
An investigation into the issues of

Multi-Agent Data Mining

Kamal Ali Albashiri, Frans Coenen, and Paul Leng

Department of Computer Science, The University of Liverpool

Ashton Building, Ashton Street, Liverpool L69 3BX, United Kingdom

{ali,frans,phl}@csc.liv.ac.uk

Abstract

Multi-agent systems (MAS) often deal with complex applications that re-
quire distributed problem solving. In many applications the individual
and collective behaviour of the agents depends on the observed data from
distributed sources. The field of Distributed Data Mining (DDM) deals
with these challenges in analyzing distributed data and offers many algo-
rithmic solutions to perform different data analysis and mining operations
in a fundamentally distributed manner that pays careful attention to the
resource constraints. Since multi-agent systems are often distributed and
agents have proactive and reactive features, combining DM with MAS for
data intensive applications is therefore appealing.

This Chapter discusses a number of research issues concerned with
the use of Multi-Agent Systems for Data Mining (MADM), also known as
agent-driven data mining. The Chapter also examines the issues affecting
the design and implementation of a generic and extendible agent-based
data mining framework. An Extendible Multi-Agent Data mining Sys-
tem (EMADS) Framework for integrating distributed data sources is pre-
sented. This framework achieves high-availability and high performance
without compromising the data integrity and security.

Keywords: Meta Mining, Multi Agent Data Mining, Association
Rule Mining, Vertical Partitioning, Classifier Generation.

1 INTRODUCTION

Knowledge discovery in databases (KDD) has evolved to become a well estab-
lished technology that has many commercial applications. It encompasses sub-
fields such as classification, clustering, and rule mining. However, it still poses
many challenges to the research community. New methodologies are needed in
order to mine more interesting and specific information from larger datasets.
New frameworks are needed to harmonize more effectively all the steps of the
KDD process. New solutions are required to manage the complex and hetero-
geneous sources of information that are today available for the analysts.

Research work in KDD continues to develop ideas, generate new algorithms
and modify/extend existing algorithms. A diverse body of work therefore exists.
KDD research groups and commercial enterprises are prepared (at least to some
extent) to share their expertise. In addition, many KDD research groups have
made software freely available for download 1. This all serves to promote and
enhance the current “state of the art” in KDD. However, although the free
availability of data mining software is of a considerable benefit to the KDD
community, it still requires users to have programming knowledge this means
that for many potential end users the use of such free software is not a viable
option.

The rest of the section is orgainzed as follows. The work motivation is pre-
sented in Subsection 1.1. The work objective is presented in Subsection 1.2. The
work evaluation method is described in Subsection 1.3. EMADS Extendibility
is described in Subsection 1.4. An overview of of EMADS implemented sce-
narios is presented in Subsection 1.5. The chapter organization is described in
Subsection 1.6.

1.1 Motivation

There are a number of issues that DM researchers are currently addressing,
these include: accuracy (especially in the context of classification), efficiency
and effectiveness, privacy and security, and scalability. This last is significant
as the amount of data currently available for DM is extensive and increasing
rapidly year by year. One potential solution to the scalability issue is parallel
or distributed DM although this often entails a significant communication over-
head. Issues of privacy and security centre around legal issues and the desire of
many holders of data to maintain the copyright they hold on that data.

Multi-agent systems (MAS) are communities of software entities, operating
under decentralized control, designed to address (often complex) applications
in a distributed problem solving manner. Multi-Agent Systems (MAS) offer
a number of general advantages with respect to computer supported coopera-
tive working, distributed computation and resource sharing. Well documented
advantages include:

1Weka Tool Kit http : //www.cs.waikato.ac.nz/ml/weka/, and the LUCS-KDD Software

Library http : //www.csc.liv.ac.uk/f̃rans/KDD/Software/

2

1. Autonomy

2. Decentralized control.

3. Robustness.

4. Simple extendibility.

5. Sharing of expertise.

6. Sharing of resources.

7. Process automation.

8. Data and task matching.

9. Result evaluation.

Autonomy and decentralized control are, arguably, the most significant fea-
tures of MAS that serve to distinguish such systems from distributed or parallel
approaches to computation. Autonomy and decentralized control [107] imply
that individual agents, within MAS, operate in an autonomous manner and are
(in some sense) self deterministic. Robustness, in turn, is a feature of the de-
centralized control, where the overall system continues to operate even though a
number of individual agents have disconnected (crashed). Decentralized control
also supports extendibility, in that additional functionality can be added simply
by including further agents. The advantages of sharing expertise and resources
are self evident.

The advantages offered by MAS are entirely applicable to Knowledge Dis-
covery in Data (KDD) where a considerable collection of tools and techniques
are current. MAS also have some particular advantages to offer with respect
to KDD, and particularly data mining, in the context of sharing of resources
and expertise. KDD is concerned with the extraction of hidden knowledge from
data. Very often data relevant to one search is not located at a single site, it may
be widely-distributed and in many different forms. There is a clear advantage
to be gained from a software organization that can locate, evaluate, consolidate
and mine data from these diverse sources.

The term Multi-Agent Data Mining (MADM) is used to describe Data Min-
ing within a Multi-Agent Environment.

By its nature data mining is often applied to sensitive data. MAS allow data
to be mined remotely. Similarly, with respect to data mining algorithms, MAS
can make use of algorithms without necessitating their transfer to users, thus
contributing to the preservation of intellectual property rights.

The motivation for the work described in this chapter is to examine whether,
how, and to what extent MAS can be used to address the scalability and privacy
and security issues, identified above, i.e. Multi-Agent Data Mining (MADM).
The use of MAS will also provide a radical alternative approach to DM where
collections of data mining agents (of various types) can be used to address
traditional DM problems under decentralized control. The vision that the work
espouses is that of an anarchic and dynamic agent community where agents
interact with one another to address DM problems posted by users and where

3

data sources (agents) can be made available by individuals as desired by those
individuals. The research issues that this entails are identified in the following
section.

1.2 Objectives

The aim of the chapter is to evaluate the MADM vision, as described above,
with the aim of establishing its efficacy and usability. The principal research
question to be addressed is therefore: “does MADM provide the KDD commu-
nity with any desirable advantage that would make the global establishment of
such a system of genuine significance?” For example would it solve the scala-
bility problem? Does it address privacy and security issues? Does it allow for
simple extendibility and sharing of expertise?

The above research question encompasses a number of issues:

1. The negotiation and communication mechanism to be adopted to allow
the envisaged agents to “talk” to one another.

2. The nature of the framework/platform in/on which the agents might op-
erate.

3. The nature of individual DM algorithms that would gain full advantage
of operating in a multi-agent setting.

4. Usage of such a system and the mechanisms for adding/removing agents.

The research presents the MADM vision the associated conceptualization
and describes the Extendible Multi-Agent Data mining System (Framework),
(EMADS). EMADS is a JADE implementation, which was used as a basis for
investigating the issues identified above and evaluating approaches to dealing
with them. Wrappers are used to incorporate existing software into EMADS.
Experience indicates that, given an appropriate wrapper, existing data mining
software can be very easily packaged to become an EMADS data mining agent.

Broadly EMADS is viewed as providing an “anarchic” environment to sup-
port MADM; more specifically it facilitates end-user participation and therefore
allows for qualitative feedback. Each of the above research issues was investi-
gated using a number of DM scenarios and applications commonly found in the
domain of DM.

1.3 Evaluation

The following criteria were used to critically evaluate the work presented in
later sections. The principal aim of the evaluation was to establish whether the
EMADS vision satisfies the objectives described in Section 1.2. For this to be
so, the EMADS should fulfill the following requirements:

• Generality. In order to be generic, the framework tasks need to be coor-
dinated. The number of tasks is not known apriori, and may evolve over

4

time. The framework should also be reactive since it must accommodate
new tasks as they are created in the environment.

• Reusability. The framework should promote the opportunistic reuse
of agent services by other agents. To this end, it has to provide mecha-
nisms by which agents may advertise their capabilities, and ways of finding
agents supporting certain capabilities.

• Extendibility and scalability.

Extendibility and scalability can be evaluated by considering the following
questions:

1. Is the framework complaint with the standard agent communication
language i.e. FIPA ACL [34]?

2. Ease of use and extendibility are achieved through the ease of adding
and removing mechanisms of agents. Can new DM techniques be
added to the system and out-of-date techniques be deleted from the
system dynamically?

3. Can DM technique agents interact at run-time with ease under this
framework? In other non-agent based systems, these interactions
must be determined at design-time.

Overall the aim of the evaluation is to show that EMADS can be used to perform
data mining by considering a sequence of data mining scenarios designed to
determine whether the above listed requirements are achieved. More details on
the scenarios that were considered are given in Section 1.5.

1.4 Extendibility

One of the principal objectives of EMADS is to provide an easily extendible
framework that could easily accept new data sources and new data mining tech-
niques. In general, extendibility can be defined as the ease with which software
can be modified to adapt to new requirements or changes in existing require-
ments. Adding a new data source or data mining techniques should be as easy
as adding new agents to the system. The desired extendibility is achieved by
the EMADS Architecture as implemented in JADE using a system of wrap-
pers. The agent wrapper agentifies an existing application by encapsulating an
implementation of the wrapping application. It manages the states of the ap-
plication, invoking the application when necessary. EMADS wrappers are used
to wrap up data mining artifacts so that they become EMADS agents and can
communicate with other EMADS agents [6]. Two broad categories of wrapper
have been defined: (i) data wrappers and (ii) tool wrappers. Each is described
in further detail in Section 4.

5

1.5 Overview of EMADS Implemented Scenarios

The demonstration scenarios used to evaluate EMADS, and referred to through-
out this chapter are considered in this subsection.

1.5.1 Meta Association Rule Mining (ARM)

The first scenario [5, 7] comprises a novel extension of ARM where a meta set
of frequent itemsets are constructed from a collection of component sets which
have been generated in an autonomous manner without centralized control.
This type of conglomerate has been termed Meta ARM to distinguish it from a
number of other related approaches such as incremental and distributed ARM.
A number of MADM meta ARM algorithms were developed and evaluated: (i)
Bench Mark, (ii) Apriori, (iii) Brute Force, (iv) Hybrid 1 and (v) Hybrid 2. This
demonstrator is discussed in more detail in Section 3.

1.5.2 Vertical Partitioning and Distributed/Parallel ARM

The second demonstration scenario comprises an approach to distributed/parallel
Association Rule Mining (ARM), DATA-VP, which makes use of a vertical par-
titioning approach to distributing the input data as described in [27]. Using this
approach each partition can be mined in isolation while at the same time taking
into account the possibility of the existence of large itemsets dispersed across
two or more partitions. This scenario is discussed in more detail in Section 6.

1.5.3 Generation of Classifiers

Classification Association Rule Mining (CARM) aims to discover a small set of
rules in the database that forms a classifier. The third demonstration scenario
was a CARM scenario. This scenario [6] illustrates the operation of EMADS in
the context of a classifier generation task. The scenario is that of an end user
who wishes to obtain a best classifier founded on a given, pre-labeled, data set;
which can then be applied to further unlabelled data.. This demonstrator is
discussed in more detail in Section 7.

1.6 Chapter Organization

Section 2 of this chapter provides background a brief overview of the field of
MADM. The concepts of association rules are presented in detail as it is central
to three scenarios considered. To make the overview broader, other techniques
such as decision tree induction and classification are also covered briefly. Section
3 gives an overview of the design and implementation of EMADS. Section 4
provides a detailed description of the EMADS extendibility feature in terms of
its requirements, design and implementation. The three evaluation scenarios
are considered in Sections 5, 6, and 7 respectively. The last Section presents
some conclusion.

6

2 BACKGROUND AND LITERATURE
REVIEW

This section presents a discussion and critical review of the current research
relating to multi-agent data mining (MADM). It provides an overview of the
theoretical background of the research discipline, identifying the approaches
adopted, and discusses the benefits and challenges posed. It also highlights the
principal areas in which current solutions fall short of requirements.

The organization of this section is as follows. An overview of data mining and
distributed data mining is presented in Subsections 2.1 and 2.2 along with three
specific data mining techniques: Association Rule Mining (ARM), Classification
Rule Mining (CRM), and Decision Tree (DT) generation; which are used for
demonstration purposes in this Chapter. In Subsection 2.3 a general description
of agent and multi-agent systems is provided together with a review of multi-
agent systems platforms. Finally, the use of agent and multi-agent systems for
data mining, as an emerging field of data mining, is reviewed in Subsection
2.4, where overall research in this field is summarized and some well established
approaches are presented.

2.1 Data Mining

During the last two decades, our ability to collect and store data has significantly
outpaced our ability to analyze, summarize and extract “knowledge” from this
continuous stream of input. Knowledge discovery in databases (KDD) denotes
the complex process of identifying valid, novel, potentially useful and ultimately
understandable patterns in data [33]. Data mining refers to a particular step
in the KDD process. It consists of particular algorithms that, under accept-
able computational efficiency limitations, produce a particular enumeration of
patterns (models) over the data. Data mining [44, 46, 48, 106] deals with the
problem of analyzing data in scalable manner.

A considerable number of algorithms have been developed to perform data
mining tasks, from many fields of science [108]. Typical DM tasks are classifi-
cation (assign each record of a database to one of a predefined set of classes),
clustering (find groups of records that are close according to some user defined
metrics) or association rules (determine implication rules for a subset of record
attributes).

The next three subsections briefly review the data mining techniques that
are used (to varying degrees) for evaluation purposes in this chapter: the task
of discovery of association rules (Association Rule Mining) and the task of clas-
sification using ARM and suing DTS.

2.1.1 Association Rule Mining

The most popular task of DM is to find trends in data that show associations
between domain elements. This is generally focused on transactional data such
as a database of purchases at a store. This task is known as Association Rule

7

Mining (ARM). It was first introduced in Agrawal et al. [1]. Association rules
identify collections of data attributes that are statistically related in the under-
lying data.

An association rule is of the form X → Y where X and Y are disjoint con-
junctions of attribute-value pairs. The confidence of the rule is the conditional
probability of Y given X, Pr(Y|X), and the support of the rule is the prior prob-
ability of X and Y, Pr(X and Y). Here probability is taken to be the observed
frequency in the data set.

The traditional ARM problem can be described as follows. Given a database
of transactions, a minimal confidence threshold and a minimal support thresh-
old, find all association rules whose confidence and support are above the cor-
responding thresholds.

An example of this type of rule is the statement that 90% of transactions in
which cereal and milk were purchased, jam was also purchased, and 5% of all
transactions contain all three items. The antecedent of this rule (X) consists
of cereal and milk and the consequent (Y) is jam. The 90% represents the
confidence factor of this rule and the 5% is the support for the rule. The
rule can then be specified as cereal ∩ milk → jam. Both the antecedent and
consequent can have sets of items, or can be a single item.

The most computationally demanding aspect of Association Rule Mining is
identifying the frequent sets of attribute-values, or items, whose support (oc-
currence in the data) exceeds some threshold. The problem arises because the
number of possible sets is exponential in the number of items. For this reason,
almost all methods attempt to count the support only of candidate itemsets
that are identified as possible frequent sets. It is, of course, not possible to
completely determine the candidate itemsets in advance, so it will be necessary
to consider many itemsets that are not in fact frequent.

Most algorithms involve several passes of the source data, in each of which
the support for some set of candidate itemsets is counted. The performance of
these methods, clearly, depends both on the size of the original database and on
the number of candidates being considered. The number of possible candidates
increases with increasing density of data (greater number of items present in a
record) and with decreasing support thresholds. In applications such as medical
epidemiology, where we may be searching for rules that associate rather rare
items within quite densely populated data, the low support-thresholds required
may lead to very large candidate sets. These factors motivate a continuing
search for efficient algorithms.

2.1.2 The Apriori Algorithm

Since its introduction in 1994, the Apriori algorithm developed by Agrawal and
Srikant [4] has been the basis of many subsequent ARM and/or ARM-related
algorithms. In [4], it was observed that ARs can be straightforwardly generated
from a set of frequent itemsets (FIs). Thus, efficiently and effectively mining
FIs from data is the key to ARM. The Apriori algorithm iteratively identifies
FIs in data by employing the “closure property” of itemsets in the generation of

8

Algorithm 2.1: Apriori

Input: (a) A transactional database Dt ;
(b) A support threshold s ;
Output: A set of frequent itemsets S ;
1: begin:
2: k ← 1;
3: S ← an empty set for holding the identified frequent itemsets;
4: generate all candidate 1-itemsets from Dt ;
5: while (candidate k -itemsets exist) do
6: determine support for candidate k-itemsets fromDt ;
7: add frequent k -itemsets into S ;
8: remove all candidate k-itemsets that are not sufficiently supported
to give frequent k -itemsets;
9: generate candidate (k + 1)-itemsets from frequent k -itemsets using
closure property;
10: k ← k + 1;
11: end while
12: return (S);
13: end Algorithm
Note: A k -itemset represents a set of k items.

Table 1: Apriori Algorithm

candidate itemsets, where a candidate (possibly frequent) itemset is confirmed
as frequent only when all its subsets are identified as frequent in the previous
pass. The closure property of itemsets can be described as follows: if an itemset
is frequent then all its subsets will also be frequent; conversely if an itemset is
infrequent then all its supersets will also be infrequent. The Apriori algorithm
is shown in Table 1.

Apriori performs repeated passes of the database, successively computing
support-counts for sets of single items, pairs, triplets, and so on. At the end of
each pass, sets that fail to reach the required support threshold are eliminated,
and candidates for the next pass are constructed as supersets of the remaining
(frequent) sets. Since no set can be frequent which has an infrequent subset,
this procedure guarantees that all frequent sets will be found.

2.1.3 Classification Rule Mining

Classification Rule Mining is probably the most studied data mining task. In
this task the goal is to predict the value (the class) of a user-specified goal
attribute based on the values of other attributes, called the predicting attributes.
For instance, the goal attribute might be the credit of a bank customer, taking
on the values (classes) “good or “bad”, while the predicting attributes might be
the customer’s Age, Salary, Account Balance, whether or not the customer has

9

an unpaid loan, etc.
Classification rules can be considered to be a particular kind of prediction

rule where the rule antecedent (“IF part”) contains a combination - typically,
a conjunction - of conditions on predicting attribute values, and the rule conse-
quent (THEN part) contains a predicted value for the goal attribute. Examples
of classification rules are:

IF (paid-loan? = “yes” and (Account-balance > £3,000)
THEN (Credit = “good”)
IF (paid-loan? = “no”) THEN (Credit = “bad”)

In the classifier generation task the data being mined is divided into two
mutually exclusive data sets, the training set and the test set. The data mining
algorithm has to discover rules by accessing the training set only. In order to do
this, the algorithm has access to the values of both the predicting attributes and
the goal attribute of each example (record) in the training set. Once the training
process is finished and the algorithm has found a set of classification rules, the
predictive performance of these rules is evaluated on the test set, which was not
seen during training. For a comprehensive discussion about how to measure the
predictive accuracy of classification rules readers should refer to [47].

2.1.4 Classification by Decision Trees

A decision tree is a tree structure in which each internal node denotes a test
on an attribute, each branch represents an outcome of the test and leaf nodes
represent classes. Decision tree induction methods are used to build such a
tree from a training set of examples. The tree can then be used (following a
path from the root to a leaf) to classify new examples given their attribute
values. Because of their structure, it is natural to transform decision trees
into classification rules, that can be easily inserted into a reasoning framework.
Notice that some machine learning tools, such as C4.5 [84], already include a
class rulesets generator.

Let us consider a very well known example, taken from [84]. Given a training
set of examples which represent some situations, in terms of weather conditions,
in which it is or it is not the case that playing tennis is a good idea, a decision
tree is built which can be used to classify further examples as good candidates
for playing tennis (class Yes) and bad candidates to play tennis (class No).
Table 2 shows the original training set, given as a relational table over the
attributes Overlook, Temperature, Humidity, Wind. The last column (class or
target attribute) of the table represents the classification of each row.

Several algorithms have been developed to mine a decision tree from datasets
such as the one in Table 2. Almost all of them rely on the the basic recursive
schema used in the ID3 algorithm [83] (see Algorithm 3). The ID3 algorithm is
used to build a decision tree, given a set of non-categorical attributes C1, C2,
.., Cn, the categorical attribute C, and a training set T of records.

10

Overlook Temperature Humidity Wind Class
Sunny Hot High Weak No
Sunny Hot High Strong No
Overcas t Hot High Weak Yes
Rainy Mild High Weak Yes
Rainy Cool Lowv Weak Yes
Rainy Cool Low Strong No
Overcast Cool Low Strong Yes
Sunny Mild High Weak No
Sunny Cool Low Weak Yes
Rainy Mild Low Weak Yes
Sunny Mild Low Strong Yes
Overcast Mild High Strong Yes
Overcast Hot Low Weak Yes
Rainy Mild High Strong No

Table 2: Training set of examples on weather attributes

Differences between algorithms usually depend on the splitting criteria used
to identify the (local) best attribute to use as a node. Using a standard decision
tree inductive algorithm, we may obtain the decision tree in Figure. 1 from the
training set in Table 2. As we have already pointed out, each internal node
represents a test on a single attribute and each branch represents the outcome
of the test.

A path in the decision tree represents the set of attribute/value pairs that an
example should exhibit in order to be classified as an example of the class labeled
by the leaf node. For instance, given the above tree, the example Overlook =
Sunny, Humidity = Low is classified as Yes, whereas the example Overlook =
Sunny, Humidity = High is classified as No.

Notice that not all the attribute values have to be specified in order to find
the classification of an example. On the other hand, if an example is too under-
specified, it may lead to different, possibly incompatible, classifications. For
instance, the example Overlook = Sunny can be classified both as Yes or No,
following the two left-most branches of the tree: in this case many decision tree
based classifiers make a choice by using probabilities assigned to each leaf. It
is also worth noticing that the decision tree may not consider all the attributes
given in the training set. For instance, the attribute Temperature is not taken
into account at all in this decision tree.

2.2 Distributed Data Mining

The ever growing amount of data that are stored in distributed form over net-
works of heterogeneous and autonomous sources poses several problems to re-

11

Figure 1: Decision Tree Example

Algorithm 2.2 ID3

function ID3 (R: a set of non-categorical attributes,
C: the categorical attribute, S: a training set) returns a decision tree;

1: begin
2: If S is empty, return a single node with value Failure;
3: If S consists of records all with the same value for the categorical attribute,
4: Return a single node with that value;
5: If R is empty, then
6: Return a single node with as value the most frequent of the values of the

categorical attribute that are found in records of S; (note that then there
will be errors, that is, records that will be improperly classified)

7: Let D be the attribute with largest Gain(D,S) among attributes in R;
8: Let {dj| j=1,2, .., m} be the values of attribute D;
9: Let {Sj| j=1,2, .., m} be the subsets of S consisting respectively of records
with value dj for attribute D;

10: Return a tree with root labeled D and arcs labeled d1, d2, .., dm going
respectively to the trees

11: ID3(R-D, C, S1), ID3(R-D, C, S2), .., ID3(R-D, C, Sm);
12: end ID3;

Table 3: ID3 Algorithm

12

search in knowledge discovery and data mining, such as communication mini-
mization, autonomy preservation, scalability, and privacy protection.

DDM is a branch of the field of data mining that offers a framework to mine
distributed data paying careful attention to the distributed data and computing
resources.

As pointed out in [82], building a monolithic database, in order to perform
non-distributed data mining, may be infeasible or simply impossible in many
applications. The cost of transferring large blocks of data may be prohibitive
and result in very inefficient implementations.

Surveys [56] and [77] provide a broad, up-to-date overview of DDM, touching
on issues such as: clustering, association rule mining, basic statistics computa-
tion, Bayesian network learning, classification, and the historical roots of DDM.
The collection of papers in Kargupta and Chan [54] describes a variety of DDM
algorithms (ARM, clustering, classification, preprocessing, etc.), systems issues
in DDM (security, architecture, etc.), and some topics in parallel data mining.
Survey [110] discusses parallel and distributed association rule mining in DDM.
Survey [111] discusses a broad spectrum of issues in DDM and parallel data
mining and provides a survey of distributed and parallel association rule min-
ing and clustering. Other DDM applications [52, 89] deal with continuous data
streams. An overview of the data stream mining literature can be found in [10].

The bulk of DDM methods in the literature operate over an abstract archi-
tecture which includes multiple sites having independent computing power and
storage capability. Local computation is done on each of the sites and either
a central site communicates with each distributed site to compute the global
models or a peer-to-peer architecture is used [87]. In the latter case, individual
nodes might communicate with a resource rich centralized node, but they per-
form most of the tasks by communicating with neighboring nodes by message
passing over an asynchronous network. For example, the sites may represent
independent sensor nodes which connect to each other in an ad-hoc fashion.

Typically centralized control communication is a bottleneck. Since commu-
nication is assumed to be carried out exclusively by message passing, a primary
goal of many DDM methods in the literature is to minimize the number of
messages sent. Some methods also attempt to load-balance across sites to pre-
vent performance from being dominated by the time and space usage of any
individual site.

2.3 Agents and Multi-Agent Systems

Agents and multi-agent systems are an emergent technology that is expected to
have a significant impact in realizing the vision of a global and informational
rich services network to support dynamic discovery and interaction of digital
enterprises. Significant work has already been done for more than a decade
since agents have been claimed to be the next breakthrough in software devel-
opment, resulting in powerful multi-agent platforms and innovative e-business
applications.

13

2.3.1 Agents

Agents are defined by Wooldridge [107] as computer systems that are situated in
some environment and are capable of autonomous action in this environment in
order to meet their design objectives. Intelligent agents [86, 107] are defined as
agents that can react to changes in their environment, have social ability (com-
munication) and the ability to use computational intelligence to reach their
goals by being proactive. Agents are active, task-oriented, modeled to perform
specific tasks and are capable of autonomous action and decision making. The
agent modeling paradigm can be looked at as a stronger encapsulation of local-
ized computational units that perform specific tasks. This can be paraphrased
as follows: an object, i.e. a software component in (say) a distributed system,
does things because it has to; an agent does things because it decides it wants
to (i.e. it does not have to).

2.3.2 Multi-Agent Systems

By combining multiple agents in one system to solve a problem, the resultant
system is a multi-agent system (MAS) citewood03. These systems are comprised
of agents that individually solve problems that are simpler than the overall sys-
tem problem. They can communicate with each other and assist each other in
achieving larger and more complex goals. Thus problems that software devel-
opers had previously thought of as being too complex [71] can now be solved,
by localising the problem solving [101]. For example, Multi-agent systems have
been used in predicting the stock market [69], industrial automation [104] and
e-learning systems [36].

In general, MAS adhere to the following three primitives. First, MAS must
specify appropriate communication and interaction protocols. Despite agents
being the building blocks of a problem solving architecture, no individual prob-
lem could be effectively solved if no common communication ground and no
action protocol exists. Secondly, MAS must be open and decentralized, with no
prior knowledge of, for example, the number of participants or behaviors. In
a running MAS, new agents may join at any time having only to conform to
the communication protocol, being able to act on the way they choose, often
in unpredictable manner. Finally, MAS may consist of possibly heterogeneous
agents that are scattered around the environment and act autonomously or in
collaboration.

2.3.3 MAS Development Platforms

To develop a multi-agent system effectively, the developers have to deal with
several issues such as agent characteristics, agent functionalities, protocols, com-
munication, coordination and co-operation. Furthermore agent-based systems
should be robust, scalable and secure. To achieve this, the development of
open, stable, scalable, and reliable architectures that allow agents to discover
each other, communicate and offer services to one another is required.

14

To date several agent development platforms and toolkits have been pro-
duced [18]. AgentBuilder [97] is a tool for building Java agent systems based on
two components: the Toolkit and the Run-Time System. The Toolkit includes
tools for managing the agent software development process, while the Run-Time
System provides an agent engine, that is, an interpreter, used as execution envi-
ronment for agent software. AgentBuilder agents are based on a model derived
by the Agent-0 [92] and PLACA [100] agent models.

AgentTool [31] is a graphical environment to build heterogeneous multi-agent
systems. It is a kind of CASE tool, specifically oriented towards agent-oriented
software engineering, whose major advantages are the complete support for the
MaSE methodology (developed by the same authors together with the tool) and
the independence from agent internal architecture (with MaSE and agentTool
it is possible to build multi agent systems made of agents with different internal
architectures). ASL [60] is an agent platform that supports the development
in C/C++, Java, JESS, CLIPS and Prolog. ASL is built upon the OMGs
CORBA 2.0 specifications. The use of CORBA technology facilitates seamless
agent distribution and allows adding to the platform the language bindings
supported by the used CORBA implementations. Initially, ASL agents used to
communicate through KQML messages, now the platform is FIPA compliant
supporting FIPA ACL.

Bee-gent [57] is a software framework to develop agent systems compliant
to FIPA specification that has been realised by Toshiba. Such a framework
provides two types of agents: wrapper agents used to agentify existing applica-
tions and mediation agents supporting the wrappers coordination by handling
all their communications. Bee-gent also offers a graphic RAD tool to describe
agents through state transition diagrams and a directory facility to locate agents,
databases and applications.

Grasshopper-2 [14] is a pure Java based Mobile Agent platform, conformant
to existing agent standards, as defined by the OMG - MASIF (Mobile Agent Sys-
tem Interoperability Facility) [73] and FIPA specifications. Thus Grasshopper-2
is an open platform, enabling maximum interoperability and easy integration
with other mobile and intelligent agent systems. The Grasshopper-2 environ-
ment consists of several Agencies and a Region Registry, remotely connected via
a selectable communication protocol. Several interfaces are specified to enable
remote interactions between the distinguished distributed components. More-
over, Grasshopper-2 provides a Graphical User Interface (GUI) for user-friendly
access to all the functionality of an agent system.

MOLE [13] is an agent system developed in Java whose agents do not have a
sufficient set of features to be considered truly agent systems [37,93]. However,
MOLE is important because it offers one of the best supports for agent mobil-
ity. Mole agents are multi-thread entities identified by a globally unique agent
identifier. Agents interact through two types of communication: through RMI
for client/server interactions and through message exchanges for peer-to-peer
interactions.

The Open Agent Architecture [70] is a truly open architecture to realise
distributed agent systems in a number of languages, namely C, Java, Prolog,

15

Lisp, Visual Basic and Delphi. Its main feature is its powerful facilitator that
coordinates all the other agents in their tasks. The facilitator can receive tasks
from agents, decompose them and award them to other agents.

RETSINA [95] offers reusable agents to realise applications. Each agent has
four modules for communicating, planning, scheduling and monitoring the exe-
cution of tasks and requests from other agents. RETSINA agents communicate
through KQML messages.

Zeus [75] allows the rapid development of Java agent systems by providing a
library of agent components, by supporting a visual environment for capturing
user specifications, an agent building environment that includes an automatic
agent code generator and a collection of classes that form the building blocks
of individual agents. Agents are composed of five layers: API layer, definition
layer, organizational layer, coordination layer and communication layer. The
API layer allows the interaction with non-agentized world.

Shakshuki [88] presents a methodology for evaluating agent toolkits based
on criteria such as availability, environment, development, characteristic prop-
erties and performance. Their findings recommended JADE [16] as one of the
top-ranking toolkits according to their criteria. Chmiel et al. [24] performed
experiments to test the efficiency and scalability of JADE. Their tests indicated
that JADE is an efficient environment. They were able to run experiments with
thousands of agents effectively migrating among eight machines and communi-
cating by exchanging tens of thousands of ACL messages.

One of the aims of this chapter is to present our experience in using the JADE
platform to engineer a real world multi-agent data mining system. JADE was
chosen because it is open source, popular, easy to use and compliant with the
Foundation for Physical Agents (FIPA) specifications [34]. FIPA is an inter-
national organization dedicated to promoting the industry of intelligent agents
by openly developing specifications to support interoperability amongst agents
and agent-based systems. FIPA defines a number of standards and specifications
that include architectures to support inter-agent communication, and interac-
tion protocols between agents, as well as communication and content languages
to express the messages of these interactions. With the use of these standards,
any FIPA-compliant platforms, and their agents, are able to seamlessly interact
with any other FIPA complaint platform. JADE is described in detail in Section
3.

2.4 Multi-Agent Data Mining

There are two themes of agent and data mining interaction and integration in
the literature [21]: data mining for agents, referred to as mining-driven agents
[96], and agents for data mining, commonly known as multi-agent data mining
(MADM). The former concerns issues of transforming the discovered knowledge,
extracted by data mining, into the inference mechanisms or simply the behaviors
of agents and multi-agent systems; as well as the arguable challenge of generating
intelligence from data while transferring it to a separate, possibly autonomous,
software entity. A FIPA-compliant multi-agent platform based on mining-driven

16

agents (Agent Academy) that offers facilities for design, implementation and
deployment of multi-agent systems is proposed in [96]. The authors describe
the Agent Academy as an attempt to develop a framework through which users
can create an agent community having the ability to train and retrain its own
agents using data mining techniques.

MADM, rather than mining-driven agent systems, is the focus of this chap-
ter. It is concerned with the use of agent and multi-agent systems to perform
data mining activities. The contribution of this section is to provide a broad
review of prominent MADM approaches in the literature and a discussion of the
benefits that agent-based data mining architectures provide in coping with such
problems. This section is not concerned with particular data mining techniques.
It is however concerned with collaborative work of distributed software in the
design of multi-agent systems directed at data mining.

As mentioned in the previous section (Section 2.3.3), a basic approach for
data mining is to move all of the data to a central data repository and then
to analyze this with a single data mining system. Even though this guarantees
accurate results of data analysis, it might be infeasible in many cases. An
alternative approach is the in-place strategy in which all the data can be locally
analyzed (local data model), and the local results at their local sites combined
at the central site to obtain the final result (global data model). This approach
is less expensive but may produce ambiguous and incorrect global results. DDM
approaches require centralized control that causes a communication bottleneck
that leads in turn to inefficient performance.

To make up for such a weakness, many researchers have spent great ef-
fort looking for more advanced approaches of combining local models built at
different sites. Most of these approaches are agent-based high level learning
strategies.

Several systems have been developed for multi-agent data mining. These
systems can be categorized, according to their strategy of learning, into three
types:

1. Central-learning

2. Meta-learning

3. Hybrid-learning

2.4.1 Central-learning Strategy

A central learning strategy is when all the data can be gathered at a central site
and a single model can be built. The only requirement is to be able to move
the data to the central location in order to merge it and then apply sequential
DM algorithms.

This strategy is appropriate when the geographically distributed data is
small. For large volumes of data, the strategy is generally very expansive but
also more accurate in its DM results [12, 19]. The process of gathering data in
general is not simply a merging step; it depends on the original distribution. For

17

example, different records may be placed in different sites, different attributes
of the same records may be distributed across different sites, or different tables
can be placed at different sites; therefore when gathering data it is necessary to
adopt the proper merging strategy. However, as noted previously, this strategy
in general is usually unfeasible because of security and privacy of data. Agent
technology offers no great advantages in implementing this strategy, for which
many KDD research groups have made software freely available for download;
examples include [49, 105].

One of the earliest references to MADM adapting a central-learning strategy
can be found in Kargupta et al. [55] who describe a parallel data mining system
(PADMA) that uses software agents for local data accessing and analysis, and
a web based interface for interactive data visualization. PADMA has been used
in medical applications. Kargupta et al. describe a distributed data mining
architecture and a set of protocols for a multi-agent software tool. Peng et al. [79]
presented an interesting comparison between single-agent and multi-agent text
classification in terms of a number of criteria including response time, quality of
classification, and economic/privacy considerations. Their results indicate, not
unexpectedly, in favour of a multi-agent approach.

2.4.2 Meta-learning Strategy

Meta-learning is the process of automatic induction of correlations between
tasks and solving strategies, based on a domain characterization. Meta-learning
methods have been widely used with data mining [20, 103], particularly in the
area of classification and regression.

The meta-learning strategy offers a way to mine classifiers from homoge-
neously distributed data. It follows three main steps. The first is to generate
base classifiers at each site using classifier learning algorithms. The second step
is to collect the base classifiers at a central site, and produce meta-level data
from a separate validation set and predictions generated by the base classifier
on it. The third step is to generate the final classifier (meta-classifier) from
meta-level data via a combiner or an arbiter. Copies of the classifier agent will
exist, or be deployed, on nodes in the network being used (see for example [81]).

One of the most popular MADM approaches that adopt the meta-learning
strategy is the METAL project [72] whose emphasis is on helping the user to
obtain a ranking of suitable data mining algorithms through an online advi-
sory system. Gorodetsky et al. [40] correctly consider that the core problem
in MADM is not the data mining algorithms themselves (in many case these
are well understood), but the most appropriate mechanisms to allow agents to
collaborate. Gorodetsky et al. present a MADM system to achieve distributed
data mining and, specifically, classification. A more recent system, proposed
in [68], uses the MAGE middleware [90] to build an execution engine that uses
a directed acyclic graph to formalize the representation of the KDD process.
In [80] a multi-agent system for KDD (AgentDiscover) has been proposed. It
uses task-based reasoning [22] for problem solving on a multi-agent platform.
Perhaps the most mature agent-based meta-learning systems are: JAM [94],

18

BODHI [53], and Papyrus [11]. Papyrus is a specialized system which is de-
signed for clusters while JAM and BODHI are designed for data classification.
These are reviewed in detail in [62].

2.4.3 Hybrid-learning Strategy

A hybrid learning strategy is a technique that combines local and remote learn-
ing for model building [42]. An example of hybrid learning framework is Pa-
pyrus. Papyrus is designed to support both learning strategies. In contrast to
JAM and BODHI, Papyrus can not only move models from site to site, but can
also move data when that strategy is desired.

2.5 Summary

Most of the previously proposed MADM systems are used to improve the per-
formance of one specific data mining task. Therefore, these systems can also be
categorized into three groups based on the DM task they address:

• Classification Task: includes [35, 39, 40, 53, 59, 94].

• Association Rule Mining Task: includes [25, 50, 58, 74, 76].

• Clustering Task: includes [11, 30, 38, 61, 62].

Given the above literature review, and to the best knowledge of the au-
thors, there have been only a few MADM systems that define a generic MADM
framework. An early attempt was IDM [19]. It is a multiple agent architecture
that attempts to do direct data mining that helps businesses gather intelligence
about their internal commerce agent heuristics and architectures for knowledge
discovery in databases. In [9] a generic task framework was introduced but was
designed to work only with spatial data. The most recent system is introduced
in [32] where the authors proposed a multi-agent system to provide a general
framework for distributed data mining applications. The effort to embed the
logic of a specific domain has been minimized and is limited to the customization
of the user. However, although it is customizable feature is of a considerable
benefit, it still requires users to have very good data mining knowledge.

Most of the MADM frameworks adapt similar architecture and provide com-
mon structural components using standard agent communication language that
facilitates the interactions among agents such as KQML or FIPA-ACL.

The major criticism of such systems is that it is not always possible to obtain
an exact final result, i.e. the global knowledge model obtained may be different
from the one obtained by applying the one model approach (if possible) to
the same data. Approximated results are not always a major concern, but it
is important to be aware of their nature. Moreover, in these systems hardware
resource usage is not optimized. If the “heavy” computational is always executed
locally to the data, when the same data is accessed concurrently, the benefits
coming from the distributed environment might vanish due to the performance

19

degradation. Another drawback is that occasionally, these models are induced
from databases that have different schemas and hence are incompatible.

3 EMADS: REQUIREMENTS ANALYSIS, DE-

SIGN, AND IMPLEMENTATION

As described in Section 1, the EMADS vision is that of an anarchic collection
of persistent, autonomous (but cooperating) KDD agents operating across the
Internet. This Section describes the under-pinning philosophy of EMADS. This
Section concentrates on the generic features of EMADS and describes the agent
framework to support the EMADS vision.

The motivation for researching and implementing a fully operational EMADS
was to facilitate the investigation of the various MADM research challenges out-
lined in Section 1. Developing a data mining system that uses specialized agents
with the ability to communicate with multiple information sources, as well as
with other agents, allows for a great deal of flexibility. For instance, adding a
new information source should merely imply adding a new agent and advertising
its capabilities.

Throughout this chapter, depending on context, EMADS is referred to both
as a “system”, since it is a Multi-Agent System (MAS), and as “framework”
because EMADS defines a framework for achieving MADM.

To realize the EMADS framework a general software development method-
ology was adopted that moved from problem definition and analysis to detailed
design and implementation. This Section provides a detailed description of the
framework in terms of its requirements, design and architecture. The Section
commences by reviewing the EMADS requirements (Subsection 3.1), including
the structural and operational requirements. A review of the EMADS Agents
and Users is then presented in Subsection 3.4 in the context of the identified
requirements. In Subsection 3.5 the EMADS agent interaction protocols are
defined; followed, Subsection 3.6, with a discussion of the generic data min-
ing process using EMADS Agents. In Subsection 3.7 details concerning Java
Agent Development Environment (JADE) [16], the agent development toolkit
that was used to implement EMADS, are presented. The JADE implementation
of EMADS is then detailed in Subsection 3.8, together with a discussion of the
implementation of the extendibility feature of EMADS. Finally, Subsection 3.9
presents a summary of this Section.

3.1 Requirements Analysis

EMADS has to fulfill the following requirements in order to satisfy the research
objectives (see Section 1.2):

1. Multiple Data Mining Tasks: The framework must be able to provide
mechanisms to allow the coordination of EMADS (data mining) tasks.

20

Note that the number and nature of the data mining tasks that the frame-
work should be able to address is not known apriori, and is expected to
evolve over time.

2. Agent Coordination: Following on from requirement 1, the framework
must be reactive since it must accommodate new agents as they are created
in the environment.

3. Agent Reuse: The framework must promote the opportunistic reuse of
agent services by other agents. To this end, it must provide mechanisms by
which agents may advertise their capabilities, and ways of finding agents
supporting certain capabilities.

4. Scalability: There are potentially a large number of agents that must be
coordinated by the EMADS framework. The framework must therefore
be “light-weight” and scalable. In other words, it must be possible to
implement efficient communication mechanisms, and the administrative
overhead of the framework should not hamper the overall performance of
the system. At the same time the framework must be scalable: avoiding
centralized components which would create bottlenecks during execution.

5. Extendibility: EMADS must provide an extendible framework that can
easily accept new data sources and new DM techniques.

6. Multiple Data Sources: The framework must be able to operate using
several data sources located on various machines, and in any geographic
location, using some method of network communication.

7. Multiple Data Formats: The framework should be able to operate
using data sources of both the same or heterogeneous formats.

8. Multi-Platform: The framework should be able to operate on any ma-
jor operating system. In some cases, it is possible that the data could
be downloaded and stored on the same machine as the DM algorithm
program.

In the following subsections the structure and operational requirements of
the desired MADM framework are considered in detail. The extendibility re-
quirements are discussed in Section 4.

3.2 Structural Requirements

The goal of the structural requirements analysis, described in this subsection,
was to identify the flow of information through the desired framework and con-
sequently clearly define the expected system input and output streams. By
breaking the framework into domain level concepts, it was also possible to be-
gin to identify the nature of the required agents. Four main domain level models
were identified: (i) user interface, (ii) planning and management, (iii) process-
ing, and (iv) data interface. The interaction (information flow) between these

21

Figure 2: System Main Models

four models is shown in Figure 2. The Figure should be read from left to right.
The user interface model receives DM requests. Once the request is received, it
is processed (parsed) to determine the data mining algorithms and data sources
required to respond to the request (this is the function of the Planning and
management model). The identified data sources are then mined (the process-
ing model), through access to the data interface model, and the results returned
to the user via the user (interface) model.

3.3 Operational Requirements

Most current agent-based DM frameworks (see Section 2) share a similar high-
level architecture, and provide common structural models, to that shown in
Figure 2. Models of the form described above have become a template for most
agent-based DM and information retrieval systems. The structure illustrated
in Figure 2 sets out three important elements of MADM systems: (i) agent
technology, (ii) domain models, and (iii) information brokerage (middleware).
Multi-Agent Systems (MAS) espouse the use of collaborative agents, operating
across a network, and communicating by means of a high level query language
such as KQML and FIPA (Foundation for Intelligent Physical Agents) [34] ACL.
Domain models or ontologies, give a concise, uniform description of semantic
information, independent of the underlying syntactic representation of the data.
Finally, information brokerage utilizes specialized Facilitator Agents to match
information needs with currently available resources, so retrieval and update
requests can be properly routed to the relevant resources.

The general operation of EMADS (as suggested in Figure 2) is as follows:

1. When a request is received, select the appropriate information source or
sources. One way to do this is using metadata obtained at the time of the
query to determine what sources to use. The advantage of this is that the
knowledge sources are current at the time the query is made.

2. Assign the appropriate mining algorithm(s).

3. Plan and execute the required Task. Task Planning involves the coordi-
nation of data retrieval, and the ordering and assignment of processes to
the appropriate agents. This is expressed in the form of a “plan”. The
steps in the plan are partially ordered based on the structure of the query.

22

This ordering is determined by the fact that some steps make use of data
that is obtained by other steps, and thus must logically be considered after
them.

4. Return the results to the user.

To simplify the issues of data heterogeneity, requirement number 6 (Section
3.1), in the case of queries that require input from multiple sources some global
schema is assumed. This can be used to infer relationships between data sources,
and unify heterogeneous data representations into a common object data model.

3.4 EMADS Agents and Users

In this section the different types of EMADS agent are detailed. The discus-
sion focuses on the functionality of the agents; the implementation is considered
later in this Section. Based on the requirements analysis in Section 3.1, sev-
eral types of EMADS agent were identified. However, regardless of “type”,
EMADS agents adhere to the general agent definitions described in [107]. The
EMADS agent types are: User, Management, Facilitator, Data Source, Mining,
and Registration. Each falls within the domain level concepts specified in the
requirement analysis phase. The User and Data Source Agents are all identified
as interface agents because they all provide “interfaces” to either an outside
application, other agents within the system, or data sources. User agents pro-
vide the interface between EMADS end users and the rest of the framework;
whilst Data Source agents provide the interface between input data and the
rest of the framework. Task Agents and DM Agents are identified as processing
agents because they carry out the required “processing” needed to respond to
user requests, and possibly, the pre-process data within the system.

Figure 3 shows what agents will reside on each layer (domain model) iden-
tified in the structural requirements analysis in Section 3.2. The Task Agent
(middle of the management layer of Figure 3) receives a request and asks the
Broker Agent to check all available databases (Data Agents) and Mining Agents
to find: (i) which databases (tables) to use, and (ii) which data mining algo-
rithms (held by Mining Agents) are appropriate. The task agent then passes the
task to Mining Agents and monitors their progress. Each database must have
an interface agent (Data Agent) to check the database for a matching schema
and then report back to a DM Agent. Figure 3 also shows the system level
inputs and outputs as they flow from agent to agent.

Note that the agents were defined with respect to the high level objectives
identified in the requirements presented previously in Section 3.1. In general,
the structure of an EMADS agent may be divided into to three modules: (i) the
interface module, (ii) the process module and (iii) the knowledge module.

The following subsections describe the structure and function of each agent
from a high level perspective. The subsections also discuss the design decisions
that were made and why they were made. The agents are considered in the same
order as they might be utilized to process an EMADS user request in order to

23

Figure 3: System General Architecture

illustrate how each agents function fits into the systems overall operation and
contributes to supporting the other agents.

3.4.1 User Agent

There are three essential operations that a User Agent must be able to under-
take:

1. Receive and interpret user data mining requests.

2. Present the generated results, in a suitable and easily understandable for-
mat, back to the user.

3. Expect and respond to asynchronous events, such as “a stop mining” or
“end operations” instructions issued by the user.

A User Agent is also required to have the knowledge needed to translate
information from the user to a format that processing agents can understand
and vice-versa.

Note that the User Agent is the only agent that interacts with the user. It
asks the user to issue data mining requests, passes them to the system, and pro-
vides the user with results. The User Agents interface module contains methods
for inter agent communication and for obtaining input from the user. The pro-
cess module contains methods for capturing the user input and communicating

24

it to the Task Agent. In the knowledge module, the agent might store the
history of user interaction, and user profiles with their specific preferences.

In addition, the interface module may provide access to (say) visualization
software, that may be available to show results, or to other post-processing
software. The process module may contain methods to support ad hoc and pre-
defined reporting capabilities, generating visual representations, and facilitating
user interaction. The knowledge module stores details about report templates
and visualization primitives that can be used to present the result to the user.

3.4.2 Task Agent

A Task Agent is responsible for the activation and synchronization of the various
EMADS agents required to generate a response to a given user request. Indi-
vidual categories of task agent dedicated to different, but specific, data mining
operations have been identified; the various categories are considered in detail
in later sections. A task agent performs its task by first generating a work plan,
and then monitoring the progress of the plan. Task Agents are designed to
receive data mining requests from User Agents and seek the services of groups
of agents to obtain and synthesize the final result to be returned to the User
Agents. The Agent interface module is responsible for inter-agent communica-
tion; the process module contains methods for the control and coordination of
the various tasks. Note that a task agent may be required, when generating a
response to a request, to: identify relevant data sources, request services from
agents, generate queries, etc.

Once the User Agent has received a user request, it passes it to the Task
Agent. The Task Agent then determines, according to the information passed
to it and through contact with the Facilitator Agent (see below), what other
agents are required to generate a response to the request. The nature of a
received request can dictate one of two possible types of action: (i) performance
of a data mining task, or (ii) the cancellation of the current operation. These
user desires will be passed to the task agent in the form of a request from the
user agent.

In the first case the Task Agent will ask the Facilitator Agent for DM Agents
which can fulfill the desired tasking. For instance, if the user wants all possible
association rules that meet given minimum support and confidence thresholds,
across all available data sources, then the Task Agent will contact the appro-
priate DM agents with this request. The Task Agent accepts the result from
each individual DM Agent and stores it in its knowledge base. Once the DM
task is completed, the task agent combines the results and provides one result
before passing it to the User Agent. Note that in some cases there may be only
a single result in which case there will be no requirement to combine results.

The second case may occur where the user feels (say) that the current oper-
ations are taking too long, or are no longer needed. In this case, the Task Agent
must send cancel messages to all agents currently tasked and performing work.

25

3.4.3 Facilitator Agent (or Broker Agent)

The Facilitator Agent serves as an advisor agent that facilitates the distribution
of requests to agents that have expressed an ability to handle them. This is
performed by accepting advertisements from supply agents and recommendation
requests from request agents. The facilitator agent keeps track of the names and
capabilities of all registered agents in the framework. It can reply to the query
of an agent with the name and address of an appropriate agent that has the
capabilities requested. Its knowledge module contains meta-knowledge about
capabilities of other agents in the system.

In general, any agent in EMADS can use the Facilitator Agent to advertise
their capabilities in order to become a part of the agent system (what is known
as a “yellow pages” service). When the Facilitator receives notification of a new
agent who wants to advertise its services; it must add this new agents identifier
and its capabilities to the list of available system agents.

To fulfill a task the Task Agent must “talk to” the Facilitator Agent, asking
which agents can fulfill a given request. The Facilitator Agent maintains all in-
formation on the capabilities of individual agents in the system and responds to
queries from Task Agents as to where to route specific requests. By requesting
only those agents who may have relevant information, the Task Agent can elim-
inate tasking any agents that could not possibly provide any useful information.
However, it should be noted that the Facilitator Agent does not maintain full
information about the agents in the system, only their high level functionality
and where they are located.

3.4.4 Data Mining (DM) Agent

A DM Agent implements a specific DM technique or algorithm; as such a DM
agent can be said to “hold” a DM algorithm. The interface module supports
inter-agent communication. The process module contains methods for initiating
and carrying out the DM activity, capturing the results of DM, and communi-
cating it to a Data Agent or a Task Agent. The knowledge module contains
meta-knowledge about DM tasks, i.e., what method is suitable for what type of
problem, input requirements for each of the mining tasks, format of input data,
etc. This knowledge is used by the process module in initiating and executing
a particular mining algorithm for the problem at hand.

A DM Agent accepts a request, from a Task Agent, and initiates the mining
algorithm using the values contained in the request. As the algorithm runs,
the DM Agent may make requests for data to Data Agents, or ask other DM
agents to cooperate. The DM Agent continues until it has completed its task,
i.e. generated a result to the presented request, and then returns the results
to the Task Agent to be passed on to the User Agent and eventually to the
EMADS end user who originated the request.

26

3.4.5 Data Agent (or Resource Agent)

A Data Agent is responsible for a data source and maintains meta-data informa-
tion about the data source. There is a one-to-one relationship between a given
Data Agent and a given data source. Data agents are responsible for forward-
ing their data, when requested to do so, to DM Agents. Data agents also take
into account issues to do with the heterogeneity of data. The interface module
for a data agent supports inter-agent communication as well as interfacing to
the data source it is responsible for. The process module provides facilities for
ad hoc and predefined data retrieval. Based on the user request, appropriate
queries are generated by DM agents and sent to Data Agents who then process
the queries according to the nature of their data set. The results, either the
entire data set or some specified sub-set, are then communicated back to the
DM Agents.

Once the Facilitator Agent has determined what agents can fulfill a given
task, it passes this information back to the Task Agent. The Task Agent then
tasks each “useful” Data Agent, passing it the relevant information, requesting
it to provide appropriate data. “Useful” in this case refers to Data Agents that
are responsible for a data source that includes some part of the required data.

Note that an individual Data Agent is not specific to any particular mining
task but rather is able to answer any query associated with its data. When a
new data source is introduced into EMADS it must be “wrapped” (as described
in the next section) so that a new Data Agent is created. During this process
the presence of the new Data Agent will be announced to the Facilitator Agent
so that the new agent can be recognized by the system and so that the Facili-
tator Agent can add a reference for the new agent to the list of system agents.
Once the new data agent has registered, it will query the user through its GUI
interface for the domain of the data source (i.e. data file location) for which it
is responsible.

3.4.6 EMADS End User Categories

EMADS has several different modes of operation according to the nature of
the participant. Each mode of operation (participant) has a corresponding
category of agent as described above and as shown in Figure 4. The supported
participants (modes of operation) are as follows:

• EMADS Users: These are participants, with restricted access to EMADS,
who may pose DM requests.

• EMADS Data Contributors: These are participants, again with restricted
access, who are prepared to make data available to be used by EMADS
data mining agents.

• EMADS Developers: Developers are EMADS participants, who have full
access and may contribute DM algorithms.

27

Figure 4: High level view of EMADS conceptual framework

Note that in each case, before interaction with EMADS can commence, the
participant must download and launch the appropriate EMADS software. Note
also that any individual participant may be a user as well as a contributor and/or
developer at the same time. With respect to EMADS users it should be recalled
that the nature of EMADS DM requests that may be posted is extensive.

3.5 Defining Interaction Protocols

In this section the various protocols required to support the identified primary
functions and high-level interactions are defined for each agent. Each category
of agent is considered in a separate subsection.

More generally, with respect to MAS, a protocol is some agreed message
format for communication between agents that promotes some shared under-
standing. In MAS protocols typically define how agents request information
from one another, and how agents return responses to these requests. The
agent initiating a message is called the sender, and the agent receiving it is the
receiver. The response to a message usually requires the receiver to perform
some action which will then generate the response to be returned to the sender.
The message data is specified as content. The following syntax, expressed as a
context free grammar in BackusNaur Form (BNF), is used to define the proto-
cols:

< Protocol >::=< Header >< Send−Message >< Receive−Message >
< Header >::=< ProtocolName >< SenderAgent >< ReceiverAgent >

< Send−Message >::=< Send−Message− Tag > |
< Send−Message−Tag >< Send−Content > |
< Send−Message−Tag >< Send−Action > |

28

< Send−Message−Tag >< Send−Content >
< Send−Action >

< Receive−Message >::=< Receive−Message− Tag > |
< Receive−Message− Tag >< Receive− Content > |
< Receive−Message− Tag >< Receive−Action > |
< Receive−Message− Tag >< Receive− Content >
< Receive−Action > |

“(” < Receive−Message > “OR” < Receive−Message > “)”|
< Receive−Message >< Receive−Message >

< ProtocolName >::= “ProtocolName : ”string
< SenderAgent >::= “Sender : ”string
< ReceiverAgent >::= “Receiver : ”string
< Send−Message− Tag >::= “Send : ”string
< Send− Content >::= “Content : ”string
< Send−Action >::= “Do : ”string
< Receive−Message− Tag >::= “Receive : ”string
< Receive− Content >::= “Content : ”string
< Receive−Action >::= “Do : ”string

The first three lines of each protocol (the header) identifies the protocols
name (label) and the intended message “sender” and “receiver”. The sender or
receiver can be one or more of the EMADS agent categories identified above.
The next part of the protocol defines the nature of the message to be sent, this
consists of at least a message tag, but may also define some message content
and/or some action to be performed by the sender once the message has been
sent. The message tag is one of a set of predefined tags (strings) that are
understood by EMADS agents. The final part of the protocol defines the nature
of the message to be returned to the sender (i.e. the reply) and any consequent
action. This part of the protocol also consists of at least a message tag, but
again may also define some message and any expected action(s) to be performed
by the sender on receipt of the message. Note that in some cases there may be
a number of alternative message that can be received in which case this will
be indicated by an “OR” (and parentheses to enhance readability). It is also
possible for the sender to receive a sequenced of replies. This format is used in
the following subsections to define the seven main EMADS protocols that have
been identified:

1. Find Other Agents

2. Agent Registration

3. User DM Request

4. Start Data Mining

29

5. Advertise Agent Capabilities

6. Perform Data Mining

7. Data Retrieval

The following subsections briefly describe each of these protocols.

3.5.1 Find Other Agents Protocol

Prior to transmitting a message a sender agent needs to identify the subset of
receiver agents appropriate to a particular requirement. A sender agent can
first discover exactly what agents are interested in receiving its message by
communicating with the Facilitator agent. The ability of sender agents to do
this is a general requirement that may be repeated on many occasions, and the
generic Find Other Agents protocol was therefore specifically created for this
purpose. The protocol is as follows:

Protocol Name: Finding other Agents
Sender: Any requesting agent
Receiver: Facilitator Agent
send: findAgents
content: agent type
(receive: agentsFound
content: agentList
or
receive: noAgents)

Note that the receiver is always the Facilitator Agent. The sender agent
sends a “findAgents” tagged message, with the content defining the agent type
that the sender wishes to communicate with, to the facilitator agent. The agent
type indicates the nature of the DM task the sending agent is interested in (for
example a DM agent may be interested in classification). The Facilitator Agent
will then either return a message containing a list of appropriate agents identi-
fiers or a “noAgent” tagged message indicating that no agents of the specified
agent type were found.

3.5.2 Agent Registration Protocol

The Agent Registration protocol allows new agents to “register” their presence
with the Facilitator Agent. The agent registration protocol is as follows:

Protocol Name: Agent Registration
Sender: New agent
Receiver: Facilitator Agent
send: register
content: domain and agent meta data (services, capabilities)

30

receive: accepted or rejected

The sender agent sends a “register” tagged message, with the content de-
scribing the agent domain and a description of the new agents service and capa-
bilities, to the Facilitator Agent. The sender will either receive an “accepted”
tagged message, indicating that the registration was accepted and the agent is
made public to other agents, or a “rejected” tagged message indicating that the
registration failed.

3.5.3 User DM Request Protocol

User Agents interact only with Task Agents. Once a request from the user is
received the User Agent initiates a request for some DM task to be performed
based on the task type specified within the user DM request. The Task Agent
will acknowledge receipt to the User Agent and initiate the DM process. The
User Agent will then wait until either the result of the DM request is returned;
or it is informed, by the associated EMADS end user, that the request has failed
(for example because no appropriate data sources can be found). In the first
case the User agent will forward the DM result to the EMADS end user. In
the second case the user agent will confirm termination of the current DM task.
The DM Request protocol is as follows:

Protocol Name: Requesting DM
Sender: User Agent
Receiver: Task Agent
send: mining
receive: accept
(receive: resultsReady
content: results
or
receive: noData)

3.5.4 Starting Data Mining Protocol

Task Agents are central to the EMADS data mining process and interact with
the User Agents, the Facilitator Agent, and one or more DM Agents. The Task
Agent initially reacts to a request initiated by the User Agent. The User Agent
will request that some DM operation be undertaken and will pass the appro-
priate attributes (for example threshold values) dependent on the nature of the
DM. In response to a request to be undertaken, the Task Agent will determine
the nature of the request according to the variables sent. Once the Task Agent
has determined the type of the request (for example an ARM request), it informs
the User Agent it has all the information it needs with an “Accept” message
and initiates the required processing.

31

The Task Agent then interacts with the Facilitator Agent to determine what
agents it should task for the given request. Then, the Task Agent awaits the re-
sult. It can receive one of two possible answers. It can receive an “agentsFound”
message and a list of useful agents, or a “noAgents” message, indicating there
are no data sources that could be mined for the variables given. If “noAgents”
is received, the Task Agent sends a “noData” message to the User Agent and
ends the User protocol.

The Task Agent will first use the Finding Other Agents Protocol described
in Section 3.5.1 above. Thus if agents are found, an “agentsFound” message
tag will be returned to the sender together with a list of identifiers for the
“found” DM agents. The task agent will interact with each of the identified
DM Agents. The task agent will request that the identified DM agents begin
DM according to the values in the original request received from a User Agent
(see the User DM Request Protocol defined above). The Task agent may pass
any variables received from the User Agent to the DM Agents according to the
nature of the DM request. Once the Task Agent receives the confirmation from
the DM Agent, it awaits either results or a request initiated by the User Agent
requesting a termination of the current DM operation. The start data mining
protocol is given below.

Protocol Name: Start Data Mining
Sender: Task Agent
Receiver: DM Agent
send: beginMining
receive: miningComplete
content: result
do: return result
or
do: terminate

Note that a task agent may interact with more than one DM agent. In this
latter case some post processing of the result is typically undertaken. After
all necessary interactions with the DM Agents have been completed; the Task
Agent sends a “resultsReady” message to the User Agent.

3.5.5 Advertise Agent Capabilities Protocol

The Facilitator Agent primarily interacts with the Task, DM, and Data Agents;
but has the ability to respond to any properly formatted request for agents that
can fulfill a given task. As noted above, the primary functions of the facilitator
agent are to: (i) maintain a list of all agents in the system that want to advertise
their services and the tasks they can perform, and (ii) answer queries requesting
lists of agents that can fulfill any given task.

To perform the first function, the facilitator must be able to communicate
with any new agents entering EMADS and receive and process the new agents

32

information. The advertising process begins with the new agent sending an
“advAgent” message that contains the new agents full name and task list. The
Advertise Agent Capabilities protocol is as follows:

Protocol Name: Advertise agent capabilities
Sender: New Agent
Receiver: Facilitator Agent
send: advAgent
content: agentMetaData, serviceList
receive: agentAdded

The Facilitator agent will obtain the new agents information from the mes-
sage content, the global list of agents will be updated and an “agentAdded”
message tag (i.e. an acknowledgement) sent to the new agent. Once this last
message is sent the protocol is terminated.

3.5.6 Perform Data Mining Protocol

DM Agents interact with Task Agents and Data Agents. A specific DM Agent
will await a “beginMining” message from the Task Agent. This message will
contain the original request (from the User Agent) and the name(s) of the
Data Agent(s) and DM Agent(s) to be used. Once this is received, the DM
agent starts the mining algorithm associated with it by applying it to the data
indicated by the specified Data Agent reference(s). When a DM agents data
mining algorithm completes, the DM agent sends a “miningCompleted” reply
message, with the generated results as the content, to the sending task agent.
The Perform Data Mining protocol is as follows:

Protocol Name: Performing Data Mining
Sender: Task Agent
Receiver: DM Agent
send: beginMining
content: DM task type, DM and Data Agent lists
do:wait
receive: miningCompleted
content: result
do: if applicable process results and return result

Note that the protocol includes an option to combine results where several
DM Agents or Data agents may have been used.

3.5.7 Data Retrieval Protocol

Data Agents hold the software required to interface with data sources. Data
agents also have the capabilities to communicate with DM Agents that will

33

operate “over them”. Data agents interact with DM Agents using the following
Data Retrieval protocol:

Protocol Name: Data Retrieval
Sender: DM Agent
Receiver: Data Agent
send: getData
content: SQL
receive: retrievedData
content: data

3.6 Data Mining with EMADS Agents

In the foregoing sections the various EMADS Agents and protocols were defined
(Sections 3.4 and 3.5 respectively). In this section a generic overview of data
mining with EMADS is presented. The overview is described by considering
a general DM request and tracing the generation of the response through the
various communication paths. The process begins with the User Agent receiv-
ing notification from the end user describing a data mining request. The User
Agent picks up the user request and then starts a Task Agent. The Task Agent
then asks the Facilitator Agent for the identifiers of all “useful” (DM and Data)
Agents in the context of the request. An agent is deemed “useful” if it can
potentially contribute to the resolution of the request. The Facilitator Agent
receives the request and compiles a list of all appropriate agents. The Facilitator
then returns the list of “useful” DM and Data Agents to the Task Agent. Once
the Task Agent receives the list the task agent can commence the desired DM
process. The nature of this process will depend on the nature of the request.
A number of different categories of Task Agent have been identified in the con-
text of EMADS; these are discussed in further detail in the following sections.
However, in general terms, the Task Agent sends a request to each identified
DM Agent in the list (there may only be one) to begin DM together with ap-
propriate references to the identified Data Agents. Each DM Agent accepts the
request and begins mining their applicable data source. Once completed, the
DM Agents send the results back to the Task Agent. Once the Task Agent has
all the results, it processes the results (for example it may combine them), and
notifies the User Agent (in some cases there may of course only be one set off
results). The User Agent then displays the combined results to the user.

3.6.1 DM Task Planning and Flow of System Operations for One
Possible Scenario

In the context of EMADS DM task planning is realized by negotiation between
the EMADS end user, and EMADS agents through the message passing mecha-
nism (described further in Section 3.8 below). The general form of the EMADS

34

DM process has already been partially described above in terms of the proto-
cols used; the objective of this subsection is to bring the different elements of
the process together in the form of a summary. The summary is presented by
considering a generic example. The DM process commences when a user agent
receives a request from an end user regarding the performance of a particular
DM task. The request will include information about the task (i.e. attributes,
attribute type (numeric or nominal)) associated with the request. When the
User Agent receives the request from the user, it negotiates with the system
facilitator to determine which processes to “talk to” for this task (i.e. which
DM and Data agents are to be used). For example, if the user wants to acquire
all possible association rules meeting given minimum support and confidence
levels, across all available data sources, then the task agent must ask all data
sources for association rules/data. It would be time consuming and wasteful to
ask sources (agents) which have data unsuited to the association rule mining
request. When the mining task is completed the Task Agent returns the results
the User Agent from where they are passed on to the user.

3.7 The Agent Development Toolkit

In this section a discussion is presented concerning the selected agent develop-
ment toolkit, JADE, in which EMADS was implemented. It is well established
that building sophisticated software agents is a challenging task, requiring spe-
cialized skills and knowledge in a variety of areas including: agent architecture,
communications technology, reasoning systems, knowledge representation, and
agent communication languages and protocols. To this end a number of agent
development toolkits are available which may be used to build MAS in a more
efficient and effective manner in that they reduce agent development complex-
ity and enhance productivity. In general agent development toolkits provide a
set of templates and software modules that facilitate and/or implement basic
communication. Development toolkits may also provide templates for various
types of agents, or constructs that agents can use. Basic communication can be
as simple as direct communication among agents.

The key differences between most development toolkits lies in the implemen-
tation and architecture of the provided communication and agent functionality.
When selecting a toolkit to build some desired MAS developers should make
their decision based on the MAS goals and services that are desired. Any po-
tential toolkit should also be evaluated for potential problems related to the
toolkits strengths and weaknesses prior to any decision being made.

JADE was chosen for the proposed EMADS framework development. JADE
was selected for a variety of reasons as follows:

• JADE is both popular and regularly maintained (for bug fixes and extra
features).

• It was developed with industry quality standards.

35

• The tool kit covers many aspects of MAS, including agent models, inter-
action, coordination, organization, etc.

• It is simple to set-up and to evaluate. This includes good documentation,
download availability, simple installation procedure, and multi-platform
support.

• It is FIPA complaint.

Some of the reasons that other platforms were avoided included:

• That they were still in an experimental state, abandoned, or confidentially
distributed,

• Very little documentation was associated with them,

• They covered only one aspect, or a limited number of aspects, of MASs;
such as single agent platforms, mobile agent platforms, interaction infras-
tructures toolkits,

• They were found to be too short on some construction stages, for example
purely methodological models.

Further detail concerning JADE is provided in the next subsection.

3.7.1 JADE

As noted above JADE is a software environment, fully implemented in the JAVA
programming language, directed at the development of MAS. As described in
Section 2 JADE is a FIPA compliant middleware that enables development of
peer to peer applications based on the agent paradigm. JADE defines an agent
platform that comprises a set of containers, which may be distributed across a
network (as desired in the case of EMADS).

The goal of JADE is to simplify the development of MAS while at the same
time ensuring FIPA compliance through a comprehensive set of system services
and agents. While appearing as a single entity to the outside observer, a JADE
agent platform can be distributed over several hosts each running an instance
of the JADE runtime environment. A single instance of a JADE environment is
called a container which can “contain” several agents as shown in Figure 5. The
set of one or more “active” containers is collectively referred to as a platform.
For a platform to be active it must comprise at least one active container; further
containers may be added (as they become active) through a registration process
with the initial (main) container. A JADE platform includes a main container,
in which is held a number of mandatory agent services. These are the Agent
Management System (AMS) and Directory Facilitator (DF) agents. The AMS
agent is used to control the lifecycles of other agents on the platform, while the
DF agent provides a lookup service by means of which agents can find other
agents. When an agent is created, upon entry into the system, it announces itself
to the DF agent after which it can be recognized and found by other agents.

36

Figure 5: JADE Architecture (Bellifemine et al., 2007) [15]

Further “house-keeping” agents are the Remote Monitoring Agent (RMA) and
The Sniffer Agent (SA). The first keeps track of all registered agents, while the
second monitors all message communications between agents.

Within JADE, agents are identified by name and communicate using the
FIPA Agent Communication Language (ACL). More specifically, agents com-
municate by formulating and sending individual messages to each other and
can have “conversations” using interaction protocols that range from query re-
quest protocols to negotiation protocols. ACL message communication between
agents within the same container uses event dispatching. Message communica-
tion between agents in the same JADE platform, but in different containers, is
founded on RMI. Message communication between agents in different platforms
uses the IIOP (Internet Inter-ORB Protocol). The latter is facilitated by a
special Agent Communication Channel (ACC) agent also located in the JADE
platform main containers.

The JADE communication architecture is intended to offer (agent transpar-
ent) flexible and efficient messaging by choosing, on an as needed basis, the most
appropriate of the FIPA-compliant Message Transport Protocols (MTP) that
are activated at platform run time. Basically, each container has a table contain-
ing details of its local agents, called the Local-Agent Descriptor Table (LADT),
and also maintains a Global-Agent Descriptor Table (GADT), mapping every
agent into the RMI object reference of its container. The main container has an
(additional) Container Table (CT) which is the registry of the object-references
and transport addresses of all container nodes. Each agent is equipped with an
incoming message box and message polling can be blocking or non-blocking.

JADE uses LADTs and GADTs for its address caching technique so as to
avoid querying continuously the main-container for address information and
thus avoiding a potential system “bottleneck”. However, although the main-
container is not a “bottleneck”, it is still a single potential point of failure
within the platform. This is a recognized issue within the JADE user commu-
nity. Research has been reported the seeks to address this issue, for example

37

Bellifemine et al. (2007) who described a mechanism whereby a JADE main-
container replication service was used to deploy a fault-tolerant JADE platform.
However, most users simply “live with the problem”; a strategy that has also
been adopted with respect to the EMADS framework.

FIPA specifies a set of standard interaction protocols, such as FIPA-requests
and FIPA queries. These protocols can be used to build agent “conversations”
(sequences of agent interactions). In JADE, agent tasks or agent intentions are
implemented through the use of behaviours (discussed further in Section 3.7.2
below).

All agent communications are performed through message passing using the
FIPA ACL. Each agent is equipped with an incoming message box, and message
polling can be blocking or non-blocking with an optional timeout.

According to the structure of the JADE protocols, the sender sends a mes-
sage and the receiver can subsequently reply by sending either: (i) a not-
understood or a refuse message indicating the inability to achieve the rational
effect of the communicative act; or (ii) an agree message indicating the agree-
ment to perform the communicative act. When the receiver performs the action
it must send an inform message. A failure message indicates that the action
was not successful. JADE provides ready-made classes for most of the FIPA
specified interaction protocols.

3.7.2 JADE Agent Interaction

As noted above, in JADE, agent tasks or agent intentions are implemented
through the use of behaviours. Behaviours are logical execution threads that
can be composed in various ways to achieve complex execution patterns and
can be initialized, suspended and spawned at any given time. Behaviours are
implemented in terms of fields and methods contained in one or more sub-classes
of a parent Behaviour class provided with JADE. Any given JADE agent keeps
a task list that contains the active behaviours. JADE uses one thread per agent,
instead of one thread per behaviour, to limit the number of threads running on
the agent platform. A behaviour can release the execution control with the
use of blocking mechanisms, or it can permanently remove itself from the queue
during run time. Each behaviour performs its designated operation be executing
the method “action()”. The Behaviour class is the root class of the behaviour
hierarchy that defines several core methods and sets the basis for behaviour
scheduling as it allows state transitions (starting, blocking and restarting).

3.8 EMADS Architecture as Implemented in Jade

This section describes the implementation of the different facets of EMADS as
described in the foregoing. EMADS is implemented using the JADE MAS de-
velopment framework; the rationale for this was described in Section 3.4. Some
background details of JADE were presented in Section 3.7.1. Broadly JADE
defines an agent platform that comprises a set of containers, which may (as in
the case of EMADS) be distributed across a network. The section commences

38

with an overview of the EMADS JADE implementation. More specific details
of the JADE implementation focusing on: Agent “Behaviours”, agent interac-
tion, mechanisms for cooperation, user request handling and extendibility; are
all presented in the following subsections.

Within JADE, agents are identified by name, and communicate using the
FIPA Agent Communication Language (ACL). More specifically, agents com-
municate by formulating and sending individual messages to each other, and
can have “conversations” using interaction protocols similar to the schema de-
scribed in Section 3.5. JADE supports three types of message communication
as follows:

1. Intra-container: ACL message communication between agents within the
same container using event dispatching.

2. Intra-platform: Message communication between agents in the same JADE
platform, but in different containers, founded on RMI.

3. Inter-Platform: Message communication between agents in different plat-
forms uses the IIOP (Internet Inter-ORB Protocol).

Note that the last is facilitated by a special Agent Communication Channel
(ACC) agent also located in the JADE platform main container. In the case
of the EMADS implementation agents may be created and contributed by any
EMADS user/contributor. One of the containers, the main container, holds the
house keeping agents (see Subsection 3.7.1) and the Agent Management System
(AMS). Both the main container and the remaining containers can hold various
DM agents. Note that the EMADS main container is located on the EMADS
host organization site (currently the University of Liverpool in the UK), while
the other containers may be held at any other sites worldwide.

Other than the house keeping agents, held in the main container, EMADS
currently supports four categories of agents: User Agents, Task Agents, DM
Agents and Data Agents. It should be noted that EMADS containers may
contain both mining and data agents simultaneously as well as user agents.
DM and Data Agents are persistent, i.e. they continue to exist indefinitely and
are not created for a specific DM exercise. Communication between agents is
facilitated by the EMADS network.

Figure 6 gives an overview of the implementation of EMADS using JADE.
The figure is divided into three parts: at the top are listed N user sites. In
the middle is the JADE platform holding the main container and N other con-
tainers. At the bottom a sample collection of agents is included. The solid
arrows indicate a “belongs to” (or “is held by”) relationship, while the dotted
arrows indicate a “communicates with” relationship. So the data agent at the
bottom right belongs to container 1 which in turn belongs to User Site 1; and
communicates with the AMS agent and (in this example) a single DM agent.

The principal advantage of this JADE architecture is that it does not over-
load a single host machine, but distributes the processing load among multiple
machines. The results obtained can be correlated with one another in order to
achieve computationally efficient analysis at a distributed global level.

39

Figure 6: EMADS Architecture as Implemented in Jade

3.8.1 Mapping EMADS Protocols to JADE Behaviours

Many important design issues were considered while implementing EMADS
within the JADE framework; including:

1. ACL Messages (protocols, content),

2. Data structures,

3. Algorithms and software components.

The ACL messages were defined with respect to the JADE ACL Message
class fields [16] and the FIPA ACL Message Structure Specification [34].

The procedure to map the EMADS agent interaction protocols, as defined
in Section 3.5, to JADE behaviours was found to be relatively straightforward.
EMADS agent activities and protocols were translated to a number of prede-
fined JADE behaviours (defined in terms of methods contained in the JADE
Behaviours class), to action methods or to simple methods of behaviours. Pre-
defined JADE behaviours that were found to be useful to EMADS were:

• OneShotBehaviour: Implements a task that runs once and terminates
immediately.

• CyclicBehaviour: Implements a task that is always active, and performs
the same operations each time it is scheduled.

40

• TickerBehaviour: Implements a task that periodically executes the same
operations.

• WakerBehaviour: Implements an atomic task that runs once after a certain
amount of time, and then terminates.

When dealing with complex responsibilities, it was found to be better to
split the responsibilities into a combination of a number of simpler tasks and
adopt one of the composite behaviour classes provide by JADE. These composite
behaviour classes include:

• SequentialBehaviour: Implementing a composite task that schedules its
sub-tasks sequentially.

• FSMBehaviour: Implementing a composite task that schedules its sub-
tasks according to a Finite State Machine (FSM) model.

Composite behaviour can be nested and therefore there can be, for instance,
a subtask of a SequentialBehaviour that is in turn a FSMBehaviour and so on.
In particular, all complex responsibilities that can be modeled as Finite State
Machines can be effectively implemented as FSMBehaviour instances.

Furthermore, the behaviours that start their execution when a message ar-
rives, can receive this message either at the beginning of the action method
(simple behaviours) or by spawning an additional behaviour whose purpose is
the continuous polling of the message box (complex behaviours). For behaviours
that start by a message from a Graphical User Interface (GUI), a GUI event
receiver method should be implemented on the agent that starts the correspond-
ing behaviour. Finally, those behaviours that start by querying a data source,
or by a calculation, should be explicitly added by their upper level behaviour.

3.8.2 Agent Interactions

A user agent, as shown in Figure 6, runs on the user’s local host and is respon-
sible for accepting user input, launching the appropriate task agent that serves
the user request, and displaying the results of the distributed computation. In
this subsection the interaction mechanism between agents is reviewed.

The user expresses a task to be executed with a standard (GUI) interface
dialog mechanisms by clicking on active areas in the interface, and in some
cases by entering some thresholds attributes; note that the user does not need
to specify which agent or agents should perform the task. For instance, if the
question “What is the best classifier for my data?” is posed in the user interface,
this request will trigger (create and start) a Task Agent (in this case a classifier
generation task agent). The Task Agent requests the facilitator to match the
action part of the request to capabilities published by other agents. The request
is then routed by the Task Agent to appropriate agents (in this case, involving
communication among all classifier generator agents in the system) to execute
the request. On completion the results are sent back to the user agent for
display.

The key elements of the operation of EMADS that should be noted are:

41

1. The mechanism whereby a collection of agents can be harnessed to identify
a “best solution”.

2. The process whereby new agents connect to the facilitator and registering
their capability specifications.

3. That the interpretation and execution of a task is a distributed process,
with no one agent defining the set of possible inputs to the system.

4. That a single request can produce cooperation and flexible communication
among many agents spread across multiple machines.

3.8.3 Mechanisms of Cooperation

Cooperation among the various EMADS agents is achieved via messages ex-
pressed in FIPA ACL and is normally structured around a three-stage process:

1. Service Registration: where providers (agents who wish to provide ser-
vices) register their capability specifications with a facilitator.

2. Request Posting: where User Agents (requesters of services) construct
requests and relay them to a Task Agent, and

3. Processing: where the Task Agent coordinates the efforts of the appropri-
ate service providers (Data Agents and DM Agents) to satisfy the request.

Note that Stage 1 (service registration) is not necessarily immediately fol-
lowed by stage 2 and 3, it is possible that a providers services may never be
used. Note also that the facilitator (the DF and AMS agents) maintains a
knowledge base that records the capabilities of the various EMADS agents, and
uses this knowledge to assist requesters and providers of services in making con-
tact. When a service provider (i.e. Data Agent or DM Agent) is created, it
makes a connection to the facilitator. Upon connection, the new agent informs
its parent facilitator of the services it can provide. When the agent is needed,
the facilitator sends its address to the requester agent. An important element of
the desired EMADS agent cooperation model is the function of the Task Agent;
this is therefore described in more detail in the following subsection.

3.8.4 User Request Handling

A Task Agent is designed to handle a user request. This involves a three step
process:

1. Determination: Determination of whom (which specific agents) will exe-
cute a request;

2. Optimization: Optimization of the complete task, including parallelization
where appropriate; and

3. Interpretation: Interpretation of the optimized task.

42

Thus determination (step 1) involves the selection of one or more agents to
handle each sub-task given a particular request. In doing this, the Task agent
uses the facilitators knowledge of the capabilities of the available EMADS agents
(and possibly of other facilitators, in a multi-facilitator system). The facilita-
tor may also use information specified by the user (such as threshold values).
In processing a request, an agent can also make use of a variety of capabili-
ties provided by other agents. For example, an agent can request data from
Data Agents that maintain data. The optimization step results in a request
whose interpretation will require as few communication exchanges as possible,
between the Task Agent and the satisfying agents (typically DM Agents and
Data Agents), and can exploit the parallel processing capabilities of the satis-
fying agents. Thus, in summary, the interpretation of a task by a Task Agent
involves: (i) the coordination of requests directed at the satisfying agents, and
(ii) assembling the responses into a coherent whole, for return to the user agent.

3.9 Summary

This Section discussed the EMADS requirements, architecture, design and im-
plementation. EMADS was envisioned as a collection of data sources scattered
over a network, accessed by a group of DM agents that allow a user to data
mine those data sources without needing to know the location of the support-
ing data, nor how the various agents interact. Additionally the expectation is
that EMADS will “grow” as individual users contribute further data and DM
algorithms.

In EMADS, as with most MAS, individual agents have different functional-
ity; the system currently comprises: data agents, user agents, task agents, data
mining agents and a number of “house-keeping” agents. Users of EMADS may
be data providers, DM algorithm contributors or miners of data. The indepen-
dence of EMADS from any particular DM function, in conjunction with the
object oriented design adopted, ensures the system’s capability to incorporate
and use new data mining algorithms and tools.

In the following section a detail description of the design and implementation
of the extendibility feature of EMADS is provided.

4 EMADS EXTENDIBILITY

As described in Section 1, one of the principal objectives of the research de-
scribed in this chapter, and consequently the EMADS framework, is to provide
an extendible framework that can easily accept new data sources and new DM
techniques. This was also identified in the list of requirements presented in Sec-
tion 2. In general, extendibility can be defined as the ease with which software
can be modified to adapt to new requirements, or changes in existing require-
ments. In the context of EMADS the intention is to provide an extendible
framework that can easily accept new data sources and new DM techniques.
Adding a new data source or DM techniques to EMADS meditates the in-

43

Figure 7: EMADS Wrappers

troduction of new agents. The EMADS framework was therefore designed to
provide mechanism for the simple addition of agents by the EMADS body of
end users.

This Section provides a detailed description of the EMADS extendibility
feature in terms of its requirements, design and implementation. The principal
means for achieving this is through the use of a system of wrappers. The
Section commences (Subsection 4.1) by describing the wrapper concept. The
section also gives an overview of the LUCS-KDD DN software which has been
incorporated into the Data Wrapper agent in Subsection 4.1.4. The Section
also discusses (Subsection 4.2) how, conceptually, the functionality of EMADS
can be extended by adding new Task Agents and by adding Data Mining (DM)
algorithms (agents) and new data sources using the wrappers concept, then the
Section ends with a summary (Subsection 4.3).

4.1 Wrappers

The incorporation of data and data mining software is facilitated by a system of
wrappers which allows for easy extendibility of the system. The term wrapper
in the context of computer science has a number of connotations (for example
“driver wrappers”, “TCP wrappers” and the Java “wrapper” classes. In the
context of MAS the term is used to describe a mechanism for allowing existing
software systems to be incorporated into a MAS. The wrapper “agentifies” an
existing application by encapsulating its implementation. The wrapper manages
the states of the application, invoking the application when necessary [37].

As illustrated in Figure 7, EMADS wrappers are used to “wrap” up data
mining artifacts so that they become EMADS agents and can communicate with
other agents within EMADS. As such EMADS wrappers can be viewed as agents
in their own right that are subsumed once they have been integrated with data

44

or tools to become data mining agents. The wrappers essentially provide an
application interface to EMADS that has to be implemented by the end user,
although this has been designed to be a fairly trivial operation. As shown in
Figure 7, EMADS supports three broad categories of wrappers:

1. Data wrapper,

2. DM wrapper,

3. Task wrapper.

The first is used to create data agents, the second to create DM agents, and
the third to create DM task agents. Each is described in further detail in the
following three subsections.

4.1.1 Data Wrappers

In the context of EMADS, and with respect to standard data mining in gen-
eral, a data source is a single text file containing data records (one line per
record); where each record comprises a set of, typically comma or space sepa-
rated, alpha-numeric values that subscribe to some attribute schema. This is
a fairly standard tabular data format used throughout the KDD community.
Data wrappers are therefore used to “wrap” a data source and consequently
create a Data Agent. Conceptually the data wrapper provides the interface be-
tween the data source and the rest of the framework. Broadly a data wrapper
holds: (i) the location (file path) of a data source, so that it can be accessed by
other agents; and (ii) meta information about the data. To assist end users, in
the application of a data wrapper to their data, a data wrapper GUI was devel-
oped. As described previously, once created, the data agent announces itself to
the EMADS Facilitator (Broker) Agent as a consequence of which it becomes
available to all EMADS users.

4.1.2 DM Wrappers

DM wrappers are used to “wrap” up DM software systems and to create DM
agents. Generally the software systems to be wrapped will be DM tools of
various kinds (classifiers, clusters, association rule miners, etc.) although they
could also be (say) data normalization/discretization or visualization tools. Un-
like data wrappers, DM wrappers are not supported by a GUI facility to aid
their usage; instead EMADS users are expected to encode the wrapper them-
selves. However, the design of the wrapper is such that this would be a straight
forward process.

4.1.3 Task Wrappers

It is intended that the framework will incorporate a substantial number of dif-
ferent tool wrappers each defined by the nature of the desired I/O which in turn
will be informed by the nature of the generic DM tasks that it is desirable for

45

EMADS to be able to perform. Thus, EMADS users are expected to encode
the wrapper themselves.

4.1.4 Discretization/Normalization

So as to avoid issue of data heterogeneity (and the consequent potential use of
ontologies) all data was assumed to correspond to a common global schema.

An example of demonstrating of EMADS extendibility feature is the integra-
tion of the LUCS-KDD in Data DN with EMADS data agent. The LUCS-KDD
(Liverpool University Computer Science - Knowledge Discovery in Data) DN
(Discretization/ Normalization) software had been developed as a standalone
application to convert data files available in the UCI data repository [17] into
a binary format suitable for use with Association Rule Mining (ARM) appli-
cations. The software can, of course, equally well be used to convert data files
obtained from other sources.

Discretization and normalization can be defined as follows: Discretization is
the process of converting the range of possible values associated with a continu-
ous data item (e.g. a double precision number) into a number of sub-ranges each
identified by a unique integer label; and converting all the values associated with
instances of this data item to the corresponding integer labels. Normalization
is process of converting values associated with nominal data items so that they
correspond to unique integer labels.

4.2 Implementation

As noted in the introduction to this Section, one of the most important features
of EMADS, and the central theme of this chapter, is the simple extendibility
requirement of the system, thus the ability for new agents to be added to the
system in an effective and efficient manner. The rational is that the operation
of EMADS should be independence of any particular DM method. The inclu-
sion of a new data source or DM techniques necessitates the addition of new
agents to the system. The process of adding new agents should therefore be
as simple as possible. This subsection considers the implementation of the de-
sired extendibility feature by considering each of the three categories of agents
(Task, Data and DM) that may be contributed by EMADS users. It should be
noted, before considering each of these categories in detail, that extendibility is
achieved with respect to Task agents using an object oriented software design
and implementation mechanism; while in the context of Data and DM Agents
extendibility is achieved using the wrapper concept introduced earlier. Remem-
ber that in isolation wrappers can be viewed as agents in their own right which
are used to build Data and DM agents, once incorporated with DM software or
data the wrapper agents cease to exist in their own right as their functionality
merges into the newly created Data or DM agent.

46

Figure 8: Data Normalization GUI

4.2.1 Task Agents

Task agents, that perform generic DM tasks, are introduced into EMADS using
a predefined abstract task agent class. This is facilitated by the Object Orien-
tation features provided by the Java programming language in which EMADS
agents are expected to be implemented. Individual task agents are created by
implementing a specific sub-class of this abstract class. The abstract task class
defines a number of fields and method headers that are inherited by the user
created sub-class used to define a specific task agent.

In effect these variables and methods define a simple and minimal interface
that all task agent sub-classes are expected to comply with. As long as an agent
conforms to this interface, it can be introduced and used immediately as part
of the EMADS system.

4.2.2 Data Agents

New Data Agents are introduced using the predefined data wrapper introduced
above. An EMADS Data Agent encapsulates a resource interface for data source
specific retrieval that can be accessed by EMADS DM Agents. The resource
interface holds all the information needed to interface with the specific format
data source.

In the current version of the architecture, EMADS supports only flat-file
access. A single Data Agent controls each separate data source. Thus, in
order to bring a new data source into the system, a new Data Agent must be

47

instantiated with the required components. This is achieved using a purpose
built software wrapper, implemented in Java and interfaced using a GUI, to
facilitate the addition of new data agents by EMADS users. The user must use
the Data Agent wrapper GUI (Figure 9) to refer to the data source location
(file path) and provide meta information describing the data (i.e. data type,
number of classes etc...). The user can also use the Data Agent GUI to launch
the LUCS-KDD DN tool (Figure 8), if the data requires normalization before
introducing it to EMADS. The LUCS-KDD DN tool is described further at the
end of this Section.

4.2.3 DM Agents

The addition of DM Agents to the EMADS system is facilitated by a purpose
built wrapper (agent). The DM wrapper agent is said to “wrap” a DM algo-
rithm. The wrapper includes a “beginMining” method which calls a “doMine”
method which must be incorporated into the mining algorithm. In effect the
DM wrapper Agent can be considered to be used to hold a mining algorithm
instance.

The DM wrapper Agent is implemented in Java and is designed to be an
extendible component in its own right, since it can be changed or modified.
As such the DM wrapper Agent is currently only compatible with DM soft-
ware systems written in Java (there is no facility to incorporate foreign code).
The wrapper defines an abstract interface (the mining interface) that a DM
algorithm class must implement. First, the interface in which the algorithm is
encapsulated must have a method that can be called to start the algorithm.
This is implemented with the abstract “doMine” method; such a method must
therefore be included in any DM algorithm to be wrapped. When called by
the DM Agent, this method should start the algorithm operating over the data
source. After the DM algorithm has finished, the DM Agent passes the results
back to the Task Agent.

Because the DM algorithm must have access directly to data, it must be able
to have direct visibility to it. It maintains this visibility by storing a pointer
to the data as a local variable that is set through a “setResource” method.
The “setResource” method is also an abstract method, and is called by the DM
Agent to let the mining algorithm know the dataset it will be operating on. This
component will be one of the components required when the system is extended
and a new DM algorithm is added. Because of this, special consideration is
being given to making it as “extendible” as possible. The DM algorithm must
be able to return the result of the data mining for which it is responsible. In
order to ensure this, the abstract method “getResult” is implemented that gets
the results from the DM algorithm. Because each algorithm may process its
data differently or not at all, the “getResult” method knows how to retrieve
this.

The fact that the mining interface is an abstract interface allows any methods
required in the implementation of a specific mining algorithm, to be added. It
also ensures that the DM Agent can start the algorithm running, no matter

48

Figure 9: Data Agent GUI

what specific implementation is used. It also provides a great deal of flexibility.

4.3 Summary

This Section discussed the EMADS Extendibility requirements, architecture,
design and implementation. The expectation is that EMADS will “grow” as
individual users contribute data and DM algorithms. The incorporation of data
and data mining software is facilitated by a system of wrappers which allows
for easy extendibility of the system.

The independence of EMADS from any particular DM function, in conjunc-
tion with the object oriented design adopted, ensures the system’s capability
to incorporate and use new data mining algorithms and tools. As discussed
above, introducing a new technique requires the sub-classing of the appropriate
abstract class or the implementation of an abstract interface and the encapsula-
tion of the tool within an object that adheres to the minimal interface. In fact,
most of the existing implemented algorithms have similar interfaces already.
This “plug-and-play” characteristic makes EMADS a powerful and extensible
DM facility, and allows developers to employ their pre-implemented programs
within EMADS agents.

49

5 FREQUENT SET META MINING:
Meta ARM

In this Section the support that EMADS provides for the dynamic creation of
communities of data mining agents is demonstrated by considering a Meta ARM
(Association Rule Mining) scenario. The motivation behind the scenario is that
data relevant to a particular ARM application is often owned and maintained
by different, geographically dispersed, organizations. Information gathering and
knowledge discovery from such distributed data sources typically entails a sig-
nificant computational overheads; computational efficiency and scalability are
both well established critical issue in data mining [51]. One approach to ad-
dressing problems such as the meta ARM problem is to adopt a distributed
approach. However this requires expensive computation and communication
costs.

The term meta mining describes the process of combining the individually
obtained results of N applications of a data mining activity. This is typically
undertaken in the context of Multi-Agent Data Mining (MADM) where the
individual owners of agents wish to preserve the privacy and security of their
raw data but are prepared to share the results of data mining activities. The
mining activities in question could be, for example, clustering, classification or
Association Rule Mining (ARM); the scenario described here concentrates on
the latter — frequent set meta mining (which in this Section will be referred to
as Meta ARM).

The Meta ARM problem is defined as follows: a given ARM algorithm (does
not have to be the same algorithm) is applied to N raw data sets producing
N collections of frequent item sets. Note that it is assumed each raw data set
conforms to some globally agreed attribute schema, although each local schema
will typically comprise some subset of this global schema. The objective is then
to merge the different sets of results into a single meta set of frequent itemsets
with the aim of generating a set of ARs or alternative a set of Classification
Association Rules (CARS).

The most significant issue when combining groups of previously identified
frequent sets is that wherever an itemset is frequent in a data source A but not
in a data source B a check for any contribution from data source B is required
(so as to obtain a global support count). The challenge is thus to combine
the results from N different data sources in the most computationally efficient
manner. This in turn is influenced predominantly by the magnitude (in terms
of data size) of returns to the source data that are required.

There are a number of alternative mechanisms whereby ARM results can
be combined to satisfy the requirements of Meta ARM. In this Section a study
is presented comparing five different approaches (including a bench mark ap-
proach). The study is conducted using variations of the TFP set enumeration
tree based ARM algorithm ([29,41]), however the results are equally applicable
to other algorithms (such as FP growth [45]) that use set enumeration tree style
structures, the support-confidence framework and an Apriori methodology of

50

processing/building the trees.
The Section is organised as follows. In Subsection 5.1 some background and

related work is presented and discussed. A brief note on the data structures
used by the Meta ARM algorithms is then presented in Subsection 5.2. The five
different approaches that are to be compared are described in Subsection 5.3.
This is followed, in Subsection 5.5.1, by an analysis of a sequence of experimental
results used to evaluate the approaches introduced in Subsection 5.3. Finally
some conclusions are presented in Subsection 5.6.

5.1 Background and Previous Work

As discussed in the previous sections, MADM research encompasses many issues.
In this Section the issue of collating data mining results produced by individual
agents is addressed, which is referred to as meta-mining.

The Meta ARM problem (as outlined in the above introduction) has sim-
ilarities, and in some cases overlap, with incremental ARM (I-ARM) and dis-
tributed ARM. The distinction between I-ARM, as first proposed by Agrawal
and Psaila [3], and Meta ARM is that in the case of I-ARM we typically have
only two sets of results: (i) a large set of frequent itemsets D and (ii) a much
smaller set of itemsets d that we wish to process in order to update D. In the
case of Meta ARM there can be any number of sets of results which can be of any
(or the same) size. Furthermore, in this case each contributing set has already
been processed to obtain results in the form of locally frequent sets. I-ARM
algorithms typically operate using a relative support threshold [63, 66, 102] as
opposed to an absolute threshold; the use of relative thresholds has been adopted
in the work described here. I-ARM algorithms are therefore supported by the
observation that for an itemset to be globally frequent it must be locally frequent
in at least one set of results regardless of the relative number of records at in-
dividual sources (note that this only works with relative support thresholds).
When undertaking I-ARM four comparison options can be identified according
to whether a given itemset i is: (i) frequent in d, and/or (ii) frequent in D; these
are itemised in Table 4.

From the literature, three fundamental approaches to I-ARM are described.
These may be categorised as follows:

1. Maintain itemsets on the border with maximal frequent item sets (the
negative border idea) and hope that this includes all those itemsets that
may become frequent. See for example ULI [99].

2. Make use of a second (lower) support threshold above which items are
retained (similar idea to negative border). Examples include AFPIM [63])
and EFPIM [66].

3. Acknowledge that at some time or other we will have to recompute counts
for some itemsets and consequently maintain a data structure that (a)
stores all support counts, (b) requires less space than the original structure
and (c) facilitates fast look-up, to enable updating. See for example [64].

51

Frequent in d Not frequent in d
Increment total i may be globally

Frequent in count for i supported,
D (retained and recalculate increment total
itemsets) support count for i

and recalculate support
May be globally supported,

NotFrequent need to obtain total support Do nothing
in D count and recalculate support

(Emerging itemset)

Table 4: I-ARM itemset comparison options (relative support)

Using a reduced support threshold results in a significant additional stor-
age overhead. For example if we assume a given data set with 100 (n =
100) attributes where all the 1 and 2 item sets are frequent but none of the
other itemsets are frequent, the negative border will comprise 161700 item sets

(n(n−1)(n−2)
3!) compared to 4970 supported item sets (n + n(n−1)

2!).
The data at each source is held using a P-tree (Partial Support Tree) data

structure, the nature of which is described in further detail in Section 5.2 be-
low. The distinction between distributed mining and MADM is one of con-
trol. Distributed ARM assumes some central control that allows for the global
partitioning of either the raw data (data distribution) or the ARM task (task
distribution), amongst a fixed number of processors. MADM, and by extension
the Meta ARM mining described here, does not require this centralised control,
instead the different sets of results are produced in an autonomous manner with-
out any centralised control. MADM also offers the significant advantage that
the privacy and security of raw data belonging to individual agents is preserved,
an advantage that is desirable for both commercial and legal reasons.

In both I-ARM and distributed ARM, as well as Meta ARM, the raw data
typically conforms to some agreed global schema.

Other research on meta mining that includes work on meta classification.
Meta classification, also sometimes referred to as meta learning, is a technique
for generating a global classifier from N distributed data sources by first comput-
ing N base classifiers which are then collated to build a single meta classifier [81]
in much the same way that we are collating ARM results.

The term merge mining is used in Aref et al. [8] to describe a generalised form
of incremental association rule mining which has some conceptual similarities
to the ideas behind Meta ARM described here. However Aref et al. define
merge mining in the context of time series analysis where additional data is to
be merged with existing data as it becomes available.

52

Figure 10: P-tree Example

5.2 Note on P and T Trees

The Meta ARM algorithms described here make use of two data structures,
namely P-trees and T-trees. The nature of these structures is described in
detail in [29, 41]; however, for completeness a brief overview is presented here.

The P-tree (Partial support tree) is a set enumeration tree style structure
with two important differences: (i) more than one item may be stored at any
individual node, and (ii) the tree includes partial support counts. The structure
is sued to store a compressed version of the raw data set with partial support
counts obtained during the reading of the input data. The best way of describing
the P-tree is through an example such as that given in Figure 10. In the figure
the data set given on the left is stored in the P-tree on the right. The advantages
offered by the P-tree are of particular benefit if the raw data set contains many
common leading sub-strings (prefixes). The number of such sub-strings can be
increased if the data is ordered according to the frequency of the 1-itemsets
contained in the raw data. The likelihood of common leading sub-strings also
increases with the number of records in the raw data.

The T-tree (Total support tree) is a “reverse” set enumeration tree structure
that inter-leaves node records with arrays. It is used to store frequent item
sets, in a compressed form, identified by processing the P-tree. An example,
generated from the P-tree given in Figure 10, is presented in Figure 11.

From the figure it can be seen that the top level comprises an array of
references to node structures that hold the support count and reference to the
next level (providing such a level exists). Indexes equate to itemset numbers
although for ease of understanding in the figure letters have been used instead
of numbers. The structure can be though of as a “reverse” set enumeration tree
because child nodes only contain itemsets that are lexicographically before the
parent itemsets. This offers the advantage that less array storage is required
(especially if the data is ordered according to the frequency of individual items.

The T-tree is generated using an algorithm called Total From Partial (TFP)
which is also described in [29, 41]. The TFP algorithm is essentially an Apriori
style algorithm that proceeds in a level by level manner. At each level the P-tree

53

Figure 11: T-tree Example (support = 35%)

is processed to generate appropriate support counts. Note that on completion of
the TFP algorithm the T-tree contains details of all the supported itemsets, in a
manner that provides for fast look up during AR generation, but no information
about unsupported sets (other than that they are not supported). Referring to
Figure 11 unsupported sets are indicated by a null reference.

5.3 Proposed Meta ARM Algorithms

In this section a number of Meta ARM algorithms are described, an analysis
of which is presented in section 5.5.1. It is assumed that each data source will
maintain the data set in either its raw form or a compressed form. For the
experiments reported here the data has been stored in a compressed form using
a P-tree (Figure 10).

The first algorithm developed was a bench mark algorithm, against which
the identified Meta ARM algorithms were to be compared. This is described in
5.3.1. Four Meta ARM algorithms were then constructed. For the Meta ARM
algorithms it was assumed that each data source would produce a set of frequent
sets using the TFP algorithm with the results stored in a T-tree. These T-trees
would then be merged in some manner.

Each of the Meta ARM algorithms described below makes use of return to
data (RTD) lists, one per data set, to contain lists of itemsets whose support
was not included in the current T-tree and for which the count is to be obtained
by a return to the raw data. RTD lists comprise zero, one or more tuples of
the form < I, sup >, where I is an item set for which a count is required and
sup is the desired count. RTD lists are constructed as a Meta ARM algorithm
progresses. During RTD list construction the sup value will be 0, it is not until
the RTD list is processed that actual values are assigned to sup. The processing
of RTD lists may occur during, and/or at the end of, the Meta ARM process
depending on the nature of the algorithm.

54

5.3.1 Bench Mark Algorithm

For Meta ARM to make sense the process of merging the distinct sets of dis-
covered frequent itemsets must be faster than starting from the beginning (oth-
erwise there is no benefit from undertaking the merging). The first algorithm
developed was therefore a bench mark algorithm. This was essentially an Apri-
ori style algorithm (see Table 5) that used a T-tree as a storage structure to
support the generation process.

5.3.2 Brute Force Meta ARM Algorithm

The philosophy behind the Brute Force Meta ARM algorithm was that we
simply fuse the collection of T-trees together adding items to the appropriate
RTD lists as required. The algorithm comprises three phases: (i) merge, (ii)
inclusion of additional counts and (iii) final prune. The merge phase commences
by selecting one of the T-trees as the initial merged T-tree (from a computational
perspective it is desirable that this is the largest T-tree). Each additional T-
tree is then combined with the merged T-tree “sofar” in turn. The combining
is undertaken by comparing each element in the top level of the merged T-tree
sofar with the corresponding element in the “current” T-tree and then updating
or extending the merged T-tree sofar and/or adding to the appropriate RTD
lists as indicated in Table 6 (remember that we are working with relative support
thresholds). Note that the algorithm only proceeds to the next branch in the
merged T-tree sofar if an element represents a supported node in both the
merged and current T-trees. At the end of the merge phase the RTD lists
are processed and any additional counts included (the inclusion of additional
counts phase). The final merged T-tree is then pruned in phase three to remove
any unsupported frequent sets according to the user supplied support threshold
(expressed as a percentage of the total number of records under consideration).

5.3.3 Apriori Meta ARM Algorithm

In the Brute Force approach the RTD lists are not processed until the end of the
merge phase. This means that many itemsets may be included in the merged
T-tree sofar and/or the RTD lists that are in fact not supported. The objective
of the Aprori Meta ARM algorithm is to identify such unsupported itemsets
much earlier on in the process. The algorithm proceeds in a similar manner
to the standard Apriori algorithm (Table 5) as shown in Table 7. Note that
items are added to the RTD list for data source n if a candidate itemset is not
included in T-tree n.

5.3.4 Hybrid Meta ARM Algorithm 1 and 2

The Apriori Meta ARM algorithm requires less itemsets to be included in the
RTD list than is the case with the Brute Force Meta ARM algorithm (as demon-
strated in Section 5.5.1). However, the Apriori approach requires the RTD lists
to be processed at the end of each level generation, while in the case of the

55

Algorithm 5.1: Bench Mark Meta ARM

1: begin:
2: k = 1;
3: Generate candidate k -itemsets
4: Start Loop
5: if (k -itemsets == null break)
6: forall N data sets get counts for k -itemsets
7: Prune k -itemsets according to support threshold
8: k ⇐ k+1
9: Generate k -itemsets
10: end Loop
13: end Algorithm

Table 5: Bench Mark Meta ARM Algorithm

Frequent in Not frequent
T-tree N in T-tree N

Update support Add labels for
count for i in all supported

Frequent in merged T-tree nodes in
merged T-tree sofar and proceed merge T-tree
sofar to child branch branch, starting

in merged with current
T-tree sofar node, to

RTD list N
Process current branch in
T-tree N , starting with

Not Frequent current node, Do nothing
in merged adding nodes with
T-tree sofar their support to the merged

T-tree sofar and recording
labels for each to RTD lists

1 to N − 1

Table 6: Brute Force Meta ARM itemset comparison options

56

Algorithm 5.2: Apriori Meta ARM

1: begin:
2: k = 1;
3: Generate candidate k -itemsets
4: Start Loop
5: if (k -itemsets == null break)
6: Add supports for level K from N T-trees or add to RTD list
7: Prune k -itemsets according to support threshold
8: k ⇐ k+1
9: Generate k -itemsets
10: end Loop
13: end Algorithm

Table 7: Apriori Meta ARM Algorithm

Brute Force approach this is only done once. A hybrid approach, that combines
the advantages offered by both the Brute Force and Apriori meta ARM algo-
rithms therefore suggests itself. Experiments were conducted using two different
version of the hybrid approach.

The Hybrid 1 algorithm commences by generating the top level of the merged
T-tree in the Apriori manner described above (including processing of the RTD
list); and then adds the appropriate branches, according to which top level nodes
are supported, using a Brute Force approach.

The Hybrid 2 algorithm commences by generating the top two levels of the
merged T-tree, instead of only the first level, as in the Hybrid 1 approach. Addi-
tional support counts are obtained by processing the RTD lists. The remaining
branches are added to the supported level 2-nodes in the merged T-tree sofar
(again) using the Brute Force mechanism. The philosophy behind the hybrid 2
algorithm was that we might expect all the one itemsets to be supported and
included in the component T-trees therefore we might as well commence by
building the top two layers of the merged T-tree.

5.4 Meta ARM EMADS Model

In EMADS, agents are responsible for accessing local data sources and for col-
laborative data analysis. In the context of Meta ARM each local mining agent’s
basic function is to generate “local” item sets (local model) from local data and
provide this to the task agent in order to generate the complete global set of
frequent itemsets (global model).

Figure 12 shows the Meta ARM EMADS model. The model consists of a
number of data sources distributed across the network. Detailed data are stored
in the DBMS (Data Base Management System) of local sites. Each local site

57

Figure 12: Meta ARM Model

has one Data Agent that is a member of EMADS. In Figure 12 the connection
between a local agent and its local DBMS is not shown. A local DM Agents
apply some ARM algorithm on to N raw data sets producing N collections of
frequent item sets in under decentralised control and an autonomous manner.
Then a Task Agent merges the different sets of results into a single meta set of
frequent itemsets with the aim of generating a set of ARs or alternatively a set
of Classification Association Rules (CARS).

5.4.1 Dynamic Behaviour of EMADS for Meta ARM operations

EMADS initially starts up with the two central JADE agents. When a data
agent wishes to make its data available for possible data mining tasks, it must
publish its name and description with the DF agent. In the context of Meta
ARM, each mining agent could apply a different data mining algorithm to pro-
duce its local frequent item sets T-tree. The T-trees from each local data mining
agent are collected by the task agent, and used as input to Meta ARM algo-
rithms for generating global frequent item sets (merged T-tree) making use of
return to data (RTD) lists, at least one per data set, to contain lists of itemsets
whose support was not included in the current T-tree and for which the count
is to be obtained by a return to the raw data.

58

Figure 13: User Agent GUI: Meta ARM Example

5.5 Note on datasets

The datasets used in ARM are usually presented as sequences of records com-
prising item (column) numbers, which in turn represent attributes of the dataset.
The presence of a column number in a record indicates that the associated at-
tribute exists for that record. This form of dataset is exemplified by shopping
trolley scenarios, where records represent customer trolley-fulls of shopping pur-
chased during a single transaction and the columns/attributes, items or groups
of items available for purchase. Although ARM is directed at binary-valued
attribute sets, it can be applied to non-binary valued sets and also sets where
attributes are continuously valued through a pre-process of data normalization.
Datasets can thus be considered to be ND tables where N is the number of
columns and D is the number of records.

5.5.1 Experimentation and Analysis

To evaluate the five algorithms outlined above, in the context of EMADS, a
number of experiments were conducted. These are described and analysed in
this section. The experiments were designed to analyse the effect of the follow-
ing:

1. The number of data sources.

2. The size of the datasets in terms of number of records .

59

(a) Processing Time

(b) Total size of RTD lists (c) Number of RTD lists

Figure 14: Effect of number of data sources

3. The size of the datasets in terms of number of attributes.

All experiments were run using a Intel Core 2 Duo E6400 CPU (2.13GHz)
with 3GB of main memory (DDR2 800MHz), Fedora Core 6, Kernel version
2.6.18 running under Linux. For each of the experiments the following were
measured: (i) processing time (seconds / milliseconds), (ii) the size of the RTD
lists (Kbytes) and (iii) the number of RTD lists generated. The authors did not
use the IBM QUEST generator [2] because many different data sets (with the
same input parameters) were required and the quest generator always generated
the same data given the same input parameters. Instead the authors used the
LUCS KDD data generator 2. Figure 13 shows a “screen shot” of EMADS User
Agent GUI while executing the experiments.

Figure 14 shows the effect of adding additional data sources. For this ex-
periment ten different artificial data sets were generated using T = 4 (average
number of items per transactions), N = 20 (Number of attributes), D = 100k
(Number of transactions). Note that the selection of a relatively low value for
N ensured that there were some common frequent itemsets shared across the

2http : //www.csc.liv.ac.uk/ frans/KDD/Software//LUCS − KDD − DataGen/

60

(a) Processing Time

(b) Total size of RTD lists (c) Number of RTD lists

Figure 15: Effect of increasing number of records

T-trees. Experiments using N = 100 and above tended to produced very flat
T-trees with many frequent 1-itemsets, only a few isolated frequent 2-itemsets
and no frequent sets with cardinality greater than 2. For the experiments a
support threshold of 1% was selected. Graph 3(a) demonstrates that all of the
proposed Meta ARM algorithms worked better then the bench mark (start all
over again) approach. The graph also shows that the Apriori Meta ARM algo-
rithm, which invokes the “return to data procedure” many more times than the
other algorithms, at first takes longer; however as the number of data sources in-
creases the approach starts to produce some advantages as T-tree branches that
do not include frequent sets are identified and eliminated early in the process.
The amount of data passed to and from sources, shown in graph 3(b), correlates
directly with the execution times in graph 3(a). Graph 3(c) shows the number
of RTD lists generated in each case. The Brute Force algorithm produces one
(very large) RTD list per data source. The Bench Mark algorithm produces the
most RTD lists as it is constantly returning to the data sets, while the Apriori
approach produces the second most (although the content is significantly less).

Figure 15 demonstrates the effect of increasing the number of records. The
input data for this experiment was generated by producing a sequence of ten

61

(a) Processing Time

(b) Total size of RTD lists (c) Number of RTD lists

Figure 16: Effect of increasing number of items (attributes)

pairs of data sets (with T = 4, N = 20) representing two sources. From graph
4(a) it can be seen that the all the meta ARM algorithms outperformed the
bench mark algorithm because the size of the return to data lists were limited
as no unnecessary candidate sets were generated. This is illustrated in graph
4(b). Graph 4(b) also shows that the increase in processing time in all case
is due to the increase in the number of records only, the size of the RTD lists
remains constant throughout as does the number of RTD lists generated (graph
4(c)).

Figure 16 shows the effect of increasing the global pool of potential at-
tributes (remember that each data set will include some subset of this global
set of attributes). For this experiment another sequence of pairs of data sets
(representing two sources) was generated with T = 4, D = 100K and N rang-
ing from 100 to 1000. As in the case of experiment 2 the Apriori, Brute Force
and Hybrid 1 algorithms work best (for similar reasons) as can be seen from
graph 5(a,b). However, in this case (compared to the previous experiment), the
Hybrid 2 algorithm did not work as good. The reasoning behind the Hybrid
2 algorithm slower performance is that all the 1-itemsets tended not to be all
supported and because there were not eliminated and included in 2-itemsets

62

generation (graph 5(a)). For completeness graph 5(c) indicates the number of
RTD lists sent with respect to the different algorithms.

All the Meta ARM algorithms outperformed the bench mark algorithm. The
Hybrid 2 algorithm also performed in an unsatisfactory manner largely because
of the size of the RTD lists sent. Of the remainder the Apriori approach coped
best with a large number of data sources, while the Brute Force and Hybrid 1
approaches coped best with increases in data sizes (in terms of column/rows)
again largely because of the relatively smaller RTD list sizes.

It should also be noted that the algorithms are all complete and correct, i.e.
the end result produced by all the algorithms is identical to that obtained from
mining the union of all the raw data sets using some established ARM algorithm.
In practice, of course, the MADM scenario, which assumes that data cannot be
combined in this centralised manner, would not permit this.

5.6 Summary

Traditional centralized data mining techniques may not work well in many dis-
tributed environments where data centralization may be difficult because of
limited bandwidth, privacy issues and/or the demand on response time. Meta-
learning data mining strategies may offer a better solution than the central
approaches but are not as accurate in their results.

This Section proposed EMADS as MAS solution to address the above issues.
The use of EMADS was illustrated using a meta ARM scenario where a novel
extension of ARM is described where a meta set of frequent itemsets was built
from a collection of component sets which had been generated in an autonomous
manner without centralised control is build. This type of conglomerate was
termed Meta ARM so as to distinguish it from a number of other related data
mining research areas such as incremental and distributed ARM. A number
of meta ARM algorithms were described and compared: (i) Bench Mark, (ii)
Apriori, (iii) Brute Force, (iv) Hybrid 1 and (v) Hybrid 2.

The described experiments indicated, at least with respect to Meta ARM,
that EMADS offers positive advantages in that all the Meta ARM algorithms
were more computationally efficient than the bench mark algorithm. The re-
sults of the analysis also indicated that the Apriori Meta ARM approach coped
best with a large number of data sources, while the Brute Force and Hybrid 1
approaches coped best with increased data sizes (in terms of column/rows). The
authors are greatly encouraged by the results obtained so far and are currently
undertaking further analysis of EMADS with respect to alternative data mining
tasks.

6 VERTICAL PARTITIONING AND
DISTRIBUTED/PARALLEL ARM

In this Section EMADS the support that EMADS provides with respect to the
dynamic creation of communities of data mining agents is demonstrated. The

63

section also explores the capabilities of such agents and demonstrate (by experi-
ment) their application to distributed and parallel data mining. An approach to
distributed/parallel Association Rule Mining (ARM), called DATA-VP, which
makes use of a vertical partitioning approach to distributing the input data is
described. Using this approach each partition can be mined in isolation, while
at the same time taking into account the possibility of the existence of large
itemsets dispersed across two or more partitions. To facilitate the partitioning
the tree data structure described in Section 5, is again used together with the
Apriori-T ARM algorithm. The approach described offers significant advantages
with respect to computational efficiency when compared to alternative mecha-
nisms for (a) dividing the input data between processors and/or (b) achieving
distributed/parallel ARM.

The organization of the Section is as follows: In Subsection 6.1 some previous
work in the field of parallel ARM is considered. In Subsection 6.2 the Apriori-T
algorithm and the the Apriori-T algorithm with vertical partitioning (DATA-
VP) is presented. In Subsection 6.3 some particular considerations are given
with respect to their use in distributed/parallel. The architecture and network
configuration is presented in Subsection 6.4. Experimentation and Analysis is
presented in Subsection 6.5 and a summary is given in Subsection 6.6.

6.1 Background and Previous Work

Notwithstanding the extensive work that has been done in the field of ARM,
there still remains a need for the development of faster algorithms and alterna-
tive heuristics to increase their computational efficiency. Because of the inherent
intractability of the fundamental problem, much research effort is currently di-
rected at parallel ARM to decrease overall processing times (see [43,78,91,98]),
and distributed ARM to support the mining of datasets distributed over a net-
work [23].

6.2 The T-tree and the Apriori-T algorithm

The Apriori-T algorithm combines the classic Apriori ARM algorithm, described
in Section 2, with the T-tree data structure [29]. As each level is processed,
candidates are added as a new level of the T-tree, their support is counted,
and those that do not reach the required support threshold pruned. When the
algorithm terminates, the T-tree contains only large itemsets.

At each level, new candidate itemsets of size K are generated from identified
large K-1 itemsets, using the downward closure property of itemsets, which in
turn may necessitate the inspection of neighbouring branches in the T-tree to
determine if a particular K-1 subset is supported. This process is referred to as
X-checking. Note that X-checking adds a computational overhead; offset against
the additional effort required to establish whether a candidate K itemset, all of
whose K-1 itemsets may not necessarily be supported, is or is not a large itemset.

The number of candidate nodes generated during the construction of a T-
tree, and consequently the computational effort required, is very much depen-

64

Figure 17: Vertical Partitioning of a T-tree Example

dent on the distribution of columns within the input data. Best results are
produced by reordering the dataset, according to the support counts for the
1-itemsets, so that the most frequent 1-itemsets occur first ([26]).

6.3 The Distributed and Parallel Task with Vertical Par-
titioning (DATA-VP) Algorithm

The DATA-VP algorithm commences by distributing the input dataset over
the available number of data mining (DM) agents using a vertical partition-
ing strategy. Initially the set of single attributes (columns) is split equally
between the available DM agents so that an allocationItemSet (a sequence of
single attributes) is defined for each DM Agent in terms of a startColNum and
endColNum:

allocationItemSet = {n|startColNum < n = endColNum}

Each DM Agent will have its own allocationItemSet which is then used to
determine the subset of the input dataset to be considered by the DM Agent.
Using its allocationItemSet the Task Agent will partition the data among DM
Agents as follows:

1. Remove all records in the input dataset that do not intersect with the
allocationItemSet.

2. From the remaining records remove those attributes whose column number
is greater than endColNum. Attributes whose identifiers are less than
startColNum cannot be removed because these may represent the leading
sub-string of large itemset to be included in the sub T-tree counted by the
process.

3. Send the allocated data partition to the corresponding DM Agent

65

TID Item Set
1 acf
2 b
3 ace
4 bd
5 ae
6 abc
7 d
8 ab
9 c
10 abd

Table 8: Dataset Example

The input dataset distribution procedure, given an allocationItemSet, can
be summarised as follows:

∀ records ∈ input data
if (records ∈ allocationItemSet = true)
record = {n|n ∈ record n <= endColNum}
else delete record

For example − given the data set in Table 8, and assuming three worker
agents are participating, the above partitioning process will result in three
dataset partitions:

Process 1 (a to b): {{a}, {b}, {a}, {b}, {a}, {a, b}, {}, {a, b}, {}, {a, b}}
Process 2 (c to d): {{a, c}, {}, {a, c}, {b, d}, {}, {a, b, c}, {d}, {}, {c},

{a, b, d}}
Process 3 (e to f): {{a, c, f}, {}, {a, c, e}, {}, {a, e}, {}, {}, {}, {}}

Figure 17 shows the resulting sub T-trees assuming all combinations repre-
sented by each partition are supported. Note that because the input dataset
is ordered according to the frequency of 1-itemsets the size of the individual
partitioned sets does not necessarily increase as the endColNum approaches N
(the number of columns in the input dataset); in the later partitions, the lower
frequency leads to more records being eliminated. Thus the computational ef-
fort required to process each partition is roughly. Once partitioning is complete
each partition can be mined, using the Apriori-T algorithm, in isolation.

The DATA-VP scenario can thus be summarized as follows:

1. Task Agent starts a number of DM agents; they will be referred to as
Workers.

66

2. Task Agent determines the division of allocationItemSet according to the
total number of available workers (agents) and transmits this information
to them.

3. Task Agent transmits only allocated partition of the data to each Worker.

4. Each worker then generates a T-tree for its allocated partition (a sub tree
of the final T-tree).

5. On completion each process transmits its partition of the T-tree to the
Task Agent which are then merged into a single T-tree (the final T-tree
ready for the next stage in the ARM process rule generation).

The T-tree generation process begins with a top-level tree comprising only
those 1-itemsets included in its allocationItemSet. The process will then gener-
ate the candidate 2-itemsets that belong in its sub T-tree. These will comprise
all the possible pairings between each element in the allocationItemSet and the
lexicographically preceding attribute; of those elements (see Figure 17). The
support values for the candidate 2-itemsets are then determined and the sets
pruned to leave only frequent 2-itemsets. Candidate sets for the third level
are then generated. Again, no attributes from succeeding allocationItemSet
are considered, but the possible candidates will, in general, have subsets which
are contained in preceding allocationItemSet and which, therefore, are being
counted by some other process. To avoid the overhead involved in X-checking,
which in this case would require message-passing between the DM agents con-
cerned, X-checking does not take place. Instead, the process will generate its
candidates assuming, where necessary, that any subsets outside its local T-tree
are large.

6.4 Architecture and network configuration

The architecture shown in Figure 18 assumes the availability of at least two
agents (preferably more), one Task Agent and one or more DM Agents (workers).
Figure 18 shows the assumed distribution of agents and shared data across the
network. The figure also shows JADE Agents through which the agents find
each other. All agents described here have been implemented using the EMADS
framework.

6.4.1 Messaging

Distributed/parallel ARM may entail much exchange of data messaging as the
task proceeds. Messaging represents a significant computational overhead in
some cases outweighing any other advantage gained. Usually the number of
messages sent and the size of the content of the message have significant perfor-
mance factor. It is therefore expedient in the context of the techniques described
here to minimize the number of messages that are required to be sent and their
sizes.

67

Figure 18: Parallel/Distributed ARM Model Architecture

The scenario described here is using the One-to-Many approach, where only
the Task Agent can send/receive messages to/from DM Agents which involves
fewer operations; the significance of this advantage increases as the number of
agents used increases. Also, the exchange of data requires each Task Agent
to send data to other DM Agents. So as to minimize the size of data being
sent, DM agents only process their allocated data partition and not the whole
datasets.

6.5 Experimentation and Analysis

To evaluate the five Meta ARM algorithms, in the context of the EMADS vision,
a number of experiments were conducted. These are described and analysed in
this section. The experiments presented here used up to five workers (DM
Agents) and the data set T20.I10.D500K.N500 (generated using the IBM Quest
generator used in Agrawal and Srikant [2]). In all case the dataset had been
preprocessed so that it is ordered.

The most significant overhead of any distributed/parallel system is the num-
ber and size of messages sent and received between agents. For this DATA-VP
demonstrator, the number of messages sent is independent of the number of
levels in the T-tree; communication takes place only at the end of the tree con-
struction. Therefore, DATA-VP has a clear advantage in terms of the number
of messages sent. DATA-VP passes entire pruned sub T-trees (pruned T-tree
branches, not entire levels). Consequently the amount of data passed between
agents when using DATA-VP is significantly small.

Figure 19 shows the effect of increasing the number of workers for a range of

68

Figure 19: Effect of number of workers

support thresholds. The experimental clearly demonstrates that the approach
performs very well. This is largely due to the T-tree data structure which:
(a) facilitates vertical distribution of the input dataset, and (b) readily lends
itself to distribution/parallelization. Note also that, for DATA-VP, as further
processes are added, the increasing overhead of messaging more than outweighs
any gain from using additional processes, so that distribution/parallelization
becomes counter productive.

6.6 Summary

In this Section we considered a technique (DATA-VP) for distributed (and paral-
lel) Association Rule Mining that makes use of a vertical partitioning technique
to distribute the input data amongst a number of agents. The proposed vertical
partitioning is facilitated by the T-tree data structure, and an associated min-
ing algorithm (Apriori-T), that allows for computationally effective distributed/
parallel ARM when employed on EMADS.

The aim has been to identify methods that will enable efficient counting
of frequent sets in cases where the data is much too large to be contained in
primary memory, and also where the density of the data means that the number
of candidates to be considered becomes very large.

An MADM method for distributed/ ARM has been described. The advan-
tage of this approach is that it allows both the original data to be partitioned
into more manageable subsets, and also partitions the candidate sets to be
counted. The latter results in both lower memory requirements and also faster
counting.

The reported experimental results show that the Tree Partitioning method
described is extremely effective in limiting the maximal memory requirements
of the algorithm, while its execution time scales only slowly and linearly with

69

increasing data dimensions. Its overall performance, both in execution time
and especially in memory requirements, is significantly better than that ob-
tained from either simple data segmentation or a method that aims to complete
counting in only two passes of the data.

7 CLASSIFIER GENERATION

To further illustrate the features of EMADS a classifier generation scenario is
considered in this Section. The point of this section is to show how MADM
can be used to generate a number of classifiers from which the “best” can be
selected.

MAS has some particular advantages to offer with respect to KDD, in the
context of sharing resources and expertise. Namely that the MAS approach
provides greater end user access to data mining techniques. MAS can make use
of algorithms without necessitating their transfer to users, thus contributing to
the preservation of intellectual property rights.

This Section considers a collection of classifier data mining agents applied
to a number of standard “benchmark” data sets held by data agents.

The Section is organised as follows. A brief review of some background on
data classification is presented in Subsection 7.1. The operation of EMADS
with respect to classification is illustrated in Subsection 7.2. Experimentation
and analysis are described in Subsection 7.3. A summary is given in Subsection
7.4.

7.1 Background

This scenario is a classification scenario where the objective is to generate a
classifier (predictor) fitted to a specified dataset. It has been well established
within the data mining research community, that there is no single best clas-
sification algorithm. The aim of this third scenario is therefore to identify a
“best classifier given a particular dataset. Best in this context is measured in
terms of classification accuracy. The experiment thus not only serves to illus-
trate the advantageous of EMADS, but also provides an interesting comparison
of a variety of classification techniques and algorithms.

7.2 EMADS Operation: Classifier Generation

Conceptually the nature of EMADS data mining requests, that may be posted
by EMADS users, is extensive. In the context of classification, the following
types of generic request are supported:

• Find the “best” classifier (to be used by the requester at some later date
in off line mode) for a data set provided by the user.

• Find the “best” classifier for the indicated data set (i.e. provided by some
other EMADS participant).

70

Figure 20: Classifier Generation EMADS Model Architecture

To obtain the “best” classifier EMADS will attempt to access and communi-
cate with as many classifier generator data mining agents as possible and select
the best result.

Figure 20 gives an overview of the the assumed distribution of agents and
shared data across the network. The figure also shows the JADE house keeping
agents (AMS & DF). All agents described here have been implemented using the
EMADS framework. The principal advantage of this architecture is that it does
not overload a single host machine, but distributes the processing load among
multiple machines. The results obtained can be correlated with one another in
order to achieve computationally efficient analysis at a distributed global level.

The scenario is that of an end user who wishes to obtain a “best” classifier
founded on a given, pre-labelled, data set; which can then be applied to further
unlabelled data. The assumption is that the given data set is binary valued and
that the user requires a single-label, as opposed to a multi-labelled, classifier.
The request is made using the individual’s user agent which in turn will spawn
an appropriate task agent.

For this scenario the task agent identifies mining agents that hold single
labelled classifier generators that take binary valued data as input. Each of
these mining agents is then accessed and a classifier, together with an accuracy
estimate, requested. The task agent then selects the classifier with the best
accuracy and returns this to the user agent.

The data mining agent wrapper in this case provides the interface that allows
input for: (i) the data; and (ii) the number of class attributes (a value that the
mining agent cannot currently deduce for itself) while the user agent interface
allows input for threshold values (such as support and confidence values). The

71

Figure 21: Classification Task Sequence Diagram.

output is a classifier together with an accuracy measure. To obtain the accuracy
measures the classifier generator (data mining agent) builds the classifier using
the first half of the input data as the “training” set and the second half of the
data as the “test” set. An alternative approach might have been to use Ten
Cross Validation (TCV) to identify the best accuracy.

From the literature there are many reported techniques available for gen-
erating classifiers. For this scenario, eight different algorithm implementations
were used 3:

1. FOIL (First Order Inductive Learner) [85] the well established inductive
learning algorithm for generating Classification Association Rules (CARs).

2. TFPC (Total From Partial Classification) CAR generator [28] founded on
the P- and T-tree set enumeration tree data structures.

3. PRM (Predictive Rule Mining) [109] an extension of FOIL.

4. CPAR (Classification based on Predictive Association Rules) [109] a fur-
ther development from FOIL and PRM.

5. IGDT (Information Gain Decision Tree) classifier, an implementation of
the well established decision tree based classifier using most information
gain as the “splitting criteria”.

3taken from the LUCS-KDD repository at http :

//www.csc.liv.ac.uk/f̃rans/KDD/Software/

72

Data Set Classifier Accuracy Gen. Time (sec)
connect4.D129.N67557.C3 RDT 79.76 502.65
adult.D97.N48842.C2 IGDT 86.05 86.17
letRecog.D106.N20000.C26 RDT 91.79 31.52
anneal.D73.N898.C6 FOIL 98.44 5.82
breast.D20.N699.C2 IGDT 93.98 1.28
congres.D34.N435.C2 RDT 100 3.69
cylBands.D124.N540.C2 RDT 97.78 41.9
dematology.D49.N366.C6 RDT 96.17 11.28
heart.D52.N303.C5 RDT 96.02 3.04
auto.D137.N205.C7 IGDT 76.47 12.17
penDigits.D89.N10992.C10 RDT 99.18 13.77
soybean-large.D118.N683.C19 RDT 98.83 13.22
waveform.D101.N5000.C3 RDT 96.81 11.97

Table 9: Classification Results

6. RDT (Random Decision Tree) classifier, a decision tree based classifier
that uses most frequent current attribute as the “splitting criteria” (so
not really random).

7. CMAR (Classification based on Multiple Association Rules) is a Classifi-
cation Association Rule Mining (CARM) algorithm [65] .

8. CBA (Classification Based on Associations) is a CARM algorithm [67].

These were placed within an appropriately defined tool wrapper to produce
eight (single label binary data classifier generator) data mining agents. This
was a trivial operation indicating the versatility of the wrapper concept.

Thus each mining agent’s basic function is to generate a classification model
using its own classifier and provide this to the task agent. The task agent
then evaluates all the classifier models and chooses the most accurate model
to be returned to the user agent. The negotiation process amongst the agents
is represented by the sequence diagram given in Figure 21 (the figure assumes
that an appropriate data agent has ready been created). In the figure includes
N classification agents. The sequence of events commences with a user agent
which spawns a (classification) task agent, which in turn announces itself to the
DF agent. The DF agent returns a list of classifier data mining agents that
can potentially be used to generate the desired classifier. The task agent then
contacts these data mining agents who each generate a classifier and return
statistical information regarding the accuracy of their classifier. The task agent
selects the data mining agent that has produced the best accuracy and requests
the associated classifier, this is then passed back to the user agent.

Note that the users make the data that they desire to be mined (classified)
available by launching their own data agents (which in turn publish their name
and description using the DF agent as described above).

73

7.3 Experimentation and Analysis

To evaluate the classification scenario, as described above, a sequence of data
sets taken from the UCI machine learning data repository [17] were used (pre-
processed by data agents so that they were discretized/normalized into a binary
valued format). The results are presented in Table 1. Each row in the table
represents a particular request and gives the name of the data set, the selected
best algorithm as identified from the interaction between the EMADS agents,
the resulting best accuracy and the total EMADS execution time from creation
of the initial task agent to the final “best classifier being returned to the user
agent. The naming convention used in the Table is that: D equals the number
of attributes (after discretization/normalization), N the number of records and
C the number of classes (although EMADS has no requirement for the adoption
of this convention).

The results demonstrate firstly that EMADS can usefully be adopted to
produces a best classifier from a selection of classifiers. Secondly that operation
of EMADS is not significantly hindered by agent communication overheads,
although this has some effect. Generation time, in most cases does not seem to
be an issue, so further classifier generator mining agents could easily be added.
The results also reinforce the often observed phenomena that there is no single
best classifier generator suited to all kinds of data set.

7.4 Summary

This Section described the illustration of EMADS in the context of a classifi-
cation scenario. The scenario is that of an end user who wishes to obtain a
“best” classifier founded on a given, pre-labelled, data set; which can then be
applied to further unlabelled data. The scenario demonstrated that EMADS
can usefully be adopted to produces a best classifier from a selection of classi-
fiers. The scenario also illustration some of the principal advantages offered by
EMADS include: experience and resource sharing, flexibility and extendibility,
and intellectual property rights.

8 CONCLUSION

The research described in this chapter presents an MADM vision, and describes
a multi-agent framework for generic data mining (EMADS). The principal ad-
vantages envisaged are those of experience and resource sharing, flexibility and
extendibility, and (to an extent) protection of privacy and intellectual prop-
erty rights. To investigate and evaluate the approach, the EMADS framework
was developed. Wrappers have been used to incorporate existing software into
EMADS. Experience indicates that, given an appropriate wrapper, existing data
mining software can be very easily packaged to become an EMADS data mining
agent. The use of EMADS was illustrated using a number different of scenarios.

The EMADS requirements, architecture, design and implementation were
discussed in detail. EMADS is envisioned as a collection of data sources scat-

74

tered over a network and a group of DM agents that allow a user to data
mine those data sources without needing to know the location of the supporting
data, nor how the various agents interact. Additionally the expectation is that
EMADS will “grow” as individual users contribute data and DM algorithms.

In EMADS, as with most MAS, individual agents have different functional-
ity; the system currently comprises: data agents, user agents, task agents, data
mining agents and a number of “house-keeping” agents. Users of EMADS may
be data providers, DM algorithm contributors or miners of data. The indepen-
dence of EMADS from any particular DM function, in conjunction with the
object oriented design adopted, ensures the system’s capability to incorporate
and use new data mining algorithms and tools.

EMADS Extendibility is also discussed. The expectation is that EMADS
will “grow” as individual users contribute data and DM algorithms. The incor-
poration of data and data mining software is facilitated by a system of wrappers
which allows for easy extendibility of the system.

The independence of EMADS from any particular DM function, in conjunc-
tion with the object oriented design adopted, ensures the system’s capability
to incorporate and use new data mining algorithms and tools. As discussed
above, introducing a new technique requires the sub-classing of the appropriate
abstract class or the implementation of an abstract interface and the encapsula-
tion of the tool within an object that adheres to the minimal interface. In fact,
most of the existing implemented algorithms have similar interfaces already.
This “plug-and-play” characteristic makes EMADS a powerful and extensible
DM facility. This feature allows developers to employ their pre-implemented
programs within EMADS agents.

Meta ARM scenario represented a novel extension of ARM where a meta set
of frequent itemsets from a collection of component sets, which have been gen-
erated in an autonomous manner without centralised control, is built. This type
of conglomerate was termed meta ARM so as to distinguish it from a number
of other related data mining research areas such as incremental and distributed
ARM. A number of meta ARM algorithms were described and compared: (i)
Bench Mark, (ii) Apriori, (iii) Brute Force, (iv) Hybrid 1 and (v) Hybrid 2.
The described experiments indicated, at least with respect to Meta ARM, that
EMADS offers positive advantages in that all the Meta ARM algorithms were
more computationally efficient than the bench mark algorithm.

The second scenario considering a technique (DATA-VP) for distributed
(and parallel) Association Rule Mining that made use of a vertical partition-
ing technique to distribute the input data amongst a number of agents. The
proposed vertical partitioning was facilitated by a set enumeration tree data
structure (the T-tree), and an associated mining algorithm (Apriori-T), that
allows for computationally effective distributed/parallel ARM when employed
on EMADS. The experimental results obtained showed that the Tree Partition-
ing method described was extremely effective in limiting the maximal memory
requirements of the algorithm, while its execution time scales only slowly and lin-
early with increasing data dimensions. The scenario demonstrated how EMADS
can be used to achieve distributed/parallel data mining in a MADM context.

75

The use of EMADS was also illustrated with using a third classification sce-
nario. The results demonstrated firstly that EMADS can usefully be adopted
to produces a best classifier from a selection of classifiers. Secondly that the
operation of EMADS is not significantly hindered by agent communication over-
heads, although this has some effect. Generation time, in most cases does not
seem to be an issue, so further classifier generator mining agents could easily
be added. The results also reinforce the often observed phenomena that there
is no single best classifier generator suited to all kinds of data set.

In conclusion a good foundation has been established for both data mining
research and genuine application based MADM. It is acknowledged that the cur-
rent functionality of EMADS is limited to classification and ARM. The research
team is at present working towards increasing the diversity of mining tasks that
EMADS can address. There are many directions in which the work can (and
is being) taken forward. One interesting direction is to build on the wealth of
distributed data mining research that is currently available and progress this in
a MAS context. The research team is also enhancing the systems robustness so
as to make it publicly available. It is hoped that once the system is live other
interested data mining practitioners will be prepared to contribute algorithms
and data.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules
between sets of items in large databases. In Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data, 1993.

[2] R. Agrawal, M. Mehta, J. Shafer, R. Srikant, A. Arning, and T. Bollinger.
The Quest Data Mining System. Proceedings 2nd Int. Conf. Knowledge
Discovery and Data Mining, (KDD1996), 1996.

[3] R. Agrawal and G. Psaila. Active Data Mining. Proceedings 1st Int. Conf.
Knowledge Discovery in Data Mining, AAAI, 1995.

[4] R. Agrawal and R. Srikant. Fast algorithm for mining association rules.
In: Bocca, J.B., Jarke, M., and Zaniolo, C. (Eds.): Proceedings of the 20th
International Conference on Very Large Data Bases, Santiago de Chile,
Chile, 1994.

[5] K. A. Albashiri, F. P. Coenen, and P. Leng. Agent Based Frequent Set
Meta Mining: Introducing EMADS. Artificial Intelligence in Theory and
Practice II, IFIP’2008, Springer, London, UK, 2008.

[6] K. A. Albashiri, F. P. Coenen, and P. Leng. EMADS: An Extendible
Multi-Agent Data Miner, volume XXIII. Research and Development in
Intelligent Systems, AI’2008, Springer, London, UK, 2008.

[7] K. A. Albashiri, F. P. Coenen, P. Leng, and R. Sanderson. Frequent Set
Meta Mining: Towards Multi-Agent Data Mining, volume XXIV. Research

76

and Development in Intelligent Systems, AI’2007, Springer, London, UK,
2007.

[8] W. G. Aref, M. G. lfeky, and A. K. Elmagarmid. Incremental, Online,
and Merge Mining of Partial Periodic Patterns in Time-Series Databases,
volume 16(3). IEEE Transaction in Knowledge and Data Engineering,
2004.

[9] H. Baazaoui, S. Faiz, R. Ben Hamed, and H. Ben Ghezala. A Framework
for data mining based multi-agent: an application to spatial data. 3rd
World Enformatika Conference WEC’05, Avril, 2005, Istanbu, 2005.

[10] B. Babcock, S. Babuand M. Datar, R. Motwani, and J. Widom. Models
and Issues in Data Stream Systems. In Proceedings of the 21th ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems (PODS), 2002.

[11] S. Bailey, R. Grossman, H. Sivakumar, and A. Turinsky. Papyrus: a sys-
tem for data mining over local and wide area clusters and super-clusters.
In Proceedings Conference on Supercomputing, ACM Press, 1999.

[12] Julien Balter, Annick Labarre-Vila, Danielle Zibelin, and Catherine Gar-
bay. A Platform Integrating Knowledge and Data Management for EMG
Studies. AIME, 2001.

[13] J. Baumann, F. Hohl, K. Rothermel, and M. StraBer. Mole - Concepts of
a Mobile Agent System. World Wide Web,1(3), 1998.

[14] C. Baumer and T. Magedanz. GrassHopper 2, an intelligent mobile agent
platform written in 100% pure Java. In Sahin Albayrak, editor, Proceed-
ings of the 3rd International Workshop on Intelligent Agents for Telecom-
munication Applications (IATA-99), Springer 1699 of LNAI, Berlin, Ger-
many, 1999.

[15] F. Bellifemine, G. Cairo, and D. Greenwood. Developing Multi-Agent Sys-
tems with Jade. Wiley Series in Agent Technology, ISBN: 9780470057476,
2007.

[16] F. Bellifemine, A. Poggi, and G. Rimassi. JADE: A FIPA-Compliant agent
framework. Proceedings Practical Applications of Intelligent Agents and
Multi-Agents, 1999. http://www.jade.tilab.com.

[17] C. L. Blake and C. J. Merz. UCI repository of machine learning databases.
Irvine, CA: University of California, Department of Information and Com-
puter Science, 1998. http://archive.ics.uci.edu/ml/.

[18] R. H. Bordini, L. Braubach, M. Dastani, A. E. F. Seghrouchni, J. J. G.
Sanz, G. OHare J. Leite, A. Pokahr, and A. Ricci. A survey of program-
ming languages and platforms for multi-agent systems. In Proceedings of
the IEEE International Conference on Cognitive Informatics, 2006.

77

[19] R Bose and V Sugumaran. IDM: An Intelligent Software Agent Based
Data Mining Environment. In Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, 1998.

[20] J. A. Bota, A. F. Gmez-Skarmeta, M. Valds, and A. Padilla. Metala. A
meta-learning architecture. Fuzzy Days, 2001.

[21] L. Cao, C. Luo, and C. Zhang. Agent-Mining Interaction: An Emerging
Area. AIS-ADM07, LNAI 4476, Springer - Verlag, Berlin, Germany, 2007.

[22] B. Chandrasekaran and T. R. Johnson. Generic tasks and task structures:
History, critique and new directions. In J. M. David and J. P. Krivine and
R. Simmons (Ed.), Second Generation Expert Systems, Springer - Verlag,
Berlin, Germany, 1993.

[23] D. Cheung and Y. Xiao. Effect of Data Distribution in Parallel Mining of
Associations. Proceedings in Data Mining and Knowledge Discovery 3(3),
1999.

[24] Krzysztof Chmiel, Dominik Tomiak, Maciej Gawinecki, Pawel Karcz-
marek, Michal Szymczak, and Marcin Paprzycki. Testing the Efficiency of
JADE Agent Platform. In Proceedings of the Third International Sympo-
sium on Parallel and Distributed Computing/Third International Work-
shop on Algorithms, Models and Tools for Parallel Computing on Hetero-
geneous Networks (ISPDC/HeteroPar’04), 2004.

[25] G. Christopher and B. S. Marks. Extensible Multi-Agent
System for Heterogeneous Database Association Rule Min-
ing and Unification. Master’s thesis, Air University, 1994.
http://people.cis.ksu.edu/s̃deloach/publications/Thesis/marks.pdf.

[26] F. Coenen and P. Leng. Optimising Association Rule Algorithms Us-
ing Itemset Ordering. Research and Development in Intelligent Systems
XVIII: Proceedings ES2001 Conference, eds M Bramer, F Coenen and A
Preece, Springer, 2001.

[27] F. Coenen, P. Leng, and S. Ahmed. T-Trees, Vertical Partitioning, and
Distributed Association Rule Mining. Proceedings IEEE Int. Conf. on
Data Mining (ICDM 2003), Florida, eds. X Wu, A Tuzhilin and J Shavlik:
IEEE Press, 2003.

[28] F. Coenen, P. Leng, and L. Zhang. Threshold Tuning for Improved Clas-
sification Association Rule Mining. Proceeding PAKDD’05, LNAI3158,
Springer, 2005.

[29] F. P. Coenen, P. Leng, and G. Goulbourne. Tree Structures for Mining
Association Rules, volume 8(1). Journal of Data Mining and Knowledge
Discovery, 2004.

78

[30] Josenildo Costa da Silva, Matthias Klusch, Stefano Lodi, and Gianluca
Moro. Privacy-preserving agent-based distributed data clustering. Web
Intelligence and Agent Systems 4(2), 2006.

[31] S.A. DeLoach and M. Wood. Developing Multiagent Systems with agent-
Tool. In C. Castelfranchi and Y. Lesprance, editors, Intelligent Agents
VII. Agent Theories, Architectures, and Languages - 7th International
Workshop, ATAL-2000, Boston, MA, USA, 2000.

[32] Giuseppe Di Fatta and Giancarlo Fortino. A customizable multi-agent sys-
tem for distributed data mining. Proceedings of the 2007 ACM symposium
on applied computing, 2007.

[33] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Ad-
vances in Knowledge Discovery and Data Mining. the Association for the
Advancement of Artificial Intelligence (AAAI) Press/MIT Press, 1996.

[34] Foundation for Intelligent Physical Agents. FIPA
2002 Specification. Geneva, Switzerland, 2002.
http://www.fipa.org/specifications/index.html.

[35] Y. Fu, W. Ke, and J. Mostafa. Automated Text Classification Using a
Multi-Agent. Proceedings of the 5th ACM/IEEE-CS Joint Conference on
Publication, 2005.

[36] A. Garro and L. Palopoli. An XML Multi-agent System for E-learning
and Skill Management. Agent Technologies, Infrastructures, Tools, and
Applications for E-Services, 2002.

[37] M.R. Genesereth and S.P. Ketchpel. Software Agents. Communications
of the ACM, 37(7), 1994.

[38] C. Giannella, R. Bhargava, and R. H. Kargupta. Multi-agent Systems and
Distributed Data Mining. Lecture Notes in Computer Science, 2004, ISSU
3191, 2004.

[39] V. Gorodetsky, O. Karsaev, and V. Samoilov. Infrastructural Issues for
Agent-Based Distributed Learning. Proceedings of IADM, IEEE Computer
Society Press, 2006.

[40] V. Gorodetsky, O. Karsaeyv, and V. Samoilov. Multi-agent technology
for distributed data mining and classification. In Proceedings of IAT Int.
Conference on Intelligent Agent Technology, IEEE/WIC, 2003.

[41] G. Goulbourne, F. P. Coenen, and P. Leng. Algorithms for Comput-
ing Association Rules Using A Partial-Support Tree. Proceedings ES99,
Springer, London, UK, 1999.

[42] R. Grossman and A. Turinsky. A framework for finding distributed data
mining strategies that are intermediate between centralized strategies and
in-place strategies. In KDD Workshop on Distributed Data Mining, 2000.

79

[43] E. H. Han, G. Karypis, and V. Kumar. Scalable Parallel Data Mining for
Association Rules. Proceedings ACM-SIGMOD, Int. Conf. on Manage-
ment of Data, ACM Press, 1997.

[44] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufman Publishers, San Francisco, CA, (Second Edition), 2006.

[45] J. Han, J. Pei, and Y. Yiwen. Mining Frequent Patterns Without Can-
didate Generation. Proceedings ACM-SIGMOD International Conference
on Management of Data, 2000.

[46] D. Hand, Mannila H., and P. Smyth. Principals of Data Mining. MIT
press, Cambridge, Mass, 2001.

[47] DJ Hand. Construction and Assessment of Classification Rules. John
Wiley and Sons, 1997.

[48] T. Hastie and R. Tibshirani. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer - Verlag, Berlin, Germany,
2001.

[49] JDM2. Java Data Mining (JDM). SUN’s Java Commu-
nity Process listed as JSR-73 and JSR-247 for JDM 2.0, 1995.
http://jcp.org/en/jsr/detail?id=73.

[50] N. Jiarui. A human-friendly MAS for mining stock data. Proceedings of
the IEEE International conference on Web Intelligence, Hong Kong, 2006.

[51] M. Kamber, L. Winstone, G. Wan, and S. Shanand H. Jiawei. Generaliza-
tion and Decision Tree Induction: Efficient Classification in Data Mining.
Proceedings of the Seventh International Workshop on Research Issues in
Data Engineering, 1997.

[52] H. Kargupta, R. Bhargava, K. Liu, M. Powers, P. Blair, and M. Klein.
VEDAS: A Mobile Distributed Data Stream Mining System for Real-Time
Vehicle Monitoring. In Proceedings of the 2004 SIAM International Con-
ference on Data Mining, 2004.

[53] H. Kargupta, Byung-Hoon, and et al. Collective Data Mining: A New
Perspective Toward Distributed Data Mining. Advances in Distributed
and Parallel Knowledge Discovery, MIT/AAAI Press, 1999.

[54] H Kargupta and P. Chan. Advances in Distributed and Parallel Knowledge
Discovery. AAAI press, Menlo Park, CA, 2000.

[55] H. Kargupta, I. Hamzaoglu, and B. Stafford. Scalable, Distributed Data
Mining Using an Agent Based Architecture. Proceedings of Knowledge
Discovery and Data Mining, AAAI Press, 1997.

80

[56] H Kargupta and K. Sivakumar. Existential Pleasures of Distributed Data
Mining. In Data Mining: Next Generation Challenges and Future Direc-
tions. edited by H. Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha,
MIT/AAAI Press, 2004.

[57] T. Kawamura, N. Yoshioka, T. Hasegawa, A. Ohsuga, and S. Honiden.
Bee-gent : Bonding and Encapsulation Enhancement Agent Framework
for Development of Distributed Systems. Proceedings of the 6th Asia-
Pacific Software Engneering Conference, 1999.

[58] M. Kaya and R. Alhajj. Fuzzy OLAP association rules mining-based mod-
ular reinforcement learning approach for multiagent systems, volume 35.
IEEE Transactions on Systems, Man and Cybernetics, Part B, Issue 2,
2005.

[59] B. Kegl and G. Lapalme. Performance Evaluation of an Agent Based
Distributed Data Mining System. AI 2005, LNAI 3501, Springer - Verlag
Berlin, Heidelberg, Germany, 2005.

[60] D. Kerr, D. O’Sullivan, R. Evans, R. Richardson, and F. Somers. Ex-
periences using Intelligent Agent Technologies as a Unifying Approach to
Network and Service Management. Proceedings of ISN 98, Antwerp, Bel-
gium, 1998.

[61] M. Klusch, S. Lodi, and M. Gianluca. The role of agents in distributed data
mining: issues and benefits. Proceedings of the IEEE/WIC International
Conference on Intelligent Agent Technology (IAT), 2003.

[62] M. Klusch, S. Lodi, and G. Moro. Agent-based Distributed Data Min-
ing: The KDEC Scheme. Intelligent Information Agents The AgentLink
Perspective. Lecture Notes in Computer Science 2586, Springer - Verlag,
Berlin, Germany, 2003.

[63] J. L. Koh and S. F. Shieh. An efficient approach to maintaining association
rules based on adjusting FP-tree structures. Proceedings DASFAA 2004,
2004.

[64] C. K. S. Leung, Q. I. Khan, and T. Hoque. CanTree: A tree structure for
efficient incremental mining of Frequent Patterns. Proceedings The IEEE
International Conference on Data Mining (ICDM), 2005.

[65] W. Li, J. Han, and J. Pei. CMAR: Accurate and Efficient Classifica-
tion Based on Multiple Class-Association Rules. Proceedings The IEEE
International Conference on Data Mining (ICDM), 2001.

[66] X. Li, Z-H. Deng, and S-W Tang. A Fast Algorithm for Maintenance of
Association Rules in Incremental Databases. Proceedings ADMA 2006,
Springer-Verlag LNAI 4093, 2006.

81

[67] B. Liu, W. Hsu, and Y. Ma. Integrating Classification and Association
Rule Mining. Proceedings KDD-98, New York, the Association for the
Advancement of Artificial Intelligence (AAAI), 1998.

[68] P. Luo, R. Huang, Q. He, F. Lin, and Z. Shi. Execution engine of meta-
learning system for kdd in multi-agent environment. Technical report,
Institute of Computing Technology, Chinese Academy of Sciences, 2005.

[69] P. Mariano, C. Pereira A, L. Correira, R. Ribeiro, V. Abramov, N. Szirbik,
J. Goossenaerts, T. Marwala, and P. De Wilde. Simulation of a trading
multi-agent system, volume 5. IEEE Int. Conf. on Systems, Man, and
Cybernetics, Springer, London, UK, 2001.

[70] D.L. Martin, A.J. Cheyer, and D.B. Moran. The Open Agent Architec-
ture: A Framework for Building Distributed Software Systems, volume 13.
Applied Artificial Intelligence, 1998.

[71] T. Marwala and E. Hurwitz. Multi-Agent Modeling using intelligent agents
in a game of Lerpa. eprint arXiv:0706.0280, 2007.

[72] METAL. METAL Project. Esprit Project METAL (no.26.357), 2002.
http://www.metal-kdd.org.

[73] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman,
K. Kosaka, D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran,
and J. White. MASIF The OMG Mobile Agent System Interoperabil-
ity Facility. In K. Rothermel and F. Hohl, Eds. Proceedings 2nd Int.
Workshop Mobile Agents (MA ’98), Lecture Notes in Computer Science,
Springer 1477, Stuttgart, Germany, 1998.

[74] S. R. Mohan, E. K. Park, and Y. Han. Association Rule-Based Data
Mining Agents for Personalized Web Caching, volume 02. In Proceedings
of the 29th Annual international Computer Software and Applications
Conference, IEEE Computer Society, Washington, DC, 2005.

[75] H.S. Nwana, D.T. Ndumu, and L.C. Lee. ZEUS: An advanced Tool-
Kit for Engineering Distributed Mulyi-Agent Systems. In Proceedings of
PAAM98, London, U.K, 1998.

[76] Ronan Pairceir, Sally McClean, and Bryan Scotney. Discovery of multi-
level rules and exceptions from a distributed database. Proceedings of the
sixth ACM SIGKDD international conference on Knowledge discovery and
data mining, Boston, Massachusetts, United States, 2000.

[77] B. Park and H. Kargupta. Distributed Data Mining: Algorithms, Systems,
and Applications. In The Handbook of Data Mining, edited by N. Ye,
Lawrence Erlbaum Associates, 2003.

82

[78] S. Parthasarathy, M. Zaki, and W. Li. Memory Placement Techniques for
Parallel Association Mining. Proceedings 4th Int. Conf. on Knowledge
Discovery in Databases (KDD’98), AAAI Press), 1998.

[79] S. Peng, S. Mukhopadhyay, R. Raje, M. Palakal, and J. Mostafa. A
Comparison Between Single-agent and Multi-agent Classification of Doc-
uments. In Proceedings of 15th International Parallel and Distributed
Processing Symposium, 2001.

[80] D. Pop, V. Negru, and C. Sru. Multi-agent architecture for knowledge
discovery. In Proceedings of the 8th Intl. Workshop on Symbolic and
Numeric Algorithms for Scientific Computing, SYNASC, Timisoara, Ro-
mania, 2006.

[81] A. Prodromides, P. Chan, and S. Stolfo. Meta-Learning in Distributed
Data Mining Systems: Issues and Approaches. In Kargupta, H. and
Chan, P. (Eds), Advances in Distributed and Parallel Knowledge Dis-
covery. AAAI Press/The MIT Press, 2000.

[82] F. Provost. Distributed Data Mining: Scaling Up and Beyond. In Advances
in Distributed and Parallel Knowledge Discovery, edited by H. Kargupta,
A. Joshi, and K. Sivakumar, 1999.

[83] J. R. Quinlan. Induction of decision trees. Machine Learning 1(1), 1986.

[84] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann
Publishers, San Francisco, CA, USA. (ISBN 1-55860-238-0), 1993.

[85] J. R. Quinlan and R. M. Cameron-Jones. FOIL: A Midterm Report. Pro-
ceedings ECML, Vienna, Austria, 1993.

[86] I. Rudowsky. Intelligent Agents, volume 14. Communications of the As-
sociation for Information Systems, Springer, London, UK, 2004.

[87] R. Schollmeier. A Definition of Peer-to-Peer Networking for the Classi-
fication of Peer-to-Peer Architectures and Applications. Proceedings in
the First International Conference on Peer-to-Peer Computing (P2P01)
IEEE, 2001.

[88] E. Shakshuki. Methodology for Evaluating Agent Toolkits. Coding and
Computing (ITCC05), 2005.

[89] S. Sharples, C. Lindemann, and O. Waldhorst. A Multi-Agent Architecture
For Intelligent Building Sensing and Control. In International Sensor
Review Journal, Yesha, MIT/AAAI Press, 2000.

[90] Z. Shi, H. Zhang, Y. Cheng, Y. Jiang, Q. Sheng, and Z. Zhao. Mage:
An agent-oriented programming environment. In Proceedings of the IEEE
International Conference on Cognitive Informatics, 2004.

83

[91] T. Shintani and M. Kitsuregawa. Hash Based Parallel Algorithms for
Mining Association Rules. Proceedings 4th Int Conf. on Parallel and Dis-
tributed Information Systems, (PIDS’96), IEEE Computer Society Press,
1996.

[92] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1),
1993.

[93] Munindar P. Singh. Write Asynchronous, Run Synchronous. IEEE Inter-
net Computing, 3(2), 1999.

[94] S. Stolfo, A. L. Prodromidis, S. Tselepis, and W. Lee. JAM: Java Agents
for Meta-Learning over Distributed Databases. In Proceedings of the In-
ternational Conference on KnowledgeDiscovery and Data Mining, 1997.

[95] K. Sycara, A. Pannu, M. Williamson, and D. Zeng. Distributed Intelligent
Agents. IEEE Expert, 11(6), 1996.

[96] Andreas L. Symeonidis and Pericles A. Mitkas. Agent Intelligence Through
Data Mining, volume XXVI. Multi-agent Systems, Artificial Societies, and
Simulated Organizations, Hardcover ISBN: 978-0-387-24352-8, 2006.

[97] Reticular Systems. AgentBuilder - An integrated Toolkit for Construct-
ing Intelligence Software Agents. Acronymics, Inc., 1999. Available at
http://www.agentbuilder.com.

[98] M. Tamura and M. Kitsuregawa. Dynamic Load Balancing for Parallel
Association Rule Mining on Heterogeneous PC Cluster Systems. Proceed-
ings 25th VLDB Conference, Morgan Kaufman, 1999.

[99] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An efficient algorithm
for the incremental updation of association rules. Proceedings 3rd ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, 1997.

[100] S.R. Thomas. The PLACA Agent Programming Language. In M.J.
Wooldrige and N.R. Jennings (Eds.), Lecture Notes in Artificial Intel-
ligence, Springer - Verlag, Berlin, Germany, 1994.

[101] B. van Aardt and T. Marwala. A Study in a Hybrid Centralised-Swarm
Agent Community. IEEE 3rd International Conf. on Computational Cy-
bernetics, Mauritius, 2005.

[102] A. A. Veloso, W. Meira, B. de Carvalho, M.B Possas, S. Parthasarathy,
and M. J. Zaki. Mining Frequent Itemsets in Evolving Databases. Proceed-
ings Second SIAM International Conference on Data Mining (SDM’2002),
2002.

[103] Ricardo Vilalta, Christophe G. Giraud-Carrier, Pavel Brazdil, and Carlos
Soares. Using Meta-Learning to Support Data Mining. IJCSA 1(1), 2004.

84

[104] T. Wagner. An Agent-Oriented Approach to Industrial Automation Sys-
tems. Agent Technologies, Infrastructures, Tools, and Applications for
E-Services, 2002.

[105] WEKA. Data Mining Software in Java. The University of Waikato, New
Zealand, 1993. http://www.cs.waikato.ac.nz/ ml/weka/.

[106] I. Witten and E. Frank. Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufman Publishers,
San Fransisco, 1999.

[107] M. Wooldridge. An Introduction to Multi-Agent Systems. John Wiley and
Sons (Chichester, England), 2003.

[108] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang,
Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S.
Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand, and Dan Steinberg.
Top 10 Algorithms in Data Mining, Knowledge and Information Systems,
volume 14. Springer - Verlag, London Limited 2008, 2008.

[109] X. Yin and J. Han. CPAR: Classification based on Predictive Associa-
tion Rules. Proceedings SIAM Int. Conf. on Data Mining (SDM’03), San
Fransisco, CA, 2003.

[110] M. Zaki. Parallel and Distributed Association Mining: A Survey, volume
7(4). IEEE Concurrency, 1999.

[111] M. Zaki. Parallel and Distributed Association Mining: An Introduction. In
Large-Scale Parallel Data Mining (Lecture Notes in Artificial Intelligence
1759), edited by Zaki M. and Ho C.-T., Springer -Verlag, Berlin, 2000.

85

