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Abstract A classification framework for identifying correlations between 3D sur-
faces in the context of sheet metal forming, especially Asymmetric Incremental
Sheet Forming (AISF), is described. The objective is to predict “springback”, the
deformation that results as a consequence of the application of a sheet metal forming
processes. Central to the framework there are two proposed mechanisms to represent
the geometry of 3D surfaces that are compatible with the concept of classification.
The first is founded on the concept of a Local Geometry Matrix (LGM) that con-
cisely describes the geometry surrounding a location in a 3D surface. The second, is
founded on the concept of a Local Distance Measure (LDM) derived from the obser-
vation that springback is greater at locations that are away from edges and corners.
The representations have been built into a classification framework directed at the
prediction of springback values. The proposed framework and representations have
been evaluated using two surfaces, a small and a large flat-topped pyramid, and by
considering a variety of classification mechanisms and parameter settings.

1 Introduction

In sheet metal forming, especially in Asymmetric Incremental Sheet Forming
(AISF), the springback effect is a major issue. As a result of springback the actual
shape produced by the sheet metal forming process is not the same as the intended
(specified) shape. The motivation for the work described in this paper is that if we
can predict the springback we can apply a correction to the intended specification
so as minimize the springback effect. Springback is caused by a number of factors
of which the most significant is the geometry of the intended shape [1]. Further,
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springback is not distributed evenly over a given pshape; in practice springback is
more significant over flat surfaces and with respect to some geometries than others.
The solution proposed in this paper is founded on the idea of classification whereby
a classifier is trained to predict springback at individual locations. Of course, for the
classifier to operate correctly a suitable representation of the input data (the 3D sur-
face of interest) is required. Two representations are proposed. The first, the Local
Geometry Matrix (LGM) method, is founded on the idea of Local Binary Patterns
[7], and can be used to define all possible local geometries. The second, the Local
Distance Measure (LDM) method, takes into consideration the proximity of edges
and corners with respect to individual points. However, before this second repre-
sentation can be generated it is first necessary to identify the edges and corners of
interest. Thus the contributions of this paper are as follows:

1. A mechanism for describing local 3D geometries using the concept of LGMs.
2. A mechanism for detecting edges and corners in 3D surfaces.

3. A mechanism for describing local 3D geometries using the concept of LDMs
4. A classification framework for the prediction of springback.

The rest of the paper is organized as follows. In section 2 a brief overview of re-
lated work is presented. Section 3 introduces the proposed framework for spring-
back prediction, the section focuses on the classifier generation approach adopted.
The proposed representations (LGM and LDM), in the context of the framework,
are presented and discussed in Sections 3.2 and 3.3. The evaluation of the proposed
framework using two surfaces, a small and a large flat topped pyramids, is presented
in Section 4 in the context of a number classification paradigms and a variety of pa-
rameters. Some conclusions are then presented in Section 5.

2 Overview of related work

Asymmetric Incremental Sheet Forming (AISF) is a process for forming sheet metal
parts. The potential advantage offered by processes such as AISF is a reduction in
manufacturing costs and time. A comprehensive overview of AISF can be found
in [9]. However, as already noted in the introduction to this paper, the main limi-
tations of the AISF process is the springback effect. Springback can be defined as
the elastic distortion that occurs as a result of the forming process so that the shape
produced is not the desired shape. The springback effect is related to both manu-
facturing parameters and material properties [5, 15, 12]. There has been substantial
reported work on springback characterization, analysis and prediction. Numerical
and experimental methods have been proposed to predict springback in the con-
text of sheet metal forming processes. The main numerical method used to anal-
yse and predict springback for sheet metal forming is the Finite Element Method
(FEM) [3, 14, 18]. Using FEM, the factors that affect the springback may be used
to create a simulation model [8]. Although FEM provides a flexible simulation
environment (parameters can be easily modified) FEM is an expensive and time-
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consuming option [17, 5]. Furthermore, FEM is not an accurate prediction method
due to the simplification assumptions that must be made [2, 3, 15]. Artificial Neural
Network (ANNs) are often quoted as being a good alternative to FEM. ANNSs are
the most popular experimental method that has been adopted for springback pre-
diction. Some practitioners have used the FEM model to provide the ANN with the
required input data to support the training of the network [15, 11]. An alternative ap-
proach described in [13] used a genetic algorithm in order to optimize the weights
for the nodes of the ANN for the purpose of springback prediction. Nevertheless,
computational resources requirements remain the main limitation of ANNs [13, 6].
To the best knowledge of the authors there is no reported work on the application of
classification techniques (or data mining techniques in general) for the purpose of
predicting springback in the context of AISF.

3 Overview Of The Proposed Springback Prediction Framework

The input to proposed springback prediction framework is a coordinate cloud de-
scribing the desired 3D shape (this is typically extracted from a CAD system). The
proposed framework comprises two main components: (i) data preparation and (ii)
classification. During the data preparation stage the input cloud is translated into
the desired representation. During the classification stage a classifier is applied to
the input data to produce springback predictions. The classifier was generated in
the standard manner using labelled input data. The classification stage is thus not of
specific interest with respect to this paper. The novel elements of this paper are the
proposed geometry representation techniques used as input to the classifier. In the
context of training the desired classifier the process commences with recasting the
input data (the before cloud) into an appropriate format to which further processing
can be applied. A grid format is proposed for this purpose. The generation of this
grid format is discussed in details in Section 3.1. As noted above classification gen-
eration requires a labelled training set, to create a labelled training set we need to
compare the before cloud with the cloud produced as a result of applying the AISF
(the after cloud)!. A description of the mechanism used to calculate the labels (error
values) so as to populate a training set is presented in Section 3.1. The next stage
is to represent the geometry associated with each grid point in the before coordi-
nate grid. As already noted above, two alternative representations are considered in
this paper: the LGM and the LDM methods. These are described in some detail in
Sections 3.2 and 3.3, respectively.

! This is obtained using the GOM (Gesellschaft fr Optische Messtechnik) optical measuring tool.
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3.1 Grid Representation

The proposed process, as introduced above, commences with before and after coor-
dinate clouds (Cj, and C,,). Cjy, is the point cloud for the desired shape (T), while
C,u is the point cloud for the actual shape (T’) produced as a result of application
of the AISF process. A cloud point P, is referenced in terms of a Euclidean coordi-
nate system. Both clouds, C;, and C,,,, are translated into a grid representation of
the form shown in Figure 1. The size of the grid is defined in terms of a value D
which represents the length of a grid square. Each grid square is referenced by the
x-y coordinates of its centre point. The z value associated with each grid square is
obtained by averaging the z coordinates for all the points located within it. Conse-
quently, each grid square is represented by a central representative point described
in terms of X, y, and z coordinates.

Y-Axis
T TeTy
", — —t—iy
o 1——g——9 | X-Axis
——a——h C..
ID l Po

Fig. 1: The grid representation for the Cj, and
Cyour coordinate clouds Fig. 2: Springback error calculation

The error label to be associated with each C;, grid point is calculated by deter-
mining the distance along the normal at each grid point from where it leaves the
Ci, shape to where it intersects the C,,; shape as shown in Figure 2. The calculation
is founded on vectors and plane geometry theory. Equation (1) shows how the dis-
tances between C;, and C,,; surfaces are calculated; where Py and P; are described
in terms of X, y and z coordinates, and the normal to the C;, plane is given by the
vector (a,b,c).
la(x1 —x0) +b(y1 —yo) +c(z1 — 20)]

(@ +b*+c?)
Thus two vectors, separated by 90°, adjoining a given centre point to two adjacent
points are used to calculate a normal. Given that each point (except at corners and
edges) has four neighbours (north, east, south and west) four normals can be calcu-
lated. The average of these four normals is used as the normal to a point.

E= (1)
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Table 2: Sample training data for the small
Table 1: Sample training data for the small pyramid when L = 3 using both the LGM and
pyramid when L = 3 using LGM method LDM methods

(21]22]Z3]74]Z5]726] 27| Z3] E | (21]22]Z3]|74]|Z5]76]27]Z3]Dist.| E |

31619 (12|15(18(21{24|30 147 (10[13[{16]19]22] 26 |28
215]8|11|14(17{20{23|28 147 (10[13[{16]19|22] 25 |28
31619 (12|15(18(21{24|30 2|5]|8|11(14(17{20{23| 25 |28
215]8|11|14(17{20{23|28 315]8|12(15(18(21(24| 25 |29
2|5|8(11{14]17|20|23|30 316|8|12(15(18(21(24| 25 |28
114]7(10(13[16[19(22|28 215]8|11(14(17{20(23| 25 |28

3.2 Local Geometry Matrix (LGM)

The first shape description mechanism presented in this paper is the Local Geome-
try Matrix (LGM) method. The concept of LGMs is founded on the idea of Local
Binary Patterns (LBPs). A local geometry matric is a 3 x 3 grid describing the lo-
cations surrounding an individual point (the point of interest is at the centre of the
matrix). There are two different options for calculating the values that might be
stored in an LGM (Figure 3). The first option is the difference in height (z differ-
ence) between the centre point Py and each of its eight neighbours P;. The second is
to store the angle, above or below the horizontal, of the lines connecting Py and each
P;. Whatever the case at the end of the process we have a LGM for each grid point
which can be combined with an error value (calculated as described above) so that
each grid point forms a record in the training set. Because we are using classifiers
that operate with binary valued data we needed to discretise the training data so that
each value is replaced by one of L qualitative labels used to describes the nature of
the slope in each of the eight directions. An example set of qualitative labels might
be {negative;level; positive}. Using this labelling, and by ordering the matrix el-
ements (grid points) in a clockwise direction from the top left, a record might be
described as follows:

< positive; positive; positive;level;negative; negative;negative;level, E >

Where E is the error value associated with the grid point that the record describes.
Table 1 shows a sample set of the training data using LGM for the small pyramid
when L = 3. The authors experiments with a number of different values for L as
reported later in Section 4 of this paper.

3.3 Local Distance Mechanism (LDM)

The second shape description method presented in this paper is the Local Distance
Measure (LDM) method. This is founded on the observation that the springback
tends to be greater further from edges. The idea is therefore to describe each grid
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Fig. 3: LGM Representation

square centre in terms of its distance from its nearest edge. This first necessitates
identifying the edges in the input grid. Edge detection was conducted by first divid-
ing Cj, into K regions using the well know K-means algorithm (K = 4 was empir-
ically chosen and used with respect to the evaluation described later in this paper).
The average angular value for the normals in each region was first determined. The
angular difference between the normal at each centre point and the average for the
region in which the point was located was then calculated. If the angular differ-
ence was greater than some tolerance measure, o, the point was considered to be
located on an edge. The process is illustrated in Figure 4. Once the edges have been
detected, the minimum distance between each grid point and its closest edge was
determined simply by adopting a “region growing” process. The result is a set of
records each describing a grid square location in terms of its edge distance and its
associated error label (springback). Clearly, there are two main factors that affect
the process of edge detection:

Table 3: Sample training data for the small
pyramid when L = 3 using LDM method
24 30
23 28
24 30
23 28
24 28
23 29
Fig. 4: Edge detection 22 30
22 28

e The tolerance value ¢: As o is increased, the number of points identified as
edge points decreases. Conversely as ¢ is decreased, the number of points iden-
tified as edge points increases. This is illustrated in Figures 5 and 6 where it can
be seen that more points are identified as edge points when =15 than when o=5.
Therefore, ¢ should be carefully chosen.
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e The grid size (D): The greater the grid size the more difficult it is to detect
edges. For a relatively large value of D, the grid square will cover a larger area.
Therefore the normals are more likely to be parallel than if a small value of D is
used. This is illustrated in Figures 7 and 8 where o has been kept constant (0=9)
and D set at 5 and 15 respectively. In Figure 7 the edges are easily detected as
there is an obvious variation in the angular differences. However, in Figure 8 all
the points are identified as edges as all the normals are different (by at least a ©).
Table 3 introduces a sample of the training data set for the small pyramid using
LDM where each value for each attribute is replaced by one of the qualitative
labels for L = 3. Table 2 presents another example for the training data set, for
the same small pyramid, using the same number of labels (L = 3) where LDM
and LGM methods are used together.

Fig. 5: Large pyramid with D=5 and =5 Fig. 6: Large pyramid with D=5 and =15

Fig. 7: Small pyramid with D=5 and 6=9 Fig. 8: Small pyramid with D=15 and 6=9
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4 Evaluation

To evaluate the proposed springback prediction framework two sample surfaces
were used, a small and a large flat topped pyramid. The small pyramid base size is
140 mm whereas the base size for the large pyramid is 350 mm. Both were defined in
terms of before coordinate clouds extracted from a CAD system. These shapes were
then manufactured 2 in steel using AISF. After clouds were then generated from the
manufactured parts. These before and after clouds were then processed as described
above to generate a number of data sets to be used for evaluation purposes. Broadly
these data sets can be divided into three categories according to the representation
used: (i) LGM, (ii) LDM and (iii) a combination of LGM and LDM. Six sets of
experiments were conducted as follows. The first two sets of experiments, reported
in Section 4.1 and 4.2, were intended to determine the performance of the proposed
approach when applied individually to the small and large pyramids. The next two
sets of experiments, reported in Sections 4.3 and 4.4, were designed to determine
whether a classifier trained on the small pyramid could be applied to the large pyra-
mid and vice-versa. The significance of these last two experiments was that it would
serve to go some way to establishing whether we could produce a generic classifier
trained from some appropriate shape that could be applied to other shapes. Some
statistics concerning the data sets are presented in Table 4. The results from these
four experiments are reported in the following four subsections. Sub-sections 4.5
and 4.6 then analyse the effect of using different values for D (grid size) and L
(number of qualitative labels). For the experiments three different classifier genera-
tors were considered: (i) Bayes [10], (ii) JRIP [4] and C4.5 [16]. A range of values
of L of 3, 5 and 7 was used; and a range of values for D of 5, 10, 15 and 20. For
each experiment the results were recorded in terms of percentage accuracy.

Table 4: Number of records generated for the large and small pyramids using different values for
D

| D [Small Pyramid[Large Pyramid|

5 783 4901
10 196 1223
15 78 528
20 46 289

2 The small and the large pyramid were generated purely for research purpose as it is a commonly
used shape with respect to AISF related research.
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4.1 Small pyramid

Table 5 presents the results obtained when applying the proposed techniques to the
small pyramid test shape. The reported accuracy values are average values generated
using Ten Cross Validation (TCV). From the table we can observe that:

The highest accuracy obtained was 87.01%, using D = 15 and L = 3.
The best performing techniques were the LGM and the combined LGM and
LDM technique; the LDM technique on its own did not perform as well as the
other two techniques.

e There was no significant distinction between the operation of the three of classi-
fication algorithms considered, especially in the context of the LDM technique;
however an argument can be made that Bayes and JRIP outperformed C4.5.

Table 5: Accuracy results for the small pyramid

Method  |L D=5 D=10 D=15 D=20

Bayes| JRIP[ C4.5 [Bayes[JRIP| C4.5 [Bayes| JRIP| C4.5 [Bayes[JRIP| C4.5
61.13[84.02[84.02[71.28[85.13[86.67[87.01[87.01]85.71]57.78[75.56]75.56
57.80(77.88|77.49|62.05|77.95(77.44|55.84|71.43(72.73|55.56|68.89|51.11
66.8875.58(75.96|67.18|72.82(68.72|58.44|67.53(76.62|51.11|51.11|44.44
84.53[84.53[84.53(84.1184.10[84.10( 75.33[75.32[75.32|75.56|75.56|75.56
71.87|71.87|71.87|73.85|73.85|73.85|61.04|61.04{61.03|66.67|66.67|66.67
67.6567.65(67.65]69.23|69.23|69.23|53.25 |49.35|49.35|60.00|60.00|57.78
61.13[84.27(84.02[74.36(85.13(86.67|87.0187.01[85.71]57.78{73.33[71.11
58.0677.49(77.88/62.05|77.44(76.92|57.1471.43(72.73|57.78|66.67|51.11
66.90|75.32(75.70|67.67|72.82|69.74|59.74|62.34(76.62| 55.56|53.33|44.44

LGM

LDM

LGM and LDM

~N N WJ W W

From the table we can also observe that the accuracy associated with the LGM
and the combination techniques increased gradually as D was increased from 5 to
15, then dropped of when D = 20. It was conjectured that this was because when
the grid was too small the geometry could not be well defined and when it got too
large the geometry was too coarsely defined. It is also interesting to note that the
LDM method is more stable in that it features smaller fluctuations in accuracy as D
is increased from 5 to 20.

4.2 Large pyramid

Table 6 presents the results obtained when the proposed techniques were applied to
the large pyramid. Again the results were generated using TCV. From the table it
can be seen that:
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The best overall accuracy result obtained was 99.16%, using D = 5 and L = 3.
This is an extremely high accuracy.

Marginally better results were obtained using LGM and the combination tech-
nique, although there was not a significant distinction between the techniques.
Out of the three classification algorithms considered the best result was obtained
using C4.5, but the margin between different data classification techniques was
very small, hence it can be argued that there was no significant difference be-
tween the classifiers.

Overall the experiments on both the small and large pyramids indicated that very
good error predictions could be obtained from application of the proposed frame-
work, especially in the case of the large pyramid (which included more points for
the same value of D as indicated in Table 4).

Table 6: Accuracy results for the large pyramid

Method |L D=5 D=10 D=15 D=20

Bayes| JRIP| C4.5 [Bayes| JRIP[C4.5 [Bayes| JRIP| C4.5 [Bayes|[ JRIP [ C4.5

95.12(99.10199.16(91.65(97.95|98.04(89.94 |98.29|98.29(88.19(97.22|97.22
89.27(99.10{99.10|86.82[96.48|96.64|86.91|97.15|97.34|86.11|96.88|96.88
86.67(98.69(98.67|86.50(95.01|95.34|85.77|95.83|96.02|81.60(95.49|95.83

LGM

98.94(98.94/98.94|97.71(97.71|97.71|98.29 (98.29|98.29|97.22(97.22|197.22
98.78198.78|98.78|96.40(96.40|96.40|96.77|96.77|96.77|96.88 |96.88(96.88
98.6998.69]98.69|95.09(95.09|95.09|96.02(96.02|96.02|95.49 (95.49|95.49

LDM

95.04199.10(99.16]|91.65(97.95|98.04/90.13|98.29(98.29(88.19(97.22(97.22
89.27(99.10{99.10|86.82[96.48|96.64|87.10{97.15|97.34|86.11|96.88|96.88
86.67(98.69(98.67|86.5894.84(95.50|85.77(95.83|96.02|81.60(95.49]|95.83

LGM and LDM

~N N W3 L W L W

4.3 Training on the small pyramid and testing on the large pyramid

The results obtained when building a classifier using the small pyramid and applying
it on the large pyramid are presented in Table 7. From the table it can be seen that:

The best accuracy obtained was 98.94%, using D = 5 and L = 3. This is again an
excellent result.

The number of labels (3, 5, 7) did not appear to play a significant role although
L=3 produced best results (but only with a small margin). However, it should be
noted that if we wish to apply corrections to the input cloud we probably need to
use a high value for L.

The LDM and the combined technique produced better results than the LGM
technique.

Out of the three classification algorithms considered there was no obvious dis-
tinction between their operations.
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Table 7: Accuracy results when training on the small and testing on the large pyramid

Method

L

D=5

D=10

D=15

D=20

Bayes[JRIP|C4.5

Bayes[JRIP|C4.5

Bayes[JRIP|C4.5

Bayes[JRIP|C4.5

LGM

94.90{98.65(98.65
93.12(95.96|95.94
94.39(96.16|96.00

94.60(97.71|97.71
93.93(93.94|93.94
90.00(90.92|93.70

92.22193.36(93.36
89.56(93.93(92.22
95.69(94.50(91.84

96.18(97.22(88.68
90.63(96.88|89.58
89.93195.49(94.10

LDM

98.94(98.94/98.94
98.78198.78/98.78
98.69(98.69|98.69

97.71(97.71197.71
96.40(96.40|96.40
95.09(95.09(95.09

98.29198.30(98.30
96.77(96.77/96.78
96.02{96.02|96.02

97.22(97.22|197.22
96.88(95.83|95.83
95.48195.49(95.49

LGM and LDM

~N N WJ W L W

98.94(98.65|98.80
93.12(95.92|95.94
94.39(96.16|96.04

94.60(97.71|197.71
94.01{93.94(94.35

91.57(91.00|93.70

92.22(93.17|93.36
90.32(93.93|92.22
95.88(93.36|91.84

94.9498.65|92.36
91.67(95.83|89.58

92.71(95.49|94.10

4.4 Training on the large pyramid and testing on the small pyramid

Table 8 shows the results produced when building a classifier using the large pyra-
mid and applying it to the small pyramid. From the table it can be observed that:

The best accuracy obtained is 84.53%, again using D =5 and L = 3.
There was no significant distinction between the operation of the LGM, LDM and
combination techniques, although LDM did produce marginally better results.

formance distinction between them.

Out of the three data mining techniques considered, there was no significant per-

The results obtained from this experiment, and the previous experiment, indicated
that it might be possible to build a generic classifier. It is conjectured that both the
small pyramid and the large pyramid contain sufficient examples of all different
possible geometries to allow for effective classification, with the larger pyramid
producing slightly better performing classifiers than those produced using the small

pyramid.

Table 8: Accuracy results when training on the large and testing on the small pyramid

Method

L

D=5

D=10

D=15

D=20

Bayes[JRIP[C4.5

Bayes[JRIP|C4.5

Bayes[JRIP|C4.5

Bayes[JRIP|C4.5

LGM

59.08(84.02|84.02
41.18(71.61(71.36
33.12|67.65|57.54

29.7484.10|84.10
16.92(73.85|73.85
13.85(69.23(68.21

36.36(55.84(55.84
33.77|53.25|53.25
22.08(53.25|51.95

46.67(75.56|75.56
31.11(68.89|68.89
22.221(53.33|60.00

LDM

84.53(84.53|84.53
71.87(71.87|71.87
67.65(67.65|67.65

84.10(84.10(84.10
73.85(73.85|73.85
69.23(69.23|69.23

75.32{75.32|75.32
61.04(61.04/61.04
53.25(53.25|53.25

75.56(75.56|75.56
68.89(68.89|68.89
60.00{60.00|60.00

LGM and LDM

~N N WJ  WJ  W

59.08(84.02|84.02
41.18(71.61(71.36
33.12(67.65|57.54

29.7484.10|84.10
17.44|73.85|73.85

13.85(69.23(68.21

37.67|55.84|55.84
32.47|53.25|53.25
22.0853.25|51.95

46.67(75.56(75.56
31.11(68.89|68.89

22.22|53.33|60.00
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4.5 The effect of grid size (D)

Clearly, from the foregoing, the grid size parameter, D, has an effect. In this sub-
section a brief analysis of the effect that the value for D has on classification perfor-
mance is presented. Table 9 shows a comparison between the percentage accuracy
and D values for the best performing combinations from the foregoing experiments
when L = 3. These are identified using the letters A, B, C and D as follows:

Training and testing on the large pyramid using, C4.5 and LGM.
Training and testing on the small pyramid using JRIP and LGM.
Training on the large and testing on the small using JRIP and LDM.
Training on the small and testing on the large using Bayes and LDM.

oOaw»

Table 9: The effect of D when L =3

| [ D=5 | D=10 | D=I5 | D=20 |
A 99.16 98.04 98.29 97.22
B 84.02 85.13 87.01 75.56
C 84.53 84.10 75.33 75.56
D 98.94 97.71 98.29 97.22

From Table 9 it can be observed that when training on the large pyramid (which
produced the better performance) accuracy dropped as D was increased. In the case
where we trained and tested on the small pyramid (case B) accuracy peaked at D =
15, while in case C accuracy peaked at D = 5. Overall we can conclude that D =5
tends to produce a better result.

4.6 The effect of label set size (L)

This section completes the evaluation with a brief analysis of the effect of the label
set size (L). The analysis was conducted by considering the best performing combi-
nations when D = 5 3; these are again identified using the letters A, B, C and D as
follows:

Training and testing on the large pyramid using C4.5 and LGM.
Training and testing on the small pyramid using C4.5 and LDM.
Training on the large and testing on the small using JRIP and LDM.
Training on the small and testing on the large using Bayes and LDM.

oSOow»

3 Tt is acknowledged that the best result for the small pyramid was obtained when D = 15, however
we wished to conduct the analysis concerning L by maintaining D at a constant value.
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The results of the analysis are presented in Table 10. In this case we can note that
the value of L has little effect with respect to case A and D, while in cases B and C
accuracy decreases as the number of labels increases.

Table 10: The effect of L when D =5

| | =3 [ L= | L= |
A 99.16 99.10 98.67
B 84.53 71.87 67.65
C 84.53 71.87 67.65
D 98.94 98.78 98.69

5 Conclusion

This paper has presented a new framework to identify the correlations between 3D
surfaces using two different mechanisms for shape description, the first founded on
the concept of Local Geometry Matrixes (LGMs) and the second on Local Distance
Measures (LDMs). Both mechanisms, and a combination of the two, were evalu-
ated by applying them to two manufactured surfaces, a small and a large flat-topped
pyramid. The main finding of the work is that good (very good in some cases) clas-
sification accuracy results can be produced not only when the classifier is trained
and tested on an identical shape but also when the classifier is trained on one shape
and tested on another where every possible pattern that can exist using LGM method
is included in the classifier when the pyramid shape considered. The significance of
the latter is that this is an indication (further experimentation is clearly required)
that we can build a classifier that encompasses all possible geometries by consider-
ing a suitable shape, which can then be generally applied. This has implications if
we want to build a system that can suggest corrections to be applied to before clouds
that can serve to limit the effect of springback. Other significant findings included:
(i) confirmation that small grid sizes produce a better performance than large grid
sizes, (ii) that both the LGM and LDM techniques worked well and that it could not
be argued that there was a significant difference in their operation, and (iii) that the
choice of classification algorithm did not make a significant impact. Overall this is
a very encouraging result. For future work a new surface representation approach
founded on the concept of time series is currently under investigation. The intention
is also to conduct further experimentation with a greater variety of surfaces (shapes)
and a detailed comparison between the LGM, LDM, the combination of both and
the new time series surface representation methods. The ultimate goal is to build an
intelligent process model that can predict springback errors and suggest corrections
to before coordinate clouds.
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