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Abstract

Three different mechanisms are presented to allow for the representation of 3D surfaces in such a way that key
features are retained while at the same time ensuring compatibility with prediction (classification) techniques.
The application domain is sheet metal forming. The representations are designed to capture the nature of
the surface to be manufactured and predict deformations, known as “springback”, that will occur across a
surface (in a non-uniform manner) as a result of the application of a sheet steel forming process. The three
representation techniques are: (i) Local Geometry Matrices (LGMs) founded on the concept of local binary
patterns, (ii) Local Distance Measure (LDM) founded on the observation that the springback magnitude is
affected by distance from edges and (iii) Point Series (PS) whereby local geometries are represented in terms
of a linearisation. The evaluation of each of the techniques, and variations thereof, using parts that have been
manufactured especially for the purpose, is fully described. The paper also reports on a statistical significance
test concerning the results.
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1. Introduction

The phenomena of springback is a significant is-
sue with respect to the sheet metal forming industry
(Cafuta et al., 2012; Jeswiet et al., 2005). Spring-
back is the deformation introduced into some man-
ufactured part as a result of applying some forming
process. As a consequence the desired shape, some
prescribed 3D surface (T ), is not the same as the gen-
erated surface (T ′), hence the quality of the manufac-
tured part is compromised. The nature (magnitude
and direction) of springback is related to the local
geometries describing the 3D surface to be manufac-
tured. If we can predict springback we can apply
correcting measures to T to produce T ′′ so that the
generated surface T ′ will approximate much more
closely to T . Thus given a previously manufactured
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part, with known springback, we wish to produce a
classifier that can predict springback with respect to a
particular manufacturing process (such as Asymmet-
ric Incremental Sheet Forming or AISF). The chal-
lenge is how best to represent the 3D surfaces of in-
terest so as to facilitate the effective capture of local
geometries to which individual springback dimen-
sions can be related. The work presented in this pa-
per is directed at exploring a number of alternative
techniques for capturing the nature of 3D surfaces so
as to support the effective generation of springback
predictors (classifiers).

Three different 3D surface representation tech-
niques are proposed: (i) Local Geometry Matrix (LGM),
(ii) Local Distance Measure (LDM) and (iii) Point
Series (PS). The LGM representation is founded on
the idea of Local Binary Patterns (LBPs) as described
in (Guo et al., 2010). The LDM representation is mo-
tivated by the observation that the local magnitude of
springback tends to increase with the distance from
edges. The PS representation is based on the idea
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of representing local geometries in terms of a point
series curve (linearisation).

The main contributions of this paper are as fol-
lows.

1. A generic framework for springback predic-
tion.

2. The LGM technique to represent 3D surfaces
in terms of local geometries.

3. The LDM technique to represent 3D surfaces
local geometries in terms of distances to the
nearest critical features (edges or corners).

4. The PS technique to represent 3D surfaces lo-
cal geometries in terms of linearisations of points
to form point series (curves).

5. Extensive comparison of the three proposed tech-
niques in terms of accuracy and AUC measure-
ments.

6. A statistical evaluation to identify the signifi-
cant difference in operation between the use of
LGM, LDM and PS in the context of 3D sur-
face classification.

The operation of the three proposed techniques
are compared in this paper using two flat-topped pyra-
mid surfaces (shapes) which were specially manu-
factured with respect to the work described (hence
the degree of springback is known).

The rest of this paper is organised as follows.
Section 2 presents a literature review of related work
to that presented in the rest of this paper. Section 3
starts by introducing a generic framework for spring-
back prediction. The three different representation
techniques (LGM, LDM and PS) are then described
in Sections 4, 5 and 6 respectively. The evaluation of
the proposed representations, in the context of clas-
sifier generation, using the two flat topped pyramid
shapes is presented in Section 7. Some conclusions
are presented in Section 8.

2. Related Work

In the field of 3D representation many different
techniques have been proposed directed at a vari-
ety of goals and objectives in the context of a range

of application domains. Example applications in-
clude: (i) the translation of physical 3D surfaces into
Computer Aided Graphics (CAG) formats (Hsiao &
Chen, 2013; Jahanshahi & Masri, 2012), and (ii) ren-
dering in the context of computer vision (Ayache,
1995; Izquierdo & Ohm, 2000) and with respect to
many medical image analysis domains (Ayache, 1995;
Ghanei et al., 1998; Fresno et al., 2009). Existing 3D
representation techniques can be categorised accord-
ing to the objective associated with the representa-
tion. High level examples of such 3D object repre-
sentation techniques include:

• Point Clouds: The simplest representation is a
point cloud representation whereby a 3D sur-
face is defined in terms of an unordered col-
lection of points defined in terms of x, y, and
z coordinates typically generated using either
CAD software or some optical measuring tool
(Alexa et al., 2001; Hoppe et al., 1992; Roth &
Wibowoo, 1997).

• Range Images: Range images are 2D images
depicting the distance of points in a 3D envi-
ronment from a specific point, normally asso-
ciated with some type of sensor device (Soucy
& Laurendeau, 1995).

• Surface Representation: For 3D surface rep-
resentation commonly advocated techniques in-
clude: (i) mathematical techniques (implicit and
parametric) (Farin et al., 2002; Munkberg et al.,
2010) and (ii) mesh representations (Adams,
2013).

• Volume Representations: For volumetric data
the idea of Constructive Solid Geometries (CSG)
can be adopted whereby a hierarchy of boolean
operations (union, difference and intersection)
are applied to a collection of basic volumes so
as to define more complex 3D volumes (Gold-
feather et al., 1986).

• High-level Representations: For high-level rep-
resentations graphs are frequently used, exam-
ples include: (i) Reeb graphs (Biasotti et al.,
2008), (ii) scene graphs (Song & Yang, 2011)
and (ii) “skeletons” (Demoly et al., 2011).
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Figure 1: The process for obtaining the Cin and Cout 3D surface specifications.

For a more detailed discussion concerning 3D rep-
resentation techniques interested readers are referred
to (Hubeli & Gross, 2000) where the authors present
a taxonomy of various 3D representation techniques.

Classification (prediction) is the branch of ma-
chine learning (knowledge discovery in data) con-
cerned with the automated generation of software sys-
tems that can be used to label previously unseen data.
Classification is a supervised learning technique in
the sense that it requires pre-labelled data to be used
to “train” the desired classifier. Many different clas-
sifier generation techniques have been proposed, to
date no single general-purpose “best” technique has
been identified. Two particular techniques have been
used with respect to the work described in this pa-
per: (i) Decision Trees (Breiman et al., 1984; Quin-
lan, 1986, 1993) and (ii) k-Nearest Neighbour (k-
NN) (Dasarathy, 1991; Wettschereck, 1994). Decis-
sion trees were selected because: (i) they are one of
the top ten most popularly used classification tech-
niques (Wu et al., 2007), (ii) they are easily inter-
preted, and (iii) it is straight forward to extract rules
from the generated trees (rules that can be used to
furnish explanations). In addition, in previous work
published by the authors (El-Salhi et al., 2012; Khan
et al., 2012) it has been shown that in the context of
3D representations for springback prediction there is
no significant differences in operation between deci-
sion trees and other popular classification techniques
(Naı̈ve Bayes and classification association rule gen-
erators such as CMAR, CPAR and TFPC). However,
the use of decision trees was only appropriate with

respect to the LGM and LDM representations which
leant themselves to the use of a feature vectors. For
the PS representation the local geometries contained
within a given 3D surface are represented in terms
of individual point series (linerisations) and hence a
k-NN technique was used to label new curves (curve
matching was conducted using Dynamic Time Warp-
ing).

Dynamic Time Warping (DTW) is a well estab-
lished technique originally used to define the simi-
larity between two time series, although it is equally
applicable to point series. It was first proposed in
(Sakoe & Chiba, 1990) in the context of speech recog-
nition. DTW has since been applied with respect to a
wide range of applications (Keogh & Pazzani, 2001;
Wei & Keogh, 2006). Given two point series A and
B of length na and nb respectively, such that na does
not necessarily equal nb, DTW is used to produce a
distance measure describing the similarity between
the two curves regardless of the individual lengths of
A and B.

Sheet metal forming is a widely used process with
respect to manufacturing industries such as the air-
craft and automotive industries. One such process
is Asymmetric Incremental Sheet Forming (AISF)
where a tool head follows a predefined tool path to
“push out” a desired shape (Jeswiet et al., 2005). The
main advantages of AISF, over alternative sheet metal
forming processes, are reduced time and cost (Strano,
2005). However, the main limitation of the AISF
process is the significant amount of springback that
results. As already noted above, springback is the

3



elastic deformation that occurs as a result of the ap-
plication of a sheet metal forming process. Generally
speaking springback is related to both manufactur-
ing parameters (the 3D geometry of the shape to be
manufactured) and material properties (Firat et al.,
2008; Nasrollahi & Arezoo, 2012; Liu et al., 2008).
There has been substantial reported work on spring-
back characterisation and analysis. Of note are the
Finite Element Method (FEM) and Artificial Intel-
ligent methods that have been proposed to predict
springback (Chatti & Hermi, 2011; Narasimhan &
Lovell, 1999; Yoon et al., 2002). Although FEM
provides a flexible simulation environment (parame-
ters can be easily modified), FEM is a time consum-
ing option (Hao & Duncan, 2011; Tisza, 2004; Firat
et al., 2008). Furthermore, FEM has been found to be
not as accurate as originally expected because of the
use of simplification assumptions with respect to the
required integration calculation (Chatti, 2010; Chatti
& Hermi, 2011; Nasrollahi & Arezoo, 2012). Artifi-
cial Neural Network (ANNs) are often quoted as be-
ing a good alternative to FEM. However, the compu-
tational resource requirement is a significant limita-
tion to the use of ANNs in the context of springback
characterisation (Liu et al., 2007; Fu et al., 2010).
To the best knowledge of the authors there has been
no reported work on the application of classification
techniques (or data mining techniques in general) for
the purpose of predicting springback in the context of
AISF in particular, and sheet metal forming in gen-
eral.

3. Springback Prediction Framework

This section presents the general Springback Pre-
diction Framework developed by the authors. The
three proposed 3D surface representation techniques
are presented in the following three sections, Sec-
tions 4, 5 and 6. The framework encompasses both
the generation of the desired classifier and its us-
age. Note that the first requires a training set. To
generate a training set the framework requires in-
put of two point clouds Cin and Cout associated with
some 3D surface T obtained as shown in Figure 2.
The Cin cloud describes the desired surface (design
specification) typically obtained using some form of
Computer-Aided Design (CAD) Software. The Cout

cloud describes the surface that was actually manu-
factured (T ′) and is typically obtained by using some
form of optical measuring tool1.

The points in both the Cin and Cout clouds are de-
fined in terms of a x, y and z coordinate system and
are translated into two 2D grids, Gin and Gout respec-
tively, of grid size d. Each grid square is referenced
by its centre point defined in terms of a x and y co-
ordinate pair with an associated z-value (the average
of the z coordinate for all the points located within
the grid square). The main advantages for the grid
representation are: (i) it minimise the density of the
point clouds, (ii) it minimise the computation time
required to process the point clouds, (iii) it permits
straightforward further processing, (iv) it provides
for an integrated and unified framework for both Cin
and Cout , (v) it provide a simple referencing system
between corresponding grid squares in Cin and Cout
and (vi) its supports an efficient identification of the
local neighbouring grid points (Jain et al., 1995; Lu
& Sajjanhar, 1999; Pinto et al., 2012). Note that once
a classifier has been generated, the framework only
requires a Cin cloud.

Examples of a Gin and a corresponding Gout grid
(d = 1mm) for a flat topped pyramid shape, made out
of sheet steel using the AISF process, are presented
in Figure 3 and 4 respectively. By inspecting the fig-
ures the differences between Gin and Gout can be ob-
served, especially with respect to: (i) the degree of
concavity on the side walls and (ii) the deformation
in the flat area around the edge of the pyramids.

In the case of training set derivation, once Gin and
Gout have been derived the next stage is to determine
the degree of springback (the error value e) to be as-
sociated with each grid square in Gin. The process
for this is as follows, for each grid square in Gin:

1. Find the normal of the centre grid point ~n us-
ing vector products. In this manner four nor-
mals can be found from the dot products of
pairs of 90◦ separated vectors connecting the
current grid square centre to its north, south,
east and west neighbours.

1The GOM (Gesellschaft für Optische Messtechnik mbH)
optical measuring tool was used with respect to the work de-
scribed in this paper more details of which can be found in
(Berger et al., 2011).
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Figure 2: Springback Calculation.

Figure 3: Example Gin grid for a flat topped pyramid 3D surface (d = 1mm).

Figure 4: Example Gout grid for a flat topped pyramid 3D surface (d = 1mm), corresponding to the Gin grid
given in Figure 3.

2. Identify the intersection point pint located on
Gout by extending each normal ~n from Gin to
where they cuts Gout .

3. Determine the distance along each normal ~n

using vector and plane geometry (see Equation
1 where ~n = 〈a,b,c〉 is the normal originat-
ing from a point pi(xi,yi,zi) located on Gin and
pint(xint ,yint ,zint) is the corresponding point on
Gout where the normal intersects Gout .
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4. The average of the four calculated distances
then defines the magnitude of the springback
error ei at centre pi, the sign (+ or −) defines
the direction.

The process is illustrated in Figure 2. Referring to
the figure we commence with Cin and Cout point clo-
uds (left hand panel), we the calculate the spring back
error for each gird square centre point using vector
geometry (middle panel), which is then associated
withy each grid square (right hand panel).

ei =
|a(xi− xint)+b(yi− yint)+ c(zi− zint)|√

(a2 +b2 + c2)
(1)

4. Local Geometry Matrix (LGM) Representation

The first 3D surface representation mechanism
considered is the Local Geometry Matrix (LGM) me-
chanism. The concept of LGMs is founded on the
idea of Local Binary Patterns (LBPs) as frequently
used with respect to image texture analysis. A local
geometry matrix is a n× n grid describing the loca-
tions surrounding an individual point (the point of
interest is at the centre of the matrix). Three varia-
tion of the LGM representation were considered: (i)
level one LGMs where the eight closest surround-
ing neighbours are considered as shown in Figure 5a
(this variation is described in previous work (El-Salhi
et al., 2012)), (ii) level two LGMs where the eight
surrounding neighbours “one step away” are consid-
ered as shown in Figure 5b and (iii) composite LGMs
produced by combing level one and two LGMs as
shown in Figure 5c. Two different options for gen-
erating the values to be stored in the LGM were also
considered. The first option was to use the difference
in height (δ z) between the centre point pi and each of
its n neighbouring points p j (1≤ j ≤ n). The second
was to use the angle, above or below the horizontal,
between pi and each point p j. Experimentation, de-
scribed in (El-Salhi et al., 2012), indicated that com-
posite LGMs coupled with δ z values proved to be
the most effective representation. Whatever the case
at the end of the process we have a LGM for each
grid point. In the case of the training set this is aug-
mented with an error value (calculated as described
above). With respect to the LGM representation we

(a) Level one
neighbourhood

(b) level two
neighbourhood

(c) Composite
neighbourhood

Figure 5: LGM configurations

opted for classifiers that operate using binary valued
data, we therefore needed to discretise the data. To
this end ranges of possible LGM values was replaced
by one of a set of qualitative labels L used to de-
scribes the nature of the slope in each of the eight di-
rections. An example set of qualitative labels might
be {n, l, p} where n indicates “negative”, l indicates
“level” and p indicates “positive”. In the case of the
training data required to generate a classifier, ranges
of error values were used in a similar manner. Using
this labelling, and by ordering the matrix elements
(grid points) in a clockwise direction from the top
left, a training set record might be described as fol-
lows:

〈p, p, p, l,n,n,n, l,e〉

where e is the associated springback. In this manner
a dataset comprising a collection of LGM “feature
vectors” could be constructed to which any one of a
number of classifiers could be applied.

5. Local Distance Measure (LDM) Representation

The second 3D surface representation mechanism
presented in this paper is the Local Distance Measure
(LDM) mechanisms. This is founded on the obser-
vation that springback is greater further from edges
(Behera et al., 2013). The idea is therefore to de-
scribe each grid square in terms of the distance from
its centre to the nearest “critical feature point”, where
a critical feature point is a grid square that represents
an edge of some kind. Thus the LDM process com-
mences with the identification of the critical feature
points in the input. This was achieved by identifying
the eight angular differences α1,α2, ...,α8 between
the normal to each centre point and its surrounding
neighbourhood normals {E, NE, N, NW , W , SW , S,
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SE}. If one or more of the angular difference αi was
found to be greater than some tolerance measure, ξ ,
then the centre grid point was considered to be a criti-
cal feature point. Once the critical feature points had
been detected the closest critical point to each grid
centre point was determined by adopting a “region
growing” process.

The grid size d The tolerance value ξ

2.5 9
5 9

10 15
15 18
20 20

Table 1: The most appropriate tolerance value ξ for
different grid sizes (d) in the context of critical fea-
ture point detection

Equation 2 was used to calculate the minimum
distance between the centre grid point p1 =(x1,y1,z1)
and the closest critical point p2 = (x2,y2,z2).

d(p1, p2) =
√

(x1− x2)2 +(y1− y2)2 +(z1− z2)2

(2)

The result is a set of records each describing a grid
square location in terms of its critical distance (and,
in the case of a training set, its associated springback
vale E). Clearly, there are two main factors that af-
fect the process of edge detection: (i) the tolerance
value ξ and (ii) the grid size d. As the value for
ξ increases the number of identified critical feature
points will decrease. As the grid size d increases
the number of identified critical feature points is also
likely to increase because the angular differences be-
tween normals is more likely to be large. Conse-
quently, in the context of the LDM representation,
the ξ and d values are related and should be chosen
carefully. An additional set of experiments, not re-
ported in this paper (but see El-Salhi et al. (2012)),
was conducted to identify the most appropriate value
of ξ to be associated with each d value. Table 1
presents the main findings of these experiments, these
are then the ξ values used with respect to the eval-
uation reported later in this paper. The outcomes

when using d = 2.5mm and a number of different ξ

values ({15,12,9,5}) to detect critical feature points
(edges) in a flat-topped pyramid shape are presented
in Figures 6, 7, 8 and 9. From the figures it can
be seen ξ = 9 produces the best performance, when
ξ > 9 critical feature points remain undiscovered,
when ξ < 9 the system become too sensitive and too
many points are identified.

Whatever the case, as in the case of the LGM rep-
resentation, at the end of the process a dataset com-
prising a collection of LDM “feature vectors” is ob-
tained to which a number of different possible clas-
sifiers can be applied.

6. Point Series Representation (PS)

This section presents the PS technique whereby
a 3D surface is defined in terms of the local geome-
tries surrounding individual grid square neighbour-
hoods based on the idea of linearising the key ele-
ments of the volume to form a sequence (series) of
points. Thus the local,geometry for each grid square
will be defined in terms of a point series. The de-
sired linearisation can be conducted using a horizon-
tal, vertical, “zig-zag” or a spiral linearisation so as
to pass through each “key” grid point within a n×n
neighbourhood centred on the grid square of interest
as shown in Figure 10. With respect to the work de-
scribed in this paper a spiral linearisation was used
as also shown in Figure 10, the numbering indicate
the ordering of the linearisation. This linearisation is
translated to a curve representation where the x-axis
gives the grid square number and the y-axis the δ z
value associated with this grid square. In this manner
we can generate a point series for each centre point
p j located in grid Gin. In the context of training data
each point series was also have associated with it an
error label indicating the associated springback value
ei.

Using this point series representation we can cre-
ate a “bank” of point series, each associated with an
error value, which can be used to assign error val-
ues to the point series associated with new, previ-
ously unseen, surfaces. The k-Nearest Neighbour
algorithm (k-NN) was used for this purpose. k = 1
was used to select the “nearest” curve in our point
series bank to a new curve. Dynamic Time Warping
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Figure 6: Critical feature point detection in a flat
topped pyramid shape (d = 2.5 mm and ξ = 15).

Figure 7: Critical feature point detection in a flat
topped pyramid shape ( d = 2.5 mm and ξ = 12).

Figure 8: Critical feature point detection in a flat
topped pyramid shape (d = 2.5 mm and ξ = 9).

Figure 9: Critical feature point detection in a flat
topped pyramid shape (d = 2.5 mm and ξ = 5).
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(DTW) was adopted (Figure 11). DTW operates as
follows. Given two point series A = {a1,a2, · · · ,an}
and B = {b1,b2, · · · ,bm}, a matrix T that has a di-
mension of |A|× |B|= n×m is generated, where the
value of the (ith, jth) element is obtained according
to the Euclidean distance measure (absolute value of
distance between two points) d(ith, jth) = |ai− b j|.
After the matrix elements are computed, the simi-
larity between two time series (curves) is defined in
terms of the length of the “minimum path” across the
matrix T from the bottom-left to the top-right corner
as shown in Figure 11. Thus the minimum DTW path
between A and B is defined as follows:

min DTW path(A,B) = min


√√√√ K

∑
k=1

wk

 (3)

where wk = d(ith, jth) and max(n,m)≤ K < m+n−
1 (Keogh & Pazzani, 2001; Xi et al., 2006). Note
that given two identical curves the shortest path will
be along the diagonal and the accumulated distance
will be zero.

7. Evaluation

The comparison of the proposed methods was con-
ducted using two flat-topped pyramid surfaces (shapes)
referred to as the Gonzalo and Modified pyramids
(see Figures 12 and 13). From the figures it can be
observed that the two surfaces are similar although
not identical (one side of the Gonzalo pyramid fea-
tures a “bulge”). Some statistical characteristics for
the Gin grid, with respect to the two shapes, are pre-
sented in Table 2. Note that the Modified pyramid
features many more points (although both pyramids
are similar in size). Each surface was manufactured
four times, twice in Steel and twice in Titanium. Hence,
we have eight Gout grids: (i) Gonzalo steel 1 (GS1),
(ii) Gonzalo Steel 2 (GS2), (iii) Gonzalo titanium
1 (GT1), (iv) Gonzalo titanium 2 (GT2), (v) Modi-
fied steel 1 (MS1), (vi) Modified Steel 2 (MS2), (vii)
Modified titanium 1 (MT1) and (viii) Modified tita-
nium 2 (MT2). Some statistics concerning the Gout
grids are presented in Table 3.

The evaluation was conducted using a range of
grid sizes d = {2.5,5,10,15,20} (mm). Consequently

Figure 10: Spiral linearisation process for 7× 7
patterns.

Figure 11: The minimum path between A and B
series shown in by the bold diagonal line.

Table 2: Statistical characteristics for the Gin point
clouds for the Gonzalo and Modified pyramids: W =
width mm, L = length mm, H = height mm, A = area
of grid (W ×L) mm2, N = number of points and D =
density of points per mm2 (N/A).

Cin W L H A N D
Gonzalo 195 195 43 38025 250847 7.00
Modified 190 190 42 36100 565817 16.00
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Figure 12: The Gin cloud for Gonzalo steel pyra-
mid.

Figure 13: The Gin cloud for Modified steel pyra-
mid.

Table 3: Statistical characteristics for the Cout point
clouds for the Gonzalo and Modified pyramids.

Cout W L H A N D
GS1 194 194 45 37636 421214 11.00
GS2 194 194 44 37636 233480 6.00
GT1 199 189 46 37611 430900 11.00
GT2 195 194 46 37830 185526 5.00
MS1 196 195 45 38220 257436 7.00
MS2 196 195 44 38220 269031 7.00
MT1 195 195 47 38025 394895 10.00
MT2 195 194 46 37830 401186 11.00

the number of generated records (recall that one record
represents one grid square) varied for each data set
according to the value of d, as shown in Table 4. For
the PS representation a “tolerance” of 0.08 mm, as
suggested by BS EN ISO 1101:2005 (BS ISO 1101),
was used2. Recall also that a Decision Tree (DT)
classifier was adopted with respect to the LGM and
LDM techniques (although any other compatible clas-
sifier would have been equally appropriate), while k-
NN coupled with DTW was used with respect to the
PS technique. The results obtained are presented, in
terms of both accuracy and Area Under ROC Curve
(AUC), in Section 7.1 below.

2BS EN ISO 1101 is a geometrical Product Specification
(GPS) standards. The maximum variation between the techni-
cal design and actual (true) geometry is specified according to
tolerance values included in the specification.

The first two objectives of the experiments were
as follows: (i) to identify the most appropriate grid
size with respect to each proposed technique and (ii)
to identify the most appropriate 3D representation
technique for springback prediction. Both these two
objectives are discussed, with respect to the results
reported in Sections 7.1, 7.2 and 7.3. Additional
experiments were conducted to determine w-hether
it was possible to generate a generic classifier, one
trained on some suitable shape that could be used to
predict the springback associated with other shapes.
This is discussed further in Section 7.4. Further anal-
ysis is presented in Section 7.5, with respect to the
second objective, to determine whether the results
obtained are indeed statistically significant.

Table 4: Number of records generated for the Gon-
zalo and Modified pyramids using different values of
d (mm).

d GS1 GS2 GT1 GT2 MS1 MS2 MT1 MT2
2.5 6086 6086 5928 6086 5853 5853 5853 5853
5 1523 1523 1483 1523 1483 1483 1483 1483
10 402 402 381 402 381 381 381 381
15 171 171 171 171 171 171 171 171
20 102 102 102 102 102 102 102 102

7.1. Results
This section presents the results obtained using

the three proposed techniques and their variations and
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a range of grid sizes d = {2.5,5,10,15,20} (mm). In
the case of the LGM technique a label size of |L|= 3
was used as earlier experiments (not reported here)
demonstrated that this produced good results. The
accuracy and AUC results obtained using the three
LGM variations (Level 1 LGM, Level 2 LGM and
the Composite LGM) are presented in Tables 5 and
6 respectively, best results are indicated in bold font.
With respect to the LDM technique and the consid-
ered combinations of the LDM technique with the
LGM technique (LDM+Level 1 LGM, LDM+Level
2 LGM and LDM+Composite LGM) Table 7 presents
the accuracy results while Table 8 the AUC results
(again best results are indicated using a bold font).
For the Point Series (PS) technique a range of n val-
ues, describing different n× n neighbourhood con-
figurations (n = {3,5,7}), were considered. Recall
that the PS technique was used in conjunction with k-
NN classification and that a tolerance value of 0.08
mm was used when determining the DTW similar-
ity between surfaces. Table 9 presents the accuracy
results obtained while Table 10 presents the AUC re-
sults. The relevance of these results, with respect to
the first two evaluation objectives, are presented in
the following two sections; Section 7.2 and Section
7.3 respectively.

7.2. Best grid size
This section considers the results presented in the

foregoing sections with respect to the identification
of the most appropriate grid size, in the context of
prediction effectiveness (AUC), with respect to each
proposed techniques. The AUC measure was used
for this purpose because it takes into account class
priors, whilst the accuracy metric does not, AUC is
therefore argued to be a better indicator of classifica-
tion effectiveness. The three LGM variations (Level
1 LGM, Level 2 LGM and the Composite LGM)
are considered in Section 7.2.1, the LDM technique
and combinations of the LDM and LGM techniques
(LDM + Level 1 LGM, LDM + Level 2 LGM, LDM
+ Composite LGM ) are discussed in Section 7.2.2
and the Point Series (PS) technique in Section 7.2.3.

7.2.1. The Best Grid size for LGM Technique
Considering the LGM technique and its varia-

tions first, from Table 5 it can be observed that high

Table 5: Accuracy results obtained using variations
of the LGM representation using a range of values
for grid size (d = {2.5,5,10,15,20}mm and |L|= 3.

Data 3D Proposed Grid size (d) mm
Set Technique 2.5 5 10 15 20

GS1
Level 1 LGM 0.60 0.61 0.62 0.62 0.70
Level 2 LGM 0.60 0.61 0.70 0.65 0.54

Composite LGM 0.60 0.61 0.69 0.69 0.65

GS2
Level 1 LGM 0.83 0.84 0.85 0.88 0.94
Level 2 LGM 0.83 0.84 0.88 0.87 0.84

Composite LGM 0.83 0.84 0.89 0.89 0.93

GT1
Level 1 LGM 0.70 0.70 0.63 0.83 0.78
Level 2 LGM 0.70 0.70 0.65 0.75 0.78

Composite LGM 0.70 0.70 0.66 0.77 0.81

GT2
Level 1 LGM 0.74 0.76 0.73 0.76 0.75
Level 2 LGM 0.74 0.76 0.76 0.79 0.73

Composite LGM 0.74 0.76 0.76 0.85 0.78

MS1
Level 1 LGM 0.65 0.68 0.68 0.83 0.89
Level 2 LGM 0.65 0.68 0.73 0.78 0.75

Composite LGM 0.65 0.68 0.73 0.86 0.86

MS2
Level 1 LGM 0.62 0.67 0.74 0.83 0.93
Level 2 LGM 0.62 0.67 0.78 0.79 0.78

Composite LGM 0.62 0.67 0.78 0.88 0.95

MT1
Level 1 LGM 0.49 0.55 0.62 0.54 0.64
Level 2 LGM 0.49 0.55 0.72 0.61 0.51

Composite LGM 0.49 0.55 0.72 0.68 0.62

MT2
Level 1 LGM 0.54 0.54 0.59 0.64 0.73
Level 2 LGM 0.54 0.54 0.67 0.71 0.69

Composite LGM 0.54 0.54 0.66 0.67 0.71

Average
Level 1 LGM 0.65 0.67 0.68 0.74 0.80
Level 2 LGM 0.65 0.67 0.74 0.74 0.70

Composite LGM 0.65 0.67 0.74 0.79 0.79
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Table 6: AUC results obtained using variations of the
LGM representation using a range of values for ford
size (d = {2.5,5,10,15,20} mm) and |L|= 3.

Data 3D Proposed Grid size (d) mm
Set Technique 2.5 5 10 15 20

GS1
Level 1 LGM 0.66 0.67 0.62 0.73 0.78
Level 2 LGM 0.66 0.67 0.73 0.69 0.71

Composite LGM 0.66 0.67 0.73 0.75 0.76

GS2
Level 1 LGM 0.82 0.83 0.83 0.88 0.94
Level 2 LGM 0.82 0.83 0.96 0.86 0.84

Composite LGM 0.82 0.83 0.96 0.93 0.92

GT1
Level 1 LGM 0.74 0.74 0.69 0.81 0.81
Level 2 LGM 0.74 0.74 0.79 0.79 0.83

Composite LGM 0.74 0.74 0.80 0.83 0.83

GT2
Level 1 LGM 0.76 0.77 0.73 0.82 0.84
Level 2 LGM 0.76 0.77 0.82 0.80 0.80

Composite LGM 0.76 0.77 0.82 0.89 0.87

MS1
Level 1 LGM 0.69 0.70 0.66 0.84 0.86
Level 2 LGM 0.69 0.70 0.78 0.84 0.82

Composite LGM 0.69 0.70 0.78 0.88 0.85

MS2
Level 1 LGM 0.68 0.70 0.76 0.86 0.95
Level 2 LGM 0.68 0.70 0.91 0.87 0.84

Composite LGM 0.68 0.70 0.91 0.88 0.94

MT1
Level 1 LGM 0.50 0.64 0.67 0.71 0.68
Level 2 LGM 0.50 0.64 0.75 0.80 0.64

Composite LGM 0.50 0.64 0.75 0.84 0.72

MT2
Level 1 LGM 0.64 0.63 0.64 0.69 0.76
Level 2 LGM 0.64 0.63 0.74 0.84 0.76

Composite LGM 0.64 0.63 0.73 0.84 0.81

Average
Level 1 LGM 0.69 0.71 0.70 0.79 0.83
Level 2 LGM 0.69 0.71 0.81 0.81 0.78

Composite LGM 0.69 0.71 0.81 0.86 0.84

Table 7: Accuracy results obtained using variations
of the LDM representation using a range of values
for grid size (d = {2.5,5,10,15,20} mm).

Data 3D Proposed Grid size (d) mm
Set Technique 2.5 5 10 15 20

GS1

LDM 0.50 0.53 0.54 0.54 0.45
LDM+Level 1 LGM 0.62 0.63 0.62 0.65 0.68
LDM+Level 2 LGM 0.62 0.63 0.71 0.66 0.54

LDM+Composite LGM 0.62 0.63 0.70 0.66 0.65

GS2

LDM 0.60 0.59 0.63 0.63 0.64
LDM+Level 1 LGM 0.83 0.84 0.87 0.86 0.94
LDM+Level 2 LGM 0.83 0.84 0.90 0.85 0.84

LDM+Composite LGM 0.83 0.84 0.92 0.89 0.93

GT1

LDM 0.51 0.53 0.64 0.49 0.55
LDM+Level 1 LGM 0.70 0.70 0.64 0.82 0.78
LDM+Level 2 LGM 0.70 0.70 0.68 0.81 0.77

LDM+Composite LGM 0.70 0.70 0.68 0.82 0.81

GT2

LDM 0.51 0.52 0.52 0.49 0.54
LDM+Level 1 LGM 0.74 0.76 0.72 0.75 0.74
LDM+Level 2 LGM 0.74 0.76 0.77 0.79 0.78

LDM+Composite LGM 0.74 0.76 0.77 0.85 0.78

MS1

LDM 0.55 0.54 0.55 0.62 0.64
LDM+Level 1 LGM 0.68 0.68 0.70 0.86 0.89
LDM+Level 2 LGM 0.68 0.68 0.72 0.82 0.75

LDM+Composite LGM 0.68 0.68 0.73 0.88 0.86

MS2

LDM 0.53 0.53 0.64 0.65 0.63
LDM+Level 1 LGM 0.64 0.68 0.74 0.87 0.93
LDM+Level 2 LGM 0.64 0.68 0.79 0.86 0.54

LDM+Composite LGM 0.64 0.68 0.79 0.87 0.94

MT1

LDM 0.59 0.55 0.52 0.44 0.54
LDM+Level 1 LGM 0.59 0.57 0.62 0.58 0.64
LDM+Level 2 LGM 0.59 0.57 0.72 0.61 0.56

LDM+Composite LGM 0.59 0.57 0.72 0.68 0.59

MT2

LDM 0.52 0.46 0.45 0.55 0.58
LDM+Level 1 LGM 0.59 0.57 0.58 0.66 0.73
LDM+Level 2 LGM 0.59 0.57 0.67 0.71 0.68

LDM+Composite LGM 0.59 0.57 0.67 0.67 0.71

Average

LDM 0.54 0.53 0.56 0.55 0.57
LDM+ Level 1 LGM 0.67 0.68 0.69 0.76 0.79
LDM+ Level 1 LGM 0.67 0.68 0.75 0.76 0.71

LDM+ Composite LGM 0.67 0.68 0.75 0.79 0.78
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Table 8: AUC results obtained using variations of the
LDM representation using a range of values for grid
size (d = {2.5,5,10,15,20} mm).

Data 3D Proposed Grid size (d) mm
Set Technique 2.5 5 10 15 20

GS1

LDM 0.50 0.51 0.50 0.49 0.46
LDM+Level 1 LGM 0.69 0.68 0.65 0.73 0.76
LDM+Level 2 LGM 0.69 0.68 0.75 0.72 0.71

LDM+Composite LGM 0.69 0.68 0.74 0.75 0.75

GS2

LDM 0.50 0.50 0.47 0.47 0.45
LDM+Level 1 LGM 0.82 0.83 0.84 0.90 0.94
LDM+Level 2 LGM 0.82 0.83 0.95 0.86 0.84

LDM+Composite LGM 0.82 0.83 0.96 0.93 0.92

GT1

LDM 0.53 0.54 0.45 0.49 0.61
LDM+Level 1 LGM 0.74 0.74 0.71 0.82 0.80
LDM+Level 2 LGM 0.74 0.74 0.79 0.81 0.84

LDM+Composite LGM 0.74 0.74 0.80 0.85 0.83

GT2

LDM 0.50 0.50 0.45 0.53 0.45
LDM+Level 1 LGM 0.76 0.77 0.72 0.81 0.84
LDM+Level 2 LGM 0.76 0.77 0.81 0.80 0.80

LDM+Composite LGM 0.76 0.77 0.81 0.88 0.87

MS1

LDM 0.57 0.50 0.54 0.47 0.45
LDM+Level 1 LGM 0.71 0.70 0.74 0.85 0.86
LDM+Level 2 LGM 0.71 0.70 0.80 0.87 0.82

LDM+Composite LGM 0.71 0.70 0.80 0.88 0.85

MS2

LDM 0.58 0.50 0.49 0.48 0.45
LDM+Level 1 LGM 0.71 0.71 0.75 0.87 0.96
LDM+Level 2 LGM 0.71 0.71 0.92 0.90 0.84

LDM+Composite LGM 0.71 0.71 0.92 0.87 0.97

MT1

LDM 0.50 0.52 0.50 0.49 0.55
LDM+Level 1 LGM 0.68 0.67 0.67 0.75 0.68
LDM+Level 2 LGM 0.68 0.67 0.75 0.80 0.68

LDM+Composite LGM 0.68 0.67 0.75 0.84 0.71

MT2

LDM 0.59 0.50 0.49 0.58 0.57
LDM+Level 1 LGM 0.68 0.67 0.64 0.73 0.76
LDM+Level 2 LGM 0.68 0.67 0.75 0.86 0.77

LDM+Composite LGM 0.68 0.67 0.75 0.85 0.80

Average

LDM 0.53 0.51 0.49 0.50 0.50
LDM+ Level 1 LGM 0.72 0.72 0.72 0.81 0.83
LDM+ Level 2 LGM 0.72 0.72 0.82 0.83 0.79

LDM+ Composite LGM 0.72 0.72 0.82 0.86 0.84

Table 9: The Accuracy results obtained using vari-
ations of the the PS representation and a range of
values for grid size (d = {2.5,5,10,15,20} mm) and
neighbourhood size (n = {3,5,7}).

Data set n×n PS Grid size (d) mm
2.5 5 10 15 20

GS1
3×3 PS 0.97 0.98 0.98 0.97 0.90
5×5 PS 0.97 0.97 0.98 1.00 0.84
7×7 PS 0.98 0.99 0.94 0.87 0.78

GS2
3×3 PS 0.99 0.98 0.97 0.96 0.96
5×5 PS 0.99 0.97 0.96 0.94 0.92
7×7 PS 0.99 0.98 0.94 0.89 0.67

GT1
3×3 PS 0.99 1.00 0.99 0.94 0.93
5×5 PS 0.99 0.99 0.94 0.94 0.91
7×7 PS 0.98 0.99 0.87 0.79 0.81

GT2
3×3 PS 0.99 0.99 0.99 0.98 0.96
5×5 PS 0.99 0.99 0.96 0.95 0.99
7×7 PS 0.99 0.98 0.88 0.83 0.48

MS1
3×3 PS 0.97 0.97 0.98 0.97 0.97
5×5 PS 0.96 0.96 0.96 0.98 0.91
7×7 PS 0.96 0.97 0.99 0.89 0.75

MS2
3×3 PS 0.96 0.98 0.98 0.97 0.92
5×5 PS 0.96 0.96 0.97 0.97 0.92
7×7 PS 0.97 0.97 0.96 0.92 0.67

MT1
3×3 PS 0.98 0.98 0.98 0.97 0.90
5×5 PS 0.98 0.98 0.96 0.97 0.84
7×7 PS 0.98 0.98 0.92 0.97 0.70

MT2
3×3 PS 0.97 0.96 0.93 0.98 0.82
5×5 PS 0.97 0.96 0.93 0.96 0.99
7×7 PS 0.97 0.96 0.97 0.92 0.56

Avergae
3×3 PS 0.98 0.98 0.98 0.97 0.92
5×5 PS 0.98 0.98 0.96 0.96 0.92
7×7 PS 0.98 0.98 0.93 0.89 0.68
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Table 10: The AUC results obtained using variations
of the the PS representation and a range of values
for grid size (d = {2.5,5,10,15,20}mm) and neigh-
bourhood size (n = {3,5,7}).

Data set n×n PS Grid size (d) mm
2.5 5 10 15 20

GS1
3×3 PS 0.96 0.97 0.96 0.95 0.82
5×5 PS 0.96 0.95 0.97 1.00 0.80
7×7 PS 0.97 0.98 0.92 0.70 0.33

GS2
3×3 PS 0.94 0.89 0.84 0.64 0.78
5×5 PS 0.94 0.89 0.75 0.64 0.73
7×7 PS 0.96 0.93 0.85 0.65 0.50

GT1
3×3 PS 0.97 1.00 0.98 0.76 0.72
5×5 PS 0.96 0.99 0.89 0.70 0.74
7×7 PS 0.93 0.99 0.77 0.57 0.89

GT2
3×3 PS 0.96 0.99 0.97 0.93 0.96
5×5 PS 0.96 0.98 0.85 0.90 0.99
7×7 PS 0.95 0.96 0.72 0.75 0.19

MS1
3×3 PS 0.92 0.92 0.97 0.94 0.87
5×5 PS 0.91 0.92 0.92 0.97 0.62
7×7 PS 0.92 0.95 0.99 0.81 0.67

MS2
3×3 PS 0.94 0.97 0.93 0.92 0.71
5×5 PS 0.94 0.94 0.91 0.93 0.64
7×7 PS 0.95 0.97 0.95 0.86 0.50

MT1
3×3 PS 0.96 0.97 0.94 0.96 0.81
5×5 PS 0.96 0.96 0.89 0.95 0.70
7×7 PS 0.95 0.97 0.72 1.00 0.47

MT2
3×3 PS 0.96 0.94 0.90 0.94 0.73
5×5 PS 0.96 0.94 0.92 0.93 0.98
7×7 PS 0.94 0.93 0.95 0.74 0.25

Avergae
3×3 PS 0.95 0.96 0.94 0.88 0.95
5×5 PS 0.95 0.95 0.89 0.88 0.78
7×7 PS 0.95 0.96 0.86 0.76 0.48

grid sizes tended to produces better accuracy results
(best accuracy of 0.95% when d = 20), although when
d is large the data sets comprise fewer records than
when d is small. Similarly, from Table 6 it can be
seen that most of the best AUC results were obtained
using higher values of d (best AUC of 0.96 when d =
10). A better understanding of the effect of grid size
can be obtained by considering the number of occa-
sions that a best AUC result was produced with re-
spect to each d value and each LGM variation. This
is presented in Table 11. Note that because we have
eight Cout clouds (test sets) each row adds up to 8.
From this table, it can be seen that the Level 1 LGM
technique was able to represent effectively 3D sur-
faces using a large grid sizes (d = 20), while the
Level 2 LGM technique required smaller grid size
(d = 10) to be effective. However, the composite
LGM operated best at a compromise d value of 15
mm (recall that the composite LGM technique uses
both Level 1 and Level 2 LGMs, a combination of
the two).

Table 11: Number of times each grid size (d =
{2.5,5,10,15,20} mm) produced the best perfor-
mance, in terms of AUC, with respect to each of the
three LGM techniques considered and each of the
eight data sets.

Proposed Techniques Grid size (d) mm Best d value2.5 5 10 15 20
Level 1 LGM 0 0 0 1.5 6.5 20
Level 2 LGM 0 0 4 3 1 10

Composite LGM 0 0 1 5.5 1.5 15

7.2.2. The Best Grid size for LDM Technique
With respect to the LDM technique, and the com-

binations with the LGM techniques, from Table 7
and 8 it can be observed that the best results were ob-
tained using grid sizes of between d = 10 and d = 20
(best accuracy was 94% when d = 20, and best AUC
was 0.97 when d = 20). Table 12 records the num-
ber of occasions that each grid size produced the best
performance (in terms of AUC) with respect to each
of the four LDM techniques and each of the eight
data sets considered. From the table it can be seen
that when the LDM technique is used in isolation
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best results are obtained using low values of d (al-
though the results are not conclusive). When comb-
ing the LDM technique with LGM the best d val-
ues are comparable with those obtained when using
LGMs on their own.

Table 12: Number of times each grid size (d =
{2.5,5,10,15,20} mm) produced the best perfor-
mance (in terms of AUC) with respect to each of
the four LDM techniques considered and each of the
eight data sets.

Proposed Techniques Grid size (d) mm Best d value2.5 5 10 15 20
LDM 3.5 1.5 0 1 2 2.5

LDM+Level 1 LGM 0 0 0 2 6 20
LDM+Level 2 LGM 0 0 4 3 1 10

LDM+Composite LGM 0 0 1 5 2 15

7.2.3. The Best Grid size for PS Technique
In the case of the Point Series (PS) technique Ta-

bles 9 and 10 indicate, although not entirely conclu-
sively, that a grid size of d = 5 is the most appro-
priate. The number of occasions that each grid size
produced the best AUC value, with respect to each
PS variation and each data set considered, is shown
in Table 13. The table confirms that the most appro-
priate grid size is d = 5. There is little to choose
between the PS variations when d is small; it is not
until we get to d = 20 that some significant differ-
ence between the PS variations can be noted. With
reference to Table 10 and when d = 20 the 3× 3
configuration produced the best results (AUC=0.99)
while the 7×7 configuration produced the worst re-
sults (AUC=0.19). Of course there is a relationship
between n and d, as either is increased a greater area
of the surface of interest is “covered”, increasing one
and decreasing the other has a neutralising effect. Fi-
nally, all three techniques considered operate using
different values of d because in each case d is being
used in a different manner. With respect to LGMs we
wish to set d to a value which optimizes the area cov-
ered in terms of the description of the local geometry.
With respect to LDMs we wish to set d so as to opti-
mize the discovery of edges. With respect to PS we

wish to set d so that the nature of the point series is
optimized with respect to classification performance.

Table 13: The occurrences of the best AUC results
obtained by 3× 3, 5× 5 and 7× 7 PS for a range of
grid size d = {2.5,5,10,15,20}.

PS Technique Grid size (d) mm Best d value2.5 5 10 15 20
3×3 PS 2 5 1 0 0 5
5×5 PS 2 2 0 2 2 5
7×7 PS 1 4 2 1 0 5

Table 14: Some statistics concerning the AUC re-
sults obtained from the application of the LGM tech-
niques.

LGM Techniques Max Min Median Average SD
Level 1 LGM 0.95 0.50 0.74 0.74 0.09
Level 2 LGM 0.96 0.50 0.77 0.76 0.09

Composite LGM 0.96 0.50 0.78 0.78 0.10

Table 15: Some statistics concerning the AUC results
obtained from the application of the LDM technique
(and its variations).

LDM Techniques Max Min Median Average SD
LDM 0.61 0.45 0.50 0.51 0.04

LDM+Level 1 LGM 0.96 0.64 0.74 0.76 0.08
LDM+Level 2 LGM 0.95 0.67 0.77 0.78 0.07

LDM+Composite LGM 0.97 0.67 0.79 0.79 0.09

7.3. Best Surface Representation Technique
Tables 14, 15 and 16 present, respectively, some

statistics concerning the operation of the LGM, LDM
and PS techniques and their variations in terms of
AUC. These statistics have been derived from Tables
5 to 10. In the context of the LGM techniques, from
Table 14 it can be observed that the Composite LGM
representation produces the most effective result (av-
erage AUC value of 0.78); although, in terms of clas-
sification, there is little to choose between them. With
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Table 16: Some statistics concerning the AUC results
obtained from the application of the PS technique.

PS Techniques Max Min Median Average SD
3×3 PS 1.00 0.64 0.94 0.90 0.09
5×5 PS 1.00 0.62 0.93 0.89 0.10
7×7 PS 1.00 0.19 0.92 0.92 0.22

respect to the LDM technique, from Table 15, it can
be noted that the LDM technique on its own did not
produce an effective performance compared to its us-
age when combined with the LGM technique. The
best performance was obtained when LDM was com-
bined with the Composite LGM representation (best
average AUC value of 0.79). In the case of the PS
technique Table 16 demonstrates that this technique
produced excellent results, regardless of the size of
the neighbourhood the PS technique outperformed
the best performing variations of both the LGM and
LDM techniques. Overall the most consistent PS
technique (that with the smaller standard deviation)
was when it was coupled with a 3×3 neighbourhood.
Table 17 summarises the best variation for each cat-
egory of representation technique (LDM is included
in isolation and in combination with the Composite
LGM technique).

Table 17: Summary best variation, with respect to
AUC, for each representation technique (LDM is in-
cluded in isolation and in combination with the Com-
posite LGM technique).

Max Min Mode Median Average SD
Composite LGM 0.93 0.75 0.88 0.84 0.86 0.06
LDM 0.59 0.50 0.50 0.57 1.03 1.04
LDM+Composite LGM 0.93 0.75 0.85 0.85 0.86 0.07
3×3 PS 1.00 0.96 0.98 0.98 0.98 0.01

7.4. Generalisation
This section presents the results obtained from

training a classifier on one shape and testing it on an-
other. The main goal was to determine whether it was
possible to generate a generally applicable classifier
if it was provided with a suitable shape to train on.

The 3×3 neighbourhood PS representation was used
for this purpose (with d = 5 mm) because earlier ex-
periments had indicated that this technique was the
most effective (recall that the PS technique was used
in conjunction with k-NN classification and that a
tolerance value of 0.08 mm was used in the context
of DTW similarity). Table 18 presents the results ob-
tained in terms of accuracy values, while Table 19
presents the results obtained in terms of AUC val-
ues (best results are in bold). From the tables it can
be observed again that using the proposed represen-
tation a best accuracy and AUC value of 100% and
1.00 could be obtained (when the classifier is trained
using GS2). However, the best overall accuracy av-
erage was 0.99 while the best overall AUC average
was 0.98. These are excellent results. The results
obtained in terms of both AUC and accuracy also in-
dicated that, no matter the nature of the 3D surface to
be manufactured or the material from which it is to
be manufactured, an effective generic classifier can
be produced using the proposed PS technique.

Table 18: Accuracy results for the generic classifier
based on 3×3 PS.

Train
GS1 GS2 GT1 GT2 MS1 MS2 MT1 MT2

Test

GS1 0.96 0.99 0.98 0.95 0.89 0.99 0.99
GS2 0.98 1.00 0.99 0.97 0.91 1.00 0.99
GT1 0.95 0.95 0.97 0.88 0.89 0.97 0.97
GT2 0.95 0.98 0.98 0.93 0.88 0.99 0.98
MS1 0.98 0.99 0.99 0.99 0.95 0.98 0.98
MS2 0.96 0.97 0.99 0.99 0.98 0.98 0.98
MT1 0.96 0.97 0.99 0.98 0.90 0.88 0.98
MT2 0.96 0.98 0.99 0.97 0.90 0.87 0.99

Average 0.96 0.97 0.99 0.98 0.93 0.90 0.99 0.98

7.5. Statistical Analysis
This section presents a statistical significance com-

parison of four of the techniques considered: (i) the
best LGM variation, Composite LGM, (ii) LDM used
in isolation; (iii) the best variation of LDM when
combined with the best LGM technique, LDM + Com-
posite LGM; and (iv) the best PS variation, PS cou-
pled with a 3× 3 neighbourhood. The objective is
to demonstrate that there is a statistical significance
with respect to the comparative performance of the
proposed techniques. To this end, the Friedman sta-
tistical test was applied to evaluate the performance
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Table 19: AUC results for the generic classifier based
on 3×3 PS.

Train
GS1 GS2 GT1 GT2 MS1 MS2 MT1 MT2

Test

GS1 0.97 0.94 0.93 0.96 0.91 0.96 0.98
GS2 0.99 0.99 0.92 1.00 0.96 1.00 0.99
GT1 0.84 0.87 0.95 0.64 0.66 0.94 0.94
GT2 0.81 0.91 0.98 0.65 0.61 0.99 0.95
MS1 0.98 0.99 0.99 0.98 0.95 0.98 0.97
MS2 0.95 0.96 0.99 1.00 0.98 0.97 0.97
MT1 0.85 0.88 0.96 0.94 0.62 0.59 0.95
MT2 0.90 1.00 0.98 0.93 0.65 0.63 0.99

Average 0.90 0.94 0.98 0.95 0.79 0.76 0.98 0.96

of the techniques to determine whether the results
produced were truly significant or not with respect
to the AUC measure. On completion of the Fried-
man test, the Nemenyi test was used to identify the
Critical Distance (CD) between the techniques where
the techniques are significantly different from each
other. Broadly, CD is normally used to examine where
the significant differences are actually occured be-
tween individual techniques. This kind of statistical
analysis is increasingly being used in the field of data
mining and more specifically in the context of clas-
sification (Han, 2005; Tan et al., 2005). A number
of different approaches have been proposed to con-
duct such comparisons. With respect to classification
techniques the following are of note: (i) the paired
t-test, (ii) the Wilcoxon Signed-Rank Test, (iii) the
ANOVA test and (iv) the Friedman test3. The Fried-
man test offers two advantages over the other tech-
niques: (i) ease of computation and interpretation
and (ii) its ability to demonstrate the classification
performance in terms of a ranking rather than vague
averages (Garcı́a et al., 2009b)). The Friedman test
was thus chosen to evaluate the performance of the
different proposed techniques with respect to this pa-
per. In addition to the practical advantages offered by
the Friedman test, it was also chosen because:

• There is no guarantee that the data (AUC re-
sults obtained from the proposed techniques)
follow the normal (Gaussian) distribution.

3For more detail on these tests (Garcı́a et al., 2009a,b;
Tsumoto, 2009).

• It is recommended (Demšar, 2006) for use with
“matched” (related) data sets while the ANOVA
test is recommended for use with “unrelated”
data sets.

With respect to the work described in this paper, the
Gonzalo and Modified data sets were considered to
be related data sets given that both describe flat-topped
pyramids. Therefore, the Friedman test was consid-
ered to be the most suitable statistical test. Therefore,
The following Null hypothesis (H0) and the Alterna-
tive hypothesis (H1) were established.

H 0. There is no significant difference between the
proposed classifiers.

H 1. There is a significant difference between the
proposed classifiers.

The Friedman statistical test is commenced by
ranking the classification techniques with respect to
each data set separately. Then, the average rank for
each classification techniques is obtained from across
the data sets. The Friedman test statistic is then cal-
culated as follows (Demšar, 2006; Friedman, 1940;
Fisher & Yates, 1970):

χ
2
F =

12n
k(k +1)

[
k

∑
i=1

µ
2
i −

k(k +1)2

4

]
(4)

where: (i) n is the number of data sets, (ii) k is the
number of classification techniques and (iii) µi is the
average rank for classification technique i which in
turn is calculated as follows:

µi =
1
n

n

∑
j=1

R j (5)

where R j is the rank for classification technique i
with respect to data set j. To decide weather the
Friedman test statistic (χ2

F ) value is significant or not
it is compared with the null distribution (pre-determined
theoretical distribution) calculated according to the
χ2 distribution at α = 0.05 (the most commonly used
value to describe the level of significance α (Fried-
man, 1940; GW, 1983)). If the calculated value of
χ2

F is greater than the null distribution, then the null
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hypothesis can be rejected and the Nemenyi test (Ne-
menyi, 1963) applied. The Nemenyi test operates us-
ing the “distance” between the average rankings of
the individual techniques. If this distance is greater
than a Critical Difference (CD), calculated using Equa-
tion 6, then the performance is considered to be dis-
tinct. To qualify the strength of evidences against the
null hypothesis, a p-value is calculated. The p-value
is defined as the probability of obtaining a result that
is at least as extreme as the one we actually obtained
assuming that the null hypothesis is true. Therefore,
if the p-value is not smaller than α , the test is in-
conclusive and more evidences will be required to
support the alternative hypothesis (H1).

CD = qα,∞,k

√
k(k +1)

12n
(6)

Where the critical value for qα,∞,k is based on the
Studentized range statistic (Demšar, 2006). The per-
formance of individual techniques is considered to be
distinct if the difference between their average rank-
ings differs by at least the CD.

The Friedman test was applied with respect to the
proposed techniques in the context of the evaluation
data sets. Two different cases were considered: (i)
where the classification techniques was trained and
tested on the same data set and (ii) where the clas-
sification techniques was trained on one data set and
tested on another. Each is considered in further detail
in the following two sections.

7.5.1. Testing and training on the same dataset
The Friedman statistical test was first applied to

our four different technique with respect to the n = 8
Gonzalo and Modified data sets (GS1, GS2, GT1,
GT2, MS1, MS2, MT1 and MT2). Table 20 presents
the rankings (indicated in parentheses) and the aver-
age ranks µ for the k = 4 proposed techniques (ac-
cording to the best AUC values). From the table,
it can be seen that the best average rank, 1.25, was
achieved by the PS technique. The Friedman statis-
tic, calculated using Equation 4 with k− 1 = 3 de-
grees of freedom, is then:

χ
2
F =

12×8
4× (5)

[
28.91− 4× (5)2

4

]
= 4.80×3.91
= 18.77

The χ2 threshold value with α = 0.05 and 3 de-
gree of freedom (null distribution) is 14.07. Given
that: (i) the calculated Friedman test value of χ2

F =
18.77 is greater than the critical value 14.07, and
(ii) p-value = 0.009 which is less than the α value
of 0.05 (Abramowitz & I.A. Stegun, 1964; Johnson
et al., 1995); the Null Hypothesis (H0), which states
that there is no significant differences in the average
ranks, can be rejected to confirm that the operation of
the k = 4 proposed classifiers generated on the same
data sets are significantly different from each other.
According to the Nemenyi test the operation of the
individual classifiers is also significantly different if
the difference between their average ranks is more
than or equal CD = 1.17, calculated as follows:

CD = 2.57×
√

4(5)
12×8

= 2.57×0.46
= 1.17

Figure 14 shows the ranked performance for the
k = 4 proposed techniques along with Nemenyis crit-
ical difference (CD) measure to highlight the tech-
niques which are significantly different to each other.
In the figure, the head is the average rank while the
tail indicates the CD value. From the figure, it can be
seen that the PS technique was ranked first and that
its operation is significantly different with respect to
both the LDM and the composite LGM techniques
because as they are overlapped. However, there is
no significant difference between the operation of PS
and LDM + composite LGM as the difference be-
tween their average ranks is 0.88 < 1.17 (the CD
value).

7.5.2. Testing and training on different datasets
In the case where the classifier is generated (trained)

on one data set and tested using another Table 21
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Table 20: The best AUC results for the proposed techniques (variations) with respect to each 3D representation
technique using the same data set to train and test the classifier.

GS1 GS2 GT1 GT2 MS1 MS2 MT1 MT2 µi
Composite LGM 0.73 (3) 0.96 (1.5) 0.80 (2.5) 0.82 (2) 0.78 (3) 0.91 (3) 0.75 (2.5) 0.73 (3) 2.56
LDM 0.50 (4) 0.50 (4) 0.53 (4) 0.50 (4) 0.57 (4) 0.58 (4) 0.50 (4) 0.59(4) 4.00
LDM+ Composite LGM 0.74 (2) 0.96 (1.5) 0.80 (2.5) 0.81 (3) 0.80 (2) 0.92 (2) 0.75 (2.5) 0.75 (2) 2.19
Point Series 0.96 (1) 0.95 (3) 0.90 (1) 0.95 (1) 0.97 (1) 0.95 (1) 0.92 (1) 0.91 (1) 1.25

∑
k
j=1 µ2

j = 28.91
Friedman test statistic = 18.77 (p-value = 0.009)

Figure 14: The average rank (µi) associated with CD
value for the classifiers generated using same data
sets.

presents the average AUC values obtained in each
case. The calculated Friedman statistic with its asso-
ciated p-value (as shown in the table) strongly con-
firmed again that the PS technique produces the best
performance according to its average ranking. Again
we can also observe that there is a significant statisti-
cal difference between the operation of PS and both
the LDM and Composite LGM techniques. In sum-
mary, when considering the AUC performance mea-
sures, it can be concluded that PS technique yields
the best performance while the LDM technique per-
forms significantly worse than the other proposed tech-
niques. However, the operation of two individual
classification techniques (in some cases) yielded clas-
sification performances whose differences are not sta-
tistically significant such as in the case of (i) Com-
posite LGM and the combined LDM + Composite
LGM, (ii) PS and the combined LDM + Composite
LGM and (iii) LDM and Composite LGM as shown
in Figure 15.

8. Conclusion

This paper has presented three different techniques
(LGM, LDM and PS) to represent 3D surfaces for
the purpose of building classifiers to predict a phe-
nomena known as “springback”. The novelty of the
proposed techniques is their ability to capture the na-

Figure 15: The average rank (µi) associated with CD
value for the classifiers generated using different data
sets.

ture of the local geometries associated with the 3D
surfaces of interest. A Springback Prediction Frame-
work was also proposed to generate springback pre-
dictors (classifiers) and to apply them. The LGM
technique represented the points on a 3D surface us-
ing a concept similar to local binary patterns. The
LDM technique represented the points in terms of
their proximity to the nearest critical feature (edges).
The PS technique represented the surface in terms of
spiral linearisation curves. Two flat-topped pyramid
shapes (Gonzalo and Modified) were used for evalu-
ation purposes.

The main findings were as follows:

• The proposed techniques could be effectively
used to represent 3D surfaces in a format suited
to classifier generation.

• The PS technique outperforms the other tech-
niques in terms of both AUC and accuracy, some
excellent results were obtained.

• The application of the Friedman test demon-
strated that the operation of the classifiers gen-
erated (with the same data set), using the com-
posite LGM and the LDM techniques, was sta-
tistically different from the operation of the clas-
sifiers generated using the PS or the LDM +
composite LGM techniques.
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Table 21: The best AUC results for the proposed techniques (variations) with respect to each 3D representation
technique using different data set to train and test the classifier.

GS1 GS2 GT1 GT2 MS1 MS2 MT1 MT2 µi
Composite LGM 0.70 (3) 0.74 (3) 0.75 (3) 0.81 (3) 0.82 (3) 0.80 (3) 0.76 (3) 0.76 (3) 3.00
LDM 0.52 (4) 0.50 (4) 0.61 (4) 0.50 (4) 0.60 (4) 0.60 (4) 0.50 (4) 0.60(4) 4.00
LDM+ Composite LGM 0.94 (2) 0.90 (2) 0.89 (2) 0.97 (2) 0.92 (2) 0.95 (1.5) 0.93 (2) 0.86 (2) 1.94
Point Series 0.99 (1) 1.00 (1) 0.99 (1) 1.00 (1) 1.00 (1) 0.95 (1.5) 1.00 (1) 0.99 (1) 1.06

∑
k
j=1 µ2

j = 29.88
Friedman test statistic = 23.42 (p-value = 0.001)

• Similarly the application of the Friedman test
demonstrated that there is no significant differ-
ence between the PS and the combined LDM
+ composite LGM technique (using either the
same/different data set), although the PS tech-
nique produced some very good results.

Overall these were very encouraging results indicat-
ing that the proposed techniques, especially the PS
technique, could be effectively used for springback
prediction and consequent mitigation with respect to
sheet metal forming processes such as AISF. For fu-
ture work the research team intend to investigate mech-
anisms to propose corrections to the input cloud for a
given shape so as to produced a corrected input cloud
Ccorr in order to compensate for the springback in-
troduced during manufacturing in the context of pro-
cesses such as AISF process. This will also require a
suitable format for the Ccorr cloud to facilitate manu-
facturing. The authors are also interested in produc-
ing an “intelligent process model” where the Ccorr
cloud is iteratively refined until the predicted shape
(generated from Ccorr using classification processes
of the form described in this paper) is equivalent to
Cin (the desired shape).
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