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Abstract 
In multiscale modeling of subsurface fluid flow in heterogeneous porous media, standard 

polynomial basis functions are replaced by multiscale basis functions. For instance, to produce 

such functions in the mixed Generalized Multiscale Finite Element Method (mixed GMsFEM), a 

number of Partial Differential Equations (PDEs) must be solved, which requires a considerable 

overhead. Thus, it makes sense to replace PDE solvers with data-driven methods, given their great 

capabilities and general acceptance in the recent decades. Convolutional Neural Networks (CNNs) 

automatically perform feature engineering, and they also need fewer parameters via defining two-

dimensional convolutional filters without reducing the quality of models. This is why four distinct 

CNN models were developed to predict four different multiscale basis functions for the mixed 

GMsFEM in the present study. These models were applied to 249,375 samples, with the 

permeability field as the only input. The statistical results indicate that the AMSGrad optimization 

algorithm with a coefficient of determination (R2) of 0.8434 - 0.9165 and Mean Squared Error 

(MSE) of 0.0078 - 0.0206 performs slightly better than Adam with an R2 of 0.8328 - 0.9049 and 

MSE of 0.0109 - 0.0261. Graphically, all models precisely follow the observed trend in each coarse 

block. This work could contribute to the distribution of pressure and velocity in the development 

of oil/gas fields. Looking at this work as an image (matrix)-to-image (matrix) regression problem, 

the constructed data-driven-based models may have applications beyond reservoir engineering, 

such as hydrogeology and rock mechanics. 

Keywords: Subsurface fluid flow; Porous medium; Finite element method; GMsFEM; Machine 

learning; Convolutional neural network 
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1. Introduction 
Modeling subsurface fluid flow in heterogeneous porous media has always been challenging, 

especially with real-world applications, such as the development of oil/gas fields and groundwater 

resources management. A heterogeneous porous medium indicates that it is not homogenous, and 

thus formation-related properties can have multiple scales. For example, in petroleum reservoirs, 

there may be numerous fractures (connected or disconnected) with different lengths, whose width 

is much smaller than the domain size. The permeability is defined as the ability of a rock to permit 

fluids to pass through it. The permeability of fractures can be lower than that of the matrix in 

dissolved carbonate reservoirs. There are some examples in the pre-salt carbonate reservoirs in 

Brazil. However, the permeability in fractures is generally much higher than that of the matrix. 

This is why the effect of fractures must be considered when modeling flow and transport processes. 

In the mesh generation stage of numerical modeling, adequately fine grids are used to resolve small 

scale fractures. By doing so, the discrete formulation of such problems produces a large system of 

equations, and consequently, the number of unknown parameters increases. The computation of 

the solution, therefore, becomes expensive. Model reduction techniques, upscaling 

(homogenization) (Ganjeh-Ghazvini, 2019; Liu et al., 2021) and multiscale (Chen and Hou, 2003; 

Ganis et al., 2017; Hajibeygi et al., 2008; He et al., 2021; Jenny et al., 2005; Peszynska, 2005) are 

necessary to decrease the degrees of freedom, and solve subsurface flow problems on coarse grids. 

These methods can considerably decrease resolution times without a significant loss of precision.  

Upscaling is an averaging process in which the static (e.g., porosity) and dynamic (e.g., fluid 

saturation) properties of a fine grid model are scaled up to equivalent characteristics defined at a 

coarse grid level. This procedure should be performed in a way that the two models act as closely 

as possible to each other. For example, kernel bandwidth and wavelet transformation techniques 

were used to simultaneously scale up the porosity and permeability of a synthetic reservoir model 

in (Azad et al., 2021). Under the same circumstances, the simulation runs demonstrated that the 

upscaling error of the bandwidth method was much smaller than that of the wavelet method. 

Multiscale techniques, such as multiscale finite element methods (Chen and Hou, 2003; He et al., 

2021), multiscale finite volume methods (Hajibeygi et al., 2008; Jenny et al., 2005) and mortar 

multiscale methods (Ganis et al., 2017; Peszynska, 2005) solve flow problems on coarse grids 

through pre-calculated multiscale basis functions. These are developed locally on fine grids to 

capture the local multiscale information of a medium. Researchers have always been interested in 

enhancing the accuracy of multiscale solutions. For instance, a framework of Generalized 

Multiscale Finite Element Method (GMsFEM) was proposed by (Efendiev et al., 2013). This 

model generalizes the multiscale finite element method (Hou and Wu, 1997) by including further 

basis functions that can provide more local multiscale details to enrich the multiscale space. 

Local mass conservation is of great importance for subsurface flow problems. The mixed 

multiscale finite element method is regarded as one of the most commonly used mass conservative 

multiscale techniques. In this technique, the multiscale process is used on two coarse elements 

with a common edge for the velocity, and piecewise constant basis functions are employed on a 

single coarse block for the pressure. 
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Following the basic computational procedure of GMsFEM, a framework for the mixed GMsFEM 

was developed by (Chen et al., 2020) to solve Darcy’s flow (a linear relationship between pressure 

gradient and velocity) of a single-phase fluid in two-dimensional fractured porous media. Unlike 

previous studies, this method calculates the pressure in the multiscale space; several multiscale 

basis functions are obtained in a single coarse grid element, and the velocity is directly 

approximated in the fine grid space.  

The following flow problem in the mixed formulation is considered: 

𝑘−1𝑢 + 𝛻𝑝 = 0   𝑖𝑛   𝛺 

𝛻. 𝑢 = 𝑓   𝑖𝑛   𝛺 
(1) 

with nonhomogeneous boundary condition: 

𝑢. 𝑛 = 𝑔   𝑜𝑛   𝜕𝛺 (2) 
where 𝑘 is permeability, 𝑢 is the Darcy velocity, 𝑝 is the pressure, 𝑓 is the source term, 𝑔 is the 

given normal component of the Darcy velocity on the boundary, Ω is the computational domain 

and 𝑛 is the outward unit norm vector on the boundary. 

To illustrate the general solution framework of the mixed GMsFEM, 𝜏𝐻 is considered a confirming 

partition of Ω into finite elements with a coarse block size 𝐻, and 𝜏ℎ is the fine grid partition with 

mesh size h. By defining 𝑉 = 𝐻(𝑑𝑖𝑣, Ω) and 𝑊 = 𝐿2(Ω), the mixed finite element spaces will be: 

𝑉ℎ = {𝑣ℎ ∈ 𝑉: 𝑣ℎ(𝑡) = (𝑏𝑡𝑥1 + 𝑎𝑡, 𝑑𝑡𝑥2 + 𝑐𝑡), 𝑎𝑡, 𝑏𝑡, 𝑐𝑡, 𝑑𝑡  ∈  ℝ, 𝑡 ∈  𝜏ℎ} 

𝑊ℎ = {𝑤ℎ  ∈ 𝑊: 𝑤ℎ 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑛 𝑒𝑎𝑐ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝜏ℎ} 

Supposing {Ψ𝑗} is the set of multiscale base functions for the coarse element, the multiscale space 

for the pressure 𝑝 is defined as the linear span of all local basis functions, which can be denoted 

as: 

𝑊𝐻 =⊕ {Ψ𝑗}   𝑖𝑛   𝜏𝐻 

The mixed GMsFEM is directed at finding (𝑢𝐻, 𝑝𝐻) ∈ (𝑉ℎ, 𝑊𝐻) such that: 

∫ 𝑘−1 𝑢𝐻 . 𝑣𝐻 − ∫ 𝑑𝑖𝑣(𝑣𝐻)𝑝𝐻 = 0   ∀ 𝑣𝐻  ∈  𝑉ℎ
0 

∫ 𝑑𝑖𝑣( 𝑢𝐻)𝑤𝐻 = ∫ 𝑓𝑤𝐻    ∀ 𝑤𝐻  ∈  𝑊𝐻 

(3) 

where 𝑢𝐻 . 𝑛 = 𝑔𝐻 on 𝜕Ω for each coarse edge on the boundary and 𝑔𝐻 is the average of function 

𝑔 on the corresponding coarse edge. 

The following approach to construct the multiscale space 𝑊𝐻 is adopted for approximating the 

pressure 𝑝 in a systematic manner. A snapshot space is defined by solving a series of local cell 

problems on every coarse grid element with Dirichlet’s boundary condition. In Dirichlet’s 

condition, a value is first assigned to the pressure. Then the snapshot space is further decreased to 

find the dominant modes, where a local eigenvalue problem (one for each coarse element) needs 

to be solved. The linear span of these modes is termed the offline space.  
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The local cell problem defined in the coarse grid is the same as the original problem except that 

the source function is omitted. A delta function is assigned on the boundary of the coarse grid as a 

boundary condition. The delta function is defined as follows: a value 1 given a fine grid edge and 

a value of 0 for all other grid edges. As a consequence, the number of local cell problems that need 

to be solved equals the number of fine grid edges contained in the coarse grid boundary (here 12). 

The number of Partial Differential Equations (PDEs) that need to be solved to construct multiscale 

basis functions is equal to the number of local cell problems and local eigenvalue problems. Given 

the 100 coarse elements, there are 1300 PDEs, including 1200 (10012) local cell problems and 

100 (1001) local eigenvalue problems. 

Deep Learning (DL) techniques are a mathematically complex evolution of classical Machine 

Learning (ML) methods, which have become increasingly reliable in the last few years (Abad et 

al., 2022; Mardanirad et al., 2021; Wang et al., 2019b; Yu et al., 2020). Based on how an algorithm 

learns from the available data records, there are four types of DL algorithms: supervised, 

unsupervised, semi-supervised, and reinforcement. Our problem in this study is a supervised type. 

There are some methods in this category, such as CNNs and Recurrent Neural Networks (RNNs). 

RNNs are usually used while dealing with video, sound, or text data. On the other hand, CNNs are 

specifically designed for problems with two-dimensional arrays like our regression case, mapping 

an input of 100*9 to an output of 900*1. Convolutional neural networks enable us to use two-

dimensional convolutional filters while developing a model. Furthermore, there is a reasonable 

and robust mathematical procedure behind convolutional filters. A CNN also automatically and 

adaptively learns the spatial hierarchies of features. Finally, it can decrease the number of 

parameters without reducing the quality of models. Therefore, the main contribution of this paper 

is to develop CNN models, instead of PDE solvers, to predict multiscale basis functions for the 

mixed GMsFEM. The developed models can accelerate the mixed GMsFEM. With respect to the 

work presented here, 249,375 samples were generated based on the permeability field covering a 

wide range of values for the matrix (Km: 1, 2, 3, 4, and 5 millidarcy) and fracture (Kf: 500, 750, 

1000, 1250, 1500, 1750, and 2000 millidarcy).  

The paper continues with Section 2, providing relevant published research. A description of the 

generated data using MatLab software is given in Section 3. Section 4 describes the concepts of a 

typical CNN, and then presents the characteristics of the four constructed models for multiscale 

basis functions prediction. The statistical-graphical results and discussion are presented in Section 

5. The article is concluded in Section 6, which also identifies opportunities for future studies. 

2. Related research 
Numerical simulation on coarse grids assisted by data-driven methods is becoming increasingly 

popular. Three examples are given to demonstrate the application of such techniques in the 

upscaling domain. (Bohne, 2018) investigated the performance of ordinary least squares and 

Kernel Ridge regression algorithms for the computation of upscaled permeability. For this, 100 

samples were generated, with a permeability field produced using the Gaussian probability 

distribution and an upscaled permeability which was calculated using a finite volume method. The 

results demonstrated that Kernel Ridge regression performed with a lower error to capture the 
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upscaled behavior of the flow (i.e., the underlying physics of the problem) compared to the other 

technique. 

(He et al., 2020) automated permeability upscaling from the detailed geological characterization 

of fractured reservoirs expressed by a Discrete-Fracture Model (DFM). A DL-based design was 

developed to find a suitable relationship between DFM images (input) and the equivalent 

continuum model (output), which contained the estimated equivalent permeability of every grid 

block. The suggested upscaling workflow had three stages: (i) data generation, (ii) model 

development, and (iii) validation. The 10,000 samples were generated to train a model with 18 

hidden layers. The performance of the model was tested in four cases, and it was found to perform 

better than static and flow-based upscaling methodologies. 

The Darcy Brinkman–Stokes model was combined with decision tree multivariate regression, to 

upscale a microporous carbonate from the pore scale to the Darcy scale in a study by (Menke et 

al., 2021). Using a limited number of training images, the developed model performed as well as 

numerical upscaling to predict permeability. The main advantage was that the regression model 

was around 80 times less computationally prohibitive than the numerical methods.   

These nine cases are related to assisting the data analysis in multiscale methods. (Chan and 

Elsheikh, 2018) concentrated on the multiscale finite volume method presented by (Jenny et al., 

2003). Generally, a series of local problems over dual-grid cells have to be solved to extract coarse 

scale basis functions. The researchers used shallow neural networks adjusted by a series of solution 

samples for the computation of basis functions. The results of this data-driven method over a 

computational domain [0, 1]2 were promising for elliptic problems. 

When the permeability field is fixed, the main quantities of GMsFEM can be precomputed in an 

offline stage by solving local problems. Given several choices of permeability fields, however, 

repetitively formulating and solving such local problems might be computationally expensive. 

(Wang et al., 2019a) presented a DL-based approach for the rapid prediction of the GMsFEM 

ingredients for any online permeability fields. Deep structures were used to illustrate non-linear 

mapping from the fine scale permeability field coefficients to the key factors of the multiscale 

basis functions and the coarse scale variables. The results showed that if samples of the GMsFEM 

discretizations were adequate, the developed models would be able to provide exact 

approximations. 

(Wang et al., 2020a) investigated a new deep network to a model reduction technique of non-local 

multi-continuum upscaling developed by (Chung et al., 2018) for multiscale simulations. The 

input-output maps were developed on a coarse block and trained by applying multi-layer neural 

network approaches. Soft thresholding operators were selected as an activation function. By 

relating a soft-thresholding neural network and minimization of PDE solutions, multiscale features 

of coarse element solutions were extracted, establishing a reduced order model for solution 

approximation. The numerical results confirmed the good performance of this method. 

Various deep networks were used to approximate flow and transport formulae by (Wang and Lin, 

2020). Implementing the sparsity structures of the underlying discrete systems, these networks had 

far fewer learnable parameters compared with fully connected models. Deep learning was used to 



6 
 

approximate the map from the source terms to the velocity solution. The networks were developed 

with convolutional and locally (not fully) connected layers to execute model reductions. 

Furthermore, a custom loss function was defined to apply the local mass conservation constraints. 

The achieved velocity fields were then fed into the saturation equation, and a residual network 

served to approximate the dynamics. Numerical results of both the single-phase and two-phase 

cases highlighted the huge potential of novel models to precisely forecast the underlying physical 

system and make computational efficiency improvements. 

A multi-agent Reinforcement Learning (RL) methodology was presented to hasten the multi-level 

Monte Carlo Markov Chain (MCMC) sampling algorithms by (Chung et al., 2020). The authors 

confirmed their approach by solving an inverse, multiscale problem, which classical MCMC 

techniques struggle with. The first issue was computing the posterior distribution, which required 

a lot of time for heterogeneous media. To solve this, a GMsFEM was used as the forward solver. 

Moreover, finding a function able to generate meaningful sampling was not simple. For this, an 

RL policy was learned as a proposal generator. Experimentation revealed that this approach was 

capable of considerably improving the sampling process.  

A DL-based method within GMsFEM was presented by (Zhang et al., 2020) to cluster (coarsen) 

the uncertainty space. By doing so, the number of multiscale basis functions per coarse element 

could decrease over the uncertainty space. Convolutional neural networks were joined with some 

methods in adversary neural networks. Simulation runs were carried out based on almost 240,000 

local spatial fields. The numerical results confirmed that an increase in the number of clusters from 

5 to 11 could decrease relative error. 

A combination of DL techniques and local multiscale model reduction methods was used by 

(Wang et al., 2020c) to predict flow dynamics considering observed data and physics-based 

modeling concepts. Flow dynamics can be viewed as a multi-layer network. This means that the 

solution (e.g. saturation) at the time instant ‘n+1’ relies on the solution of ‘n’ as well as input 

parameters. Each layer is considered as a nonlinear forward map, and the number of layers relates 

to the internal time steps. Multi-layer neural networks find a nonlinear mapping between the time 

steps. Reduced-order models provide important coarse grid parameters and some other 

information. Three examples of numerical simulations demonstrated the efficacy of this hybrid 

methodology. 

A Theory-guided Neural Network (TgNN) which incorporated scientific knowledge into 

traditional neural networks was developed for the simulation of subsurface flow by (Wang et al., 

2020b). The Karhunen-Loeve expansion was used to parameterize heterogeneous porous media. 

The potency of the suggested framework was evaluated by multiple cases, such as predicting future 

responses, training from noisy data, and transfer learning. In comparison with ordinary models, 

TgNN produced more precise outputs. For example, the R2 values were 0.484 for the artificial 

neural network and 0.996 for the TgNN to predict future responses with changed boundary 

conditions.  

(Chung et al., 2021) proposed a multi-stage DL-based method for multiscale problems. Each stage 

shared a similar structure and estimated the same reduced order model of the problem with 
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multiscale features. The prediction of the first stage was quite imprecise. It was demonstrated 

numerically that performance improvements could be achieved using several reduced order models 

as inputs at each stage. The proposed strategy yielded good outputs on two time dependent linear 

and non-linear PDEs with the steady state condition based on 1600 samples. 

3. Data description 
In order to construct a reliable CNN-based model, it is desirable to take into account a wide range 

of the input/output variables. A heterogeneous parameter field can be viewed as a realization of a 

random field following a specific distribution with the corresponding covariance. In this study, the 

Karhunen-Loeve expansion (Fukunaga and Koontz, 1970) was used to parameterize the 

heterogeneous model. This Gaussian random field generation method decomposes a random 

process into the eigenvalue and eigenfunction of its covariance kernel. The computational domain 

was set to be Ω = [0, 1]2. A 3030 uniform mesh was selected for the fine grid system, and a 

1010 uniform mesh was used for the coarse grid system, meaning that each coarse grid contains 

nine fine grids. A coarse grid may contain fractures or not. If so, it can include partial or complete 

fractures. Also, a fracture can pass a fracture. The Km had five different values: 1, 2, 3, 4, and 5 

millidarcy (5 cases), and the values of 500, 750, 1000, 1250, 1500, 1750, and 2000 millidarcy (7 

cases) were considered for Kf. The number of fractures available in a porous medium was set to 1, 

2, …, 24, and 25 (25 cases). The length of fractures was randomly distributed. For every randomly 

produced porous medium, there were five basis functions named bases 1, 2, 3, 4, and 5. The first 

one was a piecewise constant, containing only 1 and -1. Because these two values were the same 

for the finite element method, there was no need to train this basis. Basis functions 2, 3, 4, and 5 

lie between -1 and +1 (i.e. -1 < basis functions < +1). Fig. 1 shows a permeability field of the 

fractured porous media with Km of 4 millidarcy, Kf of 2000 millidarcy, and the number of fractures 

is 15. Although multiscale basis functions are defined on the coarse grids, their coordinates are 

also important. For example, coarse grids no. 10 and no. 91 have the same permeability, but their 

corresponding basis functions may have been different. 
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Fig. 1. A permeability field of a fractured porous medium with Km of 4 millidarcy and Kf of 2000 millidarcy. The 

fine grid squares in blue refer to the matrix and those in yellow to the fracture. The red grid indicates the coarse grid. 

Each coarse grid square contains nine fine grids. The number of fractures is 15. 

The values of permeability fields were initially in a 9001 one-dimensional tensor (vector). This 

changed to a 1009 two-dimensional tensor, where 100 refers to the number of coarse grids and 9 

indicates the number of fine grids in each coarse grid. In other words, each row belongs to a coarse 

grid. This enabled us to use two-dimensional convolutional filters while developing a model. 

However, basis functions remained in the form of a 9001 vector.  

Convolutional neural networks are developed using training, validation, and testing data all drawn 

from the same data distribution. The training subset is utilized for training the model. To develop 

robust CNN models, so that they are fit for purpose in the context of real-life settings, the data 

used to train the model must be large. The model is evaluated during the training process using the 

validation data. The testing data (unseen data) is only used to appraise the model’s performance 

once the training process has been completed. 

For each of the 875 (equals to 5725) cases, the MatLab code was run as many as 280 times for 

the training data, two times for validation, and three times for testing. So, 249,375 samples were 

generated with 245,000 examples for training, 1750 for validation, and 2625 for testing. Since the 

permeability fields were randomly generated, it could have included duplicates. These were 

removed to avoid giving samples an advantage or bias when running the algorithm. As a result, 

6653 training, 8 validation, and 13 testing samples were excluded. This reduced the training, 

validation and testing samples from 245,000, 1750, and 2625 to 238,347, 1742, and 2612, 

respectively. 
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4. Methodology 
In this section, it is explained how a CNN architecture is designed and what characteristics the 

optimum network has. Then, it is compared with two advanced CNN architectures. The third 

subsection is related to network optimization.    

4.1 Architecture design 

A typical CNN architecture may contain three types of layers: (i) convolutional, (ii) pooling, and 

(iii) fully connected. In mathematical sciences, convolution is a specialized linear operation on 

two functions that gives a third modified function. In the context of CNN, the fundamental idea is 

to consider an input (an array of numbers) as the first function and a convolutional filter (kernel) 

as the second. A kernel is a relatively small array of randomly generated numbers. The kernel 

moves over the whole input. The dot product of the kernel and input is calculated at each sub-

region (with the same size as the kernel) of the input, obtaining an output value in the 

corresponding location of the convolved input. This process produces a feature map and is 

performed using different kernels. The outputs of the convolution process are passed through an 

activation (transfer) function. Such functions typically transform a linear operation into a nonlinear 

system (Elgendy, 2020; Yamashita et al., 2018).  

The key difference between a parameter and a hyperparameter is that a model’s parameters are 

automatically updated during the training process, whereas hyperparameters are set manually 

before the model begins training like the size and number of kernels. Including more convolutional 

layers in a CNN model increases the number of parameters. The more parameters there are in a 

model, the more computationally expensive the learning process is. This is where a subsampling 

operation can be useful. In DL, pooling layers use statistical functions (maximum and average 

pooling) to decrease the number of trainable parameters. This can decrease the computational 

complexity of mathematical operations and sometimes improve the robustness of feature maps. 

Pooling layers come after convolutional layers (Elgendy, 2020; Yamashita et al., 2018). 

No matter how many feature maps there are in the final convolutional or pooling layer, they are 

first flattened to a one-dimensional array, and then connected to FC layers. In FC layers (dense 

layers), each neuron of a layer is connected to whole neurons in the previous layer and next layer. 

It is common to put a dropout layer after each FC layer (except the output layer) at the end of a 

CNN model. Dropout omits a percentage of neurons in the previous FC layer. This percentage, as 

a hyperparameter, is defined when constructing a network. During the training process, some 

neurons may dominate, producing errors. Dropout balances a network, checking that all neurons 

work equally to minimize the cost function as much as possible (Elgendy, 2020; Yamashita et al., 

2018).  

Various cases containing convolutional, pooling, batch normalization, FC, and dropout layers with 

some techniques to prevent the over-fitting issue such as regularization, were tested separately for 

each basis function to determine whether they met their corresponding optimal architecture. In the 

regularization method, an extra element is added to the loss function. This regularization term 

penalizes a model for using higher values than needed in the weight matrix. The same optimal 

architecture was coincidentally obtained for all bases 2, 3, 4 and 5 (Fig. 2). It has five convolutional 

and two FC layers. The number of kernels in each convolutional layer is 5, 10, 15, 20, and 25, 
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respectively. To determine the size of a convolution output for an input with the size of 

𝐼ℎ(height)𝐼𝑤(width) and a kernel with the size of 𝐾ℎ𝐾𝑤, we can use Eq. (4) if the padding is set 

to ‘valid’:   

𝑜𝑢𝑡𝑝𝑢𝑡 ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑂ℎ =
𝐼ℎ − 𝐾ℎ

𝑆ℎ
+ 1 

𝑜𝑢𝑡𝑝𝑢𝑡 𝑤𝑖𝑑𝑡ℎ = 𝑂𝑤 =
𝐼𝑤 − 𝐾𝑤

𝑆𝑤
+ 1 

(4) 

where 𝑆ℎ and 𝑆𝑤 are the vertical and horizontal strides. When padding is set to ‘same’, the size 

does not change. The kernel size for all convolutional layers is 33, and 𝑆ℎ = 𝑆𝑤= 1. The padding 

was set to ‘same’ only for conv5. This means there was no padding for the first four convolutional 

layers. Therefore, conv1, conv2, conv3, conv4, and conv5 have the size of 987, 965, 943, 

921, 921, respectively. A batch normalization layer can be added after each convolutional layer 

without changing its size. Neural networks use higher learning rates and converge faster by 

normalization of the input layer. It maintains the output average at a value close to zero and the 

standard deviation close to one. The two FC layers contain 2000 neurons. The models use the 

activation function of ‘Rectified Linear Unit (ReLU)’ for the convolutional layers, ‘sigmoid’ for 

the FC layers, and ‘linear’ for the output. 
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Fig. 2. CNN architecture for constructing the basis functions of the mixed GMsFEM. 

4.2 Comparison of the developed architecture with AlexNet and VGGNet 

In order to better understand the architecture developed in this study, it is compared to structurally 

similar CNN architectures AlexNet (Krizhevsky et al., 2012) and VGGNet, also known as VGG16 

(Simonyan and Zisserman, 2014). AlexNet has five convolutional layers, three of which are 

followed by maximum pooling layers to decrease the computational cost. The number of kernels 

in each convolutional layer is 96, 256, 384, 384, and 256. There are two FC layers of 4096 neurons, 

and a 1000-neuron output layer at the end of the network. VGGNet contains thirteen convolutional 

layers, five maximum pooling layers, two FC layers of 4096 neurons, and an output layer with 

1000 neurons. The number of kernels used in the convolutional sections is 64, 128, 256, and 512. 

Each image has two basic elements: depth and size (heightwidth). Depth of an input image refers 

to the color channel, where one and three are used for grayscale and color images, respectively. 

For the later layers, the resulting feature maps indicate how deep a convolutional layer is. Similar 

to common CNN architectures, going deeper through the structure of developed models, the 

number of feature maps increases and their size decreases. However, the number of feature maps 

(equals the filters number) defined in this research is significantly less than that of common CNN 
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models. In DL, pooling layers are primarily used to decrease the number of trainable parameters, 

mostly when the input shape is high, e.g., in AlexNet whose input shape is 224*224. However, the 

input dimension in this research is 100*9. This is why there is no pooling layer in our developed 

models. Batch normalization, similar to AlexNet, has helped to prevent over-fitting. As with 

AlexNet and VGGNet, the number of neurons (units) remained constant in FC layers, but no drop 

out layer was used in the proposed structure because it had a negative effect on the performance. 
The base structure of this work is for a regression-type problem, while AlexNet and VGGNet were 

essentially designed for a classification intent. Therefore, a linear activation function is used in our 

model for the output layer, but a softmax in AlexNet and VGGNet.     

4.3 Network optimization 

Training a CNN model refers to finding the weights and bias of the kernels in the convolutional 

layers and of neurons (nodes) in the FC layers so as to minimize the difference between the outputs 

of a model and actual values as much as possible. Backpropagation is one of the most extensively 

used methods for training neural networks. It calculates the gradient of the loss function (cost 

function) using the values assigned to the weights and biases. The loss function is a measure of 

how well an algorithm models a training dataset by evaluating the similarity between real and 

predicted outputs. There are various parameter optimizers to reach the minimum loss value. Neural 

networks generally include a feed-forward pathway which arranges various layers and initializes 

the parameters, as well as a backward pathway which progressively modifies parameters, thus 

gradually improving a model’s performance. The CNN models in this study were constructed 

using Keras with TensorFlow as a backend on Python 3.5. The libraries of ‘numpy’, ‘pandas’, 

‘sklearn’ and ‘glob’ were also used in the ‘Spyder’ module of Anaconda Distribution. The models 

were compiled using ‘MSE’ as the loss (objective) function and ‘Adam’ as the optimizer, and 

trained with a batch size of 32 samples. Adam uses a distinct learning rate for each scalar parameter 

and adapts these rates during the whole training process considering the historical values of the 

partial derivatives of each parameter. This gradient-based algorithm combines the ability of (i) 

AdaGrad to handle sparse gradients and (ii) RMSProp to function in online and non-stationary 

settings. Additionally, Adam is suitable for ML problems with large data/parameters. In this study, 

default values were used i.e., the initial global learning rate=0.001, beta_1=0.9, beta_2=0.999, and 

epsilon=1e-7. An advantage of Adam is that the learning rate can decrease closer to the optimum 

point. However, there is an increase in the learning rate in some cases which can damage the 

algorithm’s overall performance. AMSGrad is a new version of Adam which improves 

convergence. AMSGrad keeps the maximum of all second momentum vectors until the present 

time step and uses it to normalize the running average of the gradient instead of the second 

momentum vector of each time step in Adam. This prevents an increasing learning rate and avoids 

the pitfalls of Adam. 

Fig. 3 presents a flow diagram illustrating the CNN analysis methodology applied to an extensive 

data set of 249,375 samples. This step-by-step approach was separately done to develop an optimal 

model for each individual basis function. In this regard, we started with a low number of epochs 

to ensure the model was still improving based on the obtained MSE. Hence, the number of epochs 

increased up to 100 as a stopping criterion that makes an optimizer terminate the process. If a 

predictive model fails to correctly capture the underlying trend of the training (seen) data set, it is 
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considered to ‘under-fit’ the data. This is usually the result of designing an oversimplified model. 

To avoid under-fitting, including further layers and increasing the number of input parameters may 

be helpful. Once the model performs favorably on seen data, it can be applied to test (unseen) data 

to evaluate its generalizability. Over-fitting is a fundamental problem in ML, especially in DL due 

to a large number of trainable parameters. It happens when a model performs well with respect to 

the training data but poorly on the test data set. This could be because the model attempts to learn 

the noise patterns available in the unseen data. 
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Fig. 3. Graphical representation of different steps for reconstructing basis functions using a CNN model. 
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5. Results and discussion 
The accuracy of the developed models is investigated statistically and graphically. Analysis using 

widely used prediction error accuracy parameters provides great insight into the performance of 

the four models. The statistical error metrics considered are (Eqs. 5 and 6): 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (𝑅2) = 1 −
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑁

𝑖=1

∑ (𝑦̂𝑖 − 𝑦̅)2𝑁
𝑖=1

 (5) 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑆𝐸) =  
∑ [𝑦̂𝑖 − 𝑦𝑖]

2𝑛
𝑖=1

𝑁
 (6) 

where 𝑦𝑖, 𝑦̅, and 𝑦̂𝑖 are the actual basis function, the average of actual basis function for all samples, 

and the predicted basis function, respectively. As mentioned earlier, each basis function is in the 

form of a 9001 one-dimensional tensor and R2 of all outputs are averaged, weighted by the 

variances of each individual output. The R2 value lies between -∞ and 1. The closer this value is 

to 1, the more precise predictions a model yields. Conversely, a negative or small positive R2 value 

indicates that the wrong model is chosen. The MSE measures the average of squares of errors (i.e., 

the difference between predicted and real values). It is always non-negative and values close to 

zero indicate a good performance.  

The performance of the constructed models by Adam in terms of the R2 and MSE for the training, 

validation, and testing subsets, and the total dataset is separately shown in Figs. 4 and 5. According 

to Fig. 4, the models developed for basis functions 2, 3, and 4 have an R2 of nearly 0.9; thus, they 

are able to predict training samples very well. The model designed for the basis function 5 has an 

acceptable performance, but is not as good as the others. Furthermore, it reveals the superior 

performance of the CNN model for basis function 4, in validation and testing subsets in terms of 

the R2 error parameter. The performance of the developed models based on the total dataset is the 

same as the training subset. This is because a large proportion of the data generated in MatLab 

software was designed to train the model. Fig. 5 also demonstrates that the MSE performance of 

models created for basis functions 4 and 5 are better than those for basis functions 2 and 3. In this 

regard, the CNN model of basis function 5 is the best with 0.0108, 0.0158, and 0.0154 for the 

training, validation, and testing data subsets.  
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Fig. 4. Performance of the developed models by the Adam algorithm based on R2. 

 

 

 

Fig. 5. Performance of the developed models by the Adam algorithm based on MSE. 
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Table 1 is given to investigate if replacing the Adam optimizer with AMSGrad affects the 

performance of the CNN architecture. The values in green rows are related to Adam, and those of 

orange rows are for AMSGrad. Comparing the R2 parameter, it is clear that the performance of all 

models improves, especially for the training subset. For instance, the R2 increases from 0.8945 to 

0.9079 for basis 2. The MSE error parameter decreases as expected when using the AMSGrad 

optimizer. Across the total data, the MSE decreases from 0.0261, 0.0214, 0.0142, and 0.0109 to 

0.0206, 0.0167, 0.0103, and 0.0078 for bases 2, 3, 4, and 5, respectively. 

Table 1 Performance of Adam and AMSGrad on the basis functions of the mixed GMsFEM. 

Error statistic CNN model Training Validation Testing Total 

R2 

basis 2 (Adam) 0.8945 0.8076 0.8083 0.8929 

basis 2 (AMSGrad) 0.9079 0.8141 0.8156 0.9062 

basis 3 (Adam) 0.9017 0.7911 0.6445 0.8981 

basis 3 (AMSGrad) 0.9142 0.7974 0.6503 0.9105 

basis 4 (Adam) 0.9054 0.8751 0.8762 0.9049 

basis 4 (AMSGrad) 0.9172 0.8777 0.8815 0.9165 
basis 5 (Adam) 0.8341 0.7569 0.7625 0.8328 

 basis 5 (AMSGrad) 0.8449 0.7592 0.7671 0.8434 

MSE 

basis 2 (Adam) 0.0257 0.0468 0.0466 0.0261 

basis 2 (AMSGrad) 0.0202 0.0441 0.0445 0.0206 

basis 3 (Adam) 0.0207 0.044 0.0743 0.0214 

basis 3 (AMSGrad) 0.0159 0.0401 0.0697 0.0167 

basis 4 (Adam) 0.0141 0.0186 0.0184 0.0142 

basis 4 (AMSGrad) 0.0102 0.0158 0.0169 0.0103 

basis 5 (Adam) 0.0108 0.0158 0.0154 0.0109 

 basis 5 (AMSGrad) 0.0077 0.0137 0.0141 0.0078 
 

The permeability field consists of a 3030 uniform mesh on a fine grid system. This is equivalent 

to a 1010 uniform mesh on a coarse grid system, so each coarse grid contains nine fine grids. 

Multiscale basis functions, on the other hand, are defined in a single coarse grid element, as 

mentioned earlier. Consequently, the pattern available in a coarse block is tracked for the graphical 

investigation, with an unfractured case and a fractured case (representative samples) for each of 

the training (Figs. 6 and 7), validation (Figs. 8 and 9), and testing (Figs. 10 and 11) subsets. In 

the top section of the figures, fine grids in blue refer to the matrix and yellow to the fracture. Figs. 

6 and 7 demonstrate an excellent match between actual and reconstructed patterns for coarse 

blocks no. 71 and 24, except for basis 5 of no. 24. In the validation cases, the CNN models follow 

the observed trend for homogeneous (unfractured) coarse element no. 44, but behave moderately 

for no. 13. For the testing subset, two samples (2, and 25) were selected; the performance of the 

developed models is nearly identical to the validation cases, according to Figs. 10 and 11. In 

general, the patterns reconstructed by AMSGrad follow the observed trend in each coarse block 

slightly better than those of Adam. 
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Fig. 6. A comparison between actual and reconstructed patterns for an unfractured case within the training samples. 
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Fig. 7. A comparison between actual and reconstructed patterns for a fractured case within the training samples. 
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Fig. 8. A comparison between actual and reconstructed patterns for an unfractured case within the validation 

samples. 
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Fig. 9. A comparison between actual and reconstructed patterns for a fractured case within the validation samples. 
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Fig. 10. A comparison between actual and reconstructed patterns for an unfractured case within the testing samples. 
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Fig. 11. A comparison between actual and reconstructed patterns for a fractured case within the testing samples. 

Deep learning requires a great number of training samples because many parameters (here 

10,414,170) must be trained. The process nearly always begins with unsatisfactory accuracy, so 

an optimizer is employed to converge the network into an optimal solution (satisfactory 

performance). This might be a local optimum, not the global solution. In this study, the 26,250 

samples were initially generated, resulting in models with a poor performance (e.g., the R2 was 

negative). Therefore, more and more data was added to the network to better tune the parameters. 
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Applying 249,375 samples, the results are generally promising, especially for the training samples. 

However, the accuracy of models over the validation and testing and data sets is not high enough. 

Machine learning algorithms are prone to both reducible and irreducible errors. No matter which 

algorithm is used, there is an irreducible error that cannot be removed, caused by the noise in the 

problem itself. In contrast, the bias and variance errors (together known as the reducible errors) 

are controllable and can be minimized. The bias refers to the difference between the predictions of 

a model and the actual values based on training samples. The variance is caused by the sensitivity 

of a model to small fluctuations in the training set. Generally speaking, simple models such as 

linear regression have a high bias but a low variance, while complex models have a low bias but a 

high variance because they might concentrate more than necessary on the training data set and fail 

to generalize to the unseen data. Therefore, an appropriate bias-variance trade-off can help a model 

generalize beyond the training subset. 

6. Conclusions and further research 
Instead of using PDE solvers, four DL-based models, with the same structure and number of 

parameters but with different parameter values, were constructed from 249,375 samples for the 

multiscale basis functions in the mixed GMsFEM. The optimum architecture consists of seven 

weight/bias layers: five convolutional and two FC layers without any pooling layer. The results 

obtained reveal that the four developed models by either Adam or AMSGrad yield satisfactory 

outputs. They also accurately follow the pattern available in each coarse block. Mathematically 

speaking, the mixed GMsFEM can be accelerated by the developed models. In the context of 

computer science, the paper demonstrates that to develop a highly-accurate model it is not 

necessary to develop highly complex networks like AlexNet and VGGNet. Three suggestions are 

provided to extend the current study: (i) training with a greater volume of data to improve the 

performance of the available models, (ii) developing an ensemble learning model based on the 

current models, and (iii) working on 3-dimensional porous media with vertical, horizontal, and 

inclined fractures. 
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Nomenclature   

B batch normalization 

beta_1 a float value in the Adam algorithm 

beta_2 a float value in the Adam algorithm 

CNN Convolutional Neural Network 

conv1 first convolutional layer 

conv2 second convolutional layer 

conv3 third convolutional layer 

conv4 fourth convolutional layer 

conv5 fifth convolutional layer 

DFM Discrete-Fracture Model 

DL Deep Learning  

epsilon a small constant in the Adam algorithm 

FC Fully Connected 

FC1 first FC layer 

FC2 second FC layer 

GMsFEM Generalized Multiscale Finite Element Method 

𝐼ℎ input height 

𝐼𝑤 input width 

𝐾 number of kernels 

Kf fracture permeability  

𝐾ℎ kernel height 

Km matrix permeability  

𝐾𝑤 kernel width 

L linearkm 

M filters number of the previous convolutional layer  

MCMC Monte Carlo Markov Chain 

ML Machine Learning 

MSE Mean Squared Error  

N filters number of the current convolutional layer  

𝑁𝑐 number of neurons in the current FC layer 

𝑁𝑝 number of neurons in the previous FC layer 

𝑂ℎ output height 

𝑂𝑤 output width 

PDE Partial Differential Equation 

R ReLU 

R2 coefficient of determination 

ReLU Rectified Linear Unit 

RL Reinforcement Learning  

S sigmoid 

𝑆ℎ vertical stride 
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𝑆𝑤 horizontal stride 

TgNN Theory-guided Neural Network 

𝑦̅ average of actual basis function for all samples 

𝑦𝑖 actual basis function 

𝑦̂𝑖 predicted basis function 

Ω domain size 
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