
Frequent Subgraph Mining Algorithms on Weighted Graphs

Thesis submitted in accordance with
the requirements of the University of Liverpool for

the degree of Doctor in Philosophy

by

Chuntao Jiang

April 2011

2

Abstract

This thesis describes research work undertaken in the field of graph-based knowledge

discovery (or graph mining). The objective of the research is to investigate the benefits

that the concept of weighted frequent subgraph mining can offer in the context of the

graph model based classification. Weighted subgraphs are graphs where some of the

vertexes/edges are considered to be more significant than others. How to discover

frequent sub-structures with different strengths is the main issue to be resolved in this

thesis. The main approach to addressing this issue is to integrate weight constraints into

the frequent subgraph mining process. It is suggested that the utilization of weighted

frequent subgraph mining generates more discriminate and significant subgraphs, which

will have application in, for example, the classification and clustering of graph data.

i

To my parents and my sister

《孟子.尽心上》

 “穷则独善其身，达则兼善天下。”

“积土成山，风雨兴焉；积水成渊，蛟龙生焉；积善成德，而神明自得，圣心备焉。

故不积跬步，无以至千里；不积小流，无以成江海。骐骥一跃，不能十步；驽马十驾，

功在不舍。锲而舍之，朽木不折；锲而不舍，金石可镂。蚯无爪牙之利，筋骨之强，

上食埃土，下饮黄泉，用心一也。蟹六跪而二螯，非蛇鳝之穴无可寄托者，用心躁也。”

《荀子.劝学》

ii

Acknowledgement

First and Foremost, I am very grateful to my first supervisor Dr. Frans Coenen,

specially for his constant patience, support and encouragement throughout my four-

year study in the Department.

I am specially thankful to Dr. Michele Zito, who agreed to act as my second

supervisor and reviewed many pieces of my writings. I also thank him for providing

many constructive suggestions about my research work.

I would also like to thank my colleague, Ashraf EI Sayed, for our collaborative

research work. I am also obliged to my friends who have given me a good time during

our regular meetings. They are: Yanbo Wang, Jamie McAuslane and Judy McAuslane.

Finally, I want to send my special regards to my father (Xinshi Jiang). Without

his emotional and financial support, I would never have had the chance to take a first

step in pursuit of my academic career.

March 2011

Liverpool, England

iii

iv

Contents

Abstract i

Acknowledgement iii

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Research Motivation . 3

1.2 Research Question . 7

1.3 Methodology . 8

1.4 Evaluation Criteria . 9

1.5 Contribution . 10

1.6 Organization of the Thesis . 11

2 Background 13

2.1 Concepts . 13

2.2 Problem Definition . 17

2.3 Graph Isomorphism Detection . 18

2.4 Overview of Frequent Subgraph Mining 21

2.4.1 Canonical representations . 23

2.4.2 Frequency measures . 27

2.4.3 Candidate generation . 28

2.4.3.1 Rightmost path expansion 28

2.4.3.2 Equivalence class based extension 29

2.4.3.3 Right-and-left tree join 30

2.4.3.4 Extension and join . 30

2.4.3.5 Level-wise join . 31

2.5 Frequent Subtree Mining Algorithms . 32

2.5.1 Rooted unordered tree mining . 32

2.5.2 Rooted ordered tree mining . 34

v

2.5.3 Free tree mining . 37

2.5.4 Hybrid tree mining . 38

2.5.4.1 Rooted ordered or unordered trees mining 38

2.5.4.2 Rooted unordered or free trees mining 38

2.5.5 Summary of frequent subtree mining algorithms 39

2.6 Frequent Subgraph Mining Algorithms 43

2.6.1 General purpose frequent subgraph mining 44

2.6.1.1 Inexact match based . 44

2.6.1.2 Exact match based . 45

2.6.1.2.1 Transaction graph based mining 46

2.6.1.2.2 Single graph based mining 50

2.6.2 Pattern dependent frequent subgraph mining 52

2.6.2.1 Mining relational patterns 52

2.6.2.2 Mining maximal patterns and closed patterns 53

2.6.2.2.1 Mining maximal patterns 53

2.6.2.2.2 Mining closed patterns 54

2.6.2.3 Mining clique patterns 55

2.6.2.4 Mining constrained patterns 56

2.6.3 Summary . 56

2.7 Classification Using Frequent Subgraphs 60

2.8 Social Network Analysis . 62

2.9 Weighted Frequent Subgraph Mining . 63

2.10 Summary . 66

2.10.1 Pseudo-codes of gSpan . 67

2.10.2 Pseudo-codes of FFSM . 67

2.10.3 Pseudo-codes of GASTON . 67

3 Graph Data Sets 71

3.1 Synthetic Data Sets . 71

3.1.1 ST1 - Synthetic trees created by a random tree generator 72

3.1.2 ST2 - Synthetic images represented by quad-trees 72

3.2 Real Datasets . 74

3.2.1 RT1 - Web usage mining scenario 74

3.2.2 RT2 - MRI brain scan images represented by quad-trees 75

3.2.3 RT3 - Text mining founded on document semantics 77

3.2.4 RG1 - Chemical compound analysis scenario 79

3.2.5 RG2 - Mammographic images represented by ARGs 80

3.2.6 RG3 - Photographic images represented by ARGs 82

3.2.7 RG4 - Text mining founded on term occurrence 82

3.2.8 RG5 - Social network mining scenario 84

vi

3.3 Summary of Data . 86

4 Weighting Functions for Vertexes and Edges in Graphs 89

4.1 Structural Weighting Function . 90

4.1.1 SW1 - Normalized occurrences based method 90

4.1.2 SW2 - Phi correlation coefficient based method 91

4.1.3 SW3 - Normalized mutual information based method 92

4.1.4 SW4 - Mutual information based method 94

4.1.5 SW5 - Point-wise mutual information based method 95

4.2 Content Weighting Function . 96

4.2.1 CW1 - User predefined weights 96

4.2.2 Calculation of edge weights using class labels 96

4.2.2.1 CW2 - Calculation of edge weights using χ2 values . . . 97

4.2.2.2 CW3 - Calculation of edge weights using NMI values . 99

4.3 Summary . 100

5 Subgraph Weighting Schemes That Maintain the DCP 103

5.1 Overview . 103

5.2 Weighting Schemes Using Vertex or Edge Weights 104

5.2.1 Average Total Weighting (ATW) scheme 105

5.2.1.1 Pseudo-codes of ATW 106

5.2.2 Affinity Weighting (AW) scheme 107

5.2.2.1 Pseudo-codes of AW . 108

5.2.3 Correlation Measures based Weighting (CMW) scheme 109

5.2.3.1 Pseudo-codes of CMW 110

5.3 Weighting Schemes That Do Not Use Vertex or Edge Weights 111

5.3.1 Jaccard Similarity based Weighting (JSW) scheme 111

5.3.1.1 Pseudo-codes of JSW 112

5.4 Summary . 113

6 Experimental Study 115

6.1 Implementation . 116

6.2 Overview of the Data . 116

6.3 The Evaluation of the ATW scheme . 118

6.3.1 The evaluation of the ATW scheme on trees 118

6.3.2 The evaluation of the ATW scheme on undirected graphs 121

6.3.3 The evaluation of the ATW scheme on directed graphs 125

6.3.4 Summary & discussion . 127

6.4 The Evaluation of the AW scheme . 128

6.4.1 The evaluation of the AW scheme on trees 128

vii

6.4.2 The evaluation of the AW scheme on undirected graphs 131

6.4.3 The evaluation of the AW scheme on directed graphs 132

6.4.4 Summary & discussion . 133

6.5 The Evaluation of the CMW scheme . 134

6.5.1 The evaluation of the CMW scheme on trees 135

6.5.2 The evaluation of the CMW scheme on undirected graphs 138

6.5.3 The evaluation of the CMW scheme on directed graphs 141

6.5.4 Summary & discussion . 143

6.6 The Evaluation of the JSW scheme . 144

6.6.1 The evaluation of the JSW scheme on trees 144

6.6.2 The evaluation of the JSW scheme on undirected graphs 147

6.6.3 The evaluation of the JSW scheme on directed graphs 149

6.6.4 Summary & discussion . 151

6.7 Summary . 152

7 Two Case Studies 153

7.1 Case Study 1 - The RT2 Data . 153

7.1.1 Efficiency test . 154

7.1.2 Effectiveness of the patterns . 156

7.1.3 Summary . 159

7.2 Case Study 2 - The RT3 Data . 159

7.2.1 Efficiency test . 159

7.2.2 Effectiveness of the patterns . 162

7.2.3 Summary . 163

8 Subgraph Weighting Schemes That Do Not Maintain the DCP 165

8.1 Utility Based Weighting (UBW) Scheme 165

8.1.1 Pseudo-codes of UBW . 168

8.2 Experimental Study . 169

8.2.1 The evaluation of the UBW scheme on trees 170

8.2.2 The evaluation of the UBW scheme on undirected graphs 173

8.2.3 The evaluation of the UBW scheme on directed graphs 176

8.3 Summary and Discussion . 178

9 Further Discussions 181

9.1 The Usage of Weighting Functions . 181

9.2 The Usage of Subgraph Weighting Schemes 182

10 Conclusion 191

10.1 Findings . 191

10.2 Contributions . 193

viii

10.3 Future Directions . 194

Bibliography 219

A Graph File Formats 221

A.1 GraphML Format . 221

A.2 Simple LineGraph Format . 222

B Additional Experimental Results 225

B.1 The Experimental Results for Trees . 225

B.1.1 The application of the ATW scheme 225

B.1.1.1 The ST1, ST2, and RT1 data 225

B.1.1.2 The RT2 data . 225

B.1.2 The application of the AW scheme 227

B.1.2.1 The ST1, ST2, and RT1 data 227

B.1.2.2 The RT2 data . 231

B.1.3 The application of the CMW scheme 232

B.1.3.1 The ST1 and RT1:CSLOGS-ALL data 233

B.1.3.2 The ST2 and RT1:CSLOGS-1(2) data 235

B.1.4 The application of the JSW scheme 235

B.1.4.1 The ST1 data . 236

B.1.4.2 The ST2 data . 236

B.1.4.3 The RT1 data . 236

B.1.4.4 The RT2 data . 237

B.1.5 The application of the UBW scheme 238

B.2 The Experimental Results for Undirected Graphs 242

B.2.1 The application of the ATW scheme 242

B.2.1.1 The RG1 data . 242

B.2.1.2 The RG2 and RG3 data 243

B.2.2 The application of the AW scheme 243

B.2.2.1 The RG1 data . 243

B.2.3 The application of the CMW scheme 246

B.2.3.1 The RG1:CH2 data . 246

B.2.3.2 The RG1:CH1, RG2, and RG3 data 247

B.2.4 The application of the JSW scheme 248

B.2.4.1 The RG1 data . 248

B.2.5 The application of the UBW scheme 249

B.3 The Experimental Results for Directed Graphs 249

B.3.1 The application of the ATW scheme 250

B.3.1.1 The RG4 data . 250

ix

B.3.2 The application of the CMW scheme 250

B.3.2.1 The RG4 data . 250

B.3.2.2 The RG5 data . 251

B.3.3 The application of the JSW scheme 254

B.3.3.1 The RG5 data . 254

C Published Work 257

x

List of Figures

1.1 Examples of graph represented data. 2

1.2 Evaluation model for weighted frequent subgraph mining 10

2.1 Different types of trees . 16

2.2 Lattice(GD) . 17

2.3 Two types of FSM approaches. Note that the subgraph lattice is shown

“upside-down”. Vertexes corresponding to graphs with fewer edges are

displayed at the top of the picture in each case. 21

2.4 A graph example with its adjacency matrix 24

2.5 An example of two types of free trees . 26

2.6 A tree example . 27

2.7 An illustration of rightmost path expansion 29

2.8 An illustration of right-and-left tree join 30

2.9 Frequent pattern based classification . 62

3.1 An illustration of the quad-tree representation. The image on the left is

recursively divided into sub-quadrants (NW, NE, SW and SE). 73

3.2 An illustration of quad-tree represented random images 73

3.3 The procedure for generating quad-tree represented MRI brain scan images 76

3.4 An example of semantic graph based representation 78

3.5 The procedure for building image interest points based graphs. 80

3.6 An example of interest points identified by a Harris-Affine detector. The

yellow points on (b) denote the rich information obtained by the detector

on (a). 81

3.7 A second example of images and their interest points. The raw images

belong to two different classes: ‘Bonsai’ and ‘Sunflower’. Interests points,

identified by a Harris-Affine detector, are shown in (b) and (d) with

yellow points. 83

3.8 Procedure for representing documents as graphs. 84

3.9 The process of building graphs from the CTS database 86

4.1 Normalized occurrences based method example 91

xi

4.2 PCC based method example . 92

4.3 NMI based method example . 93

4.4 Mutual information based method example 95

4.5 PMI based method example . 96

4.6 χ2 based method example . 98

4.7 An example of computing edge weights using NMI values 100

5.1 An example of calculating weights by the ATW scheme 106

5.2 An example of calculating weights by the AW scheme 108

5.3 An example of computing weights by the JSW scheme 112

7.1 The performance of gSpan-JSW with different γ values on the RT2 data 157

7.2 The performance of gSpan-ATW on the RT3 data 160

7.3 The performance of gSpan-AW on the RT3 data 160

7.4 The performance of gSpan-CMW on the RT3 data 161

7.5 The performance of gSpan-JSW on the RT3 data 162

8.1 An example of computing the overlap similarity 166

8.2 An example of computing share values. 167

A.1 A graph example . 221

A.2 A LineGraph format illustration . 223

B.1 The performance of gSpan-ATW on the ST2 data 226

B.2 The performance of gSpan-ATW on the QT-D5 data 228

B.3 The performance of gSpan-ATW on the QT-D6 data 228

B.4 The performance of gSpan-ATW on the QT-D7 data 229

B.5 The performance of gSpan-AW on the IM1000-D4 data 230

B.6 The performance of gSpan-AW on the IM1000-D5 and IM1000-D6 data 230

B.7 The performance of gSpan-AW on the CSLOGS-1 data 231

B.8 The performance of gSpan-AW on the CSLOGS-2 data 231

B.9 The performance of gSpan-AW on the RT2 data 233

B.11 The performance of gSpan-JSW on the CSLOGS-ALL data 236

B.10 The performance of gSpan-JSW on the ST2 data 237

B.12 The performance of gSpan-UBW on the CSLOGS-ALL data 239

B.13 The performance of gSpan-UBW on the CSLOGS-1 data 239

B.14 The performance of gSpan-UBW on the CSLOGS-2 data 240

B.15 The performance of gSpan-UBW on the QT-D5 data 240

B.16 The performance of gSpan-UBW on the QT-D6 data 240

B.17 The performance of gSpan-UBW on the QT-D7 data 241

B.18 The performance of gSpan-ATW on the CH1 data 242

xii

B.19 The performance of gSpan-ATW on the CH2 data 243

B.20 The performance of gSpan-AW on the CH1 data 244

B.21 The performance of gSpan-AW on the CH2 data 246

B.22 The performance of gSpan-CMW on the CH1 data 247

B.23 The performance of gSpan-JSW on the CH1 data 248

B.24 The performance of gSpan-JSW on the CH2 data 249

B.25 The performance of gSpan-CMW using CW2 and CW3 on the IMDB data250

B.26 The performance of gSpan-CMW using CW2 and CW3 on the Amazon

& Ohsumed data . 251

B.27 The performance of gSpan-CMW on the Lancashire data 253

B.28 The performance of gSpan-CMW on the Scotland data 253

B.29 The performance of gSpan-CMW on the GB data 253

B.30 The performance of gSpan-JSW on the Lancashire data 254

B.31 The performance of gSpan-JSW on the Scotland data 254

B.32 The performance of gSpan-JSW on the GB data 255

xiii

xiv

List of Tables

1.1 Summary of graph data sets . 9

2.1 Basic vocabulary . 14

2.2 Notation used throughout the thesis . 18

2.3 Overview of a number of exact matching (sub)graph isomorphism algo-

rithms . 20

2.4 Taxonomy of frequent subtree mining algorithms 31

2.5 Main techniques used by frequent subtree mining algorithms 39

2.6 A summary of frequent subtree mining algorithms 40

2.7 General purpose frequent subgraph mining algorithm categorisation . . 44

2.8 Categorisation of pattern dependent frequent subgraph mining algorithms 52

2.9 A summary of the FGM algorithms reported in this thesis 57

2.10 Main techniques used by FGM algorithms reported in this thesis 58

3.1 Synthetic tree data set parameters . 72

3.2 Characteristics of the synthetic “web usage” data sets 72

3.3 Characteristics of quad-tree represented image data sets 73

3.4 Properties of tree based CSLOGS web usage data sets 75

3.5 Properties of RT2 data at different quad-tree levels 76

3.6 Categorisation of the text data sets according to the graph representation

method adopted . 77

3.7 Properties of tree represented Medline documents 79

3.8 Properties of chemical compound graph data sets 80

3.9 Properties of graph represented mammographic images 82

3.10 Properties of RG3 data using different vocabularies 82

3.11 Properties of graph data sets defined using the term occurrences based

representation . 85

3.12 Properties of graphs generated using the CTS database 86

3.13 Summary of the graphic data employed in this thesis 87

4.1 A two-way contingency table of ei and cj 97

4.2 Two-way contingency tables for ‘a’ and class labels 98

xv

4.3 Two-way contingency tables for ‘e’ and class labels 99

6.1 A summary of data sets employed throughout this chapter 117

6.2 The performance of gSpan-ATW using SW1 on the ST1, ST2, and RT1

data . 119

6.3 The accuracy of the classifiers using patterns discovered by gSpan-ATW

using SW1 on the ST2 and RT1:CSLOGS-1(2) data 121

6.4 The performance of gSpan-ATW using SW1 on the RG1 data 122

6.5 The performance of gSpan-ATW using CW1-E on the RG2 and RG3 data122

6.6 The accuracy of the classifiers using patterns discovered by gSpan-ATW

using SW1 on the CH1 data . 123

6.7 The accuracy of the classifiers using patterns discovered by gSpan-ATW

using SW4 and SW5 on the CH1 data 124

6.8 The accuracy of the classifiers using patterns discovered by gSpan-ATW

using CW1-E on the RG2 and RG3 data 124

6.9 The performance of gSpan-ATW using CW1 on the RG4 data 125

6.10 The performance of gSpan-ATW using CW1-E and SW5 on the RG5 data126

6.11 The accuracy of the classifiers using patterns discovered by gSpan-ATW

using CW1-E on the RG4 data . 127

6.12 The performance of gSpan-AW using SW1 on the ST1, ST2, and RT1:CSLOGS-

1(2) data . 129

6.13 The accuracy of the classifiers using patterns discovered by gSpan-AW

with SW1 on the ST2 and RT1:CSLOGS-1(2) data 130

6.14 The performance of gSpan-AW using SW1 on the CH2 data 131

6.15 The performance of of gSpan-AW with CW1-E on the RG3:BS-V500 data132

6.16 The accuracy of the classifiers using patterns discovered by gSpan-AW

using CW1-E on the RG3:BS-V500 data 132

6.17 The performance of gSpan-AW using CW1-E on the RG5 data 133

6.18 The performance of gSpan-CMW using SW2 on the ST1 and RT1:CSLOGS-

ALL data . 135

6.19 The performance of gSpan-CMW using CW2 on the ST2 and RT1:CSLOGS-

1(2) data . 136

6.20 The accuracy of the classifiers using patterns discovered by gSpan-CMW

with CW2 on the ST2 and RT1:CSLOGS-1(2) data 137

6.21 The performance of gSpan-CMW with CW2 on the RG1:CH1, RG2, and

RG3 data . 139

6.22 The accuracy of the classifiers using patterns discovered by gSpan-CMW

with CW2 on the CH1 data . 140

6.23 The accuracy of the classifiers using patterns discovered by gSpan-CMW

with CW2 on the RG2 and RG3 data 140

xvi

6.24 The performance of gSpan-CMW using SW2 and SW3 on the RG4 and

RG5 data . 141

6.25 The accuracy of the classifiers using patterns discovered by gSpan-CMW

with SW2 on the RG4 data . 142

6.26 The performance of gSpan-JSW on the ST1 and RT1:CSLOGS-ALL data145

6.27 The performance of gSpan-JSW on the ST2 and RT1:CSLOGS-1(2) data 146

6.28 The accuracy of the classifiers using patterns discovered by gSpan-JSW

on the ST2 and RT1:CSLOGS-1(2) data 146

6.29 The performance of gSpan-JSW on the RG1, RG2, and RG3 data . . . 148

6.30 The accuracy of the classifiers using patterns discovered by gSpan-JSW

on the CH1 data . 148

6.31 The accuracy of the classifiers using patterns discovered by gSpan-JSW

on the RG2 and RG3 data . 149

6.32 The performance of gSpan-JSW on the RG4 and RG5 data 150

6.33 The accuracy of the classifiers using patterns discovered by gSpan-JSW

on the RG4 data . 151

7.1 A summary of the RT2 data . 154

7.2 The performance of gSpan-ATW using SW1 on the RT2 data 154

7.3 The performance of gSpan-ATW using SW4 on the RT2 data 155

7.4 The performance of gSpan-JSW with γ = 0.2 on the RT2 data 156

7.5 The accuracy of the classifiers using patterns discovered by gSpan-ATW

with SW1 on the RT2 data . 156

7.6 The accuracy of the classifiers using patterns discovered by gSpan-ATW

with SW4 on the RT2 data . 158

7.7 The accuracy of the classifiers using patterns discovered by gSpan-JSW

with different γ values on the RT2 data 158

7.8 A summary of the RT3 data . 159

7.9 The accuracy of the classifiers using patterns discovered by the weighted

FSM algorithms on the RT3 data . 162

8.1 The performance of gSpan-UBW with SW1 on the tree data 171

8.2 The performance of gSpan-UBW with SW4 on the tree data 172

8.3 The accuracy of the classifiers using patterns discovered by gSpan-UBW

using SW1 on the tree data . 173

8.4 The performance of gSpan-UBW with SW1 on the RG1 data 174

8.5 The performance of gSpan-UBW using SW4 on the RG1 data 174

8.6 The performance of gSpan-UBW with CW1-E on the RG2 and RG3 data175

8.7 The accuracy of the classifiers using patterns discovered by gSpan-UBW

with SW1 on the CH1 data . 175

xvii

8.8 The accuracy of the classifiers using patterns discovered by gSpan-UBW

with CW1-E on the RG2 and RG3 data 176

8.9 The performance of gSpan-UBW with CW1-E on the RG4 and RG5 data177

8.10 The accuracy of the classifiers using patterns discovered by gSpan-UBW

with CW1-E on the RG4 data . 178

9.1 The applicability of subgraph weighting schemes with respect to various

data sets . 182

9.2 The accuracy of the classifiers using patterns discovered by weighted

FSM algorithms with respect to various weighting schemes on the ST2

data . 184

9.3 The accuracy of the classifiers using patterns discovered by weighted

FSM algorithms with respect to various weighting schemes on the CSLOGS-

1(2) data . 184

9.4 The accuracy of the classifiers using patterns discovered by weighted

FSM algorithms with respect to various weighting schemes on the RT2

data . 185

9.5 The accuracy of the classifiers using patterns discovered by weighted

FSM algorithms with respect to various weighting schemes on the RT3

data . 186

9.6 The AUC scores of the classifiers using patterns discovered by weighted

FSM algorithms with respect to various weighting schemes on the RG1:CH1

data . 186

9.7 The accuracy of the classifiers using patterns discovered by weighted

FSM algorithms with respect to various weighting schemes on the RG2

data . 187

9.8 The accuracy of the classifiers using patterns discovered by weighted

FSM algorithms with respect to various weighting schemes on the RG3

data . 187

9.9 The accuracy of the classifiers using patterns discovered by weighted

FSM algorithms with respect to various weighting schemes on the RG4

data . 188

B.1 The performance of gSpan-ATW using SW4 and SW5 on the ST1, ST2,

and RT1 data . 227

B.2 The accuracy of the classifiers using patterns discovered by gSpan-ATW

with SW4 and SW5 on the ST2 and RT1:CSLOGS-1(2) data 228

B.3 The performance of gSpan-AW using SW4 on the ST1, ST2, and RT1:CSLOGS-

1(2) data . 229

xviii

B.4 The accuracy of the classifiers using patterns discovered by gSpan-AW

with SW4 on the ST2 and RT1:CSLOGS-1(2) data 232

B.5 The accuracy of the classifiers using patterns discovered by the standard

FSM algorithms on the RT2 data . 232

B.6 The accuracy of the classifiers using patterns discovered by gSpan-AW

with SW1 and SW4 on the RT2 data . 234

B.7 The performance of gSpan-CMW using SW3 on the ST1 and RT1:CSLOGS-

ALL data . 234

B.8 The performance of gSpan-CMW using CW3 on the ST2 data 234

B.9 The performance of gSpan-CMW using CW3 on the RT1:CSLOGS-1(2)

data . 235

B.10 The accuracy of the classifiers using patterns discovered by gSpan-CMW

with CW3 on the ST2 and RT1:CSLOGS-1(2) data 235

B.11 The performance of gSpan-JSW with different γ values on the ST1 data 236

B.12 The performance of gSpan-JSW with γ = 5 on the CSLOGS-1(2) data . 238

B.13 The performance of gSpan-JSW with γ = 0.25 on the RT2 data 238

B.14 The accuracy of the classifiers using patterns discovered by gSpan-UBW

with SW4 on the tree data . 241

B.15 The performance of gSpan-ATW using SW4 and SW5 on the RG1 data 242

B.16 The AUC scores of the classifiers using patterns discovered by gSpan-

ATW with SW1 on the CH1 data . 243

B.17 The AUC scores of the classifiers using patterns discovered by gSpan-

ATW with SW4 and SW5 on the CH1 data 243

B.18 The performance of gSpan-ATW using CW1-N on the RG2 and RG3 data244

B.19 The accuracy of the classifiers using patterns discovered by gSpan-ATW

with CW1-N on the RG2 and RG3 data 244

B.20 The performance of the classifiers using patterns discovered by the stan-

dard FSM algorithms on the CH1 data 245

B.21 The performance of the classifiers using patterns discovered by gSpan-

AW with SW1 on the CH1 data . 245

B.22 The performance of the classifiers using patterns discovered by gSpan-

AW with SW4 on the CH1 data . 245

B.23 The performance of gSpan-AW using SW4 on the CH2 data 245

B.24 The performance of gSpan-CMW using SW2 on the CH2 data 246

B.25 The performance of gSpan-CMW using SW3 on the CH2 data 246

B.26 The performance of gSpan-CMW using CW3 on the RG1:CH1, RG2 and

RG3 data . 247

B.27 The AUC scores of the classifiers using patterns discovered by gSpan-

CMW with CW2 on the CH1 data . 247

xix

B.28 The performance of the classifiers using patterns discovered by gSpan-

CMW with CW3 on the CH1 data . 248

B.29 The accuracy of the classifiers using patterns discovered by gSpan-CMW

with CW3 on the RG2 and RG3 data 248

B.30 The AUC scores of the classifiers using patterns discovered by gSpan-

JSW on the CH1 data . 249

B.31 The AUC scores of the classifiers using patterns discovered by gSpan-

UBW with SW1 on the CH1 data . 249

B.32 The performance of the classifiers using patterns discovered by gSpan-

UBW with SW4 on the CH1 data . 250

B.33 The accuracy of the classifiers using patterns discovered by gSpan-ATW

with CW1-N on the RG4 data . 250

B.34 The accuracy of the classifiers using patterns discovered by gSpan-CMW

with CW2 on the RG4 data . 252

B.35 The accuracy of the classifiers using patterns discovered by gSpan-CMW

with CW3 on the RG4 data . 252

B.36 The accuracy of the classifiers using patterns discovered by gSpan-CMW

with SW3 on the RG4 data . 252

xx

Chapter 1

Introduction

The primary goal of data mining is to extract hidden, but useful, knowledge from

data [Han and Kamber, 2006, Chen et al., 1996]. The data to which data mining

may be applied can be categorised according to its representation mechanism: vectors,

tables, texts, images, and so on. Data can also be categorized as being structured (e.g.

molecule data), semi-structured (e.g. XML document collections) and non-structured

(e.g. sound or video). Structured data is intuitively suited to graph representations.

Common examples of structured data represented as graphs (Fig. 1.1) included protein-

protein interaction networks, chemical compound structure graphs, bibliography graphs

and behaviour graphs. Protein-protein interaction networks (Fig. 1.1(a)), representing

the biological function occurring between at least two binding proteins, are commonly

constructed by a set of vertexes representing proteins, connected by a set of edges

representing direct physical interactions or function associations [Alm and Arkin, 2003].

Fig. 1.1(b) shows an example of a chemical compound graph (a molecule graph). The

figure actually shows the molecular structure of the chemical compound ‘Flucytosine’

represented as an undirected graph where each vertex denotes an atom type and each

edge denotes a bond type. In Fig. 1.1(c) a partial graph to model bibliography data is

presented where ‘a2’ and ‘a3’ denote authors, ‘w1’, ‘w2’ and ‘w3’ denote publications,

‘j2’ denotes a journal, and ‘t1’ indicates time of publication. A partial behaviour graph

is a tool used to model software program execution (Fig. 1.1(d)), where each vertex

indicates a functional module and each edge the relation between modules. There are

many more examples.

Because of the ease with which structural data can be represented using a graph

format, substantial research effort has been directed towards the mining of graph data

(also referred to as graph based data mining or graph mining). Examples include:

(1) Frequent subgraph mining [Dehaspe et al., 1998, Cook and Holder, 1994, 2000,

Inokuchi et al., 2000, Kuramochi and Karypis, 2001, Huan et al., 2003, Borgelt and

Berthold, 2002, Yan and Han, 2002, Nijssen and Kok, 2004].

(2) Optimal graph pattern mining [Fan et al., 2008, Yan et al., 2008].

1

(a) Interaction network[Uetz, 2003]

N

N

N

C

C

C

C

H

H

H

H

F

O
d

s d

s s

s

s

s

d

s

s
s

s

s: single bond
d: double bond

(b) Molecule graph

a2

a3 w3

w2

w1

j2

t1

cites

cites

published journal

published time

author of

author of

author of

author of

(c) Bibliography graph

a

b

c

d

e

k

(d) Behaviour graph

Figure 1.1: Examples of graph represented data.

(3) Correlated graph pattern mining [Ke et al., 2007, Ozaki and Ohkawa, 2008, Ke

et al., 2009].

(4) Graph pattern summarization [Xin et al., 2006b, Hasan et al., 2007, Chen et al.,

2008].

(5) Approximate graph pattern mining [Kelley et al., 2003, Sharan et al., 2005, Chen

et al., 2007b].

(6) Graph classification [Huan et al., 2004a, Kudo et al., 2004, Deshpande et al., 2005].

(7) Graph clustering [Flake et al., 2004, Newman, 2004b, Huang and Lai, 2006, Tsuda

and Kudo, 2006].

(8) Graph indexing [Shasha et al., 2002, Yan et al., 2004, 2005a].

(9) Graph searching [Yan et al., 2005b, 2006a,b, Chen et al., 2007a].

The essence of graph mining is to extract useful knowledge from graph represented

data by using techniques from fields such as data mining, machine learning, statistics,

pattern recognition and graph theory. The importance of graph mining is reflected in

the wide variety of domains to which graph mining (in all its forms) has been applied.

Reported examples include: (a) chemical compound analysis [Deshpande et al., 2005,

Fatta and Berthold, 2005, Wale and Karypis, 2006], (b) biological network analysis [Hu

et al., 2005], (c) computer vision [Nowozin et al., 2007, Saigo et al., 2008], (d) work-flow

mining [Greco et al., 2005], (e) social network mining [Freeman, 1979, Cai et al., 2005],

2

(f) link mining [Kleinberg, 1998, Brin and Page, 1998, Chakrabarti et al., 1999, Kosala

and Blockeel, 2000, Getoor and Diehl, 2005, Liu, 2008], and (g) graph kernels [Gärtner

et al., 2003, Kashima et al., 2003, Borgwardt and Kriegel, 2005, Ralaivola et al., 2005].

Frequent subgraph mining is one of the most common topics of graph mining. Gen-

erally, frequent subgraph mining aims to identify all subgraph patterns whose occur-

rences within a graph data set are above some user defined threshold. These subgraph

patterns are called frequent subgraphs. The number of occurrences (the frequency)

of each subgraph pattern is computed by a support measure. Theoretically, frequent

subgraph mining can be formulated as a search in a search space, modelled by a lattice,

consisting of all possible subgraph patterns. Because the number of possible frequent

subgraphs increases exponentially with the size of the graph, completely traversing

the search space is computational intractable, because of a “combinatorial explosion”.

Most frequent subgraph mining algorithms thus adopt a user specified support threshold

to prune this combinatorial search space, i.e. the support metric is used to separate

infrequent subgraphs from the frequent ones.

Frequent subgraph mining plays an essential role in many graph mining applica-

tions such as chemical compound analysis [Huan et al., 2004c, Deshpande et al., 2005],

document image clustering [Barbu et al., 2005], software bug isolation [Liu et al., 2005,

Eichinger et al., 2008], web content mining [Schenker et al., 2004], social network mining

[Mukherjee and Holder, 2004, Yang et al., 2006, Lahiri and Berger-Wolf, 2007], email

mining [Aery and Chakravarthy, 2005a,b], and anomaly detection [Noble and Cook,

2003, Eberle and Holder, 2007]. Frequent subgraph mining is thus focus of the work

described in this thesis.

1.1 Research Motivation

As noted above, the most common approaches to frequent subgraph mining adopt

the support metric. However, use of the support metric gives rise to five significant

disadvantages:

(a) Computational complexity: Frequent subgraph mining, using the support met-

ric, has been demonstrated to work well in domains [Inokuchi et al., 2000, Ku-

ramochi and Karypis, 2001, Huan et al., 2003, Borgelt and Berthold, 2002, Yan

and Han, 2002, Nijssen and Kok, 2004, Deshpande et al., 2005] where the indi-

vidual subgraphs are relatively small. However, when frequent subgraph mining

is applied to more substantial domains, including image mining, text mining and

social network mining, the computational complexity becomes very high due to

the “combinatorial explosion” encountered with respect to the number of possible

patterns. Many existing approaches to frequent subgraph mining cannot cope with

large graph sets.

3

(b) Large number of patterns generated: Because a low support threshold is

typically used to ensure that significant patterns are not missed, a large number

of patterns are often generated. The resulting collection of patterns also typi-

cally includes significant amounts of repetition and/or redundancy. Furthermore,

analysing large collections of patterns is both difficult and resource intensive.

(c) Lack of control of the generation process: Users can only control the number

of patterns generated by adjusting this support threshold. A high support threshold

will reduce the number of patterns detected, but at the risk of missing significant

patterns (hence low support thresholds are typically used). Use of a low support

threshold to ensure that all interesting patterns are discovered, however, entails a

significant computational overhead.

(d) Not all significant patterns may be identified: For real applications, the

support metric is often not adequate to catch the relative importance of all patterns;

the significance of patterns is not necessarily encapsulated by a support count alone.

Alternative methods to reducing the search space include concentrating on the iden-

tification of a subset of the total set of frequent subgraphs, for example, closed frequent

subgraph mining [Yan and Han, 2003] or maximal frequent subgraph mining [Huan

et al., 2004b, Thomas et al., 2006]. Although these methods address the issue to some

extent, the combinatorial explosion issue is still unresolved; closed frequent subgraph

mining and maximal frequent subgraph mining still generate significantly large num-

bers of patterns especially on dense graph data sets [Bringmann and Zimmermann,

2009]. Consequently the graph mining result remains difficult to explore and interpret.

With respect to identifying the most significant patterns one approach is to integrate

some constraints into the frequent subgraph mining process [Yan et al., 2007, Zhu et al.,

2007]. However, the constraints employed tend to be directed at basic graph proper-

ties (e.g. requiring the average density of a pattern to be over some threshold), the

characteristics related to the properties of the vertexes and/or edges of the graph are

typically not considered. There are, of course, also alternative interestingness measures

to the support metric that may be employed. For example a variety of interesting-

ness measures have been proposed in the context of association rule mining (e.g. [Tan

et al., 2002]), some of which can be adopted for frequent subgraph mining. However,

in many cases, a single metric is too general to define interestingness. Alternative solu-

tions ([Xin et al., 2006c, Huan et al., 2004c, Yan et al., 2008]), that have mainly been

applied within the chemical analysis domain, require some additional information to

be provided by the user. There is little research work on adopting alternative generic

interestingness measures to assess the importance of subgraph patterns.

To address the above this thesis proposes weighted frequent subgraph mining. The

intuition here is that for many applications some vertexes and/or edges can be consid-

4

ered to be much more significant than others; consequently, by using weightings, the

search space can be reduced in such a way that the most interesting patterns are still

discovered, and none of the less interesting patterns. By integrating weight constraints

into the work of frequent subgraph mining, it is expected that a smaller set of weighted

frequent subgraphs can be discovered within a reasonable time-limit where established

frequent subgraph mining algorithms without weightings can not achieve this. This

intuition is not necessarily applicable to all frequent subgraph mining applications, but

it is suggested in this thesis that there are many applications where this is the case.

Examples include:

(a) Image classification

Frequent subgraph pattern based classification comprises two phases. Firstly, a

frequent subgraph mining algorithm is used to extract frequent patterns from the

graph database; secondly, the identified patterns are employed to build feature

vectors which can be used as input to established classification algorithms (e.g.

decision tree [Quinlan, 1993], CBA [Liu et al., 1998], and SVM [vapnik, 1999]). In

this situation, high support values may engender the absence of important patterns

and low support values may cause the problem of “memory overflow” and “high

dimensionality” due to the nature of frequent subgraph mining and the effort re-

quired to construct feature vectors. In the context of graph represented images,

two weak points are introduced, due to the nature of the diverse types of images.

• The size of the graphs used to represent images (in terms of the number of

vertexes or edges) is substantial. During the frequent subgraph mining, the

processing of graphs requires more runtime and more memory resource to

store the intermediate results.

• It is difficult to identify distinct labels for vertexes or edges in the graph. Less

distinct labels for vertexes or edges will result in a computational overhead.

These two points adversely affect the performance of frequent subgraph mining

when applied to graph represented image sets. It is proposed in this thesis that

weights may be attached to vertexes or edges that make up image graphs to indicate

their “strengths”. It is expected that the performance of image classification using

extracted weighted frequent subgraphs can be achieved at a competitive level.

(b) Document categorization

The most common document formalisation for text classification is the vector space

model (VSM) [Salton et al., 1975] founded on the bag of words/phrases represen-

tation. The main advantage of the vector space model is that it can readily be

employed by classification algorithms (e.g. decision tree, naive Bayesian classi-

fier). However, the bag of words/phrases representation is suited to capturing only

5

word/phrase frequency; structural and semantic information such as order and the

proximity of word occurrence is ignored. It has been established that structural

information plays an important role in classification accuracy [Deshpande et al.,

2005]. An alternative to the bag of words/phrases representation is a graph based

representation, which intuitively possesses much more expressive power. However,

as noted above, this representation introduces an additional level of complexity

in that the calculation of the similarity between two graphs is significantly more

computationally expensive than between two vectors (e.g. [Schenker, 2003]). Some

work [Markov and Last, 2005] has been done on hybrid representations to capture

both structural elements (using the graph model) and significant features (using

the vector model). However the computational resources required to process this

hybrid model are still costly due to:

• The extremely high number of vertexes and edges, and low number of edge

labels and high repetition of vertex labels.

• The consequent exponential complexity of the search space.

The computational complexity of the graph representation for document classifica-

tion is the main disadvantage of the approach and prevents the full exploitation of

the expressive power that the graph representation possesses. It is suggested that

the work described in this thesis will address this issue through the application of

the proposed weighted frequent subgraph mining. By combining the advantages of

both the VSM and the graph representation, it is suggested that each vertex in the

graph representation can be assigned a weight computed by the term weightings

as used in information retrieval, and each edge can be assign a weight computed

by some similarity measure (e.g. cosine similarity) between two vertexes. It is con-

jectured that weighted frequent subgraph mining when applied to such weighted

graphs will generate fewer weighted frequent subgraphs in a smaller amount of

runtime. More importantly, it is conjectured that the extracted weighted frequent

subgraphs are the “right” patterns for document classification purpose.

(c) Network mining

For studies in domains such as communication networks, and social networks, the

connections in the network are usually assumed to be binary valued (either present

or absent). However, it is common in real-world networks [Barrat et al., 2004, Ebel

et al., 2002, Kossinets and Watts, 2006] for connections to be weighted by assigning

different strengths, intensities or capacities to these connections [Wasserman and

Faust, 1994]. For instance, some social networks feature both strong and weak social

connections between individuals; in transportation networks, it may be important

to calculate the weight of the connections by considering the amount of traffic

6

flowing along them [Barrat et al., 2004]. By incorporating weights into the work

of network mining, it is expected that these weights can be utilized to compute a

significance factor for each discovered pattern. Thus applying established frequent

subgraph mining to large networks becomes realisable by adopting weighted fre-

quent subgraph mining; otherwise, such networks tend to be too large and complex

for the application of established frequent subgraph mining algorithms. In addi-

tion, the extracted weighted frequent subgraphs can be employed to (say) cluster

network vertexes or detect changes in the behaviour of the network.

1.2 Research Question

With respect to the foregoing, single support metric based frequent subgraph mining

tends to be applicable only when the dataset to be mined is of moderate size and the

graph structure is sparse. If the support value is relatively low, the efficiency of frequent

subgraph mining algorithms becomes an issue [Han et al., 2007]. Furthermore, a high

proportion of the discovered frequent subgraphs are often found to be repetitive and re-

dundant in terms of their usefulness with respect to further analysis (e.g. classification)

[Yan and Han, 2003, Huan et al., 2004a, Fan et al., 2008, Yan et al., 2008].

Existing frequent subgraph mining algorithms [Cook and Holder, 1994, 2000, Inokuchi

et al., 2000, Kuramochi and Karypis, 2001, Huan et al., 2003, Yan and Han, 2002, Ni-

jssen and Kok, 2004] tend to assume that all discovered frequent subgraphs have equal

importance. It is suggested in this thesis that some subgraphs are more important than

others according to significance factors that may be associated with them. Therefore,

a weighting concept is proposed to assign non-negative real values to each discovered

frequent subgraph to indicate their significance. It is conjectured that by integrat-

ing weights into the frequent subgraph mining process, a smaller and more significant

subset of the complete set of frequent subgraphs may be discovered.

The research question posed in this thesis is thus: Can vertex and/or edge weighing

functions be usefully employed, in the context of frequent subgraph mining, so as to

discover the most significant subgraphs (i.e. fewer subgraphs) in a manner that is

more computationally efficient than established approaches to frequent subgraph mining?

There are a number of sub-questions associated with this research question:

(a) What form should the desired weighting function take? Weights may be

applied to either vertexes or edges or both, the criteria for selecting which is the

most appropriate is not clear, but is likely to be application dependent.

(b) How should weightings be derived? Weightings may be initially provided by

end users or may be derived according to the structure of identified subgraphs.

Which is the most desirable is in part a resource issue and in part also application

dependent.

7

(c) What is the nature of the data structures that would be required to

support weighted frequent subgraph mining? Weighted frequent subgraph

mining necessitates operating on different kinds of graphs (e.g. undirected graphs,

trees, or directed graphs). Thus the nature of the data structures to be employed

in weighted frequent subgraph mining is important.

(d) How should weightings be used? For each identified subgraph how weightings

can best (most effectively) be applied to determine the importance of a graph is a

significant issue.

(e) Whether to maintain the Downward Closure Property (DCP) or not.

The DCP [Agrawal et al., 1993, Pei et al., 2001a], which states that a graph can only

be frequent if all of its subgraphs are also frequent, is generally used to reduce the

computational overhead of mining. Thus, whether any devised weighting schemes

should satisfy the DCP, or whether some alternative scheme obviating the need for

the DCP may be derived, is of importance.

1.3 Methodology

To provide an answer to the proposed research question the broad research methodology

that was adopted was to consider a sequence of frequent subgraph mining application

scenarios. This was because it was felt that many of the research issues to be addressed

were application dependent. A large number, ten in total, of such scenarios were

considered; selected from a variety of different domains. An itemized list of the graph

data considered is presented in Table 1.1 (Note that in some cases, data comprised

several data sets.). In the table, ‘ST’ denotes synthetic tree data, ‘RT’ denotes real

tree data, ‘SG’ denotes synthetic graph data, and ‘RG’ denotes real graph data. Note

that the last eight are all real data.

To further facilitate the proposed study the frequent subgraph mining domain was

first divided, according to the nature of the graphs to be processed, into three categories:

(i) trees, (ii) undirected graphs, and (iii) directed graphs. Consequently, the weighted

frequent subgraph mining investigation was split into weighted tree mining, weighted

undirected graph mining, and weighted directed graph mining. In this context it is also

worth noting that current frequent subgraph mining algorithms are typically applicable

to undirected graphs only, although in real applications structured data can also often

be represented as directed graphs. Therefore, using a major frequent subgraph mining

algorithm, gSpan, as a base algorithm, a modified gSpan was implemented by the

author to handle directed graphs (see Chapter 6 for details).

Having identified three categories of graph data the domain was further sub-divided

according to the nature of the weighting functions that might be applied. Two cate-

gories of function were identified: (i) structural weighting which utilizes the structural

8

information associated with subgraphs, and (ii) content weighting which utilizes the

domain user’s knowledge. Each was considered with respect to the above graph data

categorisation.

The research domain was thus divided into a two-by-three categorisation. The issue

of whether to apply proposed weighting strategies so that the the DCP was maintained

or to identify some alternative strategy that obviates the need for the DCP was con-

sidered with respect to each of the identified categories.

Table 1.1: Summary of graph data sets

Data Description # Datasets

ST1 Synthetic trees created by a random tree generator 2

ST2
Synthetic images represented by quad-trees (one tree
per image)

3

RT1
Three collections of web logs (CSLOGS) represented
by trees

3

RT2
A collection of MRI scanned brain images repre-
sented by quad-trees

3

RT3
A collection of Medline text documents represented
by trees

1

RG1
Two collections of chemical compounds represented
by undirected graphs

2

RG2
A collection of mammographic images represented
by attributed relational graphs

2

RG3
A collection of real-world object images represented
by attributed relational graphs

2

RG4
Three collections of text documents represented by
directed graphs

3

RG5
A sample taken from the UK Cattle Movement
database represented using directed graphs

3

1.4 Evaluation Criteria

The primary objective of the proposed research was to devise mechanisms to reduce

the search space and the consequent number of discovered subgraphs by concentrat-

ing on the most “significant” subgraphs. The term “significant” in this context is of

course subjective and difficult to measure. An evaluation mechanism was required that

would demonstrate that the right subgraphs had been found. This was achieved by

directing the work so that, for many of the scenarios, a classification scenario could

be formulated. The objective of classification, within the context of data mining, is to

build a classifier using pre-labelled training data, test this using pre-labelled test data

and (assuming the results of the testing are satisfactory) apply the classifier to unseen

data [Han and Kamber, 2006]. In the context of the work described in this thesis, the

identified frequent subgraphs were used to define feature vectors which could then be

input to established classification algorithms. For this purpose, labelled graph data sets

9

were used that could be divided into a training and a test set. Any proposed weighted

frequent subgraph mining approach could then be applied to the training set and the

resulting weighted frequent subgraphs used to define feature vectors which could be fed

into a standard classifier generator and the accuracy of the resulting classifier ascer-

tained using the test set. The operation of weighted frequent subgraph mining could

then be compared to non-weighted frequent subgraph mining in terms of classification

accuracy. If the accuracy of the weighted approach exceeded, or was at least compara-

ble with, the non-weighted approach it could be argued that the correct subgraphs had

been identified. This evaluation process is illustrated in Fig.1.2. The figure should be

read from the top left to bottom right. The top part of the figure illustrates the process

of modelling various types of data in terms of different kinds of graphs. The bottom

part illustrates the process of building feature vectors from the extracted weighted

frequent subgraphs and then feeding them into a classification algorithm.

The secondary objective of the proposed work was to devise weighted subgraph

mining mechanisms that were efficient. The efficiency of the weighted frequent subgraph

mining was considered in terms of runtime. Efficiency could also have been considered

in terms of storage requirements, however it was found that it was not always possible

to ascertain this, because for many of the considered scenarios the size of the graph

data sets were such that the non-weighted approach exhausted memory resources.

Structural Data

Trees

Undirected

graphs

Directed

graphs

represented as
 (Weighted)

Graph Model

considered as

(Weighted) Frequent

Subgraphs

(Weighted) Frequent Subgraph Mining

Feature

Vectors
 Classification

Feature

Selection

Techniques

optional module

Frequent patterns based classification

Figure 1.2: Evaluation model for weighted frequent subgraph mining

1.5 Contribution

The main contributions of the research work considered in this thesis can be summarized

as follows:

1. The weighting concept, which puts an emphasis on the most important frequent

10

subgraphs instead of identifying all the frequent subgraphs during the mining

process, was proposed (see Chapters 2, 4, 5, and 8).

2. The definition of a number of weighting functions to determine the weights (sig-

nificance) of vertexes or edges in graphs was introduced (see Chapter 4).

3. A sequence of subgraph weighting schemes, to attach significance to identified

subgraphs, which can be integrated seamlessly into the process of mining frequent

subgraphs, was devised (see Chapter 5).

4. A number of weighted frequent subgraph mining algorithms, which founded on

different weighting strategies and directed at different types of graphs, were de-

vised (see Chapters 5 and 8).

5. A framework for integrating feature selection techniques into the weighted fre-

quent subgraph mining process in the context of frequent pattern based graph

classification (Figure 1.2) was introduced (see Section 5.2.3).

6. A mechanism for the domain user to control the mining process by adjusting either

the support or the weighting threshold was introduced, such that the computa-

tional complexity of frequent subgraph mining is reduced in a trade-off between

efficiency and effectiveness (see Chapters 5 and 8).

7. A new framework for image classification using an image interest points based

graph representation in the context of the weighted frequent subgraph mining

was proposed (see Section 3.2.5).

8. A systematic framework was proposed for classifying documents using a graph

based representation (see Sections 3.2.3 and 3.2.7), in conjunction with weighted

frequent subgraph mining (see Chapter 6, 7 and 8).

1.6 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2 the background (literature

review) to the work described is introduced. The graph data sets used for evaluation

purposes in this thesis are then described in Chapter 3. Weighting functions for both

vertexes and edges are examined in Chapter 4. Algorithms integrating the various

weighting functions into the frequent subgraph mining process and the experimental

results are then considered in Chapters 5, 6, 7, and 8. Chapter 5 considers weighted fre-

quent subgraph mining in the context of maintaining the DCP. Chapter 6 then presents

the empirical results obtained by applying the algorithms introduced in Chapter 5 to

the data sets introduced in Chapter 3. Chapter 7 investigates two case studies of ap-

plying the algorithms introduced in Chapter 5. Chapter 8 presents an alternative to

11

weighted frequent subgraph mining in the context of not maintaining the DCP, and re-

ports the experimental result. Finally, some discussions and conclusions are presented

in Chapters 9 and 10 respectively.

12

Chapter 2

Background

This chapter provides the background knowledge with respect to the research work

described in this thesis. The chapter commences, Section 2.1, with the concepts em-

ployed in this thesis. Then in Section 2.2, the definitions of frequent subgraph mining

and weighted frequent subgraph mining are presented. A discussion of graph isomor-

phism detection, the most significant research issues associated with frequent subgraph

mining, is presented in Section 2.3; Section 2.4 then provides an overview of the process

of frequent subgraph mining. “State of the art” reviews of current work on frequent

subtree and subgraph mining are then presented in Sections 2.5 and 2.6 respectively.

Some applications of frequent subgraph mining are presented in the following two sec-

tions. Frequent subgraph based classification and clustering are considered in Section

2.7, and social network mining using frequent subgraphs in Section 2.8. Other research

work that is related to the proposed research described in this thesis is discussed in

Section 2.9. Finally, all the work that has been described in this chapter is summarized

in 2.10.

2.1 Concepts

This section presents the necessary definitions, commonly adopted in graph theory,

that are required as a precursor to any discussion concerning frequent subgraph mining.

Generally speaking, a graph is defined in terms of a set of vertexes (nodes) which are

interconnected by a set of edges (links) [Gibbons, 1985].

Labelled Graph: A labelled graph can be represented as G(V,E, LV , LE , ϕv, ϕe),

where V is a set of vertexes, E ⊆ V × V is a set of edges; LV and LE are

vertex and edge labels respectively; and ϕv and ϕe are the corresponding func-

tions that define the mappings V → LV and E → LE . A list of basic graph

vocabulary is presented in Table 2.1.

Subgraph: Given two graphsG1(V1, E1, LV1 , LE1 , ϕV1 , ϕE1) andG2(V2, E2, LV2 , LE2 , ϕV2 , ϕE2),

13

Table 2.1: Basic vocabulary

Vocabulary Description

Path A sequence of vertexes which can be ordered such that two
vertexes form an edge if and only if they are consecutive in
the sequence [West, 2000].

The length of a path The number of edges in a path.
Cycle A path where the start and the end vertexes of the path

are the same.
Self-cycle (loop) An edge that connects a vertex to itself.
Multiple edges Two or more edges connecting to the same two vertexes.
An acyclic graph A graph that contains no cycles.
A (dis)connected graph A graph is connected if it contains a path for every pair of

vertexes, and disconnected otherwise [West, 2000].
A complete graph A graph where each pair of vertexes is joined by an edge.
A directed graph A graph where each edge of a graph describes an ordered

pair of vertexes.
A undirected graph A graph where each edge of a graph describes an unordered

pair of vertexes.

G1 is a subgraph of G2, if G1 satisfies the following conditions.

V1 ⊆ V2, ∀v ∈ V1, ϕV1(v) = ϕV2(v),

E1 ⊆ E2, ∀(u, v) ∈ E1, ϕE1(u, v) = ϕE2(u, v) .

G2 is also called a supergraph of G1. Furthermore, G1 is an induced subgraph

of G2, if G1 further satisfies the following condition (in addition to the above

conditions) [Inokuchi et al., 2002, Huan et al., 2003]:

∀u, v ∈ V1, (u, v) ∈ E1 ⇔ (u, v) ∈ E2 .

The definition of the induced subgraph indicates that a subgraph G1 of a graph

G2 is induced if for any pair of vertexes that appear in both G1 and G2, the edges

between the vertexes must also be present in both G1 and G2. In other words,

an induced subgraph is a subgraph with some constraints.

Free Tree: An undirected graph that is connected and acyclic [Chi et al., 2004a,c].

Labelled Unordered Tree: A labelled unordered tree (an unordered tree, for short)

is a directed acyclic graph denoted as T (V, φ,E, vr), where V is a vertex set of

T ; φ is a labelling function, such that ∀vi ∈ V, φ(vi)→ vi; E ⊆ V × V is an edge

set of T ; and vr is a distinguished vertex called root of T . For ∀vi ∈ V , there is

a unique path (vr, v1, v2, · · · , vi) from the root vr to vi [Asai et al., 2002, 2003].

If a vertex vi is on the path from the root to the vertex vj , then vi is an ancestor

of vj , and vj is a descendant of vi. For each edge vi, vj ∈ E, vi is the parent of vj ,

and vj is a child of vi. Vertexes that share the same parent are siblings. The size

14

of T is defined to be the number of vertexes in T . A vertex without any child is

a leaf vertex; otherwise it is an intermediate vertex. The rightmost path of T is

the path from the root vertex to the rightmost leaf. The depth/level of a vertex

is the length of the path from the root to that vertex. The degree of a vertex is

the number of edges incident to the vertex [West, 2000, Chi et al., 2004a,c, Tan

et al., 2005a].

Labelled Ordered Tree: A labelled ordered tree1 (an ordered tree, for short) is a

labelled tree with a left-to-right ordering imposed among the children of each

vertex [Asai et al., 2002, 2003, Chi et al., 2004a].

Preorder Traversal: A preorder traversal of a general tree is one form of depth-first

traversal which is performed recursively as follows: visit the root first, and then

do a preorder traversal of each of the subtree of the root one-by-one in the order

given [Preiss, 1998].

Postorder Traversal: A postorder traversal of a general tree is one form of depth-

first traversal which is performed recursively as follows: do a postorder traversal

of each of the subtrees of the root one-by-one in the order given, and then visit

the root [Preiss, 1998].

Bottom-up Subtree: Given a labelled tree T (V, φ,E, vr) (ordered or unordered),

T ′(V ′, φ′, E′, v′r) is a bottom-up subtree of T if and only if (i) V ′ ⊆ V ; (ii) E′ ⊆ E;

(iii) the labelling of V ′ and E′ in T is preserved in T ′; (iv) ∀v ∈ V , if v ∈ V ′ then

all descendants of v must also be in V ′; (v) if T is ordered, then the left-to-right

ordering among the siblings in T should be preserved in T ′ [Chi et al., 2004a,

Valiente, 2002].

Induced Subtree: Given a labelled tree T (V, φ,E, vr) (free tree or unordered tree

or ordered tree), T ′(V ′, φ′, E′, v′r) is an induced subtree of T , if and only if (i)

V ′ ⊆ V ; (ii) E′ ⊆ E; (iii) the labelling of V ′ and E′ in T is preserved in T ′;

(iv) if defined for ordered trees, the left-to-right ordering among the siblings in

T ′ should be a sub-ordering of the corresponding vertexes in T [Chi et al., 2004a,

Tan et al., 2006].

Embedded Subtree: Given a labelled tree T (V, φ,E, vr), T
′(V ′, φ′, E′, v′r) is an em-

bedded subtree of T , if and only if (i) V ′ ⊆ V ; (ii)∀v ∈ V ′, φ′(v) = φ(v); and

(iii) ∀(u, v) ∈ E′ such that u is the parent of v, u is an ancestor of v in T ; (iv)

if defined for ordered trees, ∀(u, v) ∈ V ′, preorder(u) < preorder(v) in T ′ if and

only if preorder(u) < preorder(v) in T , where the preorder of a vertex is its index

in the tree according to the preorder traversal [Chi et al., 2004a].

1A labelled ordered tree is also called a rooted plane tree in graph theory [West, 2000].

15

(a)

(c)

(b)

(g)
(f)
(e)
(d)

H

E
B
 D
C
 T
S

Y

W
X

F

B
 C

H

B

A

X
 C

X

F

T

A

F

X
 Y

S
 T

W

H

B
 C
 D
 E

Figure 2.1: Different types of trees

Figure 2.1 shows examples of bottom-up subtrees, induced subtrees, and embed-

ded subtrees. In Figure 2.1 tree (a) represents a given tree, trees (d) and (e)

are two bottom-up subtrees of (a), trees (f) and (g) are two induced subtrees of

(a), and trees (b) and (c) are two embedded subtrees of (a). The relationship

among these three types of subtrees can be denoted as: {bottom-up subtrees} ⊆
{induced subtrees} ⊆ {embedded subtrees}.

Graph Isomorphism: A graph G1(V1, E1, LV1 , LE1 , ϕV1 , ϕE1) is isomorphic to an-

other graph G2(V2, E2, LV2 , LE2 , ϕV2 , ϕE2), if and only if a bijection f : V1 → V2

exists such that:

∀u ∈ V1, ϕV1(u) = ϕV2(f(u)),

∀u, v ∈ V1, (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2,

∀(u, v) ∈ E1, ϕE1(u, v) = ϕE2(f(u), f(v)).

The bijection f is an isomorphism between G1 and G2. A graph G1 is subgraph

isomorphic to a graph G2, denoted by G1 ⊆sub G2, if and only if there exists a

subgraph g of G2 such that G1 is isomorphic to g [Huan et al., 2003]; g is called

an embedding of G1 in G2.

Lattice (GD): Given a database GD, Lattice (GD) is a structural form used to model

the search space when finding frequent subgraphs, where each node represents

a connected subgraph of the graphs in GD. The lattice is typically depicted as

shown in in Figure 2.2. The lowest node (bottom of the figure) represents the

empty subgraph and the nodes at the higher levels represent all the graphs in

GD. A node p is a parent of a node q in the lattice, if q is a subgraph of p, and

q is different from p by exactly one less edge. All the subgraphs of each graph

16

in Gi ∈ GD which occur in the database are present in the lattice and every

subgraph occurs only once in it [Thomas et al., 2006].

A
 B
 C
 D
 F
 G
 H

A
 B
 B
 C
 B
 D
 C
 D
 C
 F
 D
 F
 D
 G
 F
 G
 G
 H

A
 B
 D
 B
 C
 F
 C
 D
 F
 F
 G
 H
C
 D
 F
 C
 D
 F
B
 D
 G

G

2

G

3

A
 B
 D
 G
 C
 D
 F

G

1

G

4

Level 0

Level 2

Level 4

Level 3

Level 1

Figure 2.2: Lattice(GD)

Example: considering a graph database GD = {G1, G2, G3, G4}, the correspond-

ing Lattice(GD), which is in spirit similar to the example presented in Thomas

et al. [2006], is given in Figure 2.2. In the figure, the lowest vertex φ represents the

empty subgraph, and the vertexes at the highest level correspond to G1, G2, G3,

and G4. The parents of the subgraph B-D are subgraphs A-B-D (joining the

edge A-B) and B-D-G (joining the edge D-G). Similarly, subgraphs B-C and

C-F are the children of the subgraph B-C-F .�

2.2 Problem Definition

From the literature two separate problem formulations for Frequent Subgraph Mining

(FSM) can be identified: (i) transaction graph based, and (ii) single graph based. In

transaction graph based mining, the input data comprises a collection of relatively

small simple graphs2 (called transactions [Agrawal and Srikant, 1994]), whereas in

single graph based mining the input data is a very large single graph. The research

work described in this thesis focuses on transaction graph based mining. Table 2.2 lists

the notation in relation to the transaction graph based mining, which will be employed

through out this thesis.

In the context of transaction graph based mining, FSM aims to discover all the

subgraphs whose occurrences in a graph database are over a user defined threshold.

Formally, given a database GD comprised of a collection of graphs and a threshold

σ(0 < σ ≤ 1), the occurrence of a subgraph g in GD is defined by occGD(g) = |{Gi ∈
GD|g ⊆sub Gi}|. Thus, the support of a graph g is defined as the fraction of the graphs

2A simple graph is an unweighted and undirected graph with no loops and no multiple edges between
any two different vertexes [Gibbons, 1985, West, 2000].

17

Table 2.2: Notation used throughout the thesis

Notation Description

GD A graph database.
Gi A transaction graph such that Gi ∈ GD.
k-(sub)graph A (sub)graph of size k in terms of vertexes, or edges, or paths.
gk A k-(sub)graph.
Ck A set of subgraph candidates of size k .
Fk A set of frequent k-subgraphs.
V (g) The vertex set of some graph g.
E(g) The edge set of some graph g.
LV The set of all vertex labels in GD.
LE The set of all edge labels in GD.
| · | The cardinality of a set.

in GD to which g is subgraph isomorphic (the concept of subgraph isomorphism will

be discussed in further detail later in this chapter):

supGD(g) = occGD(g)/|GD| (2.1)

A subgraph g is frequent if and only if supGD(g) ≥ σ. The frequent subgraph

mining problem is to find all the frequent subgraphs in GD. A frequent subgraph

g is closed if none of its proper supergraphs have the same support that g has, and

maximal if none of its proper supergraphs are frequent (see Sub-section 2.6.2.2 for

formal definitions).

The general assumption in this thesis is that the graphs in GD can have weights

associated with either their vertexes or their edges, and that these weights are real num-

bers that reflect the importance of the individual vertexes and edges in the database.

The term weighted subgraph is adopted to indicate that the subgraph is weighted by

some weighting function. The weighting can be derived automatically according to the

characteristics of the graph data or be provided by the domain user. The problem of

weighted frequent subgraph mining is to find all the frequent subgraphs in GD in

such a way that the weightings are used to their best advantage.

2.3 Graph Isomorphism Detection

The central issue of concern in frequent subgraph mining is graph isomorphism de-

tection, and by extension subgraph isomorphism detection. The significance is that

(sub)graph isomorphism detection entails a considerable computational overhead and

consequently much research effort has been directed at ways of reducing this overhead.

In this section a review is presented of a number of the most significant (sub)graph

isomorphism detection algorithms.

Generally, graph matching refers to finding a correspondence between the vertexes

18

and edges of two graphs that satisfies some constraints or optimality criteria such that

similar structures are mapped to each other [Conte et al., 2004]. The matching process

can be formulated in various ways such as: graph isomorphism detection [McKay,

1981], subgraph isomorphism detection [Ullmann, 1976], maximum common subgraph

detection [McGregor, 1982], and graph edit distance computation [Sanfeliu and Fu,

1983]. Maximum common subgraph detection and graph edit computation are rarely

used in frequent subgraph mining and consequently these will not be further discussed

in the thesis (interested readers can refer to Bunke et al. [2002], Conte et al. [2004,

2007], Gao et al. [2010] for further details).

Graph isomorphism is a more stringent form of graph matching than subgraph

isomorphism, i.e., a one-to-one correspondence must exist between the vertexes of one

graph and the vertexes of the other so that adjacency is preserved [Fortin, 1996]. Graph

isomorphism detection plays an essential role in determining the frequency of candidate

subgraph patterns. Graph isomorphism is neither known to be solvable in polynomial

time nor NP-complete3 and subgraph isomorphism is known to be NP-complete [Garey

and Johnson, 1979]. When restricting the graphs to trees, (sub)graph isomorphism

detection becomes (sub)tree isomorphism detection. Tree isomorphism detection can

be solved in a linear time Hopcroft and Tarjan [1972]. Faster subtree isomorphism

detection algorithms with worst case time complexity of O(k1.5n) were published in

Matula [1978] and Chung [1987], and improved upon by Shamir and Tsur [1999] who

claimed a worst case time complexity or O(k
1.5

log kn) time (k and n are the sizes of the

subtree and the tree to be searched in terms of the number of vertexes).

Subgraph isomorphism detection has been applied to a variety of domains, such

as pattern recognition [Lu et al., 1991], shape analysis [Pearce et al., 1994], computer

vision [Wong, 1992], and machine learning [Cook and Holder, 1994]. Subgraph isomor-

phism detection is fundamental to frequent subgraph mining. Many “efficient” frequent

subgraph mining algorithms have been proposed directed at avoiding or reducing the

operation of subgraph isomorphism detection. A significant number of subgraph iso-

morphism detection algorithms have been reported in the literature, which can be

roughly categorized as being either exact matching [Ullmann, 1976, Schmidt and Druf-

fel, 1976, McKay, 1981, Cordella et al., 1998, 2001] or error tolerant matching [Shapiro

and Haralick, 1981, Bunke and Allerman, 1983, Christmas et al., 1995, Messmer and

Bunke, 1998]. Most of the frequent subgraph mining algorithms use exact matching.

An itemised overview of the main exact matching (sub)graph isomorphism detection

algorithms is presented in Table 2.3. In Table 2.3, column two indicates the main

methods employed to carry out the isomorphism detection, and column three indicates

3NP-complete: In computational complexity theory, the complexity class NP refers to the set of
decision problems whose solutions can be verified in polynomial time. A decision problem ρ is NP-
complete if ρ is in NP and every other problem in NP is reducible to ρ in polynomial time [Cormen
et al., 2001].

19

whether the isomorphism detection algorithm is applicable to graph isomorphism, sub-

graph isomorphism or both.

Table 2.3: Overview of a number of exact matching (sub)graph isomorphism algorithms

Algorithms Main Techniques Matching Types
Time Complexity
(Worst Case)

Ullmann
backtracking graph & subgraph isomorphism O(|V (g)|!|V (g)|3)
look ahead function

SD
distance matrix graph isomorphism O(|V (g)|!|V (g)|)
backtracking

Nauty
group theory graph isomorphism exponential
canonical labelling

VF
DFS strategy graph & subgraph isomorphism O(|V (g)|!|V (g)|)
feasibility rules

VF2
VF’s rationale graph & subgraph isomorphism O(|V (g)|!|V (g)|)
advanced data structures

With respect to Table 2.3, Ullmann’s algorithm [Ullmann, 1976] is a widely used

graph matching algorithm [Messmer, 1996]. The algorithm employs a backtracking

procedure with a look-ahead function to reduce the size of the search space. Similarly,

the SD algorithm [Schmidt and Druffel, 1976] utilizes the distance matrix representation

of a graph together with a backtracking procedure to reduce the search. McKay’s Nauty

algorithm [McKay, 1981] uses group theory to transform the graphs to be matched into

a canonical form that allows for more effective graph isomorphism testing. However,

the construction of the canonical form can lead to exponential complexity given a

worst case scenario [Conte et al., 2004]. Although Nauty was regarded as the fastest

graph isomorphism algorithm by Conte et al. [2004], Miyazaki [1997] demonstrated the

existence of some categories of graph which required exponential time to generate the

canonical labelling. The VF [Cordella et al., 1998] and VF2 [Cordella et al., 2001]

algorithms use a depth first search (DFS) strategy, assisted by a set of feasibility rules

to prune the search tree. VF2 is an improved version of VF that explores the search

space more effectively so that the matching time and the memory consumption are

significantly reduced.

In Foggia et al. [2001] a detailed experimental analysis of these five algorithms

(Ullmann, SD, Nauty, VF and VF2) is provided to indicate that none of the existing

algorithms is completely superior to the others. In general, VF2 was found to give

the best performance with respect to the size and the type of graphs to be matched.

In the framework of frequent pattern based classification described in Figure 2.9, VF2

algorithm was adopted in this thesis for use as the subgraph isomorphism detection

algorithm to build feature vectors from the weighted frequent subgraphs discovered by

the weighted frequent subgraph mining algorithm.

20

2.4 Overview of Frequent Subgraph Mining

As noted above a central theme of graph mining is frequent subgraph mining, which has

demonstrated its advantages in various tasks such as chemical compound classification

[Deshpande et al., 2005, Huan et al., 2004c], document image clustering [Barbu et al.,

2005], graph indexing [Shasha et al., 2002, Yan et al., 2004], graph searching [Yan et al.,

2005b, 2006a, Chen et al., 2007a], and many others. A generic overview of the process

of frequent subgraph mining is presented in this section.

(b) Pattern growth approach
(a)
 Apriori-based approach

Level K

Level K+1

Level 0

duplicate graph

k-subgraph

(k+1)-subgraph

grow

join

Figure 2.3: Two types of FSM approaches. Note that the subgraph lattice is shown
“upside-down”. Vertexes corresponding to graphs with fewer edges are displayed at the
top of the picture in each case.

Algorithm 2.1: Apriori-based approach

Input: GD = a graph dataset, σ= minimum support
Output: F1,F2, · · · ,Fk, a set of frequent subgraph sets

1 F1 ← detect all frequent 1-subgraphs in GD
2 k ← 2
3 while Fk−1 6= ∅ do
4 Fk ← ∅
5 Ck ← candidate-gen(Fk−1)
6 foreach candidate gk ∈ Ck do
7 gk.count← 0
8 foreach Gi ∈ GD do
9 if subgraph-isomorphism(gk, Gi) then

10 gk.count← gk.count+ 1
11 end

12 end
13 if gk.count ≥ σ|GD| ∧ gk /∈ Fk then
14 Fk = Fk ∪ gk
15 end

16 end
17 k ← k + 1

18 end

It is widely accepted that FSM techniques can be divided into two categories: (i)

21

Algorithm 2.2: Pattern growth approach

Input: g = a frequent subgraph, σ = minimum support, GD = a graph dataset
Output: F , a set of frequent subgraphs

1 F ← ∅
2 F1 ← detect all frequent 1-subgraphs in GD
3 k ← 1

4 foreach g ∈ F1 do
5 Pattern-growth(g,GD, σ,F)
6 end

7 Function: Pattern-growth(g,GD, σ,F)

8 k ← k + 1
9 Ck ← ∅

10 if g ∈ F then
11 return
12 else
13 F ← F ∪ g
14 end
15 scan GD, find all the edges e such that g can be extended to g ∪ e, g ← g ∪ e,

and insert g into Ck
16 foreach gk ∈ Ck do
17 if gk.count ≥ σ|GD| then
18 Pattern-growth(gk,GD, σ,F)
19 else
20 return
21 end

22 end

the Apriori-based approach (also called the BFS strategy based approach) and (ii) the

pattern growth approach. These two categories are similar in spirit to counterparts

found in association rule mining (ARM), namely the Apriori algorithm [Agrawal and

Srikant, 1994] and the frequent pattern growth (FP-growth) algorithm [Han et al., 2000]

respectively. As illustrated in Figure 2.3(a), the Apriori-based approach proceeds in

a “generate-and-test” manner using a breadth first search (BFS) strategy to explore

the subgraph lattice of the given database. Therefore, before exploring any (k + 1)-

subgraphs, all the k-subgraphs should first be explored. Further, any (k+ 1)-subgraph

candidates are generated by joining two frequent k-subgraphs. Because there are many

ways to join two frequent k-subgraphs, the Apriori-based approach may incur high

complexity. The basic Apriori-based process is outlined in Algorithm 2.1. A pattern

growth approach is shown in Figure 2.3(b). It can use both BFS and DFS strategies,

but the latter is preferable to the former because it requires less memory usage. As

illustrated in Figure 2.3, the difference between the pattern growth approach using a

BFS strategy and the Apriori-based approach is that any (k + 1)-subgraph candidates

22

are generated by joining two frequent k-subgraphs for the latter while for the former,

any (k + 1)-subgraph candidates are generated by extending one frequent k-subgraph.

It can be observed in Figure 2.3 (b) that the same subgraph can be discovered many

times. Theoretically, the same k-subgraph may be generated by extending one edge

from k different (k− 1)-subgraphs. Thus, how to extend a subgraph efficiently in order

to reduce the generation of duplicate subgraphs is vital for a pattern growth approach.

The basic pattern growth procedure, following the description presented in Han and

Kamber [2006], is outline in Algorithm 2.2. As can be seen in Algorithm 2.2, for each

discovered frequent subgraph g, this approach grows g recursively until all the frequent

supergraphs of g are discovered.

According to the downward closure property (DCP) of frequent item sets (also called

Anti-monotonicity property), as advocated in Association Rule Mining, if a graph is

frequent then all of its subgraphs are also frequent. Therefore all frequent k-subgraphs

are used to generate the (k + 1)-subgraph candidates. If any of the candidate (k + 1)-

subgraphs are then found to be not frequent, they can be pruned. As exhibited in

Algorithms 2.1 and 2.2, most existing frequent subgraph mining algorithms adopted an

iterative pattern mining strategy. Each iteration can typically be divided into two clear

phases: (i) candidate generation (line 5 in Algorithm 2.1 and line 15 in Algorithm 2.2)

and (ii) support count computation (lines 6-12 in Algorithm 2.1 and line 15 in Algo-

rithm 2.2). For the former, graph isomorphism detection is required in order to reduce

the generation of duplicate subgraphs. The latter requires subgraph isomorphism de-

tection. Generally, research on frequent subgraph mining focuses on these two phases.

Since it is harder to address subgraph isomorphism detection, more research effort

has been directed at how to efficiently generate subgraph candidates. Because subtree

isomorphism detection can be solved in O(k
1.5

log kn) time, the computational complexity

of FSM is reduced within the context of trees. Therefore, in this thesis a distinction

is made between frequent subgraph mining and frequent subtree mining. In the rest

of this thesis the acronym FSM will be used to indicate both frequent subgraph and

subtree mining; and the acronyms FGM and FTM will be used to distinguish between

frequent subgraph and subtree mining respectively.

Before examining current FGM and FTM algorithms, how these algorithms repre-

sent and order the graphs and trees that they operate with will be considered first in

Section 2.4.1.

2.4.1 Canonical representations

The simplest mechanism whereby a graph structure can be represented is by employ-

ing an adjacency matrix or adjacency list. The adjacency list is mainly used for the

storage purposes in FSM when the graphs are sparse, while the adjacency matrix is

mostly used for the canonical representation. Using an adjacency matrix the i-th row

23

and the i-th column of the matrix, (i, i), denotes the i-th vertex vi, and the i-th row

and the j-th column of the matrix, (i, j), denotes the potential edge connecting the

vertexes vi and vj ((i, j) = 0 where no edges exist between vi and vj) [Inokuchi et al.,

2003]. An example is given in Figures 2.4, where (b) is the adjacency matrix extracted

from the graph presented in (a). In the figure, for ease of illustration, all edge labels

are assumed to be the same and represented by ‘1’. Note that in Figures 2.4(a) the

vertexes are numbered, in a depth first manner, from 0 to 11. The use of adjacency

matrices, although straightforward, does not lend itself to isomorphism detection, be-

cause the vertexes (and edges) can be enumerated in many different ways [Washio and

Motoda, 2003]. With respect to isomorphism testing, it is therefore desirable to adopt

a consistent labelling strategy that ensures that any two identical graphs are labelled

in the same way regardless of the order in which vertexes and edges are presented (i.e.

a canonical labelling strategy).

A canonical labelling strategy defines a unique code for a given graph [Read and

Corneil, 1977, Fortin, 1996]. Canonical labelling facilitates isomorphism checking be-

cause it ensures that if a pair of graphs are isomorphic, then their canonical labellings

will be identical [Kuramochi and Karypis, 2001]. One simple way of generating a

canonical labelling is to flatten the associated adjacency matrix by concatenating rows

or columns to produce a code comprising a list of integers with a lexicographical order-

ing imposed. To further reduce the computation resulting from the permutations of the

matrix, canonical labellings are usually compressed, using what is known as a vertex

invariant scheme [Read and Corneil, 1977], that allows the content of an adjacency

matrix to be partitioned according to the vertex labels. Various canonical labelling

schemes have been proposed in the literature. Some of the most significant are briefly

described below.

(a) Graph G with preorder subscripts

a

b

f
e

d
h

f

k

c
 w

f

g

2

1

0

7

6
 8

5

11

10

9

3
 4

(b) G's adjacency matrix

depth 0

depth 1

depth 2

depth 3

a 1 0 1 0 0 0 1 0 0

1 b 0 0 1 0 0 0 0 0

0 0 c 0 1 1 0 0 0 0

1 0 0 d 0 1 1 0 0 0

0 1 1 0 e 1 0 0 0 0

0 0 1 1 1 f 1 1 0 1

0 0 0 1 0 1 g 0 0 0

1 0 0 0 0 1 0 h 1 0

0 0 0 0 0 0 0 1 k 0

0 0 0 0 0 1 0 0 0 w

Figure 2.4: A graph example with its adjacency matrix

Minimum DFS Code (M-DFSC): There are a number of variants of the Depth

First Search (DFS) code canonical labelling scheme; but essentially each vertex is

24

given a unique identifier generated from a DFS traversal of the graph (DFS sub-

scripting). Each constituent edge of the graph in the DFS code is then represented

by a 5-tuple: (i, j, li, le, lj), where i and j are the vertex identifiers, li and lj are the

labels for the corresponding vertexes, and le is the label for the edge connecting

the vertexes. Based on the DFS lexicographic order, the M-DFSC of a graph g is

defined as the canonical labelling of g [Yan and Han, 2002]. The DFS codes for the

left-most branch and the right-most branch of the example graph G given in Fig-

ure 2.4(a) are {(0, 1, a, 1, b), (1, 2, b, 1, e), (2, 3, e, 1, f), (3, 4, f, 1, c), (4, 2, c, 1, e)} and

{(0, 9, a, 1, d), (9, 10, d, 1, f), (10, 11, f, 1, g), (11, 9, g, 1, d)} respectively.

Canonical Adjacency Matrix (CAM): Given an adjacency matrix M of a graph

g, an encoding of M can be obtained by the sequence of concatenating lower (or

upper) triangular entries of M , including entries on the diagonal. Since different

permutations of the set of vertexes correspond to different adjacency matrices,

the canonical (CAM) form of g is defined as the maximal (or minimal) encoding.

The adjacency matrix from which the canonical form is generated defines the

Canonical Adjacency Matrix or CAM [Inokuchi et al., 2000, 2002, Kuramochi

and Karypis, 2001, Huan et al., 2003]. The encoding for the example graph

G given in Figure 2.4(a), represented by the matrix in Figure 2.4(b), is thus

{a1b00c100d0110e00111f000101g1000010h00000001k000001000w}.

The above two schemes are applicable to any simple graph. It is easier to define

a canonical labelling for trees than graphs because trees have an inherent structure

associated with them. There also exist more specific labelling schemes that focus ex-

clusively on trees. Among these, DFS-LS, DLS and CPS are directed at rooted ordered

trees; whilst BFCS and DFCS are used for rooted unordered trees. Each is briefly

described below where the tree example given in Figure 2.6 is used to illustrate the

labelling schemes. In the figure, for ease of illustration, all edge labels are assumed to

be the same and represented by ‘1’.

Canonical Representation of Free Trees: Free trees do not have roots. In this

case a unique representation for a free tree is usually constructed by selecting one

vertex or a pair of vertexes as the root(s). The procedure starts with removing

all leaf vertexes and their incident edges recursively until a single vertex or two

adjacent vertexes are left. In the first case, the remaining vertex is called the

centre, and a rooted unordered tree is obtained with the centre as the root.

The procedure is displayed in Figure 2.5(a). In the second case, the pair of

remaining vertexes are called the bi-centre; a pair of rooted unordered trees can

then be obtained with the bi-centre as the roots (along with an edge connecting

two roots). The procedure is displayed in Figure 2.5(b). This pair of trees are

ordered so that the root of the smaller one is chosen as the root of the whole tree

25

[Chi et al., 2003a, Ruckert and Kramer, 2004]. After obtaining rooted unordered

trees, any canonical representations for rooted unordered trees can be employed

to represent the free trees.

(b) One Bicentre Tree

(a) One Centre Tree

Figure 2.5: An example of two types of free trees

DFS Label Sequence (DFS-LS): Given a labelled ordered tree T , the labels of

∀vi ∈ V are added to a string S, during a DFS traversal of T . Whenever a

backtrack occurs, a unique symbol “−1” or “$” or “/” is added to S [Zaki, 2002,

2005b, Tan et al., 2006]. The DFS-LS code for the example tree T given in Figure

2.6 is {abea$$$cfb$d$$a$$dfc$$$}.

Depth-Label Sequence (DLS): Given a labelled ordered tree T , depth-label pairs

comprising the depth and the label of ∀vi ∈ V , (d(vi), l(vi)), are added to a

string S, during a DFS traversal of T . The depth-label sequence of T is defined

as S = {(d(v1), l(v1)), · · · , (d(vk), l(vk))} [Asai et al., 2002, Nakano, 2002, Wang

et al., 2004a]. DLS’s variants can be further found in Asai et al. [2003] and

Nijssen and Kok [2003]. The DLS code for the example tree T given in Figure 2.6

is {(0, a), (1, b), (2, e), (3, a), (1, c), (2, f), (3, b), (3, d), (2, a), (1, d), (2, f), (3, c)}.

Consolidated Prüfer Sequence(CPS): Given a labelled tree, the CPS encoding

scheme consists of two parts: NPS that denotes an extended prüfer sequence4

constructed using the postorder traversal numbers of vertexes as the set of unique

labels; and LS that denotes a sequence of labels of deleted leaf vertexes at each

step of a postorder traversal. Both the NPS and LS sequences jointly encode

a unique representation for a labelled tree [Tatikonda et al., 2006]. The NPS

and LS for the example tree T given in Figure 2.6 are {ebaffccafda−} and

{aebbdfaccfda} respectively.

4An extended prüfer sequence (introduced by Tatikonda et al. [2006]) for a tree with n vertexes is a
n-length sequence constructed by a recursive process with n iterations. At each iteration, the leaf with
the smallest label (i.e. the smallest postorder traversal number) is removed and its parent is added to
the already built partial prüfer sequence. When the last vertex is removed the corresponding entry in
the sequence is denoted by “−”.

26

3

Tree T with preorder subscripts

depth 0

depth 1

depth 2

depth 3

a

b

f
e

d
c

a

a

b
 d

f

c

2

1

0

6
 7

5
 8

4

11

10

9

Figure 2.6: A tree example

Breadth-First Canonical String (BFCS): For a labelled ordered tree, every ver-

tex label is added into a string, by traversing the tree in a BFS manner. Ad-

ditionally, a “$” symbol is used to partition the families of siblings, and a “#”

symbol to indicate the end of the string encoding. The “$” symbol is consid-

ered to be lexicographically before the symbol “#” and both are considered to

be lexicographically after any other vertex and edge labels. Given an unordered

tree T , different ordered trees with corresponding BFS string encodings can be

produced by imposing different orders on the children of the intermediate ver-

texes. The BFCS of T is the lexicographically minimal of these encodings, and

the corresponding rooted ordered tree defines the breadth-first canonical form

(BFCF) of T [Chi et al., 2005]. BFCS’s variants can be found in Chi et al.

[2003a, 2004c]. Thus, a BFS string encoding of the example tree T given in

Figure 2.6 is abcdefafabd$$c#.

Depth-First Canonical String (DFCS): Similar to the BFCS but using DFS. The

depth-first string encoding, for a labelled ordered tree, labels each vertex by

traversing the tree in a DFS manner. The “$” symbol is used to represent a

backtrack, and the “#” symbol to represent the end of string encoding. The

DFCS of an unordered tree T is then the minimal of all the possible DFS en-

codings, according to the lexicographical ordering. The corresponding rooted

ordered tree defines the depth-first canonical form (DFCF) of T [Chi et al., 2005].

A DFCS variant can be found in Chi et al. [2003a, 2004b]. A DFS string encoding

of the example tree T given in Figure 2.6 is abea$$$cfb$d$$a$$dfc$$$#.

2.4.2 Frequency measures

In FSM, a subgraph candidate is said to be frequent if its frequency of occurrence

is greater than or equal to a user defined threshold. The frequency of a pattern is

calculated in terms of the support of the pattern. However, the manner in which

27

the support of a pattern is counted is dependent on the nature of the FSM problem

formulation: either transaction graph based FSM (the focus of this thesis) or single

graph based FSM.

In the context of transaction graph FSM, the support of a pattern is computed

using transaction based counting ; whereby the support for a candidate subgraph is

determined according to the number of transaction graphs that the pattern occurs in,

regardless of how many times the pattern actually occurs in a particular transaction

graph. The support measure using transaction based counting can be formulated by

Equation 2.1, which was introduced in Section 2.2. In the context of single graph based

mining, the support of a pattern is computed by occurrence based counting whereby

the support of a candidate subgraph is determined according to the total number of

occurrences of a pattern in the input graph. Occurrence based counting may also be

applied in the case of transaction graph FSM, but is more usually applied to single

graph FSM (transaction based counting is clearly only applicable to transaction graph

FSM). Transaction based counting offers the advantage that it satisfies the DCP, which

can be employed to significantly reduce the computational overhead associated with

candidate generation in FSM. Occurrence based counting does not feature the DCP

(e.g. [Tan et al., 2006]): consequently an alternative measure, embracing occurrence

based counting, which keeps the DCP, is required; or some heuristics are needed to

limit the search space. There are a variety of support measures [Vanetik et al., 2002,

Kuramochi and Karypis, 2004c, 2005, Vanetik et al., 2006] that have been proposed for

single graph based FSM, which will be discussed in Sub-section 2.6.1.2. Since the focus

of this thesis is on transaction graph based FSM, the further discussion of single graph

based FSM is only included for completeness.

2.4.3 Candidate generation

FSM can be conceptualised as a search through the lattice describing all possible pat-

terns. One of two primary operations in FSM is candidate generation. For candidate

generation the challenge is to systematically generate candidate subgraphs without re-

dundancy (i.e. each subgraph should be generated at most once). Many different FSM

algorithms have been characterized by the candidate generation strategy that they

adopt. Some of the most significant will be briefly described below. A significant pro-

portion of techniques employed in FTM are also applicable to FGM (and vice-versa), it

is therefore difficult to distinguish between candidate generation techniques according

to whether they are applicable to FTM or FGM.

2.4.3.1 Rightmost path expansion

Rightmost path expansion is the most common candidate generation strategy, which

generates (k + 1)-subtrees from frequent k-subtrees by adding vertexes only to the

28

rightmost path of the tree [Asai et al., 2002, Zaki, 2002, Asai et al., 2003, Nijssen and

Kok, 2003]. In Figure 2.7 (a), “RMB” denotes the rightmost branch of T , which is the

path from the root to the rightmost leaf (k − 1); a new vertex k is added by attaching

it to any vertexes along the RMB. An enumeration DAG (directed acyclic graph) using

rightmost path expansion is a tree with a root φ, where each node is a subtree pattern.

A node s is linked by another node t if and only if t is a rightmost path expansion of s.

Every 1-subtree is a rightmost path expansion of the root φ and every (k + 1)-subtree

is a rightmost path expansion of the k-subtree. Hence, all subtree patterns can be

enumerated by traversing in either a BFS or DFS manner [Asai et al., 2002].

Figure 2.7 (b) shows part of an enumeration DAG grown by rightmost path expan-

sion. Each square in the figure represents a vertex in the tree. Each highlighted part

represents all 5-subtrees obtained by the rightmost path expansion of the corresponding

4-subtrees. An enumeration DAG (sometimes also simplified as an enumeration tree) is

used to illustrate how a set of patterns is completely enumerated in a search problem.

Enumeration DAGs have been used extensively in ARM [Bayardo Jr., 1998, Agarwal

et al., 2001], and subsequently, in a variety of ways, by many subtree mining algorithms

[Asai et al., 2002, 2003, Nijssen and Kok, 2003, Chi et al., 2004c, 2005].

RMB

k-1

k

(a) The rightmost path (b) A partial enumeration DAG

Figure 2.7: An illustration of rightmost path expansion

2.4.3.2 Equivalence class based extension

The strategy of equivalence class based extension [Zaki, 2002, 2005b] essentially uses a

DFS-LS representation for trees. Basically, a (k+1)-subtree is generated by joining two

29

frequent k-subtrees which must be in the same equivalence class [C]5. An equivalence

class consists of the class prefix encoding, and a list of members. Each member of the

class can be represented as a (l, p) pair, where l is the k-th vertex label and p is the

depth-first position of the k-th vertex’s parent. It is verified by Zaki [2002] that all

potential (k+ 1)-subtrees with the prefix [C] of size (k−1) can be generated by joining

each pair of members of the same equivalent class [C].

2.4.3.3 Right-and-left tree join

The right-and-left tree join strategy was proposed by Hido and Kawano [2005]. It

essentially uses the rightmost leaf (see 2.1) and leftmost leaf6 of the tree to generate

candidates in a BFS manner. Let lml(t) denote the leftmost leaf of t and Right(t)

the right tree obtained by removing lml(t); and let rml(t) denote the rightmost leaf

and Left(t) the left tree obtained by removing rml(t). Given two trees s and t where

Right(s) = Left(t), their right-and-left tree join is defined as: join(s, t) = s∪rml(t) =

lml(s) ∪ t. A diagram depicting this join operation is displayed in Figure 2.8.

left tree s

lml(s)

a

b

h

c

h

join (s,t)

a

b

h

c

h
 g

right tree t

rml(t)

a

b

h

c

g

Figure 2.8: An illustration of right-and-left tree join

2.4.3.4 Extension and join

The extension and join strategy was first proposed by Huan et al. [2003], and later

used by [Chi et al., 2004c]. It employed a BFCS representation such that a leaf at the

bottom level of a BFCF tree is defined as a leg. For a node Vn in an enumeration tree,

if the height of the BFCF tree corresponding to Vn is assumed to be h, all children of

Vn can be obtained by either of the two following operations:

(a) Extension operation - adding a new leg at the bottom level of the BFCF tree yields

a new BFCF with height h+ 1.

(b) Join operation - joining Vn and one of its sibling yields a new BFCF with height h.

5In Zaki [2002], two k-subtrees T1, T2 are in the same prefix equivalence class if and only if they
share the same encoding up to the (k − 1)-th vertex.

6The leftmost leaf of the tree, is the first leaf vertex in the DFS traversal of that tree [Hido and
Kawano, 2005].

30

2.4.3.5 Level-wise join

The level-wise join strategy was introduced by Kuramochi and Karypis [2001]. Basi-

cally, a (k + 1)-subgraph candidate is generated by joining two frequent k-subgraphs

which have to share the same (k − 1)-subgraph. This common (k − 1)-subgraph is

referred to as a core for these two frequent k-subgraphs. One main issue about this

strategy is that one k-subgraph can have at most k different (k − 1)-subgraphs and

the joining operation may generate many redundant candidates. In Kuramochi and

Karypis [2004b], this issue was addressed by limiting the (k − 1)-subgraphs to be only

two (k − 1)-subgraphs with the smallest and the second smallest canonical labels. By

carrying out this adapted join operation, the number of duplicate candidates generated

was significantly reduced. Other algorithms adopting the strategy and its variants are

AGM [Inokuchi et al., 2000], DPMine [Vanetik et al., 2002, Gudes et al., 2006], and

HSIGRAM [Kuramochi and Karypis, 2004c], which will be discussed later.

Among these candidate generation strategies, the last two are centred on FGM and

all others are concentrated on FTM.

Table 2.4: Taxonomy of frequent subtree mining algorithms

Maximal Closed Induced Embedded Tc Oc

Rooted unordered tree mining

TreeFinder ? ? ?
uFreqT ? ?
Unot ? ?
PathJoin ? ? ?
cousinPair ? ?
RootedTreeMiner ? ?
SLEUTH ? ?

Rooted ordered tree mining

FREQT ? ?
TreeMiner ? ?
Chopper ? ?
XSpanner ? ?
AMIOT ? ?
IMB3-Miner ? ? ?
TRIPS ? ?
TIDES ? ?

Free tree mining

FreeTreeMiner ? ?
FTMiner ? ?
F3TM ? ?
CFFTree ? ? ?

Hybrid tree mining

CMTreeMiner ? ? ? ?
HybridTreeMiner ? ?

31

2.5 Frequent Subtree Mining Algorithms

The previous section considered the issues of representation (canonical forms), fre-

quency and candidate generation, in terms of both trees and graphs. In this section a

number of prominent FTM algorithms are reviewed. FTM has attracted a great deal

of research interest in areas such as: network IP multi-cast7 routing [Cui et al., 2005],

web usage mining [Cooley et al., 1997, Zaki, 2005a], XML mining [Zaki and Aggarwal,

2003, Tan et al., 2005b], bioinformatics [Hein et al., 1996, Ruckert and Kramer, 2004,

Zhang and Wang, 2006], database indexing [Yang et al., 2003], computer vision [Liu

and Geiger, 1999] and so on. The attraction of FTM is that the subgraph isomorphism

detection problem becomes the subtree isomorphism detection problem, which can be

solved in O(k
1.5

log kn) time [Shamir and Tsur, 1999]. In addition the structure of trees

may be usefully employed to simplify the overall mining process.

The FTM algorithms discussed in this section have been categorized, as shown in

Table 2.4, according to the nature of the trees that they are directed at: (i) unordered

trees, (ii) ordered trees, (iii) free trees, or (iv) hybrid trees (any combinations of (i), (ii)

and (iii)). Alternative categorizations as shown in Table 2.4 could focus on the nature

of the subtrees to be output (induced subtrees, embedded subtrees, maximal subtrees,

or closed subtrees); or the nature of the support metrics employed (transaction-based

counting denoted by Tc or occurrences-based counting denoted by Oc). In the table, the

caption ‘Maximal’ (‘Closed’) denotes maximal (closed) frequent subtrees, the caption

‘Induced’ (‘Embedded’) denotes induced (embedded) subtrees. In the context of FTM,

the definitions of maximal and closed frequent subtrees are similar to those of maximal

and closed subgraphs (see Section 2.2), and induced subtrees and embedded subtrees

are treated differently, which means {induced subtrees} 6⊆ {embedded subtrees} (see

IMB3-Miner in Section 2.5.2). Further, in Table 2.4, the symbol ‘?’ is used to indicate

the corresponding features for each FTM algorithm given in the first column. For an

alternative review of FTM algorithms readers may like to refer to Chi et al. (2004), who

provide a theoretical foundation and performance study of a representative collection

of FTM algorithms proposed prior to 2004.

2.5.1 Rooted unordered tree mining

A labelled rooted unordered tree (see definition 2.1) is a labelled rooted tree where

the left-to-right order among siblings is unimportant. It can be seen as a special form

of attributed relational graphs (ARG)8 and is effective in the modelling of structural

data such as chemical compounds and the hyper-link structure of the Web [Asai et al.,

7IP (Internet Protocol) multi-cast is a method of building the multi-cast tree at the IP layer to send
packets to multiple receivers in a single transmission [Paul, 1998]

8ARG is frequently used to describe structural objects where the nodes represent entities and the
edges the relations between those entities [Tsai and Fu, 1979]

32

2003]. Seven rooted unordered tree mining algorithms are considered in this sub-

section: (i) TreeFinder, (ii) uFreqT, (iii) Unot, (iv) PathJoin, (v) cousinPair, (vi)

RootedTreeMiner, (vii) SLEUTH.

(a) TreeFinder [Termier et al., 2002] employs the Apriori-based approach based on

ancestor-descendant relationships to mine embedded subtrees. However, TreeFinder

is an algorithm with inexact matching, which is only guaranteed to discover a subset

of the complete set of frequent subtrees.

(b) uFreqT [Nijssen and Kok, 2003] uses a DLS representation to model unordered

trees. At the candidate generate phase, the rightmost path expansion technique is

employed to generate candidates. At the support counting phase, the tree mapping

algorithm to determine the frequency of the pattern is translated into the maxi-

mum bipartite matching algorithm with complexity O(|E|
√
|V |) (E and V are the

edge and vertex sets of the bipartite graph). In order to facilitate the support

computation, a data structure is used to store all potential mappings for the vertex

on the rightmost path and pointers to the parent mapping.

(c) Asai et al. [2003] introduced an algorithm, Unot, that used a DLS to represent

unordered trees. In Unot, the rightmost path expansion, supported by a reverse

search9 principle [Avis and Fukuda, 1996], was used to enumerate all the candidates

without duplicates. However, Asai et al. [2003] only provided the theoretical basis

for their algorithm.

(d) Xiao et al. [2003] introduced an algorithm, PathJoin, for mining maximal frequent

induced subtrees in unordered tree databases. The algorithm used a data structure,

FST-Forest which was inspired by Han et al. [2000], to compress the database.

Based on FST-Forest, all maximal frequent paths were discovered, and then the

frequent subtrees were generated by joining the frequent paths. After mining all

frequent subtrees, the maximal frequent subtrees were produced by post processing.

The reported evaluation of the algorithm was directed only at three synthetic data

sets; no comparison was made with other algorithms.

(e) Shasha et al. [2004] presented an unordered tree mining algorithm, cousinPair, for

application to phylogeny10. They defined an interesting pattern as being a “cousin

pair”, a pair of vertexes satisfying some cousin distance and minimum occurrence

threshold. By using such constraints, interesting patterns were mined from a tree

9In reverse search, a parent-child relation is defined on the solution space of the mining such that
each solution has a unique parent. Such relation can form an enumeration tree over the solution space.
All the potential candidates can be generated starting from the root and computing the children for
the root iteratively.

10Phylogeny: “the evolutionary history of a taxonomic group of organisms” [Biology-Online.org,
2010]

33

database. Shasha et al. noted that this kind of pattern can be used to get a better

understanding of the evolutionary history of species. However, the algorithm was

restricted to mining these special patterns only, and thus would seem not to have

general applicability.

(f) Chi et al. [2005] presented an algorithm, RootedTreeMiner, to mine frequent in-

duced subtrees. The BFCS encoding was employed to represent unordered trees.

Thus, at the candidate generation phase, the range of allowable vertexes at a given

position was computed beforehand in order to reduce the computational overhead

required for the encoding. At the support counting phase, an occurrence list was

built for each discovered subtree t. This list recorded the identifier (ID) of each

transaction graph in the tree dataset that contained t, along with the mapping

between the vertex indexes in t and those in the transaction. Using the occurrence

list, the support of t can easily be calculated as the number of elements in the

list with distinct IDs. In comparison with TreeMiner [Zaki, 2002], which will be

discussed later in this Chapter, RootedTreeMiner was comparatively less efficient

when the support was large, but performed well when the support was small.

(g) Zaki [2002] adopted the same techniques as used in previous subtree mining algo-

rithms for ordered trees to propose the SLEUTH algorithm. This algorithm used a

DFS-LS to represent unordered trees and scope-lists to compute the support. Dur-

ing the candidate generation phase, two extension mechanisms were employed: (i)

class-based extension and (ii) canonical extension. For class-based extension, not

all candidates generated by this mechanism were in the required canonical form,

which meant that a process to ensure that each generated subtree was in the re-

quired canonical form was also needed prior to extension. For canonical extension

the extension was only applied to the (canonical) frequent subtrees with known

frequent edges, which resulted in many infrequent (but canonical) candidates. As

indicated by Zaki [2005b], there was a trade-off between using the canonical ex-

tension and the class-based extension. Further reported experiments demonstrated

that using class-based extension was more efficient than canonical extension.

2.5.2 Rooted ordered tree mining

In contrast to unordered tree mining, the inherent structure associated with ordered

trees can be used to introduce efficiencies with respect to subtree generation and sub-

tree isomorphism detection in ordered tree mining. Eight rooted ordered tree mining

algorithms are reviewed in this sub-section: (i) FREQT, (ii) TreeMiner, (iii) Chopper,

(iv) XSpanner, (v) AMIOT, (vi) IMB3-Miner, (vii) TRIPS, (viii) TIDES.

(a) In Asai et al. [2002], a collection of semi-structure data (e.g. Web pages) were

modelled using a labelled ordered tree; and an algorithm, FREQT, introduced

34

to discover frequent subtrees from such data. The technique of rightmost path

expansion was employed for the enumeration of candidates without duplicates, and

only the rightmost leaf occurrences of the patterns were saved for efficient support

counting. The reported evaluation of the algorithm indicated that it was useful for

Web information extraction.

(b) Zaki [2002] adopted a DFS-LS representation to encode ordered trees, together with

the concept of equivalence class based extension, to facilitate subtree generation.

The notion of a scope-list was employed for fast support counting of discovered

subtrees. Based on these concepts, the TreeMiner algorithm was introduced to

discover a set of embedded subtrees. The performance of the algorithm was com-

pared with a base algorithm, PatternMatcher, which employed a BFS strategy. The

experimental results demonstrated that TreeMiner outperformed PatternMatcher

using a real data set and that both algorithms scaled well when the number of

trees in the data set was increased. However, the pruning technique adopted by

TreeMiner is not as effective as PatternMatcher when using low support values.

The reported results also indicated the usefulness of the discovered patterns with

respect to Web usage mining.

(c) Wang et al. [2004a] proposed an algorithm, Chopper, to mine frequent embed-

ded subtrees from a tree database. Firstly, the algorithm scanned the database to

generate a sequential database comprised of a DLS representation for each tree.

Secondly, a revised PrefixSpan algorithm [Pei et al., 2001b] was employed to mine

frequent sequential patterns. Finally, the tree database was again scanned, against

the discovered sequential patterns, to generate candidate patterns and find the fre-

quent ones. Some additional overhead was needed for the algorithm, because the

two processes of sequential pattern mining and subtree pattern verification were

separated in Chopper. In order to improve the efficiency of Chopper, the XS-

panner algorithm was subsequently produced to integrate the sequential pattern

mining into the process of subtree pattern verification. Using projected database

techniques, XSpanner grew larger frequent subtrees from smaller ones starting from

one vertex. In comparison with TreeMiner, both Chopper and XSpanner outper-

formed TreeMiner when the support threshold was below 5%. However, XSpanner

was found to be more stable than Chopper when using low support thresholds, and

the former surpassed the latter when the support value was gradually decreased.

(d) Hido and Kawano [2005] noted that the enumeration using rightmost path ex-

pansion adopted by FREQT and TreeMiner still generated various non-frequent

candidates which lead to unnecessary support counting, although it generated no

redundant subtree candidates. Therefore, they introduced an algorithm, AMIOT,

to utilize a new enumeration scheme to reduce the number of non-frequent can-

35

didates and keep the property of generating candidates only once. This scheme,

right-and-left tree join, guaranteed that the set of subtree candidates was always a

subset of that achieved by the enumeration using rightmost path expansion. The

performance of AMIOT on synthetic data and an XML data set, demonstrated that

it was scalable and performed faster than FREQT. However, the memory usage of

AMIOT is larger than that of FREQT, due to the nature of the BFS strategy used

by AMIOT.

(e) IMB3-Miner [Tan et al., 2006] was proposed to mine frequent embedded subtrees

from an ordered tree database with a parameter to control the level of embedding11.

When the level of embedding was equal to 1, the discovered frequent subtrees were

induced subtrees. Thus, by adjusting the embedding level, the algorithm could

mine both induced and embedded subtrees. By combining an Embedding List data

structure with the TMG enumeration strategy (i.e. specialized rightmost path

expansion), the algorithm guaranteed that candidate subtrees were generated ef-

ficiently without duplicates. Furthermore, an occurrence list was stored for each

generated subtree to speed up the support counting. Instead of using Tc, Oc was

employed to calculate the support of patterns. It has been experimentally demon-

strated that IMB3-Miner achieves higher performance and scalability than TreeM-

iner and FREQT. Tan et al. [2006] also suggested that using Oc is necessary when

the repetition and order of the patterns are important.

(f) Tatikonda et al. [2006] introduced a generic approach to mining induced or embed-

ded subtrees in a database of rooted ordered trees. Their approach exploited two

sequential encodings, prüfer sequencing (see 2.4.1) and DFS sequence, to repre-

sent the trees, and simplify the task of candidate subtree generation and frequency

counting. Using prüfer sequencing and the leftmost path 12 of the pattern as

the extension positions, the TRIPS algorithm was proposed, and alternatively the

TIDES algorithm which used DFS sequence and rightmost path extension. The

support computation for both algorithms employed an embedding list, an array

based structure, to facilitate the recursive generation of the patterns. There is a

trade-off between the cost of maintaining the embedding list and the efficiency of

the support computation, when the number of distinct vertex labels was few com-

pared with the total number of vertexes in the database. Experiments exhibited

that both TRIPS and TIDES performed better than TreeMiner in terms of execu-

tion time and memory usage on both synthetic data and real data. Both TRIPS

and TIDES were found to be scalable when the database size increased and could

mine large databases at low support thresholds.

11The level of embedding is defined as “the length of path between two vertexes that form an ancestor-
descendant relationship” [Tan et al., 2006].

12The path from the root to the left most leaf is the left most path [Tatikonda et al., 2006]

36

2.5.3 Free tree mining

As defined in Section 2.1, free trees are the connected, undirected and acyclic graphs.

They are more expressive than paths and less expressive than general graphs. Thus,

the mining of free trees is computationally faster than the mining of general graphs but

harder than the mining of paths. Since free trees are less complex than general graphs,

they have been utilized extensively, for example in domains such as bioinformatics

[Hein et al., 1996], computer vision [Liu and Geiger, 1999], computer networking [Cui

et al., 2005], and so on. Four such free tree mining algorithms are considered in this

sub-section: (i) FreeTreeMiner, (ii) FTMiner, (iii) F3TM, (iv) CFFTree.

FreeTreeMiner [Chi et al., 2003a] was introduced to discover frequent subtrees in

collections of free trees. A self-join operation was used for the candidate subtree gen-

eration and a subtree isomorphism algorithm [Chung, 1987] was implemented for the

support computation. Experiments show that FreeTreeMiner can handle large real data

well with a large range of support values. However, it was not found to be scalable

when the size of the maximal frequent subtrees was increased due to the exponential

growth of the number of potential frequent subtrees.

Ruckert and Kramer [2004] defined, independently, a canonical representation for

labelled free trees, which was similar to that in [Chi et al., 2003a]. Accordingly, a

free tree miner, FTMiner, was introduced to mine free tree patterns. The algorithm

extended more than one vertex at each recursive step during the candidate generation

phase. It also adopted the concept of an extension table, which was a data structure for

storing all the extensions for a subtree pattern along with the set of transaction graphs

containing the pattern. Utilizing this extension table, the algorithm not only kept track

of the frequency of each subtree pattern, but also gathered information required for the

extension of the current pattern, thus reducing significantly the number of database

scans. Experiments on a large scale database suggest that the algorithm was able to

mine frequent patterns within a collection of more than 37, 330 chemical compounds at

a support threshold of 2%.

With the focus mainly on reducing the cost of candidate generation Zhao and Yu

[2006] presented a free tree mining algorithm F3TM. The algorithm introduced the

idea of an extension frontier to define the positions (vertexes) for growing frequent

subtrees in the candidate generation phase, and used automorphism-based pruning

and canonical pruning techniques to enhance the efficiency of candidate generation from

the enumeration tree. Compared with other free tree mining algorithms, performance

studies indicated that F3TM was more efficient than FTMiner and FreeTreeMiner using

a chemical database of 42390 compounds. F3TM was further extended to introduce a

closed frequent free tree miner, CFFTree [Zhao and Yu, 2007]. This algorithm employed

safe position pruning to grow subtrees only from “safe” positions. In addition, this

algorithm employed safe label pruning to grow subtrees only on the vertexes with labels

37

lexicographically less than the new vertex, which served to remove some unnecessary

enumeration. The performance of CFFTree outperformed its base algorithm F3TM

using post-processing to find the closed patterns.

2.5.4 Hybrid tree mining

Hybrid tree mining algorithms can be grouped according to the nature of the input

tree data: (i) rooted ordered or unordered trees and (ii) rooted unordered or free trees.

Each is briefly reviewed below.

2.5.4.1 Rooted ordered or unordered trees mining

CMTreeMiner was introduced to mine both closed and maximal frequent subtrees in

collections of labelled rooted ordered or unordered trees [Chi et al., 2003b, 2004b].

The set of maximal frequent subtrees is a subset of the set of closed frequent subtrees,

which in turn is a subset of the complete set of frequent subtrees. By using blanket13

based pruning, in conjunction with a heuristic that determined the order of computing

the blanket’s subsets, the enumeration tree was grown only on the branches that were

potentially able to produce closed or maximal frequent subtrees, thus avoiding the

computational overhead associated with finding all frequent subtrees. Compared with

the PathJoin algorithm, which mined maximal frequent subtrees by post-processing,

the advantage offered by CMTreeMiner was that it directly mined closed and maximal

frequent subtrees without first generating all frequent subtrees. Experimental results

showed that: (i) for an ordered tree database, CMTreeMiner outperformed FREQT,

(ii) for an unordered tree database, CMTreeMiner ran faster than HybridTreeMiner,

and (iii) CMTreeMiner’s memory usage was significantly smaller than PathJoin, and

also the performance of the former was far better.

2.5.4.2 Rooted unordered or free trees mining

Chi et al. [2004c] presented the HybridTreeMiner algorithm to discover all frequent

subtrees in a collection of labelled unordered trees or labelled free trees. This algorithm

employed the same string encoding, BFCS, as used by Chi et al. [2005]. Inspired by the

work of Huan et al. [2003], this algorithm combines the extension and join operations to

efficiently generate subtree candidates. Within the enumeration tree that enumerates

all subtree candidates based on their BFCFs, each node represented an unordered tree

in BFCF. For a node v in the enumeration tree, all the children of v could be generated

by either an extension or a join operation. The join operation was applied to a pair of

sibling nodes with a height (depth) h, resulting in a BFCF tree with the same height;

the extension operation was applied by extending a new leaf at the bottom level of the

13For a frequent subtree t, the blanket of t is defined as the set of frequent supertrees of t with one
more vertex than t [Chi et al., 2003b]

38

BFCF tree with height h, resulting in a BFCF tree with height (h+1). Additionally, the

concept of an equivalence relation was introduced to efficiently enumerate all possible

automorphisms14 of a BFCF in the join operation.

This hybrid enumeration strategy was further extended to handle the free tree case.

Reported experimental results demonstrated that HybridTreeMiner was faster than

FreeTreeMiner, and that its memory usage was also much less than that required by

FreeTreeMiner. As for unordered trees, although HybridTreeMiner runs faster than

both Unot and uFreqT, it is hard to decide which algorithm is better because the

margins are rather small.

Table 2.5: Main techniques used by frequent subtree mining algorithms

Algorithm Candidate Generation Support Computation

TreeFinder Apriori itemset generation clustering techniques
uFreqT rightmost path expansion maximum bipartite matching
SLEUTH equivalence class extension scope-lists
Unot rightmost path expansion embedding occurrence
PathJoin FST-Forest FST-Forest
cousinPair cousin distance lookup table
RootedTreeMiner enumeration tree occurrence list
FREQT rightmost path expansion occurrence list
TreeMiner equivalence class extension scope list join
Chopper

n/a n/a
XSpanner
AMIOT right-and-left tree join occurrence list
IMB3-Miner TMG occurrence list
TRIPS leftmost path extension hash table
TIDES rightmost path extension hash table
FreeTreeMiner self-join subtree isomorphism
FTMiner extension tables support sets
F3TM enumeration tree

Ullmann’s backtracking algorithm
CFFTree extension frontier
CMTreeMiner enumeration tree n/a
HybridTreeMiner extension + join occurrence list

2.5.5 Summary of frequent subtree mining algorithms

From the foregoing it can be seen that for all the described FTM algorithms, many

different methods, techniques and strategies have been proposed, as summarised in

Table 2.5. This table characterizes the various techniques according to their adopted

candidate generation and support counting mechanisms. It should also be noted that

the reported FTM algorithms reviewed in this section were all evaluated using disparate

data sets and compared with different alternatives, as shown in Table 2.6. There

are various reasons for this including the diverse types of trees to be discovered and

the various properties of the detected frequent subtrees, however this also means that

14An automorphism of a tree is the isomorphism of the tree to itself [Chi et al., 2004c]

39

it is difficult to make any direct and conclusive comparisons between the different

techniques.

Table 2.6: A summary of frequent subtree mining algorithms

Algorithm Tree Representation Dataset Comparable Algorithm

TreeFinder relational formula artificial XML data n/a
uFreqT DLS n/a n/a

SLEUTH DFS-LS
Zaki’s tree generator

TreeMiner
CSLOGS Dataset

Unot DLS n/a n/a
PathJoin FST-Forest Zaki’s tree generator n/a

cousinPair n/a
synthetic dataset

n/a
TreeBase

RootedTreeMiner BFCS
synthetic dataset

TreeMinerweb access trees
Zaki’s tree generator

FREQT DLS
CiteSeer’s web pages

n/a
Allsite web pages

TreeMiner DFS-LS
Zaki’s tree generator

PatternMatcher
CSLOGS

Chopper
DLS

Synthetic data
TreeMiner

XSpanner Web logs

AMIOT DFS string
Synthetic data

FREQT
XML data

IMB3-Miner DFS-LS
Synthetic data FREQT
CSLOGS TreeMiner

PatternMatcher

TRIPS CPS
Synthetic data TreeMiner
CSLOGS XSpanner
TREEBANK dataset

TIDES DFS sequence
Synthetic data TreeMiner
CSLOGS XSpanner
TREEBANK dataset

FreeTreeMiner BFCS
Synthetic data

n/aChemical data
Multicast data

FTMiner n/a
anti-HIV data AGM
anti-Cancer data MolFea [Kramer et al., 2001]

F3TM n/a AIDS antiviral data
FreeTreeMiner
FTMiner

CFFTree n/a
AIDS antiviral data

F3TM
synthetic graphs

CMTreeMiner DFS-LS
Synthetic data FREQT
CSLOGS HybridTreeMiner
Multicast data PathJoin

HybridTreeMiner BFCS
Synthetic data uFreqT
web access trees FreeTreeMiner
chemical compounds Unot

From the “view point” of the candidate generation methods employed in the mining

process, all the FTM algorithms discussed in this thesis can be roughly categorized into

three classes.

40

• Apriori-like generation

In Apriori-like tree mining algorithms, candidate subtrees are generated level-

wise by traversing a lattice structure of all frequent subtrees. The traversing

strategy can be either in a DFS or BFS manner. At each level k, all candidate

subtrees with size15 k are generated from frequent subtrees discovered at level

k− 1 using a join or extension operation. Examples of algorithms using this gen-

eration method are TreeFinder, SLEUTH, TreeMiner, AMIOT, FreeTreeMiner,

and HybridTreeMiner.

• Enumeration tree based generation

In enumeration tree based tree mining algorithms, candidate subtrees with size

(k + 1) are generated by extending their unique parent (frequent subtrees of

size k in the enumeration tree). Examples of algorithms using this enumera-

tion method are uFreqT, Unot, RootedTreeMiner, FreqT, IMB3-Miner, F3TM,

CFFTree, CMTreeMiner, and HybridTreeMiner.

• FP-growth-like generation

In this category, inspired by the FP-tree concept espoused by the FP-growth algo-

rithm [Han et al., 2000] for ARM, a compact data structure is devised to facilitate

mining frequent subtrees. An example of this type of algorithm is PathJoin.

From the “viewpoint” of the support counting methods employed in the mining

process, all the FTM algorithms discussed in this thesis can be classified into the

following three main groups.

• Occurrence list

The occurrence list L for a k-subtree t records each occurrence of t in the dataset.

Each member of L is of the form [tid, v1, v2, · · · , vk], where tid is the transaction

identifier in the dataset that contains t and v1, v2, · · · , vk represent the mapping

between the vertexes in t and those in the transaction tid. The support of t is

the number of members in L with distinct tids. Examples of algorithms using

occurrence lists are Unot, RooteTreeMiner, FREQT, IMB3-Miner, AMIOT, and

HybridTreeMiner.

• Subtree isomorphism detection

In this category, the support of a subtree t is computed directly when conducting

subtree isomorphism detection. Examples of algorithms within this category are

FreeTreeMiner, F3TM, and CFFTree.

• Special data structures

This category covers algorithms that focus on special data structures to aid the

15The size of a tree is defined as the number of vertexes in the tree.

41

process of determining the support for each subtree. Some examples of such data

structures include hash tables used by TRIPS and TIDES, scope lists used by

TreeMiner and SLEUTH, FST-Forest used by PathJoin, and extension tables

used by FTMiner.

Both the occurrence list and special data structures methods are devised to facilitate

the expensive subtree isomorphism detection while the subtree isomorphism detection

method directly utilizes existing subtree isomorphism detection algorithms to calculate

the support. There are plenty of efficient subtree isomorphism detection algorithms

that can be used in the literature.

From the perspective of the applications to which FTM is typically directed, the

FTM algorithms discussed in this thesis can be divided into three main domains

• Web access trees

Examples of algorithms are SLEUTH, RootedTreeMiner, TreeMiner, IMB3-Miner,

Chopper, XSpanner, TRIPS, TIDES, CMTreeMiner, and HybridTreeMiner.

• IP multicast trees

Examples of algorithms are FreeTreeMiner and CMTreeMiner

• Chemical compounds

Examples of algorithms are FreeTreeMiner, FTMiner, F3TM, CFFTree, and Hy-

bridTreeMiner.

From the nature of the traversing strategy employed in the search space, all the

FTM algorithms discussed in the thesis can be organized into two main categories

• BFS strategy

BFS strategy based traversing has the advantage of performing full pruning, but

at the cost of large memory usage. Examples of algorithms using this strategy

are RootedTreeMiner, AMIOT, FreeTreeMiner, and HybridTreeMiner.

• DFS strategy

DFS strategy based traversing has the disadvantage of weak pruning. However,

the memory usage is smaller than that required using BFS strategies. Examples of

algorithms using this strategy are uFreqT, Unot, SLEUTH, FREQT, TreeMiner,

IMB3-Miner, TIDES, FTMiner, and CMTreeMiner.

As noted above, each tree mining algorithm has its strengths and weaknesses. There

is no generic tree mining scheme, which can apply to any kinds of trees (unordered,

ordered, and free), detect any types of subtrees (embedded, induced, closed, and max-

imal), and employ any frequency measures (Tc, and Oc). In terms of efficiency and

effectiveness of the mining, the following four techniques are the most frequently quoted.

42

• DFS sequencing and its variants, frequently used for tree representation

• DFS strategy, usually used for traversing the search space

• Enumeration tree growth with rightmost path expansion, mostly used in candi-

date generation phase

• Occurrence lists, mainly used in support counting phase

Examples of algorithms containing at least three of these techniques are SLEUTH,

FREQT, TreeMiner, and IMB3-Miner. Among these, FREQT, and TreeMiner are usu-

ally chosen as base algorithms for comparison with others. TreeMiner belongs to the

Apriori-like group of FTM algorithms, while FREQT belongs to the rightmost path

expansion group of algorithms. These two groups of algorithms represent two streams

within the realm of FTM. Although subtree isomorphism can be solved in O(k
1.5

log kn)

time, surprisingly few FTM algorithms adopted it directly for support counting; oc-

currence lists are more frequently adopted. The main reason for this might be that

occurrence list counting is much more straightforward to implement.

2.6 Frequent Subgraph Mining Algorithms

Frequent Subgraph Mining (FGM) algorithms have their origins in the identification of

frequent patterns in chemical informatics and biological networks [Huan et al., 2004c,

Deshpande et al., 2005, Fatta and Berthold, 2005, Hu et al., 2005, Wale and Karypis,

2006]. As with FTM algorithms, there are a wide variety of FGM algorithms reported

in the literature. The identified two key phases associated with FTM algorithms (see

2.5), candidate generation and support counting, are also relevant with respect to FGM

algorithms. For the candidate generation phase, the FGM algorithms seek to efficiently

produce non-redundant candidates to the maximum extent possible. For the support

counting phase, FGM algorithms seek to compute the frequency of the pattern without

incurring the subgraph isomorphism detection excessively (in other words, FGM algo-

rithms strive to avoid the subgraph isomorphism detection as much as possible). Since

subgraph isomorphism detection is known to be NP -complete (see Section 2.3), a sig-

nificant amount of research work has been directed at various approaches for achieving

effective candidate generation, it is the nature of these differing approaches which best

distinguish FGM algorithms from one another.

In this section, a review of a number of current well-known FGM algorithms is

provided. Interested readers should note that a good review of the theoretical basis of

FGM, prior to 2003, can be found in Washio and Motoda [2003]. A more recent overview

of mining frequent patterns including itemsets, sub-sequences and sub-structures can

be found in Han et al. [2007].

43

For the purpose of discussion, the FGM algorithms discussed in this thesis have

been broadly categorized as follows:

(i) General purpose FGM.

(ii) Pattern dependent FGM.

The distinction is that in the latter case the nature of the patterns to be discovered is in

some way specialized. Knowledge of the nature of these “special” patterns then allows

for a reduction of the search space and the consequent computational effort required.

Table 2.7: General purpose frequent subgraph mining algorithm categorisation

Exact match based

transaction graphs

BFS strategy

AGM (Inokuchi 2000)
AcGM (Inokuchi 2002)
FSG (Kuramochi 2001)
gFSG (Kuramochi 2002)
DPMine (Gudes 2006)

DFS strategy

MoFa (Borgelt 2002)
gSpan (Yan 2002)
FFSM (Huan 2003)
GASTON (Nijssen 2004)

one single graph

HSIGRAM (Kuramochi 2002)
VSIGRAM (Kuramochi 2002)

FPF (Schreiber 2005)
DPMine (Gudes 2006)

Inexact match based
one single graph

SUBDUE (Cook 1994)
GREW (Kuramochi 2004)
gApprox (Chen 2007)
RAM (Zhang 2008)

2.6.1 General purpose frequent subgraph mining

General purpose frequent subgraph mining algorithms may be further categorised (Ta-

ble 2.7) into successive levels according to three criteria: (i) the completeness of the

search, (ii) the type of input (transactions graphs or one single graph), and (iii) the

search strategy. Table 2.7 presents an overview of a number of general purpose subgraph

mining algorithms. For each algorithm the table gives only the first author’s surname

and year publication as the reference in order to save the space. Each algorithm will

be discussed further in the following.

2.6.1.1 Inexact match based

Inexact match based algorithms use an approximate measure to compare the similarity

of two graphs, i.e., two subgraphs are not required to be entirely identical to con-

tribute to the support count, instead a subgraph in the input data may contribute to

the support count for candidate frequent subgraph if it is in some sense similar to the

44

candidate subgraph. Algorithms using an inexact match approach are not guaranteed

to find all frequent subgraphs, but the nature of the approximate graph comparison

may lead to computational efficiency gains. There are few examples of inexact FGM

algorithms in the literature. However, one well known and frequently quoted example

is the SUBDUE algorithm [Cook and Holder, 1994, 2000]. SUBDUE uses the mini-

mum description length principle [Grünwald, 2007] to compress the graph data; and

a heuristic beam search method (starting with a single vertex), that makes use of

background knowledge, to narrow down the search space. Although the application of

SUBDUE shows some promising results in domains including image analysis and CAD

circuit analysis, the scalability of the algorithm becomes an issue when dealing with

complex data representations (i.e. the run time of SUBDUE is not linear with the size

of the input graph). Furthermore, SUBDUE tends to discover a very small number of

patterns.

Another inexact match based approach, GREW [Kuramochi and Karypis, 2004a]

was directed at connected subgraphs which have many vertex-disjoint 16 embeddings

in a single large graph. This heuristic based algorithm tended to be scalable to very

large graphs because it employed the ideas of edge contraction and graph rewriting

that underestimated the frequency of each discovered subgraph. Experiments on four

benchmark datasets showed that GREW significantly outperformed SUBDUE with

respect to runtime, the number of patterns found, and the size of the pattern.

To the best of the author’s knowledge, the two most recent approaches regarding

approximate patterns mining are gApprox, presented by Chen et al. [2007b], and RAM

by Zhang and Yang [2008]. Chen et al. [2007b] used the notion of an upper-bound

for support counting, and designed an approximation measure to discover frequent

approximately connected subgraphs in a very large network. Empirical studies based

on protein-protein interaction networks indicated that gApprox is efficient and that

the discovered patterns were biological meaningful. Zhang and Yang [2008] presented

a formal definition of frequent approximate patterns in the context of biological data

represented by graphs, where the edge information was not accurate. Based on this, a

randomized algorithm, RAM, using a hashing function was designed, the experiments

showed that RAM can discover some important patterns which can not be found by

exact match based mining algorithms. However, it is conjectured that RAM may be

vulnerable to missing some important patterns.

2.6.1.2 Exact match based

Exact FGM algorithms are much more common. They can be applied in the context

of transaction graph based mining or single graph based mining. A fundamental fea-

ture for exact match based algorithms is that the mining is complete, i.e. the mining

16Two embeddings in a graph G are vertex-disjoint, if they do not share any vertexes in G.

45

algorithms are guaranteed to find all frequent subgraphs in the input data. As noted in

Kuramochi and Karypis [2004a], such complete mining algorithms perform efficiently

only on sparse graphs with a large number of labels for vertexes and edges. To achieve

completeness these algorithms must conduct a considerable amount of costly subgraph

isomorphism checking (explicitly or implicitly).

2.6.1.2.1 Transaction graph based mining As noted previously, in transaction

graph based mining the input is a collection of relatively small graphs. Algorithms

within this class can be further divided into two classes: BFS strategy and DFS strategy,

according to the strategy adopted for generating candidates. The BFS strategy is

efficient for pruning infrequent subgraphs at the cost of high I/O and memory usage

whereas DFS strategy needs less memory usage in exchange for less efficient pruning.

1. BFS strategy

The BFS strategy tends to be used extensively as it extends the idea of the well-

known “Apriori” algorithm for discovering frequent itemsets, which operates a level-

wise search through the lattice of itemsets [Agrawal and Srikant, 1994]. The key

element of Apriori lies in the fact that all subsets of a frequent itemset are frequent

(i.e. DCP for itemsets). Using DCP infrequent patterns can be efficiently pruned.

In analogy to Apriori, the BFS strategy based FGM algorithms search the lattice

of subgraphs by utilizing the DCP for graphs, i.e. a (k + 1)-subgraph can not be

frequent if its immediate parent k-subgraph is not frequent.

There are many examples of FGM algorithms that use the BFS strategy. One

distinction between these algorithms is that the complete set of all k-candidates is

discovered first before moving on to the set of (k + 1)-candidates, where k refers to

the expansion unit for growing the candidate subgraphs which can be expressed in

terms of vertexes, edges, or disjoint paths. Four well-established algorithms, that

fall within this category, are discussed below:

(a) AGM

The BFS strategy is exemplified by the AGM (Apriori-based graph mining)

algorithm [Inokuchi et al., 2000] which is directed at finding frequent induced

subgraphs. AGM uses an adjacency matrix to represent graphs and a level-wise

search to discover frequent subgraphs. It assumes that all vertexes in a graph

are distinct. The reported evaluation of AGM, on chemical carcinogenesis data,

showed it to be more efficient than the inductive logic programming based ap-

proach combined with a level-wise search. AGM discovers not only connected

subgraphs but also unconnected subgraphs with several isolated graph compo-

nents. In consideration of real applications, a more efficient version of AGM

called AcGM was proposed to mine only frequent connected graphs [Inokuchi

46

et al., 2002]. This algorithm used the same principles and graph representation

as that of AGM, but with some improvements. Experimental results indicated

that AcGM was significantly faster than AGM and FSG (see below). AGM

was further extended Inokuchi et al. [2003] to mine frequent induced subgraphs

from general graph datasets that can contain directed (or undirected), labelled

(or unlabelled) graphs and even loops.

(b) FSG

FSG is another well established Apriori-like FGM algorithm proposed in Ku-

ramochi and Karypis [2001, 2004b]. FSG is directed at finding all frequent

connected subgraphs in a large graph dataset. FSG used a BFS strategy to

grow candidates whereby pairs of identified frequent k-subgraphs are joined

to generate (k + 1)-subgraphs. FSG used a canonical labelling method for

graph comparison and computed the support of patterns using Transaction ID

(TID) lists (a vertical data representation). Each TID list represents a dis-

covered subgraph along with the transaction identifiers (TIDs) of the graphs

where it occurs (a very similar representation is adopted extensively in FTM

algorithms). To determine the support for a k-subgraph, the intersection of

the TID lists of its frequent (k − 1)-subgraphs is computed first. If the size

of the intersection is below the threshold, this k-subgraph is not frequent and

can be pruned; otherwise the support is computed using subgraph isomorphism

detection with respect to the intersection of relevant TID lists. TID list based

support counting reduces the computation overhead. However, experiments

show that FSG does not perform well when the transaction graphs contain

many vertexes and edges that have identical labels because the join method

used by FSG allows for multiple automorphism17 of single or multiple cores18.

In further experiments on chemical data, FSG required 600 seconds (with a 7%

support threshold), while AGM needed 8 days (with a 10% support threshold)

using the same database!

(c) gFSG

The above FSG algorithm is directed at graph datasets consisting of a two di-

mensional arrangement of vertexes and edges in each graph (sometimes referred

to as topological graphs). However, in chemical compound analysis users are

often interested in graphs having coordinates associated with the vertexes in

two or three dimensional space (sometimes referred to as geometric graphs).

Kuramochi and Karypis [2002] presented the gFSG algorithm to extend the

FSG algorithm to discover frequent geometric subgraphs with some degree

17Automorphism is a graph isomorphism to itself via a non-identity mapping.
18In the candidate generation phase, a core is a common (k − 1)-subgraph shared by two frequent

k-subgraphs. Two frequent k-subgraphs are eligible for joining only if they contain the same core
[Kuramochi and Karypis, 2001].

47

of tolerance among geometric transaction graphs. The extracted geometric

subgraphs are rotation, scaling and translation invariant. gFSG shares the

approach of candidate generation with FSG. In order to speed up the com-

putation of geometric isomorphism, a number of topological properties and

geometric transform invariants were used as keys for matching. In the process

of support counting, geometric transform invariants (e.g. edge-angle lists19),

and transaction lists are used to facilitate the computation. The reported ex-

perimental evaluation was performed on a chemical database with more than

20,000 chemical compounds (graphs) to show that gFSG operated well with

low support values and scaled linearly with respect to the size of the database.

(d) DPMine

The AGM and FSG algorithms used vertexes and edges respectively as the ex-

pansion unit for candidate generation. In Vanetik et al. [2002] and Gudes et al.

[2006], DPMine was proposed which used edge-disjoint paths as the expansion

units for candidate generation. Use of such a large expansion unit reduces

the number of candidates that are required for support counting. The algo-

rithm firstly identified all frequent paths; secondly found all subgraphs with

two paths; and thirdly merged pairs of frequent subgraphs with (k − 1) paths,

which have (k − 2) paths in common, in order to obtain subgraphs with k

paths. Experimental results indicated that support computation was the most

significant contributor to the total computation time. Gudes et al. [2006] also

suggested that reducing support computation overhead was more important

than reducing the candidate generation overhead. It should be noted that the

input for DPMine can be one single graph as well as a collection of transaction

graphs.

2. DFS strategy

Algorithms in the DFS category need less memory, because they traverse the lattice

of all possible frequent subgraphs in a DFS manner. Four example algorithms in

this category are:

(a) MoFa

Proposed in Borgelt and Berthold [2002], MoFa was directed at mining frequent

sub-structures (connected subgraphs) of molecules. The algorithm stored the

embedding list of previously found subgraphs. The extension operation was

restricted only to those embeddings which are actually in the database. MoFa

also used structural pruning and background knowledge to reduce the support

19An edge-angle list is a multi-set where each element represents the angle formed by two distinct
edges sharing the same end points.

48

computation. However MoFa still generated many duplicate candidate sub-

graphs, resulting in unnecessary support computation.

(b) gSpan

gSpan [Yan and Han, 2002] used a canonical representation, M-DFSC, to

uniquely represent each subgraph. The algorithm used DFS lexicographic or-

dering to construct a tree-like lattice over all possible patterns, resulting in

a hierarchical search space called a DFS code tree. Each node of this search

tree represented a DFS code. The (k + 1)-th level of the tree had nodes which

contain DFS codes for k-subgraphs. The k-subgraphs were generated by one

edge extension from the k-th level of the tree. This search tree was traversed in

a DFS manner and all subgraphs with non-minimal DFS codes were pruned so

that redundant candidates are avoided. Instead of keeping embedding lists for

each discovered subgraph, gSpan only preserved the transaction list for each

discovered pattern and subgraph isomorphism detection was only applied to

graphs within the list. Thus, gSpan saved on memory usage because keeping

embedding lists required a lot of memory resources to store all embeddings of a

subgraph in the database. Reported experiments demonstrated that gSpan out-

performed FSG by an order of magnitude. gSpan is one of the most frequently

quoted FGM algorithms. Because of its popularity, gSpan was adopted as the

“base” algorithm into which many of the proposed weighted FSM techniques

described in this thesis were incorporated for evaluation purposes.

(c) FFSM

Many FGM algorithms, such as FSG and gSpan, can efficiently handle graphs

which are relatively small and have a large number of different vertex labels.

However they operate less well on graphs that are large and dense with a small

number of labels as found in, for example, protein structure mining. Huan

et al. [2003] proposed a new algorithm, FFSM (Fast Frequent Subgraph Min-

ing), to focus on such graphs. FFSM adopted the CAM representation (see

above). Thus, a tree-like structure, a suboptimal CAM tree, was constructed

to include all possible patterns. Each node in this suboptimal CAM tree can be

enumerated by either a join or an extension operation. FFSM recorded embed-

ding lists for each discovered pattern to avoid explicit subgraph isomorphism

testing during the support counting phase. Performance evaluation undertaken

by Huan et al. [2003], using several chemical data sets, indicated that FFSM

outperformed gSpan. FFSM was adopted as one of the algorithms used to

evaluate the proposed weighted FSM techniques described in this thesis.

(d) GASTON

Nijssen and Kok [2004] observed that most frequent sub-structures in molecular

databases are free trees. Based on this observation, they introduced GASTON,

49

which integrated frequent path tree and graph mining into one algorithm. The

algorithm divided the FGM process into three phases: path mining, then sub-

tree mining, and finally subgraph mining. Consequently the subgraph mining

was only invoked when needed. Thus, GASTON operated best when the graphs

are mainly paths or trees, because the more expensive subgraph isomorphism

testing is only encountered in the subgraph mining phase. GASTON used

a hash function and graph isomorphism detection to identify the duplicates.

GASTON also recorded the embedding lists so as to only grow patterns that

actually occurred in the transaction graphs, thus saving on unnecessary iso-

morphism testing. The reported experiments indicated that the operation of

GASTON compared favourably with a wide range of functionally comparable

miners, GASTON was able to scale up to the real datasets comprised of some

250,000 transaction graphs. GASTON was also used later in the research re-

ported in this thesis to compare results produced using the proposed weighted

FSM schemes.

Because of the diversity of the different transaction graph based FGM algorithms,

it is difficult to present a clear picture of the strong and weak points associated with

the various algorithms. However, Wörlein et al. [2005] presented a detailed comparison

of four DFS-based miners: MoFa, gSpan, FFSM, and GASTON, with respect to their

performance on various chemical databases. In the reported experiments, they found

that using embedding lists did not remarkably accelerate the search for frequent pat-

terns. They also confirmed that using canonical representations for duplicate detection

required less computation than explicit subgraph isomorphism detection.

2.6.1.2.2 Single graph based mining Recall that for single graph based mining,

the input to the mining algorithm is a large single graph. The frequency of a pat-

tern is determined by the number of its occurrences in the entire graph, compared to

transaction graph based mining where an individual transaction graph contributes only

once to a frequency count even though there may be multiple occurrences in the same

transaction. Single graph based mining can be applied to transaction graph based min-

ing, but the latter can not be applied to the former. An fundamental issue regarding

single graph based mining is how to define the support of the pattern. The DCP, often

used to prune the search space when using transaction-based support, does not hold in

the case of occurrence-based support. Alternative occurrence-based support measures

that satisfy the DCP are therefore desirable. One seminal class of occurrence-based

support measure that maintains the DCP is based on the idea of an overlap graph20.

20An overlap graph for a given pattern with a set of all embeddings (occurrences) is a constructed
graph where each vertex represents a non-identical embedding of the pattern and two vertexes are
connected if the corresponding embeddings overlap [Kuramochi and Karypis, 2005].

50

By building a overlap graph for each pattern using the number of its occurrences in

the entire graph, the occurrence-based support measure is defined as the size of the

maximum independent set (MIS) of vertexes in the overlap graph. The MIS measure

was first introduced in Vanetik [2002] (see also Kuramochi and Karypis [2004c, 2005]).

In Vanetik et al. [2006], the formal definition was provided together with the proofs for

the sufficient and necessary conditions required for occurrence based support measures

to maintain the DCP. Their work was further extended to introduce a new occurrence

based support measure, which kept the DCP, and was computable in polynomial time

[Calders et al., 2008]. Four main examples of single graph based FGM algorithms are

introduced in the following:

(a) HSIGRAM, VSIGRAM, and FPF

Kuramochi and Karypis [2004c, 2005] proposed a number of solutions for finding

all frequent subgraphs in a large sparse graph. Two algorithms, HSIGRAM and

VSIGRAM, were introduced to mine all subgraphs whose embeddings were edge-

disjoint in one large sparse graph. These two algorithms were based on the BFS

and DFS strategy respectively. The support of each discovered subgraph was de-

termined by the overlap based MIS measure, which maintains the DCP [Vanetik

et al., 2006]. Several variations of the MIS measures, including exact MIS and ap-

proximate MIS measures, were implemented. Experiments demonstrated that both

algorithms scaled well when mining large graphs, although VSIGRAM ran faster

than HSIGRAM. The reason for the performance advantage of the VSIGRAM al-

gorithm is that it kept track of the embeddings of the frequent subgraphs along

the DFS path, resulting in less subgraph isomorphism computation. In comparison

with SUBDUE, the results indicated that SUBDUE performs worse than both HSI-

GRAM and VSIGRAM, and that SUBDUE tends to focus on small subgraphs with

high frequency, thus missing significant patterns. Kuramochi and Karypis [2004c]’s

work was further extended by Schreiber and Schwöbbermeyer [2005] to mine fre-

quent patterns of a given size, but considering different frequency concepts. This

different frequency based algorithm, FPF, was applied to two different biological

networks to discover network motifs21. Surprisingly, the comparison of the val-

ues (i.e., number of frequent patterns) for the different frequency concepts showed

that the frequency of a pattern alone was not sufficient to identify network motifs.

Furthermore, whether frequent patterns can play functional roles in the biological

network is still unclear, according to Schreiber and Schwöbbermeyer [2005].

(b) DPMine

DPMine [Vanetik et al., 2002, Gudes et al., 2006] has already been described under

21Network Motifs are defined as “patterns of interconnections occurring in complex networks at
numbers that are significantly higher than those in randomized networks” [Milo et al., 2002].

51

the heading of transaction graph based mining (see Sub-section 2.6.1.2). The algo-

rithm can also be applied to single graph based mining and is sometimes described

as a single graph based mining algorithm.

2.6.2 Pattern dependent frequent subgraph mining

The foregoing discussions assumed that the user wished to find all frequently occurring

subgraphs that exist in either a single large graphs or a collection of medium sized

transaction graphs. This is of course not necessarily the case, users may be interested

in a certain type of pattern, i.e. some subset of all the frequent subgraphs. Such “special

patterns” can be defined according to their topology and/or some specific constraints

on the nature of the patterns. Five groups of special patterns can be identified from

the literature. These are itemized in Table 2.8. Each of the associated algorithms will

be discussed in more detail in this section.

Table 2.8: Categorisation of pattern dependent frequent subgraph mining algorithms

Relational Patterns
CLOSECUT [Yan et al., 2005c]
SPLAT [Yan et al., 2005c]

Maximal Patterns
SPIN [Huan et al., 2004b]
MARGIN [Thomas et al., 2006]

Closed Patterns CloseGraph [Yan and Han, 2003]

Clique Patterns
CLAN [Wang et al., 2006]
Cocain [Zeng et al., 2006]

Constrained Patterns gPrune [Zhu et al., 2007]

2.6.2.1 Mining relational patterns

Relational graphs are suitable for modelling large scale networks such as biological or

social networks. Yan et al. [2005c] noted that the mining of relational patterns has

three features that serve to differentiate it from general purpose FGM: (i) distinct

vertex labels, (ii) very large size graphs, and (iii) a focus on frequent patterns with

certain connectivity constraints (e.g. the minimum degree of a pattern22). Thus re-

lational graph mining aims to identify all frequent patterns that display some specific

connectivity constraint.

Two example algorithms, CLOSECUT and SPLAT, both proposed by Yan et al.

[2005c], are directed at mining closed frequent subgraphs with connectivity constraints

in a database of relational graphs. The CLOSECUT algorithm used a pattern-growth

approach to integrating connectivity constraints, together with graph condensation

and decomposition techniques. The SPLAT algorithm used a pattern reduction ap-

proach to integrating the graph decomposition technique. Experiments indicated that

CLOSECUT performed better than SPLAT on patterns with high support and low

22The minimum degree of a pattern g is the minimum of the degree of v, for all v ∈ V (g) [Yan et al.,
2005c].

52

connectivity; SPLAT performed better than CLOSECUT on patterns with high con-

nectivity and low support. The results using biological databases showed that both

algorithms could find interesting patterns with strong biological meanings.

2.6.2.2 Mining maximal patterns and closed patterns

As noted previously the number of possible frequent subgraphs increased exponentially

with the size of the graph, i.e. for a frequent k-graph, the number of frequent subgraphs

can be as large as 2k. An example given in Yan and Han [2003] indicated that about

1, 000, 000 frequent graphic patterns could be generated from 422 chemical compounds,

using a support threshold of 5%; and among these many were found to be structurally

repetitive. Therefore, both closed and maximal FGM approaches have been proposed as

mechanisms to reduce the number of frequent subgraphs generated. These approaches

are discussed below. The following notation is used: MFS denotes the set of maximal

frequent subgraphs, CFS the set of closed frequent subgraphs, and FS the set of all

frequent subgraphs in the graph database. Thus, MFS ⊆ CFS ⊆ FS.

2.6.2.2.1 Mining maximal patterns Let the set of maximal frequent subgraphs

MFS = {g|g ∈ FS ∧ @h ∈ FS such that g ⊂ h}. Thus a maximal frequent subgraph

is a graphic pattern such that all of its subgraphs are supported but none of its su-

pergraphs are supported. The task of maximal FGM is to find all graphic patterns

that belong to the MFS. Maximal frequent subgraphs encode the maximal common

structures, which are deemed to be the most interesting patterns in (for example)

the domain of biological networks [Koyutürk and Szpankowski, 2004]. However, the

frequency of non-maximal subgraphs is not produced, which requires scanning of the

original database. Two example algorithms where the mining of maximal patterns

technique has been incorporated are:

(a) SPIN

The SPIN algorithm, presented by Huan et al. [2004b], is a spanning tree based

FGM algorithm designed to discover only maximal frequent subgraphs with the

intention of reducing the overall computational cost. In SPIN, the concept of

canonical spanning tree23 based equivalence classes was first applied; and then, a

graph partitioning method, founded on tree-based equivalence classes integrated

with three pruning techniques, was used to mine maximal subgraphs. The algo-

rithm has two main phases: (i) identification of all frequent subtrees within the

input data using an appropriate FTM algorithms; (ii) detection of all frequent sub-

graphs whose canonical spanning tree was isomorphic to each discovered frequent

subtree. The maximal frequent subgraphs were then computed. The performance

23A canonical spanning tree of a graph is defined as the lexicographically maximal spanning tree of
the graph [Huan et al., 2004b].

53

of SPIN was compared with gSpan and FFSM. The results showed that SPIN gave

a significantly better performance than gSpan and FFSM using both synthetic and

chemical data. In addition, SPIN had good scalability with respect to large graph

datasets.

(b) MARGIN

Thomas et al. [2006] proposed the MARGIN algorithm to mine maximal frequent

subgraphs. The algorithm was based on the observation that the set of poten-

tial maximally frequent subgraphs is included in the set of frequent k-subgraphs

that have infrequent (k+ 1)-supergraphs. Consequently the search space of MAR-

GIN was significantly reduced by pruning the lattice around the set of potential

maximally frequent subgraphs. The set of subgraph candidates is recursively dis-

covered by the core algorithm, ExpandCut, and the maximal frequent subgraphs

were then found by the post-processing operation. Experimental results showed

that MARGIN was computationally faster than gSpan when applied to some data

sets. However, the efficiency of MARGIN largely relied on the initial cut24 to be

chosen.

2.6.2.2.2 Mining closed patterns Let the set of closed frequent subgraphs CFS =

{g|g ∈ FS ∧ @h ∈ FS such that g ⊂ h ∧ support(g) = support(h)}. Thus, given a fre-

quent subgraph g, if there exists no supergraph h such that every transaction graph

containing g also contains h, then g is a closed frequent subgraph. The task of closed

FGM is to find all such graphic patterns. In the context of biochemistry and chemical

compound analysis these closed patterns are of interest because biochemists are often

interested in the largest fragment with certain properties [Fischer and Meinl, 2004].

Yan and Han [2003] noted that in the domain of chemical compound classification

not all frequent subgraphs in the graph database are effective patterns with respect

to classification accuracy. They showed that using 2, 000 closed frequent subgraphs

achieved the same accuracy as when all 1, 000, 000 frequent subgraphs were used. In-

spired by this fact, they adopted the idea of mining closed frequent itemsets or sequences

(e.g. [Zaki and Hsiao, 2002, Wang and Han, 2004]) to devise a closed FGM algorithm,

called CloseGraph. This algorithm was founded on gSpan and used equivalent occur-

rence based early termination to prune the search space. For the case where early

termination failed and could not be applied, detection of the failure of early termina-

tion was implemented. The experimental results showed that CloseGraph was found

to perform better than gSpan and FSG. Yan and Han also emphasized that a better

failure detection was needed in order to improve CloseGraph, because the algorithm’s

performance is mainly dependent on the efficiency of the failure detection.

24A cut between two nodes in the lattice is defined as an ordered pair (p, c) where node p represents
the parent of node c and p is infrequent while c is frequent [Thomas et al., 2006].

54

2.6.2.3 Mining clique patterns

A clique25 (or quasi-clique) is a subset of one subgraph with a fixed topology. Since

the first algorithm introduced by Harary and Ross [1957] to detect cliques, a significant

number of algorithms have been devised for a variety of the clique detection problems

[Bomze et al., 1999, Gutin, 2004]. Recently researchers have established that discov-

ering frequent cliques from a set of transaction graphs is useful in domains such as

communication, finance, and bioinformatics. Example applications where the mining

of cliques, or quasi-cliques, has been applied include: community mining [Abello et al.,

2002], gene expression mining [Pei et al., 2005], and the discovery of highly correlated

stocks from stock market graphs [Wang et al., 2006]. General purpose FGM algorithms

can be used to discover such “special patterns”, however the computation can be made

more efficient if the special properties of cliques is taken into account. Two examples

of clique mining algorithms: (i) CLAN and (ii) Cocain are discussed in the following

paragraphs.

(a) CLAN

CLAN is an algorithm proposed to mine frequent closed cliques from large dense

graph databases [Wang et al., 2006]. The algorithm utilized the properties of the

clique structure to facilitate clique or sub-clique isomorphism testing by introducing

a canonical representation of a clique. Wang et al. [2006] devised several pruning

techniques to effectively reduce the search space. For efficiency evaluation pur-

poses CLAN was compared with ADI-Mine [Wang et al., 2004b] using US stock

market and chemical compounds data sets. The results showed that CLAN ran

efficiently with respect to large and dense graph databases. However, the reported

efficiency experiments only used high support thresholds, and the scalability was

only demonstrated using a small and sparse graph database.

(b) Cocain

Extending the work of CLAN, a general form of clique mining algorithm, Co-

cain, was introduced to mine closed γ-quasi-cliques26 from large and dense graph

databases [Zeng et al., 2006]. In Cocain, Zeng et al. [2006] restricted the quasi-

cliques by satisfying a user specified parameter, γ, which has to be over 0.5. They

further utilized the properties of quasi-cliques to devise several search space prun-

ing techniques, combined with a closure checking scheme, to speed up the discovery

process. However, the empirical evaluation was limited to only US stock market

databases.

25Let V (g) denote the set of vertexes in a graph g, a subset s ⊆ V (g) is a clique if the subgraph
induced on s is a complete graph.

26A γ-quasi-clique(0 ≤ γ ≤ 1) is a k-subgraph (k ≥ 1), g, where ∀v ∈ V (g), degree(v) ≥ dγ(k − 1)e
[Zeng et al., 2006]

55

2.6.2.4 Mining constrained patterns

In real applications, it is often desirable for the user to control the characteristics of

the patterns to be discovered. General purpose FGM, as discussed above, can not push

user-defined constraints into the mining process. A straightforward solution is to firstly

mine all frequent patterns using an appropriate general purpose FGM algorithm, and

then examine each discovered frequent pattern in the context of the desired constraints.

However, the nature of the constraints on the solution can be usefully employed to

enhance the efficiency of the discovery process.

User constraint based frequent pattern mining has been thoroughly studied in the

domain of ARM (e.g. [Ng et al., 1998]). The main idea is to integrate constraints into

the mining process in order to prune the search space. This idea was further extended

by Bonchi et al. [2003] to consider the search spaces for both patterns and data, using

the pruning of both anti-monotone and monotone constraints. Inspired by this, Zhu

et al. [2007] presented a framework, called gPrune, to incorporate various constraints

into the FGM process. The reported empirical study showed that the effectiveness of

integrating constraints into the mining process is influenced by many aspects, including

the properties of the data and the pruning cost. The design of such constraint based

mining algorithms needs to take into consideration the trade-off between the pruning

cost and the potential benefit.

2.6.3 Summary

Tables 2.9 and Table 2.10 present a summary of the FGM algorithms discussed in this

Section. Table 2.9 itemizes, for each algorithm: the representation used, the nature

of the data sets to which the algorithm has been applied and the reported algorithms

with which each has been compared. Table 2.10 gives the candidate generation and

support counting mechanism associated with each. As can be seen from the tables,

as in the case of FTM, the nature of FGM is extremely diverse. Consequently it has

not been possible to present a complete overview of all FGM algorithms in this thesis.

However, in the literature, SUBDUE, AGM, FSG, MoFa, gSpan, FFSM, and GASTON

are the most frequently cited. Among these algorithms, SUBDUE is used more widely

than others. One major disadvantage of SUBDUE is that the algorithm tends to find

small size patterns and miss important patterns. AGM and FSG are two representative

BFS-based miners. MoFa is a specialized miner for molecular databases and is able to

mine directed graphs. FFSM and GASTON can not be used for directed graphs while

gSpan can accommodate directed graphs if some minor changes are incorporated.

One common feature associated with the majority of algorithms described above is

that the search space for the mining is usually modelled as a tree-like lattice over all

possible patterns, which are ordered lexicographically. Each node in the lattice repre-

sents one pattern, and the relationship between patterns at (k+1)-level and k-level only

56

Table 2.9: A summary of the FGM algorithms reported in this thesis

Algorithm Graph Representation Input Data Comparable Algorithms

AGM/AcGM CAM
synthetic data

n/a
chemical data

FSG CAM
synthetic data

n/a
chemical data

gFSG n/a chemical data n/a

DPMine n/a
synthetic data

FSGXML data
email traffic data

MoFa n/a chemical data n/a

gSpan M-DFSC
synthetic data

FSG
chemical data

FFSM CAM
synthetic data gSpan
chemical data

GASTON n/a
synthetic data

gSpan
FSG

chemical data
FreeTreeMiner
FTMiner

HSIGRAM
CAM

aviation data

SUBDUE
credit data
contact map data

VSIGRAM
chemical data
VLSI data

FPF CAM biological data n/a

DPMine n/a
synthetic data

FSGXML data
email traffic data

CLOSECUT M-DFSC
synthetic data

SPLAT
biological data

SPLAT n/a
synthetic data

CLOSECUT
biological data

SPIN BFCS
synthetic data gSpan
chemical data FFSM

MARGIN n/a
synthetic data

gSpan
chemical data

CloseGraph M-DFSC
synthetic data gSpan
chemical data FSG

CLAN vertex label sequence US stock market n/a
Cocain vertex label sequence US stock market n/a
gPrune M-DFSC synthetic data

n/a
biological data

differs by one vertex or edge, resulting in a ‘parent-child’ relation. The search is then

translated into traversing the lattice and keeping all patterns satisfying the threshold.

In the lattice, a BFS or DFS strategy can be used to traverse the lattice. For BFS

strategy based miners, the candidate subgraphs are constantly generated from smaller

ones that have a common core. More specifically, (k + 1)-subgraphs are generated

by joining two frequent k-subgraphs which have a common core of (k − 1)-subgraph.

This level-wise join operation is the same as for most BFS strategy based miners (also

57

Table 2.10: Main techniques used by FGM algorithms reported in this thesis

Algorithm Candidate Generation Support Computation
AGM/AcGM level-wise join database scan
FSG level-wise join transaction list

gFSG level-wise join
edge-angle list
transaction list
hybrid

DPMine level-wise join n/a
MoFa extension embedding list
gSpan rightmost path extension transaction list
FFSM join + extension embedding list
GASTON path,tree, and graph enumeration embedding list
HSIGRAM level-wise join various MIS measures
VSIGRAM extension various MIS measures
FPF extension MIS measure
DPMine level-wise join n/a
CLOSECUT rightmost path extension transaction list
SPLAT n/a n/a
SPIN join embedding set
MARGIN ExpandCut n/a
CloseGraph rightmost path extension transaction list
CLAN DFS-based extension n/a
Cocain DFS-based extension n/a
gPrune rightmost path extension transaction list

called Apriori-based algorithms); however the expansion unit tends to vary (e.g. ver-

texes, edges, or edge-disjoint paths). In comparison with DFS strategy based miners,

BFS strategy based miners can obtain a tight upper bound for the support of the

k-subgraphs using the support associated with the complete set of identified (k − 1)-

subgraphs. This upper bound can be employed to prune infrequent candidates. DFS

strategy based miners typically derive an upper bound for k-subgraphs based only on

a single (k − 1) parent frequent subgraph, which leads to less pruning.

As indicated in Wörlein et al. [2005], an efficient frequent subgraph miner usually

contains three distinct features:

• Restrictive extension: The extension of a subgraph is valid only when the exten-

sion exists in the graphs within the subgraph’s occurrence list. Examples of such

operations are rightmost path extension by gSpan and extension by MoFa.

• Efficient candidate generation: This operation is achieved by applying a canonical

graph representation so as to facilitate the filtering out of duplicates candidates

before performing graph isomorphism. Two main canonical representations are

CAM used by AGM, FSG, FFSM; and DFS code used by gSpan.

• Essential subgraph isomorphism: When computing the support of a pattern, a

trade-off needs to be sought between explicitly using subgraph isomorphism and

58

storing embeddings of the pattern. Examples of algorithms that store embeddings

are FFSM and GASTON, and instances of using subgraph isomorphism include

FSG and gSpan.

Although FGM algorithms have many applications in various domains, there are

still some issues that need to be addressed:

• Scalability The inherently exponential complexity of FGM means that low sup-

port values result in the discovery of large sets of patterns and correspondingly

high run-times. Wang et al. [2004b] proposed an index for the scalable mining

of large disk-based graph databases. Fatta and Berthold [2005] presented a dis-

tributed approach to the FGM problem. They extended MoFa to accommodate

the distributed computation of mining frequent patterns from very large molecu-

lar compounds. Although both approaches can handle the scalability issue, they

circumvent this issue by using multiple computer processors or an efficient index;

they do not address the inherent exponential issue itself. GREW is the first algo-

rithm presented to reduce the inherently exponential complexity. However, the

input to the algorithm is one single undirected graph, not a collection of graphs.

• Other generic interestingness measures Current FGM algorithms restrict

the notion of interestingness only to the support metric. Many other interesting-

ness measures, other than the support measure, have been proposed (e.g. interest-

ingness metrics for association patterns [Tan et al., 2002]). Also, in many cases, a

single support metric may be too general to define interestingness with respect to

individual applications, often too many similar patterns are generated. Xin et al.

[2006c] proposed finding interesting frequent patterns in tabular data according

to the user’s “real” interest. However, this work is based on the assumption that

the set of frequent patterns have already been mined. In Huan et al. [2004c],

a coherent subgraph miner was proposed to identify interesting subgraphs us-

ing the mutual information based measure. Although the patterns discovered by

this coherent subgraph miner have been proved to be discriminative in classifying

protein structures, Huan et al. [2004c] did not show that these patterns can be

applied to other domains. In addition, the above solutions are mainly applicable

to the chemical domain and need some additional information provided by the

user. There is little research work on adopting generic interestingness measures

to assess the importance of the subgraph patterns.

• Analysis of the resultant set of frequent subgraphs Using relatively low

support values, the resultant set of identified frequent subgraphs is very large,

which means that further analysis of the patterns is extremely challenging. In

Chen et al. [2008], a solution that approximates a complete set of frequent sub-

graphs using a small compact pattern set, is proposed to overcome this issue.

59

Patterns contained in this small compact set have the properties of high signifi-

cance and low redundancy. However, this solution is considered to belong to the

post-processing category and relies on the structural properties of the patterns

and the quality measure. Thus, an advanced solution that can directly discover

such a small compact pattern set is desirable.

Since there are an increasing number of interaction graphs which evolve over time,

such as co-authorship networks, there is a growing interest in mining dynamic graphs

[Desikn and Srivastava, 2004, Leskovec et al., 2005, Berger-Wolf and Saia, 2006]. The

discovery of frequent subgraphs among dynamic graphs has been little explored. One

example is given in Borgwardt et al. [2006], who propose extending the FGM algo-

rithm to discover frequent patterns among dynamic graphs. The experimental results

obtained by applying this approach to an email network represented by time series

graphs validates the feasibility of the approach. However, the size of each time-stamp

graph is relatively small.

2.7 Classification Using Frequent Subgraphs

One common application of using frequent patterns discovered by the algorithms in-

troduced in Sections 2.5 and 2.6 is to classify a set of graphs. The procedure of how to

classify graphs is explained in the next paragraph. Additionally, as described in Section

1.4, the patterns discovered by the proposed weighted FSM algorithms in the thesis are

evaluated in a framework of frequent pattern based classification, to assess the quality

of the discovered patterns. Therefore, it is necessary to give a brief description of the

research work related to classifying of graphs.

The application of kernel methods [Schölkopf and Smola, 2002] for graph struc-

tured data (i.e. graph kernels [Gärtner et al., 2003, Kashima et al., 2003, Borgwardt

and Kriegel, 2005]) has been widely used for the task of classifying a set of graph repre-

sented molecules in the domain of chemical informatics. However, such task can also be

performed using a frequent pattern based classification framework. The general idea is

illustrated in Figure 2.9 (a). In the figure, ‘FSM’ denotes the frequent subgraph mining

process, ‘SI’ denotes subgraph isomorphism detection, and ‘FS’ denotes feature selec-

tion. Figure 2.9 (b) illustrates the process of constructing feature vectors. As indicated

in Figure 2.9 (b), each graph is represented as a feature vector Gi = {f1, f2, · · · , fn}
where fi is the frequency of the i-th subgraph pattern which occurs in that graph. The

fi is usually computed by conducting subgraph isomorphism detection between the i-th

subgraph and each Gi in the database. In a binary scenario, fi can be the existence

or absence (1 or 0) of the i-th subgraph pattern. Each graph is associated with a class

label at the end of the vector. Because the construction of feature vectors require sub-

graph isomorphism detection, assigning binary values for fi is considerably faster than

60

assigning the actual frequency for fi. In addition, for certain graph represented data

(e.g. images), using the actual frequency of the pattern is more important than using

the existence of the pattern in the image classification task. When building feature

vectors for data sets described in this thesis, the actual frequency is used for the image

data and the binary values are used for the rest of data.

After constructing these vectors for graphs, various classification approaches, in-

cluding support vector machines, decision trees, and naive Bayesian classifiers can

be employed to categorize these graphs. Examples of such features based classifica-

tion algorithms include: frequent subgraph based classifier ([Deshpande et al., 2005]),

coherent27 frequent subgraph based classifier ([Huan et al., 2004c]), and closed fre-

quent subgraph based classifier([Liu et al., 2005]). All these algorithms used frequent

subgraphs as features for classification purpose, however they differ in the techniques

adopted for feature selection as described in Figure 2.9(a). Because use of all identified

frequent subgraphs as features is not feasible, all these algorithms extract highly dis-

criminative features from the complete set of frequent subgraphs so that high quality

classification is achieve without incurring a high computational overhead. One major

disadvantage of these approaches is the separation of the FGM and feature selection

process.

Several approaches have been proposed recently to address this drawback [Kudo

et al., 2004, Nowozin et al., 2007, Yan et al., 2008, Thoma et al., 2009, Jin et al.,

2009]. One common feature of these approaches is that they integrate the process of

FGM and the selection of the discriminative features. Kudo et al. [2004] and Nowozin

et al. [2007] proposed using the boosting method to discover frequent patterns in mul-

tiple iterations. For each iteration, the misclassified graph was weighted by a higher

value. However, high classification accuracy is often achieved at the cost of a long

execution time. Yan et al. [2008] proposed a binary classifier that used the top-k fre-

quent patterns whose significances were evaluated by an objective function. However,

as indicated by Jin et al. [2009], the performance of this classifier may be compromised

when there are few discriminative patterns and the set of top-k patterns share most of

their supporting graphs. Furthermore, the use of the objective function depends on the

known class labels, which are not easy to obtain in real applications. CORK [Thoma

et al., 2009] is another frequent subgraph based binary graph classifier, whose goal is

to discover the most discriminative frequent subgraph set by using some quality mea-

sure. This CORK measure has a sub-modular feature which enables CORK to achieve

good results. However this measure may fail to measure the discriminative strength of

the set of frequent subgraphs under certain circumstance as noted in Jin et al. [2009].

COM, proposed by Jin et al. [2009], is the latest approach to using frequent subgraph

27A graph is coherent if the mutual information between it and each of its subgraph is greater than
or equal to some threshold.

61

patterns for binary graph classification. By using FFSM as the base algorithm, COM

groups subgraph patterns discovered by FFSM into co-occurrence rules by applying a

simple quality measure during the mining. Thus, such rules can be used for classifying

graphs. Experiments show that COM is more efficient and effective than the previous

approaches proposed by Yan et al. [2008] and Thoma et al. [2009].

Graph

Database

Frequent

Subgraph

Set

Feature

Vectors

Discriminative

 Features
 Classification

FSM
 FS

(a) Frequent patterns based classification

G

1

G

2

G

3

G

n

1
 5
 0
 12
 0
 0
 c

0
 2
 9
 0
 6
 c
0

c
0
 0
 1
 2
0
 1

3
4
 2
 10
 0
 0
 c

f

1
 f

2

f

3
 f

n
 Class

(b) Feature vectors construction

SI

Figure 2.9: Frequent pattern based classification

Since different subgraphs can be discovered by various frequent subgraph mining

algorithms, using such subgraphs as features may obtain different clustering and classi-

fication results. Thus, as indicated by [Han and Kamber, 2006], clustering and classifi-

cation of sets of graphs should be coupled tightly with the mining of frequent subgraphs.

The significance of frequent pattern based classification with respect to this thesis is

that it is the mechanism adopted to evaluate the proposed weighted FSM schemes.

2.8 Social Network Analysis

A social network is naturally represented as a large graph or a set of transaction graphs

where the transaction graph corresponds to a time-segmented network. Thus, the social

network analysis task can be simply transformed into a task of mining interesting

patterns in the graph data. How to mine the patterns in graph represented social

networks has recently attracted some research interest.

Social networks comprise a set of social entities (nodes) and the relations between

them (links). Social network analysis (SNA) ([Wasserman and Faust, 1994]) aims to

examine the relations among the social entities, social structures, social positions and

other related tasks. Because of the increased growth of the Internet, many large scale

social networks have been studied such as scientific co-authorship networks ([Newman,

2003]), email communication networks ([Diesner et al., 2005]), and mobile call networks

62

([Nanavati et al., 2006]). As indicated by [Chakrabarti and Faloutsos, 2006], most of

these large scale networks share three common features: (i) scale free distribution

[Faloutsos et al., 1999, Redner, 1998]; (ii) small world effect [Watts and Strogatz, 1998,

Albert et al., 1999]; (iii) strong community structure [Flake et al., 2000, Girvan and

Newman, 2002]. Social network analysis has attracted a lot of research interest in a

variety of tasks including centrality analysis ([White and Smyth, 2003]), community

detection ([Newman and Girvan, 2004]), link prediction ([Nowell and Kleinberg, 2007])

and many others. Among these, community detection plays a fundamental role in SNA.

Generally, community detection can be defined as finding groups of nodes in a social

network, where such nodes are linked more frequently within a group than between

groups. Various definitions and approaches are exploited for community detection in

different context ([Girvan and Newman, 2002, Newman, 2004a,b, Flake et al., 2004,

Wu and Huberman, 2004]).

All the above approaches to SNA concentrate on mining patterns in the network

represented by one large graph. Only a few researchers have shown interest in using

frequent subgraph mining to identify patterns (i.e. frequent subgraphs) in the network

represented by a set of transaction graphs, due to issues associated with efficiency and

scalability. One example is the work of Lahiri and Berger-Wolf [2007], where frequent

subgraphs were used to predict the partial structure in the temporal network at an

unseen time-step. However, in Lahiri and Berger-Wolf [2007], due to the constraints

imposed on the temporal network, the task of mining frequent subgraphs is simplified

to the task of mining frequent itemsets, which greatly alleviates the computation cost.

One category of graph data used for the evaluation in this thesis, which will be described

in Sub-section 3.2.8, represents a social network as a set of time-stamped graphs. For

evaluation purposes, the weighted frequent subgraph mining algorithms proposed in

this thesis have been applied to these graphs to discover weighted frequent subgraphs.

2.9 Weighted Frequent Subgraph Mining

Since the research work proposed in this thesis (see Section 1.2) aims to use weighted

FSM to reduce the computation complexity incurred by FSM, the research work that

is closely related to the proposed weighted FSM is discussed in this section. Firstly,

a variety of solutions proposed by other researchers that can lessen the combinatorial

complexity of FSM are examined and their deficiencies are further analysed. Secondly,

some further research work that has an influence on the proposed weighted FSM is

discussed. In order to highlight the link between the existing research work and the

research work proposed in this thesis, and the motivation of the proposed research work,

a significant part of content discussed in Section 1.1 is recapitulated in the following

paragraphs.

Research work on pattern discovery has advanced from mining itemsets and se-

63

quences to trees and graphs. In the context of frequent subgraph mining, various

approaches have been proposed and numerous strategies haven studied as described

in Sections 2.5 and 2.6. The “bottleneck” for frequent subgraph mining algorithms is

the computational complexity incurred by the two core operations: candidate gener-

ation and support counting. Three further issues are: (i) interpretation the resulting

set of patterns is often difficult; (ii) choosing the most appropriate minimum support

threshold is not easy, and (iii) the generation of (unnecessary) structurally repetitive

patterns. Four potential solution have been introduced to address these issues.

(1) Mining maximal or closed frequent subgraphs [Yan and Han, 2003, Huan et al.,

2004b, Thomas et al., 2006]

(2) Mining approximate frequent subgraphs [Kelley et al., 2003, Sharan et al., 2005,

Chen et al., 2007b]

(3) Summarizing the result set of patterns [Xin et al., 2006a, Chen et al., 2008]

(4) Mining frequent subgraphs with constraints [Zhu et al., 2007]

Among these four research directions, the first three have been examined substantially.

Most of the approaches employed can find their counterparts in the domain of ARM

(many techniques, strategies and methods used in FSM can be traced back to ARM).

In constraint based FSM, there is a little work on using a weight constraint. The

research described in [Zhu et al., 2007] is directed at mining frequent subgraphs that

satisfy some global graph properties such as size, density and diameter28. The most

related work on weight constraint based FSM can be found in Eichinger et al. [2008].

Eichinger et al. [2008] used weights to adjust the importance of discovered patterns in

the task of software bug detection. They considered the process of weight constraint

based FSM as a two-stage procedure: (i) mining frequent subgraphs and (ii) post-

processing the set of frequent subgraphs with weights. Consequently the success of their

approach relied on the performance of FSM. This thesis takes the view that weightings

should be integrated into the mining process so that efficiencies can be introduced. To

the best knowledge of the author, little research work has been reported with regard

to utilizing weightings within the process of FSM.

For studies directed at social networks (as described in Section 2.8), the connections

in the network are usually assumed to be binary valued (either present or absent).

However, the social network data (see Sub-section 3.2.8) used for evaluation purposes in

this thesis, are assumed to have pre-defined edge weightings. Therefore, it is worthwhile

to report on current research directed at the mining of weighted networks. As indicated

by Wasserman and Faust [1994], it is common for real-world networks such as email

28The diameter of a connected graph is the maximum distance between any two vertexes in that
graph [Chartrand and Zhang, 2004].

64

networks [Ebel et al., 2002], social networks [Kossinets and Watts, 2006], and scientific

collaboration networks [Barrat et al., 2004], to be weighted inherently by assigning

different strengths, intensities or capacities to their vertexes or edges. For instances, in

a social network there may be stronger or weaker social relations between individuals; in

a transportation network, the weight of the connection may be calculated by the amount

of traffic flowing along it [Barrat et al., 2004]. There are a few studies [Newman, 2001,

Yook et al., 2001, Barrat et al., 2004, McGlohon et al., 2008] directed at investigating

the statistical properties of edge-weighted networks.

As mentioned earlier in Section 2.8, finding strongly connected groups of nodes in

the network (i.e. community detection) is a common task in SNA [Snijders, 2001, Watts

and Strogatz, 1998]. Nevertheless, such community detection has been mostly pursued

by researchers without considering the significance (i.e. weights) of particularly nodes

and/or edges [Ding et al., 2001, Shi and Malik, 2000, Newman, 2004b, Newman and

Girvan, 2004, Clauset et al., 2004]. Newman [2004c] provides a solution to mining

community structures in weighted networks by adapting existing community detection

algorithms. The rationale is that for a weighted network, a weighted graph representa-

tion can be mapped onto an un-weighted multi-graph so that most existing community

detection algorithms on the un-weighted graph can be applied to the weighted case

with minor modification.

Although little work has been reported in the field of weighted FSM, there is a

substantial body of reported work directed at weighted ARM (WARM) and weighted

sequence mining (WSM) [Cai et al., 1998, Wang et al., 2000, Tao et al., 2003, Yun and

Leggett, 2005, 2006, Yun, 2007]. A significant issue in WARM or WSM is that the

DCP of itemsets or sequences, on which most ARM or sequence mining algorithms are

based, no longer holds. Cai et al. [1998] firstly introduced the idea of a weighted sup-

port bound to address WARM, which is in spirit similar to utility mining. One solution

adopted by Wang et al. [2000], is to handle the weights as a post-processing step after

mining frequent itemsets, however the weights are not integrated into the ARM process.

Tao et al. [2003] proposed another solution, using a framework of weighted support,

which satisfied the DCP, to mine the most significant patterns and consequently reduce

the overall computational complexity. Yun and Leggett [2005, 2006] and Yun [2007]

introduced a series of concepts such as“weight range”, “weight confidence” and “sup-

port confidence” (very similarly to h-confidence as proposed by Xiong et al. [2006] in

correlated itemsets mining) in the mining of weighted frequent itemsets and sequences,

in order to maintain the DCP. Within their framework, the correlated patterns (i.e.

itemsets or sequences) with similar weight and support levels, termed weighted affinity

patterns, are discovered by integrating weight confidence and support confidence into

the base itemset or sequence mining algorithm.

Although the ideas espoused by WARM can not be directly applied to weighted

65

FSM, the research work described in the thesis is at least partially influenced by this

body of work.

Algorithm 2.3: gSpan-Miner(c, σ, GD, F)

Input: c = a subgraph represented by a DFS code, σ = minimum support, GD
= a graph dataset

Output: F , a set of frequent subgraphs

1 sort labels of the vertexes and edges in GD by their frequency
2 remove infrequent vertexes and edges
3 relabel the remaining vertexes and edges in descending frequency
4 F1 ← {all frequent 1-edge subgraphs in GD}
5 sort F1 in DFS lexicographic order
6 F ← ∅
7 foreach c ∈ F1 do
8 subgSpan(c,GD, σ,F)
9 GD← GD− c

10 if |GD| < σ then
11 break
12 end

13 end

2.10 Summary

The essential knowledge underpinning the research work proposed in this thesis is

presented in this chapter. Firstly, the definitions used throughout the thesis were

introduced in Section 2.1, and the proposed research problem was defined in Section

2.2. Secondly, the primary operations involved in FSM were discussed in Sections 2.3

and 2.4, and the principal approaches to FSM were analysed in Sections 2.5 and 2.6.

Thirdly, the frequent pattern based classification framework was explained in Section

2.7. This framework was used to evaluate the quality of the patterns discovered by

the proposed weighted FSM algorithms. Fourthly, since social network data sets were

also used to test the proposed research work described in this thesis, the research work

related to using FSM to discover patterns in social networks was introduced in Section

2.8. Finally, other research that has an influence on the work described in this thesis

was discussed in Section 2.9, where it was noted that there has been very little previous

work directed at the weighted FSM problem.

Three standard FSM algorithms that discussed in Section 2.6.1.2: gSpan, FFSM,

and GASTON were used for evaluating the proposed weighted FSM schemes in this

thesis. Among these three, gSpan was chosen as the base algorithm so that subgraph

weighting schemes could be integrated into the algorithm to devise weighted FSM algo-

rithms; FFSM and GASTON algorithms were used as baseline algorithms for comparing

with the proposed weighted FSM algorithms. A detailed description of each algorithm

66

by pseudo-codes is presented in the following sub-sections.

2.10.1 Pseudo-codes of gSpan

The pseudo-codes of the gSpan algorithm following the description in Yan and Han

[2002] are provided in Algorithm 2.3, which recursively call a “subgSpan” procedure.

Procedure subgSpan(c, GD, σ, F)

1 if c 6= min(c) then
2 return
3 end
4 F ← F ∪ {c}
5 C ← ∅
6 Scan GD once, find every edge e such that c can be right-most extended to c ∪ e,
C ← c ∪ e

7 Sort C in DFS lexicographic order
8 foreach gk ∈ C do
9 if support(gk) ≥ σ then

10 subgSpan(gk, GD, σ, F)
11 end

12 end

2.10.2 Pseudo-codes of FFSM

The pseudo-codes of the FFSM algorithm following the description in Huan et al. [2003]

are demonstrated in Algorithm 2.4, which recursively call a “FFSM-Search” procedure.

Algorithm 2.4: FFSM-Miner(C, σ, GD, F)

Input: C = a suboptimal CAM list, σ = minimum support, GD = a graph
dataset

Output: F , a set of frequent subgraphs

1 F ← {the CAMs of the frequent vertexes and edges}
2 F1 ← {the CAMs of the frequent edges}
3 FFSM-Search(F1,F)

2.10.3 Pseudo-codes of GASTON

An overview of the GASTON algorithm which is following the description in Nijssen

and Kok [2005] is given in Algorithm 2.5. In Algorithm 2.5, the refinement operation

(line 1) is achieved by extending the current structure by the addition of both a new

vertex and an new edge to connect this vertex (referred to as a node refinement) or

the addition of a new edge which only connects existing vertexes (referred to as a

cycle closing refinement); a leg of a structure in Nijssen and Kok [2005] is defined as a

67

Procedure FFSM-Search(W , F)

Input: W = a suboptimal CAM list

Output: F , a set of frequent subgraphs

1 foreach P ∈W do
2 if P.isCAM then
3 F ← F ∪ {P}
4 C ← ∅
5 foreach Q ∈W do
6 C ← C ∪ FFSM-Join(P,Q)
7 end
8 C ← C ∪ FFSM-Extension(P)
9 remove CAM(s) from C that is either infrequent or not suboptimal

10 FFSM-Search(C,F)

11 end

12 end

frequent refinement of a structure which also records the embedding list. In line (2) of

Algorithm 2.5, the current graph g′ is determined to see whether or not it is a canonical

graph. If it is not, then g′ is not further refined.

Algorithm 2.5: Gaston-Miner(g, l, L, σ, GD, F)

Input: g = a graph, a leg l, a set of legs L, σ = minimum support, GD = a
graph dataset, F = a set of frequent subgraphs

Output: F , a set of frequent subgraphs

1 g′ ← refinement(g, l)
2 if g′ is not canonical then
3 return
4 end
5 F ← F ∪ g′

6 L′ ← {l′|l′ is a necessary leg of g′ ∧ support(refinement(g′, l′),GD) ≥ σ ∧ (l′ ∈
L ∨ l′ connects to the node introduced by l, if l is a node refinement)}

7 for ∀l′ ∈ L′ do
8 Gaston-Miner(g′, l′, L′, σ, GD, F)
9 end

Since the GASTON algorithm divides the mining into three phases: paths, trees

and graphs, Algorithm 2.6 presents a description of the GASTON algorithm by three

different phases [Nijssen and Kok, 2004]. Further details can be found in Nijssen and

Kok [2004, 2005].

68

Algorithm 2.6: Outline of the three phases of the Gaston-Miner: paths, trees,
and cyclic graphs

1 Gaston-Minerpath(a path P, a set of legs L)

2 foreach allowable refinement leg l ∈ L do
3 g′ ← refinement(P, l)
4 if l.refinement is a node refinement then
5 L′ ← extend(l) ∪ {join(l, l′)|l′ 6= l ∈ L}
6 if g′ is a path then
7 Gaston-Minerpath(g′, L′)
8 else
9 Gaston-Minertree(g

′, L′)
10 end

11 else
12 L′ ← L′ ∪ {join(l, l′)|l′ 6= l ∈ L}
13 Gaston-Minercyclicgraph(g′, L′)

14 end

15 end

16 Gaston-Minertree(a tree T, a set of legs L)

17 foreach allowable refinement leg l ∈ L do
18 g′ ← refinement(T, l)
19 if l.refinement is a node refinement then
20 L′ ← restricted-extend(l) ∪ {join(l, l′)|l′ ∈ L ∧ l′ is allowable in g′}
21 Gaston-Minertree(g

′, L′)

22 else
23 L′ ← L′ ∪ {join(l, l′)|l′ 6= l ∈ L}
24 Gaston-Minercyclicgraph(g′, L′)

25 end

26 end

27 Gaston-Minercyclicgraph(a graph G, a set of legs L)

28 foreach allowable refinement leg l ∈ L do
29 g′ ← refinement(G, l)
30 L′ ← L′ ∪ {join(l, l′)|l′ > l ∈ L}
31 Gaston-Minercyclicgraph(g′, L′)

32 end

69

70

Chapter 3

Graph Data Sets

Various data sets were used for the evaluation of the weighted frequent subgraph mining

algorithms proposed in this thesis. These data sets may be divided into two categories:

(i) synthetic data sets, and (ii) real application data sets. The majority of the data

sets included class labels so that classification algorithms could eventually be applied

and used to evaluate the proposed weighting techniques. Among the synthetic data

sets, some were selected because they are widely used by researchers in the domain

of frequent subgraph mining; others were specifically constructed, by the author, for

the purpose of conducting the desired evaluation. For the real application data sets,

each selected data set represented a potential target domain of application for individual

proposed frequent subgraph mining algorithms. A variety of mechanisms were adopted,

according to the nature of the data, to allow the data sets to be represented as graphs.

Some of these mechanisms had been proposed by other researchers, the remainder were

developed by the author. The rest of this chapter is organized as follows. The synthetic

data sets are introduced in Section 3.1 and the real application data sets in Section 3.2.

Section 3.3 then summarizes all the data sets employed in this thesis.

3.1 Synthetic Data Sets

In this section, five different synthetic data sets, all represented in the form of trees,

are introduced. The first two were generated by other researchers, and the remaining

three by the author’s research group members. According to the techniques used to

model the data sets in the form of trees, the data sets were divided into two groups,

ST1 and ST2:

(1) Synthetic Tree 1 (ST1): Synthetic trees created by a random tree generator;

two tree data sets.

(2) Synthetic Tree 2 (ST2): Synthetic images represented by quad-trees; three tree

data sets.

71

Each group will be discussed in further detail in the following sub-sections respec-

tively.

3.1.1 ST1 - Synthetic trees created by a random tree generator

In the ST1 group of data sets the tree data was created, using the random tree generator,

proposed in Zaki [2002], to simulate website browsing behaviour. The tree generator

first generates a master tree, T , controlled by the first four parameters shown in Table

3.1, and then creates a number of subtrees of T as specified by the parameter t. Further

details of this tree generation process can be found in Zaki [2005a].

Table 3.1: Synthetic tree data set parameters

Notation Description

f The maximum degree of a node
d The maximum depth of the tree
m The total number of nodes in the master tree
n The number of node labels
t The number of subtrees created

Two synthetic data sets were generated. The first used the same parameter values

as that described in Zaki [2002]: n = 100, m = 10000, d = 10, f = 10, t = 100000. The

second replaced the value of t with t = 1000000. The characteristics of these data sets

is given in Table 3.2.

Table 3.2: Characteristics of the synthetic “web usage” data sets

D10 T1M

trees (t) 100000 1000000
Max # edges 94 94
Average # edges 3 3
Max # vertexes 95 95
Average # vertexes 4 4
Vertex labels 100000 1000000
Edge labels 1 1

3.1.2 ST2 - Synthetic images represented by quad-trees

The ST2 group of data sets comprised synthetic trees, expressed using a quad-tree

representation [Finkel and Bentley, 1974], to model a sequence of synthetic images

generated by a random image generator [Coenen, 2009]. Quad-trees are a widely used

tree structure for the representation of images. The basic idea of this representation,

which is illustrated in Figure 3.1, is that any image can be divided into quadrants.

Each quadrant can then be further split into equal-sized sub-quadrants, and so on until

some imposed limit is met.

72

NW
 NE
 SW
 SE

Northwest
 Northeast

Southwest
 Southeast

Figure 3.1: An illustration of the quad-tree representation. The image on the left is
recursively divided into sub-quadrants (NW, NE, SW and SE).

Examples of the images generated by the random image generator and the subse-

quent quad-tree representations are shown in Figure 3.2. In Figure 3.2(a) two images,

generated by the random image generator, are shown. The associated quad trees are

shown in n Figure 3.2(b). For the purpose of evaluating the work described in this

thesis, three quad-tree represented image data sets were generated using a sequence

of quad-tree levels1 of 4, 5, and 6. The characteristics of these three data sets are

presented in Table 3.3. In the table, ‘IM1000’ indicates a set of 1000 images, and the

symbol ‘D’ indicates the level of the quad-tree. These 1000 images are evenly divided

into two classes (Seascape vs. Landscape).

(a) Random images (b) Quad tree representation

Figure 3.2: An illustration of quad-tree represented random images

Table 3.3: Characteristics of quad-tree represented image data sets

IM1000-D4 IM1000-D5 IM1000-D6

trees 1,000 1,000 1,000
Max # edges 76 208 524
Average # edges 34 87 192
Max # vertexes 77 209 525
Average # vertexes 35 88 193
Vertex labels 18 18 18
Edge labels 4 4 4

1The maximum number of leaf nodes in any quad-tree is decided by 4L, where L is the user specified
decomposition threshold used during the generation process

73

3.2 Real Datasets

In this section, a number of real graph and tree represented data sets, drawn from

genuine applications and used for evaluation purposes in this thesis, are described.

These real application data sets are categorized into eight groups according to the

nature of the application in which they are likely to be used:

(1) Real Application Tree 1 (RT1): Web usage mining.

(2) Real application Tree 2 (RT2): Magnetic Resonance Imaging (MRI) brain scan

analysis.

(3) Real Application Tree 3 (RT3): Text mining founded on document semantics.

(4) Real Application Graph 1 (RG1): Chemical compound analysis.

(5) Real Application Graph 2 (RG2): Mammography.

(6) Real Application Graph 3 (RG3): Photo classification.

(7) Real Application Graph 4 (RG4): Text mining founded on term occurrence.

(8) Real Application Graph 5 (RG5): Social network mining.

The RT1 and RG1 data have been widely used within the frequent subgraph mining

community, for benchmark testing; and therefore were selected for inclusion in this

thesis. The rest of six groups were acquired specifically for the purpose of testing the

performance of the proposed algorithms. Each category is discussed in further detail

in the following sub-sections.

3.2.1 RT1 - Web usage mining scenario

The RT1 group of data sets consisted of the CSLOGS data sets used in the studies

described in [Zaki, 2002, 2005a, Zaki and Aggarwal, 2006]. These data sets comprise

web usage log files with respect to the Computer Science department website hosted

at Rensselaer Polytechnic Institute2. The structure and content of each “user session”

is described, using the Log Markup Language (LOGML) [Punin et al., 2001], in terms

of a user browsing tree. The CSLOGS data comprises three individual data sets: (i)

CSLOGS-ALL, (ii) CSLOGS-1, (iii) CSLOGS-2. CSLOGS-ALL [Zaki, 2002, 2005a]

consists of more than one month of web log files; while CSLOGS-1 and CSLOGS-

2 describe a two week sequence of log files with each data set holding one week’s

worth of data. CSLOGS-ALL contains 59691 user browsing trees, but no class labels.

However, the browsing trees in the smaller CSLOGS-1 and CSLOGS-2 data sets [Zaki

2http://www.cs.rpi.edu/

74

and Aggarwal, 2006] are divided into into two class: edu (denoting users from an “edu”

domain) and other (denoting users from any other domain). The characteristics of the

RT1 (CSLOGS) group of data sets are presented in Table 3.4.

Table 3.4: Properties of tree based CSLOGS web usage data sets

CSLOGS-ALL CSLOGS-1 CSLOGS-2

trees 59691 8074 7409
Max # edges 429 314 172
Average # edges 13 9 9
Max # vertexes 430 315 173
Average # vertexes 14 10 10
Vertex labels 59691 15652 14413
Edge labels 1 1 1
Class 1 n/a 1962 1686
Class 2 n/a 6112 5721

3.2.2 RT2 - MRI brain scan images represented by quad-trees

The next three groups of real application data sets focused on image mining. The data

sets were drawn from three different image mining domains: (i) Magnetic Resonance

Imaging (MRI) brain scan analysis, (ii) Mammographic images, and (iii) Photographic

images. Two different approaches to modelling these images, in terms of graphs, were

considered:

• Quad-tree representation. As described in Sub-section 3.1.2.

• Image interest points based representation. In a region based image repre-

sentation, the identified regions and relations between regions are encoded using

an Attributed Relational Graph (ARG) format [Tsai and Fu, 1983, Schalkoff,

1992], where the vertexes represent regions, and the edges the relation between

pair of regions. Similar to the region based image representation where image

regions are captured using image segmentations, the image interest points based

representation is an alternative form of the region based image representation

where image regions are captured using salient interest points3 [Tuytelaars and

Mikolajczyk, 2008]. The claimed advantage of using image interest points is that

it bypasses many of the errors incurred when image segmentation process are

adopted.

The MRI images were represented using quad-trees and the remaining two using

image interest points. The MRI scan data set is considered further in this sub-section,

3Interest points are important image features that contain high information of an image [Yang et al.,
2007]

75

while the remaining two real application data sets are considered in the following two

sub-sections respectively.

Preprocessing +

Image segmentation

Quad-Tree

representation

MRI Brain Scan

Corpus Callosum

Figure 3.3: The procedure for generating quad-tree represented MRI brain scan images

Magnetic Resonance Image (MRI) brain scanning is a medical imaging technique,

used in radiology, to produce detailed pictures of the brain and surrounding nerve

tissues [MedlinePlus, 2010]. The RT2 group of data sets, described in Elsayed et al.

[2010], contain 106 MRI brain scan images, which are equally divided into two classes:

(i) musicians and (ii) non-musicians. The data set was originally collected to support

the conjecture that the corpus callosum (a distinctive feature in MRI brain scans) is

different for musicians than for non-musicians [Elsayed et al., 2010]. The processing

of the image set is presented in Figure 3.3. After necessary image preprocessing, the

corpus callosum in each image was fitted into a Minimum Bounding Rectangle (MBR).

The given MBR space was then recursively decomposed into quadrants. Each quad-

rant was represented by a vertex in the quad-tree (with colour black or white), with

the root of the quad-tree representing the entire MBR space. The decomposition pro-

cess was terminated when a predefined level of granularity was reached, or a particular

sub-quadrant was sufficiently homogeneous (95% black or white). The three data sets

contained in the RT2 group of data sets were all generated in this manner, but using

three different quad-tree decomposition level ranging from 5 to 7 (equivalent to a max-

imum number of vertexes of 1024, 4096, and 16384 respectively). Note that the degree

of detail increases with the level of the quad-tree decomposition. The characteristics of

RT2 data sets employed in this thesis are given in Table 3.5.

Table 3.5: Properties of RT2 data at different quad-tree levels

QT-D5 QT-D6 QT-D7

Quad-tree Level 5 6 7
Trees 106 106 106
Max # edges 196 208 476
Average # edges 117 149 282
Max # vertexes 197 209 477
Average # vertexes 118 150 283
Vertex labels 3 3 3
Edge labels 4 4 4

76

3.2.3 RT3 - Text mining founded on document semantics

The sixth group of data sets were directed at text mining applications. The data sets

were extracted from: Medline4, the International Movie Database (IMDB)5, Amazon6,

and Oshumed7. The data sets were represented as graphs using two approaches: (i)

semantic graph based and (ii) term occurrences based, as indicated in Table 3.6. In

the table, the symbol ‘
√

’ in each cell indicates which text representation approach is

adopted for which text data collection. The RT3 group of data sets comprised the

semantic graph based group of data sets and is discussed further in this sub-section.

The RG4 group of data sets comprised the term occurrence based group of data sets

and is discussed in Section 3.2.7.

Table 3.6: Categorisation of the text data sets according to the graph representation
method adopted

Semantic graph based Term occurrences based

Medline data
√

IMDB data
√

Amazon data
√

Ohsumed data
√

The semantic graph based representation was first proposed in Jiang et al. [2010a].

It serves to capture a range of document aspects: (i) word stem, (ii) word Part of

Speech (POS), (iii) word order, (iv) word hypernyms, (v) sentence structures, (vi)

sentence division, and (vii) sentence order. An example is given in Figure 3.4 using the

first six words in a well known English sentence “The quick brown fox jumped over the

lazy dog”. With reference to the figure, and according to Jiang et al. [2010a], there are

four different types of vertexes in this graph representation:

(1) Structural : Vertexes that represent sentences (S) and their component structures

of noun (NP), verb (VP) and prepositional (PP) phrases. (Triangles.)

(2) Part Of Speech (POS): Vertexes that represent the Part Of Speech (POS) tags of

words; for example, Determiner (DT), Adjective (JJ) and Noun (NN). (Circles.)

(3) Token: Vertexes that represent the actual word tokens in the text. (Rectangles.)

(4) Semantic: Vertexes that represent additional information about the word such as

its linguistic stem and other broader concepts. (Ovals.)

Each vertex also has a unique identifier and a label. There are then five different types

of edges:

4http://www.ncbi.nlm.nih.gov/sites/entrez
5http://www.imdb.com
6http://www.amazon.com
7http://ir.ohsu.edu/ohsumed/ohsumed.html

77

(1) hasChild : Edges which record the structure of the text such as a sentence having

a noun phrase and a verb phrase or a noun phrase containing an adjective.

(2) isToken: Edges which link the part of speech of a token to the token itself.

(3) next : Edges which record the order of the words and sentences in the text.

(4) stem: Edges which link to the linguistic stem of the word.

(5) hyp: Edges which link to a broader concept.

With respect to the example given in Figure 3.4 the vertexes are connected by “next”

edges. Employing the above graph representation means that each sentence, in each

document, is encoded and linked together to form one graph per document.

Figure 3.4: An example of semantic graph based representation

Using the above, a set of documents were extracted from the Medline collection

according to their Medical Subject Heading (MeSH) fields so that a two class (“poly-

merase chain reaction” and “magnetic resonance imaging”) data set was produced. Ev-

ery document was divided into sentences using a regular expression based tokenizer and

then each sentence was POS tagged, using Tsuruoka and Tsujii’s “geniatagger” [Tsu-

ruoka and Tsujii, 2005], producing a sequence of “word/POS” tokens plus the lemma

(stemmed form) of each word. This tagged output was then fed into a structural parser

which produces a tree with noun, verb and prepositional phrases. The nouns and verbs

were then “looked up” in the WordNet thesaurus8 and up to five broader terms added

into the tree to form a better text representation and consequently classification accu-

racy. Every vertex in the tree was also weighted using domain knowledge: the structural

vertexes were assigned a static low weight of 1, the POS vertexes were assigned a static

8http://wordnet.princeton.edu/

78

weight of 10, token vertexes were weighted according to their frequency in the data set

(using a TF · IDF method), stems were assigned a weighting of half the value of the

token and hypernyms a quarter value of the token. The characteristics of the resulting

tree data set are presented in Table 3.7.

Table 3.7: Properties of tree represented Medline documents

RT3

Trees 200
Max # edges 3002
Average # edges 1141
Max # vertexes 3003
Average # vertexes 1142
Vertex labels 10069
Edge labels 6

3.2.4 RG1 - Chemical compound analysis scenario

The second groups of real application data sets (RG1) were drawn from the domain

of chemical compound analysis. In this scenario two collections of chemical compound

data, available from the Developmental Therapeutics Program (DTP) at the National

Cancer Institute9, were used:

• CH1 - AIDS Antiviral Screening Data: This data set consisted of 42867

chemical compounds screened for anti-HIV activity10. Full details can be found

in Weislow et al. [1989]. The compounds are classified into three classes. Among

them, 41179 belong to CI (Confirmed Inactive), 1081 belong to CM (Confirmed

Moderately active) and 422 belong to CA (Confirmed Active). It should be noted

here that this data set has, and continues to be, widely used for testing a variety

of frequent subgraph mining algorithms [Borgelt and Berthold, 2002, Yan and

Han, 2003, Nijssen and Kok, 2004, Deshpande et al., 2005, Fatta and Berthold,

2005].

• CH2 - Human Tumour Cell Line Screen Data: This data set comprises

42247 chemical compounds screened for evidence for inhibiting the development

of human tumour cells11. The data set contains no class labels and thus can not

be used for supervised learning purposes (but can be used for frequent subgraph

mining).

Both the CH1 and the CH2 data sets are stored in MDL SD format12. Therefore,

a MDL SD parser was written by the author to construct data sets featuring one

9http://dtp.nci.nih.gov/docs/3d_database/Structural_information/structural_data.html
10http://dtp.nci.nih.gov/docs/aids/aids_data.html
11http://dtp.nci.nih.gov/docs/cancer/cancer_data.html
12http://www.mdli.com/downloads/public/ctfile/ctfile.jsp

79

graph transaction per chemical compound; where vertexes represented atoms and edges

bonds between atoms. Each vertex included a vertex label describing the nature of the

atom type and each edge a edge label giving the bond type. The characteristics of the

extracted graph represented chemical compounds data sets are described in Table 3.8.

Table 3.8: Properties of chemical compound graph data sets

CH1 CH2

graphs 42682 42247
Max # edges 441 229
Average # edges 47 28
Max # vertexes 438 223
Average # vertexes 45 26
Vertex labels 63 67
Edge labels 3 3

3.2.5 RG2 - Mammographic images represented by ARGs

For the second group of image mining data sets the mammographic image database13

[Suckling et al., 1994] collated by the Mammographic Image Analysis Society (MIAS)

was used. The database contains 322, 1024× 1024 pixel, digital images. The database

also includes radiologists’ labels on the locations of any abnormalities that may be

present in each image. As indicated in Suckling et al. [1994], seven classes of abnormal-

ity are present: (i) CALC (Calcification), (ii) CIRC (Circumscribed masses), (iii) SPIC

(Spiculated masses), (iv) MISC (Other), (v) ARCH (Architectural distortion), (vi)

ASYM (Asymmetry), (vii) NORM (Normal). The severity of abnormality is classified

into two classes (Benign vs. Malignant).

Image

Dataset

Image Interest

Points Detector

Image Interest

Points Descriptor

IM

1

, L

x1,

L

y1

,, DesV1

IM

2

, L

x2

, L

y2

,, DesV2

IM

n

, L

xn

, L

yn

,, DesVn

K-means clustering +

Graph model

Graph

Represented

Images

Figure 3.5: The procedure for building image interest points based graphs.

The general process of construction of these images into graphs is illustrated in

Figure 3.5. Firstly, an image interest points detector [Tuytelaars and Mikolajczyk,

2008] is applied to the images and a set of image interest points computed using an

image interest points descriptor such as SIFT [Lowe, 2004]. An example of the image

interest points identified by a Harris-Affine detector [Mikolajczyk and Schmid, 2002]

on one mammographic image is shown in Figure 3.6. Secondly, after obtaining the

13http://peipa.essex.ac.uk/info/mias.html

80

interest points, a K-means clustering is applied to these points to identify K clusters,

and consequently each interest point is encoded using the index of the cluster where

it belong. Thus, each cluster can be considered as a visual word representing a unique

image feature shared by the interest points in that cluster. Thus the clustering is a

process for building a vocabulary of visual words such that the number of clusters K

determines the size of the vocabulary. Generally, K varies from hundreds to over tens of

thousands. Finally, a feature graph for each image is constructed using these K visual

words. For each graph represented image, all the image interest points belonging to

one of K clusters are considered as one vertex, a link between two vertexes is included

if the similarity between two clusters (i.e. visual words) is over some threshold. In

Figure 3.5 IM1, · · · , IMn represent image interest points generated by the interest

points descriptor, (Lx1, Ly1), · · · , (Lxn, Lyn) represent the row and column locations

of image points, and DesV 1, · · · , DesV n represent the descriptor vectors for image

points.

(a) Raw mammographic image (b) Mammographic image with in-
terest points

Figure 3.6: An example of interest points identified by a Harris-Affine detector. The
yellow points on (b) denote the rich information obtained by the detector on (a).

The similarity between two cluster V1 and V2 is defined by the average similarity

between their respective interest points:

Sim(V1, V2) =
1

|V1| × |V2|
∑
ip1∈V1

∑
ip2∈V2

similarity(ip1, ip2) (3.1)

where ip1 and ip2 denote the image interest points which belong to their respective

clusters, and the similarity between two interest points is measured by a correlation

(such as Pearson’s Correlation) between their respective descriptor vectors.

In this thesis two vocabulary sizes for visual words were used: 80 and 100; resulting

in two graph represented mammographic image data sets. The characteristics of these

data sets are presented in Table 3.9.

81

Table 3.9: Properties of graph represented mammographic images

MAM-V80 MAM-V100

Vocabulary size 80 100
Graphs 322 322
Max # edges 2481 3894
Average # edges 765 1230
Max # vertexes 80 100
Average # vertexes 78 96
Vertex labels 80 100
Edge labels 1 1

3.2.6 RG3 - Photographic images represented by ARGs

The RG3 group of data sets was generated from the Caltech 101 image collection14

created by Fei-Fei et al. [2004]. It comprised 170 real-world object images equally

divided into two classes, ‘Bonsai’ and ‘Sunflower’ (85 images per class). An example of

two images and their identified interest points is shown in Figure 3.7. Using the same

procedure as that described in Figure 3.5, these images were represented as feature

graphs. By varying the size of the vocabulary of visual words (500 and 1000), a sequence

of two graph sets were constructed. The characteristics of these graph sets are presented

in Table 3.10.

Table 3.10: Properties of RG3 data using different vocabularies

BS-V500 BS-V1000

Vocabulary size 500 1000
Graphs 170 170
Max # edges 1550 1370
Average # edges 443 370
Max # vertexes 218 217
Average # vertexes 107 86
Vertex labels 499 991
Edge labels 1 1

3.2.7 RG4 - Text mining founded on term occurrence

Inspired by the “Bag-of-Words” (BoW) representation [Salton et al., 1975], frequently

used in text mining and information retrieval, the term occurrences-based graph rep-

resentation captured both term occurrences and term order in texts. The basic idea

of the graph representation is that, using the BoW to represent keywords (i.e. terms)

identified in the document collection, if two terms co-occur within the same window

(i.e. sentence, paragraph) then there is a relation (edge) between them. The process

for generating graphs from documents, in this manner, is depicted in Figure 3.8. As

14http://www.vision.caltech.edu/Image_Datasets/Caltech101/

82

(a) Raw ‘Bonsai’ im-
age

(b) ‘Bonsai’ im-
age with identified
interest points

(c) Raw ‘Sunflower’
image

(d) ‘Sunflower’ image
with identified interest
points

Figure 3.7: A second example of images and their interest points. The raw images
belong to two different classes: ‘Bonsai’ and ‘Sunflower’. Interests points, identified by
a Harris-Affine detector, are shown in (b) and (d) with yellow points.

can be seen from the figure: each graph represents a document; the vertexes represent

terms weighted by the term frequency (the number of times the term occurs in the

document); and the edges indicate relationships between terms, when they occur to-

gether within a sentence, weighted by the strength of the relation (calculated using, for

example, cosine similarity). In the figure the set {Doc-1, Doc-2, · · · , Doc-n} denotes a

set of documents. The labels attached to the ‘Doc-1’ graph vertexes, {f1, f2, · · · , f6}
denote the keywords (terms) found in ‘Doc-1’; and (w1, w2, · · · , w6) denote the weights

associated with these terms. The weightings were calculated using the cosine similarity

function. The ‘Doc-1’ graph in Figure 3.8 records the semantics of a document using

an undirected graph. In some cases, where the order of the sequence of words may be

important, a similar representation using a directed graph is also possible. The cosine

similarity measure between two terms f1 and f2, employed in this thesis is given in

Equation 3.2.

cosine(f1, f2) =
|DS(f1) ∩DS(f2)|√
sup(f1)× sup(f2)

(3.2)

where DS(fi) denotes the set of documents where term fi appears and sup(fi) the

83

Documents

"Bag of Words"

Keywords

Sentence Chunker

Sentences

Vertices

Relations

Doc-n

Doc-2

f1

f2

f3 f4

f5

f6

w1

w2

w3

w4

w5

w6

w7

Doc-1

...

Figure 3.8: Procedure for representing documents as graphs.

number of times term fi appears in the data set.

According to Jin and Srihari [2007], the strength of the relation between two terms

(f1 and f2), w(f1, f2), can also be calculated as:

w(fi, fj) = log

(
1 +

2 · occ(fi, fj)
occ(fi) + occ(fj)

)
(3.3)

where occ(fi) denotes the number of times term fi appears in the document, and

occ(fi, fj) denotes the number of times term fi and fj co-occur within the window (e.g.

sentence, paragraph).

Three different text collections15 were selected to construct three term occurrences

based graph data sets. The first collection [Ifrim et al., 2008] consisted of a set of

IMDB movie plot descriptions. Each plot description comprised one or two paragraphs.

The data set contained 7438 documents classified into two equal classes: Crime and

Drama. The second collection comprised a selection of book reviews collated from the

Amazon on-line shopping web site. This data set [Ifrim and Weikum, 2006] contained

4305 book reviews divided into two classes: Biology and Mathematics. The third

collection comprised a subset of the Ohsumed collection, and consisted of a set of

medical abstracts organized into Medical Subject Heading (MeSH) categories. This

dataset contained 3295 documents classified into two classes: Musculoskeletal Diseases

and Skin and Connective Tissue Diseases. The characteristics of the term occurrence

based graph data sets built from these document collections are presented in Table

3.11.

3.2.8 RG5 - Social network mining scenario

Social network mining is a popular application domain for graph mining. The social

network used with respect to the evaluation described in this thesis was extracted from

15Available at http://www.birc.dk/~ifrim/

84

Table 3.11: Properties of graph data sets defined using the term occurrences based
representation

IMDB Amazon Ohsumed

Graphs 7438 4305 3295
Max # edges 493 2048 1080
Average # edges 32 129 141
Max # vertexes 449 225 172
Average # vertexes 34 64 55
Vertex labels 7947 6954 5454
Edge labels 6 6 6
Directed? Yes Yes Yes

the Cattle Tracking System (CTS) database in operation in Great Britain (GB). The

CTS database is maintained by the Department for the Environment, Food and Ru-

ral Affairs (DEFRA) as part of the Rapid Analysis and Detection of Animal-Related

Risks (RADAR) initiative16. This database records all cattle movements in GB, each

record describes the movement of a single animal, identified by a unique ID number,

between two holding locations (e.g. agriculture holdings, markets, slaughter houses).

Each record also includes information such as sender and receiver location and type, and

animal information such as gender and breed. A social network was extracted from this

database such that each vertex represented a geographical location and each edge the

number of animals moved between locations (the edges are directed according to the di-

rection of the cattle movement). Edges are annotated with a label indicating the type of

movement (e.g. farmToFarm, farmToMarket, etc), and a weight indicating the number

of animals moved. By utilizing the time stamp associated with movements, temporal

sequences of networks were extracted describing what was conceived of as a longitu-

dinal social network. The network comprised a sequence of graphs {G1, G2, · · · , GT },
such that Gt is the graph corresponding to the social network at time t ∈ [1, T]. The

complete set of entities for the network is denoted by V =
⋃T
t=1 V (Gt) where each

entity v ∈ V is uniquely labelled, and each v can appear only once at each time step.

The longitudinal social network referenced in this thesis was collated using CTS

data from 1 January 2005 to 31 December 2006. The CTS data was divided into 7-day

“episodes” due to a 6-day movement restriction [Robinson and Christley, 2006] that

applies to farms in GB. Figure 3.9 illustrates the process of constructing graphs from

the CTS database. Firstly the selected subset of the CTS database was divided into

n sub-tables according to time stamp. Each sub-table consisted of a set of records

(r1,r2,· · · ,rn), and each record contained a set of attributes (ai1, ai2, · · ·). Secondly,

for each sub-table, a corresponding graph describing farms and the movement between

farms was constructed. Each graph included directed edges linking pairs of vertexes

16http://www.defra.gov.uk/foodfarm/farmanimal/diseases/vetsurveillance/radar

85

CTS Database

Segmentation a Graph Parser

Gn

G2

...

f1

f2

f3

f4

f5

f6

f7

f8
f9

n1
n2

n3

n4
n5

n6

n7

n8
n9

n10

G1

Sub-Table n

Sub-Table 2

...

r1 a11 a12 a13 a14 a15
r2 a21 a22 a23 a24 a25
r3 a31 a32 a33 a34 a35
r4 a41 a42 a43 a44 a45
r5 a51 a52 a53 a54 a55

...

...

rn an1 an2 an3 an4 an5

Sub-Table 1

Figure 3.9: The process of building graphs from the CTS database

(indicating movement between the two vertex represented locations). In some cases

several edges might connect a single pair of vertexes where (say) different breeds had

been moved between location. The graphs also included self-cycles. In Figure 3.9 the

symbols “f1, f2, · · · , f10” indicate holding areas (such as farms) and the symbols “n1,

n2, · · · , n10” indicate the number of cattle movements. According to the research

work described in Jiang et al. [2010b], three longitudinal social network data sets were

extracted from the CTS database covering three different areas: (i) Lancashire17, (ii)

Scotland, (iii) Great Britain (GB). Note that the GB data set was significantly larger

than the Scotland data set, which in turn was larger than the Lancashire data set.

Some properties of these graphs are given in Table 3.12.

Table 3.12: Properties of graphs generated using the CTS database

Lancashire Scotland GB

graphs 105 105 105
Max # edges 377 1450 9630
Average # edges 261 890 6754
Max # nodes 393 1448 7360
Average # nodes 289 933 9957
Node label count 2148 8619 62626
Edge label count 10 17 29
Self-cycle? yes yes yes
Multiple-edges? yes yes yes

3.3 Summary of Data

From the foregoing it can be seen that a variety of tree and graph representations

feature in the data sets used to evaluate the algorithms proposed in this thesis. Some

of the representations are tree representation, some of them are undirected graphs and

17 Lancashire is a county in the North West of England

86

Table 3.13: Summary of the graphic data employed in this thesis

Data Type Trees Undirected Graphs Directed Graphs Weighted Class Labels

ST1
√

ST2
√ √

RT1:CSLOGS-ALL
√

RT1:CSLOGS-1 & 2
√ √

RT2
√ √

RT3
√ √ √

RG1:CH1
√ √

RG1:CH2
√

RG2
√ √ √

RG3
√ √ √

RG4
√ √ √

RG5
√ √ √

some are directed graphs; some also have predefined weightings. Table 3.13 gives a

summary of the data referenced in the the thesis. In the table the ‘Data Type’ column

indicates different types of data, the following three columns indicate the nature of the

representation, the second to last column indicates whether the data includes predefined

weights, and the last column indicates whether the data includes predefined class labels.

Two graph file formats were used: (i) GraphML, and (ii) simple LineGraph. The

first format was the preferred format used in the author’s research group and the

second is widely used by researchers in the chemical informatics domain. For ease of

comparison of different algorithms, a special simple LineGraph parser was created, by

the author, to handle graphs using the simple LineGraph format. A description of these

two graph file formats is provided in Appendix A.1 and A.2 respectively.

87

88

Chapter 4

Weighting Functions for Vertexes
and Edges in Graphs

In this chapter, a sequence of approaches to determining and applying weights to either

vertexes or edges is discussed. Practically, it is not common to assign weights to both

vertexes and edges. Therefore, approaches to determining weights to both vertexes and

edges are ignored in this thesis. The way in which these weighting functions may be

employed to achieve the desired weighted frequent subgraph mining (i.e. how they can

be incorporated into weighting schemes is described in Chapters 5 and 8). According

to the nature of the graph data to be mined, vertex and edge weightings can be roughly

divided into two categories:

(i) Structural weighting functions: weighting functions that use information de-

rived from the structure of the input graph set to determine individual vertex or

edge weights.

(ii) Content weighting functions: weighting functions that derive weights using

domain knowledge supplied with the input graph set. This domain knowledge

may be in the form of class labels or user-supplied (pre-defined) vertex or edge

weights.

These two types of functions are discussed in Sections 4.1 and 4.2 respectively, and

a summary is presented in Section 4.3. In many cases it is not possible to obtain

appropriate domain knowledge to facilitate the mining task, this is thus the motivation

for the idea of structural weighting. Experiments (reported in Chapter 6) indicate

that where domain knowledge is available better results are produced using content

weighting than structural weighting. Thus, structural weighting is only applicable when

domain knowledge is not available. This is also why the combination of structural and

content weighting functions are not considered in this thesis.

89

4.1 Structural Weighting Function

Structural weighting functions derive weights for vertexes or edges purely from the

“structure” of the input graph set. More specifically the number of times of vertexes

or edges that occur in the graph set is utilized to compute weights. In this section, a

number of structural weighting methods are considered; some can be applied to both

vertexes and edges; others can only be applied to edges. Five methods for calculating

structural weightings are introduced:

(1) SW1 - Normalized occurrences based method

(2) SW2 - Phi correlation coefficient based method

(3) SW3 - Normalized mutual information based method

(4) SW4 - Mutual information based method

(5) SW5 - Point-wise mutual information based method

Each one of these methods will be discussed in the following sub-sections. Note that

the first is applicable to the calculation of both vertex and edge weights, the last is

applicable to the calculation of vertex weights, and the remainder can only be used to

determine edge weightings.

4.1.1 SW1 - Normalized occurrences based method

The normalized occurrences based method, introduced by the author in Jiang and

Coenen [2008], can be used to assign weights to either vertexes or edges. In this sub-

section, the method is illustrated in the context of assigning weights to edges, a very

similar process can be followed to assigning weights to vertexes.

Definition 4.1.1. Let GD = {G1, G2, · · · , Gn} be a graph database, and ei be an edge

of a subgraph g, then the weight of ei with regard to GD, is defined as:

wGD(ei) =
occ(ei)∑

1≤i≤n size(Gi)
. (4.1)

where occ(ei) denotes the number of times of ei occurs in GD, and size(Gi) denotes

the size of Gi in terms of the number of edges in Gi.

Example: Considering a graph database GD = {G1, G2} as shown in Figure 4.1

(note that for ease of illustration the symbol next to each edge indicates the edge label,

vertex labels are not included). Given an edge with a label ‘a’ in the candidate subgraph

g (in Figure 4.1), occ(a) = 3, and
∑

1≤i≤2 size(Gi) = 10. Thus, wGD(a) = 3/10 = 0.3.

Similarly, for an edge with a label ‘e’ in g, wGD(e) = 1/10 = 0.1.

90

a ce
fd

a

a es
h

abk

(g) (G1) (G2)

Figure 4.1: Normalized occurrences based method example

4.1.2 SW2 - Phi correlation coefficient based method

The phi correlation coefficient based method described by the author in Jiang et al.

[2009] is directed at generating edge weightings only. The phi correlation coefficient is

a measure of the strength of association between two binary variables [Reynolds, 1977].

In fact, it is a simplified form of Pearson’s correlation coefficient for binary variables.

As the name suggests the SW2 method adopts phi correlation coefficient (PCC) to

determine the weights that may be allocated to edges. If two vertexes forming a 1-

edge subgraph are considered as two variables, then PCC can be used to compute the

correlation between them, producing a value between −1 and +1 inclusive. A value

of 1 implies a perfect positive relationship, a value of −1 implies a perfect negative

relationship, and the closer the phi coefficient is to either 1 or −1, the stronger the

relationship between the variables. If the variables are independent, the phi coefficient

is 0. Thus, PCC, which is in spirit similar to Xiong et al. [2004], can be expressed as:

Definition 4.1.2. Given a graph database GD = {G1, G2, · · · , Gn}, and one edge ei

connecting two vertexes vA and vB that belong to a subgraph g, let the number of graph

transactions where vA and vB occur equal occ(vA) and occ(vB) respectively, and the

number of graph transactions where vA and vB co-occur equal occ(vA, vB). Then, the

weight of ei, with regard to GD, can be defined as

wGD(ei) = φ(vA, vB) =
sup(vA, vB)− sup(vA) · sup(vB)√

sup(vA) · sup(vB) · (1− sup(vA)) · (1− sup(vB))
. (4.2)

Where sup(vA, vB) = occ(vA,vB)
|GD| , sup(vA) = occ(vA)

|GD| , and sup(vB) = occ(vB)
|GD| . Note if

occ(vA) = 0 or occ(vA) = |GD| (occ(vB) = 0 or occ(vB) = |GD|) then wGD(ei) = 0.

In addition, if a negative value of (4.2) is encountered, an absolute value of it is used

instead, because a negative coefficient is treated as important as a positive coefficient

for the SW2 method.

Inspired by Xiong et al. [2004], if occ(vA) ≥ occ(vB), the upper bound of the wGD(ei)

is:

ubound(wGD(ei)) =

√
occ(vB)

occ(vA)
∗

√
|GD| − occ(vA)

|GD| − occ(vB)
. (4.3)

91

As can be seen in (4.3), ubound(wGD(ei)) only relies on the value of occ(vA) and occ(vB),

since |GD| is inferred from the input. Thus, if a user requires that the weight of every

edge ei in a subgraph g has to be greater than and equal to some threshold, the upper

bound of the weight of ei can be utilized to filter those edges that do not satisfy the

threshold without recourse to computing the value of occ(vA, vB).

a

cea

d

d

s

s

a

c

b

t

b

c

b

c

m

k(g)

(G3)

(G2)

(G1)

e

Figure 4.2: PCC based method example

Example: Considering the graph database, GD = {G1, G2, G3} as shown in Figure

4.2 (again for ease of illustration the symbol next to each vertex indicates the vertex

label, edge labels are not included). Given an edge (a,b) in the candidate subgraph

g (in Figure 4.2), occ(a, b) = 1, occ(a) = 2, and occ(b) = 2. Thus, wGD(a, b) =
1/3−2/3×2/3√

2/3×2/3×1/3×1/3
= −0.5. Similarly, for an edge (b,d), wGD(b, d) = 0−2/3×1/3√

2/3×2/3×1/3×1/3
=

−1.

4.1.3 SW3 - Normalized mutual information based method

The normalized mutual information (NMI) metric [Ke et al., 2008] was designed to cap-

ture the dependence among two connecting vertexes. According to Cover and Thomas

[1991], the mutual information between two discrete random variables X and Y is

defined as:

MI(X,Y) =
∑
x∈X

∑
y∈Y

p(x, y) log2

(
p(x, y)

p(x) · p(y)

)
. (4.4)

Note that theMI(X,Y) ≥ 0 (MI(X,Y) == 0, if and only ifX and Y are independent).

Definition 4.1.3. Given a graph data set GD = {G1, G2, · · · , Gn} and a subgraph g

with edges E(g) = {e1, e2, · · · , ek}, for each ei ∈ g, let two vertexes connecting ei be v1

and v2; let A = {v1, v̄1} where v1 and v̄1 denote that v1 occurs and does not occur in

GD respectively, and let B = {v2, v̄2} where v2 and v̄2 denote that v2 occurs and does

not occur in GD respectively. Thus, according to (4.4), the mutual information between

A and B, denoted as MI(A,B), is defined as:

92

MI(A,B) =
∑

a∈A
∑

b∈B p(a, b) log2
p(a,b)
p(a)·p(b)

= p(v1 ∧ v2)× log2
p(v1∧v2)

p(v1)×p(v2) + p(v1 ∧ v̄2)× log2
p(v1∧v̄2)

p(v1)×p(v̄2)+

p(v̄1 ∧ v2)× log2
p(v̄1∧v2)

p(v̄1)×p(v2) + p(v̄1 ∧ v̄2)× log2
p(v̄1∧v̄2)

p(v̄1)×p(v̄2) .

(4.5)

where p(v1 ∧ v2) denotes the probability of v1 and v2 that co-occur in GD, p(v1 ∧ v̄2)

denotes the probability of the co-occurrences of v1 and v̄2 in GD, p(v̄1 ∧ v2) denotes

the probability of the co-occurrences of v̄1 and v2 in GD, and p(v̄1 ∧ v̄2) denotes the

probability of both v1 and v2 that do not occur in GD. Inspired by the work described

in Ke et al. [2008], the weight of ei, which is computed by the NMI between A and B,

is further defined as:

wGD(ei) = NMI(A,B) =
MI(A,B)

maximum{MI(A,A),MI(B,B)}
. (4.6)

where MI(A,A) = entropy(A) = −
∑

a∈A p(a) log2 p(a) = −(p(v1) × log2 p(v1) +

p(v̄1) × log2 p(v̄1)) and MI(B,B) = entropy(B) = −
∑

b∈B p(b) log2 p(b) = −(p(v2) ×
log2 p(v2) + p(v̄2)× log2 p(v̄2)).

According to Cover and Thomas [1991], MI(A,B) features two properties:

(i) MI(A,B) ≥ 0,

(ii) MI(A,B) ≤ entropy(A) and MI(A,B) ≤ entropy(B).

Thus,

0 ≤MI(A,B) ≤ minimum{entropy(A), entropy(B)} . (4.7)

Therefore, using (4.6), the lower bound and upper bound of NMI(A,B) are:

0 ≤ NMI(A,B) ≤ minimum{entropy(A), entropy(B)}
maximum{entropy(A), entropy(B)}

. (4.8)

The upper bound of NMI(A,B) can be used to shorten the computation time

required for the calculation of NMI values, because the computation time required to

calculate the upper bound is less than that required to calculate the exact NMI value.

If the upper bound is less than some threshold, then there is no need to calculate the

actual NMI value.

e

ba e

v1

v2

v5

v6

fd

v3

h

v8

v6

d

v3a e

v1

v2 v6

v1

v2

a

v6

s

v9

t

v4

v5 v9

k

(g)

(G1) (G2) (G3)

Figure 4.3: NMI based method example

93

Example: Considering a graph data set GD = {G1, G2, G3} as shown in Figure 4.3,

where the symbol next to each edge indicates the edge label and the symbol next to each

vertex indicates the vertex label. Considering the edge ‘a’ in the candidate subgraph

g (in Figure 4.3), p(v1) = 2/3, p(v2) = 2/3, p(v̄1) = 1/3, p(v̄2) = 1/3, p(v1, v2) = 2/3,

p(v1, v̄2) = 0, p(v̄1, v2) = 0, p(v̄1, v̄2) = 1/3.

Let A = {v1, v̄1}, entropy(A) = −(2/3 × log2(2/3) + 1/3 × log2(1/3)) ≈ 0.9183.

Let B = {v2, v̄2}, entropy(B) = −(2/3 × log2(2/3) + 1/3 × log2(1/3)) ≈ 0.9183.

Thus, MI(A,B) = p(v1, v2)× log2
p(v1,v2)

p(v1)×p(v2) + p(v1, v̄2)× log2
p(v1,v̄2)

p(v1)×p(v̄2)
+ p(v̄1, v2)×

log2
p(v̄1,v2)

p(v̄1)×p(v2)
+ p(v̄1, v̄2)× log2

p(v̄1,v̄2)
p(v̄1)×p(v̄2)

= 2/3× log2
2/3

2/3×2/3 + 1/3× log2
1/3

1/3×1/3 ≈
0.9183, and NMI(A,B) = 0.9183/0.9183 = 1. Thus, the weight of edge a is wGD(a) =

1.

Similarly, for edge ‘e’ in g, let A = {v1, v̄1}, entropy(A) = −(2/3×log2(2/3)+1/3×
log2(1/3)) ≈ 0.9183; let B = {v6, v̄6}, entropy(B) = 0. Thus, MI(A,B) = p(v1, v6)×
log2

p(v1,v6)
p(v1)×p(v6) + p(v̄1, v6) × log2

p(v̄1,v6)
p(v̄1)×p(v6)

= 2/3 × log2
2/3

2/3×1 + 1/3 × log2
1/3

1/3×1 = 0,

and NMI(A,B) ≈ 0/0.9183 = 0. Thus, the weight of edge e is wGD(e) = 0.

4.1.4 SW4 - Mutual information based method

The mutual information based structural weighting method, as suggested by the name,

makes use of the mutual information [Vinh et al., 2009] between two vertexes to de-

termine the weight for the edge connecting the two vertexes. Mutual information, in

this context, quantifies the degree of dependence of any two vertexes in the subgraph.

It was suggested in Li et al. [2006], that mutual information reflects the “closeness”

(connectedness) of two vertexes; vertexes with high mutual information tend to form

a strong community. Thus, if a subgraph consists of vertexes sharing high mutual in-

formation, then it can be considered to be an important subgraph. Inspired by the

work of Li et al. [2006], the mutual information between two vertexes is employed to

compute the weight for the edge connecting these two vertexes.

Definition 4.1.4. Given a graph database GD = {G1, G2, · · · , Gn}, and an edge ei

connecting two vertexes vA and vB that belong to a subgraph g, let the number of times

of ei that occurs in GD equal occ(ei) and the total number of edges in GD equal L; let the

degrees of vA and vB equal deg(vA) and deg(vB) respectively and D =
∑

vj∈g deg(vj).

Then, the weight of ei is calculated as:

wGD(ei) = p(ei)× log2

(
p(ei)

p(vA)× p(vB)

)
. (4.9)

where, p(ei) = occ(ei)/L, p(vA) = deg(vA)/D, and p(vB) = deg(vB)/D.

Example: Considering the graph database GD = {G1, G2} shown in Figure 4.4 (as

previously, for ease of illustration, the symbol next to each edge indicates the edge label,

vertex labels are not included). Considering the edge ‘a’ in the candidate subgraph g

94

a ce
fd

a
a

v1

v2

v3

d
b

k

(g) (G1) (G2)

Figure 4.4: Mutual information based method example

(in Figure 4.4), occ(a) = 2, deg(v1) = 1, deg(v2) = 3, D = 6, and L = 7. Thus, the

weight of edge a is mGD(a) = 2/7× log2(2/7
1/6×3/6) ≈ 0.508. Similarly, for an edge with

a label ‘d’, mGD(d) = 1/7× log2(1/7
3/6×1/6) ≈ 0.111.

4.1.5 SW5 - Point-wise mutual information based method

The point-wise mutual information based method, first introduced in Jiang et al.

[2010b], utilizes point-wise mutual information (PMI) [Church and Hanks, 1990] to

determine the weight of a vertex.

Definition 4.1.5. Given a graph database GD = {G1, G2, · · · , Gn}, for any single

vertex vi in a subgraph g, let the degree of vi equal deg(vi), the set of edges incident to

vi equal E(vi). Then for each ek ∈ E(vi), let the two vertexes connected by ek be vA

and vB, the number of graph transactions where vA occurs equal occ(vA), the number of

graph transactions where vB occurs equal occ(vB), and the number of graph transactions

where ek occurs equal occ(ek), then the weight of vi is defined as:

wGD(vi) =

{∑
ek∈E(vi)

PMI(ek)

deg(vi)−1 , deg(vi) 6= 1 or 0;

0, otherwise .
(4.10)

Where PMI(ek) denotes the point-wise mutual information between vA and vB, which

is defined as:

PMI(ek) =

{
log2

(
p(ek)

p(vA)·p(vB)

)
, p(vA) 6= 0 or p(vB) 6= 0 or p(ek) 6= 0;

0, otherwise .
(4.11)

where p(ek) = occ(ek)/|GD|, p(vA) = occ(vA)/|GD|, and p(vB) = occ(vB)/|GD|.

Example: Considering a graph database GD = {G1, G2, G3} as shown in Figure 4.5,

where the symbol next to each edge indicates the edge label and the symbol next to each

vertex indicates the vertex label. Given the vertex labelled ‘v1’ in the candidate sub-

graph g (in Figure 4.5), the two edges ‘a’ and ‘e’ are incident to ‘v1’, p(a) = 2/3, p(e) =

3/3, p(v1) = 2/3, p(v2) = 2/3, and p(v6) = 2/3. Thus, PMI(a) = log2(2/3
(2/3)×(2/3)) =

log2(3/2) ≈ 0.585, PMI(e) = log2(1
(2/3)×(2/3)) = log2(9/4) ≈ 1.1699, and the weight to

be attached to v1 is wGD(v1) = PMI(a) + PMI(e) ≈ 1.7549.

95

a es

ba e

v1

v2

v5

v6
fd

e

v1

v2 v3

h

v8 v9

v6

d

v3

v7

v4

v5
v11

a e

v1

v2 v6 k

(g)

(G1) (G2) (G3)

Figure 4.5: PMI based method example

4.2 Content Weighting Function

As noted in the introduction to this chapter content weighting functions use domain

knowledge concerning the nature of the input graph data set. The nature of the domain

knowledge can be in two forms:

User defined weights vertex or edge weights that have, by some means, been pre-

determined, for example by a domain expert or an end user.

Classes predefined class labels that have been attached to each graph in the input

graph data set.

Methods derived from the above can be categorized approximately into the following:

(1) CW1 - User predefined weights

(2) CW2 - Calculation of edge weights using χ2 values

(3) CW3 - Calculation of edge weights using NMI values

Each one of these will be discussed in the following three sub-sections. Note that the

first is used in conjunction with user defined weights, while the last two are used in

conjunction with predefined class labels.

4.2.1 CW1 - User predefined weights

User predefined (supplied) weights can be attached directly to either vertexes (denoted

by CW1-N) or edges (denoted by CW1-E). Thus, any weighting schemes to calcu-

late weights for subgraphs can employ these weights directly. For example, given a

subgraph g with vertexes{v1, v2, · · · , vk}, if the corresponding weights for vertexes are

{w1, w2, · · · , wk}, then one common way of computing a weight for g is
∑

vi∈g wi [Char-

trand and Zhang, 2004].

4.2.2 Calculation of edge weights using class labels

In real applications, user predefined weights for vertexes or edges in the graph are not

always available. Under this situation, if class labels for graphs in the input graph

96

data set are provided, this knowledge can be used to determine the weights for edges

or vertexes. There are a number of feature selection techniques that can be deployed

for this purpose, examples including information gain, mutual information, and χ2. In

this thesis, two methods were adopted to assign weights to edges according to their

association with given class labels: (i) calculation of edge weights using χ2 values and

(ii) calculation of edge weights using normalized mutual information values. Each will

be examined in Sub-sections 4.2.2.1 and 4.2.2.2 below. Methods to assign weights to

vertexes can be derived in a similar manner.

4.2.2.1 CW2 - Calculation of edge weights using χ2 values

Using χ2 values to compute edge weights was initially described by the author in Jiang

et al. [2009]. Inspired by the work described in Yang and Pedersen [1997] that used

the χ2 statistic measure as a feature selection technique to facilitate text categorization

in the context of frequent pattern based classification, the CW2 method adopts the

pairwise χ2 measure to capture the goodness of the edge in a graph with respect to the

class label with which that graph is associated.

Table 4.1: A two-way contingency table of ei and cj

cj c̄j
∑
row

ei a b (a+ b)
ēi c d (c+ d)∑
column n1 = (a+ c) n2 = (b+ d) N = n1 + n2

Given a graph database GD = {G1, G2, · · · , Gn}, a set of class labels, C =
⋃k
j=1 cj ,

such that each graph Gi is associated with a single class label, and an edge ei of a

subgraph g. Then, using a 2 × 2 two-way contingency table of ei and cj as shown in

Table 4.1, let a denote the number of times ei and cj co-occur and b the number of

times ei occurs without cj ; let c denote the number of times cj occurs without ei, and

d the number of times neither ei nor cj occurs. Thus, the edge “goodness” measure of

ei with regard to cj is defined to be the normalized deviation of observation (Oij) from

expection (Eij); namely,

χ2(ei, cj) =
∑

i∈{0,1},j∈{0,1}

(Oij − Eij)2

Eij
. (4.12)

According to Sheskin [1997], the χ2 test for 2× 2 table is equivalent to calculating

the Z test for two independent proportions sampled from the same population. Thus,

the Z test for comparing two proportions is given by

Z =
p1 − p2√

p(1− p)
(

1
n1

+ 1
n2

) =
√
χ2 . (4.13)

97

If let p1 = a/(a+ c), p2 = b/(b+ d), and p = (a+ b)/N , then the short-cut formula for

χ2(ei, cj) is given by:

χ2(ei, cj) = Z2 =

 a
a+c −

b
b+d√

a+b
N

c+d
N

(
1
a+c + 1

b+d

)


2

=
N(ad− bc)2

(a+ b)(a+ c)(b+ d)(c+ d)
(4.14)

For each class cj , the χ2 statistic between ei and cj is computed to measure the strength

of ei with respect to cj , and then the average χ2 value for ei calculated. This average

value is considered to be the weight of ei. Formally:

wGD(ei) = χ2
avg(ei) =

k∑
j=1

pr(cj)χ
2(ei, cj) . (4.15)

where pr(cj) denotes the probability of cj ’s occurrences in GD.

a s

ba e

d

d
a e

e

hm

k k

(g)

(G1) (G2) (G3)

Figure 4.6: χ2 based method example

Example: Considering the graph database GD = {G1, G2, G3} as shown in Figure

4.6, (again for ease of illustration, the symbol next to each edge indicates the edge label

and vertex labels are not included.) G1 and G2 belong to class ‘A’ and G3 belongs

to class ‘B’. Considering the edge ‘a’ in the candidate subgraph g (in Figure 4.6), the

two-way contingency tables for ‘a’ and class labels are shown in Table 4.2.

Table 4.2: Two-way contingency tables for ‘a’ and class labels

(a) ‘a’ and ‘A’

A Ā
∑

a 1 1 2
ā 1 0 1∑

2 1

(b) ‘a’ and ‘B’

B B̄
∑

a 1 1 2
ā 0 1 1∑

1 2

χ2(a,A) = 3×(−1)2

2×1×2×1 = 3/4, χ2(a,B) = 3×1
2×1×2×1 = 3/4, and pr(A) = 2/3, pr(B) =

1/3. Thus, the weighting for edge a is given by wGD(a) = 2/3× (3/4) + 1/3× (3/4) =

3/4 = 0.75.

Similarly, considering the edge ‘e’ in g, the contingency tables for ‘e’ and class labels

are shown in Table 4.3.

98

Table 4.3: Two-way contingency tables for ‘e’ and class labels

(a) ‘e’ and ‘A’

A Ā
∑

e 2 0 2
ē 0 1 1∑

2 1

(b) ‘e’ and ‘B’

B B̄
∑

e 0 2 2
ē 1 0 1∑

1 2

χ2(e,A) = 3×4
2×1×2×1 = 3, χ2(e,B) = 3×(−2)2

1×2×2×1 = 3, and pr(A) = 2/3, pr(B) = 1/3.

Thus, wGD(e) = 2/3× 3 + 1/3× 3 = 3.

4.2.2.2 CW3 - Calculation of edge weights using NMI values

Inspired by Xu et al. [2005], the CW3 method adopts the NMI value to quantify the

global weight of the edge. This method is very similar to the SW3 method introduced

in Sub-section 4.1.3. SW3 employs the NMI value that exists between two vertexes

to calculate the edge weight, while CW3 employs the NMI value between an edge and

class labels to calculate the edge weight.

Definition 4.2.1. Given a graph database GD = {G1, G2, · · · , Gn}, a set of class labels

C =
⋃k
j=1 cj, such that each graph Gi is associated with a single class label, and an

edge ei of a subgraph g, let S = {ei, ēi} where ei and ēi denote that ei occurs and does

not occur in GD respectively. Thus, according to (4.4), the mutual information between

S and C is defined as:

MI(S,C) =
∑
s∈S

∑
cj∈C

p(s, cj) log2

(
p(s, cj)

p(s) · p(cj)

)
. (4.16)

This can be further expanded as:

MI(S,C) =
k∑
j=1

p(ei ∧ cj) log2

(
p(ei ∧ cj)

p(ei)× p(cj)

)
+

k∑
j=1

p(ēi ∧ cj) log2

(
p(ēi ∧ cj)

p(ēi)× p(cj)

)
,

(4.17)

where p(ei ∧ cj) and p(ēi ∧ cj) denote respectively the probability of ei and cj co-occur

in GD and the probability of the co-occurrences of ēi and cj in GD; p(ei) and p(cj)

denote respectively the probability of ei’s occurrences in GD and the probability of

cj ’s occurrences in GD. If p(ei ∧ cj), or p(ēi ∧ cj), or p(ei), or p(cj) equals zero, the

corresponding log2(·) = 0. Thus, the weight of ei is further defined as the NMI between

S and C; namely,

wGD(ei) = NMI(S,C) =
MI(S,C)

maximum{MI(S, S),MI(C,C)}
, (4.18)

99

whereMI(S, S) = entropy(S) = −
∑

s∈S p(s)·log2 p(s), andMI(C,C) = entropy(C) =

−
∑

c∈C p(c) · log2 p(c). According to (4.8) introduced with respect to the SW4 method

(see Sub-section 4.1.3), 0 ≤ NMI(S,C) ≤ 1. Furthermore, the upper bound of

NMI(S,C) can be used to calculate the estimated value of the edge weight.

a s

ba d
a e

e

h

e
m

dw

w

(g)

(G1) (G2) (G3)

Figure 4.7: An example of computing edge weights using NMI values

Example: Considering the graph database GD = {G1, G2, G3} as shown in Figure

4.7, where G1 and G2 belong to class ‘A’ and G3 belongs to class ‘B’.

Considering the edge ‘a’ in the candidate subgraph g, p(a,A) = 1/3, p(a,B) = 1/3;

p(ā, A) = 1/3, p(ā, B) = 0; p(a) = 2/3, p(ā) = 1/3; p(A) = 2/3, p(B) = 1/3. So,

MI({a, ā}, {A,B}) = 1/3× log2(1/3
2/3×2/3) + 1/3× log2(1/3

1/3×1/3) + 1/3× log2(1/3
1/3×2/3) +

0 ≈ 0.585, entropy({a, ā}) = −(2/3 × log2(2/3) + 1/3 × log2(1/3)) ≈ 0.9183, and

entropy({A,B}) = −(2/3 × log2(2/3) + 1/3 × log2(1/3)) ≈ 0.9183. Hence, wGD(a) =

NMI({a, ā}, {A,B}) ≈ 0.585/0.9183 ≈ 0.637.

Similarly, for edge ‘e’, p(e,A) = 2/3, p(e,B) = 0; p(ē, A) = 0, p(ē, B) = 1/3; p(e) =

2/3, p(ē) = 1/3. So MI({e, ē}, {A,B}) = 2/3 × log2(2/3
2/3×2/3) + 1/3 × log2(1/3

1/3×1/3) ≈
0.9183, entropy({e, ē}) = −(2/3 × log2(2/3) + 1/3 × log2(1/3)) ≈ 0.9183. Hence,

wGD(e) = NMI({e, ē}, {A,B}) ≈ 0.9183/0.9183 = 1.

4.3 Summary

Two categories of weighting function: (i) structural weighting and (ii) content weight-

ing, were introduced in this chapter. Five structural weighting functions were identi-

fied (labelled: SW1, SW2, SW3, SW4 and SW5); and three content based weighting

functions were identified (labelled: CW1, CW2 and CW3). The adoption of structural

weighting functions is most appropriate where no predefined weightings (or class labels)

are available. The weighting functions will be used (see Chapters 5 and 8) to determine

weightings to be attached to subgraphs generated during the desired weighted frequent

subgraph mining process, i.e. the vertex or edge weights will be employed to compute

the significance of each discovered subgraph. Five structured weighting methods were

identified. Except for the normalised occurrences based method (SW1), which can

be applied to both, vertexes or edges, and the point-wise mutual information based

method (SW5), which can applied to vertexes only, the rest of these (SW2, SW3 and

SW4) were only applicable with respect to the calculation of weightings to be attached

to graph edges. The SW3, SW4, and SW5 weighting functions were all related to using

100

a variant of mutual information measure in different context. The SW3 method re-

lied on the probability of the existence or absence of the vertexes to compute the edge

weights, and the SW4 method utilized both the edge occurrences and the degrees of the

vertexes connecting that edge to compute the edge weights. However, for SW5, both

the edge occurrences and vertex occurrences, in conjunction with the degrees of the

vertexes were used to compute the vertex weights. Among these three mutual infor-

mation associated methods, each one of them used a slightly different form of mutual

information formula, and each form of mutual information measure was employed to

quantify the closeness between two vertexes (the mutual information measures were

used directly to compute the edge weights in SW3 and SW4 while in SW5, the mutual

information measure was used as an intermediate step to compute the vertex weights).

Content weighting functions are applicable where some prior domain knowledge

(e.g. predetermined edge or vertex weightings, or graphs labelled by classes) is avail-

able. Where the weights for vertexes or edges have been predetermined, these can be

used directly to determine the significance for each discovered subgraph in the mining

process. In the case of graph sets supplied with class labels, such labels may be utilized

to determine the strength (i.e. weight) of vertexes or edges associated with the class

labels. The significance of subgraphs discovered during the mining process can then be

determined using the same methods used in the case of predefined weightings.

101

102

Chapter 5

Subgraph Weighting Schemes
That Maintain the DCP

In the previous chapter, Chapter 4, a number of different weighting functions for assign-

ing weights to vertexes or edges were proposed. These functions can be incorporated

into different weighting schemes to calculate the significance of discovered subgraphs

identified as a result of frequent subgraph mining. In this chapter, we consider weight-

ing schemes that maintain the Downward Closure Property (DCP). In the following

chapter we will consider weighting schemes that adopt alternative mechanisms to limit

the search space.

5.1 Overview

A fundamental characteristic of the support measure employed in transaction-based

frequent subgraph mining is that: the support of a subgraph g is always less than or

equal to that of any of it’s subgraphs. This characteristic is the well-known Downward

Closure Property (DCP), also referred to as anti-monotonicity: a subgraph g is frequent

if and only if all of it’s subgraphs are frequent. This property can play an important

role in reducing the number of candidate patterns generated during the mining process,

and consequently improve the mining performance significantly.

Thus, when considering weighting schemes, such as those advocated in this thesis,

it is desirable to seek to maintain the DCP. However, as noted in Vanetik et al. [2006],

it is not easy to design a subgraph weighting mechanism which maintains the DCP.

For instance, given a subgraph g with assigned weights {w1, w2, · · · , wk} for its edge

set {e1, e2, · · · , ek}, a straightforward approach to calculating the weight for g can be

defined to be wt(g) =
∑k

i=1wi [Chartrand and Zhang, 2004]. If wt(g) is less than a

user provided threshold θ, for a supergraph h of g with one more edge ek+1, its weight

wt(h) =
∑(k+1)

i=1 wi is not necessarily less than θ, thus violating the DCP.

A variety of subgraph weighting schemes that maintain the DCP are described in

this chapter. These schemes can be approximately divided into two categories. The first

103

category comprises weighting schemes that employ the weighting functions described

in the previous chapter. The second category comprises weighting schemes that adopt

alternative approaches that do not require recourse to such weighting functions.

The two categories are considered independently in Sections 5.2 and 5.3 respectively.

Three schemes have been devised that fall into the first category:

1. Average Total Weighting (ATW)

2. Affinity Weighting (AW)

3. Correlation Measures based Weighting (CMW)

and one that falls into the second category:

4. Jaccard Similarity based Weighting (JSW)

The proposed algorithms have all been implemented by incorporating them into variants

of three well known FSM algorithms, namely gSpan, FFSM and GASTON (see Sub-

section 2.6.1.2). In each case the implementations are fairly similar thus in this chapter

only the implementation with respect to gSpan are detailed. The gSpan algorithm was

selected as the “base algorithm” for all the weighting schemes described in this chapter

because: (i) it is well established, (ii) it is well documented and (iii) it is easy to be

modified.

5.2 Weighting Schemes Using Vertex or Edge Weights

In this section, the weighting schemes that use vertex or edge weights are described:

(i) Average Total Weighting (ATW), (ii) Affinity Weighting (AW), (iii) Correlation

Measures based Weighting (CMW). The ATW scheme can be applied to either vertex

weighted or edge weighted graphs, whilst the AW and CMW schemes can be applied to

edge weighted graphs only. Referring back to Chapter 4, content weighting functions

are always preferred, if both structural and content weighting functions are available.

For content weighting functions, the CW1 weighting function is suitable for use in

the ATW and AW schemes; the CW2 and CW3 weighting functions are only devised

to be used with the CMW scheme, because they formulate two correlation measures

which are required by the CMW scheme. For structural weighting functions, the SW1,

SW4, and SW5 are conceived to be used with the ATW scheme, while the AW scheme

only uses the SW1 and SW4 weighting functions because the AW scheme requires edge

weights; again the SW2 and SW3 weighting functions are only devised to be used

with the CMW scheme, because of the nature of the CMW scheme. As will become

apparent each of these weighting schemes is directed at a particular type of graph with

a particular type of weighting function (although for some types of graphs and some

104

types of weighting functions more than one of the schemes may be applicable). Each of

these three weighting schemes is discussed in detail below in Sub-sections 5.2.1, 5.2.2,

and 5.2.3 respectively.

5.2.1 Average Total Weighting (ATW) scheme

In the Average Total Weighting (ATW) scheme [Jiang and Coenen, 2008], which is

inspired by the work in Tao et al. [2003], given a graph data set GD = {G1, G2, · · · , Gn},
the weight for a subgraph g is calculated by dividing the sum of the average weights in

the graphs that contain g with the sum of the average weights across the entire graph

data set GD. This scheme can accommodate both vertex and edge weighted graphs.

In this sub-section the ATW scheme is described in terms of edge weighted graphs, the

scheme can be applied to vertex weighted graphs in a similar manner. Thus:

Definition 5.2.1. Given a graph data set GD = {G1, G2, · · · , Gn}, if Gi is edge

weighted by {w1, w2, · · · , wk} , then the average weight associated with Gi is defined

as:

Wavg(Gi) =

∑k
j=1wj

k
. (5.1)

where wj can be determined using appropriate weighting functions (such as those de-

scribed in Chapter 4). The total weight of GD is further defined as:

Wsum(GD) =

n∑
i=1

Wavg(Gi) . (5.2)

Using both (5.1) and (5.2), the weight of a subgraph can be calculated by (5.3).

Definition 5.2.2. Given a graph data set GD = {G1, G2, · · ·Gn} and an arbitrary

subgraph g, let the set of graphs where g occurs equal δGD(g). Then, the weight of g

with respect to GD is:

WGD(g) =

∑
Gi∈δGD(g)Wavg(Gi)

Wsum(GD)
. (5.3)

WGD(g) is used to quantify the actual importance of each discovered subgraph g in a

graph data set. The weighted support of a subgraph g is then defined as the product

of the support of g and the importance factor of g:

wsupGD(g) = WGD(g) · supGD(g) =
WGD(g) · |δGD(g)|

|GD|
. (5.4)

Definition 5.2.3. A subgraph g is weighted frequent with respect to GD, if wsupGD(g) ≥
τ , where 0 < τ ≤ 1 is a weighted support threshold.

105

Theorem 5.2.1. If a weighted subgraph is infrequent, then any supergraph of this

subgraph is also infrequent.

Proof. Let g be a weighted infrequent subgraph in a graph data set GD, then WGD(g)×
supGD(g) < τ ; let h be a supergraph of g, i.e. g ⊂ h, then supGD(g) ≥ supGD(h) and

WGD(g) ≥ WGD(h). Therefore, WGD(h) × supGD(h) ≤ WGD(g) × supGD(g) < τ , h is a

weighted infrequent subgraph.

a e

(a,0.5) (e,0.2) (d,0.1) (h,0.3)

(m,0.7) (e,0.15)

(d,0.1)(b,0.6)

(s,0.45) (e,0.4)(a,0.3)(s,0.25)

(g)

(G1) (G2) (G3)

Figure 5.1: An example of calculating weights by the ATW scheme

Example: Considering the graph data set GD = {G1, G2, G3} shown in Figure 5.1,

where the symbol next to each edge indicates the edge label (the vertex labels are not

included in the figure). For each edge label symbol ‘(a,b)’ in the figure, a denotes the

label and b denotes the weight. Given a subgraph g, which occurs in G1 and G3,

Wsum(GD) = 0.5+0.2+0.25
3 + 0.1+0.3+0.7+0.15

4 + 0.6+0.1+0.45+0.3+0.4
5 ≈ 0.992, Wavg(G3) =

0.6+0.1+0.45+0.3+0.4
5 ≈ 0.3700, Wavg(G1) = 0.5+0.2+0.25

3 ≈ 0.3167. Thus, WGD(g) =
0.3167+0.3700

0.992 ≈ 0.6872, wsupGD(g) = 2/3×WGD(g) ≈ 0.4582.

From the above it can be easily inferred that wsupGD(g), as defined by Equation

5.4, maintains the DCP property. Therefore, if a k-subgraph candidate is not frequent,

then all of its (k + 1)-supergraphs can be safely pruned from this branch in the lattice

during the (k + 1) candidate generation process. It should be noted, however, that

the ATW scheme will tend to bias large transaction graphs over smaller transaction

graphs, thus the approach is best applied to graph sets where the individual graphs are

of a similar size.

5.2.1.1 Pseudo-codes of ATW

The implementation of the ATW scheme into gSpan, to give gSpan-ATW, was based

on the pseudo-codes of gSpan introduced in Section 2.10.1. Since only the procedure

of ‘subgSpan’ as described in Section 2.10.1 needs to be modified, the pseudo-codes for

integrating the ATW scheme into the revised procedure are presented in the procedure

of ‘subgSpan-ATW’. In the procedure, a weighted support threshold τ is introduced

to replace the threshold σ used in Algorithm 2.3. Inspection of the procedure (lines

4 and 13) indicates that when the weighted support of a subgraph candidate is below

some threshold, there is no need to extend that subgraph candidate, because the ATW

scheme satisfied the DCP as demonstrated in Theorem 5.2.1.

106

Procedure subgSpan-ATW(c, GD, τ , F)

1 if c 6= min(c) then
2 return
3 end
4 if WGD(c)× supGD(c) ≥ τ then
5 F ← F ∪ {c}
6 else
7 return
8 end
9 C ← ∅

10 Scan GD once, find every edge e such that c can be right-most extended to c ∪ e,
C ← c ∪ e

11 Sort C in DFS lexicographic order
12 foreach gk ∈ C do
13 if WGD(gk)× supGD(gk) ≥ τ then
14 subgSpan-ATW(gk, GD, τ , F)
15 end

16 end

5.2.2 Affinity Weighting (AW) scheme

The Affinity Weighting (AW) scheme [Jiang et al., 2010c] is founded on two components

to restrict the growth of the search space: (i) a graph distance measure, and (ii) a

weighting ratio measure. For a subgraph g to be weighted frequent, both must be

greater than specified user thresholds. The graph distance measure is defined as follows.

Definition 5.2.4. Given a graph data set GD = {G1, G2, · · · , Gn}, and a subgraph g,

let the set of graphs where g occurs equal δGD(g). Then, the weight of g is formulated

as a distance metric, dist(g, δGD(g)):

WGD(g) = dist(g, δGD(g)) =

∑
Gi∈δGD(g) 1− |V (g)∩V (Gi)|

|V (g)∪V (Gi)|

C
. (5.5)

which is simplified as:

WGD(g) =

∑
Gi∈δGD(g) 1− |V (g)|

|V (Gi)|

C
. (5.6)

Where C = |V (g)| or C = |GD|. Because of the diversity of the data sets introduced

in Chapter 3, in order to obtain proper WGD(g) values to reduce the search space, the

value of C needs to be set according to the properties of the data sets. When the

number of graphs in the data set is large and the size of each graph is relatively small,

C = |GD|; when the number of graphs in the data set is small and the size of each

graph is very large, C = |V (g)|. The efficiency of applying the AW scheme to various

types of data sets relies on the proper selection of C values. It should be noted that

107

adding vertexes to g can only reduce the value of (5.6), because |δGD(g)| can not be

increased. Thus the value of dist(g, δGD(g)) is non-increasing.

The graph distance measure is directed at the number of vertexes contained in a

graph; the weighting ratio, in turn, is concerned with the edge weights. The weighting

ratio of an edge-weighted subgraph g is a function r(g) that returns a value between

zero and one which is non-increasing in the number of edges of g. Given an edge

weighted subgraph g with weights S = {w1, w2, · · · , wk}, the weighting ratio function

r(g) which is similar to Yun [2007], is defined as:

r(g) =
MINwi∈S{wi}
MAXwj∈S{wj}

. (5.7)

It should be noted that wi used in (5.7) is assumed to be positive. In this thesis, if wi

becomes negative, the absolute value of wi is used instead.

Definition 5.2.5. Given an edge-weighted graph data set GD = {G1, G2, · · · , Gn},
a weighted support threshold τ ∈ (0, 1], and a weighting ratio threshold λ ∈ [0, 1],

a subgraph g is weighted frequent, if the following two conditions (C1 and C2) are

satisfied:

(C1) wsupGD(g) = supGD(g)×WGD(g) ≥ τ, and (C2) r(g) ≥ λ .

Example: Considering the graph data set GD = {G1, G2, G3} shown in Figure 5.2,

where the symbol next to each edge indicates the edge label (vertex labels are not

shown). In the figure the edge label symbols (a, b) associated with a subgraph g should

again be interpreted as follows: a denotes the label and b denotes the weight. Given

a subgraph g, which occurs in G1 and G3, WGD(g) = 1
4 × (1 − 4

4 + 1 − 4
7) = 3/28,

wsupGD(g) = 2× 3/28 = 0.2143, and r(g) = 0.2
0.5 = 0.4.

as

ba d

e

he

m

d

e

(a,0.3) (e,0.5)

w

w

(w,0.2)

(g) (G1) (G2) (G3)

Figure 5.2: An example of calculating weights by the AW scheme

It can be inferred, from Definition 5.2.5, that both conditions maintain the DCP.

Therefore these two conditions can lead to an alternative pruning strategy which may

be incorporated into any standard FSM algorithms.

5.2.2.1 Pseudo-codes of AW

The gSpan algorithm was used as the base algorithm for the incorporation of the

AW scheme to create gSpan-AW. The pseudo-codes for modifying the procedure of

108

‘subgSpan’ as described in Section 2.10.1 are presented in the procedure of ‘subgSpan-

AW’. In the procedure, except that a weighted support threshold τ and a weighting

ratio threshold λ are introduced in the AW scheme, the rest of the parameters maintain

the same meaning as those introduced in Algorithm 2.3. Inspection of the procedure of

‘subgSpan-AW’ indicates that, during the candidate generation phase, the mining will

keep track of the values of both WGD(gk) and r(gk) (lines 4 and 13) for all candidates,

and discard all those candidates that do not satisfy at least one of the conditions (C1)

and (C2).

Procedure subgSpan-AW(c, GD, τ , λ, F)

1 if c 6= min(c) then
2 return
3 end
4 if WGD(c)× supGD(c) ≥ τ ∧ r(c) ≥ λ then
5 F ← F ∪ {c}
6 else
7 return
8 end
9 C ← ∅

10 Scan GD once, find every edge e such that c can be right-most extended to c ∪ e,
C ← c ∪ e

11 Sort C in DFS lexicographic order
12 foreach gk ∈ C do
13 if WGD(gk)× supGD(gk) ≥ τ ∧ r(gk) ≥ λ then
14 subgSpan-AW(gk, GD, τ , λ, F)
15 end

16 end

5.2.3 Correlation Measures based Weighting (CMW) scheme

In the Correlation Measures based Weighting (CMW) scheme, a range of correlation

measures were employed to quantify the correlation between vertexes or edge and the

classes with which the subgraph is associated. According to the availability of the class

labels for graphs, the correlation measures used in the CMW scheme were divided into

two categories.

• Correlation measures that do not use class labels. In this category, the

correlation measure is designed to capture the relationship between two vertexes

connected by any edge in a subgraph. Two examples are the weighting functions

introduced in Section 4.1, SW2 and SW3.

• Correlation measures do use the class labels. In this category, the cor-

relation measure is designed to capture the relationship between any edge in a

109

subgraph and the classes with which the subgraph is associated. Two examples

are the weighting functions introduced in Section 4.2, CW2 and CW3.

Inspired by Ke et al. [2008], all these four weighting functions (SW2, SW3, CW2 and

CW3) can be incorporated into a CMW scheme. Thus,

Definition 5.2.6. Given a graph data set GD = {G1, G2, · · · , Gn}, a support threshold

σ ∈ (0, 1], and a weighting threshold θ, a subgraph g is weighted frequent, if the following

two conditions (D1 and D2) are satisfied:

(D1) supGD(g) ≥ σ, and (D2) ∀ei ∈ g, wGD(ei) ≥ θ .

Where wGD(ei) represents the edge weight computed by the adopted weighing func-

tion (SW2, SW3, CW2, and CW3). Examples of computing edge weights using these

weighting functions were given in Chapter 4. Consequently it can be clearly inferred

from the D1 and D2 conditions, that the CMW scheme satisfies the DCP, and that

using these two conditions can cut down the search space such that the computation

of the mining is lessened considerably.

Procedure subgSpan-CMW(c, GD, σ, θ, F)

1 if c 6= min(c) then
2 return
3 end
4 if (supGD(c) ≥ σ) ∧ (∀ei ∈ c, wGD(ei) ≥ θ) then
5 F ← F ∪ {c}
6 else
7 return
8 end
9 C ← ∅

10 Scan GD once, find every edge e such that c can be right-most extended to c ∪ e,
C ← c ∪ e

11 Sort C in DFS lexicographic order
12 foreach gk ∈ C do
13 if (supGD(gk) ≥ σ) ∧ (∀ei ∈ gk, wGD(ei) ≥ θ) then
14 subgSpan-CMW(gk, GD, σ, θ, F)
15 end

16 end

5.2.3.1 Pseudo-codes of CMW

In a similar manner to the previous two weighting schemes, the CMW scheme was inte-

grated into the gSpan algorithm (amongst others) to form gSpan-CMW. The pseudo-

codes to modify the procedure of ‘subgSpan’ described in Algorithm 2.3 are presented

as a procedure of ‘subgSpan-CMW’. In the procedure, a new parameter θ is included to

110

denote a weighting threshold used in the CMW scheme, and the rest of the parameters

reserve the same meaning as those described in Algorithm 2.3. Similar to ATW and

AW, two blocks of codes (lines 4-8 and lines 12-16) outline the operation of the CMW

scheme.

5.3 Weighting Schemes That Do Not Use Vertex or Edge
Weights

The weighting schemes introduced in Section 5.2 all utilized either vertex or edge

weights. In this section an alternative weighting scheme, which does not exploit ver-

tex or edge weights, Jaccard Similarity based Weighting (JSW), is proposed. This

scheme is investigated in the subsequent sub-section. The advantage offered is that the

mechanism obviates the requirement for the adoption of a weighting function.

5.3.1 Jaccard Similarity based Weighting (JSW) scheme

The JSW scheme uses both the standard support measure and a weighting metric which

quantifies the significance of each discovered subgraph. The weighting metric adopts

the Jaccard similarity measure between two sets A and B. Namely,

Jacc(A,B) =
|A ∩B|
|A ∪B|

. (5.8)

Definition 5.3.1. Given a graph data set GD = {G1, G2, · · · , Gn} and a subgraph

g with edges E(g) = {e1, e2, · · · , ek}, let two vertexes connected by each ei ∈ E(g)

equal v1 and v2; let the set of graphs where v1 occurs equal ΓGD(v1) and the set of

graphs where v2 occurs equal ΓGD(v2). Then, according to (5.8), the Jaccard similarity

coefficient between ΓGD(v1) and ΓGD(v2) is defined to quantify the strength of the edge

ei connecting two vertexes v1 and v2:

JS(ei) = Jacc (ΓGD(v1),ΓGD(v2)) =
|ΓGD(v1) ∩ ΓGD(v2)|
|ΓGD(v1) ∪ ΓGD(v2)|

. (5.9)

Thus, the weight of g, WGD(g), is accordingly defined as:

WGD(g) =
1∑

ei∈E(g) JS(ei)
. (5.10)

When increasing the size of g, the value of the denominator of (5.10) will be increased.

Thus, it can be gathered from (5.10) that WGD(g) is non-increasing with the increase

of the size of g (i.e. WGD(g) holds the DCP). Consequently, WGD(g) can be further

merged into the successive definition.

Definition 5.3.2. Given a graph data set GD = {G1, G2, · · · , Gn}, a support threshold

σ ∈ (0, 1], and a weighting threshold γ > 0, a subgraph g is weighted frequent, if the

following two conditions (E1 and E2) are satisfied:

111

(E1) supGD(g) ≥ σ, and (E2) WGD(g) ≥ γ .

Example: Considering the graph data set GD = {G1, G2, G3} shown in Figure 5.3,

where the symbol next to each vertex or edge represents its label. Given a subgraph

g, which contains two edges {a, e}, ΓGD(v1) = {G1, G3}, ΓGD(v2) = {G1, G3} and

ΓGD(v6) = {G1, G2, G3}. So, jC(a) = 1, jC(e) = 2/3 and WGD(g) = 1
1+2/3 ≈ 0.6.

ba

v1

v2

v5

v6

fd

v3

h

v8

v6

d

v3a e

v1

v2 v6

v1

v2
v6

s

v9

t

v4

v9

k

(g)

(G1) (G2) (G3)

v7

w

m f

Figure 5.3: An example of computing weights by the JSW scheme

According to Definition 5.3.2, both E1 and E2 maintain the DCP.

Procedure subgSpan-JSW(c, GD, σ, γ, F)

1 if c 6= min(c) then
2 return
3 end
4 if supGD(c) ≥ σ ∧ WGD(c) ≥ γ then
5 F ← F ∪ {c}
6 else
7 return
8 end
9 C ← ∅

10 Scan GD once, find every edge e such that c can be right-most extended to c ∪ e,
C ← c ∪ e

11 Sort C in DFS lexicographic order
12 foreach gk ∈ C do
13 if supGD(g) ≥ σ ∧ WGD(g) ≥ γ then
14 subgSpan-JSW(gk, GD, σ, γ, F)
15 end

16 end

5.3.1.1 Pseudo-codes of JSW

In a similar manner, the JSW scheme can be incorporated into gSpan to give gSpan-

JSW. The pseudo-codes of the modified procedure to describe the incorporation of the

JSW scheme are presented in the procedure of ‘subgSpan-JSW’. In the procedure, a

new parameter γ is introduced to denote a weighting threshold used in the JSW scheme,

and the rest of the parameters keep the same meaning as those set in Algorithm 2.3.

From lines 4-8 and lines 12-16 in the procedure of ‘subgSpan-JSW’, if both the support

112

value and the value of the weighting function for a subgraph candidate are over the

respective thresholds, then this subgraph candidate can be further extended to the

next level in the search lattice; if either the support value or the value of the weighting

function for a subgraph candidate is below the threshold, then this subgraph candidate

can be safely discarded. As can be seen from ‘subgSpan-JSW’, it is relatively simple

to adapt the gSpan algorithm to embrace the JSW scheme, compared with weighting

schemes that use vertex or edge weights.

5.4 Summary

Four subgraph weighting schemes have been proposed in this chapter: ATW, AW,

CMW and JSW. The first three require that either vertex or edge weights are available;

the last does not require vertex or edge weights. All these weighting schemes maintain

the DCP, so that the search space can be considerably reduced as the frequent subgraph

mining progresses, which leads to computational benefits.

Each of these four weighting scheme is applicable under different circumstances

using different weighting functions introduced in Chapter 4. More specifically, the

ATW scheme requires the SW1, SW4, SW5, and CW1 functions; the AW scheme

requires the SW1, SW4, and CW1 functions; the CMW scheme requires the SW2, SW3,

CW2, and CW3 functions; the JSW scheme does not need any weighting functions.

The incorporation of these four weighting schemes is demonstrated using gSpan as a

base algorithm. The pseudo-codes of four weighted gSpan algorithms: gSpan-ATW,

gSpan-AW, gSpan-CMW are similar except that the modification of the procedure of

‘subgSpan’ is different under respective weighting schemes. The procedures: subgSpan-

ATW, subgSpan-AW, subgSpan-CMW, and subgSpan-JSW are recursively called by

their corresponding weighted gSpan algorithms. Compared with other three weighting

schemes, the implementation of JSW is straightforward without recourse to employing

user-provided vertex or edge weights or computing weights for vertexes or edges. The

experimental analysis and evaluation of these four weighting schemes, using the data

sets introduced in Chapter 3, is explored in the following chapter.

113

114

Chapter 6

Experimental Study

This chapter reports on the experimental analysis of the four subgraph weighting

schemes proposed in the previous Chapter. The objective of this experimental evalu-

ation is to examine: (i) whether or not the weighted FSM algorithms using these four

subgraph weighting schemes (i.e. ATW, AW, CMW, and JSW) run faster and identify

fewer patterns than the standard FSM algorithms and (ii) whether or not the patterns

discovered by the weighted FSM algorithms are as effective as those discovered by the

standard FSM algorithms in the context of frequent pattern based classification.

The evaluation of each subgraph weighting scheme consisted of two components.

Firstly, the performance of the weighted FSM algorithm, into which the subgraph

weighting scheme was incorporated, was compared with the standard FSM algorithms

(without any weightings), in terms of the runtime costs and the number of patterns

identified. If the runtime costs of the weighted FSM algorithms were similar to or less

than those of the standard FSM algorithms, and the number of patterns identified by

the former was considerably less than that identified by the latter, this indicated that

the weighted FSM algorithms were more efficient than the standard FSM algorithms.

Secondly, with respect to data sets that have class labels, the patterns discovered by the

weighted and standard FSM algorithms were employed to construct classifiers using the

procedure described in Figure 2.9. The performance of the classifiers was compared

to see whether the patterns discovered using the weighted FSM algorithms were as

effective as those discovered using the standard FSM algorithms. If the results were

similar this indicated that the right frequent patterns had been identified.

All the experiments were conducted with a Windows 7 machine using a 2.27GHz In-

tel Core i5 PC with 3GB main memory, unless otherwise specified. The implementation

of all the algorithms used in this chapter is described in Section 6.1. Section 6.2 gives

a general description of the data used in this chapter. The evaluation of each subgraph

weighting scheme is further studied in Sections 6.3, 6.4, 6.5, and 6.6 respectively.

115

6.1 Implementation

Three standard FSM algorithms: (i) gSpan, (ii) FFSM, (iii) GASTON were used for

the experiments. Among these three, the author re-implemented the gSpan and FFSM

algorithms using Java, according to the description of the algorithms found in Yan and

Han [2002] and Huan et al. [2003]; the GASTON algorithm was re-implemented by the

author using Java, according to the C++ source codes provided by Nijssen and Kok

[2004]. With respect to the four subgraph weighting schemes in Chapter 5, the Java

implementation of gSpan was used as the base algorithm with which to implement the

weighted FSM algorithms: (i) gSpan-ATW, (ii) gSpan-AW, (iii) gSpan-CMW and (iv)

gSpan-JSW by integrating four respective weighting schemes into the gSpan algorithm.

Specifically, as explained in Section 5.2, gSpan-ATW was coupled with the SW1, SW4,

SW5, and CW1 functions; gSpan-AW was coupled with the SW1, SW4, and CW1

functions; gSpan-CMW was coupled with the SW2, SW3, CW2, and CW3 functions;

gSpan-JSW did not use any weighting functions. Furthermore, because gSpan was

originally intended for undirected graph mining, both gSpan and four weighted FSM

algorithms (gSpan-ATW, gSpan-AW, gSpan-CMW, and gSpan-JSW) were modified by

the author to accommodate trees and directed graphs in order to test these algorithms

on trees and directed graphs.

A variety of classification techniques were used for the evaluation: (i) Decision

Trees (i.e. C4.5) [Quinlan, 1993], Naive Bayesian Classifiers (NBCs) [Mitchell, 1996],

(iii) Support Vector Machines (SVMs) [Vapnik, 1998], to examine the quality of the

discovered patterns. For the NBC and C4.5 classifiers, the WEKA implementations

[Hall et al., 2009] were used. For the SVM classifier, the LIBSVM implementation

[Chang and Lin, 2001] was used. In the experiments, all the classification results were

computed using 10-fold cross validation.

It should also be noted that a maximum memory usage of 3GB was allowed for all

the experiments conducted. A symbol of “n/a” is used in the subsequent experimental

evaluation to indicate where an FSM algorithm can not complete the mining due to an

out-of-memory error.

6.2 Overview of the Data

As described in Chapter 3, ten groups of graph data were used to evaluate the proposed

weighted FSM algorithms. Among these, the RT2 and RT3 groups were reserved for

the description of two case studies, which will be presented in Chapter 7. Therefore,

eight groups, divided into three categories, are considered in this chapter:

1. Trees: ST1, ST2, and RT1

2. Undirected Graphs: RG1, RG2, and RG3

116

3. Directed Graphs: RG4 and RG5

Since each data group contains more than one data set, a total of 20 data sets

were used. These are summarized in Table 6.1. In the table columns 3 to 7 denote,

respectively, the number of records, the average number of vertexes, the average number

of edges, the number of vertex labels, and the number of edge labels in each data set.

Table 6.1: A summary of data sets employed throughout this chapter

Data set # Transactions Average |V (g)| Average |E(g)| |LV | |LE |
1 ST1:D10 100000 4 3 100000 1

2 ST1:T1M 1000000 4 3 1000000 1

3 ST2:IM1000-D4 1000 35 34 18 4

4 ST2:IM1000-D5 1000 88 87 18 4

5 ST2:IM1000-D6 1000 193 192 18 4

6 RT1:CSLOGS-ALL 59691 14 13 59691 1

7 RT1:CSLOGS-1 8074 10 9 15652 1

8 RT1:CSLOGS-2 7409 10 9 14413 1

9 RG1:CH1 42682 45 47 63 3

10 RG1:CH2 42247 26 28 67 3

11 RG2:MAM-V80 322 78 765 80 1

12 RG2:MAM-V100 322 96 1230 100 1

13 RG3:BS-V500 500 107 443 499 1

14 RG3:BS-V1000 1000 86 370 991 1

15 RG4:IMDB 7438 34 32 7947 6

16 RG4:Amazon 4305 64 129 6954 6

17 RG4:Ohsumed 3295 55 141 5454 6

18 RG5:Lancashire 105 289 261 2148 10

19 RG5:Scotland 105 933 890 8619 17

20 RG5:GB 105 9957 6754 62626 29

According to Table 6.1, some interesting features of the data employed in this

chapter can be observed as follows. The tree data includes ST1, ST2, and RT1. The

ST1 (synthetic trees) data includes two, synthetically generated tree data sets: D10 and

T1M. The structure of the trees in both data sets is the same, however the size of T1M

is 10 times that of D10. The ST2 synthetic image data contains three synthetically

generated image data sets: IM1000-D4, IM1000-D5, and IM1000-D6. These three data

sets represent the same collection of images but with different levels of decomposition.

The trees in IM1000-D6 typically have more vertexes and edges than those in IM1000-

D5 which have more vertexes and edges than those in IM1000-D4. The RT1 (Web

logs) data describes web usage log files and consists of three data sets: CSLOGS-ALL,

CSLOGS-1, and CSLOGS-2. The number of trees in CSLOGS-ALL is much larger

than that in CSLOGS-1 or CSLOGS-2. Both CSLOGS-1 and CSLOGS-2 are smaller

segments of CSLOGS-ALL. The trees in CSLOGS-ALL also have more vertexes and

edges than CSLOGS-1 which has more vertexes and edges than CSLOGS-2.

The undirected graph data includes RG1, RG2, and RG3. The RG1 chemical data

contains two data sets: CH1 and CH2. The number of graphs in CH1 is approximately

117

the same as that in CH2, although the graphs in CH1 have more vertexes and edges

than those in CH2, but the latter is denser than the former. The RG2 Mammography

data contains two data sets: MAM-V80 and MAM-V100. These two data sets represent

the same collection of images with different levels of detail. The graphs in MAM-V100

have more vertexes and edges than those in MAM-V80 but the latter are slightly more

dense than the former. The RG3 photographic image data contains two data sets: BS-

V500 and BS-V1000. These two data sets represent the same collection of images but

with different levels of detail. The graphs in BS-V500 have more vertexes and edges

than those in BS-V1000.

The directed graph data comprises the RG4 and RG5 data. The RG4 data contains

three text data sets: IMDB, Amazon, and Ohsumed. IMDB is substantially larger

than the other two. On average, the graphs in the Amazon data set have more ver-

texes and edges than Ohsumed, and the graphs in Ohsumed have more vertexes and

edges than IMDB. The RG5 social network data comprised three graph collections:

Lancashire, Scotland, and GB. Each collection is characterized by edge-weighted and

directed graphs. The number of graphs in these three data sets is the same. However,

the graphs in the GB data set have significantly more vertexes and edges than the

Scotland data set, which in turn has considerably more vertexes and edges than the

Lancashire data set.

6.3 The Evaluation of the ATW scheme

The evaluation of ATW was conducted with respect to trees, undirected graphs and

directed graphs. Each is discussed in Sub-sections 6.3.1, 6.3.2, and 6.3.3 respectively.

6.3.1 The evaluation of the ATW scheme on trees

For tree data, the gSpan, FFSM, GASTON and gSpan-ATW algorithms were adapted

to mine trees only. The data groups that include trees are: ST1, ST2, and RT1. Since

the ATW scheme requires vertex or edge weights, for data that did not feature such

weights, the vertex and edge weighting functions introduced in Chapter 4 were used to

generate appropriate weights. Thus, as explained in Chapter 5.2, the SW1, SW4 and

SW5 functions were applied to the ST1, ST2 and RT1 data.

Efficiency test. The performance of the gSpan-ATW algorithm using SW1 on the

tree data is shown in Table 6.2. In the table, columns 2 and 7 denote the thresholds

used by the standard FSM algorithms and gSpan-ATW respectively, and columns 6

and 9 denote the number of patterns discovered by the respective algorithms (these

symbols will be used throughout the rest of this thesis unless otherwise specified). In

the table, a range of low support thresholds was used to test gSpan-ATW on ST1 and

RT1, because the standard FSM algorithms could only find small sized patterns (i.e

118

subgraphs with only one vertex). As can be seen in the table, the number of pat-

terns identified by the gSpan-ATW algorithm using SW1 is significantly less than that

identified by the standard FSM algorithms but the runtime cost varies with different

data sets. More precisely, for the ST1 and RT1 data, when low thresholds (σ and τ)

were used, the runtime of gSpan-ATW was considerably faster than that of the stan-

dard FSM algorithms; when high thresholds were used, the runtime of gSpan-ATW

was close to that of the standard FSM algorithms. For the ST2 data, the runtime of

gSpan-ATW is always faster than that of the standard FSM algorithms.

Table 6.2: The performance of gSpan-ATW using SW1 on the ST1, ST2, and RT1 data

Dataset σ(%)
runtime (in seconds)

patterns
gSpan-ATW + SW1

gSpan FFSM GASTON τ(%) runtime # patterns

ST1:D10

0.05 10.102 8.657 14.037 21057 0.05 3.931 117
0.1 7.586 5.927 9.473 7257 0.1 3.863 95
0.5 4.646 3.465 6.322 727 0.5 3.671 42
1 3.913 2.743 4.917 196 1 2.964 25
2 3.341 2.556 4.782 179 2 2.852 22

ST1:T1M

0.05 183.656 167.000 n/a 24492 0.05 104.318 101
0.1 135.357 115.810 n/a 9493 0.1 110.113 81
0.5 71.071 51.535 109.163 607 0.5 97.581 41
1 60.592 36.970 90.239 196 1 95.111 25
2 59.691 34.053 84.725 178 2 93.633 21

ST2:IM1000-D4

6 142.697 77.36 n/a 435890 6 1.335 390
8 19.815 10.143 15.752 41398 8 1.162 268
10 12.146 6.161 9.778 21967 10 0.918 194
12 5.395 3.067 5.737 7263 12 0.907 165
14 3.100 1.940 4.638 2782 14 0.891 135

ST2:IM1000-D5

10 563.748 304.526 n/a 489352 10 6.971 978
12 110.368 67.821 51.791 61333 12 5.404 662
14 66.628 43.268 33.616 31460 14 4.623 520
16 42.970 30.006 20.871 16399 16 4.256 433
18 28.725 22.882 15.286 9215 18 3.734 317

ST2:IM1000-D6

15 592.118 407.344 n/a 112683 15 33.153 2219
20 308.146 233.924 n/a 49289 20 20.547 1193
25 132.038 109.170 44.885 14644 25 14.670 769
30 69.509 67.888 27.517 6936 30 10.593 504

RT1:CSLOGS-ALL

0.3 4.780 3.902 9.920 2268 0.3 3.300 617
0.4 3.358 2.867 7.319 1134 0.4 3.133 425
0.5 2.465 2.543 6.650 684 0.5 2.967 304
0.6 2.311 2.321 5.837 498 0.6 2.959 243
0.8 2.063 2.062 5.528 311 0.8 2.636 169

RT1:CSLOGS-1

0.2 9.871 3.189 5.117 46104 0.2 0.695 623
0.4 1.267 0.637 2.050 2582 0.4 0.618 286
0.6 0.753 0.455 1.789 833 0.6 0.581 175
0.8 0.623 0.373 1.667 455 0.8 0.566 135
1 0.554 0.334 1.561 286 1 0.538 106

RT1:CSLOGS-2

0.2 6.388 2.503 3.633 41601 0.2 0.693 662
0.4 1.080 0.592 1.790 2485 0.4 0.638 292
0.6 0.679 0.430 1.571 836 0.6 0.588 179
0.8 0.540 0.350 1.444 462 0.8 0.570 135
1 0.495 0.299 1.349 280 1 0.557 103

When using SW4 and SW5, the performance of the gSpan-ATW algorithm is shown

in Table B.1. In comparison with the standard FSM algorithms, the number of patterns

discovered by gSpan-ATW using SW4 or SW5 is considerably less than that discovered

119

by the standard FSM algorithms. From the table it can be seen that the runtime cost of

gSpan-ATW using SW5 on the tree data is higher than that of gSpan-ATW using SW1

or SW4, because the computation of SW5 is more complex than that of SW1 or SW4.

This fact is particularly evident for the ST1:T1M data set with 1000000 transactions.

Interestingly, in comparison with Table 6.2, Table B.1 indicates that gSpan-ATW using

SW5 on ST1:T1M runs slower than gSpan. This suggests that when using the T1M

data, the gain obtained by using gSpan-ATW coupled with SW5 is neutralized by the

time used to compute the weights using the SW5 weighting function. In addition, for

the ST1 data, the number of patterns discovered by gSpan-ATW coupled with SW5

is considerably higher than that discovered by gSpan-ATW coupled with SW4; while

for the ST2 data, the number of patterns discovered by the former is smaller than

the latter. Further analysis of gSpan-ATW using SW1, SW4, and SW5 on ST2, in

comparison with the standard FSM algorithms, is provided in Appendix B.1.1.

Classification evaluation. Given that the trees in the ST2 data have class la-

bels (Seascape vs. Landscape) and that the trees in the RT1:CSLOGS-1(2) data also

have class labels (edu vs. other), a two-class classification problem can be identified.

The patterns discovered by applying gSpan-ATW to these data were therefore used to

construct classifiers (using the process described earlier). The resulting classification

accuracy using ST2 and RT1:CSLOGS-1(2), is then presented in 6.3. In the table, the

symbols of ‘#F’, ‘NBC’, ‘C4.5’, and ‘SVM’ denote the number of features identified

by using the corresponding threshold, the Naive Bayesian Classifier, the decision tree

classifier, and the SVM classifier respectively (these symbols will be used throughout

the rest of this thesis unless otherwise specified). Because the setting of σ and τ thresh-

olds is different, a different range of thresholds was used to generate effective features

for the standard FSM algorithms and gSpan-ATW respectively. As can be seen from

the table, the accuracy of the classifiers using patterns discovered by gSpan-ATW with

SW1 is very similar to that using patterns discovered by the standard FSM algorithms.

However, the number of features used by gSpan-ATW with SW1 is significantly less

than that used by the standard FSM algorithms.

Additionally, the accuracy of the classifiers produced using patterns discovered by

gSpan-ATW using SW4 and SW5 is further shown in Table B.2. For the ST2 data,

using three weighting functions, the classifiers achieved very similar results with a

similar number of features. However, compared with the SW1 and SW4 functions, the

number of features required to build the classifiers, using gSpan-ATW coupled with

SW5, was smaller. As for the RT1:CSLOGS-1(2) data, use of the three weighting

functions lead to the same accuracy results with various thresholds.

120

Table 6.3: The accuracy of the classifiers using patterns discovered by gSpan-ATW
using SW1 on the ST2 and RT1:CSLOGS-1(2) data

Dataset
standard FSM algorithms gSpan-ATW + SW1

σ(%) #F NBC SVM C4.5 τ(%) #F NBC SVM C4.5

ST2:IM1000-D4
12 7263 92.9 95.4 94.9 2 3020 92.9 95.4 94.9
14 2782 92.7 95.4 94.6 4 1079 93.0 95.6 94.3
16 1659 92.6 95.5 94.3 6 390 92.5 95.4 94.2

ST2:IM1000-D5
20 6287 87.0 91.4 91.9 6 3009 86.2 91.4 91.3
25 2453 86.2 91.4 91.3 8 1501 86.1 91.6 91.3
30 1163 86.0 91.4 70.8 10 978 85.8 91.4 89.7

ST2:IM1000-D6
30 6936 81.9 76.4 86.8 12 3942 81.2 75.1 86.5
35 3720 81.2 75.1 86.5 14 2611 81.2 75.1 86.5
40 1869 81.0 75.2 86.7 16 1881 81.0 75.2 86.7

RT1:CSLOGS-1
0.3 7971 79.8 81.8 81.8 0.2 623 79.8 81.1 80.9
0.4 2582 79.8 81.8 81.8 0.3 394 79.8 81.1 80.9
0.5 1286 79.8 81.2 81.2 0.4 286 79.8 80.9 80.9

RT1:CSLOGS-2
0.3 6445 80.4 81.9 82.1 0.2 662 80.4 81.0 81.5
0.4 2485 80.4 82.0 82.1 0.3 384 80.4 81.7 81.5
0.5 1281 80.4 81.9 81.9 0.4 292 80.4 81.6 81.5

6.3.2 The evaluation of the ATW scheme on undirected graphs

As noted in Chapter 3, the graphs in the RG1 (Chemical compounds), RG2 (Mam-

mography), and RG3 (Photographic images) data sets are undirected. For the RG1

data, since the graphs in RG1 do not have vertex or edge weights, the SW1, SW4, and

SW5 weighting functions were used to generate the required weights. For the RG2 and

RG3 data, because the graphs in RG2 and RG3 contained user defined vertex and edge

weights, the CW1 weighting function was used instead of any of the structural weight-

ing functions. The detailed experimental analysis of the ATW scheme with respect to

the RG1, RG2 and RG3 data is reported below.

Efficiency test. The performance of gSpan-ATW using SW1 on the RG1 data

is presented in Table 6.4. From the table it can be seen that both FFSM and GAS-

TON could not operate below a support threshold of 16% while the gSpan algorithm

continued. It can also be seen from the table that gSpan-ATW using SW1 requires

considerably less runtime to discover far fewer patterns than gSpan using the same

range of support thresholds. The performance of gSpan-ATW using SW1 on the CH2

data, as shown in Table 6.4, exhibits a similar advantage over the standard FSM algo-

rithms. Table 6.4 also shows that when applying to RG1:CH2, both gSpan and FFSM

can operate below a support threshold of 10% while GASTON fails to operate when

the support threshold falls below 10%.

In the cases of SW4 and SW5, Table B.15 indicates that the performance of gSpan-

ATW using SW4 or SW5 is very similar to that of gSpan-ATW using SW1. In compar-

ison with SW1, Table B.15 further suggests that gSpan-ATW coupled with SW5 runs

faster and discovers fewer patterns than when using SW1 or SW4. An extended analy-

sis of gSpan-ATW using SW1, SW4, and SW5 with a large range of support thresholds,

121

Table 6.4: The performance of gSpan-ATW using SW1 on the RG1 data

Dataset σ(%)
runtime (in seconds)

patterns
gSpan-ATW + SW1

gSpan FFSM GASTON τ(%) runtime # patterns

RG1:CH1

10 1968.265 n/a n/a 10995 10 272.368 765
12 1352.122 n/a n/a 7009 12 241.386 616
14 989.547 n/a n/a 4909 14 209.177 516
16 798.799 n/a n/a 3596 16 184.728 430

RG1:CH2

4 572.614 740.596 n/a 8624 4 92.606 386
6 335.605 506.909 n/a 3939 6 73.132 277
8 243.612 289.341 n/a 2284 8 64.423 211
10 171.225 242.826 n/a 1502 10 51.010 151

in comparison with the standard FSM algorithms, is presented in Appendix B.2.1.1.

Table 6.5: The performance of gSpan-ATW using CW1-E on the RG2 and RG3 data

Dataset σ(%)
runtime (in seconds)

patterns
gSpan-ATW + CW1-E

gSpan FFSM GASTON τ(%) runtime # patterns

RG2:MAM-V80

15 67.208 90.949 83.185 54621 4 10.503 3500
17 20.110 24.742 22.701 13044 6 8.142 1809
19 9.381 10.310 8.418 3843 8 6.099 290
21 8.029 8.425 5.467 2958 10 6.072 83

RG2:MAM-V100

15 167.893 247.678 198.546 95868 4 21.923 5316
17 53.441 65.258 45.597 22688 6 19.011 3255
19 21.728 24.707 13.948 5991 8 14.730 646
21 19.719 21.064 11.282 4784 10 14.725 116

RG3:BS-V500

8 4.992 3.588 8.716 24989 2 1.719 1288
10 2.278 1.462 3.072 6285 4 1.323 599
12 1.685 0.779 1.813 2073 6 1.248 495
14 1.388 0.584 1.482 1229 8 1.128 456

RG3:BS-V1000

6 0.92 0.448 1.332 1404 6 0.668 596
8 0.671 0.312 1.084 716 8 0.542 479
10 0.421 0.246 0.958 443 10 0.385 350
12 0.368 0.133 0.846 238 12 0.259 215

When applying gSpan-ATW to the RG2 data, the CW1 weighting function, which

includes both CW1-N for vertex weighting and CW1-E for edge weighting, is employed

with respect to the graphs in MAM-V80 and MAM-V100. The performance of gSpan-

ATW, coupled with CW1-E, on the RG2 data is shown in Table 6.5. As can be seen

in the table, the standard FSM algorithms operate down to a support threshold of

15%, while gSpan-ATW continues down to a support threshold of 4%. Given the fact

that the runtime cost of both the standard FSM algorithms and gSpan-ATW increases

with the decrease of the support thresholds, Table 6.5 shows that gSpan-ATW with

CW1-E runs much faster and identifies significantly lower number of patterns than the

standard FSM algorithms, even if the former uses much lower support thresholds than

the latter.

Similar to the RG2 data, the graphs in the RG3 have user defined vertex and edge

weightings (i.e. CW1-N and CW1-E). Table 6.5 shows the performance of gSpan-ATW

coupled with CW1-E on the RG3 data. As can be seen from the table, the number

of patterns discovered by gSpan-ATW is significantly less than that discovered by the

122

standard FSM algorithms but gSpan-ATW runs slightly faster than both gSpan and

GASTON, and slightly slower than FFSM.

In addition, the performance of gSpan-ATW coupled with CW1-N on the RG2 and

RG3 data is presented in Table B.18. In comparison with Table 6.5, for the RG2 data,

gSpan-ATW using CW1-N appears to discover fewer patterns and requires less runtime

than when using CW1-E; as for the RG3 data, the results of gSpan-ATW coupled with

CW1-N are very close to those obtained using gSpan-ATW coupled with CW1-E.

Classification evaluation. The quality of the discovered patterns by gSpan-ATW

on the RG1:CH1, RG2, RG3 data was evaluated, in the same manner as before, using

a frequent pattern based classification framework.

For the RG1:CH1 data set, as suggested in Deshpande et al. [2005], a two-class (CA

vs. CM) classification problem can be identified (see Section 3.2.4 for a description of

the classes). In this classification problem, as suggested by Deshpande et al. [2005],

because the size of one class is significantly larger than that of the other class, using

the accuracy measure alone to evaluate the classifier is not very accurate. Thus, the

area under the ROC (Receiver Operating Characteristic) curve [Provost and Fawcett,

2001], referred to simply as the AUC (Area Under the Curve) score, was also used, in

addition to the accuracy measure.

Table 6.6: The accuracy of the classifiers using patterns discovered by gSpan-ATW
using SW1 on the CH1 data

Dataset
gSpan gSpan-ATW + SW1

σ(%) #F
Accuracy

τ(%) #F
Accuracy

NBC SVM C4.5 NBC SVM C4.5

RG1:CH1
16 3596 77.4 80.1 79.5 4 2277 77.2 80.0 79.8
18 2735 76.8 79.6 79.2 6 1401 75.3 79.7 79.8
20 2149 76.8 79.5 80.2 8 1002 73.2 77.9 76.9

The accuracy of the classifiers using the standard FSM algorithms and gSpan-ATW

when applied to the CH1 data is given in Tables 6.6 and 6.7. In the tables, different

support thresholds were used for the respective standard FSM algorithms and gSpan-

ATW, to extract effective patterns for the classification. As can be seen from the

tables, the classifiers using patterns discovered by gSpan-ATW achieve very similar

performance to that using patterns discovered using the standard FSM algorithms but

the former uses considerably fewer features than the latter. Additionally, in comparison

with Table 6.6, Table 6.7 suggests that the classifiers built using patterns discovered

by gSpan-ATW with SW5 require a smaller number of features than those when using

gSpan-ATW with SW1 or SW4, in order to achieve a similar level of accuracy. The

AUC “scores” obtained using gSpan-ATW with SW1, SW4 and SW5 when applied to

the CH1 data are presented in Tables B.16 and B.17, where very similar behaviour to

that shown in Tables 6.6 and 6.7 can be observed.

The graphs in the RG2 data belong to different classes. Thus a two-class (Benign

123

Table 6.7: The accuracy of the classifiers using patterns discovered by gSpan-ATW
using SW4 and SW5 on the CH1 data

Dataset
gSpan-ATW + SW4 gSpan-ATW + SW5

τ(%) #F
Accuracy

τ(%) #F
Accuracy

NBC SVM C4.5 NBC SVM C4.5

RG1:CH1
4 2382 76.9 79.8 80.1 4 1656 79.1 73.6 78.7
6 1474 75.4 79.7 79.7 6 1053 77.5 74.4 76.7
8 1051 73.9 78.6 78.0 8 764 76.1 74.7 77.1

vs. Malignant) classification problem can again be identified to determine whether the

patterns discovered by gSpan-ATW using CW1-E are as effective as those discovered

by the standard FSM algorithms. The result of applying the generated classifiers

to the RG2 data is shown in Table 6.8. In the table, because the settings of the

thresholds for the respective standard FSM algorithms and gSpan-ATW using CW1-E

are different, lower support thresholds were used for gSpan-ATW in order to extract

good quality patterns. As can be seen from the table, the performance of the classifiers

using patterns discovered by gSpan-ATW with CW1-E is very similar to that of the

classifiers using patterns discovered by the standard FSM algorithms but the former

employs considerably fewer features than the latter to build the classifiers, which is an

important factor for reducing the computation time of the construction of the classifiers.

Table 6.8: The accuracy of the classifiers using patterns discovered by gSpan-ATW
using CW1-E on the RG2 and RG3 data

Dataset
standard FSM algorithms gSpan-ATW + CW1-E

σ(%) #F NBC SVM C4.5 τ(%) #F NBC SVM C4.5

RG2:MAM-V80
18 6728 77.4 76.5 71.3 4 3500 74.8 76.5 73.0
20 3228 74.8 76.5 73.0 5 2719 76.5 75.7 68.7
22 2698 76.5 75.7 68.7 6 1809 75.7 76.5 73.0

RG2:MAM-V100
18 11097 84.3 80.0 67.8 4 5316 76.5 81.7 71.3
20 5084 80.0 81.7 72.2 5 4525 80.9 80.9 69.6
22 4538 80.9 80.9 69.6 6 3255 80.0 81.7 65.2

RG3:BS-V500
8 24989 97.6 95.9 83.5 2 1288 96.5 94.7 83.5
10 6285 96.5 93.5 84.7 4 599 95.3 92.9 80.0
12 2073 93.5 92.9 86.5 6 495 95.3 92.9 78.2

RG3:BS-V1000
4 16833 95.9 92.4 84.7 2 911 95.9 92.9 81.2
6 1404 95.3 91.2 84.1 4 766 94.7 92.4 81.2
8 716 92.9 91.2 84.1 6 596 93.5 91.8 79.4

The RG3 graphs belong to two classes (Bonsai vs. Sunflower). Thus a two-class

problem can again be identified. The patterns discovered by the standard FSM al-

gorithms and gSpan-ATW were used to generate classifiers (three in each case). The

accuracy results obtained from using these classifiers are shown in Table 6.8. As can be

seen from the table, three classifiers built using patterns discovered using gSpan-ATW

with CW1-E achieve very similar accuracy results to those built using patterns discov-

ered using the standard FSM algorithms. However, gSpan-ATW with CW1-E uses far

fewer features than the standard FSM algorithms to build the classifiers. For instances,

124

the largest number of features used by the standard FSM algorithms is 24989, while

the largest number of features used by gSpan-ATW with CW1-E is 1288. Considering

the performance of the classifiers on both the BS-V500 and BS-V1000 data, the per-

formance of the classifiers for BS-V500 appears to be better than that for BS-V1000.

In addition, since both BS-V500 and BS-V1000 represent the same collection of photo-

graphic images, it can be inferred that the BS-V500 is a more accurate representation

for that collection of images.

When using gSpan-ATW coupled with CW1-N on the RG2 and RG3 data, the per-

formance of the classifiers built using the gSpan-ATW patterns, as shown in Appendix

B.2.1.2, is similar to when using gSpan-ATW coupled with CW1-E.

6.3.3 The evaluation of the ATW scheme on directed graphs

As identified in Chapter 3, the graphs in the RG4 (Document base) and RG5 (So-

cial network) data sets are directed. It is relatively straightforward to modify gSpan

to accommodate various types of graphs, while FFSM and GASTON do not provide

mechanisms to allow their adaptation to the mining of directed graphs. Therefore, only

the performance of gSpan and gSpan-ATW could be compared in the context of the

evaluation of the ATW scheme with respect to the RG4 and RG5 data.

Efficiency test. When applying gSpan-ATW to the RG4 data, the CW1 weighting

function, including CW1-N for vertex weighting and CW1-E for edge weighting, was

applicable to graphs in RG4. Because significant patterns could not be found in these

data sets when using relatively high support thresholds, low support thresholds were

employed.

Table 6.9: The performance of gSpan-ATW using CW1 on the RG4 data

Dataset
gSpan

τ(%)
gSpan-ATW + CW1-E gSpan-ATW + CW1-N

σ(%)
runtime

patterns runtime # patterns runtime # patterns
(in seconds)

RG4:IMDB

0.1 6.738 8768 0.1 5.125 5523 5.412 5523
0.2 4.888 3932 0.2 4.413 3319 4.663 3319
0.4 3.965 1866 0.4 3.698 1780 3.607 1780
0.6 3.126 1230 0.6 3.358 1203 3.277 1203

RG4:Amazon

0.4 8.184 4680 0.4 7.240 2875 7.617 2875
0.6 7.341 2901 0.6 6.415 2166 6.845 2166
0.8 7.051 1974 0.8 6.217 1653 6.764 1653
1 6.406 1534 1 6.156 1349 6.376 1349

RG4:Ohsumed

0.4 7.391 4138 0.4 6.782 2646 6.429 2646
0.6 5.762 2630 0.6 5.445 2010 5.548 2010
0.8 5.366 1902 0.8 4.911 1582 5.243 1582
1 5.178 1521 1 4.647 1317 5.016 1317

The performance of gSpan-ATW using CW1 on the RG4 data is presented in Table

6.9. In the table, the same range of support thresholds was used for gSpan and gSpan-

ATW on each of three data sets that belong to RG4 in order to compare the performance

between gSpan and gSpan-ATW. As can be seen in the table, for all three data sets,

125

gSpan-ATW coupled with CW1-E or CW1-N discovers substantially fewer patterns

than gSpan. For the IMDB data, when the support threshold falls below 0.4%, the

advantage of gSpan-ATW over gSpan starts to become evident; when the support

threshold is over 0.4%, the performance of gSpan-ATW is very similar to that of gSpan.

In the case of the Amazon and Ohsumed data sets, the runtime cost of gSpan-ATW

is constantly less than that of gSpan. Furthermore, Table 6.9 shows that gSpan-ATW

coupled with CW1-E mostly runs slightly faster than gSpan-ATW coupled with CW1-

N, but discovers the same number of patterns.

When using the RG5 data, the CW1-E weighting function was used for graphs in

each collection. Additionally, the SW5 weighting function was employed to distribute

the weights for vertexes of graphs in each collection. Similar to the RG4 data, the

same range of support thresholds was used for each data set that belong to RG5. The

performance of gSpan-ATW using CW1-E and SW5 on the RG5 data is presented in

Table 6.10. It can clearly be seen from the table that gSpan-ATW coupled with CW1-E

or SW5 runs faster and identifies significantly fewer patterns than gSpan. In addition,

using CW1-E or SW5, there seems to be little difference in the number of patterns

identified by gSpan-ATW. However, CW1-E entails the least amount of runtime.

Table 6.10: The performance of gSpan-ATW using CW1-E and SW5 on the RG5 data

Dataset
gSpan

τ(%)
gSpan-ATW + CW1-E gSpan-ATW + SW5

σ(%)
runtime

patterns runtime # patterns runtime # patterns
(in seconds)

RG5:Lancashire

10 5.691 8107 10 1.103 931 1.324 932
12 2.891 3520 12 0.994 817 1.249 817
14 2.010 1898 14 0.923 713 1.177 712
16 1.575 1211 16 0.887 631 1.164 631

RG5:Scotland

10 43.836 84342 10 2.366 3079 2.983 3079
12 11.341 20895 12 2.261 2597 2.901 2597
14 5.531 7856 14 2.152 2235 2.784 2235
16 3.685 3952 16 2.067 1899 2.591 1899

RG5:GB

15 197.525 59081 15 71.396 16393 80.717 16393
18 108.26 25248 18 60.525 13432 67.263 13431
20 79.076 17001 20 52.055 11735 57.971 11735
22 53.836 11540 22 44.609 9680 52.005 9680

Classification evaluation. The graphs in each of the IMDB, Amazon and Ohsumed

data sets are allocated to two classes, a number of two-class classification problems can

thus be identified. The patterns discovered by the gSpan and gSpan-ATW algorithms

respectively were therefore employed to build classifiers. For the IMDB data, as de-

scribed in [Ifrim et al., 2008], the classification task was considered to be challenging

because the two categories of class labels (Crime vs. Drama) are very close in terms of

their theme. The results of the classifiers on the RG4 data using CW1-E are presented

in Table 6.11. The performance of the classifiers built using patterns discovered by

gSpan-ATW coupled with CW1-N was found to be very similar to that when using

gSpan-ATW coupled with CW1-E. Thus, for clarity purpose, only the case of gSpan-

126

ATW using CW1-E is reported here. The result of the classifiers built using patterns

discovered by gSpan-ATW coupled with CW1-N can be found in Appendix B.3.1.1.

Table 6.11: The accuracy of the classifiers using patterns discovered by gSpan-ATW
using CW1-E on the RG4 data

Dataset
gSpan gSpan-ATW + CW1-E

σ(%) #F NBC SVM C4.5 τ(%) #F NBC SVM C4.5

RG4:IMDB
0.1 8768 72.9 71.8 73.0 0.2 3319 72.9 72.3 73.1
0.2 3932 72.9 72.1 73.0 0.4 1780 72.9 72.6 73.1
0.4 1866 72.9 72.5 73.1 0.6 1203 72.9 72.6 73.1

RG4:Amazon
0.4 4680 92.4 92.7 91.2 0.4 2875 92.4 92.8 91.1
0.6 2901 92.4 92.7 91.2 0.6 2166 92.4 92.8 91.1
0.8 1974 92.5 93.0 91.2 0.8 1653 92.5 93.0 91.1

RG4:Ohsumed
0.4 4138 76.9 78.5 74.7 0.4 2646 77.0 79.2 75.1
0.6 2630 76.9 78.2 74.7 0.6 2010 76.9 79.0 75.1
0.8 1902 76.9 77.8 74.7 0.8 1582 77.4 79.3 75.5

From Table 6.11 it can be seen that compared with the classifiers generated using

patterns discovered by gSpan, the three classifiers built using patterns discovered by

gSpan-ATW employ a much smaller number of features to achieve very similar perfor-

mance.

6.3.4 Summary & discussion

The evaluation of the ATW scheme was conducted by applying gSpan-ATW to different

data sets with different weighting functions. Because the implementation of the ATW

scheme requires either vertex or edge weightings, for data that did not feature such

weightings three structural weighting functions were used. In cases where the data

featured content weightings, the content weighting function, CW1, was used instead of

the application of any structural weighting functions, because the former was assumed

to be more descriptive (accurate in the context of the application) than the latter.

For the RT1 and RG1 data, the graphs were weighted using the SW1, SW4 and

SW5 weighting functions. The performance of gSpan-ATW on this data indicates that

gSpan-ATW using SW5 is more efficient than when using either SW1 or SW4, in terms

of the cost of the runtime and the number of patterns discovered. For the RG2 data,

the difference between gSpan-ATW using either vertex or edge weighting is noticeable;

while for the RG3, RG4, and RG5 data, the difference between gSpan-ATW using

either the vertex weighting or edge weighting is negligible. For other data sets, the

performance of gSpan-ATW using different weighting functions is very close.

On the whole, the performance of gSpan-ATW on different types of data indicates

that the ATW scheme is effective and efficient with respect to the number of patterns

discovered by the standard FSM algorithms. Moreover, the quality of the patterns dis-

covered by gSpan-ATW was at a comparable level with the quality of those discovered

using the standard FSM algorithms.

127

6.4 The Evaluation of the AW scheme

According to Sub-section 5.2.2, the implementation of the AW scheme requires edge

weights. Since the data sets included in ST1 (Synthetic trees), ST2 (Synthetic im-

ages), RT1 (Web logs), and RG1 (Chemical compounds), do not have edge weights

(see Chapter 3), the SW1 and SW4 weighting functions were employed to generate

edge weights for these data sets. Additionally, results from experiments (not reported

here) indicated that the application of the AW scheme is not suitable with respect to

the RT1:CSLOGS-ALL, RG2, RG3:BS-V1000, and RG4 data sets, because gSpan-AW

only discovers small sized patterns with respect to these data sets, and furthermore,

using different λ thresholds was found to have no effect on restraining the number of

patterns discovered, when the support threshold is fixed. Thus, the AW scheme can

only be applied to the following data:

• Trees - ST1, ST2, RT1:CSLOGS-1, RT1:CSLOGS-2

• Undirected graphs - RG1, and RG3:BS-V500

• Directed graphs - RG5

The evaluation of the AW scheme on these data sets is examined in the following

sub-sections.

6.4.1 The evaluation of the AW scheme on trees

For the experiments on trees, the SW1 and SW4 weighting functions were applied to the

tree data: ST1, ST2, RT1:CSLOGS-1 and RT1:CSLOGS-2. Experiments (not reported

here) indicated that standard FSM algorithms operated well on the ST1, RT1:CSLOGS-

1, and RT1:CSLOGS-2 data, when the support threshold was relatively high. Therefore,

low support thresholds were used for the experiments on ST1, RT1:CSLOGS-1, and

RT1:CSLOGS-2.

Efficiency test. The performance of gSpan-AW using SW1 on the ST1, ST2 and

RT1:CSLOGS-1(2) data is presented in Table 6.12. In the table, columns 2 and 8

denote the support threshold used by the respective standard FSM algorithms and

gSpan-AW, and the symbol λ in column 7 denotes the weighting threshold used for the

AW scheme. As can be seen in the table the number of patterns discovered by gSpan-

AW coupled with SW1 discovers significantly fewer patterns than the standard FSM

algorithms, although the runtime cost of the former varies with respect to the different

data sets. Generally, for the ST1:D10 and ST2 data, gSpan-AW using SW1 outperforms

the standard FSM algorithms with respect to both the runtime cost and the number of

patterns discovered; for the ST1:T1M and RT1:CSLOGS-1(2) data, gSpan-AW using

SW1 runs faster than three standard FSM algorithms only when using low support

128

thresholds, because the effort to compute the weightings tends to cancel out any gain

achieved by using the AW scheme. In such situations, the gains achieved by gSpan-

AW become evident only when the support threshold is relatively low. Table 6.12 also

suggests that GASTON fails to operate with low thresholds when applied to ST1:T1M

and ST2, due to out-of-memory errors, while gSpan and FFSM continue to operate.

Table 6.12: The performance of gSpan-AW using SW1 on the ST1, ST2, and
RT1:CSLOGS-1(2) data

Dataset σ(%)
runtime (in seconds)

patterns
gSpan-AW + SW1

gSpan FFSM GASTON λ τ(%) runtime # patterns

ST1:D10

0.05 10.102 8.657 14.037 21057

0.01

0.05 3.651 136
0.1 7.586 5.927 9.473 7257 0.1 3.624 103
0.5 4.646 3.465 6.322 727 0.5 3.328 41
1 3.913 2.743 4.917 196 1 2.674 28
2 3.341 2.556 4.782 179 2 2.503 22

ST1:T1M

0.05 183.656 167.000 n/a 24492

0.01

0.05 68.703 116
0.1 135.357 115.81 n/a 9493 0.1 66.800 88
0.5 71.071 51.535 109.163 607 0.5 63.626 39
1 60.592 36.970 90.239 196 1 61.833 27
2 59.691 34.053 84.725 178 2 60.466 20

ST2:IM1000-D4

6 142.697 77.36 n/a 435890

0.6

6 1.118 297
8 19.815 10.143 15.752 41398 8 0.986 217
10 12.146 6.161 9.778 21967 10 0.867 169
12 5.395 3.067 5.737 7263 12 0.771 132
14 3.1 1.940 4.638 2782 14 0.697 105

ST2:IM1000-D5

10 563.748 304.526 n/a 489352

0.6

10 6.018 806
12 110.368 67.821 51.791 61333 12 5.137 579
14 66.628 43.268 33.616 31460 14 4.392 472
16 42.970 30.006 20.871 16399 16 3.947 401
18 28.725 22.882 15.286 9215 18 3.604 346

ST2:IM1000-D6

15 592.118 407.344 n/a 112683

0.6

15 31.823 2011
20 308.146 233.924 n/a 49289 20 20.505 1130
25 132.038 109.170 44.885 14644 25 14.983 724
30 69.509 67.888 27.517 6936 30 10.297 470

RT1:CSLOGS-1

0.2 9.871 3.189 5.117 46104

0.9

0.2 0.964 1747
0.4 1.267 0.637 2.050 2582 0.4 0.820 698
0.6 0.753 0.455 1.789 833 0.6 0.744 439
0.8 0.623 0.373 1.667 455 0.8 0.736 307
1 0.554 0.334 1.561 286 1 0.703 252

RT1:CSLOGS-2

0.2 6.388 2.503 3.633 41601

0.9

0.2 0.878 1542
0.4 1.080 0.592 1.790 2485 0.4 0.757 685
0.6 0.679 0.43 1.571 836 0.6 0.747 421
0.8 0.540 0.35 1.444 462 0.8 0.724 316
1 0.495 0.299 1.349 280 1 0.685 237

When using SW4, the performance of gSpan-AW on the same groups of data is

shown in Table B.3. As the table suggests, gSpan-AW using SW4 identifies a consid-

erably smaller number of patterns than when using SW1. However, for the ST1 and

ST2:IM1000-D4 data, gSpan-AW coupled with SW4 seems to require more runtime

than that when using SW1. Especially for ST1:T1M with 1000000 records, the run-

time cost of gSpan-AW using SW4 is lower than both gSpan and FFSM only when the

support threshold is below 0.5%, which may indicate that the gain of generating a sig-

nificantly smaller number of patterns by gSpan-AW using SW4 is at the cost of longer

129

runtime than the standard FSM algorithms. For the ST2:IM1000-D5, ST2:IM1000-D6,

and RT1:CSLOGS-1(2) data, it is evident from the table that gSpan-AW using SW4

is more efficient than that using SW1 in terms of the runtime cost and the number of

patterns discovered.

A further analysis of gSpan-AW using SW1 and SW4 on ST2 and RT1:CSLOGS-

1(2) with a wide range of support thresholds, in comparison with gSpan, FFSM, and

GASTON, is provided in Appendix B.1.2.

Table 6.13: The accuracy of the classifiers using patterns discovered by gSpan-AW with
SW1 on the ST2 and RT1:CSLOGS-1(2) data

Dataset
standard FSM algorithms gSpan-AW + SW1

σ(%) #F NBC SVM C4.5 λ τ(%) #F NBC SVM C4.5

ST2:IM1000-D4
12 7263 92.9 95.4 94.9

0.6
2 1388 92.4 95.8 93.9

14 2782 92.7 95.4 94.6 4 522 92.3 95.3 94.2
16 1659 92.6 95.5 94.3 6 297 92.5 95.7 94.4

ST2:IM1000-D5
20 6287 87.0 91.4 91.9

0.6
4 4509 88.2 91.9 93.0

25 2453 86.2 91.4 91.3 6 2000 86.2 91.4 91.3
30 1163 86.0 91.4 70.8 8 1188 86.1 91.6 91.3

ST2:IM1000-D6
30 6936 81.9 76.4 86.8

0.6
10 5266 84.5 80.2 87.8

35 3720 81.2 75.1 86.5 15 2011 81.2 75.1 86.5
40 1869 81.0 75.2 86.7 20 1130 81.0 75.2 86.7

RT1:CSLOGS-1
0.3 7971 79.8 81.8 81.8

0.9
0.2 1747 80.3 81.4 81.7

0.4 2582 79.8 81.8 81.8 0.4 698 80.3 81.4 81.6
0.5 1286 79.8 81.2 81.2 0.6 439 80.5 81.3 81.8

RT1:CSLOGS-2
0.3 6445 80.4 81.9 82.1

0.9
0.1 4270 80.6 80.7 82.2

0.4 2485 80.4 82.0 82.1 0.2 1542 80.6 81.0 82.2
0.5 1281 80.4 81.9 81.9 0.4 685 80.6 81.9 82.3

Classification evaluation. The classification accuracies obtained by the classifiers

generated from patterns obtained using gSpan-AW coupled with SW1, with respect to

the ST2 and RT1:CSLOGS-1(2) data are presented in Table 6.13. In the table, different

range of support thresholds was used for the respective standard FSM algorithms and

gSpan-AW using SW1, in order to extract effective patterns for the classification. Table

6.13 reveals that the performance of the classifiers built using patterns discovered using

gSpan-AW is very close to those built using patterns discovered using the standard FSM

algorithms. However, the performance of the classifiers built using patterns discovered

by gSpan-AW is achieved with a small number of features while the classifiers built

using patterns discovered by the standard FSM algorithms require a substantially large

number of features.

In comparison with Table 6.13, the performance of the classifiers built using patterns

discovered by gSpan-AW coupled with SW4, as shown in Table B.4 further suggests

that, when using SW4, the classifiers built using patterns discovered by gSpan-AW

require considerably fewer features than when using SW1, but the former achieves

slightly lower accuracy than the latter on ST2 and very similar performance to the

latter on RT1:CSLOGS-1(2).

130

6.4.2 The evaluation of the AW scheme on undirected graphs

As noted above, the AW scheme is applicable to only RG1 and RG3:BS-V500. For the

RG1 data, because the graphs in RG1 do not have edge weights, the SW1 and SW4

functions were used to generate the required edge weights. For the RG3:BS-V500 data

set, the edge weighting, CW1-E, was used to compute the weighting ratio in the AW

scheme instead of SW1 or SW4, because the user provided edge weighting (i.e. CW1-E)

was assumed to be more representative than edge weights produced using the proposed

structural weighting functions (see Chapter 4).

Efficiency test. For the RG1:CH1 data set, although gSpan-AW coupled with

SW1 or SW4 discovers a much lower number of patterns and requires significantly less

runtime than the standard FSM algorithms, the patterns discovered by the former are

less effective than those discovered by the latter, in terms of classification effectiveness.

This may suggest that both SW1 and SW4 are not appropriate edge weightings for

the graphs in CH1, at least in the context of the AW scheme. There are two possible

explanations for this. Firstly, it is generally recognized that using patterns with high

frequency do not necessarily lead to good classifications. The weighted support mea-

sure (i.e. τ) adopted in the AW scheme tends to miss the patterns with low frequency

but high discriminative ability. Therefore, very low support thresholds are required

for gSpan-AW, in order to increase the classification accuracy. Secondly, the weighting

ratio computed using SW1 or SW4 is not effective for extracting highly discriminative

patterns, which play an important role in improving classification accuracy. Accord-

ingly, the experimental result of applying gSpan-AW with SW1 or SW4 on the CH1 data

set is omitted in this sub-section (however details are provided in Appendix B.2.2.1).

Tables 6.14 shows the performance of gSpan-AW using SW1 on the CH2 data set.

As can be seen from the tables, using the same range of support thresholds, gSpan-AW

coupled with SW1 requires far less runtime and discovers a substantially lower number

of patterns than gSpan and FFSM while GASTON can not operate below a support

threshold of 10%, due to the out-of-memory error.

Table 6.14: The performance of gSpan-AW using SW1 on the CH2 data

Dataset σ(%)
runtime (in seconds)

patterns λ
gSpan-AW + SW1

gSpan FFSM GASTON τ(%) runtime # patterns

RG1:CH2

4 572.614 740.596 n/a 8624

0.4

4 47.379 112
6 335.605 506.909 n/a 3939 6 38.461 80
8 243.612 289.341 n/a 2284 8 34.904 67
10 171.225 242.826 n/a 1502 10 31.160 59

Additionally, Table B.23 indicates that gSpan-AW coupled with SW4 on CH2 ap-

pears to be slightly more efficient than that coupled with SW1, in terms of the runtime

cost and the number of patterns discovered. A direct comparison between gSpan-AW

using SW1 or SW4 and the standard FSM algorithms on CH2 is further shown in

131

Figure B.21.

The performance of gSpan-AW using CW1-E on the RG3:BS-V500 data is shown in

Table 6.15. In the table, the performance results using the standard FSM algorithms are

not available because they can not operate below a support threshold of 8%. However,

it can be seen from the table that the runtime and the number of patterns discovered by

gSpan-AW decreased with the growth of the support threshold (when the λ threshold

is fixed).

Table 6.15: The performance of of gSpan-AW with CW1-E on the RG3:BS-V500 data

Dataset σ(%)
runtime (in seconds)

patterns λ
gSpan-AW + CW1-E

gSpan FFSM GASTON τ(%) runtime # patterns

RG3:BS-V500

1 n/a n/a n/a n/a

0.4

1 2.986 4923
2 n/a n/a n/a n/a 2 1.807 1171
4 n/a n/a n/a n/a 4 1.572 588
6 n/a n/a n/a n/a 6 1.445 493

Classification evaluation. The patterns discovered using gSpan-AW with CW1-

E when applied to the BS-V500 data were used to construct frequent pattern based

classifiers. The accuracy results obtained using these classifiers are listed in Table 6.16.

As can be seen from the table, the three classifiers built using patterns discovered by

gSpan-AW achieve fairly good results but require a significantly smaller number of

features than when using patterns discovered by the standard FSM algorithms to build

the classifiers.

Table 6.16: The accuracy of the classifiers using patterns discovered by gSpan-AW
using CW1-E on the RG3:BS-V500 data

Dataset
standard FSM algorithms

λ
gSpan-AW + CW1-E

σ(%) #F NBC SVM C4.5 τ(%) #F NBC SVM C4.5

RG3:BS-V500
8 24989 97.6 95.9 83.5

0.4
1 4923 96.5 95.9 82.4

10 6285 96.5 93.5 84.7 2 1171 96.5 93.5 83.5
12 2073 93.5 92.9 86.5 4 588 95.3 92.9 80.0

6.4.3 The evaluation of the AW scheme on directed graphs

As noted previously the AW scheme is not applicable to the RG4 data. Thus, only

the performance of gSpan and gSpan-AW on RG5 was compared. Because the graphs

in RG5 had user defined edge weightings, CW1-E was used to compute the weighting

ratio in the AW scheme.

Efficiency test. The performance of gSpan-AW on the RG5 data is presented

in Table 6.17. From the table it can be clearly seen that the performance of gSpan-

AW with CW1-E is better than gSpan in terms of the runtime cost and the number of

patterns identified. For the largest data set, GB, when the support threshold is low (i.e.

below 22%) the advantage of gSpan-AW over gSpan becomes prominent with respect

132

to the runtime cost and the number of patterns identified; when the support threshold

is at 22%, the runtime difference between gSpan-AW and gSpan becomes negligible.

The RG5 data did not feature class labels therefore classification accuracy tests

could not be conducted.

Table 6.17: The performance of gSpan-AW using CW1-E on the RG5 data

Dataset
gSpan gSpan-AW + CW1-E

σ(%) runtime (in seconds) # patterns λ τ(%) runtime # patterns

RG5:Lancashire

10 5.691 8107

0.6

10 1.562 1082
12 2.891 3520 12 1.396 923
14 2.010 1898 14 1.208 765
16 1.575 1211 16 1.079 669

RG5:Scotland

10 43.836 84342

0.6

10 5.762 3847
12 11.341 20895 12 2.977 2767
14 5.531 7856 14 2.546 2287
16 3.685 3952 16 2.287 1906

RG5:GB

15 197.525 59081

0.6

15 136.352 17485
18 108.26 25248 18 83.668 13831
20 79.076 17001 20 67.422 11979
22 53.836 11540 22 52.863 9770

6.4.4 Summary & discussion

The evaluation of the AW scheme was conducted by testing the performance of gSpan-

AW in comparison with the performance of three standard FSM algorithms. Because

the implementation of the AW scheme required edge weights, effective (accurate) edge

weighting functions are the key to the effectiveness of the AW scheme.

In the evaluation of the AW scheme, the SW1 and SW4 weighting functions were

used to compute edge weights for data which did not feature the required edge weights.

For some data sets, either the SW1 or SW4 function worked well; but for other data

sets, these two weighting functions did not work effectively. The reason for this is that

for some data sets, such as the ST1:D10, ST2, RT1:CSLOGS-1, RT1:CSLOGS-2, and

RG1:CH2, the SW1 or SW4 function can accurately quantify the relationship between

two vertexes connecting the edge, resulting in an effective weighting ratio r(g) used in

the AW scheme. For some other data sets such as ST1:T1M, the advantage of gSpan-

AW over gSpan is evident only when using low support thresholds, because the gain

achieved using the AW scheme is neutralized by the effort to compute SW1 or SW4 in

a very large data set. For some other data sets, such as RG1:CH1, although gSpan-AW

is efficient, both the weighted support and the weighting ratio computed using either

SW1 or SW4 were found to be ineffective for extracting patterns with discriminative

power, which lead to ineffective classifications. Thus the goodness of the weighting

function used in the AW scheme is actually dependent on the features of the graph

data.

For graphs which have a user defined edge weighting such as RG3:BS-V500 and

RG5, the evaluation of gSpan-AW indicated that using the AW scheme can substantially

133

reduce the large number of patterns that would otherwise be identified by the standard

FSM algorithms.

Overall we can conclude that the effectiveness of the AW scheme requires a good

edge weighting function, and that how to choose the appropriate edge weighting func-

tion is data dependent.

6.5 The Evaluation of the CMW scheme

The CMW scheme was coupled with four edge weighting functions: SW2, SW3, CW2,

and CW3, which were introduced in Chapter 4. Among these four weighting functions,

SW2 and SW3 were applicable to data without predefined class labels, and CW2 and

CW3 to data with predefined class labels. Consequently, the data sets used for the

evaluation of the CMW scheme can be categorized into two “divisions” according to

whether the data sets contain class labels or not.

• Division A: data sets that do not have class labels

– Trees - ST1 (Synthetic trees) and RT1:CSLOGS-ALL (Web logs)

– Undirected graphs - RG1:CH2 (Chemical compounds)

– Directed graphs - RG5 (Social network)

• Division B: data sets that have class labels

– Trees - ST2 (Synthetic images), RT1:CSLOGS-1(2) (Web logs)

– Undirected graphs - RG1:CH1 (Chemical compounds), RG2 (Mammogra-

phy), and RG3 (Photographic images)

– Directed graphs - RG4 (Document base)

Hence, for data sets belong to Division A, SW2 and SW3 were employed to compute

edge weights; for data sets belong to Division B, CW2 and CW3 were used. SW2 and

SW3 can also be applied to Division B; however CW2 and CW3 were clearly not

applicable to data sets belong to Division A (because data sets in Division A do not

have class labels). In the following reported experiments CW2 and CW3 were used in

relation to Division B, except in certain cases when using SW2 and SW3 was found to

be advantageous.

The evaluation of the CMW scheme on the data sets that belong to these two

divisions is reported in the following sub-sections, in terms of trees, undirected graphs,

and directed graphs respectively.

134

6.5.1 The evaluation of the CMW scheme on trees

The tree data used for the experiments using the CMW scheme included ST1, ST2, RT1.

According to the features of the trees, the performance analysis of the gSpan-CMW

algorithm on trees belong to Division A is reported first, followed by the performance

analysis of gSpan-CMW on trees belong to Division B.

Efficiency test. The performance of gSpan-CMW on the ST1 and RT1:CSLOGS-

ALL data is presented in Table 6.18. In the table, the symbol θ denotes the weighting

threshold used for the CMW scheme. It can be clearly seen from the table that gSpan-

CMW using SW2 on ST1 discovers substantially fewer patterns than the standard FSM

algorithms. For the ST1:D10 data set, gSpan-CMW using SW2 runs constantly faster

than the standard FSM algorithms; for the ST1:T1M data, gSpan-CMW using SW2

consistently runs faster than gSpan and GASTON, but runs slower than FFSM when

using support thresholds of over 0.5%. It should also be noted that both standard

FSM algorithms and gSpan-CMW used 3GB of memory to carry out the mining on the

ST1:T1M data in order to obtain an appropriate comparison.

Table 6.18: The performance of gSpan-CMW using SW2 on the ST1 and RT1:CSLOGS-
ALL data

Dataset σ(%)
runtime (in seconds)

patterns
gSpan-CMW + SW2

gSpan FFSM GASTON θ σ(%) runtime # patterns

ST1:D10

0.05 10.102 8.657 14.037 21057

0.6

0.05 4.534 132
0.1 7.586 5.927 9.473 7257 0.1 4.251 112
0.5 4.649 3.465 6.322 727 0.5 2.594 56
1 3.913 2.743 4.917 196 1 2.530 31
2 3.341 2.556 4.782 179 2 2.474 30

ST1:T1M

0.05 183.656 167.000 n/a 24492

0.6

0.05 68.771 107
0.1 135.357 115.810 n/a 9493 0.1 63.551 89
0.5 71.071 51.535 109.163 607 0.5 53.105 39
1 60.592 36.970 90.239 196 1 47.482 31
2 59.691 34.053 84.725 178 2 46.716 29

RT1:CSLOGS-ALL

0.3 4.780 3.902 9.920 2268

0.6

0.3 2.759 732
0.4 3.358 2.867 7.319 1134 0.4 2.420 514
0.5 2.465 2.543 6.650 684 0.5 2.148 361
0.6 2.311 2.321 5.837 498 0.6 1.770 288
0.8 2.063 2.062 5.528 311 0.8 1.734 200

Since the size of the RT1:CSLOGS-ALL data set is very large, and both gSpan-

CMW and the standard FSM algorithms can operate well on the CSLOGS-ALL data,

a range of low support thresholds was used to evaluate the performance of gSpan-

CMW on CSLOGS-ALL. It can be seen from Table 6.18 that gSpan-CMW using SW2

performs better than the three standard FSM algorithms in terms of the runtime cost

and the number of patterns discovered.

When gSpan-CMW using SW3 was applied to the same groups of data, a very

similar performance can be observed in Table B.7. However, in comparison with Table

6.18, gSpan-CMW using SW3 appears to run slightly faster and identifies a smaller

number of patterns than that using SW2.

135

Table 6.19: The performance of gSpan-CMW using CW2 on the ST2 and
RT1:CSLOGS-1(2) data

Dataset σ(%)
runtime (in seconds)

patterns
gSpan-CMW + CW2

gSpan FFSM GASTON θ σ(%) runtime # patterns

ST2:IM1000-D4

6 142.697 77.36 n/a 435890

3

6 0.780 181
8 19.815 10.143 15.752 41398 8 0.686 142
10 12.146 6.161 9.778 21967 10 0.639 109
12 5.395 3.067 5.737 7263 12 0.562 82
14 3.100 1.940 4.638 2782 14 0.530 72

ST2:IM1000-D5

10 563.748 304.526 n/a 489352

3

10 10.047 2022
12 110.368 67.821 51.791 61333 12 8.144 1682
14 66.628 43.268 33.616 31460 14 6.052 1260
16 42.970 30.006 20.871 16399 16 3.978 680
18 28.725 22.882 15.286 9215 18 2.933 410

ST2:IM1000-D6

15 592.118 407.344 n/a 112683

3

15 21.263 2203
20 308.146 233.924 n/a 49289 20 17.691 1725
25 132.038 109.170 44.885 14644 25 13.650 1237
30 69.509 67.888 27.517 6936 30 7.067 539

RT1:CSLOGS-1

0.2 9.871 3.189 5.117 46104

50

0.2 1.965 695
0.4 1.267 0.637 2.050 2582 0.4 1.045 316
0.6 0.753 0.455 1.789 833 0.6 0.905 194
0.8 0.623 0.373 1.667 455 0.8 0.749 141
1 0.554 0.334 1.561 286 1 0.640 109

RT1:CSLOGS-2

0.2 6.388 2.503 3.633 41601

50

0.2 1.740 735
0.4 1.080 0.592 1.790 2485 0.4 0.966 319
0.6 0.679 0.430 1.571 836 0.6 0.760 196
0.8 0.540 0.350 1.444 462 0.8 0.721 141
1 0.495 0.299 1.349 280 1 0.655 107

For the ST2 data, the performance of gSpan-CMW using CW2 is shown in Table

6.19. As can be seen in the table, gSpan-CMW using CW2 clearly discovers significantly

fewer patterns with considerably less runtime than the standard FSM algorithms.

The trees in the RT1:CSLOGS-1 and RT1:CSLOGS-2 data both have a similar

structure. The standard FSM algorithms, gSpan, FFSM, and GASTON operated well

on CSLOGS-1 and CSLOGS-2 except when the support threshold was very low. Table

6.19 also shows the performance of gSpan-CMW using CW2 on the RT1:CSLOGS-1

and RT1:CSLOGS-2 data sets. It can be observed from the table that gSpan-CMW

coupled with CW2 runs slower than gSpan and FFSM when the support threshold is

over 0.4% and that the former runs faster than the latter when the support threshold

is below 0.4%. The reason for this behaviour is that the gain achieved by gSpan-CMW

using relatively high support thresholds is less than the time needed to compute the

weightings using CW2.

The performance of gSpan-CMW coupled with CW3 when applied to the ST2 data

is shown in Table B.8. For the ST2:IM1000-D4 data set, Table B.8 shows that the

performance of gSpan-CMW using CW3 is very close to that of gSpan-CMW using

CW2. However, for the ST2:IM1000-D5 and ST2:IM1000-D6 data sets, Table B.8 shows

that the number of patterns discovered by gSpan-CMW using CW3 is significantly

smaller than that discovered by gSpan-CMW using CW2, and the former runs faster

than the latter. In the case of using the CSLOGS-1 and CSLOGS-2 data sets, the

136

performance of gSpan-CMW using CW3, as shown in Table B.9, is similar to that of

gSpan-CMW using CW2 but gSpan-CMW coupled with CW3 discovers fewer patterns

than gSpan-CMW coupled with CW2.

Table 6.20: The accuracy of the classifiers using patterns discovered by gSpan-CMW
with CW2 on the ST2 and RT1:CSLOGS-1(2) data

Dataset
standard FSM algorithms gSpan-CMW + CW2

σ(%) #F NBC SVM C4.5 θ σ(%) #F NBC SVM C4.5

ST2:IM1000-D4
12 7263 92.9 95.4 94.9

3
2 731 89.6 95.0 95.0

14 2782 92.7 95.4 94.6 4 360 89.6 94.9 95.2
16 1659 92.6 95.5 94.3 6 181 89.6 94.9 95.2

ST2:IM1000-D5
20 6287 87.0 91.4 91.9

5
2 1514 87.8 89.2 90.7

25 2453 86.2 91.4 91.3 4 834 87.2 89.1 90.5
30 1163 86.0 91.4 70.8 6 559 86.3 88.9 88.7

ST2:IM1000-D6
30 6936 81.9 76.4 86.8

3
10 4901 83.2 79.0 87.5

35 3720 81.2 75.1 86.5 15 2203 81.9 78.5 86.9
40 1869 81.0 75.2 86.7 20 1725 82.3 77.5 88.9

RT1:CSLOGS-1
0.3 7971 79.8 81.8 81.8

50
0.1 1376 80.7 81.1 82.1

0.4 2582 79.8 81.8 81.8 0.2 695 80.7 81.6 82.2
0.5 1286 79.8 81.2 81.2 0.3 437 80.7 81.8 82.2

RT1:CSLOGS-2
0.3 6445 80.4 81.9 82.1

50
0.1 1425 80.4 81.1 82.6

0.4 2485 80.4 82.0 82.1 0.2 735 80.4 81.5 82.6
0.5 1281 80.4 81.9 81.9 0.3 426 80.4 81.4 82.5

Classification evaluation. The patterns discovered by gSpan-CMW using CW2

when applied to the ST2 and RT1:CSLOGS-1(2) data were used to construct the classi-

fier in the same manner as before. The accuracy results obtained using these classifiers

are shown in Table 6.20. In the table, the symbol θ (column 7) denotes the weighting

threshold used with respect to the CMW scheme. Different support thresholds were

used for the respective standard FSM algorithms and gSpan-CMW with CW2 in or-

der to extract optimal patterns for the classification. Referring to the performance of

the classifiers built using patterns discovered by the standard FSM algorithms, Table

6.20 indicates that the classifiers using patterns discovered by gSpan-CMW coupled

with CW2 achieve very similar performance but use a substantially smaller number of

features.

In the case of using CW3, Table B.10 shows the accuracy results of the classifiers

constructed using patterns discovered by gSpan-CMW on the same groups of data. As

can be inferred from Tables 6.20 and B.10, using the CW3 function appears to be more

efficient than CW2 with respect to building the classifiers on ST2 and RT1:CSLOGS-

1(2), because the classifiers built using patterns identified by gSpan-CMW with CW3

require much fewer features than those built using patterns identified by gSpan-CMW

with CW2.

137

6.5.2 The evaluation of the CMW scheme on undirected graphs

For undirected graphs: RG1, RG2, and RG3, the graphs in RG1:CH2 belong to Division

A while the graphs in RG1:CH1, RG2, and RG3 belong to Division B. Thus, the

performance of gSpan-CMW using SW2 or SW3 on RG1:CH2 is described firstly, and

then followed by the performance of gSpan-CMW using CW2 or CW3 on RG1:CH1,

RG2, and RG3.

Efficiency test. As noted previously, both gSpan and FFSM work well on the

CH2 data set. The performance of gSpan-CMW using SW2 or SW3 is presented in

Appendix B.2.3. However, it is interesting to note in Tables B.24 and B.25 that gSpan-

CMW, when coupled with either SW2 or SW3, runs slower than both gSpan and FFSM,

although the former identifies substantially fewer patterns than the latter. The reason

for this phenomenon may be that the time used to compute edge weights using SW2 or

SW3 is more than the time saved by reducing the search space using the CMW scheme.

Thus, there is a trade-off between the number of patterns identified and the cost of the

mining. Is it worthwhile to discover a considerably smaller number of patterns but

at a greater runtime cost? The answer to this question is application dependent. For

instances, it can be seen from Table B.24 that at a support threshold of 4%, gSpan

requires about 10 minutes to find more than 8000 patterns while gSpan-CMW uses

about 20 minutes to find approximately 2000 patterns. Considering the difference in

runtime between the two algorithms the advantage of the reduced number of patterns

identified by gSpan-CMW over gSpan is pronounced. Additionally, using SW2 or SW3,

gSpan-CMW appears to identify the same number of patterns with support thresholds

between 4% and 10%.

Table 6.21 presents the performance of gSpan-CMW with CW2 in comparison with

the standard FSM algorithms on the CH1, RG2, and RG3 data. In the table, the same

range of support thresholds was used for the corresponding standard FSM algorithms

and gSpan-CMW with CW2, in order to easily compare their performance. As can be

seen in the table, for all the data sets, gSpan-CMW using CW2 discovers significantly

fewer patterns than the standard FSM algorithms.

For the CH1 data set, as indicated by Table 6.21, both FFSM and GASTON were

unable to operate below a support threshold of 16%, due to out-of-memory errors while

gSpan-CMW using CW2 ran much faster than gSpan.

Recall that the RG2 Mammography data comprises MAM-V80 and MAM-V100.

Standard FSM algorithms operate well on the RG2 data. Under the support thresholds

between 15% and 21%, gSpan-CMW using CW2 appears to run considerably faster

than both gSpan and FFSM. In the case of MAM-V100, gSpan-CMW using CW2 runs

slightly slower than GASTON when using the support thresholds of over 17%. The

reason for this fact is that the advantage of GASTON is more prominent than the gain

achieved by gSpan-CMW with CW2 when using relatively high support thresholds.

138

Table 6.21: The performance of gSpan-CMW with CW2 on the RG1:CH1, RG2, and
RG3 data

Dataset σ(%)
runtime (in seconds)

patterns
gSpan-CMW + CW2

gSpan FFSM GASTON θ σ(%) runtime # patterns

RG1:CH1

10 1968.265 n/a n/a 10995

8

10 12.059 36
12 1352.122 n/a n/a 7009 12 9.632 27
14 989.547 n/a n/a 4909 14 9.527 27
16 798.799 n/a n/a 3596 16 9.188 25

RG2:MAM-V80

15 67.208 90.949 83.185 54621

2

15 10.192 2777
17 20.110 24.742 22.701 13044 17 6.958 1078
19 9.381 10.310 8.418 3843 19 6.783 537
21 8.029 8.425 5.467 2958 21 6.277 477

RG2:MAM-V100

15 167.893 247.678 198.546 95868

2

15 25.341 6962
17 53.441 65.258 45.597 22688 17 17.810 2446
19 21.728 24.707 13.948 5991 19 15.583 928
21 19.719 21.064 11.282 4784 21 15.515 819

RG3:BS-V500

8 4.992 3.588 8.716 24989

2

8 4.905 11307
10 2.278 1.462 3.072 6285 10 2.478 3565
12 1.685 0.779 1.813 2073 12 1.676 1397
14 1.388 0.584 1.482 1229 14 1.447 909

RG3:BS-V1000

6 0.920 0.448 1.332 1404

4

6 1.014 1063
8 0.671 0.312 1.084 716 8 0.792 619
10 0.421 0.246 0.958 443 10 0.573 400
12 0.368 0.133 0.846 238 12 0.464 227

As noted previously the RG3 photographic data contains two data sets: BS-V500

and BS-V1000. The standard FSM algorithms operated well on both data sets. Table

6.21 indicates that the runtime cost of gSpan-CMW using CW2 is very close to that

of gSpan and slightly slower than FFSM while GASTON is the slowest. The reason

for this is that when using relatively high support thresholds, the benefit of the CMW

scheme is not prominent since the gain obtained by gSpan-CMW is cancelled out by

the effort to compute the edge weights using CW2.

Table B.26 further shows that the performance of gSpan-CMW coupled with CW3

is very similar to that of gSpan-CMW using CW2. However, for RG2 and RG3, gSpan-

CMW coupled with CW3 seems to discover considerably fewer patterns than that

coupled with CW2.

Classification evaluation. The classification results using gSpan-CMW with

CW2 on the CH1 data are presented in Tables 6.22. Compared with the performance

of the classifiers built using patterns discovered by the standard FSM algorithms, Table

6.22 demonstrates that the classifiers built using patterns discovered by gSpan-CMW

achieve a similar level of performance to those built using patterns discovered by the

standard FSM algorithms but with a significantly smaller number of features. Using

an alternative measure, AUC, the performance of the classifiers built using patterns

discovered by gSpan-CMW with CW2 is provided in Table B.27.

Although the performance of the classifiers obtained using patterns discovered by

gSpan-CMW with CW3 is very close to that when using CW2, it can be inferred from

Table B.28 that the classifiers built using patterns discovered by gSpan-CMW with

139

CW3 require a considerably smaller number of features than those built using patterns

discovered by gSpan-CMW with CW2.

Table 6.22: The accuracy of the classifiers using patterns discovered by gSpan-CMW
with CW2 on the CH1 data

Dataset
gSpan gSpan-CMW + CW2

σ(%) #F
Accuracy

θ σ(%) #F
Accuracy

NBC SVM C4.5 NBC SVM C4.5

RG1:CH1
16 3596 77.4 80.1 79.5

8
0.1 1516 76.8 78.3 81.0

18 2735 76.8 79.6 79.2 0.2 830 76.9 78.5 81.4
20 2149 76.8 79.5 80.2 0.4 491 76.9 78.8 81.4

The classification results obtained using patterns generated by gSpan-CMW with

CW2 from RG2 are listed in Tables 6.23. Compared with the performance of the

classifiers built using patterns discovered by the standard FSM algorithms, Table 6.23

shows that the classifiers built using the gSpan-CMW patterns undoubtedly achieve

higher accuracy results using significantly fewer features. In comparison with gSpan-

CMW coupled with CW2, Table B.29 suggests that the classifiers built using patterns

discovered by gSpan-CMW with CW3 employ a far lower number of features, than those

when using gSpan-CMW with CW2, to attain a very similar classification performance.

Table 6.23: The accuracy of the classifiers using patterns discovered by gSpan-CMW
with CW2 on the RG2 and RG3 data

Dataset
standard FSM algorithms

θ
gSpan-CMW + CW2

σ(%) #F NBC SVM C4.5 σ(%) #F NBC SVM C4.5

RG2:MAM-V80
18 6728 77.4 76.5 71.3

2
15 2777 85.2 73.9 73.0

20 3228 74.8 76.5 73.0 17 1078 78.3 75.7 61.7
22 2698 76.5 75.7 68.7 19 537 73.0 73.9 63.5

RG2:MAM-V100
18 11097 84.3 80.0 67.8

2
15 6962 94.8 84.3 72.2

20 5084 80.0 81.7 72.2 17 2446 80.0 77.4 62.6
22 4538 80.9 80.9 69.6 19 928 73.0 78.3 72.2

RG3:BS-V500
8 24989 97.6 95.9 83.5

4
10 2674 96.5 95.3 82.9

10 6285 96.5 93.5 84.7 12 1153 97.6 94.1 82.4
12 2073 93.5 92.9 86.5 14 776 95.3 92.9 82.9

RG3:BS-V1000
4 16833 95.9 92.4 84.7

4
6 1063 94.7 90.6 82.9

6 1404 95.3 91.2 84.1 8 619 94.1 90.0 84.7
8 716 92.9 91.2 84.1 10 400 92.9 91.8 85.3

When using gSpan-CMW with CW2 on RG3, the classification accuracy results

as shown in Table 6.23, indicate that the classifiers built using patterns discovered

by gSpan-CMW with CW2 perform similarly to those built using patterns discovered

by the standard FSM algorithms, but use a substantially smaller number of features,

which is usually an big advantage in terms of the computational effort to construct

the classifiers. Table B.29 shows the similar performance of the classifiers when using

gSpan-CMW with CW3.

140

6.5.3 The evaluation of the CMW scheme on directed graphs

Recall that the directed graphs used for the evaluation of the CMW scheme are the

RG4 document base data and the RG5 social network data. Due to the difference of the

mechanisms adopted using the three standard FSM algorithms, only gSpan could be

modified to handle directed graphs. Thus, both gSpan and gSpan-CMW were adapted

to mine directed graphs and only the performance of these two algorithms were reported

in this sub-section.

Efficiency test. Since the graphs in RG4 have class labels, the CW2 and CW3

functions were used to compute edge weights for the graphs. However, gSpan-CMW

coupled with either CW2 or CW3 required more runtime, in order to identify fewer

patterns than gSpan. More interestingly, the patterns discovered by gSpan-CMW cou-

pled with either CW2 or CW3 were found to be as effective as those discovered by

gSpan in terms of classification accuracy (see Appendix B.3.2.1 for details). Thus, is

it rewarding to spend more time discovering a considerable smaller number of patterns

while maintaining the quality of the patterns? As suggested in Sub-section 6.5.2, the

answer to this is very much application dependent.

Table 6.24: The performance of gSpan-CMW using SW2 and SW3 on the RG4 and
RG5 data

Dataset
gSpan

σ(%)
gSpan-CMW + SW2 gSpan-CMW + SW3

σ(%)
runtime

patterns θ runtime # patterns θ runtime # patterns
(in seconds)

RG4:IMDB

0.1 6.738 8768 0.1

0.8

5.452 5536

0.2

5.909 5676
0.2 4.888 3932 0.2 4.547 3323 4.863 3338
0.4 3.965 1866 0.4 3.505 1780 3.513 1780
0.6 3.126 1230 0.6 3.270 1203 3.297 1203

RG4:Amazon

0.4 8.184 4680 0.4

0.4

7.613 2891

0.1

7.871 2914
0.6 7.341 2901 0.6 6.797 2177 7.021 2195
0.8 7.051 1974 0.8 6.631 1662 6.805 1673
1 6.406 1534 1 6.143 1354 6.317 1362

RG4:Ohsumed

0.4 7.391 4138 0.4

0.6

7.088 2674

0.2

7.358 2693
0.6 5.762 2630 0.6 5.415 2026 5.372 2035
0.8 5.366 1902 0.8 4.989 1592 5.042 1597
1 5.178 1521 1 4.800 1327 4.827 1332

RG5:Lancashire

10 5.691 8107 10

0.4

1.373 949

0.1

1.272 960
12 2.891 3520 12 1.317 832 1.152 841
14 2.010 1898 14 1.261 725 1.094 732
16 1.575 1211 16 1.231 639 1.029 643

RG5:Scotland

10 43.836 84342 10

0.8

3.467 3094

0.6

2.753 3094
12 11.341 20895 12 3.291 2608 2.526 2608
14 5.531 7856 14 3.078 2242 2.410 2242
16 3.685 3952 16 2.966 1905 2.204 1905

RG5:GB

15 197.525 59081 15

0.8

82.956 16487

0.8

75.281 16450
18 108.26 25248 18 69.348 13497 62.016 13471
20 79.076 17001 20 61.067 11785 56.766 11766
22 53.836 11540 22 46.309 9716 48.332 9705

If the class labels for graphs are ignored, the SW2 and SW3 functions can also be

applied to the RG4 data. The performance of gSpan-CMW coupled with SW2 or SW3

is shown in Tables 6.24. For the IMDB data set shown in Table 6.24, when the support

threshold is at 0.6%, gSpan-CMW runs slightly slower than gSpan; when the support

141

threshold is below 0.4%, gSpan-CMW starts to run faster than gSpan. In addition,

gSpan-CMW identifies significantly fewer patterns than gSpan only when the support

threshold is below 0.4%. The reason for this behaviour is that the gain obtained from

using the CMW scheme is cancelled out by the effort to compute the weightings using

the CMW scheme when using relatively high support thresholds to discover small sized

patterns. Table 6.24 also indicates that gSpan-CMW behaves similarly on the Amazon

and Ohsumed data sets (i.e. gSpan-CMW outperforms gSpan in terms of both runtime

and the number of patterns identified). Furthermore, it can be inferred from Table 6.24

that gSpan-CMW coupled with SW2 mostly requires less runtime than when coupled

with SW3 but discovers a similar number of patterns.

When gSpan-CMW was applied to the RG5 data, the performance of gSpan-CMW,

as shown in Table 6.24, suggests that gSpan-CMW coupled with SW2 or SW3 spends

less runtime and identifies significantly fewer patterns than gSpan with the same range

of support thresholds. Further, gSpan-CMW coupled with SW2 discovers a very similar

number of patterns to that when using SW3. Further analysis of the performance of

gSpan-CMW on RG5 using a wide range of support thresholds, in comparison with

gSpan, is provided in Appendix B.3.2.2.

Table 6.25: The accuracy of the classifiers using patterns discovered by gSpan-CMW
with SW2 on the RG4 data

Dataset
gSpan gSpan-CMW + SW2

σ(%) #F NBC SVM C4.5 θ σ(%) #F NBC SVM C4.5

RG4:IMDB
0.1 8768 72.9 71.8 73.0

0.8
0.2 3323 72.9 72.3 73.1

0.2 3932 72.9 72.1 73.0 0.4 1780 72.9 72.6 73.1
0.4 1866 72.9 72.5 73.1 0.6 1203 72.9 72.6 73.1

RG4:Amazon
0.4 4680 92.4 92.7 91.2

0.4
0.4 2891 92.4 92.7 91.2

0.6 2901 92.4 92.7 91.2 0.6 2177 92.4 92.7 91.2
0.8 1974 92.5 93.0 91.2 0.8 1662 92.5 93.0 91.2

RG4:Ohsumed
0.4 4138 76.9 78.5 74.7

0.6
0.4 2674 76.9 78.7 74.7

0.6 2630 76.9 78.2 74.7 0.6 2026 76.9 78.4 74.7
0.8 1902 76.9 77.8 74.7 0.8 1592 76.9 77.8 74.7

Classification evaluation. The patterns discovered by gSpan-CMW using SW2

on RG4 were again used to construct frequent pattern based classifiers. The accuracy

results obtained is shown in Table 6.25. As can be seen from the table, the performance

of the classifiers using patterns discovered by gSpan-CMW is very similar to that using

patterns discovered by gSpan but the former requires a much smaller number of features

to achieve the same level of accuracy. A very similar performance was obtained using

the classifiers built using patterns discovered by gSpan-CMW using SW3 as can be

observed from Table B.36.

142

6.5.4 Summary & discussion

The evaluation of the CMW scheme was conducted using gSpan-CMW with four dif-

ferent weighting functions, SW2, SW3, CW2, and CW3, on a number of different data

sets. The data sets used in the evaluation were divided into two groups: (i) Division

A comprising data sets that do not have associated class labels and (ii) Division B

comprising data sets that do have associated class labels. Accordingly, the SW2 and

SW3 weighting functions were applied to data sets in Division A, and the CW2 and

CW3 weighting functions to the data sets in division B.

For the SW2 and SW3 weighting functions, the computation is relatively simpler

than that for the CW2 and CW3 weighting functions. However, on the RG1:CH2

data set, although gSpan-CMW identifies considerably fewer patterns than the stan-

dard FSM algorithms, the former requires more runtime than the latter. This fact

may suggest that the benefit of using the CMW scheme is cancelled out by the effort

to compute the edge weights through the use of the SW2 or SW3 functions. In the

case of the other data sets that do not have class labels, e.g. ST1, RT1:CSLOGS-ALL,

and RG5, gSpan-CMW coupled with SW2 or SW3 still maintains their advantage over

gSpan, with respect to the runtime and the number of patterns discovered. Addi-

tionally, coupling with the SW3 function seems to be more efficient than when using

SW2.

For the CW2 and CW3 weighting functions, the computation required knowledge

of the class labels. When applied to data such as ST2, RG1:CH1, and RG2, gSpan-

CMW coupled with either CW2 or CW3 identifies fewer patterns and requires less

runtime than gSpan. More importantly, the patterns discovered by gSpan-CMW on

ST2 and RG2 are as effective as those discovered by gSpan in terms of the classification

result. As for the RG1:CH1 data set, the classifiers built using patterns discovered

by gSpan-CMW with CW2 or CW3 achieved lower accuracy than those built using

patterns discovered by gSpan, although the accuracy of the former is reasonable good

(e.g. 76%-81%).

For the RT1:CSLOGS-1, RT1:CSLOGS-2, and RG3 data, gSpan-CMW coupled

with CW2 or CW3 runs faster than gSpan only when using low support thresholds,

and when using relatively high support thresholds, the former runs slightly slower than

the latter. However, the patterns discovered by gSpan-CMW on these data sets still

maintain the same quality as those discovered by the standard FSM algorithms. As

mentioned in the previous sub-sections, the reason for the behaviour of gSpan-CMW

on RT1:CSLOGS-1(2) and RG3 is that the advantage of gSpan using high support

thresholds is more prominent than the gain achieved by gSpan-CMW on these data.

In addition, coupling with the CW3 function appears to be more efficient than when

coupling with CW2.

On the RG4 data, coupled with either CW2 or CW3, gSpan-CMW failed to demon-

143

strate any advantage over gSpan, because the computation cost using CW2 or CW3

exceeded the gain achieved using the CMW scheme. Thus gSpan-CMW coupled with

SW2 or SW3 was used in the evaluation. The performance of gSpan-CMW coupled

with SW2 or SW3 indicates that gSpan-CMW outperforms gSpan, with respect to both

the runtime cost and the number of patterns discovered. Thus indicating that when

the CW2 or CW3 weighting function is not effective with respect to the CMW scheme,

the SW2 or SW3 function can be used as an alternative.

6.6 The Evaluation of the JSW scheme

As described in Section 5.3.1, the JSW scheme does not require any vertex or edge

weightings. Thus none of the weighting functions introduced in Chapter 4 are ap-

plicable. In a similar manner as described above the JSW evaluation comprised the

following:

• The evaluation of the JSW scheme on trees.

• The evaluation of the JSW scheme on undirected graphs.

• The evaluation of the JSW scheme on directed graphs.

The details of the evaluations, with respect to each of the above, are presented in

Sub-sections 6.6.1, 6.6.2, and 6.6.3 respectively.

6.6.1 The evaluation of the JSW scheme on trees

Three groups of tree data, ST1, ST2, and RT1, were used in the evaluation. The

experimental results obtained with respect to each group of data are presented below.

Efficiency test. The performance of gSpan-JSW on the ST1:D10 is shown in

Table 6.26. In the table, the symbol σ (columns 2 and 8) denotes the support threshold

used for the standard FSM algorithms and gSpan-JSW, and the symbol γ denotes the

weighting threshold used with respect to the JSW scheme. From the table it can be

seen that gSpan-JSW using γ = 8 on D10 runs faster and discovers considerably fewer

patterns than the three standard FSM algorithms.

For the T1M data, both standard FSM algorithms and gSpan-JSW used 3GB of

memory in order to compare the runtime cost appropriately. It can be seen in Table 6.26

that gSpan-JSW using γ = 10 runs faster and discovers significantly fewer patterns than

the standard FSM algorithms while GASTON fails to proceed at the support threshold

of below 0.1%. The performance of gSpan-JSW using a smaller γ value on the ST1

data, as shown in Table B.11, indicates that gSpan-JSW with a smaller γ value needs

more runtime than both gSpan and FFSM, and is less efficient than gSpan-JSW with

a larger γ value.

144

Table 6.26 further shows the performance of gSpan-JSW on the CSLOGS-ALL data.

From the table it can be seen that: (i) the GASTON algorithm runs the slowest; (ii)

using the same range of support thresholds (0.3% to 0.8%), gSpan-JSW discovers far

fewer patterns with less runtime than the three standard FSM algorithms. Referring

to Figure B.11, gSpan-JSW with a larger γ value appears to run faster and discover

fewer patterns than that with a smaller γ value.

Table 6.26: The performance of gSpan-JSW on the ST1 and RT1:CSLOGS-ALL data

Dataset σ(%)
runtime (in seconds)

patterns
gSpan-JSW

gSpan FFSM GASTON γ σ(%) runtime # patterns

ST1:D10

0.05 10.102 8.657 14.037 21057

8

0.05 7.988 165
0.1 7.586 5.927 9.473 7257 0.1 5.289 107
0.5 4.649 3.465 6.322 727 0.5 2.917 32
1 3.913 2.743 4.917 196 1 2.496 22
2 3.341 2.556 4.782 179 2 2.481 20

ST1:T1M

0.05 183.656 167.000 n/a 24492

10

0.05 165.719 134
0.1 135.357 115.810 n/a 9493 0.1 115.102 94
0.5 71.071 51.535 109.163 607 0.5 59.331 31
1 60.592 36.970 90.239 196 1 56.616 22
2 59.691 34.053 84.725 178 2 54.629 19

RT1:CSLOGS-ALL

0.3 4.780 3.902 9.920 2268

10

0.3 3.328 804
0.4 3.358 2.867 7.319 1134 0.4 2.781 554
0.5 2.465 2.543 6.650 684 0.5 2.396 393
0.6 2.311 2.321 5.837 498 0.6 2.213 309
0.8 2.063 2.062 5.528 311 0.8 1.900 206

The performance of gSpan-JSW on the ST2 data is shown in Table 6.27. As can be

seen from the table, the GASTON algorithm fails to operate using relatively low support

thresholds, because of high demands on memory usage; the performance of gSpan-JSW

is very similar across the data sets; gSpan-JSW identifies significantly fewer patterns

and requires far less runtime than the standard FSM algorithms. A further analysis

of gSpan-JSW on ST2, using a wide range of thresholds, is also provided in Appendix

B.1.4.2.

The performance of gSpan-JSW on CSLOGS-1 and CSLOGS-2 is presented in Table

6.27. From the table it can be noted that: (i) the FFSM algorithm runs faster than

the other algorithms; (ii) the runtime of gSpan-JSW is very similar to that of gSpan

and FFSM; and (iii) gSpan-JSW starts to run faster than FFSM when the support

threshold drops to below 0.4%. The reason for this is that the gain obtained by using

the JSW scheme is not very distinct when the computation cost of applying gSpan to

certain data sets is minimal. In other words, the benefit of using the JSW scheme is

neutralized by the effort to compute the weighting, when the application of algorithms

such as gSpan entails very little computational overhead. Table 6.27 also indicates

that gSpan-JSW identifies substantially fewer patterns than standard FSM algorithms.

Further, in comparison with the performance of gSpan-JSW using a smaller γ value as

shown in Table B.12, it can be inferred that gSpan-JSW with a larger γ value is more

efficient than that when using a smaller γ value.

145

Table 6.27: The performance of gSpan-JSW on the ST2 and RT1:CSLOGS-1(2) data

Dataset σ(%)
runtime (in seconds)

patterns
gSpan-JSW

gSpan FFSM GASTON γ σ (%) runtime # patterns

ST2:IM1000-D4

6 142.697 77.36 n/a 435890

0.6

6 0.987 213
8 19.815 10.143 15.752 41398 8 0.871 166
10 12.146 6.161 9.778 21967 10 0.784 153
12 5.395 3.067 5.737 7263 12 0.776 139
14 3.100 1.940 4.638 2782 14 0.703 115

ST2:IM1000-D5

10 563.748 304.526 n/a 489352

0.6

10 1.676 284
12 110.368 67.821 51.791 61333 12 1.476 243
14 66.628 43.268 33.616 31460 14 1.242 192
16 42.970 30.006 20.871 16399 16 1.109 149
18 28.725 22.882 15.286 9215 18 1.104 131

ST2:IM1000-D6

15 592.118 407.344 n/a 112683

0.6

15 3.277 356
20 308.146 233.924 n/a 49289 20 2.550 208
25 132.038 109.170 44.885 14644 25 2.157 135
30 69.509 67.888 27.517 6936 30 1.797 102

RT1:CSLOGS-1

0.2 9.871 3.189 5.117 46104

10

0.2 1.239 815
0.4 1.267 0.637 2.050 2582 0.4 0.748 361
0.6 0.753 0.455 1.789 833 0.6 0.572 216
0.8 0.623 0.373 1.667 455 0.8 0.505 164
1 0.554 0.334 1.561 286 1 0.480 127

RT1:CSLOGS-2

0.2 6.388 2.503 3.633 41601

10

0.2 1.142 870
0.4 1.080 0.592 1.790 2485 0.4 0.677 372
0.6 0.679 0.430 1.571 836 0.6 0.549 221
0.8 0.540 0.350 1.444 462 0.8 0.508 165
1 0.495 0.299 1.349 280 1 0.485 125

Table 6.28: The accuracy of the classifiers using patterns discovered by gSpan-JSW on
the ST2 and RT1:CSLOGS-1(2) data

Dataset
standard FSM algorithms gSpan-JSW

σ(%) #F NBC SVM C4.5 γ σ(%) #F NBC SVM C4.5

ST2:IM1000-D4
12 7263 92.9 95.4 94.9

0.4
2 2001 90.6 95.7 95.5

14 2782 92.7 95.4 94.6 4 1176 90.6 95.7 95.4
16 1659 92.6 95.5 94.3 6 823 90.6 95.7 95.4

ST2:IM1000-D5
20 6287 87.0 91.4 91.9

0.4
4 2155 84.1 90.2 89.8

25 2453 86.2 91.4 91.3 6 1528 83.6 90.0 90.4
30 1163 86.0 91.4 70.8 8 1077 82.9 89.9 89.9

ST2:IM1000-D6
30 6936 81.9 76.4 86.8

0.4
5 3526 81.3 78.4 88.8

35 3720 81.2 75.1 86.5 10 1634 81.0 75.7 89.6
40 1869 81.0 75.2 86.7 15 838 80.1 74.5 89.0

RT1:CSLOGS-1
0.3 7971 79.8 81.8 81.8

5
0.4 417 79.8 81.8 81.8

0.4 2582 79.8 81.8 81.8 0.6 242 79.8 81.2 81.8
0.5 1286 79.8 81.2 81.2 0.8 177 80.7 80.9 81.3

RT1:CSLOGS-2
0.3 6445 80.4 81.9 82.1

5
0.4 429 80.5 81.8 82.3

0.4 2485 80.4 82.0 82.1 0.6 247 80.5 81.4 82.0
0.5 1281 80.4 81.9 81.9 0.8 186 80.6 81.6 81.9

Classification evaluation. The patterns discovered by gSpan-JSW on the ST2

and RT1:CSLOGS-1(2) data were used to build frequent pattern based classifiers so as

to verify the quality of the discovered patterns. The classification accuracies obtained,

with respect to the ST2 data are presented in Table 6.28. In the table, a different range

of support thresholds was used for the respective standard FSM algorithms and gSpan-

JSW in order to extract appropriate features for the classification. As can be seen

146

from the table, the classifiers built using patterns discovered by gSpan-JSW achieved

a similar accuracy to those built using patterns discovered by the standard FSM algo-

rithms, but the former employed a substantially smaller number of features to construct

the classifiers than the latter. This fact suggests that gSpan-JSW can discover fewer

patterns without compromising the quality of the patterns.

Table 6.28 further lists the classification results obtained, with respect to the CSLOGS-

1 and CSLOGS-2 data sets. From the table it can be seen that classifiers obtained

using patterns detected by gSpan-JSW achieve slightly higher accuracy results, with

far fewer features, than those obtained using patterns discovered by the standard FSM

algorithms.

6.6.2 The evaluation of the JSW scheme on undirected graphs

Three groups of data, RG1, RG2 and RG3, that feature undirected graphs were used

to evaluate the operation of the JSW scheme with respect to undirected graphs. The

experimental results with respect to each data set are presented in detail in the following

paragraphs.

Efficiency test. The performance of the gSpan-JSW algorithm on the RG1:CH1

data is shown in Table 6.29. In the table, both FFSM and GASTON failed to complete

when using support thresholds of below 16%, while gSpan was able to proceed using

a support threshold of 10%. However, gSpan-JSW, when coupled with γ = 0.6, runs

significantly faster and identifies considerably fewer patterns than gSpan. When gSpan-

JSW is applied to the RG1:CH2 data, the performance of gSpan-JSW, as shown in Table

6.29, indicated that both gSpan and FFSM ran significantly slower, and discovered

substantially more patterns than gSpan-JSW using γ = 0.6, while GASTON was unable

to proceed at support thresholds of below 16%. Further analysis of gSpan-JSW using

different γ values and the RG1 data can also be found in Appendix B.2.4.1.

The RG2 Mammography data contains two data sets: MAM-V80 and MAM-V100.

These two data sets are two different representations, with different degrees of precision,

for the same collection of data. The three standard FSM algorithms operated well

when applied to the MAM-V80 and MAM-V100 data sets. Table 6.29 presents the

performance of gSpan-JSW using these two data sets. As can be seen from the table,

gSpan-JSW starts to run faster than the three standard FSM algorithms when the

support threshold is below 19%, while the former runs slightly slower than the latter

when the support threshold is over 19%. The reason for this is that the advantage of

the JSW scheme is not discernible when gSpan can actually work well using relatively

high support thresholds, i.e. the gain obtained by the JSW scheme is cancelled out

by the effort to compute the weightings when using relatively high support thresholds.

Table 6.29 also shows that using gSpan-JSW on RG2 results in a significant decrease

in the number of discovered patterns when the support threshold is below 19%.

147

Table 6.29: The performance of gSpan-JSW on the RG1, RG2, and RG3 data

Dataset σ(%)
runtime (in seconds)

patterns
gSpan-JSW

gSpan FFSM GASTON γ σ(%) runtime # patterns

RG1:CH1

10 1968.265 n/a n/a 10995

0.6

10 16.396 34
12 1352.122 n/a n/a 7009 12 14.355 29
14 989.547 n/a n/a 4909 14 13.919 25
16 798.799 n/a n/a 3596 16 13.193 24

RG1:CH2

4 572.614 740.596 n/a 8624

0.6

4 18.957 58
6 335.605 506.909 n/a 3939 6 14.868 42
8 243.612 289.341 n/a 2284 8 11.933 32
10 171.225 242.826 n/a 1502 10 10.509 26

RG2:MAM-V80

15 67.208 90.949 83.185 54621

0.6

15 12.495 3529
17 20.110 24.742 22.701 13044 17 9.419 3239
19 9.381 10.310 8.418 3843 19 8.447 3192
21 8.029 8.425 5.467 2958 21 8.168 2943

RG2:MAM-V100

15 167.893 247.678 198.546 95868

0.6

15 34.210 5762
17 53.441 65.258 45.597 22688 17 24.557 5114
19 21.728 24.707 13.948 5991 19 22.004 4977
21 19.719 21.064 11.282 4784 21 21.322 4761

RG3:BS-V500

8 4.992 3.588 8.716 24989

0.8

8 3.164 10858
10 2.278 1.462 3.072 6285 10 1.912 4418
12 1.685 0.779 1.813 2073 12 1.368 1858
14 1.388 0.584 1.482 1229 14 1.149 1160

RG3:BS-V1000

4 2.660 1.618 5.486 16833

0.8

4 2.224 10262
6 0.920 0.448 1.332 1404 6 0.905 1403
8 0.671 0.312 1.084 716 8 0.640 715
10 0.421 0.246 0.958 443 10 0.421 443

The RG3 photographic data contains two data sets: BS-V500 and BS-V1000. These

two data sets represent the same collection of images but with different levels of de-

composition. The three standard FSM algorithms operate very well on both BS-V500

and BS-V1000. The performance of gSpan-JSW on these two data sets is presented in

Table 6.29. From the table, it can be seen that gSpan-JSW runs faster than both gSpan

and GASTON although the difference in runtime is small, and the former discovers far

fewer patterns than the standard FSM algorithms. In the case of BS-V1000, the JSW

scheme is not effective when using relatively high support thresholds, because both

standard FSM algorithms and gSpan-JSW tend to discover a very similar number of

small sized patterns. Further, the advantage of gSpan-JSW over gSpan on BS-V1000

is noticeable only when using low support thresholds (e.g. below 6%).

Table 6.30: The accuracy of the classifiers using patterns discovered by gSpan-JSW on
the CH1 data

Dataset
gSpan gSpan-JSW

σ(%) #F
Accuracy

γ σ(%) #F
Accuracy

NBC SVM C4.5 NBC SVM C4.5

RG1:CH1
16 3596 77.4 80.1 79.5

0.6
0.1 783 77.1 77.3 79.0

18 2735 76.8 79.6 79.2 0.2 404 77.1 77.6 79.0
20 2149 76.8 79.5 80.2 0.4 248 77.4 77.4 77.0

Classification evaluation. The classification accuracy result obtained using gSpan-

JSW on CH1, in comparison with that using gSpan, is presented in Table 6.30. Simi-

148

larly, the AUC measure, which represents the area under the ROC curve, is also used

to quantify the performance of the classifier. As can be seen from the table, the classi-

fiers using patterns discovered by gSpan-JSW achieve a similar level of performance to

those built using patterns discovered by gSpan but need a significantly smaller number

of features. The AUC measure of the classifiers, as shown in Table B.30, indicates that

the AUC scores obtained using gSpan-JSW are slightly lower than those obtained using

gSpan.

In the case of RG2 and RG3, the patterns discovered by gSpan-JSW were used

to construct frequent pattern based classifiers. The accuracy results obtained are pre-

sented in Table 6.31. As can be seen from the table, the classifiers built using pattens

discovered by gSpan-JSW achieved a similar level of accuracy to those built using pat-

terns discovered by the standard FSM algorithms, but the former use a substantially

lower number of features.

Table 6.31: The accuracy of the classifiers using patterns discovered by gSpan-JSW on
the RG2 and RG3 data

Dataset
standard FSM algorithms

γ
gSpan-JSW

σ(%) #F NBC SVM C4.5 σ(%) #F NBC SVM C4.5

RG2:MAM-V80
18 6728 77.4 76.5 71.3

0.6
21 2943 76.5 75.7 68.7

20 3228 74.8 76.5 73.0 23 2226 75.7 76.5 73.0
22 2698 76.5 75.7 68.7 25 1276 77.4 71.3 71.3

RG2:MAM-V100
18 11097 84.3 80.0 67.8

0.6
21 4761 80.9 80.9 69.6

20 5084 80.0 81.7 72.2 23 3903 80.0 80.0 70.4
22 4538 80.9 80.9 69.6 25 2495 80.0 81.7 65.2

RG3:BS-V500
8 24989 97.6 95.9 83.5

0.6
8 10858 98.2 95.3 88.2

10 6285 96.5 93.5 84.7 10 4418 97.1 95.3 85.3
12 2073 93.5 92.9 86.5 12 1858 97.1 95.3 85.3

RG3:BS-V1000
4 16833 95.9 92.4 84.7

0.8
4 10262 96.5 91.8 82.9

6 1404 95.3 91.2 84.1 6 1403 95.3 91.2 82.9
8 716 92.9 91.2 84.1 8 715 94.1 90.0 84.7

6.6.3 The evaluation of the JSW scheme on directed graphs

To evaluate the performance of the JSW scheme when applied to directed graphs the

RG4 (Document base) and RG5 (Social network) data were used. For reasons already

discussed, only the comparisons between gSpan and gSpan-JSW are reported in this

section. The experimental results obtained using RG4 and RG5 are described in the

following.

Efficiency test. From the foregoing the RG4 data contains three data sets: IMDB,

Amazon, and Ohsumed. gSpan operates very well on these three data sets. Thus only

low support thresholds were used in order to show the benefits of using the JSW scheme.

The performance of gSpan-JSW on the RG4 is shown in Table 6.32. From the table,

gSpan-JSW discovers far fewer patterns than gSpan for IMDB, Amazon, and Ohsumed.

For the IMDB data set, when the support threshold drops to below 0.6%, gSpan-JSW

starts to display a better runtime performance; when the support threshold is at 0.6%,

149

gSpan runs slightly faster than gSpan-JSW and the two algorithms discover a very

similar number of patterns. The reason for this behaviour is that the time saved by

the JSW scheme is usually less than the time needed to compute the weightings when

using relative high support thresholds. As for the Amazon and Ohsumed data set,

gSpan-JSW required less runtime than gSpan.

Table 6.32: The performance of gSpan-JSW on the RG4 and RG5 data

Dataset
gSpan gSpan-JSW

σ(%) runtime (in seconds) # patterns γ σ(%) runtime # patterns

RG4:IMDB

0.1 6.738 8768

30

0.1 6.466 5828
0.2 4.888 3932 0.2 4.560 3333
0.4 3.965 1866 0.4 3.530 1780
0.6 3.126 1230 0.6 3.280 1203

RG4:Amazon

0.4 8.184 4680

25

0.4 8.101 2915
0.6 7.341 2901 0.6 6.779 2170
0.8 7.051 1974 0.8 6.306 1653
1 6.406 1534 1 6.109 1349

RG4:Ohsumed

0.4 7.391 4138

40

0.4 7.274 2671
0.6 5.762 2630 0.6 5.293 2015
0.8 5.366 1902 0.8 4.955 1583
1 5.178 1521 1 4.747 1317

RG5:Lancashire

10 5.691 8107

0.8

10 4.574 2163
12 2.891 3520 12 2.278 1383
14 2.010 1898 14 1.625 1004
16 1.575 1211 16 1.248 787

RG5:Scotland

10 43.836 84342

0.8

10 3.313 3771
12 11.341 20895 12 2.860 2963
14 5.531 7856 14 2.598 2463
16 3.685 3952 16 2.407 2060

RG5:GB

15 197.525 59081

0.8

15 80.269 18079
18 108.260 25248 18 64.749 14275
20 79.076 17001 20 58.513 12308
22 53.836 11540 22 48.494 10003

Table 6.32 further shows the performance of gSpan-JSW when applied to the RG5

data. As can be seen from the table, gSpan-JSW runs faster and identifies significantly

fewer patterns than gSpan on the Lancashire, Scotland, and GB data sets. Appendix

B.3.3.1 provides a more extended comparison with gSpan of the operation of gSpan-

JSW using different γ values.

Classification evaluation. The classification results using patterns discovered by

gSpan-JSW when applied to the RG4 data, in comparison with those using patterns

discovered by gSpan, are presented in Table 6.33. It can be seen from the table that

the performance of classifiers built using patterns discovered by gSpan-JSW is slightly

higher than that of classifiers built using patterns discovered by gSpan on the IMDB

and Ohsumed data, and is the same as that of classifiers built using patterns discovered

by gSpan on the Amazon data. However, the number of features employed to build the

classifiers using gSpan-JSW is considerably less than when using gSpan.

150

Table 6.33: The accuracy of the classifiers using patterns discovered by gSpan-JSW on
the RG4 data

Dataset
gSpan gSpan-JSW

σ(%) #F NBC SVM C4.5 γ σ(%) #F NBC SVM C4.5

RG4:IMDB
0.1 8768 72.9 71.8 73.0

30
0.1 5828 72.9 71.9 73.1

0.2 3932 72.9 72.1 73.0 0.2 3333 72.9 72.3 73.1
0.4 1866 72.9 72.5 73.1 0.4 1780 72.9 72.6 73.1

RG4:Amazon
0.4 4680 92.4 92.7 91.2

25
0.4 2915 92.4 92.7 91.2

0.6 2901 92.4 92.7 91.2 0.6 2170 92.4 92.7 91.2
0.8 1974 92.5 93.0 91.2 0.8 1653 92.5 93.0 91.2

RG4:Ohsumed
0.4 4138 76.9 78.5 74.7

40
0.4 2671 77.4 79.3 75.4

0.6 2630 76.9 78.2 74.7 0.6 2015 77.4 79.0 75.4
0.8 1902 76.9 77.8 74.7 0.8 1583 77.4 78.6 75.4

6.6.4 Summary & discussion

The evaluation of the JSW scheme was conducted using gSpan-JSW to test its perfor-

mance with respect to different data sets. The application of the JSW scheme requires

two thresholds: (i) support, and (ii) γ. If the γ value is set to zero, gSpan-JSW

degrades to the classic gSpan algorithm. Therefore, the γ threshold determines how

efficient gSpan-JSW is. Based on the experiments shown in the above sub-sections,

the most desirable γ value varies with the different data sets. In the reported experi-

ments the most appropriate γ value with respect to each data set was chosen using a

‘generate-and-test’ process.

Compared with the performance of standard FSM algorithms (e.g. gSpan or FFSM),

gSpan-JSW generally identified fewer patterns in a shorter runtime. The patterns dis-

covered by gSpan-JSW were found to be as effective as those discovered by the standard

FSM algorithms when they were used to build classifiers. In some cases, the perfor-

mance of the classifiers built using patterns discovered by gSpan-JSW was even better

than that obtained using patterns discovered by gSpan.

Considering the results of using gSpan-JSW on real data sets, more details are

given as follows. For the RT1, RG2, RG3, and RG4 data, the size of these data

sets varied from hundreds to tens of thousands of graphs/trees. The standard FSM

algorithm, gSpan, worked very well on these data sets. In this case, the issue of the

high computation cost associated with the use of standard FSM algorithms becomes

negligible. Thus, the small gain achieved by the JSW scheme is usually neutralized by

the effort to compute the weightings, to the extent that gSpan was often more efficient

than gSpan-JSW, especially when using high support thresholds. However, a range of

classifiers built using patterns discovered by gSpan-JSW still achieved a very similar

performance to those built using patterns discovered by the standard FSM algorithms.

This fact indicates that the advantage of gSpan-JSW over the standard FSM algorithms

is relatively small for data sets where the standard FSM algorithms can operate well.

For the RG1 and RG5:GB data, the graphs in these data sets have a substantially

151

large number of vertexes and edges. The standard FSM algorithms can be applied to

the mining task; however, they frequently require a considerable amount of runtime

to complete. Using the JSW scheme, gSpan-JSW can discover fewer patterns with

substantially less runtime.

On the whole, the evaluation of the JSW scheme described in Sub-sections 6.6.1,

6.6.2, and 6.6.3 demonstrated that gSpan-JSW when coupled with appropriate γ values

is more efficient than the standard FSM algorithms, and that the patterns discovered by

gSpan-JSW are mostly as effective as those discovered by the standard FSM algorithms.

6.7 Summary

The empirical results obtained from the evaluation of the four subgraph weighting

schemes introduced in Chapter 5 were explored in this chapter. Since each subgraph

weighting scheme was applicable to different types of data sets, the evaluation of each

of the four subgraph weighting schemes was carried out, according to the characteristics

of the data sets described in Chapter 3, in conjunction with the weighting functions

advanced in Chapter 4. One common feature shared by these four subgraph weighting

schemes is that the DCP is maintained, which can be utilized to reduce the compu-

tation, resulting in more efficient mining. However, it is usually difficult to devise a

subgraph weighting scheme that maintains the DCP. Therefore, an alternative subgraph

weighting scheme, which does not maintain the DCP, and its experimental analysis, are

further studied in Chapter 8. In addition, two case studies of applying four subgraph

weighting schemes (ATW, AW, CMW, and JSW) to the RT2 and RT3 data are con-

sidered in the next chapter.

152

Chapter 7

Two Case Studies

Two case studies illustrating the application of the four proposed subgraph weighting

schemes (ATW, AW, CMW, and JSW) to two real-life data sets, RT2 (MRI brain scan)

and RT3 (document trees), are presented in this chapter. The objective of these two

case studies is to demonstrate that the classifiers built using patterns discovered by the

weighted FSM algorithms are more effective than those built using patterns discovered

by the standard FSM algorithms, in terms of both the classification accuracy and the

number of features employed to build the classifiers. Thus, using a similar procedure

and experimental settings as described in Chapter 6, gSpan-ATW was employed to-

gether with the SW1, SW4, and SW5 functions; gSpan-AW was employed together

with the SW1 and SW4 functions; gSpan-CMW was employed together with the SW2,

SW3, CW2, and CW3 functions; gSpan-JSW did not use any weighting functions.

According to the data description in Chapter 3, two-class classification problems

can be formulated for RT2 and RT3. Since the efficiency and effectiveness of the

classifiers using RT2 and RT3 are of main concern, the runtime cost of identifying

the features, the number of features identified, and the accuracy of the classifiers are

three important factors that need to be considered to determine the effectiveness of the

subgraph weighting schemes. Thus, in each case study, the efficiency of using each of

the four weighting schemes is discussed first, followed by discussion of the effectiveness

of the patterns discovered in terms of the classification accuracy, Details of each of the

case studies are presented in the following two sections.

7.1 Case Study 1 - The RT2 Data

As described in Chapter 3, the RT2 MRI brain scan data contains three data sets: QT-

D5, QT-D6, and QT-D7. The three data sets represent the same collection of images

but with different levels of quad-tree decomposition. The number of trees in each of

the data sets is the same (106 trees). However, as indicated in Table 7.1, the trees in

QT-D7 have more vertexes and edges than those in QT-D6 which have more vertexes

and edges than those in QT-D5. For these data sets, only the SW1 and SW4 functions

153

were employed with respect to the ATW scheme. The SW5 function was not used

because it could not generate meaningful vertex weights (i.e. all the vertex weights

calculated by SW5 equalled zero).

Table 7.1: A summary of the RT2 data

Data set # Transactions Average |V (g)| Average |E(g)| |LV | |LE |
1 RT2:QT-D5 106 118 117 3 4

2 RT2:QT-D6 106 150 149 3 4

3 RT2:QT-D7 106 283 282 3 4

Table 7.2: The performance of gSpan-ATW using SW1 on the RT2 data

Dataset σ(%)
runtime (in seconds)

patterns
gSpan-ATW + SW1

gSpan FFSM GASTON τ(%) runtime # patterns

RT2:QT-D5

30 105.793 45.426 44.838 337242 30 4.933 4877
35 32.754 15.728 9.620 87540 35 3.688 3196
40 15.450 8.923 6.834 36955 40 2.939 2186
45 8.818 5.583 4.106 18448 45 2.445 1529
50 5.061 3.881 3.136 8715 50 1.997 1128

RT2:QT-D6

35 118.280 50.243 30.360 257811 35 5.743 6430
40 48.741 23.893 13.234 94333 40 4.156 4309
45 24.653 13.499 7.751 41096 45 3.202 3003
50 12.025 8.896 4.868 18353 50 2.656 2224
55 7.630 5.913 3.745 10423 55 2.345 1631

RT2:QT-D7

45 561.675 422.965 n/a 448683 45 15.626 9214
50 219.924 202.759 n/a 159507 50 11.838 6602
55 56.686 68.235 n/a 39008 55 9.215 4918
60 34.394 41.410 n/a 20905 60 6.899 3578

7.1.1 Efficiency test

Table 7.2 presents the performance of gSpan-ATW using SW1 with respect to RT2.

In the table, the same range of support thresholds was used for the respective QT-D5,

QT-D6, and QT-D7 data sets. It can be observed from the table that gSpan-ATW

using SW1 runs significantly faster and discovers much fewer patterns than the three

standard FSM algorithms. Table 7.2 further shows that using QT-D7, GASTON can

not carry out the desired mining even at a support threshold as high as 60%, while

gSpan-ATW with SW1 can complete the mining within a short period of time.

In the case of using SW4, the performance of gSpan-ATW on RT2, as shown in Table

7.3, also performs well with respect to the three standard FSM algorithms. However,

gSpan-ATW coupled with SW4 seems to discover slightly more patterns than that

coupled with SW1. Furthermore, gSpan-ATW using SW4 runs faster than when using

SW1 on QT-D5, but the former runs slower than the latter on both QT-D6 and QT-D7.

An extensive analysis of gSpan-ATW using a large sequence of support thresholds on

RT2, in comparison with the three standard FSM algorithms, is provided in Appendix

B.1.1.2.

Although the application of gSpan-AW to the RT2 data set identifies fewer patterns

154

Table 7.3: The performance of gSpan-ATW using SW4 on the RT2 data

Dataset τ(%)
gSpan-ATW + SW4

runtime (in seconds) # patterns

RT2:QT-D5

30 4.428 5104
35 3.367 3299
40 2.642 2279
45 2.191 1596
50 1.947 1159

RT2:QT-D6

35 7.800 6450
40 5.875 4383
45 4.803 3071
50 3.859 2239
55 3.175 1637

RT2:QT-D7

45 25.585 10179
50 17.560 6951
55 14.791 5160
60 11.192 3930

within a shorter runtime than the standard FSM algorithms, the classifiers obtained

using patterns discovered by gSpan-AW tend to achieve a worse accuracy result than

those built using patterns discovered by the standard FSM algorithms. This suggests

that both SW1 and SW4 are not appropriate edge weightings for the trees in RT2,

with respect to the AW scheme. Possible explanations for this are very similar to those

discussed in Sub-section 6.4.2 for the performance of gSpan-AW using SW1 or SW4 on

the RG1:CH1 data set. Accordingly, the experimental result of applying gSpan-AW on

the RT2 data is omitted here (however details can be found in Appendix B.1.2).

When applying the CMW scheme to RT2, gSpan-CMW failed to work because,

regardless of which of the four weighting functions (SW2, SW3, CW2, and CW3)

was applied, it was not possible to produce valid edge weights (i.e. the edge weights

computed using SW2, SW3, CW2, or CW3 all evaluated to zero).

In the case of the JSW scheme, the performance of gSpan-JSW with γ = 0.2 on the

RT2 data is presented in Table 7.4. In the table, the same range of support thresholds

was used with respect to the QT-D5, QT-D6, and QT-D7 data sets in order to show the

advantage of gSpan-JSW over the standard FSM algorithms. As can be seen from the

table, using γ = 0.2, gSpan-JSW mostly runs much faster and identifies significantly

fewer patterns than when using the three standard FSM algorithms.

When using a different γ value, the performance of gSpan-JSW as shown in Table

B.13 indicates that gSpan-JSW with a larger γ value outperforms that with a smaller γ

value with respect to both runtime and the number of patterns discovered. Figure 7.1,

which describes the performance comparison between three standard FSM algorithms

and gSpan-JSW with two different γ values, clearly demonstrates this phenomenon.

155

Table 7.4: The performance of gSpan-JSW with γ = 0.2 on the RT2 data

Dataset σ(%)
runtime (in seconds)

patterns
gSpan-JSW

gSpan FFSM GASTON γ σ(%) runtime # patterns

RT2:QT-D5

30 105.793 45.426 44.838 337242

0.2

30 8.482 9064
35 32.754 15.728 9.620 87540 35 6.738 6869
40 15.450 8.923 6.834 36955 40 5.455 5405
45 8.818 5.583 4.106 18448 45 4.399 4306
50 5.061 3.881 3.136 8715 50 3.503 3381

RT2:QT-D6

35 118.280 50.243 30.360 257811

0.2

35 10.825 9658
40 48.741 23.893 13.234 94333 40 9.286 7934
45 24.653 13.499 7.751 41096 45 7.592 6452
50 12.025 8.896 4.868 18353 50 5.970 5194
55 7.630 5.913 3.745 10423 55 5.158 3944

RT2:QT-D7

45 561.675 422.965 n/a 448683

0.2

45 19.036 11055
50 219.924 202.759 n/a 159507 50 16.736 9409
55 56.686 68.235 n/a 39008 55 14.514 7600
60 34.394 41.410 n/a 20905 60 12.241 6183

7.1.2 Effectiveness of the patterns

The records in the RT2 data set are labelled using two classes, Musician and Control

(Non-musician). Table 7.5 shows the accuracy obtained using different classifiers built

using patterns discovered with both the standard FSM algorithms and gSpan-ATW

coupled with SW1 when applied to the RT2 data. It can be observed from Table 7.5 that

the classifiers built using patterns discovered by gSpan-ATW with SW1 achieve very

close accuracy to those built using patterns discovered by the standard FSM algorithms,

however the former require a considerably smaller number of features than the latter.

Further, in comparison with the performance of the classifiers built using patterns

discovered by gSpan-ATW with SW4, as shown in Table 7.6, it can be inferred that

usage of both SW1 and SW4 have a similar effect on the accuracy of the classifiers built

using gSpan-ATW patterns. However, the classifiers built using patterns discovered by

gSpan-ATW with SW1 require a smaller number of features to construct the classifiers

than those built using patterns discovered by gSpan-ATW with SW4.

Table 7.5: The accuracy of the classifiers using patterns discovered by gSpan-ATW
with SW1 on the RT2 data

Dataset
standard FSM algorithms gSpan-ATW + SW1

σ(%) #F NBC SVM C4.5 τ(%) #F NBC SVM C4.5

RT2:QT-D5

35 87540 76.4 73.6 66.0 25 8349 81.1 78.3 67.9
40 36955 79.2 76.4 68.9 30 4877 76.4 72.6 67.0
45 18448 73.6 69.8 56.6 35 3196 76.4 72.6 66.0
50 8715 75.5 66.0 55.7 40 2186 77.4 74.5 70.8

RT2:QT-D6

45 41096 85.8 84.9 73.6 25 17736 85.8 85.3 78.3
50 18353 82.1 85.8 78.3 30 10005 84.0 83.9 78.3
55 10423 80.2 79.2 74.5 35 6430 81.1 82.1 80.2
60 6438 81.1 80.2 73.6 40 4309 81.1 82.1 80.2

RT2:QT-D7

55 39008 82.1 77.4 62.3 55 4918 84.0 76.4 72.6
60 20905 80.2 78.3 63.2 60 3578 85.8 78.3 76.4
65 11998 80.2 77.4 69.8 65 2790 85.8 79.2 78.3
70 6959 81.1 77.4 70.8 70 2103 83.0 73.6 70.8

156

 0

 20

 40

 60

 80

 100

 120

 15 20 25 30 35 40 45 50

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-JSW algorithm on the QT-D5 data

gSpan
FFSM

GASTON
gSpan-JSW +γ=0.2

gSpan-JSW + γ=0.25

(a)

 1000

 10000

 100000

 1e+006

 15 20 25 30 35 40 45 50

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

Run-time of the gSpan-JSW algorithm on the QT-D5 data

gSpan
FFSM

GASTON
gSpan-JSW +γ=0.2

gSpan-JSW + γ=0.25

(b)

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-JSW algorithm on the QT-D6 data

gSpan
FFSM

GASTON
gSpan-JSW +γ=0.2

gSpan-JSW + γ=0.25

(c)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 10 20 30 40 50 60

pa

tte
rn

s

minimum support (%)

Run-time of the gSpan-JSW algorithm on the QT-D6 data

gSpan
FFSM

GASTON
gSpan-JSW +γ=0.2

gSpan-JSW + γ=0.25

(d)

 0

 100

 200

 300

 400

 500

 600

 20 30 40 50 60 70

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-JSW algorithm on the QT-D7 data

gSpan
FFSM

gSpan-JSW +γ=0.2
gSpan-JSW + γ=0.25

(e)

 1000

 10000

 100000

 1e+006

 20 30 40 50 60 70

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-JSW algorithm on the QT-D7 data

gSpan
FFSM

gSpan-JSW +γ=0.2
gSpan-JSW + γ=0.25

(f)

Figure 7.1: The performance of gSpan-JSW with different γ values on the RT2 data

Additionally, comparing the performance of the classifiers on the QT-D5, QT-D6,

and QT-D7 data sets respectively, it appears that the performance of the classifiers

on QT-D5 is worse than the performance of the classifiers on QT-D6 or QT-D7, which

may suggest that the representation with a decomposition level of 5 is not very effective

for the MRI brain scan images.

In the case of the JSW scheme, the patterns discovered by gSpan-JSW on the RT2

data were used to construct frequent pattern based classifiers. The accuracy results

157

Table 7.6: The accuracy of the classifiers using patterns discovered by gSpan-ATW
with SW4 on the RT2 data

Dataset
gSpan-ATW + SW4

τ(%) #F NBC SVM C4.5

RT2:QT-D5

25 8749 81.1 78.3 67.9
30 5104 76.4 72.6 67.0
35 3299 76.4 72.6 66.0
40 2279 77.4 74.5 70.8

RT2:QT-D6

25 18065 85.8 85.8 78.3
30 10251 84.0 83.9 78.3
35 6450 81.1 82.1 80.2
40 4383 81.1 82.1 80.2

RT2:QT-D7

55 5160 84.0 76.4 72.6
60 3930 85.8 78.3 75.5
65 2918 85.8 79.2 78.3
70 2214 85.8 75.5 76.4

obtained are shown in Table 7.7. In the table, different ranges of support thresholds

were used for the respective standard FSM algorithms and gSpan-JSW to extract ef-

fective patterns for the classification. Compared with the result of the classifiers built

using pattern discovered using the standard FSM algorithms, the accuracy of the NBC

and C4.5 classifiers using patterns discovered by gSpan-JSW is higher than that using

patterns discovered by the standard FSM algorithms, and the accuracy of the SVM

classifier using patterns discovered by gSpan-JSW is very close to that using pattern

discovered by the standard FSM algorithms. On the whole, the classifiers built using

patterns discovered by gSpan-JSW employ far fewer features than those when using

the standard FSM algorithms.

Table 7.7: The accuracy of the classifiers using patterns discovered by gSpan-JSW with
different γ values on the RT2 data

Dataset
standard FSM algorithms

vs.
gSpan-JSW

σ(%) #F NBC SVM C4.5 γ σ(%) #F NBC SVM C4.5

RT2:QT-D5

35 87540 76.4 73.6 66.0
0.2

15 18820 88.7 72.6 79.2
40 36955 79.2 76.4 68.9 20 14376 86.8 73.6 83.0
45 18448 73.6 69.8 56.6

0.25
2 4650 85.8 69.8 71.7

50 8715 75.5 66.0 55.7 5 4473 82.1 70.8 79.2

RT2:QT-D6

45 41096 85.8 84.9 73.6
0.2

15 21591 90.6 82.1 82.1
50 18353 82.1 85.8 78.3 20 17431 85.8 75.5 77.4
55 10423 80.2 79.2 74.5

0.25
2 4732 87.7 74.5 78.3

60 6438 81.1 80.2 73.6 5 4552 86.8 73.6 78.3

RT2:QT-D7

55 39008 82.1 77.4 62.3
0.2

25 20730 84.9 78.3 76.4
60 20905 80.2 78.3 63.2 30 18022 84.0 75.5 75.5
65 11998 80.2 77.4 69.8

0.25
2 4886 82.1 74.5 69.8

70 6959 81.1 77.4 70.8 5 4744 82.1 75.5 72.6

Moreover, Table 7.7 also suggests that the classifiers obtained using patterns dis-

covered by gSpan-JSW with a larger γ value achieve a slightly worse performance than

those obtained using patterns discovered by gSpan-JSW with a smaller γ value. How-

ever, using a larger γ value, the number of features required to build the classifiers is

158

significantly less than when using a smaller γ value.

7.1.3 Summary

As discussed in the last two sub-sections, two subgraph weighting schemes: ATW and

JSW were applicable to the RT2 data. In comparison with using patterns discovered

by the standard FSM algorithms, the classifiers built using patterns discovered by

gSpan-ATW or gSpan-JSW achieve very close performance to those built using patterns

discovered by the standard FSM algorithms but the former employ considerably fewer

features than the latter. More importantly, the runtime cost of identifying such a

smaller number of features by gSpan-ATW or gSpan-JSW is significantly less than

that when using the standard FSM algorithms. Further, according to the performance

of the classifiers on the respective QT-D5, QT-D6, and QT-D7 data sets, as shown in

Tables 7.5, 7.6, 7.7, QT-D6 seems to be an optimum tree representation for the brain

scan data. It should also be noted that a complete study of applying gSpan-ATW to

the RT2 MRI brain scan data, in the perspective of medical image classification, can

be found in Elsayed et al. [2010].

7.2 Case Study 2 - The RT3 Data

This section presents a study of the application of the four proposed subgraph weighting

schemes to the RT3 document trees data. The properties of the RT3 data are summa-

rized in Table 7.8. Among the four schemes, recall that JSW does not use vertex or edge

weightings, the appropriate weighting functions introduced in Chapter 4 were therefore

employed, in conjunction with the respective ATW, AW, and CMW subgraph schemes.

More specifically, ATW employs the SW1, SW4, and CW1-N functions; AW employs

the SW1 and SW4 functions; CMW employs the CW2 and CW3 functions. Thus, the

evaluation of these subgraph weighting schemes on RT3 is examined in the subsequent

sub-sections, according to the efficiency of the corresponding weighting scheme and

the effectiveness of the patterns discovered by applying the corresponding weighting

scheme.

Table 7.8: A summary of the RT3 data

Data set # Transactions Average |V (g)| Average |E(g)| |LV | |LE |
RT3 200 1142 1141 10069 6

7.2.1 Efficiency test

When the standard FSM algorithms, FFSM and GASTON, were applied to the RT3

data set it was discovered that both FFSM and GASTON were unable to operate

using even very high support thresholds, such as 90%, due to out-of-memory errors.

159

Further tests of using gSpan-ATW, indicated that gSpan-ATW can accommodate the

RT3 data better than the FFSM and GASTON algorithms. Thus, the performance of

gSpan-ATW with SW1, SW4 and CW1-N, in comparison with gSpan, is illustrated in

Figure 7.2. From the figure it can be seen that the curve representing gSpan stops at

a support threshold of 80%, again due to an out-of-memory error, while gSpan-ATW

continues down to a support threshold of 60%. Generally, Figure 7.2 indicates that

gSpan-ATW using CW1-N seems to perform moderately better than that using SW1

or SW4. This fact may suggest that for the RT3 data, the user provided weighting is

more accurate than the structure based weighting functions. Overall it can be inferred

that the ATW scheme is not applicable to the RT3 data, given the performance of both

standard FSM algorithms and gSpan-ATW. Consequently no further evaluation with

respect to the ATW scheme was conducted.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 60 65 70 75 80 85

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-ATW algorithm on the RT3 data

gSpan
gSpan-ATW + SW1
gSpan-ATW + SW4

gSpan-ATW + CW1-N

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 60 65 70 75 80 85

pa

tte
rn

s

minimum support (%)

No. of patterns found by the gSpan-ATW algorithm on the RT3 data

gSpan
gSpan-ATW + SW1
gSpan-ATW + SW4

gSpan-ATW + CW1-N

Figure 7.2: The performance of gSpan-ATW on the RT3 data

Since the standard FSM algorithms and gSpan-ATW failed to complete the mining

task when applied to RT3, even with a relatively high support threshold, only the

performance of gSpan-AW, gSpan-CMW, and gSpan-JSW on RT3 is described in the

following paragraphs.

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-AW algorithm on the RT3 data

gSpan-AW + SW1 +λ=0.6
gSpan-AW + SW4 +λ=0.6

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50 60 70 80

pa

tte
rn

s

minimum support (%)

No. of patterns found by the gSpan-AW algorithm on the RT3 data

gSpan-AW + SW1 +λ=0.6
gSpan-AW + SW4 +λ=0.6

Figure 7.3: The performance of gSpan-AW on the RT3 data

160

Figure 7.3 compares the performance of gSpan-AW coupled with SW1 with that

of gSpan-AW using SW4. As can be seen clearly from the figure, gSpan-AW coupled

with SW4 requires the least amount of runtime to identify a relatively small number

of patterns, while gSpan-AW coupled with SW1 can not finish the mining when the

support threshold is decreased to below 55% due to an out-of-memory error. This

remarkably large difference in runtime cost between gSpan-AW using SW1 and gSpan-

AW using SW4 clearly indicates that the SW1 weighting function is not an appropriate

edge weighting mechanism for the RT3 data set with respect to the AW scheme. Further

inspection of the mining process of gSpan-AW using SW1 on RT3 reveals that the reason

for the high runtime cost incurred by gSpan-AW using SW1 is that a large proportion of

the weighting ratio values computed using SW1 were actually equal to 1, which causes

the pruning strategy based on the weighting ratio to be ineffective.

 1

 2

 3

 4

 5

 6

 7

 8

 15 20 25 30 35 40

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-CMW algorithm on the RT3 data

gSpan-CMW + CW2 + θ=4
gSpan-CMW + CW3 + θ=0.05

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 15 20 25 30 35 40

pa

tte
rn

s

minimum support (%)

No. of patterns found by the gSpan-CMW algorithm on the RT3 data

gSpan-CMW + CW2 + θ=4
gSpan-CMW + CW3 + θ=0.05

(b)

Figure 7.4: The performance of gSpan-CMW on the RT3 data

When using the CMW scheme, Figure 7.4 presents the performance of gSpan-CMW

coupled with either CW2 or CW3. As can be seen from the figure, gSpan-CMW coupled

with either CW2 or CW3 can identify a relatively small number of patterns within a

short period of time. Furthermore, gSpan-CMW coupled with CW3 appears to run

faster and discover fewer patterns than when using CW2.

In the case of the JSW scheme, the performance of gSpan-JSW is presented in Figure

7.5. In the figure the two curves representing the performance of gSpan-JSW, using

different γ values, are very similar when the support thresholds are between 4% and

8%; when the support threshold is below 4%, the distinction between the two becomes

significant. It appears that gSpan-JSW using a higher γ value performs better than

that using a lower γ value, in terms of both runtime cost and the number of discovered

patterns.

161

 0

 5

 10

 15

 20

 25

 30

 2 3 4 5 6 7 8

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-JSW algorithm on the RT3 data

gSpan-JSW + γ=5
gSpan-JSW + γ=10

 0

 5000

 10000

 15000

 20000

 25000

 30000

 2 3 4 5 6 7 8

pa

tte
rn

s

minimum support (%)

No. of patterns found by the gSpan-JSW algorithm on the RT3 data

gSpan-JSW + γ=5
gSpan-JSW + γ=10

Figure 7.5: The performance of gSpan-JSW on the RT3 data

7.2.2 Effectiveness of the patterns

The patterns discovered by the respective gSpan-AW, gSpan-CMW, and gSpan-JSW

algorithms when applied to the RT3 data were used to construct frequent pattern

based classifiers. The accuracy of the classifiers obtained is thus used to determine the

effectiveness of the patterns discovered by the corresponding weighted FSM algorithm.

Since gSpan-AW coupled with SW1 was not efficient at discovering patterns as

discussed before, only the patterns discovered by gSpan-AW coupled with SW4 were

employed for classification purposes. The accuracy results obtained are shown in Table

7.9. As can be seen from the table, the classifiers achieved good results with a relatively

small number of features.

Table 7.9: The accuracy of the classifiers using patterns discovered by the weighted
FSM algorithms on the RT3 data

gSpan-AW + SW4
vs.

gSpan-JSW
λ τ(%) #F NBC SVM C4.5 γ σ(%) #F NBC SVM C4.5

0.6
5 1600 98.5 83.5 89.5

5
5 2702 99.0 87.0 90.0

10 942 97.5 88.5 94.0 6 1956 98.0 86.0 92.0
15 633 95.5 78.5 91.5 7 1532 98.5 83.5 93.0

gSpan-CMW + CW2
vs.

gSpan-CMW + CW3
θ σ(%) #F NBC SVM C4.5 θ σ(%) #F NBC SVM C4.5

4
15 3390 96.0 80.5 91.5

0.05
15 2442 95.5 80.5 91.5

20 2352 94.0 76.5 90.0 20 1495 93.5 77.0 93.0
25 1050 92.5 77.0 91.5 25 339 92.5 76.5 91.5

Table 7.9 further reveals that the accuracy of the classifiers built using patterns

discovered by gSpan-CMW coupled with either CW2 or CW3 is rather good. Further-

more, the classifiers built using patterns discovered by gSpan-CMW coupled with CW3

required far fewer patterns than those built using CW2 to achieve very similar results.

The classification results using gSpan-JSW are also shown in Table 7.9. As can be

seen from the table, the accuracy of each classifier is very good. Additionally it should

be noted that this high accuracy is achieved using a relatively small number of features

162

and good runtime performance (see Figure 7.5).

Altogether, in comparison with gSpan-JSW, gSpan-CMW, Table 7.9 also suggests

that the classifiers built using gSpan-AW coupled with SW4 use the smallest number

of features to obtain a similar high level of accuracy.

7.2.3 Summary

The advantage of using weighted FSM algorithms over the standard FSM algorithms

is effectively demonstrated by their performance on the RT3 data. Because the stan-

dard FSM algorithms failed to operate on the RT3 data, effective patterns could not

be identified in order to adopt the framework of the frequent pattern based classifi-

cation to classify the RT3 data. Under this situation, four weighted FSM algorithms:

gSpan-ATW, gSpan-AW, gSpan-CMW, and gSpan-JSW were employed to extract the

patterns suitable for the classification from the RT3 data. Although gSpan-ATW was

not applicable to the RT3 data because of out-of-memory errors, the other three algo-

rithms: gSpan-AW, gSpan-CMW, and gSpan-JSW identify a relatively small number

of patterns within a very short period of runtime. More importantly, the classifiers

built using such patterns discovered by the weighted FSM algorithms are capable of

obtaining the desired high accuracy. An alternative approach to applying weighted

FSM algorithms to the RT3 document data can be found in Jiang et al. [2010a].

163

164

Chapter 8

Subgraph Weighting Schemes
That Do Not Maintain the DCP

As introduced in Chapter 5, the DCP plays an important role in reducing the compu-

tation effort in the process of FSM. Thus, it is desirable to devise a subgraph weighting

scheme that maintain the DCP. An alternative approach is to identify subgraph weight-

ing schemes that limit the growth of the search space in some other way. When deriving

such weighting schemes care needs to be taken to ensure that, whatever alternative to

maintaining the DCP that is adopted, it is still efficient and effective. The adopted

scheme should be more efficient than when no weightings are used. At the same time

such weighting schemes should be effective; the correct patterns should still be iden-

tified. Since it is hard to devise an efficient and effective subgraph weighting scheme

that does not maintain the DCP, only one subgraph weighting scheme, Utility Based

Weighting (UBW), is described in this chapter. Again effectiveness is measured in terms

of classification accuracy when the identified patterns are used to build the classifiers.

8.1 Utility Based Weighting (UBW) Scheme

The formulation of the UBW scheme is influenced by ideas suggested in Carter et al.

[1997] and Barber and Hamilton [2003]. It is founded on two components: (i) weighted

support and (ii) the share (SH) of a subgraph [Jiang et al., 2010c]. Thus:

Definition 8.1.1. Given a graph data set GD = {G1, G2, · · · , Gn} and a subgraph g

with edges E(g) = {e1, e2, · · · , ek}, let two vertexes connecting each ei ∈ E(g) equal

v1, v2, and let the set of graphs where v1 occurs equal ΓGD(v1) and set of graphs where

v2 occurs equal ΓGD(v2). Then the overlap similarity between two vertexes is defined

as:

Soverlap(ei) =
|ΓGD(v1) ∩ ΓGD(v2)|

min(|ΓGD(v1)|, |ΓGD(v2)|)
. (8.1)

Thus, the weight of g, WGD(g), is then defined as

165

WGD(g) =
1∑

ei∈E(g) Soverlap(ei)
. (8.2)

Equation 8.1 can also be replaced with other similarity measures such as Jaccard simi-

larity, Dice similarity and Cosine similarity. Accordingly, the weighted support is given

by wsupGD(g) = supGD(g)×WGD(g).

b

v1

v2

v5

v6
fd

v3

h

v8

v6

d

v3

v7

v1

v2 v6

v2
v6

s

v11

v9

t

(G1) (G2) (G3)

(g)

m

v1

v9a e

h

ef

k

Figure 8.1: An example of computing the overlap similarity

Example: Considering the graph data set GD = {G1, G2, G3} given in Figure 8.1,

where the symbol next to each vertex or edge represents the label. Given a subgraph

g which contains two edges {a, e}, ΓGD(v1) = {G1, G2}, ΓGD(v2) = {G1, G3}, and

ΓGD(v6) = {G1, G2, G3}. Then, Soverlap(a) = 0.5, Soverlap(e) = 1, and WGD(g) =
1

1+0.5 ≈ 0.67.

In order to delineate the concept of the share of a subgraph, a sequence of definitions

are firstly introduced in the following paragraphs.

Definition 8.1.2. Given an edge weighted graph set GD = {G1, G2, · · · , Gn} with edge

weights {w1, w2, · · · , wk} for each graph Gj, let the set of graphs where g occurs equal

δGD(g). Then the subgraph weight of g in each transaction graph Gj, denoted as WGj (g),

is the sum of the weight of each edge in g occurring in Gj:

WGj (g) =
∑

ei∈g∩g⊆subGj

wi . (8.3)

The total weight of GD, denoted as TW (GD), represents the sum of all edge weights in

GD. That is:

TW (GD) =
∑

Gj∈GD

∑
ei∈Gj

wi . (8.4)

In addition, the total weight of δGD(g) is defined as:

TW (δGD(g)) =
∑

Gj∈δGD(g)

∑
ei∈Gj

wi . (8.5)

Definition 8.1.3. The graph weight of g with respect to GD, denoted as GWGD(g), is

the sum of the subgraph weight of g in each graph Gj ∈ δGD(g). That is:

166

GWGD(g) =
∑

Gj∈δGD(g)

WGj (g) . (8.6)

Definition 8.1.4. Given a graph data set GD = {G1, G2, · · · , Gn}, the share of a

subgraph g with respect to GD, denoted as SHGD(g), is the ratio of the graph weight of

g with respect to GD to the total weight of GD. Thus:

SHGD(g) =
GWGD(g)

TW (GD)
. (8.7)

Given a share threshold µ, a subgraph g is SH-frequent if SHGD(g) ≥ µ; otherwise, g

is SH-infrequent.

It can be easily inferred form (8.7) that the SH measure does not maintain the DCP.

Therefore, it is important to utilize some properties of the SH measure to define some

pruning strategy, which can be employed to remove predicted infrequent pattens from

the search space. Thus the following theorem is introduced.

Theorem 8.1.1. Given a graph data set GD = {G1, G2, · · · , Gn}, a subgraph g, and a

threshold µ, if

wr =
TW (δGD(g))

TW (GD)
< µ .

then all supergraphs of g are SH-infrequent.

Proof. Let h be an arbitrary supergraph of g. Clearly, GWGD(h) ≤ TW (δGD(h)) ≤
TW (δGD(g)). If TW (δGD(g)) < µ × TW (GD) holds, then GWGD(h) < µ × TW (GD).

That is, SHGD(h) = GWGD(h)
TW (GD) < µ. Therefore, h is SH-infrequent.

Definition 8.1.5. Given an edge weighted graph data set GD = {G1, G2, · · · , Gn}, a

weighted support threshold τ ∈ (0, 1], and a share threshold µ ∈ (0, 1], a subgraph g is a

weighted frequent pattern if the following two conditions are satisfied:

(D1) wsupGD(g) ≥ τ, and (D2) SHGD(g) ≥ µ .

a
(a,0.5) (e,0.2) (d,0.1) (h,0.3) (d,0.1)(b,0.6)

(s,0.45) (a,0.3)(a,0.7)

w

(w,0.15) (w,0.4)

(g)

(G1)

(m,0.25)

(G2) (G3)

Figure 8.2: An example of computing share values.

Example: Considering the graph data set GD = {G1, G2, G3} shown in Figure 8.2,

where the symbol next to each edge, ‘(a,b)’, indicates the edge label (denoted by ‘a’)

and the weight (denoted by ‘b’); vertex labels are not included. Given a subgraph

167

g which occurs in {G2, G3}, TW (GD) = 0.5 + 0.2 + 0.25 + 0.1 + 0.3 + 0.7 + 0.15 +

0.6 + 0.1 + 0.45 + 0.3 + 0.4 = 4.05, GWGD(g) = 0.7 + 0.15 + 0.3 + 0.4 = 1.55. So,

SHGD(g) = 1.55/4.05 ≈ 0.38.

Algorithm 8.1: subgSpan-UBW(c, GD, τ , µ, F)

1 if c 6= min(c) then
2 return
3 end
4 if wsupGD(c) ≥ τ ∧ SHGD(c) ≥ µ then
5 F ← F ∪ {c}
6 else if wsupGD(c) ≥ τ then

7 if wr = TW (δGD(c))
TW (GD) ≥ µ then

8 subgSpan-UBW(c, GD, τ , µ, F)
9 else

10 return
11 end

12 end
13 C ← ∅
14 Scan GD once, find every edge e such that c can be right-most extended to c ∪ e,

C ← c ∪ e
15 Sort C in DFS lexicographic order
16 foreach gk ∈ C do
17 if wsupGD(gk) ≥ τ ∧ SHGD(gk) ≥ µ then
18 subgSpan-UBW(gk, GD, τ , µ, F)
19 else if wsupGD(gk) ≥ τ then

20 if wr = TW (δGD(gk))
TW (GD) ≥ µ then

21 subgSpan-UBW(gk, GD, τ , µ, F)
22 end

23 end

24 end

8.1.1 Pseudo-codes of UBW

The UBW scheme was implemented by incorporating it into gSpan to give gSpan-UBW.

Algorithm 8.1 displays the key elements of the UBW scheme. From lines 4 to 12, and

lines 16 to 24, if both conditions (D1) and (D2) are satisfied, the subgraph candidate

gk will become a weighted frequent pattern; if condition (D1) holds and condition (D2)

does not hold, because the SH measure does not maintain the DCP, the value of wr

in Theorem 8.1.1 is computed firstly during the mining process. Under this situation,

if wr < µ, then all the supergraphs of gk (including gk) are SH-infrequent and can be

safely pruned from that branch of the search space; otherwise, the candidate subgraph

gk will be considered at the next iteration, because one or more of the supergraphs of

gk may also be frequent. Therefore, Theorem 8.1.1 plays an important role in reducing

168

the search space during the mining operation. Practically, the effectiveness of the UBW

scheme is dependent on the pruning capability facilitated by Theorem 8.1.1. During the

mining, if the number of cases, where the value of wr is less than the share threshold,

is large; the pruning power when using Theorem 8.1.1 is effective. However, if the

number of cases, where the value of wr is less than the share threshold, is small, the

pruning power when using Theorem 8.1.1 is weak. Therefore, it is important to choose

an appropriate edge weighting, in order to maximise the pruning power when using the

UBW scheme.

8.2 Experimental Study

The evaluation of the UBW scheme, using various data sets employed by other subgraph

weighting schemes, is reported in this section. The three standard FSM algorithms

employed previously, gSpan, FFSM and GASTON were again used for comparison

purposes. However, similar to Chapter 6, because FFSM and GASTON, when used

with respect to some data sets, encountered the out-of-memory errors (the maximum

memory usage is 3GB), the performance of these two algorithms was not always re-

ported. Again, following the implementation details introduced in Section 6.1, gSpan

was chosen as a base algorithm such that the UBW scheme was integrated into gSpan

by the author to create the gSpan-UBW algorithm. Both gSpan and gSpan-UBW were

modified by the author to accommodate directed graphs. All the experimental settings

described in Chapter 6 will be adopted for the test of the UBW scheme unless otherwise

stated.

The UBW scheme requires edge weights, thus all the data sets used for the eval-

uation of the UBW scheme can be divided into two groups, according to whether the

data sets contain edge weights or not.

• Division A: Data sets that do not have edge weights and thus such weightings

must be derived: ST1 (synthetic trees), ST2 (synthetic images), RT1 (Web logs),

RT2 (MRI brain scan), RT3 (document trees), and RG1 (Chemical compounds).

• Division B: Data sets that do have predefined edge weights: RG2 (Mammogra-

phy), RG3 (photographic images), RG4 (document base), and RG5 (social net-

work)

For data sets that belong to Division A, due to the reason described in Chapter

5, only two structural weighting functions: SW1 and SW4 were used to generate the

desired edge weights so that the UBW scheme could be applied to these data sets.

However, it should be noted that by deriving edge weightings in this manner there is

no guarantee that the weightings actually reflect the application domain in each case.

The only motivation for using these two structural weighting functions is that the user

169

provided edge weights are not available, the application of SW1 and SW4 is assumed

to give an appropriate weighting. For data sets belonging to Group B, the content

weighting function, CW1-E, was used for the implementation of the UBW scheme.

The detailed evaluation of the UBW scheme, as applied to each data set, is described

in the following sub-sections, in the order of trees, undirected graphs and directed

graphs.

8.2.1 The evaluation of the UBW scheme on trees

As mentioned in the above, two weighting functions: SW1 and SW4 were used to

generate appropriate weights for applying the UBW scheme to ST1, ST2, RT1, RT2

and RT3.

Efficiency test. The performance of gSpan-UBW with SW1 on the ST1, ST2, RT1,

RT2, and RT3 data is displayed in Table 8.1. In the table, the symbols µ and τ (lines 7

to 8) denote the share and the support thresholds used in the UBW scheme respectively

(these symbols will keep the same meaning throughout the rest of this chapter). From

the table, it can be seen that gSpan-UBW cuts down enormously on the number of

patterns discovered by the standard FSM algorithms. However, the runtime cost for

each group of data varies. Specifically, for the ST1 and RT1 data, gSpan-UBW with

SW1 requires more runtime than the standard FSM algorithms while for the ST2, RT2,

and RT3 data, gSpan-UBW with SW1 runs significantly faster than the standard FSM

algorithms.

In the case of SW4, Table 8.2 shows that the performance of gSpan-UBW using

SW4 on the ST1, ST2, and RT1 is similar to that of gSpan-UBW with SW1, and

gSpan-UBW with SW4 runs slightly slower and identifies fewer patterns than gSpan-

UBW with SW1 on the RT2 and RT3 data. An extended analysis of gSpan-UBW with

SW1 and SW4 using a wide range of support thresholds on the RT1 and RT2 data, in

comparison with the standard FSM algorithms, can also be found in Appendix B.1.5.

Classification evaluation. Since the trees in the ST2, RT1:CSLOGS-1(2), RT2,

and RT3 data have class labels, the nature of the patterns discovered by gSpan-

UBW could be evaluated using a classification scenario. The accuracy results for

the classifiers built using patterns discovered by gSpan-UBW when applied to the

ST2, RT1:CSLOGS-1(2), RT2, and RT3 are presented in Table 8.3. For the ST2 and

RT1:CSLOGS-1(2) data, Table 8.3 reveals that the accuracy of the classifiers built us-

ing patterns discovered by gSpan-UBW is marginally higher than that of the classifiers

built using patterns discovered by the standard FSM algorithms. More importantly,

the gSpan-UBW classifiers require far fewer patterns than the classifiers built using

patterns discovered by the standard FSM algorithms.

For the RT2 data, it can be seen in the table that the performance of the classi-

fiers built using patterns discovered by gSpan-UBW with SW1 is close to that of the

170

Table 8.1: The performance of gSpan-UBW with SW1 on the tree data

Dataset σ(%)
runtime (in seconds)

patterns
gSpan-UBW + SW1

gSpan FFSM GASTON µ τ(%) runtime # patterns

ST1:D10

0.05 10.102 8.657 14.037 21057

0.1

0.05 31.452 97
0.1 7.586 5.927 9.473 7257 0.1 24.129 77
0.5 4.649 3.465 6.322 727 0.5 11.598 32
1 3.913 2.743 4.917 196 1 10.064 24
2 3.341 2.556 4.782 179 2 9.454 23

ST1:T1M

0.05 183.656 167.000 n/a 24492

0.1

0.05 1150.950 81
0.1 135.357 115.810 n/a 9493 0.1 921.150 63
0.5 71.071 51.535 109.163 607 0.5 414.124 31
1 60.592 36.970 90.239 196 1 365.927 24
2 59.691 34.053 84.725 178 2 321.038 22

ST2:IM1000-D4

6 142.697 77.36 n/a 435890

0.2%

6 12.635 421
8 19.815 10.143 15.752 41398 8 6.552 270
10 12.146 6.161 9.778 21967 10 3.959 179
12 5.395 3.067 5.737 7263 12 2.745 128
14 3.100 1.940 4.638 2782 14 1.882 98

ST2:IM1000-D5

10 563.748 304.526 n/a 489352

0.2%

10 31.127 469
12 110.368 67.821 51.791 61333 12 19.938 309
14 66.628 43.268 33.616 31460 14 13.889 248
16 42.970 30.006 20.871 16399 16 9.290 183
18 28.725 22.882 15.286 9215 18 6.237 123

ST2:IM1000-D6

15 592.118 407.344 n/a 112683

0.2%

15 37.060 376
20 308.146 233.924 n/a 49289 20 13.727 164
25 132.038 109.170 44.885 14644 25 7.296 84
30 69.509 67.888 27.517 6936 30 4.560 63

RT1:CSLOGS-ALL

0.3 4.780 3.902 9.920 2268

2%

0.3 17.810 624
0.4 3.358 2.867 7.319 1134 0.4 11.586 433
0.5 2.465 2.543 6.650 684 0.5 9.695 312
0.6 2.311 2.321 5.837 498 0.6 8.364 252
0.8 2.063 2.062 5.528 311 0.8 6.652 176

RT1:CSLOGS-1

0.2 9.871 3.189 5.117 46104

0.5%

0.2 4.914 645
0.4 1.267 0.637 2.050 2582 0.4 3.245 303
0.6 0.753 0.455 1.789 833 0.6 2.324 189
0.8 0.623 0.373 1.667 455 0.8 1.919 147
1 0.554 0.334 1.561 286 1 1.482 118

RT1:CSLOGS-2

0.2 6.388 2.503 3.633 41601

0.5%

0.2 4.072 690
0.4 1.080 0.592 1.790 2485 0.4 2.870 314
0.6 0.679 0.430 1.571 836 0.6 2.075 196
0.8 0.540 0.350 1.444 462 0.8 1.731 151
1 0.495 0.299 1.349 280 1 1.451 118

RT2:QT-D5

30 105.793 45.426 44.838 337242

0.8%

10 7.836 4498
35 32.754 15.728 9.620 87540 15 2.768 1352
40 15.450 8.923 6.834 36955 20 1.401 587
45 8.818 5.583 4.106 18448 25 0.873 282
50 5.061 3.881 3.136 8715 30 0.739 165

RT2:QT-D6

35 118.280 50.243 30.360 257811

0.8%

10 14.133 6986
40 48.741 23.893 13.234 94333 15 4.744 1963
45 24.653 13.499 7.751 41096 20 2.315 776
50 12.025 8.896 4.868 18353 25 1.143 328
55 7.630 5.913 3.745 10423 30 0.906 200

RT2:QT-D7

45 561.675 422.965 n/a 448683

0.4%

15 11.689 3512
50 219.924 202.759 n/a 159507 20 4.878 1195
55 56.686 68.235 n/a 39008 25 1.916 367
60 34.394 41.410 n/a 20905 30 1.619 262

RT3

15

n/a 0.2%

15 119.116 1586
20 20 16.806 840
25 25 6.423 531
30 30 4.676 380

classifiers built using patterns discovered by the standard FSM algorithms. Again,

the number of features required by the classifiers built using patterns discovered by

171

Table 8.2: The performance of gSpan-UBW with SW4 on the tree data

Dataset µ τ(%)
gSpan-UBW + SW4

runtime (in seconds) # patterns

ST1:D10 0.1

0.05 33.515 99
0.1 24.920 79
0.5 11.818 34
1 10.499 26
2 9.497 25

ST1:T1M 0.1

0.05 1156.202 83
0.1 867.491 65
0.5 415.598 33
1 364.959 26
2 320.328 24

ST2:IM1000-D4 0.2%

6 12.672 421
8 6.607 270
10 4.020 179
12 2.686 128
14 1.905 98

ST2:IM1000-D5 0.2%

10 29.940 469
12 19.594 309
14 13.475 248
16 9.328 183
18 6.165 123

ST2:IM1000-D6 0.2%

15 37.823 376
20 13.794 164
25 7.457 84
30 4.527 63

RT1:CSLOGS-ALL 2%

0.3 22.824 646
0.4 14.794 456
0.5 12.326 335
0.6 10.022 270
0.8 7.554 194

RT1:CSLOGS-1 0.5%

0.2 5.148 650
0.4 3.385 312
0.6 2.418 197
0.8 1.825 154
1 1.545 125

RT1:CSLOGS-2 0.5%

0.2 4.602 694
0.4 2.964 322
0.6 2.199 204
0.8 1.731 159
1 1.513 126

RT2:QT-D5 0.8%

10 12.722 4450
15 3.904 1331
20 1.856 577
25 1.044 276
30 0.781 159

RT2:QT-D6 0.8%

10 22.549 6713
15 6.451 1900
20 2.893 734
25 1.415 304
30 1.110 189

RT2:QT-D7 0.4%

15 15.349 3225
20 6.021 1099
25 2.297 286
30 1.833 207

RT3 0.2%

15 132.277 1539
20 17.608 812
25 6.816 515
30 4.713 370

gSpan-UBW with SW1 is noticeably less than that required by the classifiers built

using patterns discovered by the standard FSM algorithms.

172

Table 8.3: The accuracy of the classifiers using patterns discovered by gSpan-UBW
using SW1 on the tree data

Dataset
standard FSM algorithms

vs.
gSpan-UBW + SW1

σ(%) #F NBC SVM C4.5 µ τ(%) #F NBC SVM C4.5

ST2:IM1000-D4
12 7263 92.9 95.4 94.9

0.2%
6 421 93.3 95.4 93.8

14 2782 92.7 95.4 94.6 8 270 93.5 95.3 93.9
16 1659 92.6 95.5 94.3 10 179 92.3 95.7 94.4

ST2:IM1000-D5
20 6287 87.0 91.4 91.9

0.2%
6 1573 90.3 92.9 92.3

25 2453 86.2 91.4 91.3 8 787 86.1 92.0 91.9
30 1163 86.0 91.4 70.8 10 469 84.3 91.9 90.0

ST2:IM1000-D6
30 6936 81.9 76.4 86.8

0.2%
8 1972 85.9 80.3 90.0

35 3720 81.2 75.1 86.5 10 1113 85.2 79.3 89.8
40 1869 81.0 75.2 86.7 12 646 83.6 76.2 88.8

RT1:CSLOGS-1
0.3 7971 79.8 81.8 81.8

0.5%
0.1 1298 80.6 81.2 82.1

0.4 2582 79.8 81.8 81.8 0.2 645 80.4 81.8 82.1
0.5 1286 79.8 81.2 81.2 0.4 303 80.6 81.7 82.1

RT1:CSLOGS-2
0.3 6445 80.4 81.9 82.1

0.5%
0.1 1353 80.6 80.7 82.4

0.4 2485 80.4 82.0 82.1 0.2 690 80.6 81.3 82.2
0.5 1281 80.4 81.9 81.9 0.4 314 80.6 82.4 82.2

RT2:QT-D5
35 87540 76.4 73.6 66.0

0.8%
8 8856 81.1 72.6 73.6

40 36955 79.2 76.4 68.9 10 4498 75.5 70.8 69.8
45 18448 73.6 69.8 56.6 12 2591 73.6 70.8 76.4

RT2:QT-D6
45 41096 85.8 84.9 73.6

0.8%
10 6986 88.7 75.5 82.1

50 18353 82.1 85.8 78.3 12 3944 83.0 73.6 79.2
55 10423 80.2 79.2 74.5 14 2367 82.1 70.8 67.9

RT2:QT-D7
55 39008 82.1 77.4 62.3

0.4%
12 7825 74.5 77.4 75.5

60 20905 80.2 78.3 63.2 14 4486 72.6 76.4 77.4
65 11998 80.2 77.4 69.8 16 2759 68.9 68.9 67.9

RT3
15

n/a 0.2%
15 1586 95.0 73.0 90.5

20 20 840 94.0 63.5 92.5
25 25 531 92.0 69.0 90.5

For the RT3 data, as demonstrated in Section 7.2, the standard FSM algorithms

fail to discover interesting patterns when applied to RT3, due to the out-of-memory

errors. Thus, only the classification accuracy results obtained using patterns discovered

by gSpan-UBW is shown in Table 8.3. As can be seen from the table, using only a

small number of features, the classifiers achieve quite good accuracy.

When using SW4, the performance of the classifiers built using patterns discov-

ered by gSpan-UBW, as shown in Table B.14 exhibits the similar behaviour to the

performance of the classifiers when using gSpan-UBW with SW1.

8.2.2 The evaluation of the UBW scheme on undirected graphs

Three groups of data, RG1, RG2 and RG3, that feature undirected graphs were used

to evaluate the UBW scheme. As mentioned earlier, for the RG1 data, the structural

weighting functions, SW1 and SW4, were used with gSpan-UBW; for the RG2 and

RG3 data, the CW1-E function was used with gSpan-UBW. The experimental results

with respect to each group of data are presented in the following paragraphs.

Efficiency test. The performance of gSpan-UBW on the RG1 data is shown in

Table 8.4. In the table, the same range of support thresholds was used for the standard

173

FSM algorithms and gSpan-UBW respectively. As can be seen clearly from the table,

using CH1, gSpan-UBW requires much less runtime and identifies a remarkably smaller

number of patterns than gSpan while FFSM and GASTON can not operate using the

support thresholds of below 16%. For the CH2 data, Table 8.4 shows that gSpan-

UBW runs constantly slower than gSpan but runs faster than FFSM when the support

threshold is over 6%, and GASTON can not operate using the support thresholds of

below 10%. However, the number of patterns identified by gSpan-UBW on CH2 is

significantly less than that discovered by the standard FSM algorithms. This fact may

suggest that the benefit of using the UBW scheme on the CH2 data is at the expense

of a prolonged runtime. It may also be inferred that the pruning strategy used in the

UBW scheme is not effective when applied to CH2, resulting in a much longer runtime

to filter the uninteresting patterns.

Table 8.4: The performance of gSpan-UBW with SW1 on the RG1 data

Dataset σ(%)
runtime (in seconds)

patterns
gSpan-UBW + SW1

gSpan FFSM GASTON µ τ(%) runtime # patterns

RG1:CH1

10 1968.265 n/a n/a 10995

0.2%

10 439.983 171
12 1352.122 n/a n/a 7009 12 297.321 120
14 989.547 n/a n/a 4909 14 181.210 83
16 798.799 n/a n/a 3596 16 113.912 63

RG1:CH2

4 572.614 740.596 n/a 8624

0.2%

4 1203.255 305
6 335.605 506.909 n/a 3939 6 452.759 163
8 243.612 289.341 n/a 2284 8 260.755 107
10 171.225 242.826 n/a 1502 10 189.931 80

Additionally, when gSpan-UBW was coupled with the SW4 function, the perfor-

mance of gSpan-UBW, as shown in Table 8.5, exhibits very similar behaviour to that

of gSpan-UBW using SW1.

Table 8.5: The performance of gSpan-UBW using SW4 on the RG1 data

Dataset µ τ(%)
gSpan-UBW + SW4

runtime (in seconds) # patterns

RG1:CH1 0.2%

10 444.757 164
12 300.316 116
14 183.833 79
16 115.891 59

RG1:CH2 0.2%

4 1199.579 304
6 454.725 162
8 263.157 106
10 191.070 79

When using the RG2 data, the performance of gSpan-UBW with CW1-E is pre-

sented in Table 8.6. As can be seen in the table, using the same range of support

thresholds, gSpan runs faster than gSpan-UBW. When the support threshold is at

15%, the runtime of gSpan-UBW is very near to that of gSpan, but the difference be-

tween the number of patterns discovered by gSpan-UBW and the number of patterns

discovered by gSpan is substantial. Thus, it may be inferred that the benefit of using

174

the UBW scheme is pronounced only when using low support thresholds (i.e. below

15%).

Table 8.6: The performance of gSpan-UBW with CW1-E on the RG2 and RG3 data

Dataset σ(%)
runtime (in seconds)

patterns
gSpan-UBW + CW1-E

gSpan FFSM GASTON µ τ(%) runtime # patterns

RG2:MAM-V80

15 67.208 90.949 83.185 54621

0.02%

15 68.636 3240
17 20.110 24.742 22.701 13044 17 67.922 3239
19 9.381 10.310 8.418 3843 19 67.690 3208
21 8.029 8.425 5.467 2958 21 61.054 2955

RG2:MAM-V100

15 167.893 247.678 198.546 95868

0.02%

15 174.905 2796
17 53.441 65.258 45.597 22688 17 174.281 2796
19 21.728 24.707 13.948 5991 19 169.240 2796
21 19.719 21.064 11.282 4784 21 159.653 2796

RG3:BS-V500

8 4.992 3.588 8.716 24989

0.1%

8 14.498 505
10 2.278 1.462 3.072 6285 10 7.350 437
12 1.685 0.779 1.813 2073 12 4.579 407
14 1.388 0.584 1.482 1229 14 3.367 377

RG3:BS-V1000

4 2.660 1.618 5.486 16833

0.04%

4 10.153 1079
6 0.92 0.448 1.332 1404 6 3.641 744
8 0.671 0.312 1.084 716 8 2.235 515
10 0.421 0.246 0.958 443 10 1.521 369

In the case of the RG3 data, the performance of gSpan-UBW with CW1-E is also

presented in Table 8.6. In the table, both the standard FSM algorithms and gSpan-

UBW operate well but gSpan-UBW apparently runs slower than the standard FSM

algorithms. In spite of this fact, gSpan-UBW identifies substantially fewer patterns

than the standard FSM algorithms.

Table 8.7: The accuracy of the classifiers using patterns discovered by gSpan-UBW
with SW1 on the CH1 data

Dataset
gSpan

vs.
gSpan-UBW

σ(%) #F
Accuracy

µ τ(%) #F
Accuracy

NBC SVM C4.5 NBC SVM C4.5

RG1:CH1
16 3596 77.4 80.1 79.5

0.2%
10 171 73.9 76.5 76.9

18 2735 76.8 79.6 79.2 12 120 74.5 76.6 78.2
20 2149 76.8 79.5 80.2 14 83 71.7 75.0 76.5

Classification evaluation. Similar to the evaluations of other weighting schemes

to the CH1 data, the AUC measure is also used in addition to the accuracy measure.

Using the similar procedure described in Chapter 6, the accuracy results obtained

using classifiers built with patterns discovered by gSpan-UBW with SW1 are presented

in Table 8.7. As can be seen in the table, although the accuracy of the classifiers using

patterns discovered by the standard FSM algorithms is moderately higher than that

of the classifiers using patterns discovered by gSpan-UBW, the classifiers built using

patterns discovered by gSpan-UBW use a remarkably smaller number of features.

The same phenomenon can also be observed in Table B.32 for the performance

of gSpan-UBW with SW4. Further inspection of the AUC scores of the classifiers

using patterns discovered by gSpan-UBW with SW1 or SW4, as shown in Table B.27,

175

indicates that using AUC scores, the performance of the classifiers built with patterns

discovered by gSpan-UBW with SW1 or SW4 is far worse than that of the classifiers

built with patterns discovered by the standard FSM algorithms. Thus, it may be

inferred from these tables that the patterns discovered by gSpan-UBW with SW1 or

SW4 are not as effective as those discovered by the standard FSM algorithms, despite

the fact that gSpan-UBW with SW1 or SW4 discovers substantially fewer patterns

than the standard FSM algorithms.

Table 8.8: The accuracy of the classifiers using patterns discovered by gSpan-UBW
with CW1-E on the RG2 and RG3 data

Dataset
standard FSM algorithms

µ
gSpan-UBW + CW1-E

σ(%) #F NBC SVM C4.5 τ(%) #F NBC SVM C4.5

RG2:MAM-V80
18 6728 77.4 76.5 71.3

0.02%
15 3240 76.5 75.7 68.7

20 3228 74.8 76.5 73.0 20 3128 76.5 75.7 68.7
22 2698 76.5 75.7 68.7 25 1382 76.5 75.7 79.1

RG2:MAM-V100
18 11097 84.3 80.0 67.8

0.02%
10 3124 78.3 83.5 68.7

20 5084 80.0 81.7 72.2 15 2796 80.0 81.7 65.2
22 4538 80.9 80.9 69.6 20 2796 80.0 81.7 65.2

RG3:BS-V500
8 24989 97.6 95.9 83.5

0.1%
4 1297 97.1 93.5 86.5

10 6285 96.5 93.5 84.7 6 620 97.1 94.1 87.1
12 2073 93.5 92.9 86.5 8 505 95.3 92.9 81.8

RG3:BS-V1000
4 16833 95.9 92.4 84.7

0.08%
4 773 95.9 92.4 81.8

6 1404 95.3 91.2 84.1 6 596 93.5 91.8 79.4
8 716 92.9 91.2 84.1 8 479 94.7 91.8 80.6

In the case of RG2 and RG3, as described before, a two-class classification problem

can be formulated for the respective RG2 and RG3 data. The performance of the

classifiers built using patterns discovered by gSpan-UBW with CW1-E on the RG2 and

RG3 data is shown in Table 8.8. In comparison with the performance of the classifiers

built using patterns discovered by the standard FSM algorithms, Table 8.8 reveals

that the classifiers built using patterns discovered by gSpan-UBW achieve very similar

results to those built using patterns discovered by the standard FSM algorithms, but

a considerably smaller number of features is required by the former than the latter.

8.2.3 The evaluation of the UBW scheme on directed graphs

The directed graphs employed in this thesis include the RG4 and RG5 data. As dis-

cussed in Chapter 6, only gSpan and gSpan-UBW were tested in the experiments.

The experimental results obtained applying the UBW scheme to RG4 and RG5 are

summarized in the following paragraphs.

Efficiency test. The RG4 data contains three data sets: IMDB, Amazon, and

Ohsumed. The performance of gSpan-UBW, in comparison with gSpan, on the RG4

data is shown in Table 8.9. In the table, the same range of support thresholds was

used respectively for gSpan and gSpan-UBW on IMDB, Amazon, and Ohsumed. As

can be seen in the table, gSpan-UBW requires more runtime but discovers far fewer

patterns than gSpan. Thus, the gain of reducing the number of patterns discovered by

176

gSpan-UBW on the RG4 data is achieved at the cost of more runtime. Is it worthwhile

to identify a considerably smaller number of patterns but with increased runtime cost?

The answer to this question is determined by the quality of the patterns discovered by

gSpan-UBW. The evaluation of the quality of the patterns discovered by gSpan-UBW

is considered below.

Table 8.9: The performance of gSpan-UBW with CW1-E on the RG4 and RG5 data

Dataset
gSpan gSpan-UBW + CW1-E

σ(%) runtime (in seconds) # patterns µ τ(%) runtime # patterns

RG4:IMDB

0.1 6.738 8768

0.2%

0.1 38.329 5523
0.2 4.888 3932 0.2 13.837 3320
0.4 3.965 1866 0.4 4.883 1781
0.6 3.126 1230 0.6 3.729 1204

RG4:Amazon

0.4 8.184 4680

0.08%

0.4 108.56 2880
0.6 7.341 2901 0.6 45.818 2171
0.8 7.051 1974 0.8 21.466 1658
1.0 6.406 1534 1.0 14.617 1354

RG4:Ohsumed

0.4 7.391 4138

0.2%

0.4 62.790 2647
0.6 5.762 2630 0.6 31.777 2011
0.8 5.366 1902 0.8 19.344 1584
1.0 5.178 1521 1.0 12.121 1319

RG5:Lancashire

10 5.691 8107

0.1%

10 3.339 1010
12 2.891 3520 12 2.402 872
14 2.010 1898 14 1.826 758
16 1.575 1211 16 1.498 663

RG5:Scotland

10 43.836 84342

0.1%

10 6.380 3116
12 11.341 20895 12 4.040 2612
14 5.531 7856 14 3.073 2248
16 3.685 3952 16 2.730 1912

RG5:GB

15 197.525 59081

0.02%

15 132.974 16428
18 108.260 25248 18 87.189 13448
20 79.076 17001 20 71.417 11750
22 53.836 11540 22 54.990 9691

The RG5 social network data contains three data sets: Lancashire, Scotland and

GB. The performance of gSpan-UBW with CW1-E on the RG5 data is also presented in

Table 8.9. It can be clearly seen from the table that gSpan-UBW discovers considerably

fewer patterns with significantly less runtime than gSpan, using the same range of

support thresholds.

Classification evaluation. Since the graphs in RG4 have class labels, the quality

of the patterns discovered by gSpan-UBW was evaluated using the framework of the

frequent pattern based classification. The classification results are presented in Table

8.10. In comparison with the performance of the classifiers built using patterns discov-

ered by gSpan, Table 8.10 suggests that the classifiers built using patterns discovered

by gSpan-UBW retain the same level of accuracy but require much fewer features.

The graphs in the RG5 data do not feature any class labels and thus the quality of

the patterns discovered cannot be assessed using a classification scenario.

177

Table 8.10: The accuracy of the classifiers using patterns discovered by gSpan-UBW
with CW1-E on the RG4 data

Dataset
gSpan

vs. µ
gSpan-UBW + CW1-E

σ(%) #F NBC SVM C4.5 τ(%) #F NBC SVM C4.5

RG4:IMDB
0.1 8768 72.9 71.8 73.0

0.2%
0.2 3320 72.9 72.3 73.1

0.2 3932 72.9 72.1 73.0 0.4 1781 72.9 72.6 73.1
0.4 1866 72.9 72.5 73.1 0.6 1204 72.9 72.6 73.1

RG4:Amazon
0.4 4680 92.4 92.7 91.2

0.08%
0.4 2880 92.4 92.7 91.2

0.6 2901 92.4 92.7 91.2 0.6 2171 92.4 92.7 91.2
0.8 1974 92.5 93.0 91.2 0.8 1658 92.5 93.0 91.2

RG4:Ohsumed
0.4 4138 76.9 78.5 74.7

0.2%
0.4 2647 76.9 78.7 74.7

0.6 2630 76.9 78.2 74.7 0.6 2011 76.9 78.4 74.7
0.8 1902 76.9 77.8 74.7 0.8 1584 76.9 78.0 74.7

8.3 Summary and Discussion

An alternative subgraph weighting scheme that does not maintain the DCP was exam-

ined in this chapter. The evaluation of the UBW scheme was carried out by applying

gSpan-UBW to various data sets. Since the implementation of the UBW scheme neces-

sitates edge weightings, both the structural weighting and content weighting functions

were employed. For data sets that do not have an edge weighting, the SW1 and SW4

weighting functions were assumed to be able to quantify the strength of the edges.

However, for certain data sets, the SW1 and SW4 functions were found not to produce

a good edge weighting, in terms of the effectiveness of the discovered patterns. For

data sets that do have an edge weighting, the CW1-E function was used.

The performance of gSpan-UBW coupled with structural weighting functions differs,

depending on the effectiveness of SW1 or SW4. For the RG1:CH1 data set, gSpan-

UBW identifies substantially fewer patterns with significantly less runtime than gSpan.

However the patterns discovered by gSpan-UBW were found to be less effective than

those discovered by gSpan. For the RT1:CSLOGS-1 and RT1:CSLOGS-2 data sets,

the advantage of gSpan-UBW over the standard FSM algorithms was prominent only

when using low support thresholds. Further, the patterns discovered by the gSpan-

UBW algorithm on the RT1:CSLOGS-1 and RT1:CSLOGS-2 data sets were found to

be as effective as those discovered by the standard FSM algorithms, in terms of the

classification accuracy. For the ST2, RT2, and RT3 data, the performance of gSpan-

UBW surpassed that of the standard FSM algorithms with respect to both runtime and

the number of patterns discovered. Moreover, the patterns discovered by gSpan-UBW

on these data were as effective as those discovered by the standard FSM algorithms.

For the ST1, RT1:CSLOGS-ALL, and RG1:CH2 data sets, gSpan-UBW discovered far

fewer patterns than the standard FSM algorithms, despite the fact that the former ran

considerably slower than the latter. However the quality of the patterns could not be

assessed due to the unavailability of appropriate class labels.

The performance of gSpan-UBW varied with respect to data sets using the CW1-E

178

function. For the RG5 data set, gSpan-UBW outperformed gSpan, in terms of both

runtime and the number of patterns discovered. For the RG2, RG3, and RG4 data

sets, gSpan-UBW runs much slower than the standard FSM algorithms but identifies

considerably fewer patterns than the standard FSM algorithms. Furthermore, the

patterns discovered by gSpan-UBW with RG2 are slightly less effective than those

discovered by the standard FSM algorithms; the patterns discovered by gSpan-UBW

when applied to RG3 and RG4 were found to be as effective as those discovered by

the standard FSM algorithms, in terms of their classification accuracy. It may be

inferred from the performance of gSpan-UBW on RG2, RG3, and RG4 that the benefit

of using the UBW scheme is usually at the expense of increasing the runtime, and

that the pruning strategy used in the UBW scheme is not as strong as that achieved

using subgraph weighting schemes that maintain the DCP. This is especially true with

respect to data sets such as RG2, RG3 and RG4 where no high computation costs were

incurred.

Altogether, the implementation of the UBW scheme is sensitive to the nature of

the edge weightings, on some data sets, the operation of gSpan-UBW was found to be

superior to that of the standard FSM algorithms, in terms of: (i) the runtime cost, (ii)

the number of patterns identified, and (iii) the effectiveness of the patterns. On certain

data sets, the benefits of the UBW scheme were achieved at the expense of increased

runtime; and, in most cases, the effectiveness of the discovered patterns was retained.

179

180

Chapter 9

Further Discussions

In this chapter, based on the experimental results delineated in Chapters 6, 7 and

8, further discussions of different weighting functions and various subgraph weighting

schemes are considered. The discussions are presented in Section 9.1 for weighting

functions, and Section 9.2 for subgraph weighting schemes.

9.1 The Usage of Weighting Functions

According to Chapter 3, eight weighting functions were studied in this thesis. Except

that the CW1 function is completely assigned by the domain user, the rest of the seven

weighting functions utilize either the structure of the data or some partially provided

domain knowledge of the data to compute the weights for vertexes or edges. Because the

design of each of these seven weighting functions requires that each weighting function

has to be used together with each suitable subgraph weighting scheme, the usage of

each weighting function has to be considered in the context of each applicable subgraph

weighting scheme.

Excluding CW1, as indicated before, the applicability of the seven weighting func-

tions can be explained as follows. Specifically, SW1 and SW4 were applicable only to

ATW, AW, and UBW; SW2, SW3, CW2, and CW3 were applicable only to CMW;

SW5 was applicable only to ATW. In the context of the ATW scheme, SW1 and SW4

are edge weightings while SW5 is a vertex weighting; the performance of ATW coupled

with SW1, SW4, or SW5 on the applicable data sets is very similar. In the context

of the AW or UBW scheme, there is no big difference between the usage of the SW1

and SW4 functions with respect to the performance of AW or UBW on the applicable

data sets. In the context of the CMW scheme, SW2 and SW3 are two edge weightings

that are devised when the class labels are not available, while CW2 and CW3 are two

edge weightings that are devised when the class labels are accessible; the performance

of CMW coupled with SW2 is comparable to that of CMW coupled with SW3, and the

same applies to the performance of CMW using CW2 and CW3.

Using SW1 is straightforward, because the computation of SW1 requires only the

181

size of the graph database (in terms of the total number of edges) and the number

of occurrences of each edge in the database, which can be generated on the fly in the

mining process. Although the computation of SW2 and SW3 is complex, it only involves

computing the number of occurrences of each vertex and edge in the database, and such

computing can usually be reduced by using some nice properties derived from SW2 and

SW3. More importantly, SW2 and SW3 incorporate some feature selection measures,

which are beneficial to extract statistically meaningful patterns, when the CMW scheme

is coupled with SW2 or SW3. The computation of SW4 and SW5 considers not only

the number of occurrences of the edges, but also the number of edges incident to the

vertexes. Thus, SW4 and SW5 are more suitable to generate weights for vertexes or

edges in graphs which have a lot of edge connections among vertexes. Similar to SW2

and SW3, CW2 and CW3 also incorporate feature selection measures but they require

the domain knowledge. Using CW2 and CW3, in conjunction with the CMW scheme,

is beneficial to extract discriminative patterns for the classification.

9.2 The Usage of Subgraph Weighting Schemes

Table 9.1: The applicability of subgraph weighting schemes with respect to various
data sets

Data
Subgraph weighting scheme

ATW AW CMW JSW UBW

ST1
√ √ √ √

>
ST2

√ √ √ √ √

RT1:CSLOGS-ALL
√

×
√ √

>
RT1:CSLOGS-1

√ √
∗

√
>

RT1:CSLOGS-2
√ √

∗
√

>
RT2

√
× ×

√ √

RT3 ×
√ √ √ √

RG1:CH1
√

×
√ √

×
RG1:CH2

√ √
>

√
>

RG2
√

×
√ √

>
RG3:BS-V500

√ √
∗

√
>

RG3:BS-V1000
√

× >
√

>
RG4

√
×

√ √
>

RG5
√ √ √ √ √

Five different subgraph weighting schemes, using various strategies under different

scenarios, were proposed in this thesis. The evaluation of these five subgraph weighting

schemes on different data sets derived from different application domains suggests that

except JSW, there is no other subgraph weighting scheme that is applicable to all the

data sets. Table 9.1 indicates the applicability of all these five subgraph weighting

schemes. With reference to the table, the ‘
√

’, ‘×’ , ‘∗’, and ‘>’ symbols in individual

182

cells indicate the following. The ‘
√

’ symbol in a cell indicates that when using the

corresponding subgraph weighting scheme on the corresponding data set, the weighted

FSM algorithms run faster and discover considerably fewer patterns than standard

FSM algorithms. The ‘×’ symbol indicates that the corresponding subgraph weighting

scheme is not applicable to the corresponding data set. The ‘∗’ symbol indicates that

when using the corresponding data set, the weighted FSM algorithms discover consid-

erably fewer patterns than standard FSM algorithms but the runtime cost of the former

is close to that of the latter. The ‘>’ symbol indicates that when using the correspond-

ing data set, the weighted FSM algorithms discover considerably fewer patterns than

standard FSM algorithms but the former requires more runtime than the latter.

As can be seen from the table, the UBW scheme is computationally the most

expensive weighting scheme, in comparison with the other schemes, because the im-

plementation of the UBW scheme violates the DCP while the implementations of the

others do not. For the rest of the four weighting schemes, the JSW and ATW schemes

appeared to be the two best performer; the AW scheme was the worst in terms of the

applicability; the CMW scheme required more runtime than both ATW and JSW.

Table 9.1 further shows that some subgraph weighting schemes operate well on

certain data and not so well on other data. Since each subgraph weighting scheme has

its own weaknesses and strengths, and its advantages are only exemplified on certain

data, it is not very useful to compare these five weighting schemes directly with respect

to all the data sets used in the evaluation. However the research objective of this

thesis is to demonstrate that weighted FSM algorithms can identify significantly fewer

patterns with a reasonable amount of time compared to standard FSM algorithms

and that the identified patterns are the “right” patterns. Thus the comparison of these

weighting schemes are based on the number of patterns discovered and the effectiveness

of the patterns, in terms of their classification effectiveness. Excluding the data that

did not feature class labels, the data used for the classification experiments consisted

of ST2, RT1:CSLOGS-1, RT1:CSLOGS-2, RT2, RT3, RG1:CH1, RG2, RG3, and RG4.

Thus, the specific comparisons of different subgraph weighting schemes in terms of the

number of patterns (i.e. features) identified and the effectiveness of the classifiers using

such patterns are examined in the following paragraphs.

For the ST2 data, the weighted FSM algorithms using any of the five subgraph

weighting schemes performed better than standard FSM algorithms, in terms of both

the runtime cost and the number of patterns discovered. Table 9.2 compares the accu-

racy results obtained between the classifiers built using patterns discovered by weighted

FSM algorithms and the classifiers built using patterns discovered by standard FSM

algorithms. In the table, ‘#Fnbc’ , ‘#Fc4.5’ and ‘#Fsvm’ denote the number of fea-

tures used to construct the NBC, C4.5 and SVM classifiers respectively (these symbols

will be used throughout the rest of this chapter unless otherwise specified). The best

183

Table 9.2: The accuracy of the classifiers using patterns discovered by weighted FSM
algorithms with respect to various weighting schemes on the ST2 data

Data Weighting scheme #Fnbc NBC (%) #Fc4.5 C4.5 (%) #Fsvm SVM (%)

ST2:IM1000-D4

ATW 357 93.6 2173 94.9 357 95.7
AW 297 92.5 273 95.1 189 95.8
CMW 175 89.6 175 95.2 666 95.0
JSW 823 90.6 2001 95.5 823 95.7
UBW 270 93.5 179 94.4 179 95.7
No Weighting 7263 92.9 7263 94.9 1659 95.5

ST2:IM1000-D5

ATW 1550 86.2 1829 91.6 1501 91.6
AW 2000 86.2 1188 91.3 1188 91.6
CMW 1514 86.9 1514 91.3 1682 88.9
JSW 2155 84.1 794 91.1 2155 90.2
UBW 1567 90.3 1567 92.3 1567 92.9
No Weighting 6287 87.0 6287 91.9 1163 91.4

ST2:IM1000-D6

ATW 2126 81.2 1462 86.7 1462 75.2
AW 2011 81.2 1130 86.7 396 77.1
CMW 490 90.9 4901 87.5 4901 75.9
JSW 3526 81.3 1634 89.6 3526 78.4
UBW 1106 85.2 1106 89.8 1106 79.3
No Weighting 6936 81.9 6936 81.9 6936 76.4

accuracy for each classifier under each category is highlighted in bold. As shown in

Table 9.2, the patterns discovered by the weighted FSM algorithms were found to be

at least as effective as those discovered using standard FSM algorithms, in terms of the

classification performance. In general, with respect to the number of features used to

build the three classifiers, UBW appears to be the best, and is followed by AW and

CMW; ATW and JSW employ the largest number of features.

Table 9.3: The accuracy of the classifiers using patterns discovered by weighted FSM
algorithms with respect to various weighting schemes on the CSLOGS-1(2) data

Data Weighting scheme #Fnbc NBC (%) #Fc4.5 C4.5 (%) #Fsvm SVM (%)

RT1:CSLOGS-1

ATW 286 79.8 286 79.8 391 81.1
AW 439 80.5 718 82.3 300 81.7
CMW 629 80.7 695 82.2 629 81.8
JSW 177 80.7 242 81.8 417 81.8
UBW 303 80.6 303 82.1 645 81.8
No Weighting 1286 79.8 2582 81.8 2582 81.8

RT1:CSLOGS-2

ATW 292 80.4 292 81.5 383 81.7
AW 685 80.6 685 82.3 685 81.9
CMW 678 80.4 678 82.6 678 81.5
JSW 186 80.6 429 82.3 417 81.8
UBW 314 80.6 314 82.2 314 82.4
No Weighting 1281 80.4 2485 82.1 2485 82.0

With respect to the RT1:CSLOGS-1 and RT1:CSLOGS-2 data sets, the perfor-

mance of both standard FSM and weighted FSM algorithms was very similar. Using

the RT1:CSLOGS-1 data set as an example, the weighted FSM algorithms using any of

the ATW, AW, and JSW schemes run faster and identified significantly fewer patterns

than standard FSM algorithms. The weighted FSM algorithms coupled with either of

184

the CMW and UBW schemes, required more computation effort to discover consider-

ably fewer patterns than the standard FSM algorithms, especially when the support

threshold was relatively high. As for the quality of the patterns discovered by the

weighted FSM algorithms, Table 9.3 lists the accuracy results of the classifiers built

using patterns discovered by the weighted FSM algorithms integrating with the five

weighting schemes. As can be seen from the table, the patterns discovered using any of

the AW, CMW, JSW and UBW schemes were found to be slightly more effective than

those discovered using standard FSM algorithms; the JSW scheme seemed to be the

best among these four proposed schemes in terms of classification accuracy and num-

ber of features used to build the classifiers. Table 9.3 also indicates that the patterns

discovered using weighted FSM algorithms coupled with the ATW scheme appeared

to be marginally less effective than those discovered using standard FSM algorithms.

However the classifiers built using the ATW patterns require significantly fewer features

than those built using patterns discovered by the standard FSM algorithms.

Table 9.4: The accuracy of the classifiers using patterns discovered by weighted FSM
algorithms with respect to various weighting schemes on the RT2 data

Data Weighting scheme #Fnbc NBC (%) #Fc4.5 C4.5 (%) #Fsvm SVM (%)

RT2:QT-D5

ATW 2186 73.6 4877 67 2186 66.0
JSW 18820 88.7 18820 74.5 18820 72.6
UBW 4450 75.5 2561 80.2 2591 70.8
No Weighting 36955 79.2 36955 68.9 36955 76.4

RT2:QT-D6

ATW 17736 82.1 17736 78.3 18065 85.8
JSW 21591 88.7 21591 88.7 21591 76.4
UBW 6986 88.7 6713 82.1 6713 79.2
No Weighting 41096 85.8 18353 78.3 18353 85.8

RT2:QT-D7

ATW 2790 85.8 2790 78.3 4918 74.5
JSW 18022 84.0 18022 72.6 20730 77.4
UBW 7420 74.5 4486 77.4 4175 78.3
No Weighting 39008 82.1 6959 70.8 20905 78.3

For the RT2 data, weighted FSM algorithms coupled with any of the ATW, JSW,

and UBW schemes outperformed standard FSM algorithms with respect to both the

runtime cost and the number of patterns found. In addition, the classifiers built using

pattens discovered by the weighted FSM algorithms achieve a very similar performance

to those built using patterns discovered by the standard FSM algorithms. As can be

seen from Table 9.4, among the three proposed weighting schemes, using the JSW

scheme required substantially more features, than the other two schemes, to build the

classifiers and using the UBW scheme seemed to obtain the best result, in terms of

classification accuracy and the number of features used to build the classifiers. The

AW and CMW schemes were not applicable to the RT2 data because of the reasons

explained in Sub-section 7.1.1.

For the RT3 data, standard FSM algorithms simply did not work. Among the

five subgraph weighting schemes, the weighted FSM algorithms coupled with the ATW

185

scheme failed to find effective patterns due to the out-of-memory errors. The weighted

FSM algorithms using any of the rest of the four weighting schemes worked very well on

the RT3 data. As can be seen from Table 9.5, in comparison with the CMW, JSW and

UBW schemes, the best classification results were achieved (with the smallest number

of features) using the AW scheme.

Table 9.5: The accuracy of the classifiers using patterns discovered by weighted FSM
algorithms with respect to various weighting schemes on the RT3 data

Data Weighting scheme #Fnbc NBC (%) #Fc4.5 C4.5 (%) #Fsvm SVM (%)

RT3

AW 1600 98.5 942 94.0 942 88.5
CMW 3390 96.0 339 91.5 2442 80.5
JSW 2702 99.0 1532 93.0 2702 87.0
UBW 1539 95.0 812 92.5 1539 73.0
No Weighting n/a n/a n/a n/a n/a n/a

For the RG1:CH1 data, the weighted FSM algorithms coupled with any of the ATW,

CMW, and JSW schemes required significantly less runtime and found considerably

fewer patterns than standard FSM algorithms. For these three weighting schemes,

Table 9.6 shows that the classifiers built using patterns discovered by the weighted FSM

algorithms achieved comparable performance with those built using patterns discovered

by the standard FSM algorithms, but the former needed a significantly smaller number

of features than the latter. Table 9.6 further shows that in the light of the classifiers’

performance and the number of features required to build the classifiers, both the CMW

and JSW schemes appeared to be better than the ATW scheme. Additionally, using

the AW and UBW weighting scheme, the weighted FSM algorithms failed to identify

effective patterns with respect to classification accuracy, although it ran faster and

discovered far fewer patterns than the standard FSM algorithms.

Table 9.6: The AUC scores of the classifiers using patterns discovered by weighted FSM
algorithms with respect to various weighting schemes on the RG1:CH1 data

Data Weighting scheme #Fnbc NBC (%) #Fc4.5 C4.5 (%) #Fsvm SVM (%)

RG1:CH1

ATW 1656 79.1 2382 76.2 1474 70.9
CMW 1516 75.2 399 76.2 491 71.9
JSW 404 73.3 404 76.6 404 69.1
No Weighting 3596 79.5 2149 76.0 3596 69.3

For the RG2 data, the standard FSM algorithms worked well and the advantages of

the weighted FSM algorithms over the standard FSM algorithms were not prominent

when using relatively high support thresholds. The weighted FSM algorithms coupled

with any of the ATW, CMW and JSW schemes performed better than the standard

FSM algorithms with respect to the runtime cost and the number of patterns discov-

ered. Further, the AW scheme did not work on the RG2 data, and the weighted FSM

algorithms using the UBW scheme required more runtime than the standard FSM al-

gorithms, in order to identify fewer patterns. As can be seen from Table 9.7, in terms of

186

the classification accuracy using patterns discovered by the weighted FSM algorithms,

using the CMW scheme was the most cost effective choice, and accuracy results ob-

tained using the remaining three schemes were very similar, but using the UBW scheme

required considerably fewer features than the ATW scheme, to build the classifiers.

Table 9.7: The accuracy of the classifiers using patterns discovered by weighted FSM
algorithms with respect to various weighting schemes on the RG2 data

Data Weighting scheme #Fnbc NBC (%) #Fc4.5 C4.5 (%) #Fsvm SVM (%)

RG2:MAM-V80

ATW 2126 77.4 1809 73.0 2126 77.4
CMW 1500 86.1 623 76.5 353 78.3
JSW 1276 77.4 2226 73.0 2226 76.5
UBW 1382 76.5 1382 79.1 1382 75.7
No Weighting 6728 77.4 3228 73.0 3228 76.5

RG2:MAM-V100

ATW 5476 83.5 5316 71.3 5476 84.3
CMW 6962 94.8 928 72.2 3809 86.1
JSW 2495 80.0 3903 70.4 2495 81.7
UBW 2796 80.0 3124 68.7 3124 83.5
No Weighting 11097 84.3 5084 72.2 5084 81.7

Table 9.8: The accuracy of the classifiers using patterns discovered by weighted FSM
algorithms with respect to various weighting schemes on the RG3 data

Data Weighting scheme #Fnbc NBC (%) #Fc4.5 C4.5 (%) #Fsvm SVM (%)

RG3:BS-V500

ATW 6162 97.6 1341 87.6 1341 94.7
AW 1171 96.5 1171 83.5 4923 95.9
CMW 1153 97.6 776 82.9 2674 95.3
JSW 10858 98.2 10858 88.2 1858 95.3
UBW 620 97.1 620 87.1 620 94.1
No Weighting 24989 97.6 2073 86.5 24989 95.9

RG3:BS-V1000

ATW 911 95.9 1071 84.1 766 92.9
CMW 2413 95.3 400 85.3 2413 92.9
JSW 10262 96.5 715 84.7 10262 91.8
UBW 773 95.9 773 81.8 773 92.4
No Weighting 16833 95.9 443 85.3 16833 92.4

For the RG3 data, the standard FSM algorithms worked well. For the RG3:BS-

V500 data, the weighted FSM algorithms using any of the ATW, AW, CMW and JSW

weighting schemes required less runtime to discover significantly fewer patterns than

the standard FSM algorithms. The weighted FSM algorithm using the UBW scheme

was found to run slower than the standard FSM algorithms, but the former discovered

substantially fewer patterns than the latter. As can be seen from Table 9.8, using the

UBW scheme, the classifiers achieved a similar accuracy result to those when using

other schemes, but used a much smaller number of features; using the JSW scheme,

the classifiers had a tendency to employ a much larger number of features than using

other schemes, to achieve a similar level of accuracy. As for the RG3:BS-V1000 data,

the AW scheme did not work; and the weighted FSM algorithms using either the CMW

or UBW scheme required more runtime cost, incurred by the computation required to

generate the weightings, than that using the ATW or JSW scheme. In comparison

187

with the accuracy of the classifiers built using patterns discovered by the standard

FSM algorithms, the accuracy of the classifiers built using patterns discovered by the

weighted FSM algorithms with any of the ATW, CMW, JSW and UBW schemes, as

shown in Table 9.8, was found to be at a comparable level.

Table 9.9: The accuracy of the classifiers using patterns discovered by weighted FSM
algorithms with respect to various weighting schemes on the RG4 data

Data Weighting scheme #Fnbc NBC (%) #Fc4.5 C4.5 (%) #Fsvm SVM (%)

RG4:IMDB

ATW 1203 72.9 1203 73.1 1203 72.6
CMW 1203 72.9 1203 73.1 1203 72.6
JSW 1203 72.9 1203 73.1 1203 72.6
UBW 1204 72.9 1204 73.1 1204 72.6
No Weighting 1866 72.9 1866 73.1 1866 72.5

RG4:Amazon

ATW 1653 92.5 1653 91.2 1653 93.0
CMW 1662 92.5 1662 91.2 1662 93.0
JSW 1653 92.5 1653 91.2 1653 93.0
UBW 1658 92.5 1658 91.2 1658 93.0
No Weighting 1974 92.5 1974 91.2 1974 93.0

RG4:Ohsumed

ATW 1582 77.4 1582 75.4 2646 78.7
CMW 1592 76.9 1592 74.7 2674 78.7
JSW 1583 77.4 1583 75.4 2671 79.3
UBW 1584 76.9 1584 74.7 2647 78.7
No Weighting 1902 76.9 1902 74.7 4138 78.5

For the RG4 data, the standard FSM algorithms worked well, whilst the AW scheme

failed to work. The weighted FSM algorithms using the ATW, CMW and JSW schemes

mostly outperformed the standard FSM algorithms, in terms of the runtime cost and

the number of patterns discovered. The UBW scheme required more runtime than the

other workable weighting schemes. As can be seen from Table 9.9, the classifiers built

using patterns discovered by the weighted FSM algorithms outperformed those built

using patterns discovered by the standard FSM algorithms in terms of the classifica-

tion accuracy and number of features used to build the classifiers. Using any of the

four weighting schemes (ATW, CMW, JSW, and UBW), the performance of classifiers

built using patterns discovered by the weighted FSM algorithms were found to be very

similar.

By and large, there is no constant “winner” among the five subgraph weighting

schemes. Practically, the effectiveness of the subgraph weighting schemes was found

to be related to the following “factors”: (i) the characteristics of the specific graph

representation, (ii) the specific weighting function adopted, and (iii) the purpose of the

application. An appropriate graph representation necessitated a good knowledge of the

application domain and a proper weighting function relied on both the graph repre-

sentation and domain knowledge of the application. The performance of the weighted

FSM algorithms using any of the weighting schemes may be significantly affected by

an unsuitable graph representation or an unfitting weighting function.

Precisely, the UBW scheme was computationally the most expensive because it did

188

not satisfy the DCP, resulting in a much longer time to filter uninteresting patterns.

However, the UBW scheme mostly tends to identify a relatively smaller number of pat-

terns than the ATW and JSW schemes. Further, applying the UBW scheme can utilize

the domain knowledge represented by edge weightings, and the patterns identified by

using UBW are effective, in terms of the performance of the classifiers.

For the remaining of four weighting schemes, which all satisfied the DCP, the JSW

scheme did not use any weighting functions for vertexes or edges and the performance

of the weighted FSM algorithm using the JSW scheme was mainly affected by the

graph structure used to calculate the weight for each discovered subgraph. Thus, the

computational complexity of employing JSW, as indicated in Table 9.1, is not high.

In addition, no domain knowledge is required for applying JSW. The CMW scheme

mostly required more runtime than the ATW, AW, and JSW schemes, because the

computational overhead required by the SW2, SW3, CW2, and CW3 weighting func-

tions is time consuming, especially for large data sets. Nevertheless, the CMW scheme

has the capacity to incorporate the domain knowledge represented by using feature

selection measures, which can be utilized to extract meaningful patterns for the classi-

fication. Similar to UBW, the AW scheme was found to be very sensitive to the specific

weighting function, because an unfitting edge weighting might lead to the ineffective-

ness of the pruning strategy used in AW. Compared with UBW, the use of AW is more

efficient than that of UBW, because computing the weighting ratio in the AW scheme

is rather simple and more importantly, the weighting ratio satisfies the DCP. On the

contrary to both AW and UBW, the ATW scheme was found to be not sensitive to

the specific weighting functions used. Therefore, similar to JSW, applying the ATW

scheme is straightforward and does not require the domain knowledge. Further, as

demonstrated in Chapters 6 and 7, the application of the ATW scheme is suitable for

the graph representation using hierarchical decomposition (e.g. ST2 and RT2).

Overall, how to choose the appropriate subgraph weighting scheme can be suggested

as follows. When no domain knowledge is available, ATW, JSW, CMW coupled with

SW2 or SW3, and UBW coupled with SW1 or SW4 are preferred; when the user

provides the class labels for the data, CMW coupled with CW2 or CW3 is preferred;

when the edge weightings provided by the user are accurate, ATW, AW and UBW are

preferred. Alternatively, if the computational complexity is of main concern, ATW and

JSW are used firstly, and followed by AW and CMW; UBW is used as the final resort.

189

190

Chapter 10

Conclusion

This chapter presents the main findings, the research contribution and possible future

directions. The main findings of the research are presented in Section 10.1, and the

contribution of the research work and directions for future research in Section 10.2 and

Section 10.3 respectively.

10.1 Findings

In this thesis, the concept of weight was introduced to assign “importance” to each

discovered subgraph so that a framework of weighted FSM could be formulated to

reduce the computational complexity incurred by FSM, but still retain the quality of

the discovered patterns. The weighted FSM framework included three components: (i)

graph representations, (ii) weighting functions for vertexes or edges, and (iii) subgraph

weighting schemes. These three components were intertwined in the design of the

weighted FSM algorithms. The proposed weighted FSM framework was designed to

address the research question introduced in Chapter 1.2, and to answer each sub-

question related to this research question. A detailed analysis per sub-question is

presented in the following.

(a) What form should the desired weighting function take? The weighting

functions introduced in Chapter 4 can be employed to assign weights for either

vertexes or edges. However, as discussed in Chapters 6 and 8, the AW, CMW and

UBW schemes all required an edge weighting, the ATW scheme required either a

vertex or edge weighting, and the JSW scheme did not need any vertex or edge

weights. Thus, the selection of the specific weighting function was dependent on the

usage of the specific subgraph weighting scheme. In the case of the ATW scheme,

both the edge weighting (i.e. SW1, SW4) and vertex weighting (i.e. SW5) had

similar effects on the performance of the weighted FSM algorithms using the ATW

scheme.

191

(b) How should weightings be derived? Again, the answer to this question is

similar to question (a). Whether to employ user provided weights or structural

weighting was application dependent. In practice, it is usually not easy to obtain

user provided weights, especially for large data collections. Under this situation,

using alternative structural weighting is a necessity.

(c) What is the nature of the data structures that would be required to

support weighted frequent subgraph mining? As illustrated in Chapter 3,

different types of graphs (trees, undirected graphs and directed graphs) were con-

structed from different domains of application. An ability to operate with different

types of graphs is therefore essential for weighted frequent subgraph mining. Ac-

cording to the experimental analysis described in Chapters 6, 7, and 8, the weighted

FSM algorithms using the five proposed subgraph weighting schemes were able to

support trees, undirected graphs and directed graphs irrespective of the differences

of their structures.

(d) How should weightings be used? As discussed in Section 9.2, the effective-

ness of the subgraph weighting scheme relied on the characteristics of the graph

representation, the weighting function used, and the application goal. Thus, ef-

fective subgraph weighting necessitates taking into consideration both the graph

representation and the weighting function with respect to the application objective.

(e) Whether to maintain the Downward Closure Property (DCP) or not? As

indicated by Table 9.1, the UBW scheme that did not maintain the DCP was found

to be computationally less efficient than the other four weighting schemes that

maintained the DCP. Therefore, it can be concluded that it is desirable to devise

subgraph weighting schemes that maintain the DCP, in terms of computational

efficiency.

Altogether, the research conducted in this thesis revealed the following facts.

(a) Weighted FSM, regardless of the weighting scheme used, identifies significantly

smaller number of patterns than the standard FSM algorithms.

(b) Weighted FSM using weighting schemes that maintain the DCP generally runs

significantly faster than the standard FSM algorithms.

(c) In most cases, weighted FSM using the UBW scheme requires more runtime than

the standard FSM algorithms.

(d) The patterns discovered using weighted FSM, coupled with any of the five weight-

ing schemes, are at least as effective as those discovered by the standard FSM

algorithms with respect to the classification power (i.e. the “correct” frequent

subgraphs and subtrees are discovered).

192

10.2 Contributions

With respect to Section 1.5, the primary contributions of the research work presented

in this thesis can be listed as follows:

(a) The weighting concept, which puts an emphasis on the most important frequent

subgraphs instead of identifying all the frequent subgraphs during the mining pro-

cess.

(b) The derivation of a number of weighting functions to determine the weights (sig-

nificance) of vertexes or edges in graphs. As described in Chapter 4, five structural

weighting functions: SW1, SW2, SW3, SW4 and SW5 were proposed to com-

pute automatically the weights for vertexes or edges in graphs, and three content

weighting functions: CW1, CW2 and CW3 were proposed to compute the weights

for vertexes or edges in graphs by taking the domain knowledge into consideration.

(c) A sequence of subgraph weighting schemes, to attach significance to identified sub-

graphs, which can be integrated seamlessly into the process of mining frequent

subgraphs. As described in Chapters 5 and 8, four subgraph weighting schemes

that maintained the DCP and one alternative subgraph weighting scheme that did

not maintain the DCP were proposed.

(d) A number of weighted FSM algorithms founded on different weighting strategies

and directed at different types of graphs. As described in Chapters 6 and 8, these

were integrated into a number of standard FSM algorithms (gSpan, FFSM and

GASTON) so that they could be evaluated.

(e) A framework for integrating feature selection techniques into the weighted frequent

subgraph mining process in the context of frequent pattern based graph classifi-

cation. The application of the CMW scheme proposed in Chapter 5 required the

SW2, SW3, CW2 and CW3 weighting functions discussed in Chapter 4. All these

four weighting functions employed one of the feature selection techniques: (i) Phi

correlation coefficient, (ii) normalized mutual information, and (iii) the χ2 mea-

sure. The evaluation of the weighted FSM algorithms using the CMW scheme, as

discussed in Chapter 6, indicated that the patters discovered by the weighted FSM

algorithms using the CMW scheme coupled with CW2 or CW3 could be directly fed

into the classifiers to gain a good classification accuracy without applying feature

selection.

(f) A mechanism for the domain user to control the mining process by adjusting either

the support or the weight threshold or both, such that the computational complex-

ity of frequent subgraph mining is reduced in a trade-off between efficiency and

effectiveness. Except that the ATW scheme used a weighted support threshold to

193

control the mining result, the other four weighting schemes all required two param-

eters: (i) (weighted) support threshold, and (ii) weighting threshold, to control the

mining result.

(g) A new framework of image classification using an image interest points based graph

representation and weighted frequent subgraph mining. In Chapter 3, both the RG2

(Mammography) and RG3 (photographic image) data were modelled as graphs us-

ing an image interest points based representation. The performance of the classifiers

built using patterns discovered by the weighted FSM algorithms on either RG2 or

RG3, as shown in Chapters 6 and 8, indicated that by using an image interest

points based graph representation, in conjunction with weighted FSM, classifiers

built using patterns discovered by weighted FSM can achieve good classification

accuracy.

(h) A systematic framework for classifying documents described using a graph based

representation, in conjunction with the weighted frequent subgraph mining. In

Chapter 3, the RT3 data was modelled as trees using a semantic graph based

representation, and the RG4 data was modelled as directed graphs using a term

occurrence based representation. As illustrated in Chapters 6, 7 and 8, the per-

formance of the classifiers built using patterns discovered by the weighted FSM

algorithms on both RT3 and RG4 suggested that weighted FSM algorithms com-

bined with the graph based representation can facilitate classifying documents on

a large scale.

10.3 Future Directions

The research described in this thesis has sparked a number of promising directions for

future research.

• Dynamic social networks mining. Graphs created from social network data

tend to change dynamically with time. Using graph mining approaches to identify

interesting patterns in dynamic social networks has become a very active area of

research. Some examples include analysing the properties of time-evolving graphs

[Leskovec et al., 2005], mining dynamic frequent subgraphs [Berger-Wolf and Saia,

2006]. The weights for vertexes or edges can also change with time in dynamic

social networks. Thus, how to work with dynamic weights with respect to social

network mining presents an interesting problem.

• Graph based image representations using image interest points. The

idea of representing images as a vocabulary of individual visual words, of which,

each visual word is represented by a cluster of image interest points, has al-

ready proved its merit for image classification [Lazebnik et al., 2006, Jiang et al.,

194

2007]. However, how best to choose the visual words properly, with regard to the

computation issue, is still unsettled. For the image representations described in

Sub-sections 3.2.5 and 3.2.6, images were modelled as graphs where each vertex

represents the visual word, and each edge the relationship between any two vi-

sual words. In this representation, each vertex was weighted by the number of

interest points contained in the visual word represented by that vertex, and each

edge was weighted by some similarity measure. Thus, using this representation,

the problem of choosing visual words is actually transformed into a weighted fre-

quent subgraph mining problem. Each discovered weighted frequent subgraph

can contain one or more visual words connected according to some similarity

value. The future challenge with respect to such image representations is to cre-

ate more compact graph representations for images with more effective vertex or

edge weighting, so that weighted FSM algorithms can be used to extract more

discriminative patterns, which lead to good image classification accuracy.

• Graph based document representation. Although using graph based repre-

sentations for documents is not a new idea, few researchers have applied weighted

FSM algorithms to graph represented documents on a large scale basis. The re-

search studies using semantic or keyword based graph representations for docu-

ments (as described in Sub-sections 3.2.3 and 3.2.7) can be further extended to

model large collections of documents (e.g. Reuters 21578, 20 newsgroups). More

importantly, how to label the vertexes or edges, and assign meaningful weights

to them is necessary if we wish to achieve effective graph based text mining.

• Integrating feature selection techniques into the FSM algorithms. Fea-

ture selection plays an important role in the framework for frequent pattern

based classification. Is it possible to incorporate feature selection techniques into

weighted FSM so as to directly identify the most discriminative weighted sub-

graphs which are effective with respect to the classification task? There is still

much room for researchers to utilize classic data mining techniques and integrate

them into weighted FSM.

• Parallel weighted frequent subgraph mining. The inherent combinatorial

complexity of the frequent subgraph mining process continues to present a chal-

lenge as we wish to mine graph sets of ever increasing size. The weighted frequent

subgraph mining techniques proposed in this thesis can alleviate this computation

complexity to some degree. However, when the size of the data to be mined is

very large (for example the ST1:T1M data introduced in Sub-section 3.1.1 con-

tains 1000000 trees), the computational overhead becomes unacceptable. In this

case, using distributed/parallel weighted frequent subgraph mining may provide

a solution. One piece of research work directed at this theme is reported in Fatta

195

and Berthold [2005] where an extension of the MoFa algorithm (described in

Sub-section 2.6.1.2) is presented to accommodate the distributed computation of

mining frequent subgraphs with respect to data sets representing large molecular

compounds.

196

Bibliography

A. Abello, M.G.C. Resende, and S. Sundarsky. Massive quasi-clique detection. In

Proceedings of the 5th Latin America Symposium on Theoretical Informatics, pages

598–612, 2002.

M. Aery and S. Chakravarthy. InfoSift: Adapting graph mining techniques for text

classification. In Proceedings of the 8th International Florida Artificial Intelligence

Research Society Conference, 2005a.

M. Aery and S. Chakravarthy. eMailSift: Email classification based on structure and

content. In Proceedings of the 5th IEEE International Conference on Data Mining,

2005b.

R.C. Agarwal, C.C. Aggarwal, and V.V.V. Prasad. A tree projection algorithm for

generation of frequent itemsets. Journal of Parallel and f Computing, 61(3):350–371,

2001.

R. Agrawal and R. Srikant. Fast algorithm for mining association rules. In Proceedings

of the 20th International Conference on Very Large Databases (VLDB’94), pages

487–499. Morgan Kaufmann, 1994.

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items

in large databases. In Proceedings of 1993 ACM SIGMOD International Conference

on Management of Data, pages 207–216, 1993.

R. Albert, H. Jeong, and A.L. Barabási. Diameter of the World-Wide Web. Nature,

401:130–131, 1999.

E. Alm and A.P. Arkin. Biological networks. Current Opinion in Structural Biology,

13(2):193–202, 2003.

T. Asai, K. Abe ans S. Kawasoe, H. Arimura, H. Sakamoto, and S. Arikawa. Efficient

substructure discovery from large semi-structured data. In Proceedings of the 2nd

SIAM International Conference on Data Mining (SDM’02), pages 158–174, 2002.

197

T. Asai, H. Arimura, T. Uno, and S. Nakano. Discovering frequent substructures in large

unordered trees. In Proceedings of the 6th International Conference on Discovery

Science, pages 47–61, 2003.

D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Mathematics,

65(1-3):21–46, 1996.

B. Barber and H.J. Hamilton. Extracting share frequent itemsets with infrequent

subsets. Journal of Data Mining and Knowledge Discovery, 7:153–185, 2003.

E. Barbu, P. Héroux, S. Adam, and E. Trupin. Clustering document image using graph

summaries. In Proceedings of the 5th International Conference on Learning and Data

Mining, pages 194–202, 2005.

A. Barrat, M. Barthélémy, R. Pastor-Satorras, and A. Vespignani. The architecture of

complex weighted networks. In Proceedings of the National Academy of Sciences of

the United States of America, volume 101(11), pages 3747–3752, 2004.

R.J. Bayardo Jr. Efficiently mining long patterns from databases. In Proceedings of the

1998 International Conference on Management of Data (SIGMOD’98), pages 85–93,

1998.

T. Y. Berger-Wolf and J. Saia. A framework for analysis of dynamic social networks.

In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 523–528, 2006.

Biology-Online.org. Biology-online dictionary. http://www.biology-online.org/

dictionary/Phylogeny, June 2010.

I.M. Bomze, M. Budinich, P.M. Pardalos, and M. Pelillo. The maximum clique prob-

lem. In Handbook of Combinatorial Optimization, pages 1–74. Kluwer Academic

Publishers, 1999.

F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Exante: Anticipated data

reduction in constrained pattern mining. In Proceedings of the 7th European Con-

ference on Principles and Practice of Knowledge Discovery in Databases (PKDD),

2003.

C. Borgelt and M. Berthold. Mining molecular fragments: finding relevant substruc-

tures of molecules. In Proceedings of the 2002 International Conference on Data

Mining, pages 211–218, 2002.

K.M. Borgwardt and H.P. Kriegel. Shortest-path kernels on graphs. In Proceedings of

the 2005 International Conference on Data Mining, pages 74–81, 2005.

198

K.M. Borgwardt, H.P. Kriegel, and P. Wackersreuther. Pattern mining in frequent

dynamic subgraphs. In Proceedings of the 2006 IEEE International Conference on

Data Mining, pages 818–822, 2006.

S. Brin and L. Page. The anatomy of a large scale hyper-textual web search engine. In

Proceedings of the 7th International World Wide Web Conference, 1998.

B. Bringmann and A. Zimmermann. One in a million: picking the right patterns.

Knowledge and Information Systems, 18(1):62–81, 2009.

H. Bunke and G. Allerman. Inexact graph matching for structural pattern recognition.

Pattern Recognition Letters, 1(4):245–253, 1983.

H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone, and M. Vento. A comparison of

algorithms for maximum common subgraph on randomly connected graphs. In Pro-

ceedings of the Joint IAPR International Workshop on Structural,Syntactic, and Sta-

tistical Pattern Recognition, pages 123–132, 2002.

C.H. Cai, A.W. Fu, C.H. Cheng, and W.W. Kwong. Mining association rules with

weighted items. In Proceedings of International Database Engineering and Applica-

tions Symposium, 1998.

D. Cai, Z. Shao, X. He, X. Yan, and J. Han. Mining hidden community in heterogeneous

social networks. In Proceedings of ACM SIGKDD Workshop on Link Discovery:Issues

and Approaches and Applications, 2005.

T. Calders, J. Ramon, and D. van Dyck. Anti-monotonic overlap-graph support mea-

sures. In Proceedings of the Eighth IEEE International Conference on Data Mining,

pages 73–82, 2008.

C.L. Carter, H.J. Hamilton, and N. Cercone. Share based measure for itemsets. In

Proceedings of the 1st European Conference on the Principles of Data Mining and

Knowledge Discovery, volume 1263, pages 14–24, 1997.

D. Chakrabarti and C. Faloutsos. Graph mining: laws, generators, and algorithms.

ACM Computing Surveys, 38(1), 2006.

S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, R. Kumar, P. Raghavan, S. Ra-

jagopalan, and A. Tomkins. Mining the link structure of the world wide web. IEEE

Computer, 32(8):60–67, 1999.

C. Chang and C. Lin. LIBSVM: A library for support vector machines, 2001. Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

G. Chartrand and P. Zhang. Introduction to Graph Theory (1st Edition). McGraw Hill

Science/Engineering/Math, 2004.

199

C. Chen, X. Yan, P.S. Yu, J. Han, D. Zhang, and X. Gu. Towards graph containment

search and indexing. In Proceedings of the 33rd International Conference on Very

Large Data Bases (VLDB’07), pages 926–937, 2007a.

C. Chen, X. Yan, F. Zhu, and J. Han. gApprox: Mining frequent approximate patterns

from a massive network. In Proceedings of the 7th IEEE International Conference

on Data Mining, pages 445–450, 2007b.

C. Chen, C.X. Lin, X. Yan, and J. Han. On effective presentation of graph patterns: a

structural representative approach. In Proceedings of the 17th ACM Conference on

Information and Knowledge Management, pages 299–308, 2008.

M.S. Chen, J. Han, and Philip S. Y. Data mining: an overview from database perspec-

tive. IEEE Transactions on Knowledge and Data Engineering, 8:866–883, 1996.

Y. Chi, Y. Yang, Y. Xia, and R.R. Muntz. Indexing and mining free trees. In Proceedings

of the 2003 IEEE International Conference on Data Mining (ICDM’03), 2003a.

Y. Chi, Y. Yang, Y. Xia, and R.R. Muntz. CMTreeMiner: Mining both closed and

maximal frequent subtrees. Technical Report CSD-TR No. 030053, University of

California, Los Angeles, 2003b.

Y. Chi, R.R. Muntz, S. Nijssen, and J.N. Kok. Frequent subtree mining - an overview.

Fundamenta Informaticae, 66(1-2):161–198, 2004a.

Y. Chi, Y. Yang, Y. Xia, and R.R. Muntz. CMTreeMiner: Mining both closed and

maximal frequent subtrees. In Proceedings of the 8th Pacific Asia Conference on

Knowledge Discovery and Data Mining (PAKDD’04), 2004b.

Y. Chi, Y. Yang, Y. Xia, and R.R. Muntz. Hybridtreeminer: An efficient algorithm for

mining frequent rooted trees and free trees using canonical forms. In Proceedings of

the 16th International Conference on Scientific and Statistical Database Management

(SSDBM’04), page 11, 2004c.

Y. Chi, Y. Yang, Y. Xia, and R.R. Muntz. Canonical forms for labelled trees and their

applications in frequent subtree mining. Journal of Knowledge and Information

Systems, 8(2):203–234, 2005.

W.J. Christmas, J. Kittler, and M. Petrou. Structural matching in computer vision

using probabilistic relaxation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 17(8):749–764, 1995.

M.J. Chung. O(n2.5) time algorithm for the subgraph homomorphism problem on trees.

Journal of Algorithms, 13:106–112, 1987.

200

K.W. Church and P. Hanks. Word association norms, mutual information and lexicog-

raphy. Computational Linguistics, 16:22–29, 1990.

A. Clauset, M.E.J. Newman, and C. Moore. Finding community in very large networks.

Physical Review E, 70:066111, 2004.

Frans Coenen. The LUCS-KDD Random Image Generator. http://www.csc.liv.ac.

uk/~frans/KDD/Software/ImageGenerator/imageGenerator.html, January 2009.

D. Conte, F. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching

in pattern recognition. International Journal of Pattern Recognition and Artificial

Intelligence, 18(3):265–298, 2004.

D. Conte, P. Foggia, and M. Vento. Challenging complexity of maximum common

subgraph detection algorithms: A performance analysis of three algorithms on a

wide database of graphs. Journal of Graph Algorithms and Applications, 11(1):99–

143, 2007.

D.J. Cook and L.B. Holder. Substructure discovery using minimum description length

and background knowledge. Journal of Artificial Intelligence Research, 1:231–255,

1994.

D.J. Cook and L.B. Holder. Graph based data mining. IEEE Intelligence Systems, 15

(2):32–41, 2000.

R. Cooley, B. Mobasher, and J. Srivastava. Web Mining: information and pattern

discovery on the World Wide Web. In Proceedings of the 9th IEEE International

Conference on Tools with Artificial Intelligence (ICTAI’97), 1997.

L.P. Cordella, P. Foggia, C. Sansone, F. Tortorella, and M. Vento. Graph matching: a

fast algorithm and its evaluation. In Proceedings of the 14th Conference on Pattern

Recognition (ICPR’98), pages 1582–1584, 1998.

L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm for match-

ing large graphs. In Proceedings of the 3rd IAPR-TC15 Workshop on Graph-based

Representation in Pattern Recognition, pages 149–159, 2001.

T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms

(2nd Edition). MIT Press and McGraw-Hill, 2001.

T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley & Sons,

Incorporation, 1991.

J. Cui, J. Kim, D. Maggiorini, K. Boussetta, and M. Gerla. Aggregated multicast- a

comparative study. Cluster Computing, 8(1):15–26, 2005.

201

Luc Dehaspe, Hannu Toivonen, and Ross D. King. Finding frequent substructures

in chemical compounds. In Proceedings of the Fourth International Conference on

Knowledge Discovery and Data Mining (KDD’98), pages 30–36, New York, August

1998. AAI Press.

M. Deshpande, M. Kuramochi, and G. Karypis. Frequent substructure based ap-

proaches for classifying chemical compounds. IEEE Transactions on Knowledge and

Data Engineering, 17(8):1036–1050, 2005.

P. Desikn and J. Srivastava. Mining temporally evolving graphs. In Proceedings of the

WebKDD2004, pages 22–25, 2004.

J. Diesner, T.L. Frantz, and K.M. Carley. Communication networks from the enron

email corpus “It’s always about the people. Enron is no different”. Computational &

Mathematical Organization Theory, 11(3):201–228, 2005.

C. Ding, X. He, H. Zha, M. Gu, and H. Simon. A min-max cut algorithm for graph

partitioning and data clustering. In Proceedings of the 2001 IEEE International

Conference on Data Mining, 2001.

H. Ebel, L.I. Mielsch, and S. Bornholdt. Scale-free topology of e-mail networks. Physical

Review E, 66(3):035103, 2002.

W. Eberle and L.B. Holder. Discovering structural anomalies in graph based data. In

Proceedings of the 7th IEEE International Conference on Data Mining Workshops,

pages 393–398, 2007.

F. Eichinger, K. Böhm, and M. Huber. Mining edge-weighted call graphs to localise

software bugs. In Proceedings of the 8th European Conference on Machine Learning

and Principles and Practice of Knowledge Discovery in Databases, 2008.

A. Elsayed, F. Coenen, C. Jiang, M. Garcia-Finana, and V. Sluming. Corpus callosum

MR image classification. Knowledge Based Systems, 23(4):330–336, 2010.

M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet

topology. In Proceedings of the ACM Special Interest Group on Data Communications

(SIGCOMM’99), pages 251–262. ACM Press, 1999.

W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan, J. Han, P.S. Yu, and O. Verscheure. Direct

mining of discriminative and essential graphical and itemset features via model-based

search tree. In Proceedings of the 14th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2008.

G.D. Fatta and M.R. Berthold. High performance subgraph mining in molecular com-

pounds. In Proceedings of the 2005 International Conference on High Performance

Computing and Communications (HPCC’05), pages 866–877, 2005.

202

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few

training examples: an incremental bayesian approach tested on 101 object categories.

In IEEE CVPR2004, Workshop on Generative-Model Based Vision, 2004.

R.A. Finkel and J.L. Bentley. Quad-trees, a data structure for retrieval on composite

keys. Acta Informatica, 4(1):1–9, 1974.

I. Fischer and T. Meinl. Graph based molecular data mining - an overview. In Proceed-

ings of the 2004 IEEE International Conference on Systems,Man and Cybernetics,

pages 4578–4582, 2004.

G. Flake, S. Lawrence, and C.L. Giles. Efficient identification of web communities.

In Proceedings of the Conference of the ACM Special Interest Group on Knowledge

Discovery and Data Mining. ACM Press, 2000.

G. Flake, R. Tarjan, and K. Tsioutsiouliklis. Graph clustering and minimum cut trees.

Internet Mathematics, 1:385–408, 2004.

P. Foggia, R. Genna, and M. Vento. A performance comparison of five algorithms for

graph isomorphism. In Proceedings of the 3rd IAPR-TC15 Workshop on Graph-based

Representation in Pattern Recognition, pages 188–199, 2001.

S. Fortin. The graph isomorphism problem. Technical Report TR96-20, The University

of Alberta, 1996.

L. Freeman. Centrality in social networks conceptual clarification. Social Networks, 1

(3):215–239, 1979.

X. Gao, B. Xiao, and D. Tao X. Li. A survey of graph edit distance. Pattern Analysis

& Applications, 13(1):113–129, 2010.

M. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W.H. Freeman and Company, New York, 1979.

T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: hardness results and efficient

alternatives. In Proceedings of the Sixteenth Annual Conference on Learning Theory

(COLT’03), pages 129–143, 2003.

L. Getoor and C. Diehl. Link mining: A survey. ACM SIGKDD Explorations Newslet-

ter, 7(2):3–12, 2005.

A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, 1985.

M. Girvan and M.E.J. Newman. Community structure in social and biological networks.

In Proceedings of the National Academy of Science of the United States of America,

volume 99(12), pages 7821–7826, 2002.

203

G. Greco, A. Guzzo, G. Manco, and D. Saccà. Mining and reasoning on work-flows.

IEEE Transactions on Knowledge and Data Engineering, 17(4):519–534, 2005.

P.D. Grünwald. The Minimum Description Length Principle. The MIT Press, 2007.

S. Gudes, S.E. Shimony, and N. Vanetik. Discovering frequent graph patterns using

disjoint paths. IEEE Transaction on Knowledge and Data Engineering, 18(11):1441–

1456, 2006.

G. Gutin. 5.3 independent sets and cliques. In J.L. Gross and J. Yellin, editors,

Handbook of Graph Theory, Discrete Mathematics & Its Applications, pages 389–

402. CRC Press, 2004.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The

WEKA data mining software: an update. SIGKDD Explorations, 11(1):10–18, 2009.

J. Han and M. Kamber. Data Mining Concepts and Techniques (2nd Edition). San

Francisco: Morgan Kaufmann, 2006.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.

In Proceedings of ACM SIGMOD International Conference on Management of Data,

pages 1–12. ACM Press, 2000.

J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining: current status and

future directions. Data Mining and Knowledge Discovery, 15(1):55–86, 2007.

F. Harary and I.C. Ross. A procedure for clique detection using the group matrix.

Sociometry, 20(3):205–215, 1957.

M.A. Hasan, V. Chaoji, S. Salem, J. Besson, and M.J. Zaki. ORIGAMI: Mining rep-

resentative orthogonal graph patterns. In Proceedings of the 7th IEEE International

Conference on Data Mining, pages 153–162, 2007.

J. Hein, T. Jiang, L. Wang, and K. Zhang. On the complexity of comparing evolutionary

trees. Discrete Applied Mathematics, 71:153–169, 1996.

S. Hido and H. Kawano. AMIOT: Induced ordered tree mining in tree-structured

databases. In Proceedings of the Fifth IEEE International Conference on Data Mining

(ICDM’05), pages 170–177, 2005.

J.E. Hopcroft and R.E. Tarjan. Isomorphism of planar graphs. In R.E. Miller and J.W.

Thatcher, editors, Complexity of Computer Computations, pages 131–152. Plenum

Press, 1972.

H. Hu, X. Yan, Y. Huang, J. Han, and X.J. Zhou. Mining coherent dense subgraphs

across massive biological networks for functional discovery. Bioinformatics, 21(1):

213–221, 2005.

204

J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence

of isomorphism. In Proceedings of the 2003 International Conference on Data Mining

(ICDM’03), pages 549–552, 2003.

J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink, J. Prins, and A. Tropsha. Min-

ing spatial motifs from protein structure graphs. In Proceedings of the Eighth An-

nual International Conference on Research in Computational Molecular Biology (RE-

COMB’04), 2004a.

J. Huan, W. Wang, J. Prins, and J. Yang. SPIN: Mining maximal frequent subgraphs

from graph databases. In Proceedings of the 10th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, pages 581–586, 2004b.

J. Huan, W. Wang, A. Washington, J. Prins, R. Shah, and A. Tropsha. Accurate

classification of protein structural families based on coherent subgraph analysis. In

Proceedings of Pacific Symposium on Biocomputing, pages 411–422, 2004c.

X. Huang and W. Lai. Clustering graphs for visualization via node similarities. Visual

Languages and Computing, 17:225–253, 2006.

G. Ifrim and G. Weikum. Transductive learning for text classification using explicit

knowledge models. In Proceedings of the Conference on Principles and Practice

of Knowledge Discovery in Databases, pages 223–234. Springer Lecture Notes in

Artificial Intelligence, 2006.

G. Ifrim, G. Bakir, and G. Weikum. Fast logistic regression for text categorization with

variable-length n-grams. In Proceedings of the 14th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 354–362, 2008.

A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent

substructure from graph data. In Proceedings of the Fourth European Conference on

Principles and Practice of Knowledge Discovery in Databases, pages 13–23, 2000.

A. Inokuchi, T. Washio, K. Nishimura, and H. Motoda. A fast algorithm for min-

ing frequent connected subgraphs. Research Report RT0448, IBM Research, Tokyo

Research Laboratory, 2002.

A. Inokuchi, T. Washio, and H. Motoda. Complete mining of frequent patterns from

graphs: mining graph data. Journal of Machine Learning, 50(3):321–354, 2003.

C. Jiang and F. Coenen. Graph-based image classification by weighting scheme. In Pro-

ceedings of the 2008 SGAI International Conference on Artificial Intelligence (AI’08),

pages 63–76, 2008.

205

C. Jiang, F. Coenen, R. Sanderson, and M. Zito. Text classification using graph mining

based feature extraction. In Proceedings of the 2009 SGAI International Conference

on Artificial Intelligence (AI’09), pages 21–34, 2009.

C. Jiang, F. Coenen, R. Sanderson, and M. Zito. Text classification using graph mining-

based feature extraction. Knowledge Based Systems, 23(4):302–308, 2010a.

C. Jiang, F. Coenen, and M. Zito. Finding frequent subgraphs in longitudinal social

network data using a weighted graph mining approach. In Proceedings of the 6th

International Conference on Advanced Data Mining and Applications (ADMA’10),

pages 405–416. Springer LNCS, 2010b.

C. Jiang, F. Coenen, and M. Zito. Frequent sub-graph mining on edge weighted

graphs. In Proceedings of the 12th International Conference on Data Warehousing

and Knowledge Discovery(DaWak’10), pages 77–88. Springer LNCS, 2010c.

Y.G. Jiang, C.W. Ngo, and J. Yang. Towards optimal bag-of-features for object cate-

gorization and semantic video retrieval. In Proceedings of ACM International Con-

ference on Image and Video Retrieval, 2007.

N. Jin, C. Young, and W. Wang. Graph classification based on pattern co-occurrence.

In Proceedings of the 18th ACM Conference on Information and Knowledge Manage-

ment, pages 573–582, 2009.

W. Jin and R.K. Srihari. Graph-based text representation and knowledge discovery.

In Proceedings of the 2007 ACM Symposium on Applied Computing, pages 807–811,

2007.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labelled

graphs. In Proceedings of the Twentieth International Conference on Machine Learn-

ing (ICML’03), pages 321–328, 2003.

Y. Ke, J. Cheng, and W. Ng. Correlation search in graph databases. In Proceedings

of the 13th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (KDD’07), pages 390–399, 2007.

Y. Ke, J. Cheng, and J. Yu. Efficient discovery of frequent correlated subgraph pairs.

In Proceedings of the 9th IEEE International Conference on Data Mining, pages

239–248, 2009.

Y.P. Ke, J. Cheng, and W. NG. Correlated pattern mining in quantitative databases.

ACM Transactions on Database Systems, 33(3):14:1–14:45, 2008.

B. Kelley, R. Sharan, R. Karp, E. Sittler, D. Root, B. Stockwell, and T. Ideker. Con-

served pathways within bacteria and yeast as revealed by global protein network

206

alignment. In Proceedings of the National Academy of Sciences of the United States

of America (PNAS’03), 2003.

J.M. Kleinberg. Authoritative sources in a hyperlinked environment. In Proceedings of

ACM SIAM Symposium Discrete Algorithms, pages 668–677, 1998.

R. Kosala and H. Blockeel. Web mining research: A survey. ACM SIGKDD Explo-

rations Newsletter, 2(1):1–15, 2000.

G. Kossinets and D.J. Watts. Empirical analysis of an evolving social network. Science,

311:88–90, 2006.

M. Koyutürk and W. Szpankowski. An efficient algorithm for detecting frequent sub-

graphs in biological networks. Journal of Bioinformatics, 20(supplement 1):200–207,

2004.

S. Kramer, L.D. Raedt, and C. Helma. Molecular feature mining in HIV data. In

Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD’01), pages 136–143, 2001.

T. Kudo, E. Maeda, and Y. Matsumoto. An application of boosting to graph clas-

sification. In Proceedings of Eighteenth Annual Conference on Neural Information

Processing Systems (NIPS04), 2004.

M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proceedings of the

2001 International Conference on Data Mining, pages 313–320, 2001.

M. Kuramochi and G. Karypis. Discovering frequent geometric subgraphs. In Pro-

ceedings of the Second IEEE International Conference on Data Mining, pages 258–,

2002.

M. Kuramochi and G. Karypis. GREW - a scalable frequent subgraph discovery algo-

rithm. In Proceedings of the Fourth IEEE International Conference on Data Mining,

pages 439–442, 2004a.

M. Kuramochi and G. Karypis. An efficient algorithm for discovering frequent sub-

graphs. IEEE Transactions on Knowledge and Data Engineering, 16(9):1038–1051,

2004b.

M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph. In

Proceedings of the SIAM International Conference on Data Mining, 2004c.

M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph. Data

Mining and Knowledge Discovery, 11(3):243–271, 2005.

207

M. Lahiri and T.Y. Berger-Wolf. Structure prediction in temporal networks using

frequent subgraphs. In Proceedings of the 2007 IEEE Symposium on Computational

Intelligence and Data Mining (CIDM’07), pages 35–42, 2007.

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: spatial pyramid

matching for recognizing natural scene categories. In Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, pages 2169–2178, 2006.

J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification laws,

shrinking diameters and possible explanations. In Proceedings of the 11th ACM

SIGKDD International Conference on Knowledge Discovery in Data Mining, pages

177–187, 2005.

X. Li, B. Liu, and P.S. Yu. Mining community structure of named entities from web

pages and blogs. In AAAI Symposium - Computational Approaches to Analysing

Weblogs, 2006.

B. Liu. Web Data Mining: Exploring Hyper-links, Contents, and Usage Data. Springer,

2008.

B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In

Proceedings of the 4th International Conference on Knowledge Discovery and Data

Mining (KDD’98), 1998.

C. Liu, X. Yan, H. Yu, J. Han, and P.S. Yu. Mining behaviour graphs for ‘backtrace’ of

non-crashing bugs. In Proceedings of 2005 SIAM International Conference on Data

Mining (SDM’05), pages 286–297, 2005.

T. Liu and D. Geiger. Approximate tree matching and shape similarity. In Proceedings

of the 1999 International Conference on Computer Vision, 1999.

D.G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, 2004.

S.W. Lu, Y. Ren, and C.Y. Suen. Hierarchical attributed graph representation and

recognition of handwritten chinese characters. Pattern Recognition, 24:617–632, 1991.

A. Markov and M. Last. Efficient graph-based representation of web documents. In

Proceedings of the Third International Workshop on Mining Graphs, Trees and Se-

quences, pages 52–62, 2005.

D.W. Matula. Subtree isomorphism in O(n5/2). Annals of Discrete Mathematics, 2:

91–106, 1978.

208

M. McGlohon, L. Akoglu, and C. Faloutsos. Weighted graphs and disconnected com-

ponents. In Proceedings of the 14th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 524–532, 2008.

J. McGregor. Backtrack search algorithms and the maximal common subgraph problem.

Software: Practice and Experience, 12:13–23, 1982.

B.D. McKay. Practical graph isomorphism. Congress Numerantium, 30:45–87, 1981.

MedlinePlus. Bethesda (MD): U.S. National Library of Medicine. http://www.nlm.

nih.gov/medlineplus/ency/article/003791.htm, October 2010.

B.T. Messmer. Efficient Graph Matching Algorithms for Preprocessed Model Graphs.

PhD thesis, Institute of Computer Science and Applied Mathematics, University of

Bern, 1996.

B.T. Messmer and H. Bunke. A new algorithm for error-tolerant subgraph isomorphism

detection. IEEE Transaction on Pattern Analysis and Machine Intelligence, 20(5):

493–504, 1998.

K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. In Pro-

ceedings of the 7th European Conference on Computer Vision-Part I, pages 128–142,

2002.

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network

motifs: simple building blocks of complex networks. Science, 298(5594):824–827,

2002.

T. Mitchell. Machine Learning. McGraw Hill, 1996.

T. Miyazaki. The complexity of mckay’s canonical labeling algorithm. In Groups

and Computation II, DIMACS Series Discrete Mathematics Theoretical Computer

Science, volume 28, pages 239–256. American Mathematical Society, 1997.

M. Mukherjee and L.B. Holder. Graph-based data mining on social networks. In

Proceedings of the ACM KDD Workshop on Link Analysis and Group Detection,

2004.

S. Nakano. Efficient generation of plane trees. Information Processing Letters, 84:

167–172, 2002.

A.A. Nanavati, S. Gurumurthy, G. Das, D. Chakraborty, K. Dasgupta, S. Mukherjea,

and A. Joshi. On the structure properties of massive telecom call graphs: find-

ings and implications. In Proceedings of the 15th ACM International Conference on

Information and Knowledge Management, pages 435–444, 2006.

209

M.E.J. Newman. Scientific collaboration networks: II shortest paths, weighted networks

and centrality. Physical Review E, 64(016132):5835–5838, 2001.

M.E.J. Newman. Mixing patterns in networks. Physical Review E, 67(2):026126, 2003.

M.E.J. Newman. Fast algorithms for detecting community structure in networks. Phys-

ical Review E, 69(6):066133, 2004a.

M.E.J. Newman. Detecting community structure in networks. The European Physical

Journal B - Condensed Matter and Complex Systems, 38(2):321–330, 2004b.

M.E.J. Newman. Analysis of weighted networks. Physical Review E, 70(056131), 2004c.

M.E.J. Newman and M. Girvan. Finding and evaluating community structure in net-

works. Physical Review E, 69:026113, 2004.

R. Ng, L.V.S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning

optimizations of constrained associations rules. In Proceedings of the 1998 ACM

SIGMOD International Conference on Management of Data, pages 13–24, 1998.

S. Nijssen and J. N. Kok. The gaston tool for frequent subgraph mining. Electronic

Notes in Theorectical Computer Science, 127:77–87, 2005.

S. Nijssen and J.N. Kok. Efficient discovery of frequent unordered trees. In Pro-

ceedings of the 1st International Workshop on Mining Graphs, Trees and Sequences

(MGTS’03), 2003.

S. Nijssen and J.N. Kok. A Quickstart in frequent structure mining can make a dif-

ference. In Proceedings of ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 647–652, 2004.

C.C. Noble and D.J. Cook. Graph based anomaly detection. In Proceedings of the ninth

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 631–636, 2003.

D.L. Nowell and J. Kleinberg. The link prediction problem for social networks. Journal

of the American Society for Information Science and Technology, 58(7):1019–1031,

2007.

S. Nowozin, K. Tsuda, T. Uno, T. Kudo, and G. Bakir. Weighted substructure mining

for image analysis. In Proceedings of the 2007 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (ICCV’07), 2007.

T. Ozaki and T. Ohkawa. Mining correlated subgraphs in graph databases. In Proceed-

ings of the 12th Pacific-Asia Conference on Knowledge Discovery and Data Mining

(PAKDD’08), pages 272–283, 2008.

210

S. Paul. Multi-casting On the Internet and Its Applications. Kluwer Academic Pub-

lishers, 1998.

A. Pearce, T. Caelli, and W.F. Bischof. Rule-graphs for graph matching in pattern

recognition. Pattern Recognition, 27(9):1231–1246, 1994.

J. Pei, J. Han, and L.V.S. Lakshmanan. Mining frequent itemsets with convertible

constraints. In Proceedings of the 17th International Conference on Data Engineering,

pages 433–442, 2001a.

J. Pei, J. Han, B. Mortazavi-asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. PrefixSpan:

Mining sequential patterns efficiently by prefix-projected pattern growth. In Proceed-

ings of the 12th IEEE International Conference on Data Engineering (ICDE’01),

pages 215–224, 2001b.

J. Pei, D. Jiang, and A. Zhang. On mining cross-graph quasi-cliques. In Proceedings

of the 11th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, 2005.

B.R. Preiss. Data Structures and Algorithms with Object-Oriented Design Patterns in

C++. Wiley, 1998.

F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine

Learning, 42(3):203–231, 2001.

J. Punin, M. Krishnamoorthy, and M. Zaki. LOGML: Log markup language for web

usage mining. In WEBKDD Workshop, 2001.

J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San

Francisco, 1993.

L. Ralaivola, S.J. Swamidass, H. Saigo, and P. Baldi. Graph kernels for chemical

informatics. Neural Networks, 18(8):1093–1110, 2005.

R.C. Read and D.G. Corneil. The graph isomorph disease. Journal of Graph Theory,

1:339–363, 1977.

S. Redner. How popular is your paper? an empirical study of the citation distribution.

The European Physical Journal B, 4:131–134, 1998.

H.T. Reynolds. The Analysis of Cross-Classifications. The Free Press, New York, 1977.

S.E. Robinson and R.M. Christley. Identifying temporal variation in reported births,

deaths and movements of cattle in britain. Journal of BMC Veterinary Research, 2

(11):10.1186/1746–6148–2–11, 2006.

211

U. Ruckert and S. Kramer. Frequent free tree discovery in graph data. In Proceedings

of the 2004 ACM Symposium on Applied Computing, pages 564–570, 2004.

H. Saigo, N. Krämer, and K. Tsuda. Partial least squares regression for graph mining.

In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 578–586, 2008.

G. Salton, A. Wong, and C.S. Yang. A vector space model for automatic indexing.

Communications of the ACM, 18(11):613–620, 1975.

A. Sanfeliu and K.S. Fu. A distance measure between attributed relational graphs

for pattern recognition. IEEE Transactions on Systems,Man,and Cybernetics, 13(3):

353–363, 1983.

R.J. Schalkoff. Pattern Recognition: Statistical, Structural and Neural Approaches.

John Wiley & Sons, Incorporation, 1992.

A. Schenker. Graph Theoretic Techniques for Web Content Mining. PhD thesis, Uni-

versity of South Forida, 2003.

A. Schenker, H. Bunke, M. Last, and A. Kandel. A graph-based framework for web

document mining. In Proceedings of the 6th International Workshop on Document

Analysis Systems, pages 401–412, 2004.

D.C. Schmidt and L.E. Druffel. A fast backtracking algorithm to test directed graphs

for isomorphism using distance matrices. Journal of the ACM, 23(3):433–445, 1976.

B. Schölkopf and A.J. Smola. Learning with Kernels. The MIT Press, 2002.

F. Schreiber and H. Schwöbbermeyer. Frequency concepts and pattern detection for

the analysis of motifs in networks. Transactions on Computational Systems Biology,

3:89–104, 2005.

R. Shamir and D. Tsur. Faster subtree isomorphism. Journal of Algorithms, 33(2):

267–280, 1999.

L.G. Shapiro and R.M. Haralick. Structural descriptions and inexact matching. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 3:504–519, 1981.

R. Sharan, S. Suthram, R. Kelley, T. Kuhn, S. McCuine, P. Uetz, T. Sittler, R. Karp,

and T. Ideker. Conserved patterns of protein interaction in multiple species. In

Proceedings of the National Academy of Sciences of the United States of America

(PNAS’05), 2005.

D. Shasha, J.T.L. Wang, and R. Giugno. Algorithms and applications of tree and

graph searching. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART

Symposium on Principles on Database Systems (PODS’02), pages 39–52, 2002.

212

D. Shasha, J.T.L. Wang, and S. Zhang. Unordered tree mining with applications to

phylogeny. In Proceedings of the 20th International Conference on Data Engineering

(ICDE’04), pages 708–719, 2004.

D.J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. CRC

Press, Boca Raton, FL, 1997.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22(8), 2000.

T.A.B. Snijders. The statistical evaluation of social network dynamics. Sociological

Methodology, 31:361–395, 2001.

J. Suckling, J. Parker, D. Dance, S. Astley, I. Hutt, C. Boggis, I. Ricketts, E. Sta-

matakis, N. Cerneaz, S. Kok, P. Taylor, D. Betal, and J. Savage. The mammographic

image analysis society digital mammogram database. Excerpta Medica, International

Congress Series, 1069:375–378, 1994.

H. Tan, T. Dillon, F. Hadzic, E. Chang, and L. Feng. MB3-Miner: Mining embedded

subtrees using tree model guided candidate generation. In Proceedings of the 1st

International Workshop on Mining Complex Data 2005 (MCD’05), pages 103–110,

2005a.

H. Tan, T.S. Dillon, L. Feng, E. Chang, and F. Hadzic. X3-Miner: Mining patterns from

xml database. In Proceedings of the 6th International Data Mining, pages 287–297,

Skiathos, Greece, 2005b.

H. Tan, T.S. Dillon, F. Hadzic, E. Chang, and L. Feng. IMB3-Miner: Mining in-

duced/embedded subtrees by constraining the level of embedding. In Proceed-

ings of the 8th Pacific-Asia Conference on Knowledge Discovery and Data Mining

(PAKDD’06), pages 450–461, 2006.

P.N. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure

for association patterns. In Proceedings of the 8th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 32–41, 2002.

F. Tao, F. Murtagh, and M. Farid. Weighted association rule mining using weighted

support and significance framework. In Proceedings of ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2003.

S. Tatikonda, S. Parthasarathy, and T. Kurc. Trips and Tides: New algorithm for tree

mining. In Proceedings of the 15th ACM International Conference on Information

and Knowledge Management, pages 455–464, 2006.

213

A. Termier, M.C. Rousset, and M. Sebag. Treefinder: a first step towards xml data

mining. In Proceedings of the 2002 IEEE International Conference on Data Mining

(ICDM’02), pages 450–457, 2002.

M. Thoma, H. Cheng, A. Gretton, J. Han, H. Kriegel, A. Smol, L. Song, P. Yu, X. Yan,

and K. Borgwardt. Near-optimal supervised feature selection among frequent sub-

graphs. In Proceedings of the 2009 SIAM International Conference on Data Mining,

pages 1075–1086, 2009.

L.T. Thomas, S.R. Valluri, and K. Karlapalem. MARGIN: Maximal frequent sub-

graph mining. In Proceedings of the 6th International Conference on Data Mining

(ICDM’06), pages 1097–1101, 2006.

W. Tsai and K.S. Fu. Subgraph error-correcting isomorphism for synthetic pattern

recognition. IEEE Transactions on Systems,Man,and Cybernetics, 13(1):48–62, 1983.

W.H. Tsai and K.S. Fu. Error correcting isomorphism of attributed relational graphs

for pattern analysis. IEEE Transactions on System, Man, and Cybernetics, 9(12):

757–768, 1979.

K. Tsuda and T. Kudo. Clustering graphs by weighted substructure mining. In Proceed-

ings of the 23rd International Conference on Machine Learning (ICML’06), pages

953–960, 2006.

Y. Tsuruoka and J. Tsujii. Bidirectional inference with the easiest-first strategy for tag-

ging sequence data. In Proceedings of the Conference of Human Language Technology

and Empirical Methods in Natural Language Processing, pages 467–474, 2005.

T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors: a survey. Foun-

dations and Trends in Computer Graphics and Vision, 3(3):177–280, 2008.

P. Uetz. Protein-protein interaction modelling. http://www.visualcomplexity.com/

vc/index.cfm?domain=Biology, 2003.

J.R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM, 23(1):

31–42, 1976.

G. Valiente. Algorithms on Trees and Graphs. Springer, 2002.

N. Vanetik. Discovery of frequent patterns in semi-structured data. Master’s thesis,

Department of Computer Science, Ben Gurion University, 2002.

N. Vanetik, E. Gudes, and S.E. Shimony. Computing frequent graph patterns from

semi-structured data. In Proceedings of the 2nd International Conference on Data

Mining (ICDM’02), pages 458–465, 2002.

214

N. Vanetik, S.E. Shimony, and E. Gudes. Support measures for graph data. Data

Mining and Knowledge Discovery, 13(2):243–260, 2006.

V. Vapnik. Statistical Learning Theory. Wiley InterScience, 1998.

V.N. vapnik. An overview of statistical learning theory. IEEE Transactions on Neural

Networks, 10:988–999, 1999.

N.X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings com-

parison: is a correction for chance necessary? In Proceedings of the 26th International

Conference on Machine Learning, pages 1073–1080, 2009.

N. Wale and G. Karypis. Acyclic subgraph-based descriptor spaces for chemical com-

pound retrieval and classification. In Proceedings of the 2006 IEEE International

Conference on Data Mining, 2006.

C. Wang, M. Hong, J. Pei, H. Zhou, W. Wang, and B. Shi. Efficient pattern-growth

methods for frequent tree pattern mining. In Proceedings of the 8th Pacific-Asia

Conference on Knowledge Discovery and Data Mining (PAKDD’04), pages 441–451,

2004a.

C. Wang, W. Wang, J. Pei, Y. Zhu, and B. Shi. Scalable mining of large disk-based

graph databases. In Proceedings of the 10th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 316–325, 2004b.

J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences. In Proceedings

of the 20th International Conference on Data Engineering, pages 79–90, 2004.

J. Wang, Z. Zeng, and L. Zhou. Clan: An algorithm for mining closed cliques from

large dense graph databases. In Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 797–802, 2006.

W. Wang, J. Yang, and P.S. Yu. Efficient mining of weighted association rule (war).

In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, 2000.

T. Washio and H. Motoda. State of the art of graph-based data mining. SIGKDD

Explorations, 5:59–68, 2003.

S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications.

Cambridge University Press, New York, NY, 1994.

D.J. Watts and S.H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,

393:440–442, 1998.

215

O. Weislow, R. Kiser, D. Fine, J. Bader, R. Shoemaker, and M. Boyd. New soluble

formazan assay for hiv-11 cytopathic effects: application to high flux screening of

synthetic and natural products for aids antiviral activity. Journal of the National

Cancer Institute, 81:577–586, 1989.

D. B. West. Introduction to Graph Theory(2nd Edition). Prentice Hall, 2000.

S. White and P. Smyth. Algorithms for estimating relative importance in networks.

In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 266–275, 2003.

E.K. Wong. Model matching in robot vision by subgraph isomorphism. Pattern Recog-

nition, 25(3):287–304, 1992.

M. Wörlein, T. Meinl, I. Fischer, and M. Philippsen. A quantitative comparison of the

subgraph miners mofa, gspan, ffsm and gaston. In Proceedings of the 9th European

Conference on Principles and Practice of Knowledge Discovery in Databases, pages

392–404, 2005.

F. Wu and B.A. Huberman. Finding communities in linear time: a physics approach.

The European Physical Journal B, 38(2):331–338, 2004.

Y. Xiao, J.F. Yao, Z. Li, and M.H. Dunham. Efficient data mining for maximal frequent

subtrees. In Proceedings of the 3rd IEEE International Conference on Data Mining

(ICDM’03), 2003.

D. Xin, H. Cheng, and X. Yan. Extracting redundancy aware top k patterns. In Proceed-

ings of the 12th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 444–453, 2006a.

D. Xin, H. Cheng, X. Yan, and J. Han. Extracting redundancy aware top k patterns.

In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 444–453, 2006b.

D. Xin, X. Shen, Q. Mei, and J. Han. Discovering interesting patterns through user’s

interactive feedback. In Proceedings of the 13th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining (KDD’06), pages 773–778, 2006c.

H. Xiong, S. Shekhar, P.N. Tan, and V. Kumar. Exploring a support-based upper bound

of pearson’s correlation coefficient for efficiently identifying strongly correlated pairs.

In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data

Mining, pages 334–343, 2004.

H. Xiong, P.N. Tan, and V. Kumar. Hyper-clique pattern discovery. Journal of Data

Mining and Knowledge Discovery, 13(2):219–242, 2006.

216

Y. Xu, G. Jones, J.T. Li, B. Wang, and C.M. Sun. A study on mutual information-

based feature selection for text categorization. Journal of Computational Information

Systems, 1(2):203–213, 2005.

X. Yan and J. Han. Close graph: Mining closed frequent graph patterns. In Proceedings

of the 9th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 286–295, 2003.

X. Yan and J.W. Han. gspan: Graph-based substructure pattern mining. In Proceedings

of the 2002 International Conference on Data Mining, page 721, 2002.

X. Yan, P.S. Yu, and J. Han. Graph indexing: A frequent structure-based approach. In

Proceedings of the 2004 ACM SIGMOD International Conference on Management

of Data (SIGMOD’04), pages 335–346, 2004.

X. Yan, P.S. Yu, and J. Han. Graph indexing based on discriminative frequent structure

analysis. ACM Transaction on Database Systems, 30(4):960–993, 2005a.

X. Yan, P.S. Yu, and J. Han. Sub-structure similarity search in graph databases. In

Proceedings of the 2005 ACM SIGMOD International Conference on Management

of Data (SIGMOD’05), pages 766–777, 2005b.

X. Yan, X. Zhou, and J. Han. Mining closed relational graphs with connectivity con-

straints. In Proceedings of the 11th ACM SIGKDD International Conference on

Knowledge Discovery in Data Mining, pages 324–333, 2005c.

X. Yan, F. Zhu, J. Han, and P.S. Yu. Searching substructures with superimposed

distance. In Proceedings of the 22nd International Conference on Data Engineering

(ICDE’06), page 88, 2006a.

X. Yan, F. Zhu, P.S. Yu, and J. Han. Feature-based similarity search in graph struc-

tures. ACM Transactions on Database Systems, 31(4):1418–1453, 2006b.

X. Yan, M.R. Mehan, Y. Huang, M.S. Waterman, P.S. Yu, and X.J. Zhou. A graph-

based approach to systematically reconstruct human transcriptional regulatory mod-

ules. In Proceedings of 15th Annual International Conference on Intelligent Systems

for Molecular Biology (ISMB), 2007.

X. Yan, H. Cheng, J. Han, and Philip S. Yu. Mining significant graph patterns by

leap search. In Proceedings of the 2008 ACM SIGMOD International Conference on

Management of Data, pages 433–444, 2008.

J. Yang, Y.G. Jiang, A.G. Hauptmann, and C.W. Ngo. Evaluating bag-of-visual-words

representations in scene classification. In Proceedings of the International Workshop

on Multimedia Information Retrieval, pages 197–206, 2007.

217

L.H. Yang, M.L. Lee, W. Hsu, and S. Achary. Mining frequent query patterns from

xml queries. In Proceedings of the 8th International Conference on Database Systems

for Advanced Applications (DASFAA’03), 2003.

W. Yang, J. Dia, H. Cheng, and H. Lin. Mining social networks for targeted advertis-

ing. In Proceedings of the 39th Annual Hawaii International Conference on System

Science, 2006.

Y. Yang and J.O. Pedersen. A comparative study on feature selection in text catego-

rization. In Proceedings of the 14th International Conference on Machine Learning,

pages 412–420, 1997.

S.H. Yook, H. Jeong, A.-L. Barabási, and Y. Tu. Weighted evolving networks. Physical

Review Letters, 86:5835–5838, 2001.

U. Yun. Wis: Weighted interesting sequential pattern mining with a similar level of

support and/or weight. ETRI Journal, 29(3):336–352, 2007.

U. Yun and J.J. Leggett. WFIM: Weighted frequent item-set mining with a weight range

and a minimum weight. In Proceedings of the 5th SIAM International Conference on

Data Mining, pages 636–640, 2005.

U. Yun and J.J. Leggett. WFIP: Mining weighted interesting patterns with a strong

weight and/or support affinity. In Proceedings of the 6th SIAM International Con-

ference on Data Mining, 2006.

M.J. Zaki. Efficiently mining frequent trees in a forest. In Proceedings of the eighth

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 71–80. ACM Press, New York, 2002.

M.J. Zaki. Efficiently mining frequent trees in a forest: algorithms and applications.

IEEE Transactions on Knowledge and Data Engineering, 17(8):1021–1035, 2005a.

M.J. Zaki. Efficiently mining frequent embedded unordered trees. Fundamenta Infor-

maticae, 66(1-2):33–52, 2005b.

M.J. Zaki and C.C. Aggarwal. Xrules: An effective structural classifier for xml data. In

Proceedings of the 2003 International Conference on Knowledge Discovery and Data

Mining (SIGKDD’03), 2003.

M.J. Zaki and C.C. Aggarwal. Xrules: An effective structural classifier for xml data.

Machine Learning Journal, 62(1-2):137–170, 2006.

M.J. Zaki and C.J. Hsiao. Charm: An efficient algorithm for closed itemset mining. In

Proceedings of the 2nd SIAM International Conference on Data Mining, 2002.

218

Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Coherent closed quasi-clique discovery from

large dense graph databases. In Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 797–802, 2006.

S. Zhang and J.T.L. Wang. Mining frequent agreement subtrees in phylogenetic

databases. In Proceedings of the 6th SIAM International Conference on Data Mining

(SDM’06), pages 222–233, 2006.

S. Zhang and J. Yang. Ram: Randomized approximate graph mining. In Proceedings

of the 20th International Conference on Scientific and Statistical Database Manage-

ment, pages 187–203, 2008.

P. Zhao and J. Yu. Fast frequent free tree mining in graph databases. In Proceedings of

the 6th IEEE International Conference on Data Mining Workshop, pages 315–319,

2006.

P. Zhao and J. Yu. Mining closed frequent free trees in graph databases. In Proceedings

of the 12th International Conference on Database Systems for Advanced Applications,

2007.

F. Zhu, X. Yan, J. Han, and P. S. Yu. gPrune: A constraint pushing framework for

graph pattern mining. In Proceedings of 2007 Pacific-Asia Conference on Knowledge

Discovery and Data Mining (PAKDD’07), pages 388–400, 2007.

219

220

Appendix A

Graph File Formats

For the work described in this thesis two graph file formats are employed: (i) a

GraphML format, and (ii) a simple LineGraph format. The two representation for-

mats are described in Sections A.1 and A.2 separately in the context of the example

graph presented in Figure A.1.

b

a

d
g

h
w

k

v
x

2

3

1

5 79

11

15
17

8

G0

n0

n1

n2

n3

n4
n5

n6

n7

n8

Figure A.1: A graph example

A.1 GraphML Format

GraphML is an XML based file format originally proposed by the graph community so

as to provide a suitable file exchange format for graph data. The following presents an

encoding of the graph G0 presented in Figure A.1 using GraphML.

1: <?xml version="1.0" encoding="UTF-8"?>

2: <graphml xmlns="http://graphml.graphdrawing.org/xmlns"

3: xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4: xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns

5: http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">

6: <graph id="G0" edgedefault="undirected">

7: <node id="n0"/><data>a</data></node>

221

8: <node id="n1"/><data>b</data></node>

9: <node id="n2"/><data>g</data></node>

10: <node id="n3"/><data>x</data></node>

11: <node id="n4"/><data>v</data></node>

12: <node id="n5"/><data>w</data></node>

13: <node id="n6"/><data>k</data></node>

14: <node id="n7"/><data>h</data></node>

15: <node id="n8"/><data>d</data></node>

16: <edge id="e0" source="n0" target="n1"><data>2</data></edge>

17: <edge id="e1" source="n1" target="n2"><data>1</data></edge>

18: <edge id="e2" source="n1" target="n7"><data>7</data></edge>

19: <edge id="e3" source="n1" target="n8"><data>3</data></edge>

20: <edge id="e4" source="n2" target="n3"><data>9</data></edge>

21: <edge id="e5" source="n2" target="n7"><data>5</data></edge>

22: <edge id="e6" source="n3" target="n4"><data>15</data></edge>

23: <edge id="e7" source="n3" target="n7"><data>11</data></edge>

24: <edge id="e8" source="n4" target="n5"><data>17</data></edge>

25: <edge id="e9" source="n4" target="n6"><data>8</data></edge>

26: </graph>

27: </graphml>

Line 1 to 5 define a common header, line 7 to 15 define graph node information, and

line 16 to 25 define graph edge information. In GraphML there is no required ordering

for the expression of node and edge elements. More advanced features offered by the

GraphML format can be found in the GraphML Primer1.

A.2 Simple LineGraph Format

The simple LineGraph format is widely used by the researchers in the chemical infor-

matics domain. Figure A.2 shows how to generate graphs using this format. In the

figure, for each graph, the first line defines the graph id, this is followed by node defini-

tions, and edge definitions. In the node definition (v1,v2,· · · ,vn) denote node ids, and

(v1-lab,v2-lab,· · · ,vn-lab) denote node labels; in the edge definition, (s1,s2,· · · ,sn) and

(t1,t2,· · · ,tn) denote source and target node ids connected by edges, and (e1-lab,e2-

lab,· · · ,en-lab) denote edge labels.

A simple LineGraph representation for G0 graph given in Figure A.1 is as follows:

g # G0

v n0 a

v n1 b

v n2 g

v n3 x

v n4 v

v n5 w

v n6 k

v n7 h

1http://graphml.graphdrawing.org/primer/graphml-primer.html

222

g # id
v v1 v1-lab
v v2 v2-lab
......
......
v vn vn-lab
e s1 t1 e1-lab
e s2 t2 e2-lab
......
......
e sn tn en-lab
g #2
......
......

Figure A.2: A LineGraph format illustration

v n8 d

e n0 n1 2

e n1 n2 1

e n1 n7 7

e n1 n8 3

e n2 n3 9

e n2 n7 5

e n3 n4 15

e n3 n7 11

e n4 n5 17

e n4 n6 8

223

224

Appendix B

Additional Experimental Results

Some experimental results used for the evaluation of the subgraph weighting schemes,

because of space restrictions, were omitted from the main body of this thesis. For

completeness some of these additional results are presented here. These results are

presented in Sections B.1, B.2, and B.3 respectively, according to the nature of the

graph data: trees, undirected graphs, and graphs.

B.1 The Experimental Results for Trees

In this section, some results of testing five subgraph weighting schemes to the tree data

are provided. The details with respect to each subgraph weighting scheme are delivered

in the following sub-sections.

B.1.1 The application of the ATW scheme

B.1.1.1 The ST1, ST2, and RT1 data

The performance of the gSpan-ATW algorithm on the ST2 data is shown in Figure B.1.

As can be seen in the figure, gSpan-ATW coupled with SW4 identifies more patterns

than when coupled with SW1 or SW5.

B.1.1.2 The RT2 data

Figure B.2 illustrates the performance of gSpan-ATW with respect to the QT-D5 data

set. From the figure it should be noted that gSpan, FFSM and GASTON fail to operate

when using support thresholds of less than 30%, while gSpan-ATW, using either SW1

or SW4, operates with support thresholds down to 10%. The figure also indicates that

gSpan-ATW, coupled with SW1 or SW4, requires less runtime and identifies far fewer

patterns than gSpan, FFSM and GASTON. Further, the performance of gSpan-ATW

using SW1 is very close to that when using SW4.

The performance of gSpan-ATW when applied to the QT-D6 data set is shown

in Figure B.3. It should be noted that in this case the gSpan, FFSM and GASTON

225

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-ATW algorithm on the IM1000-D4 data

gSpan
FFSM

gSpan-ATW + SW1
gSpan-ATW + SW4
gSpan-ATW + SW5

 100

 1000

 10000

 100000

 1e+006

 2 4 6 8 10 12 14 16

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-ATW algorithm on the IM1000-D4 data

gSpan
FFSM

gSpan-ATW + SW1
gSpan-ATW + SW4
gSpan-ATW + SW5

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-ATW algorithm on the IM1000-D5 data

gSpan
FFSM

gSpan-ATW + SW1
gSpan-ATW + SW4
gSpan-ATW + SW5

 100

 1000

 10000

 100000

 1e+006

 2 4 6 8 10 12 14 16 18

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-ATW algorithm on the IM1000-D5 data

gSpan
FFSM

gSpan-ATW + SW1
gSpan-ATW + SW4
gSpan-ATW + SW5

 10

 100

 1000

 0 5 10 15 20 25 30

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-ATW algorithm on the IM1000-D6 data

gSpan
FFSM

gSpan-ATW + SW1
gSpan-ATW + SW4
gSpan-ATW + SW5

 100

 1000

 10000

 100000

 1e+006

 0 5 10 15 20 25 30

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-ATW algorithm on the IM1000-D6 data

gSpan
FFSM

gSpan-ATW + SW1
gSpan-ATW + SW4
gSpan-ATW + SW5

Figure B.1: The performance of gSpan-ATW on the ST2 data

algorithms fail to operate with support thresholds of less than 35% because of the

out-of-memory error. The gSpan-ATW algorithm, however, can operate using support

thresholds of less than 15%. As can be seen from the figure, gSpan-ATW outperforms

gSpan, FFSM and GASTON, with respect to runtime and the number of patterns

discovered. Additionally, gSpan-ATW, when coupled with SW1, runs slightly faster

than when using SW4; both algorithms discover very similar numbers of patterns.

The performance of gSpan-ATW on the QT-D7 data is shown in Figure B.4. In

the figure, the curves representing the FFSM and gSpan algorithms stop at a support

threshold of 45% (GASTON fails to operate due to the out-of-memory error), while

226

Table B.1: The performance of gSpan-ATW using SW4 and SW5 on the ST1, ST2,
and RT1 data

Dataset τ(%)
gSpan-ATW + SW4

v.
gSpan-ATW + SW5

runtime (in seconds) # patterns runtime (in seconds) # patterns

ST1:D10

0.05 4.167 134 5.194 346
0.1 3.903 95 4.992 239
0.5 3.680 42 4.165 67
1 3.631 32 3.946 59
2 2.870 22 3.884 31

ST1:T1M

0.05 114.005 118 230.203 414
0.1 106.209 81 211.472 225
0.5 99.854 41 159.839 66
1 92.626 32 157.080 59
2 94.357 21 150.138 30

ST2:IM1000-D4

6 1.595 590 1.695 357
8 1.269 304 1.535 259
10 1.000 226 1.384 192
12 0.914 182 1.191 156
14 0.906 155 1.101 123

ST2:IM1000-D5

10 7.795 1169 9.565 1059
12 6.191 820 7.829 751
14 5.310 613 6.726 597
16 4.557 502 5.921 489
18 4.127 426 5.315 414

ST2:IM1000-D6

15 38.379 2822 38.536 2426
20 24.168 1444 24.390 1341
25 17.426 932 17.823 864
30 12.462 622 12.728 572

RT1:CSLOGS-ALL

0.3 3.366 617 4.612 616
0.4 3.176 425 4.382 424
0.5 3.040 304 4.179 303
0.6 2.963 244 3.970 243
0.8 2.882 169 3.904 169

RT1:CSLOGS-1

0.2 0.733 631 0.779 621
0.4 0.642 286 0.775 287
0.6 0.616 176 0.741 176
0.8 0.608 135 0.695 135
1 0.597 106 0.664 105

RT1:CSLOGS-2

0.2 0.717 674 0.774 662
0.4 0.679 293 0.711 292
0.6 0.633 180 0.681 180
0.8 0.598 135 0.673 135
1 0.556 103 0.641 102

the two curves representing the gSpan-ATW algorithms (coupled with SW1 and SW4

respectively) continue to operate down to a support threshold of 25%. Clearly gSpan-

ATW runs faster and identifies fewer patterns than both gSpan and FFSM. In addition,

gSpan-ATW coupled with SW1 outperforms gSpan-ATW couple with SW4, in terms

of the runtime cost and the number of patterns discovered.

B.1.2 The application of the AW scheme

B.1.2.1 The ST1, ST2, and RT1 data

The AW scheme is only applicable to the ST1, ST2, RT1:CSLOGS-1, and RT1:CSLOGS-

2 data sets. Thus, the experimental results on these data sets are presented in this

227

Table B.2: The accuracy of the classifiers using patterns discovered by gSpan-ATW
with SW4 and SW5 on the ST2 and RT1:CSLOGS-1(2) data

Dataset
gSpan-ATW + SW4 gSpan-ATW + SW5

τ(%) #F NBC SVM C4.5 τ(%) #F NBC SVM C4.5

ST2:IM1000-D4
2 4646 92.9 95.4 94.9 2 2173 92.8 95.6 94.9
4 1182 93.0 95.6 94.3 4 653 93.0 95.6 94.3
6 590 93.3 95.4 93.7 6 357 93.6 95.7 93.8

ST2:IM1000-D5
6 3897 86.2 91.4 91.3 6 2740 86.2 91.3 91.4
8 1829 86.2 91.4 91.6 8 1550 86.2 91.1 91.4
10 1169 85.8 91.4 89.7 10 1059 85.2 88.7 91.4

ST2:IM1000-D6
12 4918 81.2 75.1 86.5 12 4193 81.2 75.1 86.5
14 3475 81.2 75.1 86.5 14 2852 81.2 75.1 86.5
16 2377 81.2 75.1 86.5 16 2126 81.2 75.1 86.5

RT1:CSLOGS-1
0.2 631 79.8 81.1 80.9 0.2 621 79.8 81.1 80.9
0.3 394 79.8 81.1 80.9 0.3 391 79.8 81.1 80.9
0.4 286 79.8 80.9 80.9 0.4 287 79.8 80.9 80.9

RT1:CSLOGS-2
0.2 674 80.4 81.0 81.5 0.2 662 80.4 81.0 81.5
0.3 384 80.4 81.7 81.5 0.3 383 80.4 81.7 81.5
0.4 293 80.4 81.6 81.5 0.4 292 80.4 81.6 81.5

 1

 10

 100

 1000

 10 15 20 25 30 35 40 45 50

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-ATW algorithm on the QT-D5 data

gSpan
FFSM

GASTON
gSpan-ATW + SW1
gSpan-ATW + SW4

 1000

 10000

 100000

 1e+006

 10 15 20 25 30 35 40 45 50

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-ATW algorithm on the QT-D5 data

gSpan
FFSM

GASTON
gSpan-ATW + SW1
gSpan-ATW + SW4

Figure B.2: The performance of gSpan-ATW on the QT-D5 data

 0

 20

 40

 60

 80

 100

 120

 15 20 25 30 35 40 45 50 55 60

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-ATW algorithm on the QT-D6 data

gSpan
FFSM

GASTON
gSpan-ATW + SW1
gSpan-ATW + SW4

 0

 50000

 100000

 150000

 200000

 250000

 300000

 15 20 25 30 35 40 45 50 55 60

pa

tte
rn

s

minimum support (%)

No. of patterns found by the gSpan-ATW algorithm on the QT-D6 data

gSpan
FFSM

GASTON
gSpan-ATW + SW1
gSpan-ATW + SW4

Figure B.3: The performance of gSpan-ATW on the QT-D6 data

sub-section.

For the IM1000-D4 data set, Figure B.5 shows that gSpan-AW coupled with either

228

 1

 10

 100

 1000

 25 30 35 40 45 50 55 60 65 70

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-ATW algorithm on the QT-D7 data

gSpan
FFSM

gSpan-ATW + SW1
gSpan-ATW + SW4

 1000

 10000

 100000

 1e+006

 25 30 35 40 45 50 55 60 65 70

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-ATW algorithm on the QT-D7 data

gSpan
FFSM

gSpan-ATW + SW1
gSpan-ATW + SW4

Figure B.4: The performance of gSpan-ATW on the QT-D7 data

Table B.3: The performance of gSpan-AW using SW4 on the ST1, ST2, and
RT1:CSLOGS-1(2) data

Dataset λ τ(%)
gSpan-AW + SW4

runtime (in seconds) # patterns

ST1:D10 0.01%

0.05 4.183 121
0.1 3.849 93
0.5 3.592 35
1 3.517 25
2 3.122 19

ST1:T1M 0.01%

0.05 102.869 88
0.1 98.099 69
0.5 95.496 30
1 93.139 22
2 89.644 18

ST2:IM1000-D4 0.02

6 1.370 189
8 1.247 134
10 1.091 110
12 1.053 98
14 1.002 84

ST2:IM1000-D5 0.06

10 4.889 519
12 3.888 350
14 3.454 279
16 3.001 239
18 2.880 202

ST2:IM1000-D6 0.06

15 8.068 396
20 6.300 255
25 5.283 187
30 4.449 139

RT1:CSLOGS-1 0.6

0.2 0.692 718
0.4 0.650 300
0.6 0.617 177
0.8 0.604 134
1 0.593 104

RT1:CSLOGS-2 0.6

0.2 0.750 819
0.4 0.604 311
0.6 0.568 185
0.8 0.565 135
1 0.540 103

SW1 or SW4 performs better than both gSpan and FFSM, in terms of the runtime

cost and the number of patterns discovered. Moreover, gSpan-AW coupled with SW4

229

identifies fewer patterns with slightly higher runtime costs than when using SW1.

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-AW algorithm on the IM1000-D4 data

gSpan
FFSM

gSpan-AW + SW1 +λ=0.6
gSpan-AW + SW4 + λ=0.02

 10

 100

 1000

 10000

 100000

 1e+006

 2 4 6 8 10 12 14 16

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-AW algorithm on the IM1000-D4 data

gSpan
FFSM

gSpan-AW + SW1 +λ=0.6
gSpan-AW + SW4 + λ=0.02

Figure B.5: The performance of gSpan-AW on the IM1000-D4 data

 1

 10

 100

 1000

 4 6 8 10 12 14 16 18

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-AW algorithm on the IM1000-D5 data

gSpan
FFSM

gSpan-AW + SW1 +λ=0.6
gSpan-AW + SW4 + λ=0.06

 100

 1000

 10000

 100000

 1e+006

 4 6 8 10 12 14 16 18

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-AW algorithm on the IM1000-D5 data

gSpan
FFSM

gSpan-AW + SW1 +λ=0.6
gSpan-AW + SW4 + λ=0.06

 1

 10

 100

 1000

 5 10 15 20 25 30

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-AW algorithm on the IM1000-D6 data

gSpan
FFSM

gSpan-AW + SW1 +λ=0.6
gSpan-AW + SW4 + λ=0.06

 100

 1000

 10000

 100000

 1e+006

 5 10 15 20 25 30

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-AW algorithm on the IM1000-D6 data

gSpan
FFSM

gSpan-AW + SW1 +λ=0.6
gSpan-AW + SW4 + λ=0.06

Figure B.6: The performance of gSpan-AW on the IM1000-D5 and IM1000-D6 data

For data sets IM1000-D5 and IM1000-D6, the performance of gSpan-AW is pre-

sented in Figure B.6. In the figure, the performance of gSpan-AW on IM1000-D5 is

similar to that of gSpan-AW on IM1000-D6. All the curves in the figure indicate that

the performance of gSpan-AW coupled with either SW1 or SW4 identifies fewer pat-

terns with lower runtime costs than gSpan and FFSM. Further, for each of these two

data sets, gSpan-AW coupled with SW4 performed better than when using SW1.

230

 0.1

 1

 10

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-AW algorithm on the CSLOGS-1 data

gSpan
GASTON

gSpan-AW + SW1 +λ=0.9
gSpan-AW + SW4 + λ=0.6

(a)

 100

 1000

 10000

 100000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-AW algorithm on the CSLOGS-1 data

gSpan
GASTON

gSpan-AW + SW1 +λ=0.9
gSpan-AW + SW4 + λ=0.6

(b)

Figure B.7: The performance of gSpan-AW on the CSLOGS-1 data

The performance of gSpan-AW on the CSLOGS-1 data set is shown in Figure B.7.

Figure B.7 (a) indicates that the GASTON algorithm is the slowest when using support

thresholds of between 0.3% and 1%; gSpan-AW, coupled with SW1, runs slower than

gSpan when the support threshold is over 0.6% and the former runs faster than the latter

when the support threshold is below 0.6%. Figure B.7 (b) also shows that gSpan-AW

identifies fewer patterns than the standard FSM algorithms. In addition, gSpan-AW,

when coupled with SW4, appears to run faster and identifies fewer patterns than when

using SW1.

The performance of gSpan-AW on the CSLOGS-2, which is shown in Figure B.8,

exhibits similar behaviour to that shown in Figure B.8.

 0.1

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-AW algorithm on the CSLOGS-2 data

gSpan
GASTON

gSpan-AW + SW1 +λ=0.9
gSpan-AW + SW4 + λ=0.6

(a)

 100

 1000

 10000

 100000

 1e+006

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pa

tte
ns

 (
in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-AW algorithm on the CSLOGS-2 data

gSpan
GASTON

gSpan-AW + SW1 +λ=0.9
gSpan-AW + SW4 + λ=0.6

(b)

Figure B.8: The performance of gSpan-AW on the CSLOGS-2 data

B.1.2.2 The RT2 data

The performance of the gSpan-AW algorithm on the RT2 data is presented in Figure

B.9. It can be seen from the figure that gSpan-AW discovers substantially fewer patterns

231

Table B.4: The accuracy of the classifiers using patterns discovered by gSpan-AW with
SW4 on the ST2 and RT1:CSLOGS-1(2) data

Dataset
gSpan-AW+ SW4

λ τ(%) #F NBC SVM C4.5

ST2:IM1000-D4 2%
2 784 89.2 95.2 95.1
4 273 89.6 95.2 95.1
6 189 86.4 95.8 94.9

ST2:IM1000-D5 6%
4 2167 82.7 87.4 86.4
6 1118 82.7 87.4 86.4
8 719 82.7 87.6 86.1

ST2:IM1000-D6 6%
10 663 80.2 76.7 85.0
15 396 81.1 77.1 82.9
20 255 80.9 75.7 83.8

RT1:CSLOGS-1 0.6
0.2 718 80.1 81.9 82.3
0.4 300 80.1 81.7 82.2
0.6 177 79.9 81.3 81.8

RT1:CSLOGS-2 0.6
0.1 1801 80.5 79.5 82.2
0.2 819 80.5 81.1 82.2
0.4 311 80.5 81.5 82.0

using significantly less runtime than gSpan, FFSM and GASTON.

However, compared with the performance of the classifiers built using patterns dis-

covered by gSpan as shown in Table B.5, Table B.6 suggests that the patterns discovered

by gSpan-AW are not as effective as those discovered by gSpan, in terms of the accuracy

of the classifiers.

Table B.5: The accuracy of the classifiers using patterns discovered by the standard
FSM algorithms on the RT2 data

Dataset
standard FSM algorithms

σ(%) #F NBC SVM C4.5

RT2:QT-D5

35 87540 76.4 73.6 66.0
40 36955 79.2 76.4 68.9
45 18448 73.6 69.8 56.6
50 8715 75.5 66.0 55.7

RT2:QT-D6

45 41096 85.8 84.9 73.6
50 18353 82.1 85.8 78.3
55 10423 80.2 79.2 74.5
60 6438 81.1 80.2 73.6

RT2:QT-D7

55 39008 82.1 77.4 62.3
60 20905 80.2 78.3 63.2
65 11998 80.2 77.4 69.8
70 6959 81.1 77.4 70.8

B.1.3 The application of the CMW scheme

According to whether or not the tree data features class labels, the experimental results

of applying the CMW scheme to the tree data are presented in the following two sub-

sections.

232

 0.1

 1

 10

 100

 1000

 15 20 25 30 35 40 45 50

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-AW algorithm on the QT-D5 data

gSpan
FFSM

GASTON
gSpan-AW + SW1 + λ=0.6
gSpan-AW + SW4 + λ=0.4

(a)

 100

 1000

 10000

 100000

 1e+006

 15 20 25 30 35 40 45 50

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-AW algorithm on the QT-D5 data

gSpan
FFSM

GASTON
gSpan-AW + SW1 + λ=0.6
gSpan-AW + SW4 + λ=0.4

(b)

 0.1

 1

 10

 100

 1000

 20 25 30 35 40 45 50 55 60

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-AW algorithm on the QT-D6 data

gSpan
FFSM

GASTON
gSpan-AW + SW1 + λ=0.6
gSpan-AW + SW4 + λ=0.4

(c)

 100

 1000

 10000

 100000

 1e+006

 20 25 30 35 40 45 50 55 60

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-AW algorithm on the QT-D6 data

gSpan
FFSM

GASTON
gSpan-AW + SW1 + λ=0.6
gSpan-AW + SW4 + λ=0.4

(d)

 1

 10

 100

 1000

 30 35 40 45 50 55 60 65 70

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-AW algorithm on the QT-D7 data

gSpan
FFSM

gSpan-AW + SW1 + λ=0.6
gSpan-AW + SW4 + λ=0.4

(e)

 100

 1000

 10000

 100000

 1e+006

 30 35 40 45 50 55 60 65 70

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-AW algorithm on the QT-D7 data

gSpan
FFSM

gSpan-AW + SW1 + λ=0.6
gSpan-AW + SW4 + λ=0.4

(f)

Figure B.9: The performance of gSpan-AW on the RT2 data

B.1.3.1 The ST1 and RT1:CSLOGS-ALL data

Because the trees in ST1 and RT1:CSLOGS-ALL do not have class labels, the gSpan-

CMW algorithm was coupled with the SW2 or SW3 function. The performance of

gSpan-CMW with SW3 on the ST1 and RT1:CSLOGS-ALL data is displayed in Table

B.7. In comparison with the performance of gSpan-CMW with SW2 on the same

groups of data, as shown in Table 6.18, Table B.7 suggests that gSpan-CMW coupled

233

Table B.6: The accuracy of the classifiers using patterns discovered by gSpan-AW with
SW1 and SW4 on the RT2 data

Dataset
gSpan-AW + SW1 gSpan-AW + SW4

λ τ(%) #F NBC SVM C4.5 λ τ(%) #F NBC SVM C4.5

RT2:QT-D5 0.6
15 6537 70.8 55.7 57.5

0.4
15 2587 57.5 53.8 53.8

20 3478 68.9 56.6 58.5 20 1582 54.7 52.8 56.6
25 2169 60.4 53.8 59.4 25 1065 55.7 52.8 59.4

RT2:QT-D6 0.6
25 5753 66.0 59.4 67.0

0.4
15 9794 79.2 68.9 64.2

30 3638 66.0 57.5 67.0 20 5444 69.8 71.7 61.3
35 2448 68.9 64.2 67.0 25 3219 69.8 63.2 57.5

RT2:QT-D7
0.6

20 14564 70.8 69.8 72.6
0.4

25 8663 72.6 75.5 66.0
25 8665 72.6 75.5 66.0 30 5437 69.8 72.6 64.2
30 5439 67.0 71.7 66.0 35 3659 63.2 72.6 73.6

with SW3 is more efficient than that coupled with SW2, in terms of the runtime cost

and the number of patterns discovered.

Table B.7: The performance of gSpan-CMW using SW3 on the ST1 and RT1:CSLOGS-
ALL data

Dataset θ σ(%)
gSpan-CMW + SW3

runtime (in seconds) # patterns

ST1:D10 0.8

0.05 3.863 96
0.1 3.254 76
0.5 2.437 31
1 2.203 23
2 2.139 22

ST1:T1M 0.6

0.05 63.735 84
0.1 58.326 66
0.5 46.735 31
1 43.869 23
2 43.750 21

RT1:CSLOGS-ALL 0.6

0.3 2.711 650
0.4 2.282 457
0.5 2.115 328
0.6 1.967 265
0.8 1.713 181

Table B.8: The performance of gSpan-CMW using CW3 on the ST2 data

Dataset θ σ(%)
gSpan-CMW + CW3

runtime (in seconds) # patterns

ST2:IM1000-D4 0.4%

6 0.765 175
8 0.730 140
10 0.650 108
12 0.573 82
14 0.563 72

ST2:IM1000-D5 0.4%

10 1.459 280
12 1.313 212
14 1.177 167
16 1.152 136
18 1.070 116

ST2:IM1000-D6 0.4%

15 2.734 295
20 2.307 229
25 1.964 140
30 1.757 81

234

B.1.3.2 The ST2 and RT1:CSLOGS-1(2) data

Since the trees in ST2 and RT1:CSLOGS-1(2) have class labels, the gSpan-CMW algo-

rithm was coupled with the CW2 and CW3 functions. The performance of gSpan-CMW

with CW3 on the ST2 and RT1:CSLOGS-1(2) data is shown in Tables B.8 and B.9

respectively.

Table B.9: The performance of gSpan-CMW using CW3 on the RT1:CSLOGS-1(2)
data

Dataset θ σ(%)
gSpan-CMW + CW3

runtime (in seconds) # patterns

RT1:CSLOGS-1 1%

0.2 1.716 629
0.4 1.046 293
0.6 0.827 183
0.8 0.702 138
1 0.655 107

RT1:CSLOGS-2 1%

0.2 1.507 678
0.4 0.962 303
0.6 0.749 188
0.8 0.640 138
1 0.612 105

Table B.10: The accuracy of the classifiers using patterns discovered by gSpan-CMW
with CW3 on the ST2 and RT1:CSLOGS-1(2) data

Dataset
gSpan-CMW+ CW3

θ σ(%) #F NBC SVM C4.5

ST2:IM1000-D4 0.4%
2 666 89.6 95.0 95.0
4 334 89.6 94.9 95.2
6 175 89.6 94.9 95.2

ST2:IM1000-D5 0.4%
2 1514 86.9 88.0 91.3
4 834 86.1 88.6 91.0
6 559 85.9 88.4 90.7

ST2:IM1000-D6 0.4%
2 752 82.8 75.3 86.1
5 490 90.9 74.6 85.5
10 295 82.6 74.8 84.4

RT1:CSLOGS-1 1%
0.1 1284 80.7 81.1 82.1
0.2 629 80.7 81.8 82.1
0.3 398 80.7 81.7 82.1

RT1:CSLOGS-2 1%
0.1 1342 80.4 81.1 82.6
0.2 678 80.4 81.5 82.6
0.3 394 80.4 81.4 82.5

B.1.4 The application of the JSW scheme

The experimental results of applying the JSW scheme to the tree data are presented

in the following sub-sections for ST1, ST2, RT1, and RT2.

235

B.1.4.1 The ST1 data

Table B.11: The performance of gSpan-JSW with different γ values on the ST1 data

Dataset γ σ(%)
gSpan-JSW

runtime (in seconds) # patterns

ST1:D10 5

0.05 14.539 201
0.1 8.860 127
0.5 5.039 42
1 3.244 28
2 3.166 26

ST1:T1M 8

0.05 193.961 145
0.1 136.942 101
0.5 66.010 32
1 61.548 23
2 60.095 20

B.1.4.2 The ST2 data

The performance of gSpan-JSW with two different γ values on the ST2:IM1000-D4,

ST2:IM1000-D5, and ST2:IM1000-D6 data sets, in comparison with gSpan and FFSM,

is depicted in Figure B.10. As can be seen in the figure, gSpan-JSW, with a larger γ

value, runs much faster and discovers far fewer patterns than when a smaller γ value

is used.

B.1.4.3 The RT1 data

Figure B.11 shows the performance of gSpan-JSW using different γ values on the

CSLOGS-ALL data. From the figure it can be seen that the three standard FSM

algorithms can only work successfully at support thresholds of over 0.3% while gSpan-

JSW operates down to a support threshold of 0.1%. Apparently, Figure B.11 indicates

that gSpan-JSW with a larger γ value is more efficient than that with a smaller γ value,

in terms of the runtime cost and the number of patterns discovered.

 1

 10

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ru
nt

im
e

(in
 lo

gs
ca

le
)

minimum support (%)

Runtime of the gSpan-JSW algorithm on CSLOGS-ALL

gSpan
FFSM

GASTON
gSpan-JSW + γ=5

gSpan-JSW + γ=10

(a)

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-JSW algorithm on CSLOGS-ALL

gSpan
FFSM

GASTON
gSpan-JSW + γ=5

gSpan-JSW + γ=10

(b)

Figure B.11: The performance of gSpan-JSW on the CSLOGS-ALL data

236

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-JSW algorithm on the IM1000-D4 data

gSpan
FFSM

gSpan-JSW + γ=0.4
gSpan-JSW +γ=0.6

 10

 100

 1000

 10000

 100000

 1e+006

 2 4 6 8 10 12 14 16

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-JSW algorithm on the IM1000-D4 data

gSpan
FFSM

gSpan-JSW + γ=0.4
gSpan-JSW +γ=0.6

 1

 10

 100

 1000

 4 6 8 10 12 14 16 18

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-JSW algorithm on the IM1000-D5 data

gSpan
FFSM

gSpan-JSW + γ=0.4
gSpan-JSW +γ=0.6

 100

 1000

 10000

 100000

 1e+006

 4 6 8 10 12 14 16 18

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-JSW algorithm on the IM1000-D5 data

gSpan
FFSM

gSpan-JSW + γ=0.4
gSpan-JSW +γ=0.6

 1

 10

 100

 1000

 5 10 15 20 25 30

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-JSW algorithm on the IM1000-D6 data

gSpan
FFSM

gSpan-JSW + γ=0.4
gSpan-JSW +γ=0.6

 100

 1000

 10000

 100000

 1e+006

 5 10 15 20 25 30

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-JSW algorithm on the IM1000-D6 data

gSpan
FFSM

gSpan-JSW + γ=0.4
gSpan-JSW +γ=0.6

Figure B.10: The performance of gSpan-JSW on the ST2 data

When gSpan-JSW was applied to the RT1:CSLOGS-1 and RT1:CSLOGS-2 data

sets, the performance of gSpan-JSW with γ = 5 is presented in Table B.12.

B.1.4.4 The RT2 data

The performance of gSpan-JSW using γ = 0.25 on the RT2 data is shown in Table

B.13. In comparison with the performance of gSpan-JSW using a smaller γ value, as

shown in Table 7.4, Table B.13 suggests that gSpan-JSW with a larger γ value runs

faster and discovers fewer patterns than that with a smaller γ value.

237

Table B.12: The performance of gSpan-JSW with γ = 5 on the CSLOGS-1(2) data

Dataset γ σ(%)
gSpan-JSW

runtime (in seconds) # patterns

RT1:CSLOGS-1 5

0.2 1.610 999
0.4 0.908 417
0.6 0.731 242
0.8 0.612 177
1 0.559 137

RT1:CSLOGS-2 5

0.2 1.581 1042
0.4 0.893 429
0.6 0.665 247
0.8 0.596 186
1 0.560 140

Table B.13: The performance of gSpan-JSW with γ = 0.25 on the RT2 data

Dataset σ(%)
runtime (in seconds)

patterns
gSpan-JSW

gSpan FFSM GASTON γ σ(%) runtime # patterns

RT2:QT-D5

30 105.793 45.426 44.838 337242

0.25

30 3.396 2797
35 32.754 15.728 9.620 87540 35 2.940 2406
40 15.450 8.923 6.834 36955 40 2.626 2085
45 8.818 5.583 4.106 18448 45 2.391 1796
50 5.061 3.881 3.136 8715 50 2.169 1556

RT2:QT-D6

35 118.280 50.243 30.360 257811

0.25

35 4.294 2811
40 48.741 23.893 13.234 94333 40 3.810 2531
45 24.653 13.499 7.751 41096 45 3.498 2270
50 12.025 8.896 4.868 18353 50 3.172 2002
55 7.630 5.913 3.745 10423 55 2.800 1729

RT2:QT-D7

45 561.675 422.965 n/a 448683

0.25

45 7.091 2927
50 219.924 202.759 n/a 159507 50 6.468 2671
55 56.686 68.235 n/a 39008 55 5.856 2399
60 34.394 41.410 n/a 20905 60 5.581 2126

B.1.5 The application of the UBW scheme

The performance of gSpan-UBW on the CSLOGS-ALL data set is presented in Figure

B.12. In the figure, both gSpan and FFSM stop when a support threshold of 0.3% is

reached, while gSpan-UBW continues down to a support threshold of 0.1%. As can be

seen from the figure, both gSpan and FFSM run slightly faster than gSpan-UBW when

the support threshold is between 0.3% and 1%, but the number of patterns discovered

by the former is considerably more than that discovered by the latter. Moreover,

gSpan-UBW using the SW1 function runs moderately faster than that using SW4.

Figure B.13 illustrates the performance of gSpan-UBW on the CSLOGS-1 data

set. In the figure, when the support threshold is between 0.3% and 1%, both gSpan

and GASTON run faster than gSpan-UBW. When the support threshold falls to below

0.2% both gSpan and FFSM can not proceed with the mining due to the out-of-memory

errors, while gSpan-UBW continues down to a support threshold of 0.1%. Because the

runtime for all the algorithms is within 10 seconds, it is not very useful to compare

the runtime. However, it is of interest to see in Figure B.13 (b) that the number of

patterns identified by gSpan-UBW is considerably less than that discovered by the

238

 0

 20

 40

 60

 80

 100

 120

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-UBW algorithm on the CSLOGS-ALL data

gSpan
GASTON

gSpan-UBW +SW1 +µ=2%
gSpan-UBW + SW4 +µ=2%

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pa

tte
rn

s

minimum support (%)

No. of patterns found by the gSpan-UBW algorithm on the CSLOGS-ALL data

gSpan
GASTON

gSpan-UBW +SW1 +µ=2%
gSpan-UBW + SW4 +µ=2%

Figure B.12: The performance of gSpan-UBW on the CSLOGS-ALL data

standard FSM algorithms.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-UBW algorithm on the CSLOGS-1 data

gSpan
GASTON

gSpan-UBW + SW1 + µ=0.5%
gSpan-UBW + SW4 + µ=0.5%

(a)

 100

 1000

 10000

 100000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-UBW algorithm on the CSLOGS-1 data

gSpan
GASTON

gSpan-UBW + SW1 + µ=0.5%
gSpan-UBW + SW4 + µ=0.5%

(b)

Figure B.13: The performance of gSpan-UBW on the CSLOGS-1 data

The performance of gSpan-UBW on the CSLOGS-2 data set is shown in Figure

B.14. In the figure, both gSpan and GASTON mostly run faster than gSpan-UBW,

but the former run slower than the latter when the support threshold is below 0.2%.

Again, the big gap (in Figure B.14 (b)) between the number of patterns identified

by the standard FSM algorithms and that identified by gSpan-UBW indicates that

gSpan-UBW cuts down significantly on the number of patterns discovered by gSpan.

The performance of gSpan-UBW on the QT-D5 data set is presented in Figure B.15.

In the figure, gSpan, FFSM and GASTON stop when the support threshold reaches

30% while gSpan-UBW continues until the support threshold reaches 10%. It can also

be seen from the figure that gSpan-UBW runs faster and discovers far fewer patterns

than gSpan, FFSM and GASTON.

Figure B.16 illustrates the performance of the gSpan-UBW algorithm on the QT-D6

data set. In the figure, gSpan, FFSM and GASTON stop when the support threshold

reaches 35%, while gSpan-UBW continues until a support threshold of 10% is reached.

239

 0.1

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-UBW algorithm on the CSLOGS-2 data

gSpan
GASTON

gSpan-UBW + SW1 + µ=0.5%
gSpan-UBW + SW4 + µ=0.5%

(a)

 100

 1000

 10000

 100000

 1e+006

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-UBW algorithm on the CSLOGS-2 data

gSpan
GASTON

gSpan-UBW + SW1 + µ=0.5%
gSpan-UBW + SW4 + µ=0.5%

(b)

Figure B.14: The performance of gSpan-UBW on the CSLOGS-2 data

 0.1

 1

 10

 100

 1000

 10 15 20 25 30 35 40 45 50

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-UBW algorithm on the QT-D5 data

gSpan
FFSM

GASTON
gSpan-UBW + SW1 + µ=0.8%
gSpan-UBW + SW4 + µ=0.8%

 10

 100

 1000

 10000

 100000

 1e+006

 10 15 20 25 30 35 40 45 50

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-UBW algorithm on the QT-D5 data

gSpan
FFSM

GASTON
gSpan-UBW + SW1 + µ=0.8%
gSpan-UBW + SW4 + µ=0.8%

Figure B.15: The performance of gSpan-UBW on the QT-D5 data

From the figure it can be seen that gSpan-UBW clearly outperforms both gSpan, FFSM

and GASTON, in terms of runtime and number of patterns discovered.

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-UBW algorithm on the QT-D6 data

gSpan
FFSM

GASTON
gSpan-UBW + SW1 + µ=0.8%
gSpan-UBW + SW4 + µ=0.8%

 1

 10

 100

 1000

 10000

 100000

 1e+006

 10 20 30 40 50 60

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-UBW algorithm on the QT-D6 data

gSpan
FFSM

GASTON
gSpan-UBW + SW1 + µ=0.8%
gSpan-UBW + SW4 + µ=0.8%

Figure B.16: The performance of gSpan-UBW on the QT-D6 data

The performance of gSpan-UBW on the QT-D7 data set is shown in Figure B.17.

In the figure, both gSpan and FFSM stop when a support threshold of 45% is reached,

240

while gSpan-UBW continues until a support threshold of 15% is reached. As can be

seen from the figure, gSpan-UBW identifies substantially fewer patterns and requires

significantly less runtime than both gSpan and FFSM.

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-UBW algorithm on the QT-D7 data

gSpan
FFSM

gSpan-UBW + SW1 +µ=0.4%
gSpan-UBW + SW4 + µ=0.4%

 1

 10

 100

 1000

 10000

 100000

 1e+006

 10 20 30 40 50 60 70

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-UBW algorithm on the QT-D7 data

gSpan
FFSM

gSpan-UBW + SW1 +µ=0.4%
gSpan-UBW + SW4 + µ=0.4%

Figure B.17: The performance of gSpan-UBW on the QT-D7 data

Table B.14: The accuracy of the classifiers using patterns discovered by gSpan-UBW
with SW4 on the tree data

Dataset
gSpan-UBW + SW4

µ τ(%) #F NBC SVM C4.5

ST2:IM1000-D4 0.2%
6 421 93.3 95.4 93.8
8 270 93.5 95.3 93.9
10 179 92.3 95.7 94.4

ST2:IM1000-D5 0.2%
6 1567 90.3 92.9 92.3
8 787 86.1 92.0 91.9
10 469 84.3 91.9 90.0

ST2:IM1000-D6 0.2%
8 1964 85.8 79.6 89.8
10 1106 85.2 79.3 89.8
12 645 83.6 76.2 88.8

RT1:CSLOGS-1 0.5%
0.1 1304 80.6 81.2 82.1
0.2 650 80.4 81.8 82.1
0.4 312 80.6 81.7 82.1

RT1:CSLOGS-2 0.5%
0.1 1355 80.6 80.7 82.4
0.2 694 80.6 81.3 82.2
0.4 322 80.6 82.4 82.2

RT2:QT-D5 0.8%
8 8691 81.1 68.9 73.6
10 4450 75.5 69.8 73.6
12 2561 73.6 67.9 80.2

RT2:QT-D6 0.8%
10 6713 84.9 79.2 82.1
12 3775 80.2 76.4 71.7
14 2286 80.2 72.6 77.4

RT2:QT-D7 0.4%
12 7420 74.5 75.5 76.4
14 4175 72.6 78.3 75.5
16 2517 67.0 70.8 68.9

RT3 0.2%
15 1539 95.0 73.0 90.5
20 812 94.5 63.0 92.5
25 515 92.0 69.0 90.5

241

B.2 The Experimental Results for Undirected Graphs

Three groups of undirected graph data: RG1, RG2, and RG3 were used for the experi-

ments. Some of the results of using different subgraph weighting schemes on these data

are presented in the following sub-sections.

B.2.1 The application of the ATW scheme

B.2.1.1 The RG1 data

Table B.15: The performance of gSpan-ATW using SW4 and SW5 on the RG1 data

Dataset τ(%)
gSpan-ATW + SW4

vs.
gSpan-ATW + SW5

runtime (in seconds) # patterns runtime (in seconds) # patterns

RG1:CH1

10 270.430 797 219.518 586
12 229.750 639 198.907 483
14 199.295 529 170.474 395
16 177.647 450 153.259 339

RG1:CH2

4 89.019 402 78.988 322
6 69.278 287 65.318 229
8 60.510 218 51.668 160
10 51.164 163 43.218 126

The performance of gSpan-ATW on the CH1 data is presented in Figure B.18. It can

be seen from the figure that the three curves representing the operation of gSpan-ATW

coupled with SW1, SW4 and SW5 fall below the curve representing the operation of

gSpan, and gSpan-ATW continues to operate down to a support threshold of 1% and

beyond.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2 4 6 8 10 12 14 16 18

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-ATW algorithm on the CH1 data

gSpan
gSpan-ATW + SW1
gSpan-ATW + SW4
gSpan-ATW + SW5

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2 4 6 8 10 12 14 16 18

pa

tte
rn

s

minimum support (%)

No. of patterns found by the gSpan-ATW algorithm on the CH1 data

gSpan
gSpan-ATW + SW1
gSpan-ATW + SW4
gSpan-ATW + SW5

Figure B.18: The performance of gSpan-ATW on the CH1 data

Figure B.19 shows a very similar performance (to that presented in Figure B.18),

when gSpan-ATW is applied to CH2.

242

 10

 100

 1000

 0 2 4 6 8 10 12

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-ATW algorithm on the CH2 data

gSpan
FFSM

gSpan-ATW + SW1
gSpan-ATW + SW4
gSpan-ATW + SW5

 100

 1000

 10000

 0 2 4 6 8 10 12

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-ATW algorithm on the CH2 data

gSpan
FFSM

gSpan-ATW + SW1
gSpan-ATW + SW4
gSpan-ATW + SW5

Figure B.19: The performance of gSpan-ATW on the CH2 data

Table B.16: The AUC scores of the classifiers using patterns discovered by gSpan-ATW
with SW1 on the CH1 data

Dataset
gSpan gSpan-ATW + SW1

σ(%) #F
AUC

τ(%) #F
AUC

NBC SVM C4.5 NBC SVM C4.5

RG1:CH1
16 3596 79.5 69.3 75.5 4 2277 78.9 70.8 75.5
18 2735 78.8 68.1 75.8 6 1401 77.9 68.8 71.3
20 2149 78.8 68.4 76.0 8 1002 75.5 67.1 73.6

Table B.17: The AUC scores of the classifiers using patterns discovered by gSpan-ATW
with SW4 and SW5 on the CH1 data

Dataset
gSpan-ATW + SW4 gSpan-ATW + SW5

τ(%) #F
AUC

τ(%) #F
AUC

NBC SVM C4.5 NBC SVM C4.5

RG1:CH1
4 2382 78.5 70.8 76.2 4 1656 79.1 70.2 73.9
6 1474 78.0 70.9 71.8 6 1053 77.5 70.3 72.1
8 1051 75.9 68.8 74.0 8 764 76.1 70.2 73.2

B.2.1.2 The RG2 and RG3 data

Table B.18 displays the performance of gSpan-ATW with CW1-N on the RG2 and RG3

data. In comparison with Table 6.5, gSpan-ATW using CW1-N spends less runtime dis-

covering fewer patterns than that using CW1-E on the RG2 data, and the performance

of the former is very close to that of the latter.

The accuracy of the classifiers built using patterns discovered by gSpan-ATW with

CW1-N on the RG2 and RG3 data, as shown in Table B.19, is similar to that of the

classifiers built using patterns discovered by gSpan-ATW with CW1-E (see Table 6.8)

B.2.2 The application of the AW scheme

B.2.2.1 The RG1 data

The performance of the gSpan-AW algorithm on the CH1 data is shown in Figure B.20.

As can be seen from the figure, gSpan-AW outperforms gSpan in terms of the runtime

243

Table B.18: The performance of gSpan-ATW using CW1-N on the RG2 and RG3 data

Dataset τ(%)
gSpan-ATW + CW1-N

runtime (in seconds) # patterns

RG2:MAM-V80

4 8.436 2126
6 6.034 247
8 5.721 81
10 5.650 80

RG2:MAM-V100

4 19.808 4026
6 14.729 788
8 14.718 118
10 14.667 101

RG3:BS-V500

2 1.644 1341
4 1.321 607
6 1.264 497
8 1.144 456

RG3:BS-V1000

6 0.656 596
8 0.523 479
10 0.412 350
12 0.327 215

Table B.19: The accuracy of the classifiers using patterns discovered by gSpan-ATW
with CW1-N on the RG2 and RG3 data

Dataset
gSpan-ATW + CW1-N

τ(%) #F NBC SVM C4.5

RG2:MAM-V80
3 3140 76.5 75.7 68.7
4 2126 77.4 77.4 71.3
5 936 69.6 68.7 67.8

RG2:MAM-V100
3 5476 83.5 84.3 70.4
4 4026 80.0 80.0 70.4
5 2196 75.7 80.0 65.2

RG3:BS-V500
2 1341 96.5 94.7 87.6
4 607 95.3 92.9 82.9
6 497 95.3 93.5 81.8

RG3:BS-V1000
2 911 95.9 92.9 81.2
4 766 95.3 92.9 81.2
6 596 93.5 91.8 79.4

cost and the number of patterns identified.

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16 18

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-AW algorithm on the CH1 data

gSpan
gSpan-AW + SW1 + λ=0.6
gSpan-AW + SW4 + λ=5%

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14 16 18

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-AW algorithm on the CH1 data

gSpan
gSpan-AW + SW1 + λ=0.6
gSpan-AW + SW4 + λ=5%

Figure B.20: The performance of gSpan-AW on the CH1 data

Nevertheless, in comparison with the performance of the classifiers built using pat-

244

Table B.20: The performance of the classifiers using patterns discovered by the standard
FSM algorithms on the CH1 data

Dataset
gSpan

σ(%) #F
Accuracy AUC

NBC SVM C4.5 NBC SVM C4.5

RG1:CH1
16 3596 77.4 80.1 79.5 79.1 69.5 75.5
18 2735 76.8 79.6 79.2 78.5 67.9 75.8
20 2149 76.8 79.5 80.2 78.8 68.4 76.0

terns discovered by the standard FSM algorithms as shown in Table B.20, Table B.21

shows that the performance of the classifiers built using patterns discovered by gSpan-

AW using SW1 on CH1 is slightly worse than that of the classifiers using patterns

discovered by the standard FSM algorithms. In particular for the AUC measure, the

NBC classifier built using patterns discovered by gSpan-AW with SW1 achieve consid-

erably lower scores than when using the standard FSM algorithms.

Table B.21: The performance of the classifiers using patterns discovered by gSpan-AW
with SW1 on the CH1 data

Dataset
gSpan-AW + SW1

λ τ(%) #F
Accuracy AUC

NBC SVM C4.5 NBC SVM C4.5

RG1:CH1 0.6
0.5 2851 73.5 76.2 78.5 68.3 68.7 74.9
1 922 75.3 76.0 79.4 67.4 67.8 75.5
2 353 71.1 77.4 79.0 68.8 70.7 74.9

Table B.22: The performance of the classifiers using patterns discovered by gSpan-AW
with SW4 on the CH1 data

Dataset
gSpan-AW + SW4

λ τ(%) #F
Accuracy AUC

NBC SVM C4.5 NBC SVM C4.5

RG1:CH1 5%
0.5 2822 70.0 76.5 78.2 64.3 67.1 71.1
1 900 68.9 76.0 76.8 63.3 65.4 69.8
2 336 68.9 76.4 77.2 63.3 65.6 70.8

In the case of SW4, the performance of the classifiers built using gSpan-AW, as

shown in Table B.22, is even worse than that of the classifiers built using gSpan-AW

with SW1.

Table B.23: The performance of gSpan-AW using SW4 on the CH2 data

Dataset λ τ(%)
gSpan-AW + SW4

runtime (in seconds) # patterns

RG1:CH2
0.01

4 42.764 102
6 36.812 72
8 33.366 60
10 30.414 53

Figure B.21 shows that gSpan-AW coupled with SW1 or SW4 requires less runtime

245

and discovers a substantially lower number of patterns than both gSpan and FFSM.

Furthermore, the curves representing gSpan-AW coupled with SW1 is very close to that

of gSpan coupled with SW4, which indicates that gSpan-AW using either SW1 or SW4

performs very similarly.

 10

 100

 1000

 0 2 4 6 8 10 12

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-AW algorithm on the CH2 data

FFSM
gSpan

gSpan-AW + SW1 +λ=0.4
gSpan-AW + SW4 +λ=0.01

(a)

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-AW algorithm on the CH2 data

FFSM
gSpan

gSpan-AW + SW1 +λ=0.4
gSpan-AW + SW4 +λ=0.01

(b)

Figure B.21: The performance of gSpan-AW on the CH2 data

B.2.3 The application of the CMW scheme

The experimental results of applying the CMW scheme to undirected graphs are pre-

sented in Sub-section B.2.3.1 for the RG1:CH2 data, and Sub-section B.2.3.2 for the

RG1:CH1, RG2, and RG3 data.

B.2.3.1 The RG1:CH2 data

Table B.24: The performance of gSpan-CMW using SW2 on the CH2 data

Dataset σ(%)
runtime (in seconds)

patterns
gSpan-CMW + SW2

gSpan FFSM GASTON θ σ(%) runtime # patterns

RG1:CH2

4 572.614 740.596 n/a 8624

0.8

4 1220.236 2340
6 335.605 506.909 n/a 3939 6 577.667 1108
8 243.612 289.341 n/a 2284 8 366.783 687
10 171.225 242.826 n/a 1502 10 251.493 465

Table B.25: The performance of gSpan-CMW using SW3 on the CH2 data

Dataset θ σ(%)
gSpan-CMW + SW3

runtime (in seconds) # patterns

RG1:CH2 0.8

4 1161.193 2340
6 589.318 1108
8 369.980 687
10 255.337 465

246

B.2.3.2 The RG1:CH1, RG2, and RG3 data

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16 18

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-CMW algorithm on the CH1 data

gSpan
gSpan-CMW + CW2 + θ=8

gSpan-CMW + CW3 + θ=0.06%

(a)

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14 16 18

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-CMW algorithm on the CH1 data

gSpan
gSpan-CMW + CW2 + θ=8

gSpan-CMW + CW3 + θ=0.06%

(b)

Figure B.22: The performance of gSpan-CMW on the CH1 data

Table B.26: The performance of gSpan-CMW using CW3 on the RG1:CH1, RG2 and
RG3 data

Dataset θ σ(%)
gSpan-CMW + CW3

runtime (in seconds) # patterns

RG1:CH1 0.06%

10 13.121 43
12 12.238 37
14 11.043 33
16 10.672 32

RG2:MAM-V80 0.8%

15 8.593 1500
17 6.610 623
19 6.525 353
21 6.355 323

RG2:MAM-V100 0.8%

15 20.605 3809
17 17.120 1423
19 14.738 661
21 14.435 603

RG3:BS-V500 0.1

8 2.256 2136
10 1.678 829
12 1.222 522
14 1.102 438

RG3:BS-V1000 0.1

6 0.928 656
8 0.737 506
10 0.595 366
12 0.445 219

Table B.27: The AUC scores of the classifiers using patterns discovered by gSpan-CMW
with CW2 on the CH1 data

Dataset
gSpan gSpan-CMW + CW2

σ(%) #F
AUC

θ σ(%) #F
AUC

NBC SVM C4.5 NBC SVM C4.5

RG1:CH1
16 3596 79.5 69.5 75.5

8
0.1 1516 75.2 71.5 75.6

18 2735 78.8 68.1 75.8 0.2 830 75.1 71.8 75.3
20 2149 78.8 68.4 76.0 0.4 491 75.1 71.9 75.3

247

Table B.28: The performance of the classifiers using patterns discovered by gSpan-
CMW with CW3 on the CH1 data

Dataset
gSpan-CMW + CW3

θ σ(%) #F
Accuracy AUC

NBC SVM C4.5 NBC SVM C4.5

RG1:CH1 0.06%
0.1 939 77.0 77.1 78.6 74.0 68.9 75.6
0.2 636 77.0 77.8 78.6 74.0 69.4 75.7
0.4 399 77.0 77.8 78.6 74.1 70.0 76.2

Table B.29: The accuracy of the classifiers using patterns discovered by gSpan-CMW
with CW3 on the RG2 and RG3 data

Dataset
gSpan-CMW+ CW3

θ σ(%) #F NBC SVM C4.5

RG2:MAM-V80 0.8%
15 1500 86.1 76.5 68.7
17 623 79.1 78.3 76.5
19 353 80.0 78.3 73.0

RG2:MAM-V100 0.8%
15 3809 90.4 86.1 68.7
17 1423 81.7 82.6 71.3
19 661 80.9 82.6 69.6

RG3:BS-V500 0.1
8 2136 95.3 94.7 81.8
10 829 95.9 94.7 81.8
12 522 96.5 94.1 81.8

RG3:BS-V1000 0.1
2 2413 95.3 92.9 84.1
4 993 94.7 92.4 84.1
6 656 94.1 91.2 85.3

B.2.4 The application of the JSW scheme

B.2.4.1 The RG1 data

Figure B.23 (a) shows that gSpan-JSW with two different γ values, when applied to

CH1, runs significantly faster than gSpan. Figure B.23 (b) shows that the number of

patterns identified by gSpan-JSW on CH1 is significantly less than those identified by

gSpan.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2 4 6 8 10 12 14 16 18

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-JSW algorithm on the CH1 data

gSpan
gSpan-JSW +γ=0.4
gSpan-JSW +γ=0.6

(a)

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14 16 18

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-AW algorithm on the CH1 data

gSpan
gSpan-JSW +γ=0.4
gSpan-JSW +γ=0.6

(b)

Figure B.23: The performance of gSpan-JSW on the CH1 data

248

Table B.30: The AUC scores of the classifiers using patterns discovered by gSpan-JSW
on the CH1 data

Dataset
gSpan gSpan-JSW

σ(%) #F
AUC

γ σ(%) #F
AUC

NBC SVM C4.5 NBC SVM C4.5

RG1:CH1
16 3596 79.1 69.5 75.5

0.6
0.1 783 73.3 68.9 76.4

18 2735 78.5 67.9 75.8 0.2 404 73.3 69.1 76.6
20 2149 78.8 68.4 76.0 0.4 248 72.7 68.6 75.2

The performance of gSpan-JSW on the CH2 data is presented in Figure B.24. Note

that gSpan performs better than the FFSM algorithm, and both gSpan and FFSM run

significantly slower, and discover more patterns, than gSpan-JSW using two different

γ values. Figure B.24 further indicates that gSpan-JSW, with a large γ value, is more

efficient than with a small γ value.

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-JSW algorithm on the CH2 data

gSpan
FFSM

gSpan-JSW +γ=0.4
gSpan-JSW + γ=0.6

(a)

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-JSW algorithm on the CH2 data

gSpan
FFSM

gSpan-JSW +γ=0.4
gSpan-JSW + γ=0.6

(b)

Figure B.24: The performance of gSpan-JSW on the CH2 data

B.2.5 The application of the UBW scheme

Table B.31: The AUC scores of the classifiers using patterns discovered by gSpan-UBW
with SW1 on the CH1 data

Dataset
gSpan gSpan-UBW + SW1

σ(%) #F
AUC

µ τ(%) #F
AUC

NBC SVM C4.5 NBC SVM C4.5

RG1:CH1
16 3596 79.1 69.5 75.5

0.2%
10 171 68.6 67.6 73.2

18 2735 78.5 67.9 75.8 12 120 68.7 66.5 76.1
20 2149 78.8 68.4 76.0 14 83 67.3 60.3 72.3

B.3 The Experimental Results for Directed Graphs

Two groups of directed graph data (RG4 and RG5) were used for the evaluation. Some

results of using various subgraph weighting schemes on these data are described in the

following sub-sections.

249

Table B.32: The performance of the classifiers using patterns discovered by gSpan-UBW
with SW4 on the CH1 data

Dataset
gSpan-UBW + SW4

µ τ(%) #F
Accuracy AUC

NBC SVM C4.5 NBC SVM C4.5

RG1:CH1 0.2%
10 164 73.3 76.6 78.8 68.3 66.3 74.6
12 116 74.5 75.8 77.2 68.7 65.0 74.6
14 79 72.1 74.9 76.6 67.9 59.9 73.8

B.3.1 The application of the ATW scheme

B.3.1.1 The RG4 data

Table B.33: The accuracy of the classifiers using patterns discovered by gSpan-ATW
with CW1-N on the RG4 data

Dataset
gSpan-ATW + CW1-N

τ(%) #F NBC SVM C4.5

RG4:IMDB
0.2 3319 72.9 72.3 73.1
0.4 1780 72.9 72.6 73.1
0.6 1203 72.9 72.6 73.1

RG4:Amazon
0.4 2875 92.4 92.7 91.2
0.6 2166 92.4 92.7 91.2
0.8 1653 92.5 93.0 91.2

RG4:Ohsumed
0.4 2646 76.9 78.7 74.7
0.6 2010 76.9 78.4 74.7
0.8 1582 77.4 78.6 75.4

B.3.2 The application of the CMW scheme

B.3.2.1 The RG4 data

 0

 5

 10

 15

 20

 25

 30

 35

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-CMW algorithm on the IMDB data

gSpan
gSpan-CMW + CW2 + θ=8

gSpan-CMW + CW3 + θ=0.04%

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pa

tte
rn

s

minimum support (%)

No. of patterns found by the gSpan-CMW algorithm on the IMDB data

gSpan
gSpan-CMW + CW2 + θ=8

gSpan-CMW + CW3 + θ=0.04%

Figure B.25: The performance of gSpan-CMW using CW2 and CW3 on the IMDB
data

The performance of gSpan-CMW coupled with CW2 or CW3 on the RG4 data is

shown in Figures B.25 and B.26. As can be seen from the figures, gSpan-CMW requires

more runtime to discover a smaller number of patterns than gSpan. The reason for this

250

fact is that the computation of the CW2 or CW3 neutralizes any gain obtained using

the CMW scheme.

 5

 10

 15

 20

 25

 30

 35

 0.4 0.5 0.6 0.7 0.8 0.9 1

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-CMW algorithm on the Amazon data

gSpan
gSpan-CMW + CW2 + θ=30

gSpan-CMW + CW3 +θ=0.6%

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0.4 0.5 0.6 0.7 0.8 0.9 1

pa

tte
rn

s

minimum support (%)

No. of patterns found by the gSpan-CMW algorithm on the Amazon data

gSpan
gSpan-CMW + CW2 + θ=30

gSpan-CMW + CW3 +θ=0.6%

 5

 10

 15

 20

 25

 30

 35

 0.4 0.5 0.6 0.7 0.8 0.9 1

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-CMW algorithm on the Ohsumed data

gSpan
gSpan-CMW + CW2 +θ=6

gSpan-CMW + CW3 + θ=0.6%

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0.4 0.5 0.6 0.7 0.8 0.9 1

pa

tte
rn

s

minimum support (%)

No. of patters found by the gSpan-CMW algorithm on the Ohsumed data

gSpan
gSpan-CMW + CW2 +θ=6

gSpan-CMW + CW3 + θ=0.6%

Figure B.26: The performance of gSpan-CMW using CW2 and CW3 on the Amazon
& Ohsumed data

The patterns discovered by gSpan-CMW using CW2 or CW3 on the RG4 data were

used to construct feature vectors. These feature vectors were then used with respect

to a range of classifiers. The results of the classifiers on the RG4 data are displayed

in Tables B.34 and B.35. It can be seen from the tables that the classifiers built using

patterns discovered by gSpan-CMW achieved higher accuracy results than those built

using patterns discovered by gSpan, and the accuracy of the former was achieved using

a smaller number of features than that of the latter.

B.3.2.2 The RG5 data

For the Lancashire data, the performance of gSpan-CMW, as shown in Figure B.27

(a), suggests that gSpan-CMW coupled with SW3 runs faster than when coupled with

SW2 when the support threshold is over 6% and that the former runs slower than the

latter when the support threshold is below 6%. In the case of the Scotland data the

performance of gSpan-CMW and gSpan, as shown in Figure B.28, is similar until the

support threshold is reduced to below 16%. The advantage offered by gSpan-CMW

becomes noticeable when the support threshold is lowered to below 16%. Figure B.28

251

Table B.34: The accuracy of the classifiers using patterns discovered by gSpan-CMW
with CW2 on the RG4 data

Dataset
gSpan gSpan-CMW + CW2

σ(%) #F NBC SVM C4.5 θ σ(%) #F NBC SVM C4.5

RG4:IMDB
0.1 8768 72.9 71.8 73

8
0.2 3366 72.9 72.1 73.0

0.2 3932 72.9 72.1 73.0 0.4 1794 74.0 73.0 73.1
0.4 1866 72.9 72.5 73.1 0.6 1210 74.1 73.2 73.1

RG4:Amazon
0.4 4680 92.4 92.7 91.2

30
0.4 2931 92.4 92.7 91.2

0.6 2901 92.4 92.7 91.2 0.6 2210 92.4 92.7 91.2
0.8 1974 92.5 93.0 91.2 0.8 1690 92.5 93.0 91.2

RG4:Ohsumed
0.4 4138 76.9 78.5 74.7

6
0.4 2939 76.9 78.5 74.7

0.6 2630 76.9 78.2 74.7 0.6 2150 76.9 78.2 74.7
0.8 1902 76.9 77.8 74.7 0.8 1656 76.9 77.8 74.7

Table B.35: The accuracy of the classifiers using patterns discovered by gSpan-CMW
with CW3 on the RG4 data

Dataset
gSpan-CMW + CW3

θ σ(%) #F NBC SVM C4.5

RG4:IMDB 0.08%
0.2 3366 72.9 72.1 73.0
0.4 1794 72.9 72.5 73.1
0.6 1210 72.9 72.5 73.1

RG4:Amazon 0.6%
0.4 2927 92.4 92.7 91.2
0.6 2208 92.4 92.7 91.2
0.8 1683 92.4 93.0 91.2

RG4:Ohsumed 0.6%
0.4 2684 76.9 78.5 74.7
0.6 2047 76.9 78.2 74.7
0.8 1608 76.9 77.8 74.7

Table B.36: The accuracy of the classifiers using patterns discovered by gSpan-CMW
with SW3 on the RG4 data

Dataset
gSpan-CMW + SW3

θ σ(%) #F NBC SVM C4.5

RG4:IMDB 0.2
0.2 3338 72.9 72.1 72.3
0.4 1780 72.9 72.6 73.1
0.6 1203 72.9 72.6 73.1

RG4:Amazon 0.1
0.4 2914 92.4 92.7 91.2
0.6 2195 92.4 92.7 91.2
0.8 1673 92.4 93.0 91.2

RG4:Ohsumed 0.2
0.4 2693 76.9 78.5 74.7
0.6 2035 76.9 78.2 74.7
0.8 1597 76.9 77.8 74.7

(a) further suggests that gSpan-CMW coupled with SW3 runs a slightly faster than

when using SW2.

The performance of gSpan-CMW on the GB data is presented in Figure B.29. In

the figure, the benefits of gSpan-CMW start to be evident when the support threshold

is lowered to below 20%; the performance of gSpan-CMW is very similar to that of

gSpan when the support threshold is above 20%. The reason for this is that the CMW

scheme is not very effective at reducing the search space when discovering small sized

252

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 2 4 6 8 10 12 14 16 18 20

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-CMW algorithm on the Lancashire data

gSpan
gSpan-CMW + SW2 + θ=0.4
gSpan-CMW + SW3 + θ=0.1

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2 4 6 8 10 12 14 16 18 20

pa

tte
rn

s

minimum support (%)

No. of patterns found by the gSpan-CMW algorithm on the Lancashire data

gSpan
gSpan-CMW + SW2 + θ=0.4
gSpan-CMW + SW3 + θ=0.1

(b)

Figure B.27: The performance of gSpan-CMW on the Lancashire data

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12 14 16 18 20

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-CMW algorithm on the Scotland data

gSpan
gSpan-CMW + SW2 + θ=0.8
gSpan-CMW + SW3 + θ=0.6

(a)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 2 4 6 8 10 12 14 16 18 20

pa

tte
rn

s

minimum support (%)

No. of patterns found by the gSpan-CMW algorithm on the Scotland data

gSpan
gSpan-CMW + SW2 + θ=0.8
gSpan-CMW + SW3 + θ=0.6

(b)

Figure B.28: The performance of gSpan-CMW on the Scotland data

patterns. Figure B.29 further demonstrates that gSpan-CMW coupled with SW3 runs

faster than when coupled with SW2 when the support threshold is below 20%, but

discovers a very similar number of patterns.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 5 10 15 20 25 30

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-CMW algorithm on the GB data

gSpan
gSpan-CMW + SW2 + θ=0.8
gSpan-CMW + SW3 + θ=0.8

 0

 10000

 20000

 30000

 40000

 50000

 60000

 5 10 15 20 25 30

pa

tte
rn

s

minimum support (%)

No. of patterns found by the gSpan-CMW algorithm on the GB data

gSpan
gSpan-CMW + SW2 + θ=0.8
gSpan-CMW + SW3 + θ=0.8

Figure B.29: The performance of gSpan-CMW on the GB data

253

B.3.3 The application of the JSW scheme

B.3.3.1 The RG5 data

The performance of gSpan-JSW when applied to the Lancashire data set is presented

in Figure B.30. From Figure B.30 (a), gSpan-JSW with a smaller γ value runs slower

than gSpan when the support threshold is below 16%, while gSpan-JSW with a larger

γ value runs consistently faster than gSpan. From Figure B.30 (b) it can be observed

that gSpan-JSW (coupled with two different γ values) discovers fewer patterns than

gSpan.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 12 14 16 18 20

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-JSW algorithm on the Lancashire data

gSpan
gSpan-JSW + γ=0.6
gSpan-JSW + γ=0.8

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10 12 14 16 18 20

pa

tte
rn

s

minimum support (%)

No. of patterns found by the gSpan-JSW algorithm on the Lancashire data

gSpan
gSpan-JSW + γ=0.6
gSpan-JSW + γ=0.8

(b)

Figure B.30: The performance of gSpan-JSW on the Lancashire data

Figure B.31 shows that the performance of gSpan-JSW when applied to the Scot-

land data set. In the figure, gSpan-JSW when coupled with two different γ values

outperforms gSpan in terms of the runtime and the number of patterns identified. Ad-

ditionally, gSpan-JSW using a larger γ value runs slightly faster and discovers fewer

patterns than when using a smaller γ value. For the largest data set, GB, Figure B.32

exhibits a similar performance to that shown in Figure B.31.

 1

 10

 100

 10 12 14 16 18 20

ru
n-

tim
e

(in
 lo

gs
ca

le
)

minimum support (%)

Run-time of the gSpan-JSW algorithm on the Scotland data

gSpan
gSpan-JSW + γ=0.6
gSpan-JSW + γ=0.8

 1000

 10000

 100000

 10 12 14 16 18 20

pa

tte
rn

s
(in

 lo
gs

ca
le

)

minimum support (%)

No. of patterns found by the gSpan-JSW algorithm on the Scotland data

gSpan
gSpan-JSW + γ=0.6
gSpan-JSW + γ=0.8

Figure B.31: The performance of gSpan-JSW on the Scotland data

254

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 14 16 18 20 22 24 26 28 30

ru
n-

tim
e

(in
 s

ec
on

ds
)

minimum support (%)

Run-time of the gSpan-JSW algorithm on the GB data

gSpan
gSpan-JSW + γ=0.6
gSpan-JSW + γ=0.8

 0

 10000

 20000

 30000

 40000

 50000

 60000

 14 16 18 20 22 24 26 28 30

pa

tte
rn

s

minimum support (%)

No. of patterns found by the gSpan-JSW algorithm on the GB data

gSpan
gSpan-JSW + γ=0.6
gSpan-JSW + γ=0.8

Figure B.32: The performance of gSpan-JSW on the GB data

255

256

Appendix C

Published Work

In this final appendix a list of publications to date, including papers submitted for

refereeing, from the work described in this thesis is presented:

Journals

1. A. Elsayed, F. Coenen, C. Jiang, M. Garcia-Finana, and V. Sluming. Corpus

Callosum MR Image Classification. Journal of Knowledge Based Systems, 23(4),

pp. 330–336, 2010.

2. C. Jiang, F. Coenen, R. Sanderson, and M. Zito. Text Classification using Graph

Mining-Based Feature Extraction. Journal of Knowledge Based Systems, 23(4),

pp. 302–308, 2010.

3. C. Jiang, F. Coenen, and M. Zito. A Survey of Frequent Subgraph Mining Algo-

rithms. “Accepted by the Knowledge Engineering Review”.

Conferences

1. C. Jiang and F. Coenen. Graph-based Image Classification by Weighting Scheme.

In Proceedings of the 2008 SGAI International Conference on Artificial Intelli-

gence (AI’08), pp. 63–76, Springer London, 2008.

2. C. Jiang, F. Coenen, R. Sanderson, and M. Zito. Text Classification using Graph

Mining based Feature Extraction. In Proceedings of the 2009 SGAI International

Conference on Artificial Intelligence (AI’09), pp. 21–34, Springer London, 2009.

3. A. Elsayed, F. Coenen, C. Jiang, M. Garcia-Finana, and V. Sluming. Corpus Cal-

losum MR Image Classification. In Proceedings of the 2009 SGAI International

Conference on Artificial Intelligence (AI’09), pp. 333–348, Springer London, 2009

(Winner of the Best Application Paper Prize).

257

4. C. Jiang, F. Coenen, and M. Zito. Frequent Subgraph Mining on Edge Weighted

Graphs. In Proceedings of the 12th International Conference on Data Warehous-

ing and Knowledge Discovery (DaWak’10), pp. 77–88, Springer LNCS, 2010.

5. C. Jiang, F. Coenen and M. Zito. Finding Frequent Subgraphs in Longitudinal

Social Network Data Using A Weighted Graph Mining Approach. In Proceeding

of the 6th International Conference on Advanced Data Mining and Applications

(ADMA’10), Springer LNAI, pp. 405–416, 2010.

6. M.H.A. Hijazi, C. Jiang, F. Coenen, and Y. Zheng. Image Classification for

Age-related Macular Degeneration Screening using Hierarchical Image Decompo-

sition and Graph Mining. In Proceedings of the European Conference on Ma-

chine Learning and Principles and Practice of Knowledge Discovery in Databases

(PKDD’11), pp. 65–80, 2011.

Technical Reports

1. A. Elsayed, F. Coenen, C. Jiang, M. Garcia-Finana, and V. Sluming. Segmen-

tation for Medical Image Mining: A Technical Report. Technical Report ULCS-

09-016, Department of Computer Science, The University of Liverpool, 2009.

258

“夫君子之行，静以修身，俭以养德。非淡泊无以明志，非宁静无以致远。夫学须静也，

才须学也，非学无以广才，非志无以成学。淫侵则不能励精，险躁则不能治性。年与时驰，

意与日去，遂成枯落，多不接世，悲守穷庐，将复何及！”

《诸葛武侯集》

259

