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Abstract. Artificial Intelligence (AI) has been widely used in manufac-
turing, healthcare, sports, finance, and other fields to model nonlineari-
ties and make reliable predictions. In manufacturing, AI has been applied
to improve processes, reduce costs and increase reliability. A new man-
ufacturing process enhanced by AI is Single Point Incremental Forming
(SPIF), a technique that uses a computer numerical control (CNC) ma-
chine to incrementally feed a metal sheet or polymer blank. However,
achieving the geometric accuracy of the process is still of primary chal-
lenge due due to the impact of spring back. One of the most common
solutions is toolpath correction. In this paper, we proposed a mechanism
to capture local geometry using a novel point series representation, which
then forms a general global geometry information. Each point series can
then be associated with a predicted spring back value and learn using
deep learning. In particular, this article proposes the use of data augmen-
tation to solve the problem of insufficient data and enable deep learning
models to achieve the better performance. Intensive experimental results
show that we achieved the best R2 or “coefficient of determination” of
0.9228 compared to recent methods. We show that the proposed method
provides a realistic solution to the current limitations of SPIF.

Keywords: Single Point Incremental Forming, GRU, Data Augmenta-
tion, Spring Back Prediction, Deep Learning

1 Introduction

Single Point Incremental Forming (SPIF) [10] is a sheet metal cold forming tech-
nique in which a metal sheet is clamped along its perimeter and then shaped
incrementally using a computer numerical control (CNC) machine which con-
trols a tool head that follows a predicted tool path to incrementally push out
the desired shape as shown in Figure 1. The sheet metal is held in place, and
the tool head is moved according to the planned “tool path” to extrude the
desired shape (the example in the Figure 1 is a flat-topped pyramid). Compared



with traditional forming methods, SPIF has the advantages of low cost, short
production cycle and flexible process. The tool path is determined according
to the desired shape. The advantage of cold forming is that the sheet metal
does not need to be heated before forming takes place, as in the catalogue “hot
forming”. Cold forming is therefore cheaper and more environmentally friendly
than hot forming. The disadvantage of SPIF cold forming is that the process
features spring back, a property of metal material whereby the material tries
to return to its original shape after bending. This means that parts evaluated
using SPIF are not exactly the shape intended. This is significant concerning
all industries, significant in industries where part accuracy is important, for ex-
ample, the aeroplane manufacturing industry. If the spring back problem can
be addressed this will provide a significant advantage to industries such as the
airplane manufacturing industry.

Fig. 1. Typical geometric errors in SPIF

Artificial intelligence applications that forecast SPIF geometric deviation
(spring back) have drawn a lot of attention recently. Artificial neural networks
(ANNs), deep and shallow back propagation neural networks, regression and
other AI techniques have all been tested by researchers [1][11][15]. In [7][8], an
intriguing strategy was put up in which the local geometry is represented as
a series of points. The goal is to create a collection of local geometries that is
a superset of all possible component local geometries for any produced part.
The research provided in [7][8] uses the k-nearest neighbour (kNN) classification
technique, which is a well-established machine learning classification technique,
but defines rebound in terms of a set of classification labels.

In this work, our goal is to predict the spring back error of Single Point
Incremental Forming from the data of CNC machine using deep learning. We
aim to facilitate the application of the resulting spring back error values to the
CNC machine when spring back predictions are obtained. As such, we proposed
the fundamental idea is to use tools and techniques of machine learning (GRU
[3]) to predict spring back so that a correction can be applied to the desired shape
specification that will take spring back into the account. More specifically, the
idea is to train a machine learning model to predict spring back from historical
data representation.



The contribution of this paper mainly focuses on the effective data augmen-
tation of the original data set, which significantly increases the size of the data
set without changing the order of the original data set. The most obvious is that
when grid size d = 50mm and step value = 1, the size of the data set is expanded
from the original 16 to 55571, which is 3473 times larger. This will significantly
improve the training set and saturation of deep learning, and improve the ro-
bustness of the model. At the same time, the LSTM used by previous researchers
was replaced with a simpler and easier-to-use GRU model. The evaluation model
used is R2, and the experimental results show that the best result of the model
has increased by 1%, from 0.9140 to 0.9228.

The rest of this paper is organized as follows. Section 2 presents the related
work underpinning the work of this report. Section 3 presents the methodology
of the overall experimental model. The obtained evaluation results are presented
and discussed in Section 4. The report in Section 5 is the summary of this
experiment and the goals for future work.

2 Related Work

The potential of SPIF has sparked a significant quantity of published research
that aims to address the difficulties presented by the technology. The spring
back error of the SPIF has been researched by numerous academics in the past
using 19 different regressions, including multiple linear, regression trees, SVM,
Gaussian process, and ensemble learning [14]. Some researchers [2][9] use genetic
algorithm and other optimization algorithms, combined with methods such as
finite element simulation, to optimize the forming parameters, so that the degree
of spring back of the formed parts is reduced. For example, the forming param-
eters are optimized by genetic algorithm, and the formed parts with a small
degree of spring back are obtained and some researchers [13] also optimize the
forming parameters and sheet shape by combining finite element simulation and
machine learning methods, so that the degree of spring back of formed parts is
reduced. For example, using finite element simulation and neural network-based
optimization algorithms, formed parts with less spring back are obtained. The re-
port’s distinction is that it replaces multiple machine learning technologies while
also improving the data set before adding it to the GRU model for training.

The work of [4][5][8][14] is noteworthy. In [4], Local Geometry Matrix (LGM)
and Local Distance Measure (LDM) are proposed, using the grid form to repre-
sent the local geometric shape. In [5], a new data representation — point series
is proposed. These studies all advocate the use of various deep learning models
to predict spring back based on the local geometry represented as a series of
points, and then consider applying the determined spring back values in reverse
to correct the tool path.

The point series in this research were generated by dividing the shape to
be manufactured into a set of equal-sized grid squares. Each grid square was
defined by a set of [x, y, z] coordinates that were referenced to a specific ori-
gin. The desired point series was generated by examining the neighbouring grid



squares of each current grid square and subsequently determining the difference
in the z value between them. This approach was demonstrated to be effective,
and a similar method is employed in the research presented in this paper. How-
ever, there are a few key distinctions between this work and previous studies
[7][8][4][6]. In earlier studies, the difference in z value was expressed as a set
of nominal values, while in this study, spring back prediction was conducted
through classification, which was necessitated by the limited processing power
available to the researchers at the time. Classification is a type of supervised
learning that involves training a classifier using a pre-labelled data set. Using a
set of pre-labelled data, a classifier is trained. For comparing the similarity of
time series, the k Nearest Neighbour (kNN) model in combination with Dynamic
Time Warping [12] was employed as the classification model. In [14], the pro-
posed idea is to use LSTM to predict the spring back error, because the spring
back occurs sequentially during the board pressing process, and secondly, the
previous shape also influences the subsequent shape.

3 Methodology

3.1 Background

To generate the model training data was required; a data set Dtrain = {T1,T2,...}
where each Ti ∈ Dtrain is a fragment of shape geometry that has been labeled
with an identified spring back value e. There are variety of ways in which frag-
ments of geometry can be represented. As noted earlier, in [5] and [4] point series
were used. Thus each Ti ∈ Dtrain comprises a tuple of the form 〈P,e〉, where P
is a point series P = [p1,p2,...] and pj is a point value in the point series, and e
is a spring back value.

The input comprises two point clouds Fin and Fout such that: Fin describes
the piece to be manufactured, generated from the Computer Aided Design
(CAD) software package originally used to specify the piece to be manufac-
tured; and Fout describes the resulting manufactured piece, generated using 3-D
optical photogrammetry.

Each gi ∈ Gin was represented as a labeled point series P = 〈P,e〉 = 〈[p1,
p2, ..., pn], e〉 where pj is the difference in z value between grid square gi and its
neighbour gj , and e is the corresponding spring back value in E.

Once the set of point series {p1, p2, ...}, and the set of errors {e1, e2,...} has
been calculated the point series and errors can be incorporated into the training
set Dtrain ={T1, T2, ...} where each Ti = 〈Pi, ei〉.

3.2 Data Augmentation

Data sets with various grid sizes are shown in the Table 1 below both before and
after data augmentation. The size of the data set is not even 100 when the grid
size is 30mm, 40mm, or 50mm. An intricate model like deep learning cannot be
trained with such a meagre amount of data. Underfitting is a simple consequence



of training in this situation. This explains why there is a difference between the
spring back prediction results and other grid sizes in the research [14] when the
grid size is 50mm. I considered using the data augmentation approach to solve
this issue, and because the data’s order cannot be changed, I decided to employ
overlapping.

The Table 1 three right-hand columns display the size of the data set after it
has been overlapping using various step sizes. There are 1, 3, and 5 pixels of off-
sets, respectively. We can observe that using overlapping considerably increases
the data set size for all different grid sizes. When overlapping is employed, the
values are reduced to 1.9 times, 1.1 times, and 1.8 times, respectively, from the
original data’s value of the data set with grid size 5mm being 265 times more
than that of the data set with grid size 50mm. And when overlapping is used with
a step value of 1, the values for the dat aset with grid size 50mm are increased
by 3743, 375 and 143 times from the value of the original data, respectively.
When the size of the effective data set is increased, it can fully demonstrate the
advantages of deep learning.

Table 1. Data Augmentation

Grid Size Original
Overlapping

step 1
Overlapping

Step 3
Overlapping

step 5

5 4253 107313 7020 4253

10 1006 101922 10340 4098

15 396 96125 10697 3891

20 223 90116 9055 3667

30 81 78043 8718 3195

40 36 66507 7359 2731

50 16 55571 6004 2291

3.3 Spring back Prediction with GRU

In [4], S. EI-Salhi et al. proposed the generic Representation And Springback Pre-
diction (RASP) framework used to generate spring back classifiers. The RASP
framework on which the proposed surface representation techniques are founded
is comprised of three processes: (i) data preprocessing and error calculation, (ii)
surface representation and (iii) classifier generation. The Figure 2 shows process
of RASP.

The first phase is concerned with generating the advocated grid representa-
tion with associated error values. During the second data representation phase
the grid representation is translated into the proposed surface representation
techniques — Point Series. The third phase comprises classifier generation and
evaluation. Once an appropriate classifier has been generated it can be used to
predict grid labels associated with unseen grids. In the case of sheet metal form-



Fig. 2. Representation And Springback Prediction

ing applications, these will be the spring back errors associated with new shapes
to be manufactured.

This report also adopts this framework to achieve the initial goals. Base the
spring back prediction using point sequences and deep learning [14]. In this work,
the data sets with grid sizes of 30mm, 40mm, and 50mm are very small and not
enough for deep learning models to train well. In response to this problem, a
data augmentation method is proposed to increase the size of the training data
set, because model shaping is a sequential process, so overlapping is a very good
choice compared with data augmentation methods such as rotation, overlapping
is still a sequential process. And I chose a model that is simpler than LSTM -
Gated Recurrent Unit (GRU).

When generating a GRU model, for each time period t, the GRU gets one
input xt, and computes a new cell state ct and a hidden state ht based on the
new input and memory from the previous time period as shown in Equation 1
where ht is the hidden state at time t, xt is the input at time t, ht−1 is the
hidden state of the layer at time t-1 or the initial hidden state at time o and r
refers to the reset gate, z stands for the update gate, n is the new gate; σ stands
for sigmoid function, and * stands for Hadamard product.

rt = σ(Wirxt + bir +Whrh(t−1) + bhr)

zt = σ(Wizxt + biz +Whzh(t−1) + bhz)

nt = tanh(Winxt + bin + rt ∗ (Whnh(t−1) + bhn))

ht = (1− zt) ∗ nt + zt ∗ ht−1

(1)

3.4 Implementation Detail

Figure 5 provides a summary of the RGU method that was used.The operations
of the GRU model was compared with an SVM Regression model and LSTM-
MLP model [14]. SVM and LSTM-MLP were implemented in Python using the



Keras Python package while GRU was implemented in Python using the Pytorch
Python package. As noted earlier the GRU architecture comprised: (i) a GRU
layer with 128 internal units, (ii) a dense (fully connected) layer with 256 nodes,
(iii) another dense layer with 64 nodes, and (iv) a final dense layer with a single
node to predict the spring back error. To accelerate the training of the predictor
a momentum of m = 0.01 was used; together with a learning rate of α = 0.001
and an epoch size of e = 1000. The input data set was split into training and
validation subsets using a ratio of 8: 2. Also, to further accelerate the training
process, the data were grouped into batches and the batches size is 8.

Fig. 3. Fix this figure GRU Network Architecture

4 Evaluation

4.1 Experiment Result

As mentioned in the previous section, to address the issue of insufficient original
data when the grid size is 30mm,40mm and 50mm. First attempt uses over-
lapping to increase the original data. The combined data volume of all original
data sets may rise due to overlap. Expanding the data set can help to lower
mistake rates. Based on this, the GRU (Gated Recurrent Unit) model, a gated
RNN, is adopted to greatly alleviate solve the gradient disappearance problem
of RNNs through the gating mechanism, while making the structure simpler and
maintaining the effect of LSTM (another widely used gated RNN).

The objectives of the evaluation are as follows:

1. What does the proposed system compare with the most recent previous work
[14]?

2. What is the best step value?
3. What is the best grid size?

Table 2 shows the results of the current study compared with earlier studies
[14]. The first two columns of SVM and LSTM list methods and results from
earlier studies [14]. The third column uses the original data set and the GRU
method. The fourth, fifth, and sixth columns still use the GRU technique, but
with different overlapping data sets. Since each column uses a unique offset



Table 2. Compare with Previous Work

Grid size SVM LSTM GRU(New)
GRU(ours)

Step 1
GRU(New)

Step 3
GRU(New)

Step 5

MAE

5 0.4569 0.3067 0.4729 0.2566 0.4737 0.4055
10 0.3592 0.3002 0.3726 0.2573 0.4737 0.4219
15 0.3239 0.3129 0.4804 0.2613 0.3458 0.4834
20 0.2925 0.3028 0.5180 0.2957 0.4728 0.4208
30 0.2877 0.3274 0.3705 0.2988 0.3009 0.4035
40 0.3058 0.3070 0.3463 0.2354 0.3565 0.2986
50 0.3907 0.4423 0.2843 0.3367 0.2904 0.2539

MSE

5 0.3637 0.1580 0.3585 0.1544 0.4086 0.2821
10 0.2206 0.1596 0.2630 0.1476 0.3720 0.3702
15 0.1784 0.1664 0.4409 0.1455 0.2312 0.4609
20 0.1452 0.1640 0.4906 0.1747 0.3835 0.3432
30 0.1366 0.2313 0.2876 0.1634 0.1760 0.3635
40 0.2164 0.2318 0.2246 0.1046 0.2481 0.1706
50 0.3529 0.4391 0.1547 0.2313 0.1567 0.1287

RMSE

5 0.6005 0.3693 0.5988 0.3930 0.6392 0.5312
10 0.4688 0.3981 0.5128 0.3842 0.6099 0.6085
15 0.4215 0.4071 0.6640 0.3814 0.4808 0.6789
20 0.3796 0.4043 0.7004 0.4179 0.6193 0.5858
30 0.3668 0.4807 0.5363 0.4043 0.4195 0.6029
40 0.4598 0.4703 0.4739 0.3235 0.4981 0.4131
50 0.5934 0.6579 0.3933 0.4809 0.3959 0.3587

R2

5 0.8036 0.9140 0.8116 0.9228 0.7744 0.8518
10 0.8518 0.8921 0.8463 0.9123 0.7883 0.7838
15 0.8668 0.8750 0.7098 0.9015 0.8350 0.6967
20 0.8899 0.8751 0.6262 0.8609 0.6919 0.7385
30 0.8997 0.8286 0.6990 0.8362 0.8245 0.6196
40 0.8265 0.8147 0.7079 0.8729 0.6889 0.7781
50 0.7526 0.6940 0.7778 0.6841 0.7837 0.8152

pixel, the amount of data obtained will vary. Experimental results show that we
obtain the best results when we use GRU and use a data set with an offset of 1.
Compared with earlier results, there is a certain improvement in the prediction
accuracy of spring back error. When the offset pixels are 3 and 5, although a
small part of the data can be enhanced compared with the previous results, the
overall effect is not perfect.

4.2 Evaluation Metrics

We compare our model’s projected spring back values to those that are already
known as part of the evaluation process. In other words, we wanted to find
the relationship between the n predicted valuesE = {e1, e2, . . . , en}, en and the
n expected values Ê = {ê1, ê2, . . . , ên}, en after applying the proposed spring
back prediction model. The Mean Absolute Error (MAE), Mean Square Error



(MSE), Root Mean Square Error (RMSE), and R2 performance metrics were
also employed.

The Mean absolute error represents the average of the absolute difference
between the actual and predicted values in the data set. It measures the average
of the residuals in the data set.

emae =

∑i=n
i=1 (|ei − êi|)

n
(2)

Mean Squared Error represents the average of the squared difference between
the original and predicted values in the data set. It measures the variance of the
residuals.

emse =

∑i=n
i=1 (ei − êi)

2

n
(3)

Root Mean Squared Error is the square root of Mean Squared error. It mea-
sures the standard deviation of residuals

ee =

√
P

∑i=n
i=1 (ei − êi)2

n
(4)

The coefficient of determination or R-squared represents the proportion of
the variance in the dependent variable which is explained by the linear regression
model. It is a scale-free score i.e. irrespective of the values being small or large,
the value of R square will be less than one.

er2 = 1−
∑i=n

i=1 (ei − êi)∑i=n
i=1 (e1 − ¯̂e)

(5)

4.3 What does the proposed system compare with the previous
work?

The following 4 figures shows the results of the method proposed in this paper
compared with the results of previous research [14]. The dots represent the results
of previous research, and the ‘x’ represent the results of this study. It can be
seen from these 4 figures that when overlapping is used and the step size is 1, it
has a very good performance. The best R2, or “Coefficient of Determination” of
0.9228 was found, demonstrating that the proposed methods offered a workable
remedy to the current SPIF constraints.

4.4 What is the best step value?

The comparison of the new data set size obtained after using different offset pixel
amounts with the original data set size is shown in Table 1. Step 1 represents an
offset of 1 pixel, and the same step 3 and step 5 represent an offset of 3 pixels
and 5 pixels. It can be seen that the data sets with different grid sizes have been



Fig. 4. Compare Result by Accuracy Matrix with Different Step Value

significantly improved. In Table 2, the right three columns use the data set after
data augmentation. When the step value is 1, MAE, MSE and RMSE have the
best performance at d = 40mm, and when we move away from d = 40mm grid
size, in any direction, the performance drops rapidly. When the step value is 3
and 5, MAE, MSE and RMSE have the best performance at d = 50mm. The
best performance of R2 is when d = 5mm. Therefore, it can be seen that when
the step value is 1, the overall prediction performance is effectively improved.

4.5 What is the best grid size?

It can be seen from the Table 2 that shows the results obtained from the exper-
iments for a range of different values of d. In the study [14], for the LSTM-MLP
method, in the SVM regression method, the best results were obtained at low
grid size (d less than 10mm) and d = 30mm, while using the original data con-
centration, GRU obtains the best results at low grid size (d less than 10mm),
and when using the data set after data augmentation, the experimental results of
all grid sizes have been improved, and when d = 5mm has the best performance.
However, there is a trade off between accuracy and model generation time.

5 Conclusion

Based on [14], this paper introduces a data augmentation method for the original
data set to solve the shortcomings of insufficient data sets and uses 3 different



Fig. 5. Accuracy Matrix with Different Step Value

step values to obtain 3 large groups of data sets of different sizes. The use of this
method can maximize the advantages of the deep learning model. The approach
in [14] is to use a new type of local geometric representation of point series
conceptualized based on a grid defined for a given grid size d. The intuition is
that local geometries can be combined in many ways to describe any part to
be manufactured. The proposed point sequence representation builds on that
used in [7][8], but uses actual point values instead of classified point values. The
proposed representation is used to generate a spring back prediction model. A
simpler mechanism for generating such models was considered: the GRU. The
reported evaluation first shows that, for GRU model generation, a batch size
of 8 and a step value equal to 1 is the best trade-off between training time
and accuracy. The optimum value for d was found to be 40mm. Overall, the
work presented in this paper demonstrates the basic idea of representing local
geometries as time series, local geometries can be combined according to any
shape, and can then have predicted spring back values associated with them,
using appropriate deep learning methods to generate or machine learning models
that may help make SPIF available in a wider commercial context.

Future work will focus more on the relationship between local and global
geometry and consider using graph neural networks or adding attention mech-
anisms to existing models. In particular, attention should be paid to how to
better identify and represent edge corners and their relationship to global geom-
etry. And how to better realize spring back prediction through these relation-
ships, reduce spring back errors and how to better apply these errors to practical
applications.
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