYPE | DESCRIPTION |
name Character pointer | Formal parameter that points to start of a character array
containing the sequence of letters identifying an attribute set.
code Integer Formal parameter. An integer describing the bit pattern
associated with the attribute set.
newPtr | SETPTR Local variable instantiated with the start address on newly
created structure which is then returned by the function.

A Nassi-Shneiderman chart for the createSetStruct function is given in Figure 6.

4.7 OUTPUT SET STRUCTURE LINKED LIST

The outputSetStruct LinkedList procedure is used solely to output the final result. It makes use
of the global variables startPtr, total Rows and supportT hreshold described in section 4. Output
is generated simply by iterating through the linked list. On each iteration the contents of the
structure is output to the screen. In addition a calculation is made to determine whether the
current set is an “interesting set” or not, by comparing the calculated support with the desired
minimum support threshold. If the support is sufficient this fact is also output. The procedure
uses the following data items:

11

code = 1 and count = 1

Set all local podnrers to MOLL

startPtr =

ez createSetStruct {"A", code?} -

encdPtr = startPtr

loop while count = cols

newstartPtr = WNOLL

newString[0] = 6&5+count
newsString[l] = %07
code = code*2
newkPtr =

= createSetStruct(newString,code} =

linkPtr = startPtr

loop while 1inkPtr != WULL

Copy name in current struchire to name

Catenate newSt ring o the end of name

newCode = linkPtr—>codetcode
tempPtr =
c:f::___— createSetStruct (name, newCode) —___—_::1
newStartPtr == THOLL
T F
newStartPtx markerPtr—»next
= tempPtr = tempPtr

markerPtr = tempPtr

linkPtr = linkPtr—»next

endPtr—>next = newPtr

newPkPtr—>next = newitartPtzr

encdPtr = markerPtr

count++

Figure 5: Nassi-Shneiderman chart for createLinkedList function
12

Creare space for new structire

If no space available

Exit program
newPtr—>name = name
newPtr—»*code = code
newPtr—»support = 0

newkPtr—>*next = BMNUOLL

return newFtzr

Figure 6: Nassi-Shneiderman chart for createSetStruct function

| NAME | TYPE | DESCRIPTION |
linkPtr SETPTR | Local variable instantiated with the start address and used as the
control variable for the while loop.
minSupport | Integer Local variable holding the minimum support.

A Nassi-Shneiderman chart for the procedure is given in Figure 7.

5 ANALYSIS

The algorithm is classified as a “single pass” algorithm as only one pass is made through the
database table (unlike many other association rule algorithms which make more than one pass).
Tests show that the algorithm is quite capable of working with tables comprising 12 columns and
100,000 rows or 16 columns and 10,000 rows in an acceptable time (less than 5 minute to produce
a result).

The first significant restriction on the algorithm is the storage space used by the linked list of
structures. Each individual structure requires 44 bytes of storage. The total storage required for
any given table is thus given by:

storage = 44 (2" — 1)

where n is the number of columns.

The storage requirements can be significantly reduced if the string equivalent of the attribute
set is not stored but only the code. Instead, for output, the string can be determined from the
code. This would produce a saving of 32 bits per attribute set (73%). It is also worth noting
that 9% of the total storage is also used for housekeeping purposes only (i.e. storing the “next”
pointer). If the string equivalent is not included in the structure the generation of the linked list
(the createLinkedList procedure) can be greatly simplified. All that will be required is to produce
a linked list 2™ — 1 structures coded from 1 to 2™ — 1.

13

linkPtr = startPtr

minSupport = (totalRows*supportFreshold) /100

Output mmnimum support

While 1inkPtr != WULL

Output struchire

linkPtr—>support »>= minSupport

output "Interesring set”

linkPtr = linkPtr—=next

Figure 7: Nassi-Shneiderman chart for outputSetStructLinkedList function

The second disadvantage of the brute force approach is that it calculates the support for every
possible combination of attributes. Some analysis of a test set comprising 10 columns and 10,000
rows (using a “scarcity” constant 0f 50%) indicates that out of a total of 1023 possible interesting
sets only 55 are found to have sufficient support on completion of the algorithm (i.e. only 5% of
the sets actually prove to be interesting). Consequently we can conclude that a lot of unnecessary
calculation is undertaken. One possible approach is to first calculate all pairs for which there is
sufficient support, and then use the knowledge that these are the only attributes that can form
part of a “higher level” attribute set. It is also worth noting that in the above experiment there
was no combination of attributes that did not appear in the input table at least once.

The number of comparisons that are carried out (in the above) to determine whether to incre-
ment the support or not is equivalent to:

num of calculations =m (2" — 1)

where m is the number of columns. Thus in this naive approach every row is compared to every
column. Any reduction in the number of data sets stored will serve to reduce this figure. There
may also be approaches whereby it is possible to avoid the need for this exhaustive comparison.
For example if we can determine the attribute sets represented by a particular row and then “find”
these sets in the linked list either by (a) making use of the code to (in some sense) “index” into
the linked list, or (b) to conduct a binary search to find particular attribute groupings.

The use of the integer codes to represent each row in the table seems useful. However, a
standard unsigned integer comprises 32 bits; so using this approach limits the size of the table to
32 columns. Given that, in tests, the brute force algorithm is not capable of handling anything
beyond 16 columns this is probably not an immediate concern!. However, an alternative coding
system may comprise an unsigned integer array where each element represents a block of 32
columns. Thus a table comprising 320 columns would require a 10 element unsigned integer array
encoding.

IFurther the input file is currently limited to 26 columns

14

The generation of codes from (a) rows input from the table, and (b) to create the initial linked
list is carried out in a reasonable computationally efficient manner and (it is felt) unlikely to be
improved upon. The number of code generations is equivalent to:

num code generations = 2" +m — 1

one for each possible set combination and one for each row. The use of these integer codes is (to
the best of the authors knowledge) unique to the above algorithm and does not feature in existing
published alternative algorithms directed at basket analysis.

Overall, although there is much that can be improved upon in the brute force algorithm
described, it is felt that these deficiencies render the algorithm to be ideally suited to the role of
a bench mark to which future algorithms can be measured/compared.

APPENDIX
K m
/*
/* BRUTE FORCE ALGORITHM
/* Frans Coenen
/% 2 July 1998
/*
K m

/* Programme to generate interesting sets from a binary database table by "brute
force". x/

/* to compile "gcc -o bruteForceAlg bruteForceAlg.c" */

#include <stdlib.h>
#include <stdio.h>

/* Example test file:

Number of rows = 10, number of columns = 26

ABCDEFGHIJKLMNOPQRSTUVWIXYZ

1111101100000000111000010
11101101110110000011111011
11000101000101001000101011
10010010000110010101101011
00101101011111101111001001
10101011000000100001111100
11100001100100010110110111
10100111010011111101101110
00100111110110010000011000
00011000110110001101011001 %/
[* ————— GLOBAL VARIABLES ------ */

/* Linked list storage structure for sets of attributes. Structure includes:

15

*/
*/
*/
*/
*/

1) tail
2) ta2

Start address for sequence
End address for sequence */

typedef struct set {
char name[32];

int code;

int support;

struct set *next;

} SET, *SETPTR;

SETPTR startPtr = NULL, endPtr = NULL;

/* totalRows = Total number of rows in table.

supportThreshold = Support threshold, e.g. 20 (20%).

int totalRows = 1, supportThreshold = 20;

void processInput(FILE *);

int generateBitPattern(char *, int);

void addToSupport(int), createlLinkedList(int);
SETPTR createSetStruct(char *, int);

void outputSetStructLinkedList(void);

[k —— e x/
/* */
/% MAIN */
/* */
[k ——————— —— */

void main(int argc, char *argv[])

{
FILE *in_file;

/* Check Input. */

if (arge < 2) A

printf ("INPUT ERROR - no file name.\n");
exit(1);

}

/* Open file and process. */

if ((in_file=fopen(argv[1],"r")) == NULL) {

printf ("Unable to open ’%s’ for reading\n",argv[1]);
exit(1);

}

processInput(in_file);

/* Close file. */

fclose(in_file);

16

*/

/* Output result. */

outputSetStructLinkedList () ;
}

/* Note: fgets(stringname,n,filename) - function to read from a file until either
n-1 characters or a newline character is encountered, and store the characters in
the given stringname. */

void processInput(FILE *in_file)

{

char input[64]; /* Maximum input string is 26+25+1 = 52. */
int stringlength, cols, bitPattern;

/* Miss first Three lines. */

fgets(input,64,in_file);
fgets(input,64,in_file);
fgets(input,64,in_file);

/* Get next line, calculate number of columns and produce linked list of
candidate sets. */

fgets(input,64,in_file);
stringlength = strlen(input);
cols = stringlLength/2;
stringlength = stringlength-2;
createlinkedList (cols);

/* process first line. */

bitPattern = generateBitPattern(input,stringlength);
addToSupport (bitPattern);

/* process rest of table */
while (fgets(input,40,in_file) != ’\0’) {

bitPattern = generateBitPattern(input,stringlength);
addToSupport (bitPattern) ;

totalRows++;

}

}

[* —————= GENERATE BIT PATTERN —------ */

/* Generate an integer bit pattern according to 0 and 1 in table row (least
significant bit to the left). e.g. 11100 =7 %/

int generateBitPattern(char *input, int length)

{

int index = 0, number = 0, increment = 1;

17

while (index <= length) {

if (input[index] == ’1’) number = number + increment;
increment = increment*2;

index = index+2;

}

return (number) ;

}

/¥ ————— ADD SUPPORT ------ */

/* For each candidate set stored in the linked list determine if current line
supports set. This is achieved using a logical and between the integer bit code
for the set and the bit pattern for the row. If the result of the "and" is
equivalent to the bit code then increment support by 1. */

void addToSupport(int bitPattern)

{
SETPTR linkPtr = startPtr;

while (1inkPtr !'= NULL) {

if ((linkPtr->code & bitPattern) == linkPtr->code)
linkPtr->support = linkPtr->support+1;

linkPtr = linkPtr->next;

}

}

K m */
/* */
/% "LINKED LIST OF CANDIDATE SETS" UTILITIES */
/* */
[k ————————————————— */
[* —————- CREATE LINKED LIST ------ */

/* Produce the power set for the set of attributes in the database table. This
power set then represents all the candidate sets from which association rules
may be derived provided that there is sufficient support. */

void createLinkedList(int cols)

{

int code = 1, count = 1, newCode;

char newString[2], name[32];

SETPTR newPtr = NULL, linkPtr = NULL, tempPtr = NULL;
SETPTR newStartPtr = NULL, markerPtr = NULL;

/* Create start structure */

startPtr = createSetStruct("A",code);
endPtr = startPtr;

/* Create remainder */

while (count < cols) {

18

newStartPtr = NULL;

newString[0] = 65+count;

newString[1] = ’\0’;

code = codex*2;

newPtr = createSetStruct(newString,code);
linkPtr = startPtr;

while (1linkPtr !'= NULL) {
strcpy(name,linkPtr->name) ;

strcat (name,newString) ;

newCode = linkPtr->code+code;

tempPtr = createSetStruct(name,newCode) ;
if (newStartPtr == NULL) newStartPtr = tempPtr;
else markerPtr->next = tempPtr;
markerPtr = tempPtr;

linkPtr = linkPtr->next;

}

endPtr->next = newPtr;

newPtr->next = newStartPtr;

endPtr = markerPtr;

count++;

}

}

/* Create a single set structure with given arguments, and return a pointer to
it. */

SETPTR createSetStruct(char *name, int code)
{
SETPTR newPtr = NULL;

if ((newPtr = (SETPTR) (malloc(sizeof (SET))))==NULL) {
printf ("Insufficient storage space\n");

exit(1);

}

strcpy (newPtr->name,name) ;
newPtr->code = code;
newPtr->support = 0;
newPtr->next = NULL;

return(newPtr) ;

}

J* —mm e */

/* x/

/* OUTPUT */

/* x/

J* —m e */

[* === OUTPUT SET STRUCTURE LINKED LIST ------ */

void outputSetStructLinkedList(void)

19

{
SETPTR linkPtr = startPtr;
int minSupport = (totalRows*supportThreshold)/100;

printf ("Minimum support = %d\n",minSupport) ;

while (1inkPtr != NULL) {

printf ("%s (code = J%d) support = %d ",linkPtr->name,linkPtr->code,
linkPtr->support) ;

if (linkPtr->support >= minSupport) printf (" (Interesting set)");
printf ("\n");

1linkPtr = linkPtr->next;

}

}

20

