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Abstract

Micro Aerial Vehicles (MAVs), particularly multi-rotor MAVs have gained significant

popularity in the autonomous robotics research field. The small size and agility of

these aircraft makes them safe to use in contained environments. As such MAVs have

numerous applications with respect to both the commercial and research fields, such

as Search and Rescue (SaR), surveillance, inspection and aerial mapping. In order for

an autonomous MAV to safely and reliably navigate within a given environment the

control system must be able to determine the state of the aircraft at any given moment.

The state consists of a number of extrinsic variables such as the position, velocity and

attitude of the MAV. The most common approach for outdoor operations is the Global

Positioning System (GPS). While GPS has been widely used for long range navigation in

open environments, its performance degrades significantly in constrained environments

and is unusable indoors. As a result state estimation for MAVs in such constrained

environments is a popular and exciting research area. Many successful solutions have

been developed using laser-range finder sensors. These sensors provide very accurate

measurements at the cost of increased power and weight requirements.

Cameras offer an attractive alternative state estimation sensor; they offer high infor-

mation content per image coupled with light weight and low power consumption. As a

result much recent work has focused on state estimation on MAVs where a camera is the

only exteroceptive sensor. Much of this recent work focuses on single MAVs, however

it is the author’s belief that the full potential and benefits of the MAV platform can

only be realised when teams of MAVs are able to cooperatively perform tasks such as

SaR or mapping. Therefore the work presented in this thesis focuses on the problem

of vision-based navigation for MAVs from a multi-robot perspective. Multi-robot visual

navigation presents a number of challenges, as not only must the MAVs be able to es-

timate their state from visual observations of the environment but they must also be

able to share the information they gain about their environment with other members of

the team in a meaningful fashion. The meaningful sharing of observations is achieved

when the MAVs have a common frame of reference for both positioning and observa-

tions. Such meaningful information sharing is key to achieving cooperative multi-robot

navigation. In this thesis two main ideas are explored to address these issues. Firstly

the idea of appearance based (re)-localisation is explored as a means of establishing a

common reference frame for multiple MAVs. This approach allows a team of MAVs to

very easily establish a common frame of reference prior to starting their mission. The

xix



common reference frame allows all subsequent operations, such as surveillance or map-

ping, to proceed with direct cooperative between all MAVs. The second idea focuses on

the structure and nature of the inter-robot communication with respect to visual navi-

gation; the thesis explores how a partially distributed architecture can be used to vastly

improve the scalability and robustness of a multi-MAV visual navigation framework.

A navigation framework would not be complete without a means of control. In the

multi-robot setting the control problem is complicated by the need for inter-robot colli-

sion avoidance. This thesis presents a MAV trajectory controller based on a combination

of classical control theory and distributed Velocity Obstacle (VO) based collision avoid-

ance. Once a means of control is established an autonomous multi-MAV team requires a

mission. One such mission is the task of exploration; that is exploration of a previously

unknown environment in order to produce a map and/or search for objects of interest.

This thesis also addressed the problem of multi-robot exploration using only the sparse

interest-point data collected from the visual navigation system. In a multi-MAV explo-

ration scenario the problem of task allocation, assigning areas to each MAV to explore,

can be a challenging one. An auction-based protocol is considered to address the task

allocation problem. The two applications discussed, VO-based trajectory control and

auction-based environment exploration, form two case studies which serve as the partial

basis of the evaluation of the navigation solutions presented in this thesis.

In summary the visual navigation systems presented in this thesis allow MAVs to

cooperatively perform task such as collision avoidance and environment exploration in a

robust and efficient manner, with large teams of MAVs. The work presented is a step in

the direction of fully autonomous teams of MAVs performing complex, dangerous and

useful tasks in the real world.
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Chapter 1

Introduction

1.1 Micro Aerial Vehicles

For several decades research into Unmanned Aerial Systems (UAS) has been dominated

by the military and aerospace industries. The barrier for entry into these fields being

the ability to deploy and support a large unmanned aircraft. However with advances

in sensor and battery technologies, powered largely by the mobile phone market, it

has become possible to develop smaller UAS. These small UAS come in a variety of

configurations from fixed-wing aircraft (Figure 1.1 (left)) capable of long duration, high

altitude flight, to highly stable and manoeuvrable rotary-wing craft such as helicopters

and quad, hexa and octocopters. More recently several hybrid Vertical Take-Off and

Landing (VTOL) systems have been developed capable of transitioning between hovering

and fast forward flight (Figure 1.1 (right)).

The number of civilian and humanitarian applications of these craft has also been

growing, systems such as the SenseFly eBee (Figure 1.1 (left))see have been used in

the aftermath of several natural disasters for rapid damage assessment and monitoring

of temporary settlements [35]. Several companies including Google and Amazon have

begun development of small UAS for tasks such delivering medical supplies to remote

locations as well as commercial goods delivery in urban environments.

Figure 1.1: Small UAS: The SenseFly eBee (left) and Project Wing by Google (right)
a VTOL craft delivering a package in the Australian outback. Image credits to Sensefly

and Google respectively.

1
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Micro Aerial Vehicles (MAVs) are a class of small UAS typically with limitations

on size and payload. The term MAV is sufficiently ambiguous to have been used to

describe craft weighing from 100 grams to several kilograms as shown in Figure 1.2.

In the context of this thesis a MAV is defined as an aerial vehicle which weighs under

5 kilograms, is less than 1 metre in length and is capable of operating safely within a

typical indoor environment such as office buildings. In this thesis the focus is on multi-

rotor MAVs, specifically quadcopters; however the work presented is applicable to most

rotary-wing aircraft and with some modifications could be applied to fixed wing aircraft

as well.

Figure 1.2: Various MAV platforms: The Crazyflie Nano [22], a 20 gram MAV plat-
form (left); the Flyabillity Gimball [27], a coaxial rotor driven platform surrounded by
a gimbal mounted protective cage for enhanced collision protection (middle); and the
Honeywell RQ-16 T-Hawk [81], a ducted fan Vertical Take-off and Landing (VTOL)

MAV developed by the United States military (right).

There are numerous applications for MAVs such as: Search and Rescue (SaR), aerial

inspection, exploration and conservation activities such as wildlife or crop monitoring

[37]. These applications all have one thing in common, a requirement for a robust

and reliable navigation system. The standard navigation solution for MAVs utilises the

Global Positioning System (GPS) as the main localisation solution. However, GPS has

several limitations in terms of both accuracy and coverage (more in Chapter 3) and

there are many applications where GPS cannot be used, for example indoor SaR [80].

Given that SaR is an ideal application for MAVs their actual deployment in real SaR

situations is surprisingly infrequent as noted by a recent study by Murphy et al. [80].

Murphy et al.s study covers all cases of robots being deployed in disasters between 2001

and 2013 and shows that of the 34 documented incidents there were only 10 incidences

of MAVs being deployed. Additionally, Murphy et al. highlight the fact that while there

have been cases where MAVs have had autonomous capabilities they were never used

in any of these 10 cases. Murphy et al. give several reasons for the lack utilisation of

autonomous capabilities, she notes that in several cases the craft were operating close

enough to structures to cause interference to the crafts (GPS) based navigation systems.

In general it comes down to a lack of trust in the autonomous systems; the pilots did not

feel comfortable in delegating control to an autonomous navigation system even in cases

where the autonomous system was more than capable of achieving the current objectives.

This is evidenced by the fact that while there is increasing use of MAVs in real world
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applications these tend to be either manually controlled or in highly structured settings

where lack of advanced capabilities such as collision avoidance and scene perception are

not required.

One major difficultly in multi-rotor research is the significant investment of both

time and capital required to set-up a safe, reliable framework with which to conduct

research. Some of the most common MAV research platforms are the AscTec1 line of

multi-rotor MAVs. These platforms typically cost in the range of e 5000-8000. These

platforms are also by no means complete solutions as additional sensors and on-board

computers are still required. This also does not include any localisation system; which,

depending on the aims of the individual researchers, may not be an issue however it is

argued here that, for safety reasons, some form of localisation system is required. This

is mainly due to the highly dynamic nature of MAVs and the lack of robust emergency

recovery. It’s common to include an emergency stop button on a ground robot which

will immediately cut-off power to the actuators in the case of a runaway robot. However

this is not possible with MAVs; indeed immediately cutting power to the actuators on

a multi-rotor MAV virtually guarantees significant damage to the craft. However with

the inclusion of a localisation system the safety of the craft immediately improves. They

allow the MAV to perform controlled emergency landings or restrict their movements to

only a specified area (this is often called fencing). The specifics of multi-rotor localisation

systems will be discussed in Chapter 3. However, given the above the barrier for entry

into the field of practical MAV research in general, and multi-MAV research in particular,

is very high from both a monetary and safety standpoint. This has been noted by other

researchers as a recent survey by Farid Kendoul of unmanned rotor-craft systems (a

general term used to refer to both small and large rotary wing craft) [51]. Kendoul

noted that while significant theoretical work has gone into autonomous navigation of

UAS there is a gap between the theoretical work and the practical experimentation

done. This thesis proposes that the barrier for entry, as discussed above has influenced

development of this gap. By focusing on the development of solutions for low-cost,

computationally constrained platforms the intention is to not only address a challenging

research topic, but also help close the gap between theory and experiment and encourage

more researchers to conduct practical experiments.

1.2 Autonomous Navigation for MAVs

In this Section the problem of autonomous navigation is introduced and discussed in the

context of MAVs. The autonomous navigation problem is typically divided into three

main challenges:

• Localisation: Where are the MAVs relative to their environment and each other?

• Mapping: What does the environment look like?

1http://www.asctec.de/

http://www.asctec.de/
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• Navigation: What path must the MAV follow in order reach a target location?

Also, given a path, what control commands are required to follow it?

The localisation problem entails determining the pose (position and orientation) of a

robot with respect to its environment based purely on the processing of sensor data.

A reliable means of achieving this to give the robot a model of the environment in

the same, or similar format, as its sensor data. For example if a robot, equipped with

a camera, is given a model of its environment consisting of visual features, then it

can solve the localisation problem by comparing the features it sees to those in the

model. Constructing a model by hand is not always easy, how does one construct a

model of the visual features in a room by hand? One way to solve this problem is

to make use of an existing means of localisation. Then a model of the environment

can be constructed by incrementally fusing observations of the environment together.

This is referred to as mapping the environment. This requires some existing, usually

external, localisation system and a separate mapping phase before the system can be

deployed to do anything useful. This is not ideal with respect to many applications.

It would be ideal if the robots were to be able to localise in novel environments, this

means being able to simultaneously localise within and construct a map of a previously

unknown environment. This is commonly referred to as the Simultaneous Localisation

and Mapping (SLAM) problem [5].

The navigation problem is also divided into two parts: path planning and trajectory

execution. Path planning is the problem of determining the route from a robot’s current

location to it’s goal location, typically in the shortest time possible while avoiding all

obstacles. The output of the path planner is a trajectory to be executed by the robots

control system; depending upon the type of robot platform the trajectory execution

problem can have its own challenges and constraints. For example, on fixed-wing MAVs

trajectory execution can be complicated by the fact that the craft must keep moving

in order to stay in the air. The path planning and trajectory execution problems can

also be tightly coupled with the SLAM problem, as whatever environment model used

for mapping and localisation is typically used for path planning. The reliability of the

localisation method also has a big impact on the trajectory execution. For example a

visual localisation approach may be affected by motion-blur; therefore, during trajectory

execution, the MAV should avoid rapid accelerations as these may result in localisation

failure. The typical high-level architecture of a robot navigation system is show in Figure

1.3. As the work in this thesis aims to explore the navigation problem from a multi-

robot perspective “Other MAVs” have been included in the diagram to highlight those

components in the navigation system that are affected by the inclusion of other robots

into the system. The multi-robot navigation problem is explained in more detail in the

next section.
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Figure 1.3: The general high-level system architecture for an autonomous MAV [119]

1.3 Multi-robot Navigation and Coordination

In this thesis the focus is the problem of multi-robot visual navigation on MAVs and

how this relates to the problem of multi-robot coordination for tasks which are tightly

coordinated. There is much work, particularly in the field of swarm robotics, which

investigates loosely-coordinated solutions in which individual robots have either limited

or no awareness of the explicit goals and behaviours of other robots, interaction is

limited and coordination is emergent rather than strictly defined. The work presented

in this thesis is concerned with direct coordination between multiple robots for tightly

coupled tasks which require significant interaction and coordinated execution. This

places additional constraints on the navigation system as not only must the robots be

able to localise themselves (while mapping) but they must be able to localise themselves

within a common coordinate system.

This becomes apparent when a simple search and rescue scenario is considered: two

MAVs are tasked with searching a building to find a person in need of medical attention.

MAV1 is smaller and faster so is tasked with exploring the building to find the person.

MAV2 is larger and can carry a heavier payload and is tasked with both exploring the

building and bringing the medical supplies. Both MAVs have no map of the building so

are required to build one as they go. MAV1 explores the building and eventually finds

the person and communicates to MAV2 the location of the person according its own

map. However MAV2 is unable comply as the communicated coordinates are in MAV1s

map frame which is unknown to MAV2. Even if MAV1 were to share its map with
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MAV2 there is no guarantee this would result in success as it requires MAV2 to combine

the two maps which is only possible if there is a common point of reference. In this

thesis two multi-robot coordination problems are explored and use is made of them as

case studies to verify the performance of the proposed visual navigation approaches. The

first is a market-based approach to environment exploration. This tackles the problem of

environment exploration using an auction-based protocol to assign exploration goals to

individual MAVs. Another essential coordination task when dealing with groups of aerial

vehicles in close proximity is that of MAV-to-MAV collision avoidance. A multi-robot

distributed approach to collision avoidance based on velocity obstacles is also explored.

Figure 1.4: The MAV platforms used for the work presented in this thesis, the stan-
dard Parrot AR Drone (left) and a custom 3D printed, MAV platform (right).

1.4 Research Questions and Contributions

Multi-robot Visual Navigation is a complex problem. In this thesis the problem is

explored from the standpoint of two important requirements, those of scalability and

robustness. The goal is to develop a robust, scalable multi-robot visual navigation

system capable of being deployed using low cost MAVs (see Figure 1.4). The research

goals that the work presented in this thesis seek to address are summarised by the

following research questions:

1. How can a Visual SLAM and appearance based localisation be used to support

the autonomous navigation of large teams of low cost Micro Aerial Vehicles?

2. Given the above how does the architecture of the proposed navigation system affect

its scalability and robustness?

3. The barrier for entry for practical research using multiple MAV systems is still

high due to the cost of the most commonly used external localisation systems.

Can this be addressed by the introduction of alternate approaches based on visual

SLAM and low cost platforms?

4. Can a visual SLAM based navigation approach be used to support more high level

research such as multi-agent coordination?
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In the context of the above research questions the following is a summary of the key

contributions of the work presented in this thesis.

1. An examination of the concept of using place recognition to enable multi-robot

visual navigation for teams of MAVs which is presented in Chapter 4. This work

explores this idea with a proof-of-concept implementation of a centralised multi-

robot visual navigation system for the Parrot AR. Drone. The approach is based

on Parallel Tracking and Mapping (PTAM) [54], a ground-breaking visual SLAM

approach developed by Klien and Murray. This facilitates the use of an extremely

low cost (< £300) and light weight (< 500 grams) MAV platform for multi-robot

research.

2. A general, scalable, partially distributed tracking and mapping system for teams

of MAVs which is presented in Chapter 5. Here our previous fully centralised ap-

proach is built upon to achieve a more robust, highly scalable, distributed visual

navigation system. A more general state estimation approach together with alter-

nate stereo initialisation methods make the distributed approach applicable to a

range of MAV platforms.

3. Experiments to analyse the performance of both the centralised and distributed

approaches in terms of localisation performance, scalability and robustness which

are presented in both Chapters 4 and 5. It is shown that both approaches exhibit

on average a Route Mean Squared Error (RMSE) of less than 10 centimetres and

it is demonstrated that the centralised approach is capable of scaling to teams of

up to 4 MAVs. In contrast experimental results are presented which show the

distributed approach is capable of scaling up to 20 MAVs. Finally the increased

robustness to network delay afforded by the distributed approach is demonstrated.

This increased robustness is shown to improve the reliability of real-time motion

tracking and localisation.

4. A demonstration of how the precision and reliability of the proposed visual navi-

gation approach, in combination with a reciprocal velocity obstacle based position

controller, can be used to solve the difficult problem of mid-air collision avoidance.

This work is presented in Chapter 6.

5. An application utilising the sparse feature-based map produced by our visual navi-

gation system to implement an auction-based multi-robot environment exploration

system. This work is presented in Chapter 6.

6. Open source implementations of all software and hardware developed for this thesis

aimed at lowering the bar for entry into this line of research. It is the author’s

hope that the available of the software developed in this thesis will encourage more

researchers to conduct real physical experiments using MAV platforms and help

bridge the knowledge gap discussed previously. This is discussed in Appendix A.
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1.5 Thesis Outline

The remainder of this thesis is organised as follows. Chapter 2 introduces preliminaries

including the notation used as well as the theoretical background of the camera model,

feature detection, structure from motion, state estimation and control. Chapter 3 looks

at state of the art solutions to MAV navigation and motivates the use of vision as the

primary navigation sensor. Further common visual localisation methods, for both single

MAV as well as teams of MAVs are reviewed. While the main focus of this thesis is visual

navigation two multi-robot coordination case studies: robot-to-robot collision avoidance

and multi-robot environment exploration are also considered in Chapter 4. The ideas

and algorithms developed to address these case studies are discussed as well as their

applicability in the evaluation of the visual navigation approaches developed for this

thesis.

In Chapter 5 the idea of appearance based localisation to enable multi-robot visual

navigation is explored; a proof of concept implementation is developed which forms

the basis of one of the contribution of this thesis namely a centralised multi-robot visual

navigation system. A complete quantitative evaluation of the framework is also presented

including localisation, mapping and scalability experiments. In addition the framework

performance in two multi-robot coordination tasks (collision avoidance and exploration)

is evaluated.

In Chapter 6 the idea of a partially distributed approach to multi-robot visual navi-

gation is explored. The chapter explores the benefits in terms of performance, robustness

and scalability compared to the centralised approach. A platform agnostic implemen-

tation of this distributed visual navigation approach is also presented. Chapter 5 also

presents an evaluation of the new distributed approach in terms of localisation accuracy,

robustness to delay and bandwidth requirements. The distributed approach is also put

to the test in the two multi-robot coordination tasks (collision avoidance and explo-

ration). Finally Chapter 7 concludes the thesis with an overall analysis of the research

as well as a discussion of future work.



Chapter 2

Preliminaries

In this chapter the foundational concepts of geometry, computer vision and Simulta-

neous Localisation and Mapping (SLAM) used throughout this thesis are introduced.

In Section 2.1 we start by fixing the notation for geometric primitives and describe a

number of relevant transformations. Section 2.2 explores how we represent images, in

particular we look at perspective projection and the pinhole camera model. In section

2.3 we look a extracting interest points from images and how they may be used to solve

problems such as image stitching and camera tracking. Section 2.4 covers theory and

algorithms for deriving 3-dimensional (3D) structure from 2-dimensional (2D) images

often referred to as photogrammetry or Structure from Motion (SfM). We conclude the

chapter in Sections 2.5 and 2.6 by looking at two related problems in robotics: state

estimation using Kalman filters and feedback control. The material in this Chapter in

based on the excellent book by Szeliski [109] (in particular Chapters 2, 4 and 7).

2.1 Points and Vectors

In this section we fix the notation and briefly describe the geometric primitives used in

this work. Starting with points, we represent a point in terms of either: (i)n-dimensional

Cartesian coordinates or (ii) n + 1 homogeneous coordinates where points differing by

only their scale factor are equivalent:

X =

xy
z

 X̃ =


x

y

z

w


Where xy

z

 =

x/wy/w

z/w



9
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To improve clarity we distinguish between a 2D and 3D point/vector with capitalisation.

For example a 2D point x in homogeneous coordinates or a 3D point X in homogeneous

coordinates:

x̃ =

xy
w

 X̃ =


x

y

z

w


2.1.1 Rigid Body Transformation

Points and vectors are typically represented with respect to a designated coordinate

frame. Where relevant we will denote the coordinate system of a point by a leading

superscript, for example the 3D point X in the world coordinate frame W will be rep-

resented as WX. Rotations can be expressed most generally by a 3× 3 rotation matrix

in the rotation group: R ∈ SO(3).

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33


This representation has some nice properties:

R−1 = RTdet(R) = 1

The rigid body, or 3D Euclidean transformation is one which translates point(s) from

one coordinate system to another and is described by a transformation matrix of the

form:

WCH̃ =

[
R t

0T 1

]
=


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1


Where: (i)WCH̃ denotes the transformation from the world coordinate frame W to

the camera coordinate frame C, (ii) R is the 3 × 3 rotation matrix and (iii) t is a

3× 1 translation vector. The rigid body transform is used throughout the work in this

these to describe the pose (position and orientation) of a MAV with respect to a global

coordinate system as well as for transformations between coordinate frames. The rigid

body transformation WCH̃ is a member of the Lie group SE(3), which allow the rigid

body transformation to be minimally parametrised by a six dimensional vector µ via

the exponential map. This representation has many desirable properties including being

trivially differentiable. Full details of the Lie group SE(3) and its applications can be

found in [116].
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Figure 2.1: MAV Coordinate Frames.

Figure 2.1 shows the common coordinate frames for a MAV as used in this thesis.

The inertial frame I is the earth fixed coordinate system with the origin defined as the

starting or home location. The x-axis points north, the y-axis points east and the z-axis

points into the earth. The coordinate system of a MAV is described by the body frame

B, where the origin is located at the centre of mass of the MAV. The x-axis points

towards the front of the MAV, the y-axis points to the right of the MAV and the z

axis points downward from the MAV. The transformation from the inertial frame to the

body frame is given by the rigid body transform IBT̃.

In some reported work, particularly that relating to MAV control, additional frames

are introduced which separate the rotation and translation components of the transform
IBT̃. For example a vehicle frame V can be introduced where the origin is located at

the centre of mass of the MAV but each axis is aligned with the inertial frame. This

means the translation of the MAV with respect to the inertial frame can be expressed

by the transform IVT̃ and the rotational component of the transform can be expressed

as a pure rotation from the vehicle frame to the body frame VBR.

2.1.2 Similarity and Affine Transformations

The Similarity or Scaling Transform is part of the group containing similarity trans-

forms in three dimensional space Sim(3). It has the same representation as the rigid
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body transformation with the addition of a scale factor:

X̃′ =

[
sR t

0T 1

]
X̃

The addition of the scaling factor to the similarity transform is useful, particularly

for monocular SLAM where the scale is unknown or estimated using data from metric

sensors. Optimisations such as loop closures, pose graph optimisation and bundle ad-

justment (see Section 2.4.5 can be done using the similarity transform instead of the

standard rigid body transform. This allows us to take the scale ambiguity into account

during optimisation [107].

The Affine Transformation goes a step further by adding a shearing factor along each

axis: x̃′ = Ax̃ where:

A =

a11 a12 a13

a21 a22 a23

0 0 1


The affine transformation is useful to describe the transformation of points between

images. In such cases, where image features are observed from different viewpoints, the

rigid body or similarity transform is not sufficient to describe the transformation of the

points.

2.2 Pinhole Camera Model

This Section focuses the foundational concepts of computer vision used for the work

presented in this and how they relate to the problem of visual navigation. In partic-

ular this Section will cover how visual observations using cameras are modelled using

the pinhole camera and distortion models. The section concludes with a discussion of

geometric image features and feature matching.

The pinhole camera model describes the projection of 3D world features into the

image plane of an ideal pinhole camera. It is used throughout computer vision to model

the transformation from the 3D world of objects to the 2D world of images. This model

illustrated in Figure 2.2 where the 3D world point P̃ is projected onto the image plane

of the camera at image point x̃. The pinhole camera model is an example of the most

general type of transformation, perspective projection. Given a 3D point in the world

observed by a camera we often want to compute its corresponding 2D point in the image

plane. The pinhole camera model can be described in matrix form by:xy
w

 =

fx s cx

0 fy cy

0 0 1


X/ZY/Z

1


Where: fx and fy define the focal length of the camera (in pixels) (this representation

also implicitly encodes the aspect ratio of the image sensor), cx and cy define the optical
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camera
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image

plane

Figure 2.2: An illustration of the pinhole camera model. In reality the image plane
is behind the camera centre and the true projection results in an image that is upside
down and has to be rotated, this is done by the camera sensor so the generate images

appear right way up.

centre (also called the principal point) and s defines the skew factor to account for the

sensor not being mounted perpendicular to the optical axis [109]. The skew factor is

often omitted as most image sensors do not induce any axis skew. These parameters

can be provided by the manufacturer or more commonly obtained via calibration (see

Section 2.4.1). This model assumes the 3D coordinates describe the point relative to the

camera centre. If coordinates describe the transform relative to some other coordinate

system e.g. WP̃ in the world frame W the point must first be transformed to the

camera coordinate system. This means we must know the camera transform in the

world coordinate system, this is generally described as the extrinsic parameters of the

camera:

Mext =
[
WCR Ct

]
Thus a 3× 4 matrix describing the WCR world to camera rotation where Ct is the world

origin in camera coordinates. Therefore the full camera matrix containing both the

intrinsic and extrinsic parameters of the camera is required to translate a point from

world coordinates to (u, v) pixel coordinates:

x̃ = KMext
WP̃ (2.1)

xy
w

 =

fx s cx

0 fy cy

0 0 1


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz



X

Y

Z

1

 (2.2)
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[
u

v

]
=

[
x/w

y/w

]
(2.3)

2.2.1 Lens Distortion

The model above assumes no distortion occurs i.e. a perfectly shaped lens. However in

practice this is not the case and imperfect lenses and sensor alignment can introduce

significant distortion. This distortion results in image points appearing in significantly

different positions than the expected projection given by the pinhole camera model de-

scribed in the previous section. This is particularly noticeable when observing lines,

straight lines in the world appear curved in the image. This effect is even more pro-

nounced with wider angle lenses as shown in Figure 2.3. A common approach is to use

a low order polynomial to model the radial distortion:

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6) (2.4)

ycorrected = x(1 + k1r
2 + k2r

4 + k3r
6) (2.5)

Where r2 = x2 + y2 accounts for the increasing distortion the further from the centre

point and k1, k2 and k3 are the radial distortion coefficients estimated via calibration.

For wider angle lenses such as those used in this thesis it is more efficient to model the

distortion using Devernay and Faugeras’ Field of View (FOV) model[18]. In the FOV

Figure 2.3: An example of the lens distortion resulting for a wide angle lens(left) and
the same scene after camera calibration and image rectification(right).

model only a single parameter is used to describe the field of view of the ideal wide-angle

lens. It is assumed that the distance between an image point and the principal point

is proportional to the angle between the corresponding ray connecting the 3D point

with the optical centre and the optical axis in the rectified image. The radial distortion

function is given as:

r =

√
x2 + y2

z2
(2.6)
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r′ =
1

w
arctan(2r tan

w

2
) (2.7)

Where w is the field of view parameter obtained via calibration. Recovering the undis-

torted pixel coordinates can be done using the following transformation:[
x

y

]
=
r′

r

[
x/w

y/w

]
(2.8)

Some cameras also exhibit tangential distortion caused by misalignment between the

lens and the image sensor, but it has been shown for the machine vision cameras used

in this thesis that the effect is negligible [18].

2.3 Image Features

One of the fundamental problems in computer vision is feature detection and matching.

Visual features are subsets of image data that describe unique or interesting regions

within the image. Good features have desirable properties such as distinctiveness and

repeatability. The ability to match unique features between two images allows a number

of interesting applications such as image stitching, object tracking or, for the work in

this thesis, case motion estimation. Features can describe geometric shapes such as

lines and corners or less rigidly defined regions such as coloured/textured blobs. Corner

points have been widely used in computer vision as interest points as they are highly

constrained in both axes (as opposed to lines) and are therefore easier to match.

Figure 2.4: The segment test used in the FAST corner detector, here r = 3 and
n = 12. The dashed arc highlights the 12 pixels brighter than p therefore p is a corner

feature [97].

2.3.1 Corner Feature Detection

A feature detector is an algorithm which extracts visual features from images. A good

feature detector is one that is both computationally efficient as well as reliable. For
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real-time tracking applications such as visual SLAM, where feature extraction will be

carried out on every image the importance of an efficient detector is vital. As such many

tracking approaches use the Features from Accelerated Segment Test (FAST) detector.

The FAST feature detector, first presented in [96], uses the Segment-Test algorithm

to determine if there is a corner feature at some pixel location p. The Segment Test is

as follows, in a Bresenham [9] circle centred on pixel p and of radius r, if more than n

pixels are either brighter or darker than pixel p by some threshold t then p is a corner

feature see Figure 2.4. Adjusting the value of t determines the sensitivity of the corner

detector, higher values of t results in a detector that finds fewer, but stronger, corners;

a lower value increases the number of corners detected, but the resulting corners have

smoother gradients which may affect repeatability.

The segment test can be accelerated as it provides a method to quickly reject pixels

that definitely aren’t corner features. In the example in Figure 2.4 where n = 12, the

pixels at each compass point (i.e. 1, 9, 5 and 13) can be checked first; if the intensity

of these pixels is close to p then p cannot be a corner feature. This begs the question,

whatever the value of n what is the fewest number of pixel intensity tests we can do

to determine if p is a corner feature and what is the best value for n. The value of n

determines the maximum angle of the corner features detected while still rejecting edges

(i.e. n = 8). Therefore n = 9 is the ideal value as it will detect corners with the largest

variety of angles while still rejecting edges. In [97] Rosten demonstrated that a n = 9

detector is up to twice as fast as the original detector as well as being highly repeatable

when compared to other state-of-the-art detectors.

The FAST-9 detector made use of machine learning to improve the performance of

the segment test algorithm, for a given value of n the aim was to test the fewest number

of pixels to determine if p is a corner feature or not. Rosten used the full Segment Test

to extract corner features to create a training set for a decision tree classifier. The aim

being to produce a decision tree which can determine if a pixel contains a corner point

by testing the fewest number of pixels. Rosten was able to produce an n = 9 detector

which only needed to test an average of 2.83 pixels to determine if a corner feature is

present. The reliance on supervised learning to build the decision tree means for the best

results the FAST-9 detector should be trained on features collected from the operating

environment. This reduces the adaptability of the detector, an issue addressed by Mair

et al. with their Adaptive Generic Accelerated Segment Test (AGAST) detector [73].

The AGAST detector uses a more generic binary decision tree instead of the learned

ternary tree used in FAST-9. It also combines two decision trees, one optimised for

homogeneous or cluttered image regions and the other optimised for uniform surfaces

or high structured regions with texture. The AGAST detector switches trees based on

the local structure of the image, making it adaptable to different environments without

training. This adaptability is particularly useful in the application of Visual SLAM in

outdoor scenes as the environment can change from highly cluttered scene (e.g. buildings

and infrastructure) to uniform, highly textured regions such as fields or roads.
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2.3.2 Corner Feature Selection

A potential issue with feature detection is the problem of features detected adjacent to

one another. This can lead to issues when matching features from other views in that

the adjacent features could be erroneously matched given their proximity. A common

solution is non-maximum suppression, where features adjacent to one another are filtered

by their relative intensity. This is done by defining a scoring function for feature points,

V (p) where V returns the sum of absolute difference between p and the 16 surrounding

pixels. Scores of adjacent feature points are computed and the point with the lower score

is discarded as illustrated in Figure 2.5. Another scoring function is the Shi Tomasi

Scoring [103] function. This is based on the Harris Stevens [39] corner detector which

uses the image gradients to detect corners. Specifically it computes a sum of squared

difference matrix M over a small rectangular or Gaussian window function w

M =
∑
x,y

w(x, y)

[
IxIx IxIy

IxIy IyIy

]
(2.9)

Here Ix and Iy are the image gradients in x and y directions. This works well for axis-

aligned corner features; to obtain rotation invariance the corner response is computed

using the Eigenvalues of M :

M = R−1

[
λ1 0

0 λ2

]
R (2.10)

Where R is a matrix of the eigenvectors and λ1 and λ2 are the eigenvalues of M .

The Harris Stevens detector computes the corner response function R with a tuneable

sensitivity parameter k as

R = λ1λ2 − k(λ1 + λ2)

Indeed Harris and Stevens presented a method to approximate the corner response

without explicitly calculating the Eigenvalues which are more computationally intensive.

R = detM − k(traceM)2

Where detM is the determinant of the matrix M and is equivalent to the expression

λ1λ2 and traceM is the trace of matrix M which is equivalent to λ1+λ2. Shi and Tomasi

noted that for reliable tracking, the features with the largest Eigenvalues that do not

differ significantly are best [103]. These represent features with strong intensity profiles

i.e. the intensity of the feature point differs to a larger extent than the mean intensity

of the surrounding pixels. Given that the eigenvalues are bounded by the maximum

intensity of the image it serves to take the smaller of the two to compute the corner

score:

R = min(λ1, λ2) > λ (2.11)
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Where λ is a threshold parameter. An example is shown in Figure 2.6 where the image

on the left shows the FAST corners detected in the image and the image on the right

contains only those corners with a Shi Tomasi score above 50.

Figure 2.5: FAST corner features extracted from the image (left) and the corner
features after non-maximum suppression(right).

Figure 2.6: FAST corner features extracted from an image (left) and corners with a
Shi-Tomasi score > 50 (right).

2.3.3 Scale Invariant Feature Transform (SIFT)

Another interest point detector is SIFT[68]. SIFT is a combination of the Difference of

Gaussian (DoG) feature detector and descriptor that uses gradient histograms. For the

DoG detector the image is blurred using a Gaussian filter of increasing σ and computes

the pairwise difference of the blurred images. Then for each pixel and a small window of

neighbouring pixels it looks for the local extrema over all these Difference of Gaussian

images, effectively searching for the scale at which the feature response is highest. The

candidate points are filtered using non-maximum suppression, eliminating edges. Finally

the precise centre point of the feature is computed at sub-pixel accuracy by fitting a

quadratic function to the feature response function.
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To achieve rotation invariance the dominant orientation(s) of the feature is computed

using a histogram of local gradient directions. The highest peak and all peaks within

a threshold of the highest peaks are selected. In the case of multiple peaks a feature

point is generated for each dominant orientation. The feature descriptor is computed

based on a 16 × 16 pixel region around the feature points. This is divided into 4 × 4

pixel regions on which an 8-bin orientation histogram is computed. This results in a

descriptor with 128 elements. Their invariance properties make SIFT features a popular

choice for applications such as image stitching and object recognition. For real-time

tracking applications SIFT features are less popular due to the increased complexity

involved in both SIFT feature detection and descriptor extraction. However in recent

years, with the advances in parallel computation, using computer graphics processors it

is possible to compute SIFT features in real-time [42].

2.3.4 Feature Matching

Feature detection is only one part of the problem in order to be useful we must be able to

establish feature correspondences, that is, determine if feature x in image i is the same

3D world point as feature y in image j. The local appearance of a feature in an image is

subject to change in transformation, rotation, scale and illumination making this one of

the most challenging problems in computer vision. Given the fundamental nature of the

problem there are many solutions, a complete description of which, is beyond the scope

of this work. The discussion will thus be restricted to discussing methods for matching

the features discussed in this thesis namely FAST and SIFT. One particular method

commonly used in conjunction with FAST features is template matching. Template

matching involves a direct comparison of the intensity values of a small, fixed size,

region of pixels around a detected feature point. It is based on the assumption that the

intensity values of the templates remain consistent between frames. This assumption is

valid in real-time tracking applications where the motion between frames in small. We

can then compare image patches using the Sum of Squared Differences (SSD):

SSD =
∑

(u,v)∈W

(I1(u, v)− I2(x+ u, y + v))2 (2.12)

Where an exact match of the intensity values will return a score of 0. A more robust but

computationally more intensive approach is the Zero-Mean Sum of Squared Differences

(ZSSD). Here the mean intensity value for each image patch is subtracted to improve

robustness to lighting conditions:

ZSSD =
∑

(u,v)∈W

((I1(u, v)− I1)− (I2(x+ u, y + v)− I2))2 (2.13)

Where I is the mean intensity of the pixel values in image patch I. This technique

is often combined with an image pyramid to achieve a limited invariance to scale. An

image pyramid is constructed by taking the source image applying a smoothing filter
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Figure 2.7: Image Pyramid

and sub sampling it by some factor λ along each axis. This multi-scale representation of

the image allows us to detect features at different scale levels providing some invariance

to scale. The scaling factor λ determines the number of pyramid levels λ = 2 results in a

4 level image pyramid (see Figure 2.7). This patch-based approach has the advantage of

being computationally efficient, however it relies on the consistency of intensity values

between frames. Where there is a large difference in viewpoint the local intensity of

matching templates may be vastly different.

Matching SIFT keypoints (and descriptors in general) is usually done using a nearest

neighbour approach where the similarity measure is the Euclidean distance in feature

space:

d = [
128∑
i=1

(pi − qi)2]1/2

where pi and qi are the SIFT feature descriptors being compared. The naive approach

is to set an absolute threshold for the feature distance, however this can result in false

matches. Instead Lowe et al. [68] suggested that the most robust approach was the

threshold between the first and second nearest neighbours. If both are close (as defined

by the threshold) then the pair cannot be described as a strong match and should be

discarded. This means only the strongest matches are used. This can be done in a

brute force manner with in complexity of O(m · n) to reduce a feature set of size m to

a set of size n. This makes real-time implementation infeasible but there are several

approaches to reduce the complexity such as approximate nearest neighbour search [78]

or the bag-of-words method [87].
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Figure 2.8: Perspective n-Point Problem

2.4 Structure from Motion

Recovering 3D information from a 2D camera sensor is a well known problem in computer

vision, the key is exploiting either the motion of the object being observed or the motion

of the camera itself to recover the missing depth information. Structure from Motion

(SfM) has been extensively studied in the case of offline 3D reconstruction, however

in recent years the techniques developed have been applied to real-time problems in

robotics. In this section we will introduce some key problems in SfM and describe some

common methods to solve them. In particular we will look at the problems of estimating

the pose of a camera when observing a known shape, recovering depth information from

two distinct views of the same point and estimating the relative pose between two

cameras. We will conclude with a discussion of bundle adjustment, a powerful technique

to iteratively refine both structure (3D points) and motion (camera poses) estimates.

2.4.1 Perspective n-Point Problem

The Perspective n-Point problem addresses the issue of estimating camera poses (and

camera parameters) from observations of known object/points. Here we have a set of

n 3D points together with their corresponding 2D positions in the camera frame, see

Figure 2.8. Given the set of 2D-3D point correspondences (x̃i, . . . , x̃n) ↔ (P̃i, . . . , P̃n)

we want to estimate

C = K(R, t)

where K is the intrinsic camera parameter matrix and x̃i = CP̃i i.e. the re-projection of

the set of 3D points P̃ into image coordinates corresponds to the set observed features

points x̃. While inherently non-linear this problem can be solved in a linear fashion

if we make the assumption that the unknown variables are independent. We can then

define a set of equations describing each 2D-3D point correspondence with respect to
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the matrix C.

x =
c11X + c12Y + c13Z + c14W

c31X + c32Y + c33Z + c34W
(2.14)

y =
c21X + c22Y + c23Z + c24W

c31X + c32Y + c33Z + c34W
(2.15)

Where: (i) x, y are the 2D image coordinates of feature point xi, (ii) (X,Y, Z,W ) are the

3D homogeneous coordinates of 3D point pi and (iii) c12 denotes the element in the 1st

row and second column of the matrix C. Multiplying each equation by the denominator

gives the following set of linear equations:

0 = (xjc31 − c11)X + (xjc32 − c12)Y + (xjc33 − c13)Z + (xjc34 − c14)W (2.16)

0 = (yjc31 − c21)X + (yjc32 − c22)Y + (yjc33 − c23)Z + (yjc34 − c24)W (2.17)

These can then be rearranged into a homogeneous linear equation of the from Ax = 0

where A is the matrix form of the system of linear equations and x is a column vector

representing the unknowns (i.e. the camera matrix C).[
X Y Z 1 0 0 0 0 −xX −xY −xZ −x
0 0 0 0 X Y Z 1 −yX −yY −yZ −y

]
x = 0 (2.18)

Where x =
[
c11 c12 . . . c34

]T
∈ R12 representing the set of unknown values. Given

that C has 12 unknowns at least 6 correspondences are required to produce a unique

solution. This can be solved using Singular Value Decomposition (SVD) where x is the

Eigenvector corresponding to the smallest Eigenvalue of the matrix. Once C has been

obtained we can recover both the intrinsic and extrinsic camera parameters by factoring

C into KR using QR decomposition. We can then compute t = K−1(c14, c24, c34)
T .

For increased accuracy the parameters of C can be further refined using least squares

(which will be described in detail later in this Chapter); finding the parameters of C

that minimise the re-projection error for all points based on the initial solution. Where

points are affected by noise or bad correspondences a Random Sampling and Consensus

(RANSAC) based approach can be used. The general RANSAC algorithm is as follows:

Algorithm 1 RANSAC

1: Randomly select a subset of dataset
2: Find the set of parameters that fits the selected data points
3: Compute the number of outliers for the complete dataset based on the estimated

parameters
4: Repeat for fixed number of iterations or until the number of inliers reaches a given

threshold
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Figure 2.9: Triangulation

Given that we can recover the intrinsic camera parameters from the solution to the PnP

problem one of the most widely used applications is that of camera calibration. This is

achieved using a known calibration pattern and PnP to obtain the intrinsic parameters

for a specific camera. A common calibration pattern is the checkerboard shown in Figure

2.3. The typical procedure is as follows:

1. Threshold the image

2. Detect edges and fit lines

3. Intersect lines to obtain corner points

4. Estimate camera matrix C from obtained corner points

5. Extract K from C using QR decomposition.

Another common application is assuming a calibrated camera (i.e. K is known)

is camera pose estimation using fiducial markers[33, 43]. Here markers consisting of

Figure 2.10: An example of a fiducial marker

known shape and dimensions are used, an example marker is shown in figure 2.10. The
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Figure 2.11: Epipolar Geometry

use of high contrast colour scheme and known, fixed shape make these markers trivial to

detect with standard thresholding techniques in computer vision [126]. The arrangement

of squares represent a binary hamming code which encodes both the identifier of the

marker as well as its orientation. This allows the markers to be differentiated from

each other as well as other objects of similar shape. This provides a very fast and

accurate method for camera pose estimation at the cost of requiring prior knowledge of

the marker shape and dimensions. Fiducial markers is the context of visual navigation

will be discussed further in Chapter 3.

2.4.2 Triangulation

Triangulation can be seen as the converse of the PnP problem and the problem was

first described by Longuet-Higgins [66]. Here we have two observations x0 and x1 of

the same 3D world feature X. Additionally we know the full camera matrix for both

cameras i.e both the the relative transformation between the two cameras (R, t) is known

as well as the intrinsic camera parameters K. The unknown we want to recover is the

corresponding 3D point X. This can be solved using the same system of linear equations

(equations 2.14 and 2.15) as before however in this case the unknowns are the X, Y, Z

coordinates of the 3D point X. As before we can solve this system of equations using

SVD and again increased accuracy can be obtained by taking a least squares solution.

2.4.3 Epipolar Geometry

In order to triangulate a 3D point from 2D point correspondences we need to first estab-

lish the point correspondence between to images. Searching for point correspondences

between images can be difficult as locally many points look similar and depending upon

the type of feature points and descriptors used matches can be ambiguous. However

we can use the known geometry of the cameras to limit the search for point correspon-

dences to a search along a single line rather than the entire image. This can be done

by exploiting the geometry between two cameras of which the most important is the

epipolar constraint. This describes the relationship of point correspondences between



Chapter 2. Preliminaries 25

two viewpoints i.e. stereo vision. First let’s define an alternate representation for im-

age coordinates, namely normalised image coordinates. If we know the intrinsic camera

parameters we convert image coordinates to a normalised form where the effective focal

length is 1 and the camera centre is in the middle of the image. This means we no longer

require the intrinsic camera matrix to describe the projection of points into the image

plane. The transformation from un-normalised coordinates to normalised is given by:

p = K−1u

where u are the un-normalised image coordinates and K−1 is the inverse intrinsic pa-

rameter matrix. Consider Figure 2.11 where we observe a 3D world point from two

separate views. The line connecting the centres of both cameras c0 and c1 is known

as the baseline. The plane defined by the points c0, c1, p is known as the epipolar

plane. The intersection between the image plane and the epipolar plane is known as

the epipolar line l1. For each pair of corresponding normalised image points x1,x2 the

following constraint holds:

x̃T2 Ex̃1 = 0

where E is the essential matrix [66] which describes the transformation between the two

cameras:

E = [t]×R ∈ R3×3

Here [t]× is the skew symmetric matrix of the form:xy
z


×

=

 0 −z y

z 0 −x
−y x 0


Representing the matrix form of the cross product multiplication of t and R. The

epipolar constraint means that the corresponding feature point in the second image x1

is guaranteed to be found along the epipolar line this limits the search space for point

correspondences to a single line. The epipolar constraint is also useful for estimating the

relative motion between two camera where the set of point correspondences is known.

As the essential matrix is a 3× 3 it appears that there are 9 unknowns, however we can

arbitrarily scale E the essential matrix and still satisfy the epipolar constraint, meaning

we can only compute E to scale. This leaves 8 unknowns meaning we can compute

E from 8 or more point correspondences using the 8-point linear algorithm. Given a

set of 8 or more point correspondences we can define a set of 8 equations of the form

pT0 Ep1 = 0

[
x0 y0 1

]E11 E12 E13

E21 E22 E23

E31 E32 E33


x1y1

1

 = 0 (2.19)
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Figure 2.12: Re-Projection Error

We can rewrite this as:

E11x0x1 + E12x0y1 + E13x0 + E21y0x1 + E22y0y1 + E13y0 + E31x1 + E32y1 + E33 = 0

(2.20)

We can then reformulate this as a set of homogeneous linear equations of the form

Ax = 0 where x is the vector of unknown values from the essential matrix and A consist

of a row for each point correspondence:


x0x1 x0y1 x0 y0x1 y0y1 y0 x1 y1 1

...
...

...
...

...
...

...
...

...

xixj xiyj xi yixj yiyj yi xj yj 1




E11

E12

E13

...

E33


(2.21)

As before we find the solution for x can be found in the null space of A. That is using

SVD to decompose A = UDV T , where the solution x is the rightmost column of V

corresponding to the only null singular value of A. The 8-point linear algorithm has

been succeeded by many solutions, notably Nisters 5-point algorithm which estimates

E from only 5 point correspondences [86]. Of particular interest to Visual SLAM on

MAVs is the work of Fraundorfer et al. who demonstrated a 3-point algorithm [32]. They

assume a platform equipped with both camera and IMU and thus the orientation angles

of the two views are known leaving only the three unknowns of relative transformation.

2.4.4 Least Squares

Least squares in the general case is a parameter estimation approach to find an approx-

imate solution to an overdetermined system of equations. This is done by minimising

the sum of squared errors for each equation. In many cases there is no exact solution

to an overdetermined system of equations in such a case least squares can be used to
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find the closest solution to the exact one. Least squares is particularly useful in the

context of fitting a model to a set of noisy observations. For example given a column

vector of independent data points x = (x1, . . . , xn)T and vector of dependent measure-

ments y = (y1, . . . , yn)T the aim is to find a set of model parameters p = (p1, . . . , pn)T

which represent the best fit between the model and the measured data points. Best fit

is defined as the set of parameters at which the sum S of the residuals is minimal:

S =

n∑
i=1

‖ri‖2 (2.22)

where the residuals ri is the difference between the measured value and the value pre-

dicted by the model ri = yi − f(xi, pi). The form of the function f determines the

nature of the least squares problem, that is linear vs non-linear least squares. In the

case of computer vision and structure from motion problems, we commonly use the re-

projection error as the residual in least squares problems. The re-projection error is the

difference between the pixel location of an observed 3D point and its estimated position

based on the camera pose and the points 3D position (see Figure 2.12). In this case

the residual function f is the projection function based on the pinhole camera model

with lens distortion (introduced in Section 2.2). As this is a non-linear function a non-

linear least squares approach is required. As we have already mentioned non-linear least

squares can be applied to the PnP and Triangulation problems to produce more accurate

results, a more general problem is that of Bundle Adjustment which we consider in the

next section.

2.4.5 Bundle Adjustment

This section provides a brief introduction to the bundle adjustment problem, for a more

detailed account the reader is directed the excellent work of Triggs et al. [114]. The

bundle adjustment problem can be seen as a combination of the triangulation problem

and the PnP problem. We have a sequence of camera images from which we use 2D image

measurements to extract both the 3D structure of the scene as well as the trajectory

of the cameras. In the case of Visual SLAM we have existing estimates of both the 3D

structure and camera trajectory which are estimated incrementally. The initial estimates

are affected by both noise (assumed to normally distributed) as well as accumulated

error from the incremental motion estimation. In bundle adjustment we seek to jointly

refine the 3D structure and camera trajectory. More formally given a map consisting

of n 3D map-points X̃j and m camera matrices Mi representing m images take of a

scene. In addition, for each map-point we have a set of 2D image measurements where

measurement xij is an observation of map-point X̃j in the camera image represented

by camera matrix Mi. We can then define the bundle adjustment in terms of a non-

linear least squares problem where we seek to minimise the cost function, defined as the
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Figure 2.13: Bundle Adjustment Problem

re-projection error between observed and predicted image points:

min
n∑
j=1

m∑
i=1

‖h(Mi, X̃j)− xij‖2 (2.23)

The name bundle adjustment comes from the representation of the problem shown in

Figure 2.13 in which the lines between cameras and the observed points represent the

“bundles” to be incrementally adjusted till an improved solution is found. Algorithms

such a Gauss-Newton and Levenberg-Marquardt (LM) have been successfully applied

to such problems [40, 72, 109]. The typical approach for the non-linear case is to first

linearise the problem using a first-order Taylor expansion around the current solution,

compute an adjustment based on this linearisation, apply it and repeat until a conver-

gence is reached. The Gauss-Newton algorithm works well when the initial solution is

close to optimal whereas LM is more effective when the quality of the initial solution

cannot be guaranteed; for example where linear solutions such as the 8-point algorithm

were used to determine the initial solution. In the next section we explain the LM

algorithm in more detail.

2.4.6 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt (LM) algorithm is an effective solution to non-linear least

squares optimisation problems particularly in the case where the quality of the initial

solution may not be close to optimal. The algorithm was developed first by Levenberg

[65] and again by Marquardt [74]. In this section we provide a brief introduction the

LM algorithm, more detail can be found in [40, 72, 109]. LM provides this flexibility
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by a combination of the gradient descent and Gauss-Newton. The behaviour of the

LM algorithm is as follows: far from the local minimum LM uses a gradient descent

approach which is slower than Gauss-Newton but guaranteed to converge. Close the

the local minimum the LM algorithm switches to Gauss-Newton in order to speed up

convergence. The general form of a least squares problem we have a function f which

describes the relation between a parameter vector p ∈ Rm and a measurement vector

x̂ ∈ Rn; that is x̂ = f(p). An initial parameter estimate p0 and a measurement vector

x are provided and the aim is to iteratively refine the parameter vector p such that it

minimises the squared distance εT ε, where ε = x− x̂. An assumption is made that f is

locally linear; using the initial parameter estimate p0 as a starting point the algorithm

generates an incremental update δp to iteratively refine p. To determine the update δp

the function f is approximated by f(p+ δp) ≈ f(p) +Jδp where J is the Jacobian of f ,

J = ∂f/∂p that is all the partial derivatives of f with respect to p. Starting with the

initial parameter estimate p0 the algorithm produces a sequence of parameter vectors

p1,p2, . . . until it converges towards a local minimum for p. Therefore at each iteration

it is necessary to compute a δp that minimises the following:

‖x− f(p + δp‖ ≈ ‖x− f(p)− Jδp‖ = ‖ε− Jδp‖ (2.24)

This δp is then the solution to a linear least squares problem ‖ε− Jδp‖ over Jδp which

can be solved using the so-called normal equations:

JTJδp = JT ε (2.25)

The matrix JTJ is the first order approximation of the Hessian of 1
2ε
T ε and δp is the

Gauss-Newton step. The gradient descent (sometimes called the steepest descent) of εT ε

corresponds to −JT ε. The LM uses an augmented version of the normal equations 2.25

where a damping factor λ is added (where λ > 0):

(JTJ + λI)δp = JT e (2.26)

The damping factor λ is adjusted at each iteration based on the outcome of equation

2.26, if the outcome results in a reduction in the error term εT ε then the value of λ is

decreased for the next iteration; if the outcome results in increased error then λ adjusted

until a solution is obtained that results in a reduction of the error. This means that it

may require several computations of equation 2.26 before an adjustment δp that reduces

error is found and accepted. As the Gauss-Newton method uses an approximation of

the Hessian of the residuals. This approximation method is valid only in cases where the

error in small (i.e. the current set of parameters are close to the local minimum) or the

residual function is close to linear. If either assumption does not hold the method is not

guaranteed to converge. This is the motivation for the inclusion of the damping factor

in the LM algorithm. When the value of λ is large the adjustment is skewed towards

the steepest descent (i.e. JT ε) this results in smaller steps (i.e. more iterations before
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convergence) but is guaranteed to reach a local minimum. If λ is initially set to a large

value the algorithm will follow the steepest descent method initially, but as λ is reduced

for each solution that reduces error as the solution approaches the local minimum the

Gauss-Newton term dominates the adjustment resulting in faster convergence to the

local minimum. This means the LM algorithm converges quickly to a minimum when

the initial parameters are close to the solution but also provides some robustness (via

the gradient descent method) in cases where the initial solution may not close to the

minimum. It is this adaptive behaviour that makes the LM algorithm one of the most

widely used in the literature for solving non-linear least squares optimisation in computer

vision.

The termination criteria for the LM algorithm are typically one or many of the

following:

• a maximum number of iterations has been reached.

• the magnitude of the residual is low than a threshold.

• the relative magnitude of δp is lower than a threshold.

• the magnitude of the gradient falls below a threshold.

• the relative reduction if the magnitude of the residual falls below a threshold.

Typically in computer vision applications we have an estimate of the uncertainty of the

measurement vector x in the form of the covariance matrix Σx. This modifies the least

squares problem to a weighted least squares problem. Incorporating this information

into the LM algorithm can be done in the following way: the Euclidean norm error

term εT ε is replaced by the squared Mahalanobis distance εTΣ−1x ε. The goal is then to

minimise the squared norm Σ−1x . The augmented normal equation 2.26 is then rewritten

as:

(JTΣ−1x J + λI)δp = JTΣ−1x ε (2.27)

2.4.7 Sparse Bundle Adjustment

A typical bundle adjustment problem can be very large in terms of the number of param-

eters. As discussed previously we have a map consisting of 3D map-points and camera

matrices. Each map-point consists of 3 parameters (for euclidean coordinates) and each

camera matrix consists of 11 parameters (6 parameters for translation and rotation and

5 intrinsic camera parameters). Given that a bundle adjustment problem may consist

of several hundred camera matrices and several thousand map-points this can result

in a non-linear least squares problem with hundreds of thousands of parameters. The

computational complexity of the bundle adjustment problem is cubic in the number of

parameters which makes directly solving the augmented normal equations computational

infeasible for sufficiently large problems. To resolve this issue modern approaches take
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advantage of the sparsity of the bundle adjustment problem. This sparsity comes from

the fact that not every map-point is observed in every image. This results in a sparse

block structure of the Jacobian matrices which can be exploited to speed up computa-

tion. More formally we define a vector aj which represent the parameters for camera j

and vector bi which represent the parameters for 3D point i. And we define the bundle

adjustment problem in terms of minimising the error between the measurement vector

x where xij represents the measurement of point i in camera j:

arg min
aj ,bi

n∑
i=1

m∑
j=1

d(Q(aj ,bi),xij)
2 (2.28)

Here we introduce a reformulation of the re-projection error where d(x,y) is a func-

tion which returns the Euclidean distance between the two image points x and y and

Q(aj ,bi) is the projection of 3D point i onto the image plane of camera j. If we define

the dimensions of the point and camera parameters aj and bi as α and β respectively

then the general formula for the number of parameters in a given problem can be given

as nα+mβ.

The parameter vector for this non-linear least squares problem consist of the param-

eters the n camera camera matrices and m feature points which can be composed as

a parameter vector of the form: P = (aT1 , . . . ,a
T
m,b

T
1 , . . . ,b

T
n )T we can similarly define

the measurement vector X as the measured image coordinates for all map-points points

in all cameras:

X = (xT11, . . . ,x
T
1m,x

T
21, . . . ,x

T
2m, . . . ,x

T
n1, . . . ,x

T
nm)T (2.29)

We define a covariance matrix ΣX which represents the uncertainty of the measurement

vector X, which can be set to the identity matrix for situations where no uncertainty

information exists. If P0 is the initial parameter vector we can generate an estimated

measurement vector X̂ which represents the vector estimated feature points X̂ = f(P).

The estimated measurement vector has the form:

X̂ = (x̂T11, . . . , x̂
T
1m, x̂

T
21, . . . , x̂

T
2m, . . . , x̂

T
n1, . . . , x̂

T
nm)T (2.30)

where x̂ij = Q(aj ,bi). Following our description of the LM algorithm in the previous

section we aim to solve this non-linear least squares problem by minimising the squared

Σ−1X norm (that is the Mahalanobis distance) εTΣ−1X ε, where epsilon is now the vector

representing the difference between the measurement vector X and the estimated mea-

surement vector X̂ i.e. ε = X− X̂ with respect to the current parameter vector P. As

per the LM algorithm this can be solved by iteratively solving the augmented weighted

normal equation:

(JTΣ−1x J + λI)δp = JTΣ−1x ε (2.31)
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where J is the Jacobian matrix of the function f and δ is the update to be applied to the

parameter vector P. A key property of the structure of the bundle adjustment problem

is the interdependence between feature points and cameras. This leads to a sparse block

structure in the normal equations. More formally as image point x̂ij is dependent only

on the parameters of the k-th camera that means in the Jacobian ∂x̂ij/∂ak = 0, ∀j 6= k

and ∂x̂ij/∂bk = 0, ∀i 6= k. Let Aij be the partial derivative of point x̂ij with respect

to camera ai that is Aij = ∂x̂ij/∂ai. Similarly let Bij be the partial derivative of point

x̂ij with respect to map-point bi that is Bij = ∂x̂ij/∂bi. Following the structure of the

parameter vector P the Jacobian matrix for a simple example with 3 cameras and 3

map-points would be as follows:

J =
∂X

∂P
=



A11 0 0 B11 0 0

0 A12 0 B12 0 0

0 0 A13 B13 0 0

A21 0 0 0 B21 0

0 A22 0 0 B23 0

0 0 A23 0 B23 0

A31 0 0 0 0 B31

0 A32 0 0 0 B32

0 0 A33 0 0 B33


(2.32)

The 0 values in the matrix address the case where a point is not visible in an image

and thus the measurements are given 0 weight. Note how the ordering of the parameter

vector P also nicely partitions the camera and point parameters. This sparse block

structure can be exploited to reformulate the augmented normal equations (equation

2.31, the full derivation can be found in [67]. The sparse structure and ordering can

be exploited to improve the performance of the bundle adjustment algorithm. Using

the re-formulation described Lourakis et al. [67] the dependency between camera and

point parameters is removed. This means the update δP can be solved separately for δa

and δb. The re-formulated equations for δa result in symmetric positive-definite matrix

which can be solved efficiently using Cholesky factorisation [67]. Once the solution for

δa has been found the update for δb can be solved by back substitution. Solving for

δa first is justified by the fact that a typical bundle adjustment problem contains far

fewer cameras than map-points. This partitioning of the problem and the resulting

reformulation leads to significant speed up in the computation time for each iteration of

the LM algorithm.

2.4.8 Robust Bundle Adjustment

One potential drawback to using a least-squares scheme is the lack of robustness to

outliers, using the sum of squared re-projection error directly in the presence of outliers

will lead to very poor results as these outliers have a disproportional influence on the

resulting least squares estimate. This is particularly the case with outliers caused by bad
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correspondences as these often result in large residuals. In such case the assumption of

normally distributed errors does not hold and a more robust cost function is required. A

robust cost function can be implemented as a re-weighting of the error vector: ε′ = wiεi

where

C(‖εi‖) = ‖ε′i‖ = w2
i εi (2.33)

The aim of the weighting factor wi is to attenuate the cost of outliers and many

suitable cost functions exist to achieve this. These include the following:

1. Square error cost function:

C(ε) = ε2 (2.34)

2. Cauchy cost function:

C(ε) = b2log(1 + ε2/b2) (2.35)

3. Huber cost function:

C(ε) =

ε2 where|ε| < b

2b|ε| − b2 otherwise
(2.36)

4. Tukey biweight cost function:

C(ε) =

ε{1− ( εb)
2}2 if |ε| <= b

0 if |ε| > b
(2.37)

A graph representing these cost functions is given in Figure 2.14. A more complete

discussion of the various properties of the applicable bundle adjustment cost functions

can be found in Appendix 6.8 of [40]. For the work in this thesis we make use of the

Tukey and Huber cost functions as both perform well in practical experiments [49, 54].

2.5 State Estimation

The material in this section is based on the work of Thrun et al. in their book Proba-

bilistic Robotics [111]. The problem of state estimation can generally be described as

estimating some extrinsic properties of a system given (possibly noisy) measurements

from multiple sources. In the first part of this chapter we looked at a some specific state

estimation problems where vision was the only available sensor. However on typical

robot systems this it not the case as they often feature multiple sensors. In most cases

each sensor will have their own strengths and weaknesses, for example a gyro sensor is

very good at measuring rotational velocity but is prone to drift over time. To address
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Figure 2.14: Graphs corresponding to the different weighted least squares cost func-
tions.

this a common strategy is to combine sensors to mitigate these weaknesses for example

adding an accelerometer (which measures acceleration) can be used to correct for gyro

drift. Another example is monocular Visual SLAM, using the techniques discussed in

this chapter one can estimate the position of a camera within it’s environment but only

up to some unknown scale factor. However combining the position estimates from a Vi-

sual SLAM system with sensor readings from an accelerometer and gyro (which provide

readings in metric units) we can estimate the metric scale factor for the Visual SLAM

system. This approach is commonly referred to as sensor fusion.

The Kalman filter[50] is a Gaussian, recursive state estimator derived from the more

general case Baysian filter. The state, in a Kalman filter, is modelled using a multivariate

normal distribution p(x):

p(x) = det(2πΣ)−
1
2 exp

{
− 1

2
(x− µ)Tσ−1(x− µ)} (2.38)

where the state vector x is characterised by the mean µ and covariance Σ of a Gaus-

sian probability density function. The Kalman Filter is described as a recursive state

estimator for linear systems, meaning both the measurement and process models must

be linear functions. The state vector defines the set of variables to be estimated for
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example the position and velocity of a MAV:

x = (x, y, z, ẋ, ẏ, ż)T

The Kalman filter process can be divided into two steps, the prediction step which a

motion or control model is used to predict the state of the system on time step into the

future and the correction/update step where sensor data is incorporated into the state

to further refine the prediction.

The prediction step defines how the state evolves from one moment to the next as

a result of the process model and the control model. The process model describes how

the state changes from one moment to the next regardless of the control command. For

example if the state of the system is affected by an external force such as in the case of

a MAV operating in the wind, we can account for this in the process model. The control

model describes how the state evolves as the direct result of a control command. The

input command ut is a vector of control commands executed at time t for example if we

commanded our MAV to accelerate forwards with an acceleration of 1.0 m/s2:

u = (0, 0, 0, 1.0, 0, 0)T

we can then generate a prediction of the state in the next moment in time:

µ̄t = At µt−1 +Bt ut (2.39)

Σ̄t = At Σt−1 A
T
t +Rt (2.40)

where At is a matrix describing the process model, Bt describes the control model and

Rt models the uncertainty introduced by the prediction step, represented by a zero mean

Gaussian.

The correction step, incorporates measurements or observations of the environment

into the prediction. This is done in two parts, first we calculate the Kalman gain.

Intuitively this can be described as the extent to which we trust our measurements over

our prediction of the state. That is if the uncertainty of our measurements is lower than

the uncertainty of our state predictions then the correction will be biased towards the

measurements rather than the predicted state. The Kalman gain Kt is computed by:

Kt = Σ̄t C
T
t (Ct Σ̄t C

T
t +Qt)

−1 (2.41)

where: (i) Ct is the measurement model which relates the current state ut to the mea-

surement zt and (ii) Qt is the covariance of the zero-mean Gaussian measurement noise.

In the next part we compute the innovation which is the difference between the actual

measurement and the expected measurement calculated from the measurement model Ct

and the predicted mean µt. We can then adjust the mean in proportion to the Kalman
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gain and the innovation:

µt = ūt +Kt(zt − Ct µ̄t) (2.42)

Finally the correction step completes with an update of the covariance, based on the

incorporation of the new information contained in the measurement:

Σt = (I −Kt Ct)Σ̄t (2.43)

The complete Kalman filter algorithm is as follows:

Algorithm 2 Kalman Filter(µt−1,Σt−1, ut, zt)

Input: The previous mean µt−1, covariance Σt−1 and current control ut and current
measurement zt
Output: The new mean µt and covariance Σt

1: µ̄t = At µt−1 +Bt ut
2: Σ̄t = At Σt−1 A

T
t +Rt

3: Kt = Σ̄t C
T
t (Ct Σ̄t C

T
t +Qt)

−1

4: µt = ūt +Kt(zt − Ct µ̄t)
5: Σt = (I −Kt Ct)Σ̄t

6: return µt,Σt

2.5.1 Extension to non-linear systems

A key insight into the workings of the Kalman filter is the fact that any linear transfor-

mation of a Gaussian results in another Gaussian [111]. Therefore, provided our system

requires only linear transformations, we can ensure our state represented by a multivari-

ate Gaussian distribution remains a Gaussian. However a large proportion of the state

estimation problems in robotics involve non-linear functions. The Extended Kalman

Filter (EKF) relaxes the linear transformation requirement, specifically we replace the

process and control matrices A and B with a non-linear function g and the measure-

ment model C is replaced with another non-linear function h. Additionally as there is

no closed-form solution for non-linear functions it is no longer possible to calculate the

exact mean and covariance of the state instead we calculate an approximation based

on the first order linear approximation of the functions g and h using a Taylor series

expansion.

The Taylor approximation of the function g is based on the value and slope of g′,

where the slope is the partial derivative of g with respect to the current control command

ut and the current mean µt:

g′(ut, xt−1) =
∂(ut, µt−1)

∂µt−1

also known as the Jacobian of the function g. An important note as the Jacobian depends

on ut and µt−1 and therefore must be recomputed each time. The state prediction step
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(equation 2.39 then becomes:

µ̄t = g(ut, µt−1) (2.44)

and the covariance prediction step (equation 2.40) becomes:

Σ̄t = Gt Σt−1 G
T
t +Rt (2.45)

Where Gt is the Jacobian matrix consisting of all the partial derivatives of g with respect

to ut and µt−1. A similar linear approximation is used for the measurement function h.

Here the linear approximation is based on the current state prediction µ̄t. The prediction

step is then altered to take this into account:

Kt = Σ̄t H
T
t (Ht Σ̄t H

T
t +Qt)

−1 (2.46)

µt = ūt +Kt(zt − h(µ̄t)) (2.47)

Σt = (I −Kt Ht)Σ̄t (2.48)

where H is the Jacobian matrix consisting of all the partial derivatives of h with respect

to µ̄t. The full EKF algorithm is then given as follows: This allows us to apply the

Algorithm 3 ExtendedKalmanFilter(µt−1,Σt−1, ut, zt)

Input: The previous mean µt−1, covariance Σt−1 and current control ut and current
measurement zt
Output: The new mean µt and covariance Σt

1: µ̄t = g(ut, µt−1)
2: Σ̄t = Gt Σt−1 G

T
t +Rt

3: Kt = Σ̄t H
T
t (Ht Σ̄t H

T
t +Qt)

−1

4: µt = ūt +Kt(zt − h(µ̄t))
5: Σt = (I −Kt Ht)Σ̄t

6: return µt,Σt

Kalman filter algorithm to non-linear process and observation models at the expense of

having to compute the Jacobians at each iteration. The drawback of the EKF approach

is that the first order Taylor approximation is not always guaranteed to be the best

approximation, particularly when the uncertainty in the current estimate is high, this

leads to a poor linear approximation and the state estimate may become unstable.

An alternative approach is the Unscented Kalman Filter (UKF) [117] which applies a

deterministic sampling technique to pick a set of sigma points around the mean. These

sigma points are propagated through the non-linear functions from which the mean and

covariance of the estimate can then be recovered. This more accurately represents the

true mean and covariance.
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Figure 2.15: Quadcopter dynamics: each motor induces a torque Ti causing the
propellers to rotate at a certain speed. Each rotating propeller accelerates the air and
induces a perpendicular force Fi counteracting the force Fgrav that pulls the quadcopter

towards the earth.

2.6 MAV Control

In this section we will briefly describe the background relating to MAV control. Specifi-

cally we will review the dynamics of a typical multi-rotor MAV and go on to talk about

a typical feedback control system. The material in this section is based on the excellent

technical report by Randal Beard [6].

2.6.1 Quadcopter System Model

A quadrotor is a MAV equipped with four equally spaced rotors usually placed at the

corners of an imaginary square body (this is known as the ‘X’ or cross configuration).

The rotors are fixed pitch meaning thrust is altered by varying the speed of the motor

rather than by altering pitch of the rotor (as is typical in single rotor craft). Figure 2.15

shows a simple model of a quadrotor aircraft. Each motor produces an upward force Fi

from the thrust generated by the rotating propellers. The total force generated by the

craft F is sum of all the individual forces generated by each motor:

F = F1 + F2 + F3 + F4

Increasing the forces for different pairs of motors induces torques around the centre of

mass of the craft for example the pitching torque τθ is given by:

τθ = l(F3 − F2 − F1 + F4)

where l is the distance from the centre of mass to the motor. Similarly the rolling torque

τφ is given by:

τφ = l(F2 − F1 + F3 − F4)



Chapter 2. Preliminaries 39

As each propeller moves through the air the drag induces a yawing torque (τ1, ...τ4)

on the body of the craft in the opposite direction to the rotation of the propeller. If

each propeller spins in the same direction this yawing torque would cause the body

of the quadrotor to spin in the opposite direction. Thus the motors are configured to

counteract this, motors M1 and M3 spin counter-clockwise and motors M2 and M4

spin clockwise. This ensures the yawing torque of each pair of motors in cancelled out

by the other pair. The total yawing torque is given by:

τψ = τ2 + τ1 − τ3 + τ4

When τψ = 0 this means the yawing torques of both pairs of motors are in equilib-

rium and the quadrotor will maintain it’s current heading. When the total force F is

large enough to counteract gravity and τθ = τφ = τψ = 0 the quadrotor is in a stable

hover. The forces and torques can be computed taking into account the various elec-

tromechanical and aerodynamic properties, however this is not necessary for control.

Instead given that the lift and drag produced by the propellers is proportional to the

angular velocity we can express the forces and torques as:

Fi = C1ω
2
i (2.49)

τi = C2Fi (2.50)

where ωi is the angular velocity of motor i and C1 and C2 are constants that model the

rotor characteristics which can be determined experimentally. This gives the complete

torque model as:

τψτθ
τφ

 =

−CM CM −CM CM

−l −l l l

−l l l −l



F1

F2

F3

F4

 (2.51)

In addition to the forces created by the rotors there is also the gravitational force acting

on the quadrotor. The gravitation force vector in the vehicle frame is given by

VFg =

 0

0

mg


To apply this to the model we need the gravity vector in the body frame, this is given

by:

BFg =V FgR =

 −mg sinθmg cosθ sinφ

mg cosθ cosφ


where θ and φ are the pitch angle and roll angles from the vehicle frame to the body
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(a) Vertical Climb (b) Pitch and Translate Forward

(c) Roll and Translate Right (d) Yaw Left

Figure 2.16: Quadcopter control: this diagram shows how varying the speeds of each
motor results in a corresponding movement, red arrows indicate increased speed. Note

the coupled rotational and translations movements on the pitch and roll axes.

frame. We can then decompose the forces in the force elements along each axis (Fx, Fy, Fz)

using the following transformation:

m

ẍÿ
z̈

 = R

0

0

F

−
 0

0

mg

 (2.52)

In order to determine the angular accelerations we need to know the moments of inertia,

which represent the resistance to rotational acceleration of a body. We can calculate the

moments of inertia of quadcopter assuming a spherical dense mass at the centre with

mass m and radius r and model the motors as point masses at a distance of l from the

centre. We assume the quadrotor is symmetric about all three axes and as such the

inertial matrix is given as:

J =

jx 0 0

0 jy 0

0 0 jz


The inertia for the solid sphere and point masses is given as:

jx =
2mr2

5
+ 2l2m

jy =
2mr2

5
+ 2l2m



Chapter 2. Preliminaries 41

jz =
2mr2

5
+ 4l2m

Given the above we can approximate the angular acceleration as:φ̈θ̈
ψ̈

 =

j
−1
x τφ

j−1y τθ

j−1z τψ

 (2.53)

Decomposing equations into their separate components gives us the following dynamic

model:

mẍ = −F(cos(φ)sin(θ)cos(φ) + sin(φ)sin(ψ))

mÿ = −F(sin(φ)sin(θ)cos(φ)− cos(φ)sin(ψ))

mz̈ = −F(cos(θ)cos(ψ)) +mg

ψ̈ =
1

Jx
τ̃ψ

θ̈ =
1

Jy
τ̃θ

φ̈ =
1

Jz
τ̃φ

This simplified model is sufficient to model the motion of the quadrotor as it relates

to the control problems we consider in this thesis. This model highlights some impor-

tant considerations for the control problem. From the state model we can see that the

quadrotor has six Degrees Of Freedom (DOF) linear movement in x, z, y and rotational

movement in ψ, θ, φ but only four controllable actuators, motors M1,M2,M3,M4. This

means the quadrotor is in under actuated system, meaning all six DOF cannot be con-

trolled independently. In particular we can see that the linear and angular velocities

about the x and y axis are coupled meaning the quadrotor cannot translate along the

y-axis without a corresponding rotation about the x-axis.

2.6.2 Feedback Control

In the previous section we looked at the dynamic model of a typical MAV and how it

can be controlled by varying the speeds of each rotor. It would be unrealistic to attempt

to control a MAV in this fashion, instead in this section we will look at common control

architecture for a MAV platform. We will start by introducing the general idea of

feedback control, introduce a feedback control approach and discuss how this can be

used to build an autonomous MAV controller.

In a general feedback control problem we have a estimate of the current state of

the system (sometimes called the plant in control theory literature) xt at time t and a

desired state xdes. The estimate is based on a measurement zt which is often subject

to noise, given by δt. The goal is to produce a controller which takes as input the error

et between the current state and the desired state and computes the necessary control
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Figure 2.17: Block diagram of a typical feedback control problem

command ut to make xt = xdes. The performance of the plant may also be affected by

some external disturbances εt for example wind in the case of MAV controllers.

One of the most widely used control mechanisms [129] is the Proportional Integral

Derivative (PID) controller. The PID controller computes a control command as the

sum of the three terms that make up it’s name. The proportional error represents the

simplest solution in a feedback control problem, i.e. compute a control value proportional

to the error. The proportional term in a PID controller is given by :

KP e(t)

The constant KP , the proportional gain, can be used to adjust the proportional re-

sponse. A high gain leads to a fast response but generally leads to instability caused

by overshoots. Lower gains lead to a control output that can be too low to overcome

system disturbances. The integral term computes the accumulated error which accounts

for any system bias or external disturbances. The integral term is given by:

KI

∫ t

0
e(τ)

In the cases of continuous bias (e.g. gravity) we can add a constant bias term to account

for this bias however there are often other sources of bias which are not fixed for example

uneven weight distribution on a MAV, or environmental disturbances such as as wind.

Such non fixed bias can prevent the system from reaching the desired state. However

by calculating the accumulated error and adding this term to the output allows the

controller to overcome even non fixed biases.

Combining the proportional and integral terms can sometimes be sufficient, in this

case the controller is referred to as a PI controller. In other cases a PI controller can

lead to a slow response. In such cases it is often useful to add the derivative term which

takes into account the rate of change of the error. The derivative term is given by:

Kd
de(t)

dt



Chapter 2. Preliminaries 43

xdes Σ et

P Kpe(t)

I KI

∫ t
0 e(τ)

D Kd
de(t)
dt

Σ Plant xt

Measurementzt

Figure 2.18: Block diagram of a Proportional Integral Derivative (PID) controller

The derivative term allows the controller to take into account how the error is changing

over time, this leads to a faster response and increased stability. However more than

any other term the derivative is affected by measurement noise as large variance in

measurements lead to an incorrect or inconsistent estimates of the slope of the error. A

common solution is to include a simple low-pass filter before the derivative term or omit

it entirely if the variance of the measurement noise is too high. The full PID controller

is given by the sum of the three terms:

ut = KP e(t) +KI

∫ t

0
e(τ) +Kd

de(t)

dt

The performance of a PID controller is highly dependant on the tuning of the control

gains KP , KI , KD. There are often tuned experimentally however many heuristic and

automatic methods also exist.

2.6.3 Quadrotor Angular Velocity Control using PID

This section describes how the PID control scheme can be used to control the attitude,

or more specifically, the angular velocity of a quadcopter. This is the most basic type of

control as the measured angular velocities for the MAVs gyro sensor are directly used

to control the angular rate of the MAV about the three axes. To start the the inputs of

the system are defined in terms of the controllable degrees of freedom of the quadcopter:

xdes = (φ̇, θ̇, ψ̇, th)

where (φ̇, θ̇, ψ̇) are the desired angular rates in degrees per second and th is the desired

throttle setting. The output of the controller should be the angular velocities of the four

motors or:

ut = (ω1, ω2, ω3, ω4)
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The problem described above is described as Multiple Input Multiple Output (MIMO)

control problem whereas the PID controller is a Single Input Single Output (SISO)

mechanism. Meaning the solution requires a set of PID controllers, one for each control-

lable degree of freedom as well as a method of mapping the output of these controllers

to the required output of the system.

The feedback comes from the on-board inertial sensors in the form of the angular

velocities measured by the gyro:

x = (φ̇, θ̇, ψ̇)

We can define a set of PID controllers: PIDφ, P IDθ, P IDψ for each axis, in this case

we assume there is no feedback signal for throttle however a controller can be added

if such feedback exists. For each PID controller the error is the difference between

the desired angular velocity and the actual value. From the dynamic model of our

quadrotor we can determine how much influence the output from the PID controllers

should have on each motor. This is often refereed to as the motor mix table. An example

of a quadcopter mix table is given in Table 2.1. This is an example for a completely

symmetrical quadrotor, however a non-symmetrical quadrotor can use the same set of

PID controllers by just adjusting the weights proportional to the physical characteristics

of the quadrotor. This approach allows the same underlying set of PID controllers to

be used for non-symmetrical quadrotor platforms, and for platforms with increasing

numbers of motors.

Table 2.1: Motor mixing table for quadrotor, based on the motor order from Figure
2.15

Motor Throttle Roll Pitch Yaw

M1 1.0 1.0 -1.0 -1.0

M2 1.0 -1.0 -1.0 1.0

M3 1.0 1.0 1.0 1.0

M4 1.0 -1.0 1.0 -1.0

The angular velocity for each motor is set based on this mixing table for example ω1 =

th + PIDφ − PIDθ − PIDψ. The angular rate controller can then form the basis for

a more complex control scheme with additional controllers providing the input to the

angular rate controller.

2.6.4 Cascaded PID Control

This sub-section considers the problem of position control, the same strategy as presented

above can be employed where the input to the system is the desired position and yaw

angle xdes = (x, y, z, ψ), and the feedback is in the form of the current position and

yaw x = (x, y, z, ψ) (provided by a localisation system e.g. Visual SLAM, GPS). We

can then define another set of 4 PID controllers to compute the motor speed commands

based on the error between xdes and x. This approach would be sufficient for a very calm

indoor environment with little or no disturbances as however well the gains are tuned
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Figure 2.19: The general high-level system architecture for an autonomous MAV.

the controllers will not be able to take into account the rapid dynamics of a typical

MAV. Indeed this is especially true for localisation solutions with slower update rates

e.g. GPS which has a typical update rate of 5 Hz. To improve the performance of the

controller and improve it’s rejection of disturbances a typical solution is the cascade

control approach. A typical cascaded MAV control architecture is show in Figure 2.19.

In the case of an quadrotor MAV we can define multiple levels of PID controllers to

exploit the available sensor data and control the dynamics of the MAV to a much more

granular level. At the lowest level we control the angular velocity of the MAV around

each rotational axis, the angular estimator uses data from the IMU to estimate the

angular velocity of the MAV and angular velocity controller is a set of PID controllers

for each rotation axis.

The set-points for each controller come from the level above, for this to work well

the controllers cannot operate at the same update rate. The lower level controllers are

typically responsible for controlling the more dynamic aspects of the quadrotor such as

angular velocity, which can change extremely rapidly and as such must operate at a much

faster rate (typically between 200 to 1000 Hz depending upon the size of the quadrotor

and capabilities of the sensors). The controller above will typically run much slower,

for example the attitude controller may run between 50 and 100 Hz. This is another

important aspect of the cascaded control approach as now each higher level controller can

consider the lower level controller as a quasi-static system i.e. one that responds almost

instantly to the desired commands sent. Due to the disparity in update rates this is

effectively true. This drastically simplifies the complexity of the controllers at each level

while still accounting for the fast dynamics of the system leading to improved control

performance as well as improved disturbance rejection. The drawback to this approach
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is the requirement to tune the gains for all the controllers at each level. However the

relative simplicity of each layer means that often a full PID controller is not required,

for example PI control is often sufficient for position control.

2.7 Conclusion

In this chapter we have introduced the mathematical background relevant to the work

in this thesis. Specifically we introduced the notation and representations for rigid body

transformations. We introduced the pinhole camera and FOV lens distortion models and

discussed briefly how these are used to model observations made using a 2D camera.

We then went on to discuss relevant topics in computer vision including feature extrac-

tion, descriptors and feature tracking. The computer vision component of the chapter

concluded with a look at the important topic of Structure from Motion in particular the

PnP, triangulation and bundle adjustment problems and their solutions. We discussed

how these solutions could be used for both incremental motion estimation (localisation)

and recovering the 3D structure of an environment (mapping). The chapter concluded

with a look at two related topics, State Estimation and Control. We introduced two

important algorithms in these domains, the Kalman Filter and PID controller, and dis-

cussed how they could be used in the context of autonomous navigation of MAVs.



Chapter 3

Autonomous Navigation for

Micro Aerial Vehicles

One of the most difficult challenges in autonomous navigation is the localisation problem,

localisation solutions for MAVs can be divided into two categories: (i) those that provide

absolute positioning directly such as GPS, or a motion capture system and (ii) those

that provide positioning via Simultaneous Localisation and Mapping (SLAM). In this

chapter we will explore the related work in both areas; however given the focus of this

thesis is visual navigation a large portion of this chapter is dedicated to exploring the

related work in that area.

3.1 Absolute Positioning Approaches

Absolute position systems can be divided into two categories, radio based (this includes

system such as GPS) and vision based (this includes motion capture systems). This

section explores the related work of these systems and their application to MAV navi-

gation.

3.1.1 Radio Based Navigation

The most common radio based navigation solution for autonomous vehicle is the Global

Position System (GPS). The GPS system consists of a network of satellites in Medium

Eath Orbit (MEO) which is an altitude of approximately 20,200 kilometres. Each satel-

lite is equipped with an atomic clock which is synchronised with the clocks on-board

other satellites and the ground. The satellites continuously broadcast a time coded sig-

nal which includes the current position of the satellite. A receiver on the ground can use

the time coded signal to calculate the distance between satellite and receiver. Typical

GPS receivers do not include very precise clocks therefore it is also necessary for the

receiver to compute it clock drift relative to the satellites. This means the system must

compute four unknowns (3D position and clock dirft) which requires a signal from four

or more satellites.

47
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Figure 3.1: The two main sources of GPS interference, atmospheric (left) and multi-
path (right) [19].

There has been much success both in research and industrial work with MAVs using

GPS-based autonomous navigation. Several successful industrial applications such as

aerial surveillance and mapping, aerial photography and even autonomous delivery rely

on GPS for autonomous navigation. GPS navigation has been used for autonomous

ground robots [53, 89] and for MAVs as part of the STARMAC project [44, 47] and even

a 27 gram MAV platform [94]. There are two major drawbacks to GPS-based naviga-

tion, namely the precision/reliability and the overall coverage of GPS navigation. The

precision of GPS-based system is dependant on the sophistication of the GPS receivers

used, most off-the-shelf UAS systems make use of GPS receivers with a best-case (i.e.

clear line of sight to a number of GPS satellites) precision of 2.5 metres. GPS is pri-

marily affected by two sources of interference see Figure 3.1. Atmospheric conditions

both in the ionosphere and the troposphere can perturb the very weak signal sent by

the orbiting satellites. However for MAVs multi-path interference has a much larger

effect, that is where some or all of the signals do not travel directly to the receiver but

instead are reflected off surrounding environmental features such as mountains and tall

buildings. This can reduce the accuracy of GPS to up to 26 metres.

Differential GPS systems can improve this accuracy to 0.1 centimetres. Differential

GPS is simply put another GPS receiver placed at a known location, this receiver will

calculate it’s position based on satellite signals and compare this to it’s known position.

The error between these two data points corresponds to error induced by local atmo-

spheric conditions. This correction can then be broadcast to neighbouring (mobile) GPS

receivers allowing them to correct for atmospheric errors. Even with the atmospheric

error correction provided by Differential GPS, the sensitivity to multi-path interference

and lack of coverage indoors makes GPS based navigation only applicable for large open

area navigation.

Other radio based navigation solutions are also possible; in recent years with the

growth in coverage of wireless local area networks (WLAN), radio based localisation

using WLAN has become a popular research topic [8, 48, 88, 91]. In contrast to GPS

which is purpose built for navigation WLAN is not. This means that is typical WLAN

does not broadcast precisely timestamped signals that include the transmitters position,

as GPS does. This means most WLAN approaches make use of the signal strength rather
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than time of flight to determine the distance between the base station and receiver. The

relationship between signal strength and distance can be modelled relatively easily when

receiver and base station have line of sight between one another. However without line

of sight modelling this relationship becomes difficult as the propagation of reflected

wireless signals is dependant on many factors some of which include the properties of

the occluding material and the frequency and signal strength of the base station.

Another radio based localisation technology is Ultra-Wide-Band (UWB) radio [1,

34, 61]; UWB systems are dedicated navigation systems, similar to GPS in that they

broadcast time stamped messages and make use time of flight for distance measurements.

A UWB localisation system typically consists of a number of base stations at fixed

locations which broadcast time coded signals to moving receivers. UWB radio has several

advantages over WLAN based systems, for example signals are transmitted over a larger

frequency bandwidth (up to 500 Mhz) which allows the signals to penetrate barriers more

easily (as the signal occupies a larger frequency spectrum it is more likely that some

part of the signal will penetrate a barrier). While many other positioning techniques

are possible one of the most accurate for UWB are the time-based approaches. In cases

where the base station are synchronised a time of arrival scheme similar to GPS can be

used. The use of a time of flight-based distance measurement approach produce more

accurate and reliable distance measurements than signal strength as used with WLAN

positions. The typical range of UWB systems is 300 metres in outdoor environment and

100 metres in indoor environments and their accuracy in with the range of 0.1 to 0.15

metres. UWB localisation has been applied to both ground-based robots [57] and aerial

vehicles [7, 70].

3.1.2 Motion Capture Based Navigation

Another approach to autonomous navigation indoors is the use of high speed motion

capture systems such as Vicon and Optitrack (see Figure 3.2). These systems use a

set of high speed infra-red cameras coupled with infra-red emitters to precisely track

reflective markers which can be attached to any object. Motion capture systems provide

sub-millimetre precision at very high update rate 100-200 Hertz (Hz) which makes them

very useful for the precise control of autonomous MAVs. In addition given that multiple

sets of markers can be tracked these systems enable the autonomous indoor navigation for

multiple MAVs. This facilitates research into a number of interesting applications such

as : (i) aggressive manoeuvres [76], (ii) formation flight [59], (iii) object transportation

[59] and (iv) bridge construction [3].

There are several drawbacks to using motion capture systems, primarily that entry

level systems cost well over £30, 000. Additionally these systems have limited scalability

and coverage, meaning they can only track a fixed number of MAVs (4-6 depending upon

the configuration) and cover a limited area (for accurate localisation the MAV has to

be within view of at least 3 cameras). This limits the autonomy of a MAV using such a

system for localisation.
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Figure 3.2: An example of using motion capture to control a palm sized Crazyflie
Nano MAV in the University of Liverpool’s smARTLab.

3.2 Simultaneous Localisation and Mapping

All the navigation approaches discussed in the previous section provide absolute position

information with respect to some fixed reference frame. For example motion capture

systems provide positioning based on the coordinate system defined by the cameras,

UWB radios provide positioning based on the coordinate system defined by their based

station. Another approach is to create a fixed coordinate system on-the-fly using obser-

vations from sensors while simultaneously localising within that coordinate system. This

is referred to as Simultaneous Localisation And Mapping (SLAM) introduced in Chapter

1. There are many possible SLAM solutions with applications to MAVs these can most

readily be categorised by the type of sensors used; this section will explore the related

work for laser range-finder based approaches as well as both stereo and monocular vision

based approaches.

3.2.1 Laser Based Navigation

In this Section we will discuss those solution which make use of laser range-finders.

Laser range finders provide direct measurements of the distance between the sensor and

environment. This is done using an laser emitter and receiver, a pulse is sent out and

reflected back to the receiver, distance can then be calculated based on the time of flight.

The use of laser range-finder readings to solve the SLAM problem has been extensively

studied with respect to ground-based robots [20, 112]. Unfortunately these approaches

do not directly translate to MAVs equipped with laser range-finders. Adapting ground

-based SLAM techniques to computationally constrained MAVs present numerous chal-

lenges, including the 3D motion of the MAVs, lack of wheel odometry and the limited

computational resources available. Recent work has addressed this issue using altitude

data from the MAV to build 3D maps from 2D laser scans [30] or by mounting a 2D laser
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scanning on a rotating platform to produce 3D scans [84]. Other work has focussed on

integrating laser based navigation into a complete autonomous control framework [4, 36]

including SLAM, sensor fusion and high-level control. Current laser range-finder tech-

nology has limited applicability on-board MAVs as while they provide highly accurate

readings these units are often heavy and consume enough power to make them imprac-

tical to use on-board MAVs.

3.2.2 Stereo Camera Based Navigation

A stereo camera consists of two separate cameras mounted side-by-side at a fixed, known

distance. Stereo cameras replicate human binocular vision and allow the recovery of

depth data from an observed scene. As shown in Section 2.4.3 the epipolar constraint

makes matching points between images a 1D search problem. However the epipolar line

is not guaranteed to be in the same place in each image as this depends on the transform

between the two cameras. However if the transform (also called the baseline) between

two cameras is fixed the images can be warped such that the images are projected onto

the same plane. This process is know as rectification. As the rows of each image are

then aligned this simplifies the correspondence search even further as well as simplifying

point triangulation.

The main advantage of stereo cameras in terms of visual navigation is their ability

to recover scene depth from a single pair of images. This makes it possible to recover

both the 3D structure of a scene as well as the camera position in metric units. In the

monocular system used in this thesis such metric scene and position recovery is only

possible via the use of additional sensors or via recognition of objects of known size

in the environment. Additionally the immediate depth information provided by stereo

cameras can be used for reactive collision avoidance [90, 113]. In terms of localisation

and SLAM, several stereo vision approaches have been applied to MAVs Heng et al. [41]

demonstrate a complete stereo vision based navigation solution using an off-board visual

SLAM solution. Nikolic et al. [85] developed a standalone stereo vision system featuring

stereo vision synchronised with an Inertial Measurement Unit (IMU). A visual-interial

SLAM system based on this sensor was presented by Leutenegger et al. [64]. One of

the drawbacks of passive stereo vision is the need for highly textured scenes to facilitate

point matching and triangulation. An alternative is the use of active stereo (or structured

light) for example the Microsoft Kinect sensor. In such systems the second camera in a

typical stereo system is replaced by a patterned-light projector. The first camera then

observes the scene and can compare the projected pattern to what is observed in the

captured image and compute the depth of each point. This allows active stereo systems

to operate in low texture environments. These systems have also been applied to MAV

navigation [46, 52, 63]. Active stereo systems typically make use of infra-red pattern

projectors in conjunction with an infra-red camera as this simplifies detection of the

projected pattern in the captured image. This limits the use of such sensors to indoor

environments where there are typically fewer sources of infra-red light.
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An alternative is full stereo are hybrid stereo/monocular approaches which addresses

the computational requirements of typical stereo approaches. Shen et al. [102] present

such as system where a stereo camera equipped MAV uses a monocular visual-inertial

navigation approach running at high speed for motion estimation. The second camera in

the stereo pair operates at a much lower rate and is used primarily for scale estimation

and drift compensation.

The major drawback to stereo vision systems for navigation is the reliance on the

fixed baseline between the two cameras. As depth is estimated from point disparity

between the two images the range in which depth can be calculated is fixed by the

baseline between the cameras. Points at longer range will exhibit little or no disparity

between the two cameras meaning depth values cannot be computed.

While these developments are exciting they only serve to address the computational

limitations of stereo vision.

3.2.3 Single Camera Based Navigation

Using a single image sensor is an attractive alternative to stereo or laser based system,

due to the significantly (in the comparison to laser range-finders) smaller Size Weight

and Power (SWaP) requirements. However, in contrast to all the previous sensors men-

tioned, a monocular camera has no method of reliably obtaining depth directly from a

single image. However, as discussed in Chapter 2 depth can be obtained by matching

and triangulating common features from multiple views (i.e. moving the camera). As

monocular vision is the focus of the work presented in this thesis the following sections

will explore previous monocular navigation approaches in more detail. Previous work

on monocular vision-based navigation for MAVs can be divided into three categories:

1. Visual Markers

2. Visual Odometry

3. Visual SLAM

In the following sub-sections we consider each of these categories in turn and discuss

related work in each category. Note many of the techniques discussed in this section may

also be applied to stereo cameras, with the added benefit of metric scaling. However as

the focus of this thesis is monocular systems we will omit application to stereo vision

from the discussion.

Visual Markers

We discussed visual markers as an application for the PnP problem presented in Chap-

ter 2. Visual markers simplify many of the challenges of monocular visual navigation,

in particular depth estimation. This makes marker based visual SLAM an attractive

solution to the problem of vision-based navigation for MAVs. Markers also address one



Chapter 3. Autonomous Micro Aerial Vehicle Navigation 53

of the classic problems in SLAM, that of data association; that is the matching of inter-

est point observations to existing points in the map. Visual markers can be generated

to encode information similar a bar code. A typical approach is to generate markers

representing a range of numbers which solves the data association problem (assuming

markers are correctly identified). With ease of detectability and the ability to recover

depth from a single image this makes artificial markers very attractive for visual naviga-

tion, indeed Sanchez-Lopez et al. present a framework for localising MAVs using visual

artificial markers [98]. In Sanchez-Lopez et al.’s work all processing is done off-board,

Meier et al. [75] presented a marker-based localisation approach running on board their

Pixhawk platform. Artificial marker based localisation systems have some limitations,

namely localisation is only possible when markers are in view of the camera meaning

either markers must be placed at regular intervals around the workspace or the MAV

must rely on other sensors to navigate between markers. This impacts the robustness

of such a system and limits the operation of the MAV to pre-prepared environments.

While this can be a valid assumption in certain scenarios, for examples robot patrolling,

it does limit the adaptability of the MAVs to new environments.

Visual Odometry

An alternative to artificial markers is the use of naturally occurring geometric features

as discussed in Section 2.3. While it is more computationally expensive to detect and

match such features, the use of natural features means the system will be able to operate

in unprepared environments. One of the most common approaches that makes use of

natural features is Visual Odometry. In Visual Odometry the aim is to track the motion

of the camera by continuously computing the relative motion between frames using

feature correspondences (see Figure 3.3. A typical Visual Odometry algorithm shown in

Algorithm 4.

Algorithm 4 VisualOdometry(Ik−1, Ck)

Input: The previous camera image Ik−1 and the previous camera position Ck.
Output: The current image Ik and the updated camera pose Ck.

1: Capture new image Ik
2: Extract and match features between Ik−1 and Ik
3: Compute essential matrix from correspondences between Ik−1, Ik
4: Decompose Ek into Rk and tk and compute relative transform Tk
5: Add relative transform to current pose Ck = Ck−1Tk
6: return Ik, Ck

A typical approach computes feature correspondences using a feature tracking algorithm

such as the Kanade-Lucas-Tomasi (KLT) tracker [69] and computes the essential matrix

from correspondences using any of the n-point algorithms, for example Nisters 5-point

algorithm [86]. It is also common to use a RANSAC in conjunction with an n-point

algorithm to ensure robustness to outliers. Visual Odometry has been shown to work

well for ground based vehicles and robots where the constrained motion of the vehicles
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Tk,k−1

Figure 3.3: The visual odometry problem, computing the motion of a camera from
incremental computations of the relative transformation between images.

serves to simplify the problem. For example Davide Scaramuzza [99] showed how the

non-holonomic constraints for road vehicles can be exploited to constrain the problem

such that only a single point is required to compute the essential matrix. For the

unconstrained motion of a MAV however such an approach is not possible. However,

similar assumptions may be made to simplify the problem, for example a quadcopter

equipped with a downward-facing camera. In such a configuration if we assume the

MAV is travelling over a planar scene (namely the ground) then we can directly use the

optical flow to compute the translational velocity of the MAV. One problem with this

approach is that the flow at different heights will be scaled, meaning it would seem as

if the higher the MAV flies the slower it moves see Figure 3.4 (right). Pradalier et al.

addressed this issue with their CoaX flying platform[92]. Their MAV is equipped with a

sonar sensor to measure the MAVs height above the ground. They combined the height

measurements from the sonar with the known intrinsics of the sensor to compute the

metric velocity from the optical flow. The metric optical flow is computed by:

v = h× ∆

f
(3.1)

Where v is the MAV velocity in metres per second, based on the optical flow velocity in

pixels ∆, the relative height h and the focal length of the camera f . This solves the issue
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Figure 3.4: Challenges of visual odometry on MAVs (right) the effect of height on
measured velocity and (left) the effect of rotation on measured velocity.[17]

of scaling the optical flow measurements. Another issue is the rotational movement of

the MAV while translating, the calculated optical flow includes the movement induced

by both the translation and rotation of the craft see Figure 3.4 (left). Additionally if the

craft changes height between frames this would also affect the optical flow calculation.

These effects can be compensated for if both the relative rotation and relative height is

known or measured by other sensors such as sonar and IMU. Again assuming the scene

we are observing is planar then the transformation between the two images I1 and I2

can be described by a homography matrix H of the form:

H = R +
1

d
tNT (3.2)

Where R is the rotation matrix between the two frames, d is the relative difference in

height above the plane t is the relative transformation and N is the normal vector of

the ground plane. The “knowns” are R (from IMU), d (from sonar) and N ; and the

only unknown is the relative transformation. We can then use the known values and

homography to translate image I2 to have the same rotation and height as image I1

and calculate the translation from the optical flow as usual. This approach has been

used by Honegger et al. to developed a standalone Visual Odometry sensor for UAVs

[45]. The sensor includes a downward facing sonar sensor for height compensation and

metric velocity estimation as well as an on-board gyroscope to measure the sensors ori-

entation. The addition of an IMU can also be used to simplify the problem in other

ways, computing the essential matrix from point correspondences can require up to 8

point correspondences. This is because the unknowns are the translation and rotation

between the two images. However the combination of camera and IMU means the rota-

tion for both frames is known leaving on the relative translation unknown. Fraundorfer

et al. showed that in this case computing the essential matrix requires only 3 point

correspondences [32]. The drawback to this approach however is the requirement for

synchronisation between camera and IMU which is not always a straightforward task.

All the approaches discussed so far can be classified as two-frame visual odometry

approaches, that is we only compute the relative pose between two images to obtain

the cumulative trajectory of the vehicle. The main drawback to this approach is small
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errors in the relative pose estimates accumulate over time and lead to a large error

in the overall trajectory [100]. One method to address this problem is to estimate the

camera transform from more than two images. The most common approach to achieving

this is reconstructing the 3D structure of the local scene by feature point triangulation

and minimising the re-projection error over the n closest frames (using a non-linear

least squares approach). This approach exploits the additional information gained by

partially reconstructing the local scene structure to improve the accuracy of relative

motion estimation. This in turn reduces the overall drift errors accumulated over the

course of a long trajectory. Algorithm 5 provides a general algorithm for the sliding

window Visual Odometry. This approach is very closely related to Visual SLAM

Algorithm 5 KeyframeVisualOdometry(Ck−1,M)

Input: The current camera pose Ck−1 and the map M .
Output: The update camera pose Ck and updated map M .

1: if M = ∅ then
2: Initialise map M
3: end if
4: Capture new image Ik
5: Extract features from Ik
6: Predict new pose Ck using motion model and previous pose Ck−1
7: Calculate visible map features using estimated pose
8: Re-project map features into Ik and search for matches
9: Compute pose that minimises re-projection error for matched map points

10: Add any new features to M and optimise M
11: return Ck,M

and often multi-frame Visual Odometry and Visual SLAM approaches share much of

the same components. However the main aim of Visual Odometry is to compute a

consistent trajectory of the camera in real time as opposed to Visual SLAM which aims

to jointly reconstruct the camera trajectory and scene structure in a globally consistent

manner.

Visual Simultaneous Localisation and Mapping (V-SLAM)

Visual SLAM can be thought of as an extension to Visual Odometry, as instead of only

estimating the incremental motion of the camera and reconstructing the scene locally, we

now add the additional step of constructing a complete map of the environment. Visual

SLAM approaches can be categorised as being either filter-based or keyframe-based.

Early work on Visual SLAM focused on so called filter-based methods[13, 14, 16, 21].

In this early work camera pose and feature locations are estimated jointly within the

state of a Bayesian filter such as the Extended Kalman Filter (EKF). As camera pose

is part of the EKF state, in order to achieve reliable tracking the complete state of the

filter must be updated with each new image. However, given that the state contains

both the camera pose and feature positions this update is costly and scales quadratically

with the number of feature points. Not only does this limit the maximum size of the
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map to the order of hundreds of features, it is also computationally wasteful, little

new information (in terms of the feature points) is gained by processing every frame.

In contrast keyframe-based approaches separate the tasks of camera pose tracking and

map building. This allows them to use each frame for the computationally less expensive

process of real-time tracking and then build a map from only those images which provide

new information, these are referred to as the “keyframes”.

This removes the real-time constraints on the map building components allowing

the use of more costly but more precise techniques for map optimisation. The extent

to which the map is optimised is what differentiates keyframe based Visual Odometry

from Visual SLAM. In Visual Odometry approaches we are only concerned with camera

trajectory and as such map optimisation approaches tend to be limited to a small local

area (namely last n keyframes. In a Visual SLAM system we are also concerned with

constructing a global consistent map. As such the process of map optimisation can be

more involved. In the next section we describe in detail a popular keyframe based Visual

SLAM approach and go on to discuss global map optimisation in detail.

The PTAM Algorithm

One of the most important works in the field of Visual SLAM is the PTAM system

developed by Klien and Murray [54] (see Figure 3.5). As the original PTAM algorithm

forms a basis for much of the work in this thesis the following section presents a summary

of the algorithm as well as a discussion of its key features. Klien and Murray were the

first to demonstrate the benefits of splitting the two tasks of camera pose estimation

and mapping into separate threads. The tracking thread handles camera pose estimation

using features extracted from the camera images. The extracted features are compared

to the recorded features from the map and used to estimate the full 6 Degrees of Freedom

(DoF) camera pose. The PTAM tracking algorithm is as follows:

1. A simple decaying velocity motion model is used to estimate the current camera

pose based on the previous iteration.

2. The stored map points are projected into the current camera frame based on the

new estimate of the camera pose.

3. A coarse scale search is conducted for a small number (50) of features (the data

association step) and the camera pose is refined based on the matched features.

4. A larger number of features (1000) is projected and searched for in the image.

5. A final pose estimate is computed based on all the matched features found.

New keyframes are selected based on a frame number and distance heuristic. A

keyframe consists of a four level image pyramid and the camera pose at which the

keyframe was captured. The mapping thread is responsible for processing new keyframes.
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Figure 3.5: The original PTAM showing the real-time tracking of features in a typical
office desk scene (left) and the corresponding map points (right).

Once a new keyframe is generated the set of extracted feature points are refined to in-

clude the most salient points based on their Shi-Tomasi score. Additionally feature

points close to existing map points are removed to avoid adjacent points causing bad

map point to feature point correspondences. The remaining feature points are searched

for in the closest keyframe to perform a triangulation to calculate depth information.

If successful a new 3D map point is added to the map. After adding a new keyframe

a local batch optimisation is performed on the four closest keyframes in order to refine

both the keyframes and map-points. The optimisation approach Bundle Adjustment

(see Section 2.4.5), which is commonly applied to offline map generation in the Com-

puter Vision, is used to optimise the map. This is a key aspect of Klien and Murray’s

approach, by decoupling the tracking and mapping processes into separate threads this

removes the real-time constraint on the mapping procedure imposed by the need to pro-

cess every incoming frame. This facilitates the use of a slower but much more precise

map optimisation approach i.e. bundle adjustment.

Another notable feature of PTAM is the lack of explicit modelling of uncertainty

characteristic of the EKF-based approach and much of the previous work on SLAM

in robotics. This is compensated for by using larger numbers of features as well as

the local and global bundle adjustment. Strasdat et al. [106] conducted an evalua-

tion the keyframe-based approach versus filtering and concluded that the use of larger

numbers of features and separate bundle adjustment-based map optimisation as used

in the keyframe-based approach is both faster and more reliable than filtering based

approaches. Additionally the use of large numbers of feature points for tracking makes

this approach robust to partial occlusions.

Building on Keyframe-based Visual SLAM

One of the limitations of the original PTAM was the lack of large loop detection and

closure. During mapping loop detection refers to the problem of recognising when the

robot/MAV has returned to a previously mapped area. This may appear simple however,
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Figure 3.6: A simple example of a loop closure situation. In the figure the robots
trajectory is show as a solid line and it’s own trajectory estimate is given as a dashed

line.

due to the accumulated drift as a result of small errors in incremental motion estimation,

the robot may believe this has not occurred. An example of this is shown in figure

3.6. In this example a camera equipped MAV follows the trajectory shown building a

map of visual features, in this example the stored camera poses, which we refer to as

keyframes are indicated as circles. As can be seen from the example as a result of the

accumulated errors in the MAVs position estimate both it’s current position estimate

and the keyframe positions exhibit drift with respect to the ground truth (solid line).

To correct this the system must be able to compute the transformation (the loop closure

correction) required to realign the map. This correction can then be back propagated

throughout the map to correct all the keyframe positions. This is referred to a pose

graph optimisation in the literature.

Lacking a fixed reference for scale, in monocular SLAM, drift occurs in both position

and scale. To address this Strasdat et al. [106]developed a 7 Degree of Freedom (7DOF)

loop closure approach in which both position and scale are corrected. This goes a long

way to improving the long range capabilities of a monocular SLAM system. As such this

7DOF loop closure approach has been widely used in modern monocular SLAM systems

[23, 28, 79].

Loop closure detection (also called visual place recognition) is a well studied problem

in computer vision, the most widely used approaches in the visual SLAM community

are image-to-image [121] matching approaches using where image features are used to

determine the similarity between images. One of the most widely used image-to-image

place recognition approaches is FAB-MAP developed by Cummins et al. [15]. They make

use of the the so-called bag-of-words approach in which instead of directly matching

image features a linguistic approach is used. The bag-of-words approach summarises
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the content of an image in terms of a visual vocabulary. This visual vocabulary is in

effect a prioritisation of the descriptor space and is constructed offline from a large set of

training images. The more general the training set the easier the vocabulary is to use for

different environments and however too general a training set can affect the recall rate.

The novelty of Cummins et al.’s approach is the ability to compute the probabilities of

two images being of the same place based on the co-visibility of features. A drawback to

the FAB-MAP approach is the use of SIFT features which are computationally costly to

compute. Klien and Murray make use of an efficient direct image matching approach in

PTAM [55] this will be described in more detail in Section 5.2. This approach has been

shown to work well where the density of keyframes is high and relative viewpoint between

the current frame and the closest keyframe is similar in both our experiments and those

of Riazuelo et al. [95]. Recently Mur-Artal presented ORB-SLAM their keyframe-based

SLAM approach [79]. They address the problem of place recognition using ORB features,

like SIFT/SURF, ORB features are invariant to rotation and scale making them useful

for place recognition but are not as computationally demanding and thus can also be

used for real-time tracking without a GPU.

Another limiting factor is the cubic complexity of Bundle Adjustment, while many

efficient optimisation frameworks go some way towards addressing this it remains a

problem particularly for large scale (in terms of the number of keyframes) applica-

tions. A second influential paper by Strasdat et al. [106] addressed this problem with a

double-window optimisation approach reminiscent of the sliding window approach used

in keyframe visual odometry. Here the inner window optimises keyframes and map-

points over a sliding window in a similar fashion to PTAMs local bundle adjustment

except the inner window consist of the n most recent keyframes as well as any keyframes

which observe the same map-points as those in the window. The outer window performs

pose graph optimisation on a the set of keyframes where the relative constraints between

the keyframes are defined by the co-visibility of map-points. This approach was applied

by Mur-Artal for their ORB-SLAM system; they demonstrate good performance even

over long trajectories (the longest reported was 2.2 kilo-meters).

Direct methods

An alternative to feature based approaches are the so called direct methods which make

use of measurable image quantities (e.g. intensities) for each pixel in the image rather

than extracting a sparse set of features. That advantage of direct methods it that the

whole image can be used for tracking rather than a sparse set of features. On the map-

ping side this also allows the construction of more complete environment maps rather the

sparse feature maps. A notable example is Direct Tracking and Mapping (DTAM)[82]

developed by Newcombe et al. where the mapping thread computes a dense depth-map

for each keyframe using the minimisation of a global, spatially regularised energy func-

tion. Tracking is done using whole image alignment using the depth-map. This approach
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is computationally very intensive and requires large scale GPU parallelisation to run in

real-time. To address this issue many semi-dense approaches have been developed.

There have been many recent advances made in parallel with the work in this thesis

with a view to running direct methods without the use of a GPU. Engel et al. developed

Large Scale Semi-Direct (LSD) SLAM[23]. In LSD SLAM, instead of computing a depth

map for the entire image they select image regions with large gradients which provide

the most accurate depth information. This hybrid approach is akin to using both point

and line features for tracking. This allowed their system to operate in real-time on a

CPU and still build semi-dense maps of the environment. The main limitation of the

LSD-SLAM approach is the limited map optimisation, as the system does not compute

descriptors for image regions it is not possible to re-project map features and optimise

the map via re-projection minimisation. This means they must settle for pose graph

optimisation and loop closure. The authors of ORB-SLAM presented a comparison

between ORB-SLAM (a feature-based Visual SLAM approach), PTAM and LSD-SLAM

in which the localisation accuracy of LSD-SLAM was shown to be poorer than both

ORB-SLAM as well as PTAM. This is largely down to the lack of structural refinement

(i.e. Bundle Adjustment) present in both PTAM and ORB-SLAM.

Foster el al. developed a semi-direct approach (Semi Direct Visual Odometry (SVO))

that can be seen as a bridge between feature-based and direct methods [29]. They

use direct image based alignment but instead of operating on a dense or semi-dense

depth map they use sparse 3D map points similar to PTAM and other feature based

methods. Tracking is done using a combination of minimisation of the photometric and

re-projection error. The inclusion of the direct-based tracking makes the tracking very

robust even with very fast camera movements. However the inclusion of feature points

means they get all the benefits of a traditional bundle adjustment based mapping thread

for map optimisation. One important note however is, similar to the work of Wiess et

al., in order for SVO to operate in real time on-board and MAV the maximum number

of keyframes is restricted.

Visual SLAM for MAVs

The state of the art for Visual SLAM on MAVs can be divided into two categories,

off-board where the complete Visual SLAM system runs on a suitably powerful ground

station computer and on-board where the full system runs on-board the MAV. Engel

et al. demonstrated the efficiency and robustness of the keyframe-based approach to

address the problem of visual navigation using MAVs [24]. Their approach builds on the

original PTAM and integrates it into a complete state estimation and control framework.

They demonstrated the benefits of the monocular visual navigation approach as they

were able to develop a system to autonomously control a very light weight (200 g), low

cost (£300), off the shelf MAV, namely the Parrot AR. Drone. Running a full monocular

SLAM system on-board a MAV is a challenging task. One of the main limitations is

bundle adjustment, the complexity for straightforward bundle adjustment is O((m+n)3)
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with m keyframes and n features and even sparse bundle adjustment has a complexity of

O(m3 +mn) [54]. Thus the computational complexity scales cubically with the number

of retained keyframes. There are many approaches which address this issue, in PTAM

the mapping thread regularly performs a local bundle adjustment on a selected keyframe

and it’s 4 closest (euclidean distance) neighbours. And only performs a global bundle

adjustment when the tracker is operating in previously mapped areas.

However, this is still not enough to run PTAM in real-time on-board a MAV. Wiess

et al. [118] analysed the effect of the number of keyframes retained in the map and it’s

effect on drift. They exploited the fact that keyframes further away from the current

position have negligible effect on the optimisation step. This allowed them to develop a

system with constant complexity by only retaining a fixed number of keyframes. When

a new keyframe is added the furthest keyframe from the current position and all it’s

map points are removed. This allowed Wiess et al.’s approach to run at 20 Hz on-

board their MAV equipped with a low cost Atom 1.6 GHz computer. This is the same

approach employed by Foster et al. [29]. for the map optimisation back-end of their

appearance-based Visual Odometry system Semi-Dense Visual Odometry (SVO).

An alternative is to run part of the system on board the MAV and offload the more

computationally intensive components to a more powerful ground-station computer.

Such an approach was presented by Andreas Wendel [119], here a single MAV uses

the on-board computer for frame-to-frame tracking and off-loads the map creation and

optimisation steps to a ground station computer. Wendel leveraged the capabilities of

the ground-station computer to also perform dense reconstruction of the environment.

Wendel’s work was the inspiration for the distributed multi-MAV framework which will

be presented in Chapter 5 of this thesis.

Multi Robot Visual SLAM

The multi-robot SLAM problem has been previously explored for ground-based robots

with range sensors (such as laser range-finders, stereo vision)[10, 31]. There is much less

work on the use of monocular vision as the only extrospective sensor, or involving agents

capable of omni-directional (6DOF) motion such as flying robots or hand-held devices

(e.g. mobile phones).

The Collaborative Structure from Motion (CSfM) developed by Foster et al. [28] is

a multi-MAV visual navigation approach aimed at addressing the issue of map fusion.

Each MAV runs a keyframe limited Visual Odometry system on board. When a new

keyframe is added by the Visual Odometry algorithm it is sent via wireless link to the

centralised map server running on the ground station. The map retains all keyframes

and uses these to construct a global map. Both pose graph optimisation and local Bun-

dle Adjustment (BA) are used to correct drift in the maps created. Each MAV in the

system has a separate map until an overlap is detected (using appearance based meth-

ods considered in Section 3.2.3). When an overlap is detected it is verified using the

Perspective-Three-Point algorithm (P3P) (see Section 2.4.1) which also computes the
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relative transformation between the two maps from point correspondences. The relative

scale between the two maps is computed by comparing the distances between two sets of

corresponding points within both maps. Finally the two maps are merged into one and

both MAVs now have a common global coordinate system. Foster et al. report localisa-

tion Route Mean Squared Errors (RMSE) of 0.04 to 0.06 metres. Foster et al.’s approach

is very efficient in terms of bandwidth it makes use of Binary Robust Invariant Scalable

Keypoint (BRISK) features [62]; thus each keyframe is only 125 Kilobytes. Foster et al.

report that real time performance is still possible with up to 3 MAVs. An interesting

note about CSfM is the fact that the map produced by the system is not transmitted

back to the MAVs, instead only the corrected global pose of the MAV is transmitted

back. This makes the system more bandwidth efficient and it does not require trans-

mission of the entire map to the MAVs. Additionally, the on-board Visual Odometry

algorithm can operate in constant time complexity and the size of its map is always

fixed [118]. The drawback to this approach is the lack of robustness; if communication

with the ground station is lost the MAV does not have the global map in memory and

will no longer be receiving drift corrected pose updates from the ground station. This

will mean the drift in the MAVs pose estimates will eventually accumulate to the point

where it becomes unusable.

C2TAM developed by Riazuelo et al. [95] shares many similarities with both Foster

et al.’s work as well as the work presented in this thesis. They also present a multi-

robot visual navigation approach, similar to the work presented in this Chapter in that

they build on Klien and Murray’s Parallel Tracking and Mapping (PTAM). Similar

to Foster et al.’s work they also focus on multiple maps, overlap detection and map

merging. In contrast to Foster et al. they make use of Klien and Murray’s blurred image

matching approach (see Section 5.2) for map overlap detection. To resolve the scale

ambiguity problem between maps they rely on depth data from RGBD cameras (such as

the Microsoft Kinect) to provide absolute scale information. This limits the applicability

of their approach to robots with both the payload and processing capabilities to handle

an RGBD camera. This also impacts the bandwidth requirements of their system as they

must transmit both RGB and Depth data for each keyframe. They report a bandwidth

requirement of 1 Megabyte per second (for RGB data only, not including depth data).

Riazuelo et al. do not report any localisation performance data; instead a comparison

of distances between real world objects such as tables and chairs to those estimated by

their system is used to verify mapping performance. The average error they report is

0.0041 metres; however, given the improved accuracy in depth measurement provided

by the RGBD cameras used in their work, this result is not surprising.

The system developed by Cherbrolu et al. [12] builds on the more recent Large

Scale Semi-Direct SLAM (LSD-SLAM) system discussed in Section 3.2.3. They target

ground-based robots with more processing power available than MAVs and as such run

the complete LSD-SLAM system on-board the robots. On of the drawbacks to the LSD-

SLAM approach is the lack of map and keyframe optimisation via bundle adjustment.
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Cherbrolu et al. leverage the additional processing power available on the server and run

feature-based bundle adjustment for map optimisation. They use a similar approach

to Foster et al. and Riazuelo et al. adopting appearance-based map overlap detection

using FAB-MAP. They make use of a three step process to align the two maps. First

the relative transformation between the maps is computed using a RANSAC optimised

version Horns method. Next they exploit the semi-dense depth data from LSD-SLAM

to refine the transformation by finding a transformation that minimises the photometric

error between the two frames (LSD-SLAM uses a similar optimisation during pose-

graph optimisation). Finally an Iterative Closest Point (ICP) based approach is used to

compute the final transformation. Cherbrolu et al.’s work is in the preliminary stages

therefore not much in the way of experimental evaluation has been conducted. However

given that their work is based on LSD-SLAM we expect localisation performance at

least on par with and potentially better (due to the increased correction provided by

the Bundle Adjustment) than LSD-SLAM.

Schmidt [101] built on MonoSLAM[16] (an Extended Kalman Filter (EKF) based

Visual SLAM system), to allow multiple ground-based robots to map their environment.

Similar to Foster et al. and Chebrolu et al. they focus on map overlap detection and map

merging. They made use of marker-based robot-to-robot observations to localise a robot

within the global coordinate frame. Schmidt conducted experiments with two ground-

based robots. They note the limitations of the EKF-based approach and in particular

the quadratic complexity of the Kalman filter hindering real-time performance.

Danping et al. present a centralised system for multi-camera navigation in dynamic

environments [128]. Danping et al.’s system CoSLAM is able to handle collaborative

multi-camera tracking and mapping. Interestingly their system exploits situations where

multiple cameras viewpoints overlap to improve map point triangulation. Additionally

this camera grouping is not fixed meaning the cameras a free to move around the en-

vironment independently of one another, with the caveat that all cameras must be

synchronised. CoSLAM also makes use of a re-projection error based classification to

differentiate static map points from dynamic ones meaning the approach is able to han-

dle both static and dynamic environments. Danping et al. report experiments with up

to 12 cameras however with an average frame rate of 1 frame per second. Their system

can be viewed as more as an offline structure-from-motion system than a SLAM sys-

tem for on-line robotic navigation. Indeed all experiments reported in their work were

conducted offline using recorded data.

This section describes the trajectory controller developed for use with the CCTAM

and DCTAM frameworks. The controller uses the classic cascaded PID control scheme

introduced in Section 2.6.4. As the work presented in this thesis involves multiple MAVs

operating within the same environment it was also necessary to include some facility for

MAV-to-MAV collision avoidance. To achieve this the controller makes use of a Velocity

Obstacle (VO) based approach together with a local communication model. This allows

each MAV to compute and follow collision free paths towards their given goals.
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3.3 Summary

In this chapter, we have motivated the use of monocular vision-based navigation for

Micro-aerial vehicles. Although monocular vision requires an additional level of pro-

cessing the very low SWaP (Size Weight and Power) footprint makes it the ideal sensor

for payload limited MAVs. We discussed in detail the various monocular vision based

navigation approaches from Visual Odometry to Visual SLAM and looked at one Visual

SLAM system in particular namely Klien and Murray’s PTAM. We also discussed the

state of the art for on-board monocular Visual SLAM for MAVs and the complexity

of the bundle adjustment problem being a limiting factor in the deployment of Visual

SLAM on MAVs. In the next chapter we will start by exploring a centralised, off-board

approach to multi-MAV Visual SLAM using a low cost MAV platform. We will demon-

strate how this simple approach allows cooperative multi-robot tasks to be performed

by teams of MAVs.





Chapter 4

Multi-robot Coordination Case

Studies

4.1 Introduction

In this chapter we focus on the two multi-agent coordination problems introduced in

Chapter 1 namely collision avoidance and exploration. The aim of these two coordi-

nation problems is to provide case studies for the evaluation of the multi-robot visual

navigation frameworks presented in this thesis. These two tasks were selected as they

not only provide case studies for evaluation but also useful functionality for multi-robot

experimentation. A fast and reliable robot to robot collision avoidance solution is es-

sential when working with multiple robots in constrained environments. Additionally

given that part of the visual navigation work involves mapping previously unknown

environments, an automated approach to exploration is also a helpful tool to have.

4.2 Aerial Collision Avoidance Case Study

The collision avoidance problem addressed by this case study is one of aerial collision

avoidance between MAVs. The problem of static obstacle avoidance is not considered.

Here the goal is for a team of cooperating aerial vehicles to work in and occupy them

same space without colliding with one another. Many typical collision avoidance ap-

proaches follow a sense-and-avoid approach, that is making some observation of another

aircraft using either radar or visual sensors and taking the necessary avoiding action.

An alternate approach is a communication-based approach, that is where each vehicle

shares it’s own position and velocity with all the other vehicles in the area. The sharing

of both position and velocity allows each vehicle to determine if it’s current heading will

result in a collision at some point in the future and take the necessary corrective action.

As discussed in Section 1.3 such position sharing is only possible if the robots share

some common coordinate system. Any discrepancy between the reported position and

the actual position of a robot may result in a collision. It is for this reason that such

an approach was chosen as a case study to verify the performance of a multi-robot

67
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visual navigation system. Such a system allows each MAV to localise within a common

coordinate system and allows them to share their positions for the purposes of collision

avoidance. Any inconsistencies or drift between the estimated positions of the MAVs

and their actual positions may result in collisions.

In order to achieve this a MAV trajectory controller with collision avoidance capa-

bilities was developed. This controller makes use of a Velocity Obstacle (VO) based

approach together with a position communication model described above. The remain-

der of this section is dedicated to an introduction to the VO approach together with a

description of the trajectory controller itself.

B ⊕−A

pA

pB

A

B

vA

vB

vBrA

rB

vA − vB

−vB

V OAB(vb)

Figure 4.1: An example of Velocity Obstacles, here the VO of robot B with respect
to robot A in absolute velocity space is illustrated by the dark gray cone.

4.2.1 Velocity Obstacles

The velocity obstacle concept was first introduced in the context of robot motion control

by Fiorini et al [26]. The velocity obstacle (VO) is a representation of the set of all

unsafe velocities i.e. velocities that will eventually result in a collision. The concept will

be introduced using circular shaped robots (to approximate the real ones) operating

in a 2D environment. However the concepts principle map readily to 3D environments

which is discussed in more detail in Section 4.2.4. Consider Figure 4.1 which features

two robots A and B, each represented by a circle of radius rA and rB respectively.

The position of each robot is given by position vectors pA and pB and their respective

velocities by vA and vB. Let A⊕B be the Minkowski sum for the two vectors A and B

that is:

A⊕B = {a+ b | a ∈ A, b ∈ B}
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and let −A denote A reflected about it’s reference point, that is

−A = {−a|a ∈ A}

Finally let λ(p,v) denote the line with origin p and direction pointing toward v. We

can say that if the relative velocity robot A with respect to robot B given as vAvB falls

within the Minkowski sum of B ⊕ −A centred on pB then robot A and B will collide

at some point in the future. This is represented by the light gray cone in Figure 4.1.

However the use of relative velocities makes this velocity obstacle difficult to combine

with velocity obstacles generated by other robots. An alternate formulation uses the

absolute velocity of robot A, this requires the translation of velocity obstacle to take

into account the velocity of robot B, that is the velocity obstacle is shifted by vB. This is

represented by the gray cone in Figure 4.1. Now if the absolute velocity of robot A, that

is vA falls within the translated velocity obstacle the robots are guaranteed to collide at

some point in the future. More formally the Velocity Obstacle of B with respect to A

is given as:

V OAB = { vA | λ(pA,vA − vB) ∩B ⊕−A 6= ∅} (4.1)

Given that we are operating in the absolute velocity space of robot A given n obstacles

we can take the union of all the translated velocity obstacles:

V Oall =

n⋃
i=1

V OBi

If robot A selects a velocity outside V Oall then it is guaranteed to be collision free with

respect to the n obstacles. Given there may be a large set of obstacles that may or may

not be close to robot A at any given moment in time it may be prudent to prioritise

obstacles. Fiorini et al. introduced the notion of a time horizon Th where obstacles are

only considered if a collision occurs at some t < Th, often referred to as an imminent

collision. Here a simple linear approximation of the obstacles trajectory is used to predict

future collision. This results in a modification to the Velocity Obstacle formula:

V Oh = { vA | vA ∈ V O, ‖ vA,B ‖≤
dn
Th
} (4.2)

where dn is the minimum relative distance between an obstacle and a robot. This

modifies the collision guarantee; now if robot A selects a velocity outside V OH it is

guaranteed to be collision free within time horizon Th.

A drawback to the Velocity Obstacle approach is that under certain situations os-

cillations may occur. Consider the example given in Figure 4.2 (left) that features two

robots A and B with velocities vA and vB respectively directing each agent to a goal

location. However the robots are on a direct collision course and thus each robot chooses

the collision free velocity (vfreeA and vfreeB ) closest to their target velocities. Figure 4.2



Chapter 4. Multi-robot Coordination Case Studies 70

A BvA
vB

vfreeA

vfreeB

A B

vA

vB
vfreeA

vfreeB

Figure 4.2: Illustration of the oscillations that can occur when using the Velocity
Obstacle approach [115].

(right) shows the next moment in time and the updated velocity obstacles for both

robots, now their original desired velocity is no longer in collision and the robots select

this as their new velocity. This leads to a cycle of oscillations which, while still avoiding

collisions, does result in sub-optimal trajectories (caused by the constant oscillation).

pA
A

B

vA

vBrA

RV OAB(vB,vA)

(vA + vb)/2

Figure 4.3: Illustration of the Reciprocal Velocity Obstacle (RVO) for the example
introduced in Figure 4.1.

4.2.2 Reciprocal Velocity Obstacles (RVO)

To address the oscillation issue Van den Berg et al. [115] introduce the Reciprocal Ve-

locity Obstacle (RVO) approach. Van den Berg et al. reasoned that in a multi-agent

environment the other agents are not just dynamic obstacles but reasoning agents who

themselves take steps to avoid obstacles. If each agent takes half the responsibility for

avoiding a collision with an obstacle (in this case the obstacle is assumed to be another
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robot) then it’s motion is still guaranteed to be collision free under the assumptions that

all other agents reciprocate by taking the complementary avoiding action. In the case of

a static obstacle the robot must still take full responsibility for avoiding collisions (using

the normal VO approach). More formally the RVO for obstacle robot B with respect to

robot A can be defined as:

RV OAB(vB,vA) = {v′ | 2v′A − vA ∈ V OAB(vB)} (4.3)

Here the reciprocal velocity obstacle of robot B with respect to robot A contains the set

of velocities for robotA that are the average of it’s current velocity and some velocity that

lies inside the velocity obstacle V OAB(vB). An alternative interpretation is the geometric

one, in which the apex of velocity obstacle V OAB(vB) is translated to the point vA+vB
2

as shown in Figure 4.3. The RVO approach removes the oscillation problem experienced

using the VO approach. Consider Figure 4.4 which shows the same scenario as in Figure

4.2 except that the robots now use the RVO approach. In the first moment in time each

robot selects a velocity outside the RVO induced by the other robot. However because

the apex of the RVO is based on the average of the two velocities is remains in the same

position as the previous time step. This means that the previously selected velocity

remains collision free, resulting in no oscillations.

A BvA
vB

A B

vA

vB

Figure 4.4: Illustration of how the RVO approach helps avoid oscillations that occur
in situations similar to Figure 4.2.

In order to reach their goals each agent would ideally proceed directly to their goal

locations. We describe the velocity that takes a robot directly to their goal location as

it’s preferred velocity. This can lead to situations where a robot chooses a collision free

velocity that results in what are referred to as reciprocal dances. This is the robotic

equivalent of the social situation most people encounter in daily life when two pedestrians

walking towards each other on the street choose to pass each other on different sides.

That is person A chooses to pass on the left side and person B chooses to pass on the

right. Realising this people often alter their choice and choose the other side to pass,

however the other person may do the same resulting in a “dance”. This is represented

in Figure 4.5 (left). The influence of a third agent may also lead to similar behaviour,

this is illustrated by Figure 4.5 (right).
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A B
vA

vfreeA

G A B

C

vA

vfreeA

Figure 4.5: Two examples of situations where robot A is unable to select a velocity
outside the RVO. In the first example (left) Robot A’s goal location is given by G,
the vector of the goal location means A is unable to select a velocity outside the RVO
induced by robot B. In the second example (right) the presence of a third robot C also

restricts the choice of safe velocities for robot A. [105].

A vA

vB

(vA + vb)/2

CL

HRV OAB

Figure 4.6: Illustration of the Hybrid Reciprocal Velocity Obstacle (HRVO) for the
example introduced in Figure 4.1.

4.2.3 Hybrid Reciprocal Velocity Obstacles (HRVO)

A solution to the problem of reciprocal dances was introduced by Snape et al. [105] in

the form of the Hybrid Reciprocal Velocity Obstacle (HRVO) shown in Figure 4.6. The

aim is to bias the velocity obstacle such that each robot will always pass each other

on the same side. However simply shifting the RVO is not enough as it only serves to

shrink the Velocity Obstacle on one side. Instead the RVO is extended on one side using
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the regular VO. Which side is extended depends on where the robot’s velocity falls in

relation to the RVO centreline (denoted by CL in Figure 4.6). For example if robot A’s

velocity falls on the right of the centreline the RVO is expanded on the left side, and

vice versa. The combination of the RVO and VO results in a Hybrid Reciprocal Velocity

Obstacle (HRVO). This means if a robot chooses to pass on the Reciprocal side (the

right) it need only take half the responsibility for avoiding the collision. If the robot

chooses the left, (the VO side) it must take full responsibility for avoiding the collision.

This eliminates the occurrences of reciprocal dances described in the previous section.

Figure 4.7: An example of a crash resulting when a MAV attempts to avoid collision
by passing over the other MAV. In the first image (left) the MAVs begin to pass over
one another, in the second image (middle) the MAV is pushed down by the propeller
wash of the MAV above, in the final image (right) the MAV cannot maintain stable

flight and hits the ground.

4.2.4 3D Velocity Obstacles

There are a number of formulations of 3D VO’s, examples include that of Snape et al.

[104] and [2]. In these formulations the velocity obstacle is modelled using a 3D cone

rather than two lines. The main advantage of the 3D approach is a significant increase

in the available velocity space, meaning that the search for collision free velocity is made

easier. The main drawback to the 3D approach is the overflight problem. Given that

robots can now move in 3D to avoid obstacles then passing above another robot is a

valid option to avoid a collision. However for a MAV this is not a valid option due to the

turbulence induced by the MAVs propellers; this is shown in Figure 4.7. This results in

two separate issues, (1) the MAV below receiving a downward push caused by the fast

moving air generated by the propellers of the MAV above, and (2) The turbulence (often

referred to as propeller wash) generated by the MAV above causing the propellers of

the MAV below to generate less thrust. The inconsistent nature of this air disturbance

makes it difficult for the flight controller to maintain stabilisation and can often results

in a rapid loss of stabilisation leading to a crash. A more effective solution is to consider

the collision avoidance problem purely in 2D space. The benefit of this approach is both

a reduction in computation time as well as elimination of the fly over problem. The

drawback to this approach is a reduction in the available velocity space which MAVs

can use to avoid collisions. To provide flexibility both a 2D and 3D velocity obstacles

are implemented within the controller described in this chapter. The 2D approach is
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used for indoor flights where limited height makes use of the 3D approach problematic,

and the 3D approach is available for less constrained environments.

Figure 4.8: Controller architecture.

4.2.5 The General Approach

An overview of the controller is given in Figure 4.8. The inputs to the system are:

1. The current state of the MAV St = (x, y, z, ψ, ẋ, ẏ, ż, ψ̇), this takes the form of the

current position and velocity for each of the four controllable degrees of freedom.

Roll and Pitch are coupled to the linear movement in the x and y axes as discussed

in Section 2.6.1 and therefore not directly controllable.

2. The current goal trajectory G = (g1, . . . , gn) which is a sequence goal states where

gi = (xg, yg, zg, ψg).

3. The current state of the other MAVs AS = (as1, . . . , asm) where each state takes

the form: asi = (id, x, y, z, ẋ, ẏ, ż, r) where id is the unique agent identifier and r

is the radius of the circle/sphere used to represent the MAV.
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At each moment in time the ComputeControl procedure is used to calculate the next

control command to send to the MAV based on the current state estimate, the current

goal and the current state of any other MAVs. This procedure is described in Algorithm

6.

Algorithm 6 ComputeControl(St, gt, ASt, Th, r)

Input: The current MAV state St, current goal trajectory point gt, current agent
states ASt, the time horizon Th and the MAV radius r.
Output: The control command to send to the MAV spacc.

1: epos ← gt − St
2: spvel ← CombinedPID(epos)
3: spsafevel ← ComputeSafeVel(spvel, St, ASt, Th, r)
4: evel ← St − spsafevel

5: spacc ← CombinedPID(evel)
6: return spacc

Algorithm 7 PID(et,Kp,Ki,Kd,maxI , sf)

Input: The current error et the proportional Kp integral Ki and derivative Kd

gains, maximum integral maxI , derivative filter smoothing factor sf
Output: The output set point O

1: P ← Kpet

2: I ← Ki(

t∑
i=0

ei∆t)

3: if I > maxI then
4: I ← maxI
5: end if

6: D ← et − et−1
∆t

7: FD ← (1− sf)FDt−1 + sfD
8: sp← P + I + FD
9: return sp

The PID controller used is a modified version of the classical PID controller described

in Section 2.6.2, see Algorithm 7. To improve performance in practical applications

two modifications are made to the way in which the integral and derivative terms are

calculated. These are both widely used in control theory literature. A common issue

when the integral term in a classical PID controller is referred to as integral wind-up.

The integral term is based on the accumulated error and is therefore susceptible to

run-away situations. For example a MAV attempting to reach a goal height may be

temporarily stopped by an obstacle. In such a case the error between the goal position

and the current position remains high despite the efforts of the PID controller. This

causes the integral term to accumulate a large amount of error over a short time. If the

obstacle is suddenly removed the accumulated error in the integral term will cause the

MAV to shoot up at maximum velocity well past its original goal. A common solution

to this problem is to restrict the maximum accumulated error, the ensures the integral
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term can still account for disturbances, but prevents run-away situations caused by

unobservable control failures.

The derivative term can also be the source of problems if noise in the feedback

signal is sufficiently high. The derivative term accounts for the rate of change of the

error. However noise in the feedback signal results in oscillations in the derivative,

effectively amplifying the noise. In the context of MAVs this has the effect of inducing

oscillations as the derivative term is continuously reacting to changes that do not occur.

Typical sources of noise on board a MAV are the motors and propellers which create

high frequency noise. Therefore a common practise is to include a low pass filter on the

derivative term to filter out this high frequency noise.

A PID controller is used for each controllable degree of freedom for a MAV as de-

scribed in Section 2.6.3. These controllers are arranged in a cascaded PID scheme

described in Section 2.6.4 where the Combined PID controller (see Algorithm 8) is used

for both position and velocity control in the cascaded structure shown in Figure 4.8.

Algorithm 8 CombinedPID(ex, ey, ez, eψ)

Input: The current roll, pitch, yaw and thrust error (ex, ey, ez, eψ)

Output: The roll, pitch, yaw, thrust set points (spx, spy, spz, spψ)
1: spx ← PIDx(ex,Kx

p ,K
x
i ,K

x
d ,maxxI , sf)

2: spy = PIDy(ey,Ky
p ,K

y
i ,K

y
d ,maxyI , sf)

3: spz = PIDz(ez,Kz
p ,K

z
i ,K

z
d ,maxzI , sf)

4: spψ = PIDψ(eψ,Kψ
p ,K

ψ
i ,K

ψ
d ,maxψI , sf)

5: return (spx, spy, spz, spψ)

Algorithm 9 ComputeSafeVel(spvel, St, ASt, Th, r)

Input: The current velocity set point spvel, the current MAV state St, the current
state of all other agents ASt, the time horizon Th and the MAV radius r.
Output: A collision free velocity set point vsafe.

1: HRVOall ← ∅
2: for all as ∈ ASt do
3: aspos ← aspos + (asvel∆t).
4: HRVOall ← HRVOall ∪HRVOas

5: end for
6: vsafe ← arg min

v/∈HRVOall

‖ St − spvel ‖2

7: return vsafe

After calculating the desired velocity set point, using the position PID controllers

this is passed to the Compute Safe Velocity procedure in order to compute the closest

collision free velocity to the desired velocity set point. This procedure is described in

Algorithm 9. The first step of this procedure is to compute the current position of the

other MAVs. This is done by taking the last position and velocity message (AS) received

from each agent and updating the position to the current moment in time using a linear

velocity model. This helps account for any delay in communication. Then an HRVO
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is computed for each agent and combined into a single HRVO for all the other MAVs.

From this the closest collision free velocity can be computed. We use the HRVO library

developed by Snape et al. [105] to compute the 2D and 3D velocity obstacles.

Figure 4.9: MAV trajectory plot for a collision avoidance experiment with 4 MAVs,
the start location for each MAV is marked with a dot.

4.2.6 Evaluation

In order to verify the performance of the collision avoidance controller introduced a num-

ber of simulated experiments were conducted. The simulated environment constructed

for these experiments is based on the the Gazebo multi-robot simulator. All simulated

experiments were run on a desktop computer with a 3.4 Ghz Intel i7 processor and 16

GB of RAM.

In these experiments simulated ground truth position data was used as input for

the controller. As this information is perfect without noise or drift these experiments

will serve as a baseline performance measure for later comparison with position data

from visual SLAM (presented in Chapters 5 and 6). The experiments were conducted as

follows, the MAVs started in a circular configuration and each MAV was commanded to

fly to the opposite side of the circle (via the centre). Each MAV starts at the same time

and proceeds at the same speed meaning without any collision avoidance all the MAVs
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Figure 4.10: MAV trajectory plot for a collision avoidance experiment with 6 MAVs,
the start location for each MAV is marked with a dot.

Table 4.1: Collision Avoidance Experiment Summary

Team Size Collisions Avoided

2 100%
3 100%
4 100%
5 100%
6 100%
7 100%
8 100%

would collide with one another. The experiments were repeated 100 times for each team

size and a summary of the results are presented in Table 4.1. In addition 2-dimensional

(top down) plots of two representative examples are presented in Figures 4.9 and 4.10.

From the results it can be seen over the 100 trials at each team size no collisions

occurred using simulated ground truth data for control. These experiments will be re-

peated in Chapters 5 and 6 using the position estimates provided by the multi-robot

visual SLAM systems presented in this thesis to determine if these system provide posi-

tion estimates that are accurate and consistent enough to maintain the 100% collisions

avoided benchmark.
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4.3 Cooperative Exploration Case Study

In this Section a market based cooperative exploration application using visual SLAM

is presented. The aim of this application is to demonstrate a simple approach for multi

MAV environment exploration using the minimal information extracted from a sparse

visual feature map. This work is intended as a case study for the evaluation of the

visual SLAM frameworks developed in this thesis rather than a novel approach to MAV

environment exploration. The remainder of this Section is structured as follows. An

introduction to the exploration problem and a discussion of the related work is presented

first. The two main components of the application are then described namely, the interest

point extraction and action-based interest point assignment. The section is concluded

with a discussion of possible improvements to the system for practical deployments.

The most influential work in the field of autonomous exploration has been the work

of Brian Yamauchi [125]. In this work Yamauchi introduced the notion of frontier

points, which are points on the border between known (mapped) space and unknown

(unmapped) space. Yamauchi’s work was based on the occupancy grid used for ground

robot navigation. Here each cell stores the probability of the area encompassed by the

cell being occupied. Typically an occupancy grid starts with an initial distribution,

usually a uniform distribution of a fixed value (for example 0.5). As observations of

the environment are collected the occupancy probability of the observed cells is ether

increased (if a cell is observed to be occupied) or decreased. Yamaichi used this infor-

mation to classify grid cells into one of three categories:

1. open: occupancy probability < initial probability

2. unknown: occupancy probability = prior probability

3. occupied: occupancy probability > prior probability

A frontier cell is defined as any open cell adjacent to an unknown cell. These cells

represent the border between known and unknown space. Adjacent frontier cells are

then grouped into a regions and any region above a certain threshold is considered a

frontier point worth exploring.

A related research area is that of active SLAM, the goal of active SLAM algorithms

is to map and environment while jointly reducing the uncertainty within the map. The

challenge here is exploring a frontier points gains information, but may also increase the

overall uncertainty of the map. Loop closures provide a method to reduce uncertainty,

that is by revisiting a previously mapped area so that any drift in the robots trajec-

tory can be corrected and the correction can be propagated throughout the map thus

reducing overall uncertainty. Many active SLAM approaches will maintain a balance

between exploring frontier points and identifying and visiting loop closure locations.

This ensures that as the map continues to grow (and with it the overall uncertainty) the

robot will regularly revisit previously mapped areas to perform loop closures and reduce

uncertainty.
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The aim of this application was to develop a way to deploy a team of MAVs to

autonomously explore an environment. More formally given a map m, consisting of k

feature-points, the object is to extract a set of interest points i ⊆ k so that by assigning

a MAV to explore these interest points extends the existing map m. This presents two

challenges:

1. How to extract the set of interest points,

2. How to assign these tasks to the team of MAVs in an efficient manner

To address these two challenges we have developed an application that uses a frontier-

based approach for interest point extraction and a Sequential Single Item (SSI) auction

approach for task assignment.

4.3.1 Interest Point Extraction

In order to build a reliable map each MAV must be certain of its position when adding

new features, this means that each MAV must keep a portion of the existing feature map

visible at all times in order to maintain good visual tracking. Another factor to consider

is the ability of the system to close large loops; in the case of the visual SLAM approaches

presented in this thesis only small loops closures are possible. Therefore the interest

points must be sufficiently close to previously mapped areas while still being sufficiently

far away so new features can be discovered. Therefore the aim of the interest point

extraction method was to allow the MAVs to map the environment while continuously

maintaining a overlapping view of previously mapped areas. This approach is therefore

less efficient in terms of distance travelled for the MAVs but it consistently produces

reliable maps; which is demonstrated in the experimental evaluation in Sections 5.8.7

and 6.8.7.

The notion of keyframes in visual SLAM was introduced in the previous chapter, a

keyframe is at the most basic level a snapshot of an environment from which geometric

features are extracted for the purposes of localisation and mapping. Each keyframe

represents a viewpoint of the environment from which map features are extracted. Under

the assumption that we are mapping from a top down perspective (using a downward

facing camera) we can represent this viewpoint as a rectangle on a plane. This rectangle

represents the slice of the world captured by the keyframe. We can reconstruct the

actual size of this viewpoint on the ground plane using the known intrinsic properties of

the camera (image width and height as well as focal length) together with the average

scene depth (this is the average depth of all map points visible in the keyframe). This is

effectively the far plane of the viewing frustum in computer graphics terminology [108].

The frustum is the pyramidal region which encapsulates the region of space of the world

that currently appears on screen (or in some viewpoint). Given a set of frustums created

from the set of keyframes in a map it is possible to determine how much of the plane

representing the world has been mapped. Figure 4.11 shows an example of a keyframe
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Figure 4.11: Illustration of the frustum based and candidate keyframe poses.

frustum with the keyframe pose WT at the centre point. In order to create a new

keyframe we must be reliably localised therefore the view of that keyframe must overlap

with an existing frustum. Thus knowledge of the existing frustums can be used to predict

the location of a new keyframe. This is done by creating a frustum that partially overlaps

with an existing one. The amount of overlap can be configured and helps determine the

keyframe density of the resulting map. This new frustum can be back projected, by

the scene depth of the previous one, to determine the predicted position of this new

keyframe. For each new keyframe added to the map a set of new keyframe candidate

points are generated. In Figure 4.11 the eight candidate points (F0, . . . , F7) are shown.

After the set of candidate points have been generated for each new keyframe the points

are filtered to ensure they do not overlap with existing keyframe frustums and are not

too close together. This is now the final set of interest points for the MAVs to visit.

Figure 4.12 show the extracted interest points for an example map.

This approach is computationally very simple and thus can be run on maps with

several hundred keyframes. Additionally, as can be seen in Figure 4.12, this approach

will also identify gaps or holes in the keyframe coverage.

4.3.2 Auction Mechanism

There are many approaches to assigning tasks to robots in a multi-robot environment

in both a centralised and distributed fashion. Auction mechanisms offer an attractive

solution due to their flexibility and ability to distribute solution computation to multiple

agents. Auction mechanisms for multi-robot coordination are a well studied area and

many practical experiments have shown the Sequential Single Item auction (SSI) to be

an effective solution to multi-agent task allocation problems [56, 127].
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Figure 4.12: An example of frontier point extraction; the keyframe positions are
shown as red arrows, the keyframe frustums are shown a blue rectangles and the frontier

points as green dots.

An SSI auction proceeds as follows. Given a set of targets T = t1, . . . , tn and a set

of robots R = r1, . . . , rn. At each round a target ti is selected and advertised to the set

of robots R. Each robot ri bids on the marginal path cost for the advertised target, the

bid is therefore the cost of adding the current target ti to robot ri’s already allocated

targets. The winner is the robot with the smallest marginal cost bid, this procedure

then repeats until all targets are assigned. Lagoudakis et al. [60] showed that for the

resulting allocation from a SSI auction the sum of the travel times for all robots will in

general be a factor of 1.5 times the minimal, but at the worst case will only be 2.0 times

the minimal.

Another insight into the SSI mechanism is it’s flexibility in terms of architecture. A

completely centralised implementation is possible as the only prerequisite for computing

a bid is knowing the current positions of all agents and targets. With respect to the

work presented in this thesis this information is already being shared for collision avoid-

ance purposes. Conversely a completely distributed implementation is also possible as

winner determination involves selecting the agent with the lowest bid. Provided each

agent broadcasts their bids the auction mechanism can be implemented in a completely
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distributed fashion. This fits well with the architectures of both the centralised and

partially distributed frameworks which will be presented presented in this thesis.

The centralised auction protocol for multi MAV exploration proceeds as follows:

• Once an initial map has been created the first set of interest points is extracted

using the keyframe frustum method described in the previous section.

• The set of bids for each MAV and each point are then calculated based on the

interest point locations and the MAV current positions. A winner is determined

for each MAV and paths are computed for each MAV to visit their assigned points.

These paths are passed on to the trajectory controller of each MAV for execution.

• During the execution phase each MAV visits the interest points which adds new

keyframes to the Map.

• These new keyframes are used to compute a new set of interest points and another

round of the auction commences.

• This process continues until no more keyframes are added to the map.

4.3.3 Evaluation

As this case study requires the data from a visual SLAM system no evaluation using

simulated ground truth data is possible. As such the evaluation of this approach will be

differed until these systems are introduced (in Chapters 5 and 6).

4.4 Conclusion

This Chapter has presented the two multi-robot coordination case studies which will

be used in the evaluation of the multi-robot navigation frameworks presented in this

thesis. Specifically an approach for trajectory control for MAVs and agent-to-agent

collision avoidance based on the Hybrid Reciprocal Velocity Obstacle Approach. An

experimental evaluation of this controller with varying numbers of MAVs using simulated

ground truth showed a 100% collision avoidance rate. This result provides a baseline for

later comparison with the visual SLAM systems presented in this thesis.

The Chapter has also presented an auction based approach to multi MAV environ-

ment exploration. An interest point extraction method was also presented based on

keyframe viewpoints as well as a SSI auction based task allocation approach. The use of

the keyframe view point approach for feature extraction is computationally cheap and

also identifies gaps in the feature map. The SSI auction approach provides a flexible

approach to multi-robot task assignment with favourable worst-case guarantees. The

applications presented in this Chapter serve as both example applications for the vi-

sual navigation frameworks in this thesis, but also as useful tools for evaluating those

frameworks. The results for both are presented in Chapters 5 and 6.





Chapter 5

A centralised approach to

multi-robot Visual SLAM

5.1 Introduction

The problem of multi-robot SLAM is typically addressed using a map merging approach.

That is each robot proceeds as normal using a single robot SLAM approach until a

convergence event occurs. These convergence events typically take the form of the robots

meeting each other (robot rendezvous) or the maps produced by a pair of robots are

detected to overlap. When these convergence events occur the maps of the two robots

can be joined together and the robots can proceed to navigate in a common coordinate

system. While this approach is the most flexible it does have some drawbacks. The

rendezvous approach requires the robots be able to sense one another, which dependent

on their sensory capabilities can be challenging or unreliable. Another drawback is that

direct cooperative behaviours are either limited or not possible until such a convergence

event occurs. The direct cooperative behaviours we refer to are those described in

Section 1.3.

Another solution to the problem is to have the robots all start from known locations,

that is the robots all start localised within the same coordinate system. This approach is

less desirable as ensuring the robots all start from known locations can be cumbersome

to achieve in practical situations. However for camera equipped MAVs, appearance

based re-localisation techniques (see Section 3.2.3) offer a solution to this problem. As

appearance-based localisation makes direct use of local image features which are available

to any camera equipped MAV, this allows a MAV to localise itself within the visual

map of another MAV. The aim of the work presented in this Chapter is to explore the

feasibility of using appearance-based localisation within a Visual SLAM framework to

support large scale multi-MAV visual navigation. To achieve this we developed a proof-

of-concept visual navigation system which makes use of an off-the-shelf commercial MAV

platform the AR.Drone (see Figure 5.1). This work is founded on Klien and Murray’s

85
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original PTAM library [54] as well as the excellent state estimation framework for the

A.R. Drone developed by Engel et al. [24]

Figure 5.1: The Parrot AR.Drone, a commercially available MAV platform used for
the work presented in this Chapter.

The remainder of this Chapter is organised as follows in Section 5.2 we discuss

the multi-MAV visual navigation approach in general terms, Section 5.3 presents an

overview of the proposed approach. Sections 5.4 to 5.6 provide a detailed description of

each component. The implementation of the proposed approach is discussed in Section

5.7, followed by presentation of the experimental evaluation in Section 5.8. The Chapter

is rounded off with a short summary and conclusions in Section 5.9

5.2 Multi-camera Visual SLAM via Re-Localisation

In Section 3.2.3 the concept of place recognition for loop closure detection and re-

localisation was introduced. In PTAM Klien and Murray make use of a direct image

matching approach [55]. As the keyframes retain the original image as well as all the

down-sampled images in the pyramid the entire image is available to be used as a single

image descriptor. This approach relies on a large population of keyframes providing a

dense sampling of the different viewpoints within the mapped area. They take the lowest

pyramid level of 80× 60 pixels and down-sample further to 40× 30 pixels. A Gaussian

blur with a default σ = 2.5 pixels is applied and the mean image intensity is subtracted

to make the descriptor more robust to changes in illumination. This is done for each of

the k keyframes.

Once re-localisation is initiated the current image I1 is similarly processed and then

matched against all keyframes in the map taking the one with the smallest sum of

squared differences as the closest keyframe. The current camera position is set to that

of the closest keyframe. To estimate the camera rotation between the keyframe image
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Figure 5.2: An example of the blurred image re-localisation technique used in PTAM.

and the current image a whole image alignment approach is used. The blurred, down-

sampled and normalised keyframe descriptors are aligned using a direct second-order

minimisation. This approach has the the advantage of computational efficiency and

demonstrates good performance provided the density of keyframes remains high and the

difference in viewpoint between keyframes and re-localisation frame is low. It does rely

on retaining the original keyframe images which given PTAM does this for map-point

matching is not a significant encumbrance. An example of this approach is shown in

Figure 5.2

Visual re-localisation not only improves tracking robustness and facilitates map re-

use but it can also facilitate multi-camera Visual SLAM. Given that it is possible to

re-localise a camera within an existing map it is trivial to re-localise an arbitrary cam-

eras within that map provided the map data is shared. The process is as follows a single

MAV creates an initial map m which is shared between all MAVs. The other MAVs,

under the assumption they are observing the same scene, use place recognition to re-

localise themselves within the existing map m. All MAVs are now localised within the

shared coordinate system defined by m and can proceed to localise and map further.

As far as the author is aware this multi-camera re-localisation approach has not been

previously employed for multiple disconnected cameras on the scale presented in this

work. Castle et al. [11] make a modified version of PTAM to localise a single human

equipped with multiple non-overlapping cameras for an augmented reality application.

The idea of localisation via multiple cameras on a single MAV was also applied by Har-

mat et al. [38] for their MCPTAM system. Harmat et al. demonstrate the benefits of

a multi-camera platform for performing tasks such a take-off and landing manoeuvres

with full visual feedback. This work demonstrated improvements in localisation accu-

racy (fusing multiple visual pose estimates from each camera) and robustness (tracking

failure of a single camera does not affect the platform as a whole). The drawback of

the multiple cameras attached to a single platform approach is the increased platform
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Figure 5.3: A high level overview of the CCTAM Framework. The main components
are the MAVS which provided sensor data images to CCTAM which computes state
estimates for the MAVs based on this data. This is passed to the position controller

which compute suitable control commands to send to the MAVs.

size and increased computational requirements for multiple non-overlapping cameras. In

this author’s opinion this somewhat negates the main advantage of monocular cameras,

namely the low weight and low power consumption. This Chapter focuses on multi-

ple disconnected cameras and explores the idea of using this approach to enable large

teams of MAVs to perform cooperative tasks such as collision avoidance and exploration

autonomously.

5.3 Framework Overview

The centralised visual navigation framework presented in this Chapter is a complete

solution for the autonomous control of a small team (up to six) of camera-equipped

MAVs. The main components are: (i) a multi-robot visual slam system referred to as the

Centralised Collaborative Tracking and Mapping (CCTAM) system, (ii) an Extended

Kalman Filter (EKF) based state estimation system and (iii) a Proportional Integral

Derivative (PID) based position controller. Whilst this framework targets a specific

platform (the AR.Drone) the system is generalisable to a platform with a similar sensor

suite, namely a camera and Inertial Measurement Unit (IMU) (this will be shown in

Chapter 5).

Figure 5.3 provides a high level overview of the framework presented. Each MAV

provides CCTAM with both sensor data for the EKF as well as camera images for Visual

SLAM. Each tracker runs as a separate thread within the CCTAM process. The multi-

threaded approach allows each tracker to potentially run concurrently at full frame rate,

30 Hz (depending on camera frame rate and team size see Section 5.8.5). The camera

images and sensor data are processed by CCTAM which provides a global state estimate

(fused with inertial sensor data) for each MAV to their respective position controllers.

The position controllers use the state estimates and user given goals to compute the

necessary control commands to send to each MAV. The following Sections will discuss

the individual components of the framework in more detail.
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Figure 5.4: The processes for a single MAV in the CCTAM system.

5.4 CCTAM

CCTAM is based on PTAM as introduced in Section 3.2.3; the next Section provides

more details of the original library as well as a discussion of the modifications made to the

library for CCTAM. The main components of the system are the Trackers, the Mapper

and the Map itself; each Tracker is responsible for frame-to-frame position tracking

for each MAV whereas the Mapper is responsible for map building and optimisation.

An overview of the system is given in Figure 5.4, for clarity this diagram details the

components of the system for a single MAV, for multiple MAVs these components are

duplicated (except the shared map and mapper).

5.4.1 The Map

The map (M) in CCTAM consists of a set of keyframes (K) and a sparse set of map-

points (P).

M = (P,K)

Full details of the map structure not relevant to the work presented in this Chapter,

therefore we defer a full description to the next Chapter (see Section 6.3.1).

5.4.2 Tracking

As in the original PTAM [54], the tracker is responsible for real-time camera pose estima-

tion and selecting the keyframes to be used for map construction. Figure 5.5 describes

the tracking procedure in detail. To start the tracker requires an estimate of the current

camera pose, in the original PTAM this estimate is generated by applying a decaying

velocity motion model to the previous camera pose estimate. In CCTAM a more accu-

rate estimate of the current pose provided via forward prediction using the EKF and
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Figure 5.5: The CCTAM tracking process

MAV motion model (described in Section 5.5.3). From this pose estimate the tracker

then determines which map-points should be visible in the current camera image. This

procedure has the largest effect on the tracking runtime as it scales linearly with the size

of the map. However as will be demonstrated in practical experiments tracking time

remains near constant for map sizes of ≈ 300 keyframes and ≈ 20000 map-points. This

is a sufficient size with which to map an area of 20 × 20 metres (also demonstrated in

the experimental evaluation).

The tracker will then create an image pyramid from the current frame and extract

visual features at each level of the pyramid. CCTAM makes use of the AGAST [73]

detector to extract corner features for each level. As detailed in Section 2.3.1 it is a

more general detector than the original FAST and as such does not require re-training to

maximise performance. Additionally the dual decision tree approach makes the detector

more robust to self-similar structures. Self-similar structures such as repeating patterns
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in indoor environments or grass and tarmac in outdoor environments present a problem

for Visual SLAM as they may lead to bad correspondences. The AGAST detector with

its two tree approach provides some level of robustness to such structures.

The tracker uses a two-stage tracking process; first a small set of map-points (50-100)

which should appear in the coarsest levels of the image pyramid are searched for. This

is done using the estimated camera pose and 3D position of the map-point to re-project

the point into the current image using the projection function described in Section 2.2.

If an AGAST corner in found within small radius of re-projected image coordinates

it is a possible match for the map-point. To verify this an 8 × 8 patch around the

detected feature point is compared to the corresponding patch in the source keyframe

for that particular map-point. However because the viewpoint may have changed from

the original keyframe an affine warp is applied to the source patch [54]. The affine warp

matrix A is given by:

A =

[
∂ut
∂us

∂ut
∂vs

∂vt
∂us

∂vt
∂vs

]
(5.1)

where (us, vs) are the pixel coordinates of the source pixel and (ut, vt) are the pixel

coordinates of the target pixel. This is computed by projecting unit pixel displacements

from the plane of the source patch to the current target frame. Determining in which

pyramid level a map-point should be searched for is done by taking the determinant

of the matrix A; the determinant corresponds to the area of the patch in square pixels

that a source pixel occupies in the original image resolution. Therefore if 4 pyramid

levels are used the correct pyramid level to find the patch is given by det(A)/4. The

warped patch is then compared to the target patch using the Zero-Mean Sum of Squared

Differences (ZSSD) to provide some robustness to lighting changes. This procedure is

repeated for all AGAST features within a small region of the predicted image coordinates

and the feature with the lowest ZSSD that is beneath a predefined threshold is taken

as a match. Each match represents an observation of a map-point for which we have a

estimate of the 3D position. This gives a set of 3D world point to 2D image points this is

exactly the perspective-n point problem described in Section 2.4.1. To obtain the most

accurate solution the linear solution is not employed; instead the problem is solved by

using non-linear least squares, minimising the sum of the re-projection error as discussed

in 2.4.4. To improve robustness to outlier the standard re-projection error is replaced

by one of the robust cost functions described in Section 2.4.8. In this work we used

the Tukey cost function however in our tests similar performance is obtained with the

Huber and Cauchy cost functions. Once a pose update has been successfully computed

on the small set of coarse features a fine-grained search is carried out on a larger set

of points (1000-5000) from all pyramid levels. After the final pose update is complete

the tracking quality is assessed to determine if re-localisation is necessary. The tracking

quality heuristic is based on the fraction of successful observations of map-points which

should be visible in the current frame. Tracking quality is also used to determine if a
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Figure 5.6: The CCTAM mapping process

new keyframe should be added to the map. If the tracking quality is high enough and

the distance to the nearest keyframe is sufficient a new keyframe will be added to the

map.

5.4.3 Mapping

The mapping thread is responsible for building the initial map using a stereo initialisation

process and then further extending the map using the keyframes provided by the trackers.

Figure 5.6 describes the mapping procedure in detail. When the mapper receives a new

keyframe it will find the closest keyframe (by euclidean distance) and search for candidate

map-points at each pyramid level by epipolar search (see Section 2.4.3). Candidate

points that are too close to existing map points are then removed to avoid duplication.

Finally the 3D position of the points are triangulated and the new map-points are added

to the map. The Mapping thread will then run a local bundle adjustment on the new

keyframe and it’s four nearest (spatially) neighbours. If there are no new keyframes to

process the Mapping thread will also run a complete global bundle adjustment optimising

all keyframe poses and map-points.

The stereo initialisation procedure in the original PTAM, assumes user input to

capture the two initial frames. The user presses a button to start the procedure and
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the first frame is captured. Corner features are extracted and tracked in subsequent

frames using a simple frame-to-frame tracking approach. The user then presses the

button again once a sufficient baseline has been reached and a second frame is captured.

The two frames and all feature correspondences are then passed on to the Mapping

thread to bootstrap the map. The initialisation scene is assumed to be planar and the

correspondences are known therefore it is sufficient to use compute a homography to

describe the relative rotation between the two frames. The baseline between the two

frames is assumed to be fixed (e.g. to 0.5 metres) this assumption is used to scale the

initial map into metric space. This means the further the camera is from the assumed 0.5

metre baseline the poorer the metric scaling of the map. After this has been computed

the first two keyframes are created; map-points can then extracted from these two frames

to initialise the map. Finally if sufficient map-points are found a plane is fitted to the

newly generated map-points using a RANSAC approach, this plane serves as the origin

for the map coordinate frame with the z axis aligned orthogonal to the plane.

This initialisation procedure is difficult to perform automatically on-board a MAV

however the additional sensors on board a MAV can be exploited in order to automate

this procedure. The AR.Drone in particular features both an Inertial Measurement Unit

(IMU) as well as an on-board metric optical flow approach similar to that described

in Section 3.2.3. Combining these two sources in an Extended Kalman Filter (EKF)

provides a noisy but complete state estimate. This allows us to fully automate the stereo

initialisation procedure using the EKF and position controller to obtain two images

spaced at a sufficient distance apart, as well as computing the actual metric baseline

(instead of assuming a fixed one). The IMU measurements can also be used to align the

map origin to the gravity vector without the need to find a plane using the RANSAC

approach.

5.5 State Estimation

The state estimator in CCTAM is an Extended Kalman Filter (EKF) which fuses po-

sition estimates from the visual SLAM system with sensor data from the MAVs. The

state of the EKF is given as:

xt = (xt, yt, zt, ẋt, ẏt, żt, φ, θ, ψ, ψ̇) (5.2)

Where xt, yt, zt represents the position of the quadcopter, ẋt, ẏt, żt the linear velocity,

φ, θ, ψ the attitude and ψ̇ the angular velocity about the z axis. Our framework makes

use of the sensor and motion model developed for the AR.Drone by Engel at al. [24].

The AR.Drone includes many sensors which provide partial observations of the state of

the system, in the following Section the sensor observation models for each sensor are

introduced.
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5.5.1 Sensor Observation Model

The AR.Drone provides velocity estimates (ẋt, ẏt) computed from on-board optical flow

using the small downward facing camera (scaled to metric units using on-board sonar

sensor). These estimates are in the quadcopter body coordinate frame and must first

be rotated to the global coordinate frame before integration into the state estimate.

The attitude of the quadcopter (φt, θt, ψt) is computed on-board by fusion of the

accelerometer and gyros. This provides a reliable estimate of roll and pitch angles but

given there is no gravity vector to compensate for yaw drift, yaw estimates are less

accurate. The AR.Drone does include a three axis magnetometer which can be used to

estimate attitude based on the magnetic field of the earth. However the magnetic field

of the earth is very weak in comparison to the many common sources of electromagnetic

fields within a typical indoor environment; such as electrical cabling, metal support

structures, electronic devices and so on. This makes the sensor very unreliable for indoor

environments and the decision was made to ignore the magnetometer data. Instead yaw

drift is compensated for by differentiating the yaw measurements and treating the yaw

estimates as yaw velocities. Visual SLAM provides a reliable enough yaw estimate to

account for any residual drift. Finally the vertical velocity (żt) is taken by differentiating

the relative height measurements from the AR.Drones on-board sonar sensor. This is

mainly due to the inaccuracy of the sonar sensor compounded by the numerous sources

of acoustic interference found on-board a typical MAV such as propeller noise, frame

vibration and air turbulence. The full sensor observation function ho(xt) is given as

follows:

ho(xt) =



ẋtcosψt − ẏtsinψt
ẋtsinψt + ẏtcosψt

żt

φt

θt

ψ̇t


(5.3)

And the measurement vector zo,t is given as

zo,t =

(
vx,t, vy,t,

ht − ht−1
δt−1

, φt, θt,
ψt − ψt−1
δt−1

)T
(5.4)

5.5.2 Vision Observation Model

During normal operation CCTAM provides the estimated camera pose with respect to

the global frame. Therefore it is necessary to transform this estimate to the inertial

frame of the quadcopter. The vision observation function is given as:

hv(xt) = (xt, yt, zt, φt, θt, ψt)
T (5.5)
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This is used as a direct observation of the global pose for each quadcopter and with-

out differentiation (a common approach for single robot estimators with multiple pose

sources), this is to ensure each MAVs pose is consistent with the common global coor-

dinate frame. The measurement vector is given as:

zv,t = (ICHWCHt) (5.6)

Where WCH is the current camera pose in the world coordinate frame and ICH is the

fixed transform from the camera to the inertial frame of the MAV.

5.5.3 State Transition Function

The work presented in this thesis directly uses the state transition function for the

AR.Drone developed by Engel et al. [24] which approximates the acceleration and an-

gular velocities based on the current state xt and the current control command ut. This

linear prediction model is key to the performance of the EKF as data from the AR.Drone

can be subject to significant delays (100-200 milliseconds). In particular usage is made

of the linear prediction model of the influence of control commands ut on the state of

the AR.Drone, given by:

ẍ(xt) = c1R(φt, θt, ψt)1,3 − c2ẋt (5.7)

ÿ(xt) = c1R(φt, θt, ψt)2,3 − c2ẏt (5.8)

Where R(·)i,j denotes the ith and jth entries of the rotation matrix defined by φ, θ and

ψ. The attitude and vertical velocity are approximated from the current state xt and

the current control ut.

φ̇(xt, ut) = c3φ̄t − c4φt (5.9)

θ̇(xt, ut) = c3θ̄t − c4θt (5.10)

ψ̇(xt, ut) = c5
¯̇
ψt − c6ψ̇t (5.11)

z̈(xt, ut) = c7 ¯̇zt − c8żt (5.12)
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Where (c1, . . . , c8) are model parameters which are tuned experimentally. The full state

transition function is given as:

xt+1

yt+1

zt+1

ẋt+1

ẏt+1

żt+1

φt+1

θt+1

ψt+1

ψ̇t+1



←



xt

yt

zt

ẋt

ẏt

żt

φt

θt

ψt

ψ̇t



+ δt



ẋt

ẏt

żt

ẍ(xt)

ÿ(xt)

z̈(xt,ut)

φt

θt

ψt

ψ̇t



(5.13)

Sensor and image data from the AR.Drone is all received with varying delays, to combat

this all sensor data is stored in a cache with the exception of image data which is

immediately processed (due to the relatively high computation time of the visual SLAM).

At each iteration the filter update procedure states with the EKF state after the last

successful vision observation (that is assumed to be the most accurate). At this point

a forward prediction of the state of the system is computing integrating all previous

control commands and sensor data. The state of the system is predicted to a point

slightly ahead of the current moment in time to account for the delay in computing and

transmitting the control commands. This approach helps compensate for both the delays

as a result of the wireless link to the AR.Drone as well as the lack on synchronisation

between camera and the inertial sensors.

5.6 Trajectory Control

For trajectory control we employ the collision avoidance trajectory controller described

in Chapter 4. The system takes as input a sequence of goal positions of the form xdes =

(x, y, z, θ) the position control layer computes the desired velocity for each controllable

axis from the position error. A velocity obstacle based collision avoidance scheme is

used. It takes the desired velocity set point and computes the closest collision free

velocity. These are then fed into the velocity PID controllers which compute the desired

acceleration for each degree of freedom based on the velocity error.

The AR.Drone control commands take the form of tilt angles for the roll and pitch

axes. The desired acceleration vector output from the PID controllers is converted to

an angle command using the following formula:

φcmd =
1

g
(ẍ sin ψt − ÿ cos ψt) (5.14)

θcmd =
1

g
(ẍ cos ψt − ÿ sin ψt) (5.15)
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where φcmd and θcmd are the roll and pitch commands respectively, ψt is the current

yaw angle, ẍ and ÿ are the linear accelerations for the x and y axes respectively and

g represents the earth gravitational constant. The AR.Drone controls for the yaw and

vertical axis take the form of velocity commands so we can directly pass the velocity

set-points from the position PID controllers.

MAV Radius Scaling

In order to account for any uncertainty in the position estimates provided by CCTAM

a two factor scaling approach to account for both localisation uncertainty and excess

communication delays. The localisation source of the trajectory controller is the EKF

described in the previous section which fuses pose estimates from CCTAM with inertial

sensor data. The EKF not only provides pose information but also an estimate of the

certainty of each estimate via the covariance matrix. The radius of each MAV rmav is

used to determine the size of each velocity obstacle, therefore the radius can be used to

account for the position uncertainty (increasing the assumed radius of the MAV when

uncertainty increases). To achieve this the size of the one sigma uncertainty ellipse of the

x−y position given by the EKF is determined. The MAV radius is then scaled such that

a robot of radius rmav at the extreme edges of the uncertainty ellipse is encompassed by

the new radius runc.

5.7 Implementation

The original PTAM library was designed to run two concurrent threads; the Mapper

and the Tracker and as such the data structures were designed to support this mode of

operation. In particular the tracker maintains a data structure for each map-point which

handles point re-projections. In order to maintain data consistency mutual exclusion is

enforced for the Trackers at the map-point level. Each Tracker must gain exclusive access

to all map-points it requires. This is done after it calculates which map-points should

be visible in the current frame, this ensures that Trackers only obtain a lock on map-

points required for tracking. The Mapper thread also modifies the map, specifically the

keyframe and map-point poses and positions when performing local and global bundle

adjustment however, these operations can take several seconds particularly the global

bundle adjustment. Therefore to ensure real-time operation can be maintained the

Mapper will copy the map data structure and perform bundle adjustment on the copied

map. Once the bundle adjustment is complete the Mapper then takes exclusive access

of the map structure to update the keyframe poses and map-point positions (a very fast

operation).

Our framework has been implemented in C++ and integrated into the Robot Oper-

ating System (ROS) [93], each main component within our system has been implemented

as a separate ROS node.
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5.8 Evaluation

In this Section the experiments conducted on the CCTAM framework are presented.

This Section is organised as follows, it begins with a description of the experimental

setting including the simulation and hardware platforms. Section 5.8.3 describes the

localisation experiments performed on the CCTAM framework, Section 5.8.5 goes on

to expand on the experiments performed to determine the scalability of the framework.

And in Sections 5.8.6 and 5.8.7 CCTAM is used to perform two multi-agent coordina-

tion tasks, collision avoidance and exploration and the results from these two sets of

experiments is presented.

5.8.1 Simulation Environment

The simulated environment constructed for these experiments is based on the the Gazebo

multi-robot simulator. Gazebo provides capabilities to model complex 3D environments,

reliably model multiple flying vehicles and generate realistic sensor data including camera

images. Gazebo also integrates easily with the Robot Operating System (ROS) meaning

CCTAM can be run on both simulated and real robots without altering the framework.

Figure 5.7: The simple simulation world

Meyer et al. [77] introduced a number of UAS-specific sensor plug-ins for Gazebo such as

barometers, GPS receivers and sonar rangers. The work in this thesis is focussed more

on accurate sensor modelling rather than flight dynamics and as such our simulator uses

the simplified flight dynamics model introduced in Section 2.6.1. The sensor plug-ins
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Figure 5.8: The simulated disaster world

developed by Meyer et al. were used to replicate the sensor suite on the AR.Drone.

The standard camera plug-in within the Gazebo simulator is used; this plug-in featured

the ability to add sensor noise (modelled as a zero-mean Gaussian), however it did not

support lens distortion modelling. This was not critical as real hardware experiments

are performed and these serve the validate the approach with real world lens distortion.

In addition to the MAV two simulated worlds were developed to conduct experiments;

the first a very simple world consisting of a flat 20 × 20 metre plane, the plane is

textured to ensure enough visual features are available for localisation. The second

environment consists of a 20 × 20 metre plane on top of which are placed models of

damaged buildings to simulate a disaster site. Figures 5.7 and 5.8 show the two simulated

worlds. The aim of these simulated worlds is not to create fully realistic environment

but instead facilitate large scale, real time experimentation with MAVs with an accurate

sensor model. The simple environment models make scaling the simulation to larger

numbers of MAVs feasible as the more complex the environment the more processing

time is required to generate images for the simulated cameras. Validation of the system

in a realistic environment is covered by the hardware experiments performed. The

simulated experiments conducted presented in this Section did not involve a realistic

communication model i.e. no delay was added to inter-component communication to

simulate a wireless network, this is investigated in detail in Chapter 5. All simulated

experiments were run on a desktop computer with a 3.4 Ghz Intel i7 processor and 16 GB

of RAM (this also served as ground-station computer in the later hardware experiments).
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In later Sections the speed of the MAVs is discussed; for clarity it should be mentioned

that in general the maximum speed of the MAVs for simulated experiments was set at

5 metres per second. For real world experiments where limited space was available a

maximum of 2 metres per second was used.

5.8.2 CCTAM Hardware Platform

For these experiments two Parrot AR.Drone 2.0 MAVs are used; a very lightweight (400

grams), low cost MAV (£250) platform. It is constructed primarily out of Expanded

Polypropylene (EPP) foam with a carbon fibre reinforced central cross providing the

frame with rigidity and mountings for the motors and electronics. The drone features

two cameras, the front facing camera is capable of streaming images at 640× 360 and is

fitted with a 92◦ wide angle lens. The downward facing camera is primarily used for the

on-board optical flow and captures images at 160×120 which is up-scaled to 640×360 for

streaming. The on-board sensors include an Inertial Measurement Unit (IMU) attitude

as well as a sonar sensor (for low altitude) and barometric pressure sensor for altitude

sensing. The on-board processor is an 1 Ghz ARM Cortex A8 processor running a

custom version of the light footprint Busybox Linux distribution. Finally the drone

features an 802.11 N wireless network interface running on the 2.4 Ghz band for control

and video streaming.

The work in this thesis assumes the MAVs use a downward facing camera as it

provides the best viewpoint for localisation and sensing as well as allowing the simplifi-

cation of some planning tasks to 2D (see Chapter 6). Therefore for these experiments

the AR.Drone was modified to have the front facing camera point downwards. The

resolution of the downward facing camera is too low and the field of view to narrow for

reliable localisation, particularly with the image artefacts introduced when the image is

up-scaled to 640× 360. This is a very straightforward modification due to the modular

structure of the AR.Drone. The drone communicates via 802.11n WiFi which is used

to stream control and sensor data as well as a single compressed camera feed. The high

bandwidth of the information stream leads to communication latencies, especially when

multiple drones are deployed at the same time. Additionally the choice of the 2.4 Ghz

frequency band can lead to more issues as 2.4 Ghz is one of the most commonly used

public frequencies for not only wireless computer networks but also other devices such

as security cameras, cordless telephones, blue-tooth devices and even microwave ovens.

More details on the communication limitations of the AR.Drone will be presented in

Section 5.8.6.

5.8.3 Localisation Performance

An important factor in the performance of the CCTAM system is the localisation accu-

racy. This determines the precision which with the MAVs can navigate within the envi-

ronment. To verify the performance of the CCTAM framework in terms of localisation

performance and consistency. For the first experiment a CCTAM map was constructed
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Figure 5.9: A representative example of the CTAM localisation experiments. The
dashed green line represents the ground truth trajectory and the solid coloured lines

represent the trajectory for each MAV.

for the simulated environment manually. The CCTAM map origin is aligned with the

simulated ground truth origin which enables us to directly compare the recorded tra-

jectories. A team of MAVs are commanded to fly to a set of predefined way-points,

following a 20 metre long path, using the full CCTAM framework for localisation and

control. For each execution the estimated trajectory for each MAV is compared to that

of the simulated ground truth data. The Root Mean Squared Error (RMSE) metric was

chosen to compare trajectories as it captures the position error over the length of the

trajectory. The RMSE for a trajectory is given as:

RMSE =

√√√√ 1

n

n∑
i=1

(xi − x̂i)2

where n is the number of points in each trajectory, xi is the ground truth position

at point i and x̂i is the estimated position at point i. GPS based navigation, with a

typical error of 2.5 metres, is sufficient for large, open airspace with little or no obstacles

but insufficient to operate close to buildings and other obstacles. Other localisation
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Table 5.1: Localisation Performance Experiment Summary

Team Size Mean Trajectory Length Mean RMSE STD Deviation

1 30.0 0.096 0.094
2 28.0 0.104 0.063
3 25.322 0.100 0.079
4 22.142 0.124 0.122

Mean 26.366 0.106 0.09

approaches such as laser based approaches typically have an RMSE of ≈ 0.06 metres.

For this work an RMSE of ≈ 0.1 metres is targeted; this represents similar localisation

performance to many single robot Visual SLAM systems [24, 28]. Additionally an overall

error of 0.1 metres along a trajectory is sufficient to achieve the tasks described in this

thesis (collision avoidance and exploration) as well as other tasks such as target tracking.

Figure 5.9 shows an example of the results obtained; in this experiments the average

RMSE for the 3 MAVs in this experiment was 0.09 metres.

Figure 5.10: The result of the hardware localisation experiment, the ground truth
trajectory is shown as a dashed green line and the esitmated trajectory as a solid purple

line. The RMSE for this experiment was 0.10 metres.

For CCTAM these localisation experiments are conducted for team sizes from 1 to 4

MAVs and for each team size the experiment was repeated 50 times. Table 5.1 shows a

summary of the results. The results show CCTAM system is able to maintain a typical
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RMSE of less than 0.1 metres. Experiments are also conducted on real hardware, where

an Optitrack motion capture system was used to provide ground truth data. Here due

to limitations in the size of our motion capture lab only a single MAV is used however

this is sufficient given the main aim of this experiments is verify localisation performance

under realistic conditions (i.e. real world images and lens distortion). These experiments

required the MAV to follow a square shaped path; the experiment was repeated 20 times

and representative example the results are shown in Figure 5.10. The mean RMSE for

these experiments was 0.10 metres.

Figure 5.11: An example of localisation performance along a long trajectory. The
trajectory length was 66 metres and the total accumulated drift was 0.66 metres.

5.8.4 Drift Analysis

One of them main limitations of CCTAM in terms of a complete Simultaneous Locali-

sation And Mapping (SLAM) solution is the lack of loop closures (introduced in Section

3.2.3). Loop closures provide a method to correct the overall drift error introduced

by the incremental motion estimation approach used by most SLAM systems. In or-

der to determine how important this was for the work in this thesis two experiments

were conducted to analyse this drift. In the first experiment a MAV was flown along a

long trajectory (continuously localising and mapping) before returning to it’s starting

location. The results of this experiment are shown in Figure 5.11; the length of this

trajectory was 66 metres and the position drift accumulated over the length of this tra-

jectory was 0.66 metres. In this case the drift was significant enough to cause tracking

to fail completely (at the point marked with a square in the Figure). The combination

of the robust tracking approach and map optimisation via bundle adjustment mean CC-

TAM is able to implicitly close small loops. This is shown in the second experiment

where a MAV flies a similar trajectory to the first experiment but half-way it crosses a
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Figure 5.12: An example of localisation performance along a long trajectory with
short loop closures. The trajectory length was 64 metres and the total accumulated

drift was 0.05 metres.

previously mapped area. In this case the accumulated drift is small enough that CC-

TAM is able to close the loop, this allows the system to maintain tracking and allow the

MAV to complete the experiment. The results of this experiment are shown in Figure

5.12, the length of this trajectory was 64 metres and the final position drift was only

0.05 metres.

Figure 5.13: This graph plots the average Tracker update rate as it changes with the
size of the team.
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5.8.5 Scalability

In order to test the scalability of the CCTAM system the experiments from the previous

Section were repeated, teams of MAVs flying a pre-defined path while constructing a

map, while tracking the update rate of each tracking thread. Figure 5.13 shows how the

average Tracker update rate as it changes with the size of the team the simulated camera

frame rate is 60 Hz. These graphs demonstrate the limitations of the CCTAM system in

terms of scalability. For the work presented in this thesis it was found reliable operation

is feasible with an update rate of 20 Hz (i.e. teams of 4 MAVs). With team sizes of

greater than 4 MAVs an increase in tracking failures due to the low update rate become

too frequent for the framework to reliably control the MAVs. This can be mitigated by

reducing the maximum speed of the MAVs to compensate for the slower update rates

but this solution is less than ideal as it limits the range and capabilities of the MAVs.

5.8.6 Multi-Robot Task 1: Collision Avoidance

A discussed in Section 5.6 the position controller developed for the CCTAM framework

includes a MAV-to-MAV collision avoidance system based. Full details of this system

are given in Chapter 6 however for the purposes of this experiment a brief description

is included here. The controller is based on a reciprocal collision avoidance approach

in which each MAV communicates their current position and velocity to all the other

MAVs. If a MAV detects that it’s current velocity will result in a collision with another

MAV (within a pre-defined time horizon) the MAV will alter it’s velocity in such a

way that it takes half the responsibility for avoiding the collision. It is assumed the

other MAV will do the same thus the reciprocal nature of the system. The key point

for the purpose of these experiments is the requirements for each MAV to share their

positions and velocities. In CCTAM the positions are reported in the global map frame,

if the reported position are not consistent i.e. there is some drift between the coordinate

systems of each MAV this will result in a collision.

The experiment conducted is as follows, firstly the MAVs use a pre-built map of

the simple simulated environment, the MAVs start in a circular configuration. Each

MAV is commanded to fly to the opposite side of the circle (via the centre) meaning

without collision avoidance all the MAVs would collide with one another. As before the

experiments are repeated for increasing number of MAVs and the experiment repeated

100 times for each team size. Figure 5.14 shows an example of the MAV trajectories

recorded for a single test with 3 MAVs and Table 5.2 shows a complete summary of the

results. All collisions in these experiments occurred as a result of localisation failures as

a results of the reduced update rate for the larger teams. As stated before more reliable

results can be obtained by reducing the maximum speed of the MAVs.
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Figure 5.14: MAV trajectory plot for a collision avoidance experiment with 3 MAVs,
the start location for each MAV is marked with a dot and the end location a square.

Table 5.2: Collision Avoidance Experiment Summary

Team Size Simulated Pose CCTAM Pose Estimate

2 100% 100%
3 100% 97%
4 100% 75%
5 100% 50%
6 100% -

Real World Collision Avoidance Experiments

The collision avoidance experiment was repeated with two AR.Drones in an indoor en-

vironment as shown in Figure 5.15. The experiment was repeated 20 times and the

resulting collision avoidance rate was 75%. This is the same collision rate for simulated

team of 4 MAVs and an unexpected result given the good localisation performance on

real hardware. Further investigation revealed the laboratory environment for the ex-

periment exhibited an unusually high level of wireless network interference. Analysis of

wireless network traffic revealed an unusually high rate of packet loss, this typically oc-

curs when the frequency band is highly congested. The effect of this level of interference
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was an increase in the variability of the rate at which camera images are received by the

ground station computer at the worst there would be a delay of 500 milliseconds before

a new camera image would be received. As already shown with the simulated exper-

iments when the camera update rate drops sufficiently localisation becomes unreliable

leading to collisions. This is a concern for this approach as there are many scenarios

in which reliable wireless communication cannot be guaranteed, such as exploring an

indoor environment in a disaster scenario.

Figure 5.15: Conducting collision avoidance experiments with real hardware

5.8.7 Multi-Robot Task 2: Exploration

In this set of experiments the performance of the entire framework is tested using the

auction based exploration controller described in Chapter 6. In this experiment the

MAVs start with no pre-built map and the experiment was performed the the disaster

site simulated world. Using the exploration controller the MAVs autonomously explore

the environment (with no pre-defined way-points) and attempt to construct a complete

map of the environment. This experiment validates the performance of the mapping,

localisation control and collision avoidance components of the framework.

As before experiments are performed with an increasing number of MAVs and re-

peated 50 times for each team size. In order to verify the accuracy of the reconstructed

map-points produced by CCTAM a ground truth model was created using uniform sam-

pling of the 3D model used in the simulation to produce a ground truth point cloud.

Figure 5.16 (bottom) shows the map-points created by CCTAM and Figure 5.16 (top)

the points extracted from the 3D model of the simulated world. The Iterative Closest

Point (ICP) algorithm was then used to align the two point clouds and compute the final

RMS error for the alignment. This is not a foolproof method of verifying the accuracy of
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Figure 5.16: An example the ground truth model of the simulated environment (top)
and the map-points produced by CCTAM (bottom). A comparison of these two point-

clouds is used to determine the accuracy of the map produced by CCTAM.

Table 5.3: Exploration Experiment Summary

Team Size
Mean Map

Size
Mean Execution

Time
Mean Alignment

RMSE

1 20751 900 0.105
2 21042 467 0.109
3 20053 353 0.110
4 20823 308 0.109

Mean 20667.25 506.25 0.10825
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the map produced as the points produced by CCTAM do not match exactly to the points

extracted from the 3D model (which are extracted by uniform sampling of the model

surfaces). This approach is sufficient however to detect any larger inconsistencies in the

map resulting from any drift in the pose of the MAVs. Table 5.3 presents a summary of

the results collected for the experiment. The mean ICP error for CCTAM is 0.09 metres

the corresponds to the localisation error seen in the previous localisation experiments.

Again this does not provide an fully accurate measure due to the discontinuity between

the points extracted from the simulator model and the points use for visual navigation.

From table 5.3 it can also be seen that increasing the team size has a significant

impact on the time taken to completely map the 20 × 20 metre highlighting the main

benefit of multi-robot systems. Another benefit is robustness to failure of a single MAV.

As discussed earlier the tracking frame-rate degrades with larger teams which increases

the chances of localisation failure. This occurred a number of times with a team size of

4 MAVs, however in all cases the remaining team was still able to complete the mapping

task. This explains the slightly higher than expected run time for team size 4.

5.9 Conclusion

This Chapter has presented the CCTAM framework a centralised multi-robot visual

tracking and mapping framework aimed at low-cost MAVs. The high level architecture

of the framework was first introduced. The Chapter then continued with a description

of the inner workings of each individual component. An experimental evaluation of the

framework both in simulation and on real hardware was also presented.

The focus with this work was to determine the feasibility of using re-localisation

to enable multi-robot visual navigation using low cost MAVs. As such there are many

possible extensions or improvements to be made to the existing framework. As already

mentioned the system does not include any loop closure capabilities. While we demon-

strate that with the inclusion of an implicit loop closure even longer trajectories (60

metres) are possible with the system the lack of loop closure is a limiting factor if the

application requires long trajectories. However this level of performance was believed

to be sufficient for the work presented in this thesis and it was decided not to focus on

loop closure and leave this as future work.

As discussed in the experimental evaluation the other limitation of the framework is

the scalability of the centralised approach. This is a limitation of the architecture rather

than the implementation; this will be demonstrated in Chapter 5. A related problem

is the lack of robustness to delay in the Visual SLAM system, as demonstrated with

the simulated experiments for teams of 4 MAVs or more and the real world experiments

conducted in poor wireless conditions. In these cases the EKF delay compensation is not

enough as, despite the fact that the EKF is still able to maintain a noisy estimate of the

pose of the MAV (using Visual Odometry), the Visual SLAM system cannot continue

mapping and is therefore unable to recover. It is the contention of this thesis that the
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most robust and scalable solution is a distributed approach where Tracking is done on-

board the MAV. This has several advantages including vastly improved scalability and

improved robustness to delay. This will be demonstrated via an experimental evaluation

of just such a distributed system which will be presented in the following Chapter,

Chapter 5.



Chapter 6

Distributed Collaborative

Tracking and Mapping

6.1 Introduction

In the previous Chapter a centralised approach to multi-robot visual navigation, based

on the idea of re-localisation enabled single map approach, was presented. It was demon-

strated, through a series of experiments, that while the performance of the approach in

terms of localisation and mapping accuracy was sufficient for both indoor and outdoor

control of a team of MAVs, the centralised approach was limited in scalability and robust-

ness. In this Chapter a partially distributed approach to multi-robot visual navigation

is presented. This approach features improved robustness and significantly increased

scalability, while maintaining the same localisation and mapping performance.

The goal is to enable cooperative multi-robot navigation tasks using MAVs with very

low on-board computing resources. It is desirable for the system to support as many

MAVs as possible, operating simultaneously within the same area. These requirements

lend themselves to a distributed system where computationally intensive tasks are run

off-board on a more powerful ground-station computer. A distributed system operating

in real-time over a wireless link places constraints on a system, as the wireless link

can quickly become a bottleneck for the performance of the system. Therefore the

interprocess communications of the proposed system must use as little bandwidth as

possible in order to enable a larger number of MAVs to operate simultaneously in a

reliable manner.

The three main contributions of the work presented in the chapter are as follows:

1. A partially distributed, multi-MAV visual navigation framework which is both

scalable and features good localisation performance as well as robustness to wireless

network delay.

2. A more general framework, in terms of the MAVs it supports. The work presented

in the previous Chapter targeted a specific platform (the AR.Drone), the work in

111
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this Chapter aims to make the framework applicable to different MAV platforms.

This is done via a more flexible stereo initialisation procedure as well as making

use of an more general EKF framework.

3. Two example hardware platforms, designed for use with the proposed system. The

most important component of the hardware platform is the on-board computer,

experiments were conducted to establish the performance of the proposed system

on a number of popular on-board computers.

The remainder of this Chapter is organised as follows: Section 6.2 presents the gen-

eral approach and Section 6.3 starts with an overview of the proposed system, before

providing an in depth presentation of each of its main components. Section 6.5 discusses

some additional components in the framework and Section 6.6 provides details of the im-

plementation. The example hardware platforms developed as part of the work presented

in this Chapter are presented in Section 6.7. The Chapter finishes with a presentation

of the experimental evaluation in Section 6.8 and some conclusions in Section 6.9

6.2 Partially Distributed Visual Navigation

In this chapter we present a system for partially distributed multi-MAV visual naviga-

tion. The system is referred to as the Distributed, Collaborative Tracking and Mapping

system (DCTAM). The DCTAM system is based on the Parallel Tracking and Mapping

(PTAM) system developed by Klien and Murray[54], similar to CCTAM and several of

the systems discussed in the previous section. In CCTAM the tasks of real-time mo-

tion estimation for each MAV and map creation/refinement were divided into separate

threads running on the same computer. In DCTAM we divide these components into a

distributed system where the tracking component operates on-board each MAV in paral-

lel and the map creation/refinement component runs on a more powerful ground-station

computer.

The key advantage of the approach presented in this Chapter is the ability run to the

real-time critical components of the localisation framework on-board the MAV without

having to limit the size of the map (mapping is still done on a ground station computer).

In this Chapter we will demonstrate how the distributed architecture allows the system

to maintain a high tracking frame-rate. This leads to improvements in terms of both

tracking performance as well as robustness. Additionally, as tracking is no longer pro-

cessed centrally the system features vastly improved scalability (up to 20 MAVs in our

experiments). In contrast to the approach of Foster et al. we also ensure each tracker

has a local copy of the map to ensure that drift-free tracking (within previously mapped

areas) can still be performed even when the MAVs lose communication with the ground

station. One of the key limitations of such a distributed approach is the communica-

tions overhead, if communication between nodes within the system is too expensive the

benefits of a distributed approach is somewhat limited. The system presented in this
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Figure 6.1: Basic system overview of the DCTAM system.

Chapter addressed this issue through the use of an effective communication model and

the application of compression techniques. This not only ensures rapid communication

but also serves to facilitate the improved scalability.

6.3 System Overview

An overview of the proposed DCTAM system is shown in Figure 6.1. In DCTAM the

MAVs handle both image acquisition and frame-to-frame tracking; having tracking and

image capture running on the same device is key to the performance of DCTAM (for

a fuller discussion see Section 6.8). The MAVs are all connected to the ground-station

computer via a wireless link. The ground-station computer runs the Mapper which

handles map creation and optimisation. Each component within the system is very

modular and therefore is very flexible in terms of hardware and software. Additionally,

while the target platform is aerial vehicles the architecture will support ground-based

robots or hand-held devices (for example tablets or mobile phones).

6.3.1 The Map

A map M in DCTAM system is defined as:

M = (P,K)
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Figure 6.2: An overview of the DCTAM Map data structure. The Map consists of a
set of keyframes and map-points, each keyframe contains a set of point measurements
which reference a specific map-point. Each map-point contains a reference to the source

keyframe from which the map-point was created.

where P is a sparse set of point features located in a global coordinate frame W and

K is the set of keyframes. Each point feature is represented by an 8× 8 pixel textured

region in the world. The ith point in the map is stored as

Pi = (WUi, dPi)

where WU = (Wx,W y,W z) is the point’s 3D position and dPi is the point descriptor.

A notable aspect of Klien and Murray’s approach is the fact that the pixels making up

each point Pi are not stored. Instead the point descriptor, defined as dP = (s, y, l),

represents a pointer to the source keyframe s, the source pyramid level y and pixel

location l. Therefore it is necessary to retain the original image pyramid I for all

keyframes. The jth keyframe in the map is stored as:

Kj = (WTj , Ij ,Nj , Cj , dKj)
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where: (i) WT = (Wx,W y,W z,W Φ,W Θ,W ψ) is the 3D camera pose of the captured

frame; (ii) I is a 4 level image pyramid and (iii) N is the set of intrinsic camera param-

eters (iv) C is a set of point measurements and (v) dK is the keyframe descriptor. Each

point measurement cij = (Pi,Kj , PLj , PMj) is a measurement of point Pi in keyframe

Kj and PLj is the image pyramid level and PMj is the image point measurement. The

keyframe descriptor is defined as dK = SBI(Iks), where SBI (Small Blurry Image) is the

down-sampled and blurred re-localisation image (described in Section 5.2). An overview

of the Map data structure is shown in Figure 6.2.

In order to achieve distributed tracking and mapping the Map data structure must be

shared and updated by the trackers (on board each MAV) and the ground station. The

interconnected nature of the map data structure makes this task more complex as refer-

ences between map-points and keyframes must be maintained in order for the tracking

and bundle adjustment operations to work correctly. A straight forward solution would

be to serialise the entire map data structure and transmit these between the ground

station and trackers. This has the advantage of preserving the complete data structure

at the cost of a significant amount of bandwidth (as this would involve re-transmitting

all the keyframe images). The goal with DCTAM is to minimise communication cost as

much as possible in order to facilitate scalability. Therefore a different communication

approach was chosen where the map data structure is not transmitted as a whole, in-

stead separate messages are created for each map component (keyframes, map-points,

measurements) so they can be transmitted independently. Additionally this approach

allows the modification of the data structure to make communication more efficient. To

each keyframe and map-points an integer identifier is added so each item can be refer-

enced using its identifier. This facilitates the maintenance of the relationships between

keyframes, measurements and map-points even when these messages are transmitted

separately. This also helps reduce communication costs as a modification to the map

can be done by reference. For example adjusting keyframe poses after a bundle adjust-

ment can be accomplished by broadcasting the keyframe identifiers and new positions,

instead of the entire keyframe data structure.

6.3.2 Tracking

DCTAM trackers use the same tracking approach to CCTAM, using AGAST corner fea-

tures and the same two stage tracking process described in Section 5.4.2. In CCTAM a

new keyframe is only passed on to the mapper if tracking quality is high (quality is based

on the ratio of expected points to points actually found) and sufficient distance from any

previous keyframes has been reached. In order to compensate for the potential latency

between a new keyframe request and the response from the Mapper in DCTAM the

tracker cannot request another new keyframe until a sufficient time tnewkf has elapsed

(this is approach is also used by Adreas Wendel [119] for his single MAV distributed
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Figure 6.3: The structure of the New KeyFrame message in DCTAM. The message
consists of a single keyframe as well as a set of measurement of existing map-points

used when performing Bundle Adjustment.

system). The parameter tnewkf can be set manually or, in cases where network perfor-

mance fluctuates, dynamically using the actual round trip time recorded from periodic

ping request to the ground-station.

When the Tracker has travelled a pre-defined distance, or detected enough new

features within the environment a new keyframe needs to be transmitted to the mapper.

To achieve this the Tracker generates a new keyframe request message; the structure

of this message is shown in Figure 6.3. The keyframe message contains a keyframe id

however this is not set at this point, instead all identifiers are set by the mapper to ensure

consistency. To reduce the size of the message the image is compressed using lossless

Portable Network Graphics (PNG) compression. This keeps the bandwidth requirements

low while ensuring the mapper does not receive an image with compression artefacts.

This is important as the AGAST features extracted by the tracker are not transmitted

with the new keyframe request. Instead we exploit the efficiency and repeatability of

the AGAST corner detector to reduce communication costs by re-extracting the corner

features when the request is received by the mapper. In addition to the new keyframe a

set of measurements of existing map-point are included. These measurements are used

to calculate the re-projection error for the Bundle Adjustment (BA) procedure. It was

decided to include the camera parameters in each keyframe message, this is not strictly

required as these parameters are fixed for each MAV, however it is useful for other

high-level parts of the framework to have the image resolution and camera projection

parameters available (see Chapter 6).

6.3.3 Stereo Initialisation

On system start up there are no existing points from which to triangulate, thus the

map initialisation process requires a pair of keyframes with a sufficient baseline between

them to triangulate the first set of map-points. The stereo initialisation message in
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Figure 6.4: Structure of the Stereo Initialisation message used by the DCTAM system.

our system is shown in Figure 6.4. The message consists of the first two keyframes

and a set of 2D point correspondences between the two keyframes (this is generated by

the tracker during stereo initialisation). The mapper assumes the initialisation scene is

planar and computes a homography to describe the relative transformation between the

two keyframes. This relative transformation can then be used to compute the first set of

map-points, by triangulation of the corresponding feature points in both images. After

a successful stereo initialisation a new map is generated, this is broadcast to all trackers

as a map update message which is described in more detail in the next section.

Figure 6.5: Structure of the Map Update message used by the DCTAM system.

6.3.4 Mapping

The Mapping process runs on the ground-station and is responsible for building the ini-

tial map using a stereo initialisation process and then further extending the map using

the keyframes provided by the trackers. When the mapper receives a new keyframe

request from a tracker it reconstructs the full keyframe structure including the image

pyramid and AGAST features. This is a repetition of some steps performed by the
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tracker, but this is done to reduce the bandwidth requirements. New map-points are

added by triangulating points in neighbouring keyframes and the poses refined by local

bundle adjustment as in CCTAM. As in the original PTAM we use the local bundle

adjustment procedure which operates on the new keyframe and its four closest (lin-

ear distance) neighbours. As this local bundle adjustment converges quickly we only

generate a new map update once it has finished.

The structure of the map update is shown in Figure 6.5. The map update contains

the set of all newly created map-points as well as the source keyframes. It is at this point

that each keyframe and map-point is assigned a new, unique identifier. As tracking is

performed using direct matching of image patches it is necessary for all trackers to retain

the original keyframe images. Therefore it is necessary for the mapper to re-broadcast

the source keyframes. We again use PNG compression and transmit only the original

image to keep bandwidth costs as low as possible. If only a single MAV is being used

this is not necessary as the tracker will already have the keyframe image.

In addition to a local bundle adjustment a global bundle adjustment is also per-

formed. The bundle adjustment procedure aims to reduce the re-projection error; the

expected position versus measured position for all map-points in keyframes using the

set of measurements. It has the effect of generating a new position for the affected

map-points and a new pose for each affected keyframe.

Figure 6.6: Structure of the Bundle Adustment Update message used by the DCTAM
system.

Instead of generating a new map update, once bundle adjustment converges, we

generate a bundle update. The structure of the bundle update message is shown in

Figure 6.6. As each keyframe and map-point has a unique identifier we can keep the

message size to a minimum and include only the identifier and new pose/position for

each keyframe/map-point. The bundle update also contains a list of map-points to

be deleted, these are points with few measurements which are identified to be outliers

during bundle adjustment.
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6.4 Message Handlers

Message handlers are added to both the Tracker and Mapper components which are

responsible for processing incoming messages. For the Tracker two message handlers

HandleMapUpdate and HandleBundleUpate are defined. The algorithm for Han-

dleMapUpdate is described in Algorithm 10 and HandleBundleUpate is described

in Algorithm 11. Where DECODE is a function which takes as input a PNG compressed

image and will return the raw uncompressed image. The functions KFLOOKUP and

MPLOOKUP take a keyframe or map-point identifier as input and will return the

corresponding keyframe or map-point.

Algorithm 10 HandleMapUpdate(MU,M)

Input: a Map Update message consisting of a set of keyframe messages (kfm) and

map-point messages (mpm) and the local map to update M .

1: for all kfm ∈MU do

2: I ← DECODE(keyframe image)

3: WT ← keyframe pose

4: N ← camera parameters

5: C ← ∅
6: dK ← SBI(I)

7: k ← (WT, I,N , C, dK)

8: M ∪ {k}
9: end for

10: for all mpm ∈MU do

11: WU ← mappoint position

12: s← KFLOOKUP(source keyframe id)

13: y ← source pyramid level

14: l← pixel coordinates

15: dP = (s, y, l)

16: m← (WU, dPi)

17: M ∪ {m}
18: end for
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Algorithm 11 HandleBundleUpate(BU)

Input: Bundle Update message consisting of a set of keyframe update messages

(kfu) and map-point update messages (mpu).

1: for all kfu ∈ BU do

2: WT ← keyframe pose

3: k ← KFLOOKUP(keyframe id)

4: k ←W T

5: end for

6: for all mpu ∈ BU do

7: WU ← keyframe pose

8: k ←MPLOOKUP(mapppoint id)

9: k ←W T

10: end for

For the Mapper another two message handlers HandleStereoInit and Handle-

NewKeyframe are defined. The algorithm for HandleStereoInit is described in Al-

gorithm 12 and HandleNewKeyframe is described in Algorithm 13. Where WT ← 0

initialises the transformation WT with all zero values, COMPUTEHOM computes a

homography from point matches in two images, BUNDLEADJUST G computes a

global bundle adjustment for a given map and BROADCAST MU will create and

broadcast a Map Update message for a given map.
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Algorithm 12 HandleStereoInit(SI)

Input: A Stereo Initialisation message SI consisting of a pair of keyframe messages

(kfm) and a set of point matches (pm).

Ouput: A new map M

1: M ← ∅ . Create an new empty map

2: for all kfm ∈ SI do . Process keyframe messages

3: I ← DECODE(keyframe image)

4: WT ← 0

5: N ← camera parameters

6: dK ← SBI(I)

7: C ← ∅
8: ki ← (WT, I,N , C, dK)

9: end for

10: HT ← COMPUTEHOM(k1, k2, pm0, . . . , pmn)

11: WT ← HT for WT ∈ k2)
12: for all pm ∈ SI do . Create mappoints from point matches

13: mp← POINTTRIANG(kf1, kf2, pm)

14: mp ∪ {m}
15: end for

16: BUNDLEADJUST G(M)

17: BROADCAST MU(M)

18: return M

Algorithm 13 HandleNewKeyframe(NK,Qkf )

Input: A New Keyframe message NK including a set of measurements mes and

the new keyframe processing queue Qkf .

1: I ← DECODE(keyframe image)

2: WT ← keyframe pose

3: N ← camera parameters

4: dK ← SBI(I)

5: C ← ∅
6: for all mes ∈ NK do

7: P ←MPLOOKUP(mapppoint id)

8: K ← keyframe id

9: PL← pyramid level

10: CM ← pixel measurement

11: c← (P,K, PL,CM)

12: C ∪ {c}
13: end for

14: k ← (WT, I,N , C, dK)

15: Qkf ∪ k
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The new keyframe processing queue Qkf is a First-In-First-Out (FIFO) queue to which

each new keyframe is added by the new keyframe handler. Each new keyframe is pro-

cessed and added to the map, the algorithm for processing new keyframes is given in

Algorithm 14. Where AGAST returns all AGAST features extracted from a given

keyframe image, FINDCLOSEST returns the closest, in terms of linear distance,

keyframe to a given keyframe, EPISEARCH uses epipolar search to find matching

points in two images and BUNDLEADJUST L performs bundle adjustment on a given

keyframe and its four closest (linear distance) neighbours.

Algorithm 14 ProcessNewKeyframes(Qkf ,M)

Input: The new keyframe processing queue Qkf and the map M .

1: for all kf ∈ Qkf do

2: fp← AGAST(kf)

3: M ∪ kf
4: kfc ← FINDCLOSEST(kf,M)

5: fpc ← fp ∈ kfc
6: for all l ∈ PL do

7: pm← EPISEARCH(kf, fp, kfc, fpc)

8: mp← POINTTRIANG(kf, kfc, pm)

9: mp ∪ {m}
10: end for

11: BUNDLEADJUST L(kf,M)

12: BROADCAST MU(M)

13: end for

6.4.1 Automated Stereo Initialisation Methods

There are many alternatives to generating the stereo pair required for map initialisation

such as using fiducial markers [120], multiple model filtering [95] or use of a stored map.

CCTAM relied on sensor information from the AR.Drone, particularly optical flow and

sonar. This worked well but required all platforms to have the same suite of sensors. A

more generic approach will increase the number of potential platforms supported by the

framework; therefore, DCTAM supports multiple automated initialisation methods.

The first initialisation approach tracks the camera baseline in pixel space and will

trigger stereo initialisation once a user-defined pixel baseline has been reached. This is

the most general approach as the only data required is image data. However as this

approach does not have a metric estimate of the scene depth the map will be initialised

with an arbitrary scale. This is sufficient in applications where metric scaling is not

required or the visual scale is estimated other means (e.g. using an EKF). The second

approach relies on metric depth data provided by a sensor such as sonar or laser and

applies metric scaling to the optical flow using the method described in Section 3.2.3.

This allows the camera baseline to be tracked in metric space; meaning the map can
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also be initialised in metric space. The final approach also requires no additional sensors

by making use of a fiducial marker based initialisation method similar to [120]. The

know dimensions of the marker can be used to track the camera baseline in metric space

ensuring the map is also initialised in metric space. These initialisation methods provide

a more general solution to stereo initialisation allowing the framework to be used on a

larger variety of MAV platforms.

6.5 Additional Components

Similar to the discussion presented earlier regarding CCTAM, a discussion of the ad-

ditional components required to make DCTAM a full visual navigation solution is pre-

sented in this section. These components include a more general Extended Kalman Filter

(EKF) framework as well as the collision avoiding trajectory controller (introduced in

Chapter 4).

6.5.1 Extended Kalman Filter (EKF)

In order to make the framework more generic it was decided not to re-use the EKF

from CCTAM discussed in Section 5.5. Instead the more generic Multi-Sensor-Fusion

Extended Kalman Filter (MSF-EKF) approach of Lynen et al. [71] was employed. MSF-

EKF is a modular, generic EKF framework which supports a wide variety of absolute

sensors (for example vision, Global Positioning System (GPS)) as well as relative sensors

(for example Optical Flow, wheel odometry). The only sensor explicitly assumed by

the framework is an Inertial Measurement Unit (IMU). The IMU is used as a fixed

prediction sensor; the IMU measurements are integrated as a pseudo control signal in

the EKF prediction step (see Section 2.5). Additional sensors, such as Visual SLAM,

Visual Odometry or GPS, can then be integrated in the update step of the filter. As

this filter already includes the necessary sensor models no modification was necessary in

order to use this filter framework with DCTAM.

Note that while this configuration is more generic it does have some disadvantages,

as the EKF relies purely on inertial data when no vision estimates from DCTAM are

available. The double integration of accelerometer data to estimate position is acceptable

for only short periods and in the absence of vision estimates the EKF will diverge very

quickly from the true estimate. This makes the system more sensitive to tracking failures;

however if, as in the case of the AR.Drone, the MAV platform includes a optical flow

sensor then this data can easily be integrated into the EKF to improve robustness.

6.5.2 Trajectory Control

For trajectory control we employ the collision avoidance trajectory controller described

in Chapter 4. For all hardware experiments the trajectory controller runs on-board

the MAV together with the DCTAM Tracker and EKF. The same MAV radius scaling

approach described in Section 5.6 was also used for DCTAM.
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6.6 Implementation

The DCTAM framework was implemented in C++ and integrated into the Robot Op-

erating System (ROS) [93]. To further reduce bandwidth requirements the multi-master

package multimaster fkie1 is used to ensure only the DCTAM messages are transmitted

over the wireless link between ground-station and MAVs.

The bundle adjustment procedure used in the previous work on CCTAM had some

limitations in terms of it’s performance. With very large maps ≈ 20000 map-points the

global bundle adjustment can often take tens of seconds to converge. Additionally, as

bundle adjustment must be aborted in order to add new keyframes to the map, this

means the frequency with which the global bundle adjustment successfully converges

reduces drastically as the map size grows. This can lead to problems with drift, to

partially address this issue bundle adjustment was implemented using the generalised

graph optimisation framework G2O [58]. This framework provides a framework for

efficiently solving least squares optimisation problems like bundle adjustment. The main

advantage of this approach is its generic structure, which means that implementing other

optimisation techniques, such as loop closures, can be done more easily. It has the added

benefit of being moderately more efficient (as demonstrated by the experiments reported

on in the next section) which results in a increased completion rate for the global bundle

adjustment.

Figure 6.7: The first DCTAM hardware platform based on the AR.Drone frame and
PX4 flight controller.

1http://wiki.ros.org/multimaster_fkie

http://wiki.ros.org/multimaster_fkie
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Figure 6.8: The second DCTAM hardware platform based on a custom designed 3D
printed frame.

6.7 DCTAM Hardware Platforms

Two hardware platforms were developed to both serve as a reference platform for the

DCTAM system as well as providing platforms for the experimental evaluation. For these

platforms a dual processor architecture was chosen consisting of a flight controller and an

on-board computer. The architecture of this approach is illustrated in Figure 6.9. The

flight controller serves as a sensor and motor interface as well as an attitude controller.

The on-board computer handles the higher level tasks including running DCTAM, the

EKF and position controller, as well as interfacing with the camera sensor. This dual

processor architecture was chosen for its ease of implementation using existing flight

controllers and on-board computers. This approach has the added benefit in terms of

robustness, as a complete failure of the on-board computer does not result in complete

failure of the aircraft and the flight controller is still available to stabilise and land the

aircraft.

Two separate hardware platforms were developed for use with DCTAM. While com-

prised of different hardware, each had the required components to run, DCTAM (flight

controller, on-board computer with WiFi link and a single camera). The first refer-

ence platform is based on the popular AR.Drone frame (see Figure 6.7) and is based

on the platform developed by Faessler et al [25]. The AR.Drone electronics were re-

placed with a PX4-based flight-control system consisting of a PX4 Flight Management

Unit (PX4FMU) and an AR.Drone adapter board (PX4IOAR) which interfaces with

the AR.Drone motors. The on-board companion computer is an Odroid U3, an ARM-

based single board computer with a 1.7 Ghz Quad-core processor with 2 GB of RAM.

The MAV has a single MatrixVision mvBlueFOX-MLC200w 752x480 pixel monochrome
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camera fitted with a 100◦ wide-angle lens. The total cost of this platform is £750 and

the average flight time is 10 minutes. The second platform is a custom 3D-printed quad-

copter frame (see Figure 6.8), the flight controllers is another PX4-based flight controller

and the on-board computer is the Odroid U3. The total cost of this platform is £400

and the average flight time is 12 minutes. Full details of the design of the 3D printed

platform as well as links to repositories containing all hardware designs and software for

the DCTAM framework are described in Appendix A.

Figure 6.9: The dual processor architecture of the DCTAM hardware platforms.

The memory requirements of the DCTAM system are not significant, the largest

component required to store in memory is the Map, of which the keyframe images make

up the bulk of the data. For the largest maps used in the work in this thesis the number

of keyframes is in the order of 150 keyframes. This means a memory requirement of

≈ 46 Megabytes and given typical memory capacity for single board computers of this
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class is in the gigabyte range it can be concluded that memory requirements are not a

limiting factor for the DCTAM system.

Processor performance however is a limiting factor, tests were conducted with several

common on-board computers and the results are presented in Section 6.8.10. Of the on-

board computers tested the one with the worst performance was the Intel Atom-based

computer. While the computer is still able to run the DCTAM system it is only capable

of an update rate of 14 Hz. As discussed previously in our evaluation of CCTAM’s

scalability (Section 5.8.5) an update rate of 20 Hz or more is best for robust performance

with fast moving MAVs.

6.8 Evaluation

This section describes the experiments conducted on the Distributed Collaborative

Tracking and Mapping (DCTAM) framework and is organised as follows: it begins with

a description of the experimental setting including the simulation and hardware plat-

forms. Section 6.8.3 describes the robustness experiments performed on the DCTAM

framework, Section 6.8.4 goes on to discuss the scalability experiments performed on

the framework. And Sections 6.8.6 and 6.8.7 present the results obtained using DCTAM

for two multi-agent coordination tasks, collision avoidance and exploration. The section

concludes with an analysis of the performance of DCTAM on a number of on-board

computer in Section 6.8.10.

6.8.1 Simulation Environment

The same simulator (Gazebo) and simulated environments described in Section 5.8.1

are used for the experiments described in this section. During the course of this work

a limitation with the Gazebo simulator was identified; increasing the number of MAVs

being simulated affects the frame rate of the simulated cameras. Note this is not the

tracking frame rate as discussed in Section 5.8.5 but the ability of the simulator itself

to generate images for the simulated cameras at a reliable frame rate. Due to this

limitation for the larger experiments described in this section a distributed simulation

architecture is employed. Good performance is maintained when a maximum of 4 MAVs

per simulator are used. Therefore a separate simulator instance is created (with the same

simulated world) for each 4 MAVs in our experiments. All MAVs share the same map

and communicate their positions (for collision avoidance) as before. This means as far

as the localisation, control and decision making components of the system are concerned

the MAVs are all operating within the same environment. This approach facilitated the

larger scale experiments described in this section.

6.8.2 DCTAM Hardware Platforms

The hardware platforms used in the hardware experiments described in this section

were the DCTAM reference platforms introduced in Section 6.7. These experiments
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were conducted in the same lab environment as those described in Section 5.8 under the

same conditions in terms of both lighting and wireless network conditions.

6.8.3 Robustness

A common artefact of wireless networks is high latency which can have a negative impact

on a distributed system like ours. To investigate this simulated experiments were con-

ducted where artificial random delays were introduced to determine the effect of delay

on our system. Figure 6.10 shows the results of two delay experiments conducted, here

a single MAV is flown at a constant speed in a single direction. DCTAM is compared to

the previous approach, CCTAM, where the video feed is streamed from the MAV to the

ground-station. As the MAV is flying into a previously unmapped area both systems

must capture new keyframes and add new points to the map.

As the results show DCTAM system performs well even with a maximum delay

of 1000 milliseconds. Delay of this kind can be compensated for using an EKF and

motion model such as those used in CCTAM. However as mapping is vision based and

new keyframes can only be reliably included in the map when tracking is stable such a

solution is not effective in the presence of sufficiently large delays. This is demonstrated

in the second experiment where the delay is large enough for tracking and mapping to

fail completely. The experiment was extended to test the limits of our system and it was

found that even with an extreme maximum delay of 30 seconds DCTAM can continue

to operate. This is only possible if the MAV is moving sufficiently slowly that newly

added map-points reach the tracker before it needs them to maintain stable tracking. It

is fairly trivial to keep track of updates from the mapper and adjust the behaviour of

the MAV’s controller based on the current state of the system. If a tracker is waiting for

new map-points from the mapper the MAV can continuously reduce its speed in order

to ensure it does not leave the mapped area before the new map-points arrive.

Another important consideration in terms of robustness is the maximum speed the

system allows the MAVs to travel. A number of tests were conducted and they deter-

mined that for a camera with a standard 60 FPS update rate we are able to achieve

speeds up to 7 m/s before tracking performance becomes unreliable. Of interest is the

fact that past 7 m/s it is not the delay in processing introduced by the distributed archi-

tecture of DCTAM that impacts performance. Instead the main factor is the pitch/roll

rate of the MAV as it transitions from hover to forward flight. Reducing the maximum

pitch and roll rates leads to more stable visual tracking performance at the expense of

the reducing the acceleration and controllability of the craft.

6.8.4 Scalability

One of the most important factors affecting the scalability of a distributed system is

the communication cost. If communication is expensive the benefits of running a dis-

tributed system are reduced or negated completely. Figure 6.11 shows the bandwidth

requirements of a single MAV exploring in the simulated world; the final map for this
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Figure 6.10: Results of the delay experiment showing a delay of 600 ms (top) and
1000 ms (bottom).

experiment was 52 keyframes and 7240 map-points. Even with a very large map the

required bandwidth remains very low for the DCTAM system. Significantly lower than

streaming video directly (56 MB/s) to the ground-station as we did for CCTAM (see

Chapter 4) and even lower than the 1 MB/s required by [95] who use the same library as

CCTAM and DCTAM but who send the full colour image captured by the camera. We

instead send only a compressed grey-scale image (we use lossless PNG compression with

a low compression rate to limit computation time) and are able to achieve a requirement

of only 9 Kb/s for a single MAV and 42 Kb/s for a single MAV operating as part of

a team. The additional bandwidth is required for a tracker operating as part of a team

as this requires broadcasting the new keyframes to all MAVs in the team.
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Figure 6.11: Results of the bandwidth experiment showing the bandwidth require-
ments for a single drone when operating alone (top) and as part of a team (bottom).
Note how the requirement to transmit the keyframes to all MAVs increases the received

messages whereas the sent messages remain the same.
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Figure 6.12: Results of the scalability experiments, these graphs show the trjacec-
tories in 2D (top) and 3D (bottom) of 8 MAVs simultaneously exploring the same

environment.
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Figure 6.13: Results of the scalability experiments, these graphs show the trjacec-
tories in 2D (top) and 3D (bottom) of 20 MAVs simultaneously exploring the same

environment.
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With the reductions in bandwidth and processing requirements (from the distributed

architecture) comes the ability to handle larger teams of MAVs. Assessing the bandwidth

requirements for a DCTAM is somewhat challenging as communication only occurs

when a new keyframe is added to the map. In order to achieve reproducible results

the experiment is structured as follows. Firstly each MAV starts in the middle of our

simulated world, they are commanded to fly in a straight path outward until reaching the

edge of the environment. During this outward flight the MAVs will all be simultaneously

mapping new areas and therefore communicating with the ground-station regularly.

Once each MAV reaches the edge of the area it is commanded to fly across to the

position occupied by the adjacent MAV completing a polygon pattern (see Figures 6.12

and 6.13). In this phase each MAV flies into an area mapped by another MAV and any

inconsistency in the MAVs map caused by communication errors would lead to tracking

failures. Figure 6.12 shows the trajectories for the experiment conducted with a team of

8 MAVs. This experiment was run with a maximum random delay of 1000 milliseconds

to simulate a poor wireless network (typical examples of delay in commercial or home

wireless networks are from 250-500 milliseconds). The total distance travelled was 139.4

metres with a final RMS error of 0.09 metres.

The distributed simulation architecture helps maintain a good frame rate while scal-

ing up to larger experiments. Figure 6.13 shows the results from the largest scalability

experiment conducted featuring a team of 20 MAVs flying pre defined paths as before

mapping as they go. This experiment was run with a maximum random delay of 1000

and the mean RMSE was 0.09 metres. Figure 6.14 shows the bandwidth requirements

for all the MAVs. The bandwidth required for all sent messages (MAV to ground sta-

tion) was 561.45 Kb/s and the bandwidth for all received messages (ground station to

all MAVs) was 243.67 Kb/s. As can be seen from the results reliable localisation can be

maintained with a large team with very low bandwidth requirements making it possible

to deploy the system with a large team using no specialised communication equipment.

6.8.5 Hardware Scalability Experiments

It may be argued that, in the experiments shown in Figures 6.12 and 6.13, artificial

random delay does not approximate real world network conditions. Additionally lacking

the physical resources (both space and MAVs) to repeat the experiment in the real world

the next best approach was used. Both experiments were repeated under more realistic

conditions using a set of netbook computers which served as proxy-MAVs, each playing

back recorded images from the previous simulated experiment to on-board trackers.

Each tracker was connected via 802.11n wireless network to the mapper running on the

same ground-station computer. The results of these repeated experiments are shown in

Figures 6.15 and 6.16 and the final RMS error for these experiments both improved to

0.06 metres for the 8 MAV experiment and 0.067 metres for the 20 MAV experiment.

This improvements is down the running each tracker on a completely separate computer,
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Figure 6.14: This graph plots the bandwidth requirements for a team of 20 MAVs.

Figure 6.15: Results of the repeated experiment featuring 8 MAVs, with the Trackers
running on real hardware, the final RMS error was 0.06 metres.
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Figure 6.16: Results of the repeated experiment featuring 20 MAVs, with the Trackers
running on real hardware, the final RMS error was 0.08.

as opposed to all trackers running on the same computer as is done for the simulated

experiments.

6.8.6 Multi-Robot Task 1: Collision Avoidance

The collision avoidance experiment conducted with CCTAM (Section 5.8.6) produced

interesting results with respect to the reliability of the framework. As DCTAM featured

improved scalability (enabling experiments with larger teams of MAV) and robustness

(allowing the MAVs to run at full speed with reliable tracking performance) the collision

avoidance experiment was repeated to determine if these improvement yield results in a

practical scenario. In the previous experiment as the size of the team increased (causing

the tracking update rate to reduce) an increase in the rate of collisions occurring due to

tracking failures was seen. However as the results show in table 6.1 using the DCTAM

pose estimate all MAVs are able to avoid 100% of collisions as the team size scales. An

example of the results from these experiments is shown in Figure 6.17. It is interesting

to note that a comparison between the trajectories of the CCTAM collision avoidance

experiments (Figure 5.14) and the DCTAM experiments (Figure 6.18) that the trajecto-

ries of the DCTAM experiments appear smoother. With the distributed architecture the



Chapter 6. Distributed Collaborative Tracking and Mapping 136

Figure 6.17: A representative example of the simulated collision avoidance experi-
ments. The start position of each trajectory is indicated by a circle marker and the end

position a square.

MAVs are able to run at full tracking speed (60 frames per second (FPS)) which results

in smoother trajectories than the 30 FPS (for a team size of 3 MAVs using CCTAM).

Table 6.1: Collision Avoidance Experiment Summary

Team Size Simulated Pose
CCTAM Pose

Estimate
DCTAM Pose

Estimate

2 100% 100% 100%
3 100% 97% 100%
4 100% 75% 100%
5 100% 50% 100%
6 100% - 100%
7 100% - 100%
8 100% - 100%

Collision Avoidance Hardware Experiments

The collision avoidance experiment was repeated with the two MAV platforms described

in section 6.7 in the same indoor environment as shown in Figure 5.15. The experiment
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Figure 6.18: A representative example of the hardware collision avoidance experi-
ments. The start poisition of each trajectory is indicated by a circle marker and the

end position a square.

was repeated 20 times and the resulting collision avoidance rate was 100%. The im-

proved hardware performance matches the results of the simulated experiments. This

demonstrates under real world conditions the benefits of running the tracking on-board,

state estimation and control on-board.

6.8.7 Multi-Robot Task 2: Exploration

An exploration experiment was conducted using the auction-based multi-robot explo-

ration application described in Chapter 6. The results of this series of experiments is

shown in Table 6.2. Unlike CCTAM, DCTAM is not so constrained in terms of team

size, it was therefore possible to run the experiment with teams of up to 8 MAVs which

resulted in improved execution times. Note however that this reduction reaches a satu-

ration point (after the team size increases past 4 MAVs) where adding additional MAVs

does not significantly reduce the execution time. Therefore for an environment of the

size used in this simulation (a larger environment would see this saturation point later)

it can be seen that 4 MAVs is sufficient to map the environment effectively.

The alignment test (described in Section 5.8.7) is used to verify the accuracy of the

resulting map with respect to the ground truth CAD model. As before this experiment

does not give precise results as the points generated by mapping correspond to visual

features and the ground truth model is a uniform sampling of the model surfaces. An

example of the map produced and the reference model are given in Figure 6.19.
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Figure 6.19: An example the ground truth model of the simulated environment (top)
and the map-points produced by DCTAM (bottom). A comparison of these two point-

clouds is used to determine the accuracy of the map produced by DCTAM.

6.8.8 Drift Analysis

Several experiments were also conducted to verify the performance of the G2O imple-

mentation of bundle adjustment used in DCTAM. In the first experiment we compare

the global bundle adjustment completion times for a single execution on the same map,

we ensure both bundle adjustment algorithms used the same parameters in terms of

their termination criterion. As the bundle adjustment procedure is non-deterministic

the experiment was repeat 20 times (reloading the map for each iteration). The results

of this experiment are shown in Table 6.3. As the results show the average completion
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Figure 6.20: The figure show the performance of the new bundle adjustment imple-
mentation with respect to reducing accumulated drift. The trajectory length was 63

metres and the total accumulated drift was 0.34 metres.

Table 6.2: Exploration Experiment Summary

Team Size
Mean Map

Size
Mean Execution

Time
Mean Alignment

RMSE

3 20996 342 0.0972
4 20655 300 0.1035
6 20322 280 0.1002
8 20174 272 0.0966

Mean 20537 299.25 0.099375

time for the G2O bundle adjustment used by DCTAM is significantly smaller particu-

larly on larger maps. This is significant as global bundle adjustment must be interrupted

when a new keyframe is added to the map and if this occurs frequently global bundle ad-

justment may never be performed resulting in a poorly optimised map or even tracking

failures. The reduction in completion time afforded by the new implementation allows

the global bundle adjustment to complete more frequently generally resulting in more

optimised map. This could also have the effect of reducing drift on longer trajectories.

To verify this the drift experiment described in Section 5.8.4 was repeated to determine

if any improvement was made in the accumulation of drift along a long trajectory. The

results of this experiment are shown in Figure 6.20. The length of the trajectory was

63 metres and the accumulated drift was 0.34 metres. However in contrast to CCTAM
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Figure 6.21: The figure show the performance of the new bundle adjustment imple-
mentation with respect to reducing accumulated drift. The trajectory length was 74

metres and the total accumulated drift was 0.33 metres.

Table 6.3: Bundle adjustment computations times on various map sizes

KeyFrames MapPoints
CCTAM BA Time

(mean)
DCTAM BA Time

(mean)

98 16791 2.359 1.108
188 10069 4.836 3.621
200 22454 5.196 3.673
337 26885 22.638 10.181

the drift was small enough for DCTAM to close the loop and tracking did not fail. This

experiment was repeated only a even longer trajectory of 74 metres (shown in Figure

6.21) where again tracking did not fail and DCTAM was able to implicitly close the

loop.

6.8.9 Localisation Performance Hardware

To verify localisation performance with both the DCTAM framework and DCTAM hard-

ware platform we perform a real-world localisation experiment. Here, due to limitations

in available space in our Motion Capture Lab only a single MAV is used. The MAV is

commanded to fly pre-defined way points describing a square pattern and the experi-

ment was repeated 20 times. A representative example of the results of this experiment
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Figure 6.22: Results of a physical experiment with a single MAV navigating in a
2mx2m area; the RMS Error for this trajectory was 0.11 metres.

are shown in Figure 6.22. The mean RMSE for these experiments was 0.096 metres

demonstrating the similar localisation performance to both our previous experiments

with CCTAM and our simulated experiments.

6.8.10 Tracking Performance on Hardware

In this section we conduct experiments to analyse the performance of the DCTAM

tracker on a number of commonly available on-board computers. The list of computers

as well as their features is given in table 6.4. All on-board DCTAM components (Tracker

and EKF) are running on-board and the mapper is running on the same ground-station

computer. We use a pre-recorded dataset for consistency although as can be noted there

is some variation in the final map sizes. This is accounted for by the non-determinism

inherent in systems like DCTAM as even a small fraction of difference in the time a new

keyframe is captured can results in a different outcome (in terms of the map produced).

Figures 6.23 to 6.26 are dual plots showing the tracking time (left-hand scale) and

number of map-points (right-hand scale) for each experiment. The main take-away

from these results is the marginal increase in tracking time as the map size grows. From

the experimental results tracking time appears almost constant however as discussed in

Section 5.4.2 the search for map-points visible in the current frame scales linearly with

map size. The experimental results show this has a negligible effect on the tracking time

which is instead dominated by the feature extraction and error minimisation steps.

Figure 6.27 shows the average tracking time for each computer together with the

variance. The baseline computer, the I7 Desktop, has an average tracking time of

0.01 seconds, meaning on average a maximum update rate of 100 Hz is possible. The

Odroid U3 and Raspberry Pi are capable of a maximum update rate of 33 Hz and 25
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Figure 6.23: I7 desktop tracking time.

Figure 6.24: Odroid U3 tracking time.

Figure 6.25: Raspberry Pi3 tracking time.
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Figure 6.26: Intel Atom tracking time.

Figure 6.27: This figure shows the average computation time for the tracking threads
on a number of processors.

Table 6.4: Computer platforms used in the tracking performance experiments.

Platform Processor Memory

I7 Desktop 3.4 Ghz 8 Core Intel i7 16 GB
Odroid U3 1.7GHz 4 Core ARM Cortex-A9 2 GB
Raspberri Pi3 1.2GHz 4 Core ARMv8 2 GB
Intel ATOM 1.6 GHz Intel Atom N270 2 GB
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Hz respectively. The computer with the worst performance is the Intel Atom, with

maximum update rate of 14 Hz. Recalling the scalability experiment from Section 5.8.5

where it was found an update rate of 20 Hz is required for reliable operation, before is

would be required to reduce the maximum speed of the MAVs. From this experiment it

can be seen that DCTAM can be run at an acceptable rate even on low cost, low power

hardware such as the Raspberry Pi 3 and Odroid U3. Additionally it can also be used

on an Intel Atom based MAV with a reduction in speed.

6.9 Conclusion

This chapter presented a distributed approach to multi MAV visual navigation. The

approach expands on the previously presented centralised approach (CCTAM) with a

view to improving scalability and robustness. The reported results, from an extensive

set of experiments, demonstrated the significant improvements in both scalability and

robustness over CCTAM. With these improvements it was demonstrated that the perfor-

mance of DCTAM with respect to the two multi-robot coordination problems; collision

avoidance and exploration also improved. The results obtained demonstrated significant

improvement over CCTAM and that complex multi-agent tasks, such as collision avoid-

ance and exploration, can be performed using light weight MAVs with some on-board

computational resources.

This distributed approach is also more general than CCTAM and this was verified by

performing real world experiments using two custom hardware platforms developed us-

ing commonly available off the shelf hardware. The performance of the proposed system

(DCTAM) using a number of conventional MAV on-board computers was demonstrated,

highlighting the flexibility of the proposed system with respect to its hardware require-

ments.

The proposed system still had some limitations in terms of its long range capabilities

due to the scalability of the optimisation approach employed in this work. This issue was

partially addressed with a more efficient bundle adjustment implementation using the

generalised graph optimisation framework G2O. The generic nature of this optimisation

framework facilitates implementation of more robust and scalable map optimisation

techniques such as double-window bundle adjustment and loop closures (as discussed in

Section 3.2.3).



Chapter 7

Conclusions and Future Work

This thesis explored the problem of multi-robot visual navigation for MAVs, where a

single camera is the primary sensor on board the MAV. Chapter 1 introduced the MAV

platform as a small scale aerial robot capable of operating in both indoor and outdoor

environments. A specific application, that of disaster response, was introduced in detail

to highlight the difficulties with current GPS based navigation solutions and partially

motivate the work in this thesis.

Chapter 2 introduced the underlying principles of Computer Vision and Structure

From Motion. The focus of this thesis was the application of these techniques to a

real-time, multi-robot setting. Specifically the chapter introduced the classical pinhole

camera model as well as Devernay and Faugeras’ FOV distortion model. These concepts

were expanded on in the description of the structure-from-motion problem and the

related algorithms (including Perspective-n-Point, Triangulation, Epipolar Geometry

and Bundle adjustment) which present key methods to allow the 3D structure and/or

camera motion to be reconstructed from a sequence of images.

In Chapter 3 the related work was considered in the context of MAV navigation.

Other navigation approaches such a Radio-based, motion capture and Simultaneous

Localisation and Mapping (SLAM) were considered. The bulk of the chapter is dedicated

to discussing various SLAM approaches and their application to MAV navigation. We

highlighted the difficulties of applying the techniques commonly found on ground-based

robots (laser-based SLAM) to aerial vehicles, particularly the 3D nature of the problem

together with the size and power restrictions of the MAV platform itself. In addition

to discussing previous visual SLAM approaches two key problems which motivated the

work in this thesis were also highlighted:

1. The high computational complexity of the visual SLAM problem, which means

being able to run a full visual SLAM system on-board a MAV is only possible

if the map size is severely restricted (8-10 keyframes at most). This limits the

usefulness of the visual SLAM approach as no map of any practical use can be

created and maintained. Additionally, while overall position drift is reduced, it is

not removed using this keyframe-limited approach.

145
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2. Most previous multi-robot visual SLAM approaches focus on the issue of map

merging, that is each having each robot create an independent local map and

merging these into a common map when an overlap is detected between these

local maps. The main drawback of these previous approaches is scalability, each

local map must be compared to all other local maps to look for points of overlap

so they can be merged. Given that each map can consist of several thousand map-

points this is a problem that grows exponentially. This is one of the reasons why

the largest team size supported by previous multi-robot visual SLAM approaches

was 3 MAVs.

One of the challenges of the work in this thesis was the difficulty in evaluating a

multi-robot navigation system beyond a quantitative evaluation of its localisation and

mapping performance. A case study approach was used to provide an additional means

of evaluation. The performance of the mutli-robot navigation approaches developed in

this thesis were analysed in terms of their execution of two typical multi-robot coordi-

nation problems. The two scenarios chosen were collision avoidance and exploration. In

Chapter 4 these two coordination problems were introduced together with a description

of the particular approaches chosen to address them. Specifically a velocity-obstacle

based collision avoidance controller was introduced together with an auction-based ex-

ploration approach. The velocity obstacle-based collision avoidance approach was chosen

as it required accurate position and velocity data to be shared between each MAV; this

provided another method to test the consistency and reliability of the underlying locali-

sation approach in a real-time setting. The auction-based exploration controller directly

uses the sparse map-points generated by a feature-based visual SLAM system; this pro-

vides a method to verify the consistency of this data as well as it’s application to the

problem of exploration. That is to answer the question is the sparse map data generated

by a feature-based visual SLAM system provide sufficient information to allow a team

of robots to autonomously explore an environment.

The limitations of previous multi-robot visual SLAM systems (discussed in Chapter

3) in terms of map merging motivated the work presented in Chapter 5. This Chapter

introduced a different approach to multi-robot visual SLAM where appearance-based

localisation was used to ensure each MAV was able to localise within a common, global

map frame before proceeding to map an environment. The feasibility of this approach

was explored via the creation of a proof-of-concept visual navigation system we called

Centralised Collaborative Tracking and Mapping (CCTAM). CCTAM was a centralised

approach to multi-robot visual SLAM, meaning the full system ran completely off-board.

This allowed us to evaluate the feasibility of the appearance-based localisation approach

to facilitate multi-robot visual navigation. The main benefit of this approach was the

ability to perform multi-robot visual navigation without the requirement to do map

overlap detection or map merging. This is in contrast to previous approaches such as

Foster et al. [28], Riazuelo et al. [95] and Cherbrolu et al. [12]. These map merging
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approaches introduce additional computation overhead which limit the scalability (in

terms of the number of robots supported) of the system.

The main limitations of the work presented in Chapter 5 were twofold. First, because

all computation was carried out off-board, the MAVs were dependant on a reliable, low

latency wireless link to ensure good performance. In the presence of network delay

the system became unreliable, as demonstrated with the hardware collision avoidance

experiments in Section 5.8.6. The second limitation was inherent in the architecture of

the system. The multi-threaded approach limited the scalability of the framework. This

was demonstrated experimentally in Section 5.8.5 which saw the update rate for each

MAV decay almost exponentially with the size of the team. This not only affected the

scalability of the system but also the localisation performance. It was discovered that

a low update rate (below 15 Hz) drastically reduces the reliability of the framework.

This was evident by the noticeable increase in collisions in the simulated experiments

(25% collision rate for a team of 4 MAVs and 50% for a team of 5 MAVs). These

results motivated the development of a more distributed approach to address the issues

of scalability and robustness.

In Chapter 6 a partially distributed framework for multi-robot visual navigation

was presented called DCTAM (Distributed Collaborative Tracking and Mapping). The

framework built on the previous centralised approach but replaced the multi-threaded

architecture with a multi-processing one. This allowed the time critical tasks of frame-

to-frame motion tracking to be carried out on board the MAV. This made the system

significantly more robust to wireless network delay in comparison to CCTAM. Indeed,

this approach allowed the system to handle significant wireless network delay (up to 30

seconds in extreme cases). Additionally, because each MAV stores the complete visual

feature map locally a complete network failure only results in a loss of the mapping

capability of the MAV. Under these conditions tracking could continue provided that

the MAVs stayed within previously mapped areas. DCTAM also made use of an efficient

communication model (as well the use of lossless data compression) to ensure the neces-

sary bandwidth required for each MAV was kept low. In addition to the improvements

in robustness the framework also demonstrated vastly improved scalability. Indeed DC-

TAM was capable of operating with as many as 20 MAVs simultaneously exploring an

environment. Based on the bandwidth requirements recorded during these experiments

the system could potentially scale up to hundreds of MAVs before the communications

link became a bottleneck. However such experiments were beyond the limits of our cur-

rent simulation capabilities and would not have provide more insight into the benefits

of the approach beyond what has already been gained. The main insight gained from

these scalability experiments was the utility of the distributed architecture.

In comparison to related work (particularly Foster et al. [28]) DCTAM significantly

improved on the scalability of previous visual navigation frameworks, as stated previ-

ously the largest team supported by previous systems was 3 MAVs (Foster et al.) and
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DCTAM was able to scale to 20 MAVs operating simultaneously. This significant in-

crease in scalability opens the door for the wider application of vision-guided MAVs to a

host of domains from mapping to surveillance. Additionally in previous work the compu-

tational complexity of bundle adjustment forced users to limit the size of the map when

running a visual SLAM system on-board a MAV (as discussed in Section 3.2.3). With

the partially distributed architecture of DCTAM this limitation was removed and the

map size was no longer limited by the processing capabilities of the on-board computer.

Additionally in contrast to approaches such as Foster et al. [28] and Cherbrolu et al. [12]

the full global map was stored on-board the robots. This provides increased robustness

as, if a robot looses contact with the ground station, it will still be able to reliably

(i.e. without accumulating position drift) navigate within the previously mapped areas.

Another benefit of the DCTAM approach was the low computational requirements of

the on-board processes (the DCTAM Tracker). Our experiments showed the system was

able to run on very low cost, low power hardware such as the Raspberry Pi. This means

the system could be used on small (< 500 grams), more computationally constrained

platforms, or in the case of platforms with more computational resources, run along

side other software systems to perform tasks such as object recognition or high-level

planning.

The remaining limitations of DCTAM are primarily due to the choice of Klien and

Murray’s Parallel Tracking and Mapping (PTAM) [54] as our starting point for the sys-

tem. PTAM was originally released in 2009 and since then many advancements in the

fields of visual tracking and mapping have been made. Several of these advancements

were discussed in Sections 3.2.3 and 3.2.3. In particular the semi-dense tracking ap-

proach used in systems like SVO and LSD-SLAM show improved tracking performance

for fast motions and self similar structures. These approaches have the added bene-

fit of producing semi-dense depth maps which provide more information for robots for

tasks such as static obstacle avoidance. Improvements in optimisation methods, such as

Strasdat et al.’s [106] double window optimisation approach, significantly improve the

scalability of map optimisation over the standard global bundle adjustment approach

used for the work in this thesis.

One possible improvement to DCTAM is the removal of the centralised mapper.

The centralised mapper performs two main functions, processing new keyframes to find

new map points and local and global map optimisation. Weiss et al. [118] already

showed that it was possible to run keyframe limited visual SLAM on board a MAV,

this included keyframe processing and bundle adjustment on a very restricted map size.

The difficult problem to address would be how best to distribute the computationally

complex problem of global map optimisation. A possible solution would be a distributed

bundle adjustment. Ni et al. [83] presented such a distributed bundle adjustment solver

based on the idea of sub maps. A key insight into their work was the use of local

coordinate systems for sub maps. For each sub map a base node was selected and all

camera poses and feature positions become relative to the base node. The use of a local
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coordinate system allowed the caching of measurement linearisation for use in subsequent

iterations of the sub map optimisation. Once the optimisation of sub maps converges,

a global optimisation is run over all the base nodes to account for any residual error.

Using a similar approach in the context of DCTAM may facilitate a fully distributed

visual navigation solution. Each MAV could create a sub map (or multiple sub maps)

to optimise only the map features it creates and broadcast the adjustment in a similar

fashion to the centralised mapper in DCTAM. Then a single MAV (or the MAVs can take

it in turns) could perform the global adjustment over the sub map nodes. The benefit

of this approach is to remove the central point of failure of the mapper in DCTAM.

Another limitation of DCTAM is the constraints on map size as a result of the global

map optimisation approach used, which has limited scalability and does not address the

issues of scale drift and loop closures. One may replace the current mapper with an

approach based on more modern map optimisation techniques. These include full seven

Degree of Freedom (7DoF) bundle adjustment to correct for both pose and scale drift,

the inclusion of loop detection and loop closure and finally a large scale double window

optimisation approach. This would allow the system to work with significantly larger

maps make it applicable for long term navigation. The would allow the system to be

used for long range autonomous vehicles such as cars or fixed wing aircraft.

Although the work in this thesis has focused on robotic applications, and MAVs

in particular, there are many other possible applications, particularly for DCTAM. A

large number of mobile phone manufacturers including Google and Apple are investing

heavily in indoor localisation technologies. This is due in part to the fact that one of the

leading uses for modern smart-phones is as a navigation tool. Current GPS technology

means this is limited to outdoor navigation. The ability to reliably localise a mobile

phone indoors would open up a whole host of indoor navigation based applications such

as automated tour guides for popular tourist locations or indoor navigation for large

office buildings or shopping centres. These are just some of the possible future research

avenues available based on the results presented in this thesis. It is an exciting time in

the field of visual navigation and computer vision in general and I look forward to seeing

the future research inspired by my thesis as well as the research of my peers.

This work addressed the issues of scalability and robustness for multi-robot visual

navigation. A partially distributed approach was presented, which makes use of ap-

pearance based localisation to avoid the scalability issues inherent in map-merging ap-

proaches and allows the visual SLAM system to run on-board (partially) a MAV without

the strict limitation in map size of previous approaches. It was shown via experiment

that this approach scales significantly better than previous approaches enabling up to

20 MAVs to navigate within a common coordinate system. This facilitates coordina-

tion with large teams of MAVs as shown in the collision avoidance and exploration case

studies.
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7.1 Publications

The material from Chapters 4 and 5 were presented in publication 1. Material from

Chapters 4 and 6 is featured in publications 2 and 3.

[1] R. Williams, B. Konev, F. Coenen. Multi-agent environment exploration with

AR.Drones. In: Advances in Autonomous Robotics Systems, pp. 60-71. Springer

(2014) [122].

[2] R. Williams, B. Konev, F. Coenen. Scalable Distributed Collaborative Track-

ing and Mapping with Micro Aerial Vehicles. In: International Conference on

Intelligent Robots and Systems (IROS), 2015 [124].

[3] R. Williams, B. Konev, F. Coenen. Collaborating Low Cost Micro Aerial Ve-

hicles: a Demonstration. In: Towards Autonomous Robotic Systems (TAROS),

2015 [123].



Appendix A

Open Source Hardware and

Software

Figure A.1: The AscTec Firefly MAV platform [110].

A.1 DCTAM Hardware and Software

While there are many commercial MAV platforms available for purchase they are pri-

marily geared towards GPS-based navigation in outdoor environments and thus feature

sensor suites and on-board processors geared to those requirements. Of the platforms

geared towards research the most popular are the Ascending Technologies line of MAVs

such as the AscTec Firefly shown in Figure A.1. Ascending technologies offer a range

of configurations in terms of sensors and on-board computing which allows the MAV to

be tailored to a specific research application. However the drawback of such as research

platform is the cost prohibitive with the firefly costing between four and six thousand

151
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U.S. dollars. Given one of the aims of the research presented in this thesis is making

autonomous MAVs more accessible to the research community we decided to focus on

more low cost platforms in this work. Therefore for the work on CCTAM we made use

of the Parrot AR.Drone platform, a low cost off-the-shelf MAV platform costing between

250 and 300 U.S. dollars. The drawback to using a commercial platform for research is

the limited flexibility in terms of sensor and on-board computing.

The recent advent of low cost desktop 3D printers has made a significant impact on

the accessibility and cost of small scale custom manufacturing. It has become possible

for individuals or institutions to manufacture high quality, custom parts at very low unit

cost. For example the parts necessary to construct the MAV platform described in this

Chapter can be manufactured for a cost of less than 5 U.S. dollars. The accessibility

and low unit cost was the motivation behind the development of a custom 3D printed

MAV platform for use with system such as CCTAM and DCTAM. The design features

of this MAV platform are as follows:

Figure A.2: A rendering of the 3D CAD model for the DCTAM hardware platform.

1. Physical dimensions of 26.5 ×26.5 ×15.5 centimetres for length, width and height

respectively, the small size allows the MAV to be flown both indoors and outdoors.

2. Propeller size: 8 inches or 20.32 centimetres.

3. Propulsion system consisting of four Turnigy Aerodrive SK3 2822-1275 brushless

motors, a Q-Brain 4 x 25A brushless motor controller. This produces a peak thrust

of 1.85 Kilograms.

4. The maximum payload (in addition to the full computer and sensor suite) is 400

grams.
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5. Flight time with a 2200 Milli-Amp-Hours (MaH) lithium polymer battery are 10-12

minutes.

6. On-board system feature a Harkernel Odroid U3 single board computer with a

Pixhawk Flight controller.

7. Safety Remote Control (RC) is provided via a Fr-Sky D4R-II receiver.

8. Sensor suite includes a Matrixvision BlueFOX MV grayscale camera and Lidar

Lite V2 laser distance sensor (for altitude estimation).

Figure A.3: The constructed DCTAM platform.

With the goal of making such platforms more accessible the authors make all the

CAD models and 3D printable files for this platform available at https://github.com/

richardw347/dctam_hardware. The 3D printed parts for the second DCTAM platform

(based on the AR.Drone frame) are also made available in this repository. A rendering

of the full 3D model of the DCTAM MAV platform is shown in Figure A.2 and the

completed MAV is shown in Figure A.3.

The complete DCTAM software framework include the on-board components (Tracker,

EKF, Controller) and off-board components (Mapper) are also made available together

with some installation instructions and example datasets available at https://www.csc.

liv.ac.uk/~rmw/DCTAM.php

https://github.com/richardw347/dctam_hardware
https://github.com/richardw347/dctam_hardware
https://www.csc.liv.ac.uk/~rmw/DCTAM.php
https://www.csc.liv.ac.uk/~rmw/DCTAM.php
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