
Data Structure for Association Rule Mining:
T-Trees and P-Trees

Frans Coenen, Paul Leng, and Shakil Ahmed

Abstract—Two new structures for Association Rule Mining (ARM), the T-tree, and

the P-tree, together with associated algorithms, are described. The authors

demonstrate that the structures and algorithms offer significant advantages in

terms of storage and execution time.

Index Terms—Association Rule Mining, T-tree, P-tree.

�

1 INTRODUCTION

ASSOCIATION Rule Mining (ARM) obtains, from a binary valued

data set, a set of rules which indicate that the consequent of a rule is

likely to apply if the antecedent applies [1]. To generate such rules,

the first step is to determine the support for sets of items (I) that

may be present in the data set, i.e., the frequency with which each

combination of items occurs. After eliminating those I for which

the support fails to meet a given minimum support threshold, the

remaining large I can be used to produce ARs of the form A) B,

where A and B are disjoint subsets of a large I. The ARs generated

are usually pruned according to some notion of confidence in each

AR. However this pruning is achieved, it is always necessary to

first identify the “large” I contained in the input data. This in turn

requires an effective storage structure.

In this paper, an efficient data storage mechanism for itemset

storage, the T-tree, is described. The paper also considers data

preprocessing and describes the P-tree, which is used to perform a

partial computation of support totals. The paper then goes on to

show that use of these structures offers significant advantages with

respect to existing ARM techniques.

2 THE TOTAL SUPPORT TREE (T-TREE)

The most significant overhead when considering ARM data

structures is that the number of possible combinations represented

by the items (columns) in the input data scales exponentially with

the size of the record. A partial solution is to store only those

combinations that actually appear in the data set. A further

mechanism is to make use of the downward closure property of

itemsets—“if any given itemset I is not large, any superset of I will

also not be large.” This can be used effectively to avoid the need to

generate and compute support for all combinations in the input

data. However, the approach requires: 1) a number of passes of the

data set and 2) the construction of candidate sets to be counted in

the next pass.

The most well-known ARM algorithm that makes use of the

downward closure property is Agrawal and Srikant’s Apriori

algorithm [1]. Agrawal and Srikant used a hash tree data structure,

however, Apriori can equally well be implemented using

alternative structures such as set enumeration trees [6]. Set

enumeration trees impose an ordering on items and then

enumerate the itemsets according to this ordering. If we consider

a data set comprised of just three records with combinations of six

items: f1; 3; 4g, f2; 4; 5g, and f2; 4; 6g (and a very low support

threshold), then the tree would include one node for each large I

(with its support count). The top level of the tree records the

support for 1-itemsets, the second level for 2-itemsets, and so on.

The implementation of this structure can be optimized by

storing levels in the tree in the form of arrays, thus reducing the

number of links needed and providing direct indexing. For the

latter purpose, it is more convenient to build a “reverse” version of

the tree, as shown in Fig. 1a. The authors refer to this form of

compressed set enumeration tree as a T-tree (Total support tree). The

implementation of this structure is illustrated in Fig. 1b, where

each node in the T-tree is an object (TtreeNode) comprised of a

support value (sup) and a reference (chldRef) to an array of child

T-tree nodes. The Apriori T-tree generation algorithm is presented

in Fig. 2, where start is a reference to the start of the top-level

array, < is the input data set,N the number of attributes (columns),

D the number of records and K a level in the T-tree (the Boolean

variable isNewLevel is a field in the class initialized to the value

false). The method TtreeNodeðÞ is a constructor to build a new

TtreeNode object.

3 THE PARTIAL SUPPORT TREE (P-TREE)

A disadvantage of Apriori is that the same records are repeatedly

reexamined. In this section, we introduce the concept of partial

support counting using the “P-tree” (Partial support tree). The idea

is to copy the input data (in one pass) into a data structure, which

maintains all the relevant aspects of the input, and then mine this

structure. In this respect, the P-tree offers two advantages: 1) It

merges duplicated records and records with common leading

substrings, thus reducing the storage and processing requirements

for these and 2) it allows partial counts of the support for individual

nodes within the tree to be accumulated effectively as the tree is

constructed.

The overall structure of the P-tree is that of a compressed set-

enumeration tree. The top level is comprised of an array of nodes

(instances of the class PtNodeTop), each index describing a

1-itemset, with child references to body P-tree nodes (instances

of the class PtNode). PtNodeTop instances are comprised of: 1) a

field (sup) for the support value and 2) a link (chdRef) to a PtNode

object. Instances of the PtNode class have: 1) a support field (sup),

2) an array of short integers (I) for the itemset that the node

represents and 3) child and sibling links (chdRef and sibRef) to

further P-tree nodes.

To construct a P-tree, we pass through the input data record by

record. When complete, the P-tree will contain all the itemsets

present as distinct records in the input data. The sup stored at each

node is an incomplete support total, comprised of the sum of the

supports stored in the subtree of the node. Because of the way the

tree is ordered, for each node in the tree, the contribution to the

support count for that set which derives from all its lexicographi-

cally succeeding supersets has been included.

The complete algorithm is given in Fig. 3, where < is the input

data set, N the number columns/attributes, D the number of

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004 1

. The authors are with the Department of Computer Science, University of
Liverpool, Liverpool, L69 3BX. E-mail: {frans, phl, shakil}@csc.liv.ac.uk.

Manuscript received 10 June 2003; revised 21 Oct. 2003; accepted 28 Jan.
2004.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0091-0603.

1041-4347/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

records, ref a reference to the current node in the P-tree, start a

reference to the P-tree top-level array, ref:I a reference to an

itemset represented by a Ptree node, Ilss a leading substring of

some item set I, and f a flag set according to whether a new node

should be inserted at the top level (f ¼ 0), as a child (f ¼ 1), or

sibling (f ¼ 2). The < and > operators should be interpreted as

lexicographically before and after. The method del1ðIÞ returns I with

its first element removed. The method delNðI1; I2Þ returns I1 with

the leading substring I2 removed. The methods PtNodeTop and

PtNode are constructors, the latter with two arguments—the node

label and the support. As nodes are inserted into the P-tree to

maintain the overall organisation of the tree, it may be necessary

to: 1) create a “dummy” node representing a common leading

substring and/or 2) “move up” siblings from the current node to

become siblings of a new node.

An example of the construction of the P-tree, using the same

data presented in Section 2, is given in Fig. 1c. Note that, on

completion, the tree includes the full count for itemset f2g and

partial counts for the itemsets f1; 3; 4g, f4; 5g, and f4; 6g. Note also

that, for reasons of computational effectiveness, the P-tree is in fact

initialized with the complete set of one item sets expressed as an

array (see above and Fig. 3).

4 APRIORI-TFP

We can generate a T-tree from a P-tree in a similar Apriori manner

to that described in Section 2. The algorithm for this (almost

identical to that given in Fig. 2) is referred to as the Apriori-TFP

(Total-from-Partial) algorithm. Note that the structure of the P-tree

is such that, to obtain the complete support for any I, we need only

add to the P-tree partial support for I the partial supports for those

supersets of I that are lexicographically before it. Thus, for each

pass of the T-tree, for each P-tree node P , we update only those

level k T-tree nodes that are in P but not in the parent node of P .

An alternative “preprocessing” compressed set enumeration

tree structure to the P-tree described here is the FP-tree proposed

by Han et al. [4]. The FP-tree has a similar organization to the

T-tree/P-tree, but stores only a single item at each node, and

includes additional links to facilitate processing. These links start

from a header table and link together all nodes in the FP-tree which

store the same “label”, i.e., item identifier.

5 EXPERIMENTAL RESULTS

In this section, some of the experimental results obtained using the

QUEST generator [1] are presented. Note that all ARM algorithms

considered have been implemented, in Java j2sdk 1.4.0, to the

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

Fig. 1. The T-tree (Total support tree). Note that, for both clarity and ease of processing, items/attributes are enumerated commencing with 1.

best ability of the authors according to published information. The

evaluation has been carried out on machines using RedHat Linux

7.1 OS; and fitted with AMD K6-2 CPUs running at 300MHz, with

64Kb of cache and 512 Mb of RAM. A sequence of graphs

describing the key points of this evaluation are presented in Fig. 4.

Figs. 4a and 4b show a comparison of Apriori using Hash trees

and T-trees with T20I10D250kN500 (chosen because it is repre-

sentative of the data sets used by other researchers using the

QUEST generator) and a range of support thresholds. The plots

demonstrate that the T-tree significantly outperforms the hash-tree

approach in terms of both storage and generation time. This is due

to the indexing mechanism used by the T-tree and its reduced

“housekeeping” overheads.

Figs. 4c and 4d compare the generation of P-trees with FP-trees

using the data set used in the plots from Figs. 4a and 4b but

varying the range of values for D. The plots show that the P-tree

generation time and storage requirements are significantly less

than for the FP-tree, largely because of the extra links included

during FP-tree generation.

Fig. 4e shows a comparison between Apriori using a Hash tree

(A-HT), Apriori using a T-tree (A-T), Apriori-TFP (A-TFP), Eclat

(E) and Clique (C) [7], DIC [3], and FP-growth (FP-tree), with

respect to execution time using the input set T10I5D250kN500.

This data set was chosen partly because it is representative of the

data sets used by other researchers, but also because it is a

relatively sparse data set (density 2 percent). From the plots, it can

be seen that Clique and Eclat perform badly because of the size of

the vertical data arrays that must be processed. FP-growth also

does not perform particularly well, while Apriori-TFP, Apriori-T,

and DIC do better.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004 3

Fig. 2. Basic Apriori T-tree algorithm.

Fig. 4f shows the results of experiments using a much denser

data set than that used above (density 50 percent). Dense data

favors both the P-tree and FP-tree approaches, which outperform

the other algorithms, with FP Growth giving the best result.

However, FP Growth, which recursively produces many FP-trees,

requires significantly more storage than Apriori-TFP.

6 CONCLUSIONS

In this paper, we have described the T-tree and P-tree ARM data

structures (and associated algorithms). Experiments show that:

1. The T-tree offers significant advantages in terms of

generation time and storage requirements compared to

hash tree structures,

2. The P-tree offers significant preprocessing advantages in

terms of generation time and storage requirements

compared to the FP-tree,
3. The T-tree is a very versatile structure that can be used in

conjunction with many established ARM methods, and
4. The Apriori-TFP algorithm proposed by the authors

performs consistently well regardless of the density of

the input data set. For sparse data, Apriori-T (also

developed by the authors) and DIC perform better than

Apriori-TFP, while FP-growth performs less well. For

dense data, FP-growth performs significantly better than

Apriori-TFP, while Apriori-T and DIC perform less well.

A further advantage offered by the P-tree and T-tree

structures is that branches can be considered independently

and therefore the structures can be readily adapted for use in

parallel/distributed ARM.

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

Fig. 3. P-Tree Generation Algorithm.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules,” Proc. 20th Very Large Databses (VLDB) Conf., pp. 487-499, 1994.

[2] R.J. Bayardo, “Efficiently Mining Long Patterns from Datasets,” Proc. ACM
SIGMOD, Int’l Conf. Management of Data, pp. 85-93, 1998.

[3] S. Brin, R. Motwani, J. Ullman, and S. Tsur, “Dynamic Itemset Counting
and Implication Rules for Market Basket Data,” Proc. ACM SIGMOD, Int’l
Conf. Management of Data, pp. 255-264, 1997.

[4] J. Han, J. Pei, and Y. Yiwen, “Mining Frequent Patterns Without Candidate
Generation,” Proc. ACM-SIGMOD Int’l Conf. Management of Data, pp. 1-12,
2000.

[5] Quest project, http://www.almaden.ibm.com/cs/quest/, IBM Almaden
Research Center.

[6] R. Rymon, “Search Through Systematic Set Enumeration,” Proc. Third Int’l
Conf. Principles of Knowledge and Reasoning, pp. 539-550, 1992.

[7] M.J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New algorithms for
Fast Discovery of Association Rules,” Proc. Third Int’l Conf. Knowledge
Discovery and Data Mining, 1997.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004 5

Fig. 4. Evaluation of ARM data structures and algorithms.

