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Abstract. The classification of cardiovascular diseases using ECG data is consid-
ered. It is argued that to obtain a satisfactory classification features should be ex-
tracted from ECG images in their entirety, instead of translating the image into a
1D time series and only considering a small number of features as is the current
common practise. The presented approach used a pre-trained Convolutional Neural
Network (CNN) as a features extractor, followed by the application of T-distributed
Stochastic Neighbour Embedding (T-SNE) to find the best discriminant features to
perform ECG classification. The motivation using a pre-trained CNN model is that
available ECG data sets tend to be limited in size; typically insufficient for training
a bespoke deep learning model for feature extraction. Using a pre-trained CNN this
challenge can be addressed. The features were extracted from the fully connected
layers immediately preceding the softmax layer. The use of several pre-trained CNNs
is reported on: VGG16, InceptionV3, and ResNet50. The operation of the proposed
approach was also compared with recent relevant published approaches. A best AUC
value of 0.960 was produced using the proposed approach; while the best alternative
approach, out of those considered, produced an AUC of 0.932.

Keywords: ECG Classification, Convolutional Neural Networks, SVM Classifier,
KNN Classifier

1 Introduction

Cardiovascular disease (CVD) generates a huge amount of biomedical and clinical data as
a part of patient care. That data requires automated abstraction and manual analysis to
be easily utilized by cardiovascular researchers, practitioners and doctors. Strategies and
techniques that employ Machine Learning (ML) and Deep Learning (DL) have become
essential for improving the cardiologists’ work processes and performance, including making
early diagnoses of diseases [14]. In recent decades, there has been a significant growth of
interest in the automated classification and prediction of various cardiovascular diseases
based on ECG data [5, 17, 35]. Much of the available ECG data tends to be in paper “print
out” format; this is especially the case with respect to longitudinal studies [23]. It is only in
recent times that ECG machines have been able to output digital format ECG data.



The typical process for processing “paper” ECG data is to first scan the paper format
data so that a digital image is available; although, depending on the nature of the scanning,
the image quality may be affected. The digitised ECG images can be used directly as the
input to a selected ML or DL algorithm. However, this entails a high computational cost, in
many cases making this approach prohibitive. To reduce this computational cost a frequent
practice is to translate the 2D ECG image data into a 1D time series format, and then select
features from the resulting time series [26, 30, 36, 39, 49].

The adopted feature extraction process is usually founded on a small number of global
characteristics of ECG data; notably the amplitude and interval values of what are referred
to as the P, QRS and T (P-QRS-T) waves1 [20, 29, 38, 46]. These are the same key points
that practitioners consider when conducting visual analysis of ECG signals.

The translation from 2D to 1D tends to introduces further irregularities and information
loss. However, the main disadvantage of P-QRS-T style techniques is that they only focus
on a small set of features. The alternative, and that considered in this paper, is to extract
discriminatory features from the 2D scanned ECG image data without transformation to
a 1D format. Thus maintaining the computational advantage of feature-based ECG clas-
sification, whilst circumventing the disadvantages associated with the P-QRS-T style 1D
techniques.

The question is then how best to extract the desired features from the raw ECG data.
The Convolutional Neural Network (CNN) is the state of art DL technique for working with
image data. However, to train a CNN requires a considerable amount of data. Generally
speaking the amount of ECG data available for CVD classification is insufficient to train
a CNN for feature extraction, especially where practitioners are interested in a particular
form of CVD. The solution here is to use a pre-trained CNN model [9, 16, 21, 31, 33, 40, 44,
52]. In this paper three different pre-trained CNN models, to extract features from ECG
scanned image data, are considered: (i) ResNet50, (ii) VGG16 and (iii) InceptionV3. These
models were selected because of their high robustness and proven efficiency with respect to
ECG data applications. However, using these techniques a large number of features will be
identified. If all the extracted features were to be considered any computational advantage
that might have been gained would be lost. A feature selection process should therefore be
applied so as to identify features that are the best discriminators of class. With respect to the
work presented in this paper use of the T-distributed Stochastic Neighbour Embedding (T-
SNE) dimension reduction technique is advocated. Once an appropriate subset of features
has been identified a classification model can be built. In this paper the use of Support
Vector Machine (SVM) and k-Nearest Neighbour (KNN) classification were considered.

A further advantage of using features, regardless of the nature of these features, is that
they can be augmented with additional features obtained from elsewhere, for example fea-
tures extracted from Electronic Patient Record (EPR) data. As a consequence it may be
the case that a ”better” classification results. This idea is also explored in this paper.

The application focus for the work presented in this paper is the detection of abnormal
ECGs. ECGs that feature some form of CVD indicated by an irregular, and often an un-
usually fast, heart rate. The remainder of this paper is structured as follows. A review of
relevant existing work is presented, in Section 2. The proposed approach is then described
in Section 3, and the associated evaluation in Section 4. The paper is concluded, in Section
5, with a summary of the main findings and some ideas for future work.

1 The P wave indicates atrial depolarization, the QRS wave ventricular depolarization and the T
wave ventricular re-polarization



2 Previous Work

The analysis and interpretation of cardiovascular activity using ECG data is acknowledged,
by medical practitioners, to be a challenging task. According to [41], the interpretation of
ECGs can only be done by practitioners with extensive prior knowledge and skills. It is
also very time-consuming. Consequently the automated interpretation of ECG data using
the tools and techniques of ML and DL is seen as desirable. Examples, with respect to the
classification of a variety of CVDs using ML and DL technology, can be found in [5, 17, 19,
24, 35]. Many of these methods report good result.

As noted in the introduction to this paper ECG data, traditionally, comes in a “paper
print out” format. For ML and DL algorithms to be applied the paper format data needs
to be scanned. A process that entails the introduction of: (i) irregularities of various kinds,
(ii) the inclusion of spurious information and noise, and (iii) information loss. The quality
of the scanned images is thus, in many cases, in question; however this is accepted as an
unavoidable side effect if ML and DL techniques to existing is to be applied to, paper
format, ECG data. The work presented in this paper is directed at the use of scanned ECG
image data. The normal process is to convert to a 1D time series conceptualisation so that,
typically, P-QRS-T wave form-based ML and DL techniques can be applied [26, 30, 36, 39,
49]. A range of ECG digitisation tools have been used covert 2D ECG data into time series
formats [7, 8, 13, 18, 30, 36, 43]. However, as already noted, the P-QRS-T approach features
the disadvantage that only a small part of the available data is utilised.

Although the work presented in this paper is directed at paper format ECG data it is
worth noting in this literature review that in more recent times ECG machines that produce
digitised output have become increasingly available, although much existing data is still in
the paper format. This avoids many of the issues associated with the scanning of paper ECG
data. The digital output can be in two forms 2D digital image output or 1D time series
output. The 1D time series format offers the advantage that P-QRS-T style 1D techniques
can be applied directly. In the case of 2D output the practice is to first translate into a
1D format, and then apply the tried and tested P-QRS-T waveform approach to feature
selection. However, as noted in the introduction to this paper, P-QRS-T style techniques
feature the disadvantage that much of the data is ignored. For any kind of longitudinal
study paper format ECG data remains the dominant format.

In this paper the focus is on using state-of-the-art technique to extract features from 2D
ECG data using Convolution Neural Networks (CNNs), and to then we used the power of
DL and ML classification algorithms to classify the ECG data. CNNs have been successfully
applied to classify ECG data in the 1D, time series, context [1, 32, 42, 53] (although RNNs
are more common). Although CNNs provide promising results for 1D time series data,
better results have been reported when CNN are applied to 2D medical image data [34, 45].
Accordingly,it is noteworthy that some researchers working with 1D time series ECG data,
directly produced by a ECG machine, have considered converting this time series data into
a 2D image format so the CNNs can be applied [10, 11, 25, 27, 28, 37, 50].

However, as noted in the introduction to this paper, training CNNs for ECG classification
require large amounts of data to achieve a desirable performance. The state-of-art solution
is to use some form of Transfer Learning (TL) where a pre-trained model is adopted and fine
tuned using additional data. The utilization of TL allows Knowledge learnt from patterns
in one domain to be applied in another domain; for example to enable classification with
respect to the other domain. In the case of CNNs pre-trained image recognition models,
such as ResNet and Inception v3, are available which can be fine tuned using a limited



amount of ECG image data [9, 16, 21, 31, 33, 40, 44, 52]. For example in [9] the authors fine
tuned Inception V3 with real scanned images data to produced good results (AUC of 0.935).
The work presented in this paper used the same data set as used in [9]. In this paper three
pre-trained CNN model were fine tuned to extract features from 2D ECG image data, which
were then used to construct SVM and KNN classification models. We compared the results
with [9] model and [16].

3 Proposed Approach

This section presents the proposed approach to feature extraction from ECG raw image
data. The approach comprises five stages:

1. ECG Image Pre-processing.

2. Features Extraction.

3. Dimension Reduction

4. Data Augmentation

5. Feature Vector Generation

Detail concerning each of these stages is presented in the following five sub-sections, Sub-
sections 3.1, 3.2, 3.3, 3.4 and 3.5.

3.1 ECG Image Pre-processing

So that the ECG image data could be used with an appropriate pre-trained CNN model
the images needed to be dimensioned so as to be compatible with nature of the the adopted
architecture for the CNN model in question. For example ResNet50 requires that the input
images size is a multiple of 32. Therefore, with respect to the work presented here, all images
were first resized; 299× 299 pixels for InceptionV3, and 224× 224 pixels for ResNet50 and
VGG16

3.2 Feature Extraction

The idea presented in this paper is to extract features from ECG image data and then to
use the extracted features to build a classification model, thus avoiding the disadvantages
of 1D techniques as considered earlier in this paper. The proposed method is to extract
the desired features using pre-trained CNNs. Usually, initial layers of a CNN capture basic
input image features, such as boundaries and colour patterns. Then the deeper hidden layers
capture the complex higher-level feature patterns [6]. The most discriminating features are
thus held in the Fully-Connected Layers (FCLs) before the final output classification layer
(the softmax layer). The features in these FCLs were the features used with respect to the
work presented here. Three pre-trained CNN image recognition models were considered: (i)
VGG16, (ii) ResNet50 and (iii) InceptionV3. Details concerning these pre-trained models
are presented below.



VGG16 The VGG network architecture was introduced by Simonyan and Zisserman in
[47]. The acronym VGG stands for Visual Geometry Group, a group within the Department
of Science and Engineering at the University of Oxford. The group has released a series
of CNN models beginning with VGG, VGG16 to VGG19, the number denotes the number
of layers. VGG16 was used with respect to the work presented in this paper. The VGG16
architecture requires a 224×224×3 image size as an input, and generates an output feature
vector size of 4096. Details of the adopted VGG16 architecture are presented in Table 1.
Features were extracted from the last two FCLs prior to the SoftMax layer.

Table 1. The network structure of VGG16 con-
volutional neural network used in this paper

Layer type Kernel size Output size

Conv 1
3x3,64
3x3,64

224x224x64

Max pool 112x112x64

Conv 2
3x3,128
3x3,128

112x112x128

Max pool 56x56x128

Conv 3
3x3,256
3x3,256
3x3,256

56x56x256

Max pool 28x28x256

Conv 4
3x3,512
3x3,512
3x3,512

28x28x512

Max pool 14x14x512

Conv 5
3x3,512
3x3,512

3x3,512
14x14x512

Max pool 7x7x512

FC-4096,FC-4096,FC-1000,softmax

Table 2. The network structure of ResNet50
convolutional neural network used in this paper

Layer type Kernel size Output size

Conv 1 7x7x3 112x112x64

Max pool 3x3 56x56

Conv 2 x


1x1, 64
3x3, 64
1x1, 256

 x 3 56x56

Conv 3 x


1x1, 128
3x3, 128
1x1, 512

 x 4 28x28

Conv 4 x


1x1, 256
3x3, 256
1x1, 1024

 x 6 14x14

Conv 5 x


21x1, 512
3x3, 512
1x1, 2048

 x 3 7x7

Average pool 1x1

1000-d fc, softmax

ResNet50 The ResNet network architecture was introduced by He et al. [22]. It is con-
sidered by some to be the state-of-the-art for CNN-based image recognition [4]. There are
multiple versions of ResNetXX where ‘XX’ indicates the number of layers. The most com-
monly used, and that used with respect to the work presented in this paper, is ResNet50.
The ResNet-50 architecture, as in the case of VGG16, requires a 224×224×3 pixel images as
an input, and outputs a feature vector of size is 2048. The details of the adopted ResNet-50
architecture are given in Table 2, features were extracted from the last FCL prior to the
SoftMax layer.

Inception-V3 The “Inception” micro-architecture was introduced by Szegedy et al. [48].
The original name of this architecture was GoogLeNet, but subsequent manifestations have
simply been called Inception VN where N denotes the version number. Inception-V3 is that
used in the context of this paper. The Inception-V3 architecture require 224× 224× 3 pixel
images. The output feature vector is of size 2048. The details of the adopted Inception-V3
architecture are given in Table 3. Features were extracted from the last FCL prior to the
SoftMax layer.



Table 3. The network structure of the Inception-v3 CNN used in this paper

Layer name Patch size Output size

Conv 3×3/2 149×149×32

Conv 3×3/1 147×147×32

Conv padded 3×3/1 147×147×64

Max Pool 3×3/2 73×73×64

Conv 3×3/1 71×71×80

Conv 3×3/2 35×35×192

Conv 3×3/1 35×35×288

3 × Inception Module 1 17×17×768

5 × Inception Module 2 8×8×1280

2 × Inception Module 3 8 × 8 × 2048

Max Pool 8 × 8 1 × 1 × 2048

Linear, Logits, Softmax

3.3 Dimensionality Reduction

Dimensionality Reduction (DR) is pre-processing step aimed at either reducing the number
of features, thus reducing the resources required for classification model generation, or to
aid in visualising the data before any analysis is performed. In the case of classification
model generation DR is applied before model training is commenced [51]. From the previous
section, 4096 features were extracted using VGG16, and 2048 using ResNet50 and Inception-
V3. Thus DR was adopted in order to reduce the number of features, while attempting to
keep as much of the variation in the original features set as possible. There are many
algorithms that can be used for DR that can be categorised into two groups: linear algebra
and manifold learning. In linear algebra the methods used examine the linear relationship
between the variables, while in manifold learning non-linear approaches are used to capture
more complex relationships between variables. For the work presented in this paper three
methods were considered: (i) Principal Components Analysis (PCA) and (ii) Singular Value
Decomposition (SVD) and T-distributed Stochastic Neighbor Embedding (T-SNE). The
first two are linear algebra approaches and the third a manifold approach. In more detail:

– PCA conducts a linear combination of an existing large set of features so as to create a
new set of features. These new features are referred to as “Principal Components”. The
aim is to capture as much information as possible in the smallest number of principal
components.

– SVD decomposes the original features into three constituent matrices to remove redun-
dant features. The twin concepts of Eigenvalues and Eigenvectors are used to calculate
these matrices.

– T-SNE reduces the number of features by creating two or three new features. It calculates
the probability similarity of points in a high dimensional space and uses this define a
low dimensional space. Nearby points in the high dimensional space are then mapped
to the nearest points in the low dimensional space.

3.4 Data Augmentation

The ECG image data set used for evaluation purposes was a binary-labelled, imbalanced,
data set (see Sub-section 4.1 for more detail). To address this issue the minority class was
augmented through the application of an oversampling technique. In “classic” oversampling,



the minority data is simply duplicated. However, this will not add any new information. In
[12] the Synthetic Minority Oversampling Technique (SMOTE) was presented, a technique
which can be used to synthesize new examples from existing examples. For the work pre-
sented in this paper SMOTE was adopted. SMOTE operates by first selecting random
records from the minority class and, for each selected record, the k-nearest neighbours. Syn-
thetic data is then created using these “clusters”. For the work presented in this paper three
different SMOTE techniques were considered: (i) the original SMOTE, (ii) Support Vector
Machine SMOTE (SVM-SMOTE) and (iii) Adaptive Synthetic Sampling (ADASYN):

– As noted above, the original SMOTE operates by first selecting random records from
the minority class and, for each selected record the k-nearest neighbours. Synthetic data
is then created using these “clusters”.

– Using SVM-SMOTE, instead of using K-nearest neighbors, support vectors are used.
Synthetic data is randomly created along the lines joining each minority class support
vector with a number of its nearest neighbors.

– Using ADASYN data density is used to create synthetic data. Additional synthetic data
is created in the “areas” where the minority class is less dense.

3.5 Feature Vector Generation

The last process in the proposed approach is the generation of a set of feature vectors
H = {V1, V2, . . . }. Each Vi ∈ H is of the form {v1, v2, . . . , c} where vi is a numerical features
values extracted from an ECG scanned image. Interestingly vi could also be a values obtained
from some other source than the core ECG data. In the evaluation presented later in this
paper the results of experiments are reported where age and gender are appended to H.
For classification model training purposes a final element c, a class label taken from a set of
classes C, is added to each Vi ∈ H. For the evaluation presented in Section 4, |C| = 2 was
used. A previously unseen record will have a null value for the variable c as this is the value
we wish to predict.

4 Evaluation

The evaluation of the proposed mechanism is presented in this section. For the evaluation
the Guangzhou Heart Study data set was used [15]. Some detail concerning this data set
is provided in Sub-section 4.1. Both SVM and KNN classification models were used for the
evaluation with Grid Search to choose the best parameters: SVM (C, gamma and kernels)
and KNN (neighbors, weights and p). The evaluation metrics used were accuracy, F1 and
AUC; Ten-fold cross-validation was used throughout. The Friedman Test was used to deter-
mine whether or not there was a statistically significant difference between the performance
of the models. Where a statistically significant difference was found, the Nemenyi post-
hoc test was used to identify the distinctions between the performance of the mechanisms
considered. The objectives of the evaluation were as follows:

1. To identify the most appropriate pre-trained CNN model, dimensionality reduction tech-
nique and data augmentation technique.

2. To compare the operation of the proposed approach when the feature set is appended
with additional data.

3. To compare the operation of the proposed approach with other published approaches.

Each is discussed in further detail below in Sub-sections 4.2, 4.3 and 4.4.



4.1 Data Set

As we require a scanned image dataset in this paper, The Guangzhou Heart Study data set is
used, comprised 1172 patients (399 males, and 773 females) with a mean age of 71.4 years;
each patient was associated with a 12-leads ECG scanned image and patient attributes,
including age and gender. Each patient record had been labelled according to arrhythmia
type, either sinus arrhythmia (normal) or abnormal. The abnormal category included: (i)
Atrial Fibrillation (AF) and Flutter (AFL), (ii) premature atrial or ventricular contraction,
(iii) Atrioventricular Block (AVB), (iv) ventricular tachycardia, (v) Supraventricular Tachy-
cardia (SVT), (vi) Wolff-Parkinson-White syndrome (WPW), (vii) pacing rhythm and (viii)
junctional rhythm. From the 1172 patients, 878 (74.9%) were classified as normal, and the
remaining 294 (25.1%) as abnormal. The image resolution was 300 dpi (dots per inch) and
each image was stored using JPEG compression. Ten cross validation was used throughout,
thus on each run the training data comprised 1055 images, and the test data 117 images.

4.2 Best Combination of techniques

From Section 3 the proposed approach incorporated three categories of technique:

– Feature extraction.
– Dimension reduction.
– Data augmentation.

Three different techniques were considered with respect to each. Experiments were con-
ducted to identify the best technique in each case.

For the feature extraction VGG19, ResNet50 and Inception-v3 were considered (as de-
scribed previously in Sub-section 3.2). Recall that for VGG the number of features was
4, 096, and for ResNet50 and Inception-v3 the number of features was 2, 048. We also con-
sidered the combination of the extracted features, because in [40] this had demonstrated
good results. We ran the experiments using each feature vector set separately and in com-
bination: (i) all models (4, 096+ 2, 048+ 2, 048 = 8192 features), (ii) ResNet50 and VGG16
(4, 096+2, 048 = 6144 features), (iii) ResNet50 and Inception-v3 (2, 048+2, 048 = 4096 fea-
tures) and (iv) VGG16 and Inception-v3 (4, 096+2, 048 = 6144 features). In all cases t-SNE
was used for feature selection and SMOTE for record augmentation (to limit the number of
combinations to be considered with respect to this first set of experiments). The results ob-
tained are given in Table 4. From, the table, it can be seen that the best accuracy and AUC
values were obtained using Resnet50 feature selection coupled with SVM classification (AUC
of 94.21% and accuracy of 94.12). While when using kNN classification best results were
obtained when all 8192 features were used in combination (AUC of 87.32% and accuracy
of 87.70%). A subsequent Friedman Test indicated that there was a statistically significant
difference in operation when using SVM classification, but not when using kNN classifica-
tion. Figure 1 shows the result of a Nemenyi post-hoc test using SVM classification. From
the figure it can be seen that the ResNet50 model has significant differences with all other
models except with ResNet50+VGG16 (p = .25) and VGG16 +InceptionV3 (p = 0.20). It
was thus concluded that for feature extraction ResNet50 was the most appropriate choice.

For the experiments to determine the best dimensionality reduction technique the three
alternatives discussed in Sub-section 3.3 were considered: (i) T-SNE, (ii) SVD and (iii)
PCA. Table 5 shows the results obtained using ResNet50 feature selection (because the
experiments reported above indicated that this produced the best results) and SMOTE



Fig. 1. Nemenyi post-hoc test for feature generation coupled with SVM classification

Table 4. SVM and KNN classification performance using a different pre-trained models features

SVM KNN
Model/Classification Accuracy F1 AUC Accuracy F1 AUC

% % % % % %

ResNet50 94.21 93.64 94.12 85.80 86.72 86.17

VGG16 89.34 89.56 89.47 85.32 86.29 84.62

InceptionV3 85.27 85.56 85.46 84.34 85.45 84.62

ResNet50+VGG16 89.97 89.89 90.06 85.38 86.37 85.75

ResNet50+InceptionV3 88.07 88.34 88.20 86.11 87.00 86.46

VGG16+InceptionV3 89.96 90.30 90.1 87.01 87.75 87.27

ResNet50+VGG16+InceptionV3 88.39 88.49 88.48 87.32 87.80 87.70

augmentation (to limit the number of combinations to consider). Results are given using
both SVM and kNN classification. Inspection of the table indicates that best values were
obtained using T-SNE, while PCA caused over-fitting regardless of whether SVM or kNN
classification was used. It was thus concluded that for feature selection T-SNE was the most
appropriate choice.

For the experiments to determine the most appropriate augmentation method three
alternatives were considered (as discussed in Sub-section 3.4). Experiments were conducted
using ResNet50 and t-SNE for SVM classification, and all features and t-SNE for KNN
classification; because earlier experiments (see above) had indicated that these tended to
produce a best performance. The results are presented in Table 6. From the table it can be
seen that SMOTE produced the best results when using SVM classification, and ADASYN
when using kNN classification. A Friedman Test indicated a statistically significant difference
in the results when using SVM classification (not the case when using kNN). Figure 2, show
the result from a Nemenyi post-hoc test for the results obtained using SVM classification.
From the figure it can be seen that there is a statistically significant difference when using
SMOTE.



Table 5. SVM and KNN classification performance using a range of features selection techniques

SVM KNN
Technique/Classification Accuracy F1 AUC Accuracy F1 AUC

% % % % % %

T-SNE 94.21 94.19 94.12 87.32 87.80 87.70

SVD 63.10 62.66 63.16 68.03 49.12 64.39

PCA Overfitting Overfitting

Fig. 2. Nemenyi post-hoc test for augmentation
techniques and SVM classification

Fig. 3. Nemenyi post-hoc for all models with
SVM classifier

4.3 Analysis of the Effect of Adding Additional Data

The previous sub-section described the experiments conducted to determine the best feature
extraction, feature selection and augmentation techniques for processing ECG image data to
support ECG classification. Best results were obtained using ResNet50 feature extraction, T-
SNE feature selection and SMOTE data augmentation. Further experiments were conducted
to determine whether any advantage could be gained by adding additional features from
related sources. To this end age and gender were added to the generated feature vector for
each ECG (note that each ECG in the data set was related to a single patient). Similar
experiments were conducted in [2]; but in the 1D, time series, context.

The results are presented in table 7. From the table, and with reference to Table 6, it
can be seem that adding patient age improves the effectiveness of the classification, an AUC
of 95.17 using SVM, and 89.15 using KNN (compared to 94.12 and 87.70 respectively, when
not adding additional information). Gender has a less pronounced effect. Figure 3 shows the
result of Nemenyi post-hoc test applied to all models for SVM classification after a Friedman
Test reported that there was a statistically significant difference. From the figure it can be
seen that there was a statistically significant difference between using ECG + age + gender
and ECG + gender; thus adding age has prominent effect on performance. In the KNN case,
the Friedman Test indicated that there was no statistically significant difference between
the models (p = 1.0).

4.4 Comparison of Approaches

The experimental results obtained, using the proposed approach, were also compared those
obtained in recently published work directed at the same data set, namely the work presented



Table 6. SVM and KNN classification performance using a range of data augmentation techniques

SVM KNN
Technique/Classification Accuracy F1 AUC Accuracy F1 AUC

% % % % % %

SMOTE 94.21 94.19 94.12 87.32 87.80 87.70

ADASYN 91.69 91.19 91.69 88.46 81.11 88.82

SVMSMOTE 88.99 85.73 88.69 87.58 80.82 88.23

Table 7. SVM and KNN classification performance when adding additional data

SVM KNN
Technique/Classification Accuracy F1 AUC Accuracy F1 AUC

% % % % % %

ECG + Age 95.19 94.98 95.17 88.97 89.13 89.15

ECG + Gender 94.45 94.06 94.38 88.49 89.13 88.86

ECG + Age + Gender 96.06 95.92 96.07 89.01 89.46 89.37

in [9] and [16]. In [9], they fine-tuned an Inception-v3 pre-trained model to extract features
which were than classified using a dense, fully connected layer. To address the imbalanced
nature of the data set, they used the Generalized Extreme Value (GEV) activation function
as an alternative to Sigmoid activation. In [16] they converted 1D time-series ECG data
into 2D colour spectrogram images and used this as the input to a pre-trained CNN model.
Three pre-trained CNN models were considered: AlexNet, VGG-16, and ResNet-18. In [9]
a best AUC of 93.20% was reported. Whilst the proposed approach presented in this paper
produced a best AUC of 94.12% with out the inclusion pf additional features, and a best
AUC of 96.07% when including age and gender. In [16] best accuracy of 83.82% was reported,
obtained using AlexNet. Best accuracies of 94.21% and 96.06% were recorded with respect
to the proposed approach without and with the inclusion of additional data (age and gender)
respectively.

Finally, in the introduction to this paper, the disadvantages of using 1D waveform rep-
resentations of ECG data was noted. It was hypothesised that using 2D image directly
to extract the features would produce a better classification than that obtained using fea-
tures selected from 1D transformed waveform representations of ECG data. Accordingly,
the scanned images were transformed into a time series format using a recent algorithm for
achieving this [18]. Once the image set had been transformed the 1D motif approach pro-
posed in [3] was used to extract features. An accuracy of 72.35% was obtained using the 1D
approach, compared that with 94.21% and 96.06% accuracies obtained using the proposed
approach (without and with the inclusion of age and gender).

5 Conclusion

An approach to classifying ECG image data using a pre-trained CNN model to extract
features has been presented. The motivation for the work was the observation that most ECG
data is still in paper format. For classification purposes this paper ECG data is typically
processed by first scanning into a digital format, from which time series are generated,
from which a small number of features (P-QRS-T wave features) are extracted, which are
then used to build a classification model. This chain of processes introduces a range of
irregularities and noise. To reduce this chain it was suggested that 2D features, extracted
directly from the scanned images, could be used; and that features be extracted using some



form of CNN. It was also noted that the amount of data available is frequently insufficient
to build a CNN. Hence it was proposed to use a pre-trained CNN model. Three CNN models
were considered for the feature extraction, together with three feature selection mechanisms.
It was also noted that the data available tends to be imbalanced; typically we have more
examples of ECGs for patients with a CVD than without (individuals tend to only have
ECGs taken when a CVD is suspected). A range of augmentation techniques were considered.
The presented evaluation demonstrated that best results were obtained using ResNet50
feature extraction, T-SNE feature selection and SMOTE data augmentation. Experiments
were also conducted to investigate the effect of adding additional features obtained from
elsewhere (age and gender) and this was found to provide an improved result. A best AUC
of 96.07 was obtained. Comparison was made with existing work, that presented in [9]
and [16]. The results indicated that the proposed approach outperformed these existing
approaches. Finally comparison was undertaken with a 1D technique indicating that the
motivating hypothesis was correct.
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