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Glossary

Binary classification
The task of classifying the elements of a given set into two groups.

Carrier object
A cover media used to host the hidden message.

Channel
A pathway of the transmitted message.

Data mining
The process of discovering patterns in large data sets.

Feature vector
An n-dimensional vector of numerical features that represent some object.

HTML Tag
The hidden keywords within a web page that define how your web browser must format.

Hyper Text Markup Language
The standard markup language for creating web pages.

Maximum Embedding Capacity
The maximum hidden message length in bytes a carrier object can carry.

Message encoding/decoding
A method used to embed/encode and extract/decode the hidden message.

Standard Deviation
A measure used to quantify the despersion of a set of data values with respect to their
mean.

Stego object
A carrier object after having a hidden message.

Stego-key
A piece of information used to embed and extract the hidden message.
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Abstract

The work presented in this thesis is directed at steganography detection in HTML files.
The most common HTML steganography methods from the literature are considered
in the thesis: (i) Attribute Permutation Steganography (APS) (ii) Invisible characters
Steganography (ICS) and (iii) Tag Letters Case Switching Steganography (TLCSS).
Steganography detection in HTML files entails two challenges. The first challenge is the
identification of the steganography features that eventually would facilitate detection.
Three features are thus proposed depending on the nature of HTML steganography
method: (i) in case of APS the change of an attribute positions in an HTML tags was
used (ii) in case of ICS the frequency distributions of white space character segments
was used and (iii) in case of TLCSS the smoothness of tag letters was used. The second
challenge is how to represent webpage content after steganography features have been
identified. Four representations were proposed in this thesis again depending on the
nature of HTML steganography method. In case of APS detection two representations
were used (i) standard deviation of a webpage attributes’ positions (ii) a feature vector
of an attribute position changes count. In case of ICS detection a feature vector of
frequency distributions of white space character segments was used. In case of TLCSS
detection a webpage is represented by two sets of tags “Regular” and “Singular” accord-
ing to a defined tag smoothness statistics. The aforementioned HTML Steganography
methods are considered in the thesis in the context of both: the dynamic (monitoring)
context and the (non-monitoring) static context. With respect to the dynamic (monitor-
ing) context the proposed Statistical Detection (SD) approach directed at APS detection
was considered. With respect to the static (non-monitoring) context all three identified
forms of HTML steganography were considered. More specifically the Attribute Position
Changes Count (APCC) approach directed at APS detection, the Detect Invisible char-
acters (DIC) approach directed at ICS, and the Tag Variance (TV) approach directed
at TLCSS. The reported evaluation indicated that good results were obtained in most
cases. In the dynamic context the results indicated that proposed SD approach was effec-
tive. In the static context both the proposed APCC and the proposed DIC approaches,
coupled with appropriate classification methods, resulted in an effective classification of
stego and non-stego webpages. Also in the same context the proposed Tag Variance was
effective at detecting very short messages that were embedded using TLCSS.
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Chapter 1

Introduction

1.1 Overview

The work presented in this thesis is concerned with methods for HTML steganography

detection. Steganography is an information hiding technique intended to provide covert

communication in such a way that no one but the sender and receiver are aware of the

communication’s existence. Steganography requires a carrier, a container or a cover,

used by the steganographer to carry the hidden message. The main requirement for a

carrier is that its usage for steganographic purposes should not attract any third party

attention, in other words any hidden message should not be visible to a casual observer.

Steganography has been used in many forms since ancient times, however the advent of

the Internet in modern times has significantly increased the scope for its usage.

Internet services provided many benefits, services that include, but are not limited

to, abundant information and resources, communication without borders, entertainment

and eCommerce. The Internet, despite its many benefits, has also provided a mecha-

nism for unethical and criminal behavior and activity, including providing a conduit for

steganography. Digital media, available through Internet services, for example images,

video, audio files and documents, all provide a carrier for steganography. This digital

media includes redundancy in various forms that can be used for the purpose of message

hiding. For example image files can be easily distorted so as to hide a message whilst,

so far as an unsuspecting observer is concerned, the image remains unchanged.

Network protocols provide another form of a carrier for steganography, as do web-

pages. Webpages are accessed frequently on daily bases, therefore they are ideal for

usage as a cover for steganography because accessing of webpages will not cause any

suspicion. Webpages are written using HTML (Hyper Text Markup Language) some

of whose features provide an excellent opportunity for steganography, so called HTML

steganography. HTML steganography can be achieved in a variety of ways, for example

the addition of white space characters, switching letter case and alternating the ordering

of tag attributes, can all be used for the purpose of steganography without changing the

way that WWW pages are rendered by a web browser. There are many freely available

1



Chapter 1. Introduction 2

tools to support HTML steganography [42, 49]. The work presented in this thesis is

directed at the detection of HTML steganography.

Steganography does have legitimate applications. For example the copyrighting of

intellectual property by including (say) serial numbers in digital films, audio recordings

and books [7]. Other legitimate applications include: feature tagging and time stamping

of images of various kinds, and military and security applications where unobtrusive

communication is required. Examples of non-legitimate usage of steganography include:

criminal communication, data smuggling and industrial espionage [100].

Closely related to the legitimate use of steganography is watermarking [17, 31]. Wa-

termarking is frequently used with respect to images available for purchase over the

Internet so as to prevent their illicit usage. Once purchased the image is sent without

the watermark. The distinction between watermarking and steganography is that water-

marking is not intended to be unobtrusive as in the case of steganography. The emphasis

is on robustness. In the case of watermarked images, the watermark must be resistant

to various forms of transformations such as rotation, compression and cropping.

Another way of sending information that can only be deciphered by a sender and

receiver, although much more obtrusive, is data encryption [13, 71]. The distinction

with steganography is that steganography is used to hide the existence of a message,

while cryptography is used to hide the content. To provide an extra layer of security the

stenographer can of course also encrypt the hidden messages. The work presented in this

thesis is directed at steganography detection, and is not concerned with cryptography or

watermarking (although a relationship clearly exists between cryptography and water

marking, and the process of steganography).

Given the above, the advantages offered by steganography, to the steganographer,

can be summarized as follows:

• Secrecy of both the sender and receiver’s identities.

• Avoidance of the need to use encryption; some countries prohibit the transmission

of encrypted messages [5, 92].

• The hiding of messages very existence (unlike in the case of cryptography).

Steganography detection is concerned with identifying the presence of steganography;

and, in some cases, by extension, also the extraction of hidden messages [15] [63]. The

work presented in this thesis is directed at HTML steganography detection. In the

context of steganography detection the term steganalysis is also used in the literature.

Both terms, are used in this thesis and are assumed to be synonymous. In the literature

the term steganalysis is sometimes used to describe processes whereby the security and

robustness of steganography algorithms are assessed [11, 40]. So as to prevent confusion,

in this thesis, the term steganalysis will only be used in the context of steganography

detection.

The structure of the reminder of this introductory chapter is as follows: In Section

1.2 the motivation for the research is presented in more detail. The research question
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and associated research issues are then discussed in Section 1.3. Section 1.4 outlines

the research methodology adopted to address the research question and the associated

issues, followed in Section 1.5 with an itemization of the research contributions. Section

1.6 presents details of published work produced as a result of the presented research,

followed in Section 1.7 with an outline of the structure of the remainder of this thesis.

1.2 Research Motivation

As already noted above, the Internet is an open public access network which provides

many benefits while also facilitating some undesirable activities, one of which is the

provision of an illicit communication channel whereby hidden messages can be sent and

received. One mechanism for doing this is by using steganography, the process of hiding

messages within some cover messages in such a way that the cover message, at least to

an unsuspecting observer, remains unchanged.

Although, as also noted above, steganography does have legitimated usages, it also

has undesirable usages. Steganography has been used in the context of malware, malware

such as Duqu and Alureon, both directed at capturing information from the infected

system and unobtrusively transferring this information back using innocent images as

the carrier [100]. The usage of steganography by terrorists was suspected during the lead

up to the 9/11 attack in the USA [56, 57]. There is also an evidence of a Russian spy ring

using digital images as a cover to pass classified information from the USA to Moscow

[86]. Simply by monitoring the number of times, running to hundreds of thousands,

that steganography tools are downloaded, is an indicator of the scale of stegongraphy

usage [84, 85](for example 59737 downloads of openPuff 4.00 tool for steganography and

watermarking and 9825 downloads of SteganoG 1.130.0 tool for steganography using

BMP files/ last updated Dec. 2017).

Given the above there is a need for techniques to detect the presence of steganog-

raphy. The motivation for these techniques is to uncover unauthorized covert mes-

saging. As noted above, webpages are an ideal carrier for steganography, specifically

HTML steganography. However, steganography detection (steganalysis) in the context

of HTML steganography has received very little attention in the research literature.

The motivation for the work presented in this thesis can therefore be summarized as

follows:

1. The increasing prevalence of steganography as witnessed by the number of times

steganography tools have been downloaded from the Internet.

2. Following on from (1) the corresponding requirement for comprehensive steganog-

raphy detection tools and methods.

3. The lack of steganography detection tools directed at HTML steganography, de-

spite the suitability of HTML encoded webpages as a carrier for steganography.
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1.3 Research Question

Given the above motivation the work presented in this thesis is therefore directed at

techniques for detecting the presence of steganography in HTML files (HTML steganog-

raphy). The overriding research question is thus:

“What are the most appropriate detection approaches, dynamic and static, required to

efficiently and effectively detect hidden messages in HTML files?”

The term dynamic used here refers to the process of continuously monitoring webpages,

while the term static refers to the process of applying steganography detection techniques

to webpages in an offline manner.

To provide an answer to the above research question the following research sub-questions

need to be considered:

1. What are the features of steganography that can best be adopted to facilitate

detection?

2. How can steganography detection effectiveness be measured so that different tech-

niques can be assessed and compared to one another?

3. Given a set of webpages how should the content of those webpages be represented

so as to facilitate, dynamic or static, steganography detection?

4. Given a solution to the above, how can the performance of such techniques be best

improved so as to maximize effectiveness?

5. What is the most appropriate mechanism for webpage monitoring in the context

of dynamic steganography detection?

6. What is the effect on detection of the nature of messages that are hidden (English

language or random)?

7. What is the effect on detection of the length of messages that are hidden?

1.4 Research Methodology

To provide an answer to the above listed research issues, and overriding research ques-

tions, the start point for the work presented in this thesis, was to review established

methods for HTML steganography. From this review three HTML steganography tech-

niques were identified: (i) Attribute Permutation Steganography (APS) [45, 80, 81] (ii)

Invisible characters Steganography (ICS) [60, 91] and (iii) Tag Letters Case Switching

Steganography (TLCSS) [87, 96]. Each of these is to be considered in turn and im-

proved detection techniques (over existing techniques) identified. At the same time the

proposed detection techniques will be considered in both the static (non-monitoring) and

the dynamic (monitoring) contexts. To identify appropriate detection mechanisms the
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broad strategy adopted is to consider mechanisms founded on the concept of machine

learning [2, 41]. More specifically, classification mechanisms, whereby binary classifiers

(stegnography exists versus does not exist) can be learnt from labeled training data

where data records (webpages) had been seeded with hidden messages using identified

HTML steganography techniques. Once learnt, the classifier could be applied to new,

previously unseen webpages, and these webpages are classified according to whether

steganography is suspected or not. There are a number of benefits that the classifica-

tion approach offered which led to its adoption. Firstly, the approach is well established

and well documented. Secondly, classification approaches have well founded mechanisms

for establishing their effectiveness which could easily be adopted (including statistical

significance testing). Thirdly, that there was very little previously reported work where

classification has been used for HTML steganography detection. For the building of the

classification models three classification algorithms are considered: (i) Neural Network

(ii) Support Vector Machines and (iii) Naive Bayes; these were all taken from the WEKA

machine learning toolbox [32].

Classification algorithms typically operate using a feature vector representation as

the input. This means that webpages needed to be represented in this format so that

classification algorithms can be applied. Thus work is required on how such representa-

tions could be generated given the different HTML steganography techniques available.

The idea was to test the classification models with and without feature selection, al-

though not in all cases. The “CfsubsetEval” attribute evaluation algorithm [3] together

with a best-first search strategy are used.

For evaluation purposes Ten-fold Cross Validation (TCV) is typically used through-

out. The evaluation measures used are average accuracy and AUC (Area Under the

receiver operator characteristic Curve). To determine whether the results obtained are

statistically significant a comprehensive statistical analysis of the results is conducted

using Friedman test (followed by Nemenyi post-hoc test) for comparing several classifi-

cation models (more than two) and Wilcoxon-signed rank test for comparing two related

samples [23]. In this statistical analysis the effect on steganography detection of both

the type and length of embedded hidden messages was also considered. Note that the

“type” of a hidden message, as used here, refers to whether the message is in English

language or some other form.

As already noted above, it is considered desirable to investigate steganography de-

tection both in the dynamic (monitoring) and the static (non-monitoring) contexts by

considering two different scenarios. In more detail:

• Dynamic (Monitoring) scenario: For the dynamic scenario a number of “copies”

of a webpage is collected over sample intervals of time τ over a period of time T .

A sequence of “webpage snapshots” is thus obtained. The scenario is designed to

simulate the process whereby webpages might be monitored for the presence of

steganography.



Chapter 1. Introduction 6

• Static (Spot Check) (Non-Monitoring) scenario: In this case only one snap-

shot per webpage is used for determining whether steganography is present or not.

This scenario is designed to simulate the situation where a “spot check” is con-

ducted.

To support the analysis a number of algorithms needed to be developed, whereby HTML

steganography can be conducted, based on existing HTML steganography methods and

techniques reported in the literature. These algorithms needed to be able to embed

both English language and random text into selected HTML files, and messages of dif-

ferent length, so that a comprehensive analysis of the proposed steganography detection

techniques could be conducted.

1.5 Research Contributions

The main research contribution of the thesis is a number of HTML steganography de-

tection mechanisms and algorithms directed at different categories of HTML steganog-

raphy. Figure 1.1 presents an overview of the identified HTML steganography detection

techniques. In the figure intermediate nodes (square cornered rectangles) represent the

identified HTML steganography categories and leaf nodes (round cornered rectangles)

represent the individual HTML steganography detection approaches proposed in this

thesis. In Attribute Permutation Steganography (APS) the embedding of hidden mes-

sages is performed through rearranging the attributes in HTML tags. For the attribute

permutation detection category two detection algorithms were proposed: (i) Statistical

Detection (SD) and (ii) Attribute Position Changes Count (APCC). For the Invisi-

ble characters Steganography (ICS) category, also known as open space steganography

(OSS), the hidden message is inserted using invisible characters such as white space

characters. In this case the frequency distributions of white space character segments

was considered and the Detect Invisible characters (DIC) algorithm was proposed. In

Tag Letters Case Switching Steganography (TLCSS) the embedding is performed by

switching the tag letters case from uppercase to lowercase and vice versa. In this case

the Tag Variance (TV) algorithm was proposed, an enhancement on a mechanism first

presented in [44]. A further contribution is that this set of detection methods has been

encoded and is available for download1.

For reference the following list summarizes the steganography detection algorithms

proposed in this thesis (the main contributions of the thesis). In each case the relevant

chapter number, where each contribution is discussed in further derail, is included in

parenthesis.

1. SD algorithm directed at APS (Chapter 3).

2. APCC algorithm also directed at APS (Chapter 4).

1https://sandbox.zenodo.org/record/167143
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Figure 1.1: Categorization of HTML steganography methods and the associated de-
tection approaches proposed in this thesis

3. The Detect Invisible characters (DIC) algorithm directed at ICS (Chapter 5).

4. The Tag Variance TV algorithm directed at TLCSS (Chapter 6).

As demonstrated later in the thesis, the proposed steganography detection approaches

outperformed all known HTML steganography detection approaches (from the litera-

ture) in most cases. Note also that the proposed steganography detection methods can

be used in combination to detect all three forms of identified HTML steganography.

1.6 Publications

Three peer reviewed publications have arisen out of the work presented in this thesis.

These are listed below together with a brief description of each.

1. Sedeeq Iman, Coenen Frans and Lisitsa Alexei (2016). “A Statistical

Approach to the Detection of HTML Attribute Permutation Steganog-

raphy”, In Proceedings of 2nd International Conference on Information

Security Systems and Privacy ( ICISSP 2016), SCITEPRESS-Science

and Technology Publications, pp. 522-527. This paper proposed the first

detection approach presented in this thesis, the SD approach directed at APS.

The idea presented was to consider the standard deviation of the position of tag

attributes in a webpage as an indicator of the presence (or otherwise) of steganog-

raphy. The paper suggested that by monitoring a webpage, standard deviation

values could be compared with a threshold value, and if they were over that thresh-

old HTML steganography was identified. The content of this paper is included in

Chapter 3.
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2. Iman Sedeeq, Frans Coenen and Alexei Lisitsa (2017). “Attribute Per-

mutation Steganography Detection using Attribute Position Changes

Count”, In Proceedings of 3rd International Conference on Information

Security Systems and Privacy (ICISSP 2017), SCITEPRESS-Science

and Technology Publications, pp. 95-100, (winner of Best student pa-

per prize). This paper proposed the APCC algorithm, the second technique,

also directed at APS. The approach was found on the idea of an attribute position

changes count measure. This count was used to generate a feature vector web-

page training set that could be used to generate a classification model which could

then be used to distinguish between normal webpages and stego webpages. Three

classification models were considered: (i) Naive Beyes (NB), (ii) Support Vector

Machine (SVM) and (iii) MutiPerceptron Neural Network (MLP). The content of

this paper is covered in the context of Chapter 4.

3. Iman Sedeeq, Frans Coenen and Alexei Lisitsa (2017). “A Prediction

Model Based Approach to Open Space Steganography Detection in

HTML webpages”, Proceedings 16th International Workshop on Dig-

ital Forensics and Watermarking ( IWDW17), Springer International

Publishing IWDW 2017, LNCS 10431, pp. 235-247. This paper proposed

the Detect Invisible characters (DIC) algorithm; the third approach presented in

this thesis and directed at the detection ICS. The idea presented was to use the

frequency distributions of white space segments to define feature vectors similar

to those considered in the previous paper. A training set was developed in this

manner and classifiers were generated. The same three classification algorithms

were considered as in the previous paper: (i) Naive Beyes (NB), (ii) Support Vec-

tor Machine (SVM) and (iii) MutiPerceptron Neural Network (MLP). Previously

unseen webpages could then be classified as being either normal or stego webpages.

The content of this paper is covered in Chapter 5.

The TV approach presented in Chapter 6 is as yet unpublished.

1.7 Structure of Thesis

The rest of this thesis is organized as follows:

• Chapter 2: Presents a review of the relevant literature, together with definitions

of the terminology used in the domain of streganography. The chapter also provides

a review of HTML steganography algorithms and current detection methods.

• Chapter 3: Provides a detailed review of the SD detection approach for APS

in the dynamic (monitoring) context. This is where the concept of Standard

Deviation of HTML attributes is introduced.
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• Chapter 4: Presents the APCC detection approach also directed at APS in the

static (non-monitoring) context. A range of classification model generators were

considered and evaluated and the results reported and discussed in the chapter.

Statistical significance analysis is also provided.

• Chapter 5: Considers the DIC detection approach. As in the case of the for-

going chapter evaluation was conducted using a number of classification models,

with/without feature selection; the results are reported on and discussed in the

chapter. Statistical significance analysis is again provided.

• Chapter 6: Presents the proposed TV algorithm to detect TLCSS. Note that

the TV algorithm is a more effective variation of the tag letter case switching

steganography detection algorithm presented in [44]. A comparison was thus con-

ducted; the outcomes of this comparison are reported on in the chapter. Statistical

significance analysis is also provided.

• Chapter 7: The concluding chapter of the thesis which presents a summary of

the research presented, the main research findings and some suggested directions

for the future work.





Chapter 2

Steganography Background and

Previous Work

2.1 Introduction

In the previous chapter, Chapter 1, it was established that the work presented in this

thesis is directed at investigating and proposing a number of HTML steganography de-

tection methods. A review of the previous work related to the research presented in this

thesis is thus given in this chapter. The chapter commences, Section 2.2, with a review

of the historical evolution of steganography, since its foundation in the ancient era till

today. This section also includes a classification of modern digital steganography: (i)

Digital media steganography (ii) File system steganography and (iii) Network steganog-

raphy. The chapter then continues, in Section 2.3, with a more detailed look at modern

steganography and especially the terminology used. Section 2.4 then reviews the concept

of steganalysis, its potential goals, methodologies and types of steganlysis. This is then

followed by Section 2.5 which considers steganography in digital media (digital images

and text files). Section 2.6 then reviews steganalysis in digital media (digital images and

text files).

In some cases the HTML steganography detection techniques presented in this thesis

are founded on a data mining (machine learning) approach. The data mining process

is thus reviewed in Section 2.7 together with how a steganalysis model can be built for

classifying webpages as either normal webpages or stego webpages. In Section 2.8 a

comprehensive review of HTML steganography methods are presented (attribute per-

mutation, invisible characters and tag letters case switching) in more details. Section 2.9

presents a comprehensive overview of detection approaches that have been presented in

the literature directed at HTML steganography. The significance is that the operation

of the steganography detection approaches presented in this thesis was compared with

the operation of these approaches. The chapter then ends with a summary in Section

2.10.

11
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2.2 History of Steganography

In ancient Greek steganography literally means “covered writing”; the more modern

computer science interpretation is data concealed in other data. The usage of steganog-

raphy, as a method for secret communication, dates back to antiquity. The Greek

historian Herodotus (486-425 B.C.) reported examples of how steganography was used

in ancient times. Figure 2.1 shows how the usage of steganography has evolved with

time [100]. From the figure it can be seen that the earliest examples are those that

Herodotus reported on, such as: (i) shaving a slave’s hair and tattooing it with a mes-

sage which became hidden when the hair had regrown (ii) hiding letters in the soles of

shoes worn by “messengers” or in women’s earrings and (iii) sending notes by carrier

pigeons [31]. Arguably the most sophisticated method of that time was the practice of

carving a message on a wood tablet and then covering it by a thick layer of wax to avoid

arousing suspicion. The message could then be revealed simply by melting the wax [54].

As a result of humankind’s endless desire for communication secrecy, new opportuni-

ties for covert communication arose with the widespread availability of parchment (made

from animal matter) and the invention of invisible inks which become hidden upon dry-

ing. The message could be revealed using a heating process. Such inks were originally

made from organic matter but progresses in chemistry provided for more advanced inks

[17].

The invention of paper, by the Chinese, brought more opportunities for steganpgra-

phy. For example watermarking as an anti-counterfeiting and/or copyrighting technique

to distinguish manufactures’ products. Digital watermarking is now considered to be

a separate discipline within the domain of information hiding. Another consequence of

the invention of paper was the emergence and popularization of what is called linguistic

steganography where document text was arranged in such a way that a hidden message

was included. One example of linguistic steganography is where the first letter of each

line in a piece of writing is used to convey a message [52]. Geometric drawings have

also been used to hide messages. Examples also exist with respect to music scores where

each note represents a letter, or the number of occurrences of individual notes is used

as a letter indicator.

The European Enlightenment movement of the late 17th and 18th centuries and

the later industrial revolution facilitated further opportunities for steganography; of

particular note was the widespread readership of newspapers. Secret messages could be

embedded using space over or under letters and changing the height of letter strokes (a

further form of linguistic steganography).

In the 20th century the need for secrecy during periods of conflict (two World Wars)

necessitated further mechanisms for secret communication as a consequence of which

steganography began to truly flourish. That period witnessed the return to many forms

of invisible ink, and textual or linguistic steganography methods but more importantly

the usage of “spread spectrum” techniques in telecommunication and radio communica-

tion. In the case of the latter the spread of frequencies was used to embed information
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Figure 2.1: Steganography carrier evolution over time [100]

and scatter the signal so as to avoid detection. The advent of computer technology in

the 20th century lead to further innovation in steganography techniques.

Modern (digital) steganography can be classified as follows:

• Digital media steganography: This category is concerned with steganography

applied to digital media, such as: images, video, audio and text files. More details

will be given later on this category in Section2.5.

• File system steganography: File System Steganography is steganography di-

rected at the way that operating systems store files. For example using some

operating systems (such as Windows 95) if the “cluster” size is 32KB and the

size of a file is 1KB the remaining unused 31KB can be used to hide data [50].

Another form of file system steganography is by creating hidden partitions. These

partitions can then be used to hide files that only a person who knows the name

of the file and password can access [6, 72].

• Network steganography: This is the most recent form of modern digital steganog-

raphy whereby network protocols are utilized to convey secret communications.

Network protocols provide the two essential characteristics that a carrier of a hid-

den message should feature. Firstly these protocols are common and secondly they

permit alterations with no noticeable visual behavior. Moreover using communi-

cation channel delays, damaged packets and retransmission for some packets are

natural features that support hidden message passing without raising any alarm

[67, 75, 89].

The work presented in this thesis falls into the Digital Media Steganography category.

The remainder of the discussion presented in this chapter is therefore directed at this

form of Steganography.

2.3 Steganography In The Modern Context

This section presents an overview of steganography in terms of the modern context. A

steganography model is illustrated by “prisoners problem” proposed by Simmons and
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shown in Figure 2.2 [82]. In which two prisoners, Alice and Bob, are kept in separated

cells and wish to plan an escape, but are allowed to communicate via a (communication)

channel Wendy the warden using some carrier object and what is known as a stego key.

Alice and Bob therefore require a means of communication that will not draw Wendy’s

attention. In other words a form of steganography is required where Wendy is the

channel.

In her attempts to discover whether steganography is taking place Wendy is also

a steganalyst. Wendy could either be a “passive” or “active” steganalyser. Passive

steganalysis is concerned with only detecting the presence of a hidden message, whilst

active steganalysis is concerned not only with detecting the presence of steganography

but also with extracting the message content and either destroying it or replacing it with

something else.

The work presented in this thesis is concerned with passive steganalysis. The model

proposed by Simmons, as described, is the fundamental model on which the work pre-

sented in the rest of this thesis is based.

Figure 2.2: Steganography model [46]

The message which Alice wants to send is known also as the payload. Alice uses an

encoding method to hide the message in the carrier object. The possible carrier object

where a payload has already been hidden is a stego object. Alice will be considered the

steganographer. Finally Bob uses the stego-key and a decoding method to extract the

message. The usage of the stego-key in a steganography model can be thought of as

being analogous to the use of encryption keys in cryptography.

Kertchof’s principle [54], which holds that the secrecy of a hidden message lies on the

choice of the stego-key shared between the sender and receiver, is therefore applicable

in steganography. According to that there must be a prior steganography protocol that

both Alice and Bob agree with. Whatever the case, steganography protocols, can be

categorized according to whether a stego-key is used or not, and if so the nature of this

key, as follows [5, 19, 27, 54]:

• Pure steganography: steganography where no stego-key is used, in other words

nothing, apart from the embedding and extracting algorithms, is required to start
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communication. The security of the steganography system in this case depends

only on its secrecy. This is the case with respect to most modern steganography

techniques including HTML steganography.

• Secret key steganography: steganography where a secret stego-key (known

only to the sender and receiver) is used for embedding and extracting the hidden

message. In this case the steganography system is similar to a cipher text system.

• Public key steganography: steganography where two keys one public and the

other private are required. The public key is used to embed the hidden message

while the private key is used to reconstruct the hidden message.

2.4 Steganalysis

As noted in Chapter 1, the term steganalysis and the phrase steganography detection,

are both concerned with the process of detecting the presence of steganography in a

carrier. Steganalysis is analogous to cryptanalysis as applied in cryptography. The

main distinction between steganalysis and cryptanalysis is that the steganalysis process

starts with suspicion but uncertainty as to whether (say) a file has a hidden message,

whilst in cryptanalysis there is a prior evidence that a file contains an encrypted message.

Referring back again to Figure 2.2 Wendy the warden’s primary goal, as the steganalyist,

is to provide an answer to the question “Is a hidden message presenting or not in this

media?”.

The central theme of steganalysis is the observation that the process of replacing

redundancy in a carrier-object with an embedded message will change the statistical

properties of that carrier object. Steganography detection is conducted by analyzing

these statistical changes so as to uncover the presence of steganography [50].

When faced with a steganalysis task the attributes of the steganography algorithm

(embedding capacity, invisibility, undetectability and robustness) should be considered

first and weakness identified by the attacker.

The steganographer should also consider the nature of a potential attacker, human

or computer? A steganography method that operates by introducing grammatical errors

would be more susceptible to a human attacker than a computer attacker [11].

In this thesis steganography detection (steganalysis) for some cases is formulated

as a supervised learning problem. More specifically, given that the thesis is directed

at HTML steganography, where a labeled training set comprising a collection of stego

and non-stego pages is provided with which to train a binary classification model. The

labeled training set is used by a supervised learning algorithm to find a mapping function

between the attributes that feature in the webpages and the class attributes. This

mapping is then used to categorize previously unseen webpages as either stego or non-

stego webpages. What the relevant attributes are, is a part of the research, and will be

expanded upon later in the thesis.
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The remainder of this section comprises two subsections. Firstly Sub-section 2.4.1

considers the challenges of steganalysis in terms of both passive and active steganaly-

sis; particularly in the context of detecting HTML steganography. The huge number of

WWW pages that are available is the first, and most obvious, challenge for the stegan-

alyzer. Sub-section 2.4.2 then considers various categorizations of available steganalysis

methodologies and how the proposed HTML steganography detection approaches pre-

sented in this thesis fit into this categorization.

2.4.1 Challenges of Steganalysis

This subsection considers the challenges of steganalysis. The challenges encountered in

the context of passive steganalysis may be summarized as follows:

• In the case of HTML staganalysis scanning all webpages available over the Internet

is not a realistic proposition.

• Hidden data can be either place in sequential (specific) locations or scattered

throughout a carrier-object.

• Hidden data can be embedded in a chain over a number of carrier-objects.

• Steganalysis is a resource intensive and consequently time consuming.

The work presented in this thesis is broadly directed at all of these challenges, in the

context of HTML steganography, by proposing a number of computer automated ste-

ganalysis techniques.

2.4.2 Categorization of Steganalysis Methodologies

In the foregoing steganalysis was categorized as being either passive or active according

to whether the objective. In this section three alternative categorizations, taken form

the literature, are considered. The first of these is according to whether the steganalysis

methodologies of interest are targeted or universal as defined as follows [15]:

• Targeted or Specific Steganalysis: Steganalysis directed at the detection hid-

den messages that are embedded using a particular steganography technique.

When the steganography algorithm is known, the presence of hidden data can

be identified using knowledge of the way the information is embedded.

• Universal (blind): Steganalysis conducted where the nature of the steganogra-

phy algorithm is unknown. Thus these are general purpose stegnography detection

methods [35].

Clearly the steganography detection rate in the case of targeted steganalysis is much

higher than the detection rate using universal steganalysis methods because of the addi-

tional knowledge available of the targeted steganographic methods. The work presented

in this thesis is directed at targeted (passive) steganalysis.
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A second alternative steganalysis categorization found in the literature [11, 31, 53, 54]

is according to what knowledge the attacker has, such as: the nature of stego object,

original cover object, hidden message and the steganography algorithm.

Accordingly we can identify six types of attacks as listed in Table in 2.1. The table

lists the attack type in column 1 and in the following columns what, in each case, the

steganalyser (the attacker) is expected to know about the items (indicated by check

marks).

Table 2.1: Attack types according to what available to the attacker

Stego object Original cover object Hidden message Stego algorithm or tool

Stego only X
Known cover X X
Known message X X
Chosen stego X X
Chosen message X See below for detail concerning available knowledge

Known stego X X X

From the table it can be noted that “stego only” attack is the hardest while “known

stego” attack is the easiest. In case of “chosen message ” attack the attacker can generate

the stego objects using different hidden messages and different embedding algorithms.

This attack is used to recognize signatures that help the detection of other stego objects.

The final categorization considered in this subsection, and one of particular relevance

with respect to the work presented in this thesis, is that of steganalysis methods founded

on machine learning approaches and those that are not. Because of the relevance with

respect to the work presented in this thesis this categorization is considered in more

detail later in this chapter.

Thus in conclusion the steganalysis methodology adopted with respect to the stag-

analysis approaches presented in this thesis can be said to be passive, targeted, chosen

stego machine learning based methods.

2.5 Digital Media Steganography

As mentioned in Section 2.2 the category of digital media steganography will be pre-

sented in more details in this section. This category of steganography is applied to digital

media. The redundancy in these digital media types can easily be replaced by hidden

information. This category can also include watermarking although watermarking is

not strictly a steganography technique. Moreover these media types are popular on the

Internet so using them as a cover communication channel will not raise a suspicion.

The remainder of this section comprises two subsections. Firstly Sub-section 2.5.1

presents digital image steganography in particular because it is the most widespread

research area. Secondly Sub-section 2.5.2 presents steganography in text file, the signifi-

cance is that HTML steganography can be argued to be a special form of text steganog-

raphy.
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2.5.1 Digital Image Steganography

Digital images are the most popular multimedia type that attracted steganographers.

Some of reasons that motivated researchers to utilize digital images for steganography

are:

• The abundance of digital images on the Internet.

• Some of Human Visual System HVS attributes motivate researchers to exploit

these attributes in data hiding systems design.

• This media type provides enough redundancy to manipulate steganography.

Some of digital image steganography applications are: (i) Copyright (ii) Image integrity

(fraud detection) and (iii) Adding captions and (iiii) Fingerprinting (trailer-tracing). In

literature the common classification of image steganography methods [17, 20, 51, 63] is

based on the category of the domain that embedding process is taken place in as follows:

• Spatial domain steganography methods: in these methods, embedding hidden

messages in a cover image will occur in spatial domain. The Least Significant Bits

LSBs of image pixels are involved with encoding of a secret message [37, 62, 74, 98].

This category also includes applications for watermarking in binary document

images [14, 66].

• Frequency domain steganography methods: modification of LSBs in spatial

domain techniques did not succeed in resistance to attacks and deceiving human

visual system. To overcome aforementioned shortcoming, modification of LSBs in

frequency domain is adopted [47, 64, 76, 94, 97].

2.5.2 Steganography in Text Files

Text is one of the oldest choice of media for performing steganography. The abundance

of textual information on the Internet has encouraged steganographers to use this media

as a carrier for hidden messages.

There are many data hiding applications related to text files. In the context of copy-

right protection, as already noted, text watermarking might be used [4]. Steganography

can be used as well to add a “hash” to a text file to protect the file from tampering

[28]. The lack of redundancy in text files, compared to other forms of digital media

makes steganography using text files a challenge. There are many different kinds of text

steganography: a categorization of common text steganography methods is given in both

[11] and [21] where the following three broad categories are identified: (i) format based

methods that utilize existing text characteristics to hide data, (ii) random or statistical

generation methods where steganographers create their own text file, in which to hide

data, in such a way that it is statistically “natural” (frequencies of letters and words),

and (iii) linguistic methods that include syntactic and semantic methods.

In [58] the following alternative text steganography categorization is suggested:
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• Technical steganography: Methods that used technical processes to hide data

such as invisible ink.

• Linguistic steganography: Methods that hide data in non obvious ways. The

category can be subdivided into two sub-categories: (i) semagrams and (ii) open

codes. The semagrams sub-category includes text steganography methods whereby

data hiding is performed using the text itself, such as adding extra space characters,

line shifting, word shifting, deliberate misspelling and font resizing. The relevance

is that this is also applicable with respect to HTML stegnography. The open codes

sub-category is where data hiding is performed either using Jargon code, a language

understood by a select group and meaningless to others, or using covered ciphers

to hide data so that only someone who knows how the message was concealed can

recover it. The simplest method is null cipher method whereby (say) a prearranged

rule must be followed in order to embed and extract the hidden message. If the

rule is “read every first letter” then the set of first letters of each word, in an

innocuous piece of writing will represent the hidden message.

Another important branch of text steganography involves Natural Language Processing

(NLP) for the purpose of identifying synonym substitution [16], word abbreviation and

paraphrasing [28] as a means of conveying hidden messages. Also a text file can be

treated as an image and image steganography methods can be applied for watermarking

purposes as in [70, 99].

Figure 2.3 presents a total of 15 text steganographic tools, some of them are used

to embed secret messages in HTML files. Of these tools only wbStego and SNOW were

freely available to be used for evaluation of the proposed approach DIC for detecting

invisible characters steganography ICS, described in Chapter 5.

2.6 Steganalysis over Digital Media

In this section steganalysis over digital images and text files will be present. This is

as mentioned before that digital images are the most widespread research and HTML

steganography can be argued to be a special form of text steganography. The remainder

of this section comprises two subsections. Firstly Sub-section 2.6.1 presents steganalysis

over digital images. Secondly Sub-section 2.6.2 presents steganalysis over text files.

2.6.1 Steganalysis over Digital Images

As mentioned earlier that steganalysis aims to determine whether a testing object is a

clean object (has no hidden message) or a stego-object (has a hidden message). Accord-

ingly steganalysis can be considered as a two-class pattern classification problem. Also it

is mentioned in Sub-Section 2.4.2 that steganalysis is classified into targeted/specific and

universal/blind steganography. Some applications of these two categories in literature

are [63]:
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Figure 2.3: Text steganographic tools [42]

• For targeted/specific steganalysis: These methods take advantage of the insecure

aspect of a steganographic algorithm such as (i) Attacking LSB steganography in

spatial domain as in [34, 77, 93] (ii) Attacking LSB steganography in frequency

domain as in [36].

• For universal/blind steganalysis: These methods have less or even no such prior

information about steganography algorithm. These methods are based on two

stages training and testing. During the process, a feature extraction step is used.

The aim of the training stage is to obtain a trained classifier. Many models can

be used such as support vector machines SVM and neural network (NN), etc. In

literature many applications can be found depending on the features used (i) Image

Quality Feature [8] (ii) Calibration based feature [33] (iii) Moment based feature

[83] (iiii) Correlation based feature [88].

2.6.2 Steganalysis over Text files

In text files a tokenization process is required and the punctuation marks are removed to

get a stream of words as a preprocessing step for steganalysis. Some applications need a

dictionary preparation that includes all words of a collection. This dictionary might be

reduced to the words of high entropy which refer to the words that are important in a

given domain. Keywords that are identified the document content of a particular class

can be used as features. These keywords are the words that are repeated frequently in

the document [18, 101].
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2.7 Data Mining

As already established earlier in this categorization, the fundamental approach to steganog-

raphy analysis adopted in this thesis is one founded on data mining; a branch of machine

learning. Data mining can be defined as the extraction of interesting and useful infor-

mation by exploration and analysis of large quantities of data. It is an essential step of

the Knowledge Discovery in Databases (KDD) process for extracting useful, but hidden,

knowledge from datasets of all kinds. Machine learning has been a computer science do-

main of research since the 1970s, data mining, as a domain of research, was established

more recently in the 1990s [2, 41].

The KDD process is traditionally considered to comprise the following steps:

1. Domain knowledge acquisition: In order to know how to utilize data mining

results a proper understanding is required of the problem domain. The domain of

interest with respect to this thesis is HTML steganography.

2. Data selection: In this step the data miner decides the nature of the data to be

used. In the context of the thesis the data of interest are HTML webpages, which

may or may not contain hidden messages.

3. Data preprocessing: This step typically comprises several tasks directed at

the identified data from Step 2, including: data cleaning, data pruning and data

transformation. The data preprocessing stage may also include data integration

and feature selection. Data integration is where the selected data has been collected

from more than one resource and consequently needs to be combined. Feature

selection is where a subset of the available features (attributes) are selected and

retained; the aim being to work with only the features “best” suited to producing

a good data mining result. Feature selection has a number of claimed advantages

[2, 12]; with respect to classification these may be itemized as follows:

• Reducing the dimentionality of the feature space, thus reducing storage re-

quirements and training time.

• Selecting the most relevant features for building the desired classification

model.

• Improving the classification model accuracy.

• Reducing overfitting.

In this thesis the proposed approach DIC for detecting invisible characters steganog-

raphy ICS, described in Chapter 5 used the wrapper feature selection method

(Appendix C ). This form of feature selection adopts a two stages approach: (i)

choosing the evaluation method by which the feature subsets are to be assessed

and (ii) choosing the search method by which the feature subset space is searched.

For proposed DIC approach the selected evaluation method was “CfsubsetEval”.
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For the search method a bestFirst search approach was adopted where the search

is conducted using a greedy hill-climbing search method with backtracking. This

search method either starts with an empty features set and searches forward, or

with full features set and searches backward.

4. Data Mining. This is the central element of the KDD process where the useful

knowledge hidden in the data is extracted. In the context of the thesis we are

interested in identifying patterns and relationships that can be used to determine

the presence of HTML steganography. There are a variety of data mining models

(descriptive and predictive) [48] that can be adopted depending on the desired

outcome.

5. Evaluation of patterns discovery: In this step an evaluation of the identified

patterns and/or relationships from step 4 is conducted. The aim is to gain con-

fidence in the discovered patterns and relationships. The evaluation mechanism

considered in the context of this thesis is discussed in Sub-section 2.7.2 below.

6. Discovered knowledge deployment: In this final step the discovered knowl-

edge is utilized. In the case of the thesis this is HTML steganography detection

(steganalysis).

The work presented in this thesis falls into the predictive, supervised, learning cate-

gory where a pre-labeled training set to build a predictor is used. More specifically the

work is directed at building binary classifiers that can be used to “predict” whether a

given webpage features steganography or not. The process of building, evaluating and

using a classifier is therefore discussed in further detail in the following Sub-sections.

2.7.1 Classification

A classification problem is where we wish to identify the membership of an object with

respect to a given set of categories called classes. If we have only two classes we have a

binary classification problem. Thus the classification problem can be formulated in the

form of a tuple 〈X,Y 〉, where X is a set of attributes and Y is a set of classes (also known

as the target attributes). While the attribute set might be discrete and/or continuous

the classes must be discrete. Regression can be used where the classes are not discrete.

Classification has many diverse applications, examples include: the classification

of human tissue cells as being malignant or benign and the classification of galaxies

according to their type. Classification operates by first generating a classifier. In the

case of supervised classification this is done using a pre-labeled training set. The nature

of the training set is therefore important. Evaluation of the classifier is conducted using

a pre-labeled test set; the training and test set should not be the same.

There are many algorithms available that can be employed to build the desired

classifier. In this thesis the following are used: (i) Naive Bayes (NB) (ii) Support Vector

Machines SVM and (iii) Neural Network (NN) in WEKA machine learning software.
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These were selected because they are among the most commonly used in the literature

and because they operate in very different ways.

2.7.2 Classifier Evaluation

In order to evaluate the outcome of a binary classifier (a two classes problem) there are

a number of performance measures that can be adopted. The majority can be generated

using what is known as a confusion matrix of the form shown in Figure 2.4. A confusion

matrix is a table that compares class values predicted by a classifier and true observed

values. Using the counts True Positive (TP), True Negative (TN), False Positive (FP)

and False Negative (FN) held in the confusion matrix we can determine a variety of

classifier performance measurements. The most frequently used are:

  Bench Mark  

  X Not X  

Classifier 

X 

(Positive) 

True Positives (TP), 

records of class X that 

were correctly classified 

as X 

False Positives (FP), 

records of class Not X 

that were incorrectly 

classified as X 

Total Positive 

classifications 

Not X 

(Negative) 

False Negatives (FN), 

records of class X that 

were incorrectly 

classified as class Not X 

True Negatives 

(TN), records of class 

Not X that were 

correctly classified as 

class Not X 

Total Negative 

classifications 

  
Total number of records 

belonging to class X 

Total number of 

records belonging to 

class Not X 

Total number of 

records 

 

Figure 2.4: Confusion matrix for a binary classifier

• Accuracy: The number of correct predictions divided by the total number of

predictions. It is an overall measure of a classifiers performance. The higher the

accuracy the better. Accuracy, using a confusion matrix, is calculated as follows:

Accuracy(Acc) =
TP + TN

TP + FP + FN + TN
(2.1)

• Sensitivity: Also known as recall or the true positive rate (TPR) of the positive

class label (class X in Figure 2.4), is calculated as follows:

Sensitivity(Sens) =
TP

TP + FN
(2.2)

• Specificity: Also known as the false positive rate of the negative class label (class

not X in Figure 2.4), is calculated:

Specificity(Spc) =
FP

FP + TN
(2.3)

• Area Under Curve (AUC): AUC is a combination of sensitivity and specificity

in one single metric. Different thresholds ({0.0, 0.01, 0.02, . . . }) are used to calcu-

late and plot sensitivity and specificity on a graph with specificity along the X-axis
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and sensitivity along the Y-axis. The resulting curve is known as a ROC curve.

AUC is then the area under the ROC curve as shown in Figure 2.5. The closer

the ROC curve is to the northwest corner (in the figure) the higher the AUC. A

classifier with an AUC of 1.0 will be a perfect classifier.

Figure 2.5: ROC example with AUC = 0.79 [24]

2.8 Methods of HTML Steganography

The work presented in this thesis is directed at three forms of HTML steganography:

1. Attribute Permutation Steganography (APS) [45, 80, 81].

2. Invisible characters Steganography (ICS) [60, 91].

3. Tag Letters Case Switching Steganography (TLCSS) [87, 96].

In each case a variety of methods are available to allow their implementation. Those

used with respect to the work presented in this thesis are discussed in the following three

subsections, Subsections 2.8.1 to 2.8.3.

2.8.1 Attribute Permutation Steganography APS

Attribute Permutation Steganography (APS) uses the fact that HTML is insensitive to

how tag attributes are ordered. Thus in the following example the HTML “img” tag

has four attributes: src, alt, width and height.

<img src=“w3schools.jpg” alt=“W3Schools.com” width=“104” height=“142”>

Thus there are 24 (4× 3× 2× 1) different ways in which the attributes can be ordered,

enough to encode the most common letters in the English alphabet. The browser however

will render all the images in the same way regardless of the attribute ordering. Also

the rearranging of the attribute ordering will not cause any change to the overall size of

the HTML file, it will be the same regardless of the attribute ordering. Three different

APS mechanisms for implementing APS are considered in this thesis: (i) Deogol [80],

(ii) Huang et al. [45] and (iii) Shen et al. [81]. These were selected because they are

referenced in the literature. Each is discussed in further detail below. With respect to

the discussion the following definitions should first be noted:
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• H: An (HTML encoded) webpage.

• M : A text message to be hidden in H.

• N : A single (large) number made of the ASCII codes representing M .

• T : A tag with its set of attributes in H such that T = {a1, a2, a3, . . . am}, where

m is the number of the attributes in it (|T | = m).

• Q: A set of tags in H such that |T | ≥ 2.

The mechanisms of Deogol and Huang et al. are approximately the same, the only

difference is in how the attribute permutation is conducted. Algorithm 1 shows the

pseudo code for the APS method of Deogol and Huang et al. The input to the algorithm

is a webpage H and a message M to be embedded in the webpage. The output is a stego

webpage H ′. In Huang et al. step 10 is performed using a lexical ordering method (A-Z)

to generate the permutations. In the case of Deogol the specifics of the permutation

generation were not given and thus, in the context of the thesis, reverse lexical ordering

was used (Z-A).

Algorithm 1: Attribute Permutation Steganography [45, 80]

1: Input a webpage H
2: Input a message M
3: Output= a stego webpage H ′

4: N=large number made of the ASCII codes representing M.
5: M=N
6: Find Q set
7: while M 6= 0 do
8: for each tag T ∈ Q do
9: M ′=M div m! (m is the number of T attributes)

10: p=M mod m! (p is a number between 0 and m!-1)
11: Transform p to a permutation
12: Replace T with the new permutation
13: M=M ′

14: end for
15: end while

The mechanism of Shen et al. [81] used an alternative approach to APS to that

utilized in Deogol. and Huang et al. Using the approach of Shen et al. a binary

relation between the tag attributes is translated to a binary string. Before describing

the approach in further detail the following definitions should be noted, in addition to

the previously presented definitions:

• SubMessage: A function used to find a sub-message sm in M such that the length

of |sm| = |T | − 1.

• BinaryString: A function to transform |T | − 1 attributes into a binary string BS.
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• G: A set of BS permutations.

• Trunc: a function that “cuts” sm from M .

The pseudo code for the APS method proposed of Shen et al. is given in Algorithm 2.

As before the input to the algorithm is a webpage H and a message M to be embedded

in H. The output is a stego webpage H ′. The algorithm operates by first fetching sm

and generating BS to represent the relationship between tag attributes (line 8). Note

that BS is generated using a dictionary ordering of the attributes first letters such that

if the first letter of attribute a1 is alphabetically before the first letter of attribute a2

or they are the same then the bit in BS is 0, otherwise the bit is 1. In line 9 the set

G, that includes all the permutations of BS, is generated. Any permutation in G that

equals sm will be used to replace T .

All three APS methods were used with respect to the work presented in this thesis.

Although not included in Algorithms 1 and 2 a check for the Maximum Embedding

Capacity (MEC) of a webpage is required before embedding can take place. The MEC

is the maximum hidden message length, in bits or bytes (assuming a one byte character

encoding), that a webpage H can carry. This is an essential step to test that the webpage

H can be a container for the hidden message or not. For Algorithm 1 the MEC, MEC1,

can be calculated using Equation 2.4; whilst for Algorithm 2 the MEC, MEC2, can be

calculated using Equation 2.5. Note that the MEC values resulting from equations 1

and 2 are in bytes. According to Equation 2.4 and 2.5 MEC provided by approaches of

Deogol and Huang et al. is greater than MEC provided by the approach of Shen et al.

Algorithm 2: Attribute Permutation Steganography [81]

1: Input a webpage H
2: Input a message M
3: Output= a stego webpage H ′

4: Find Q set
5: while M 6= 0 do
6: for each tag T ∈ Q do
7: sm=SubMessage(m, |T | − 1)
8: BinaryString=transform |T | − 1 attributes to a binary string BS
9: Find G a set of BS permutations

10: p=permutation in G that equals to sm
11: Replace T with p.
12: M=Trunc(M,sm)
13: end for
14: end while

MEC1(H) =
1

8
blog2

∏
Tj∈Q

(|Tj |!)c (2.4)

MEC2(H) =
1

8

∑
Tj∈Q

(|Tj | − 1) (2.5)
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2.8.2 Invisible Characters Steganography ICS

When a web browser renders an HTML webpage it does not pay attention to invisible

characters such as: white space (ASCII 0x20) and tab (ASCII 0x19) characters. The

Invisible Characters Steganography (ICS) approach makes use of this feature to hide

messages in HTML files with no visual alteration in the rendered webpage. This kind

of steganography is known also as Open Space Steganography (OSS). The idea was first

proposed in the mid-1990s [10]. Although embedding white space characters in a text file

will increase the file size, these methods offer the advantage that in any document white

space characters will appear frequently, more than any other character, therefore the

existence of additional white space characters is unlikely to cause suspicion. In addition,

and subject to how the ICS is applied and how the cover text file is viewed, in many

cases the inclusion of additional white space characters will not result in any noticeable

change in the look of the file from the viewer’s perspective. Even where additional

white space characters are visible, an observer is unlikely to pay significant attention to

their presence and is unlikely to consider these spaces to represent a hidden message.

ICS uses one or more of the following i.e to hide messages: (i) inter-word spacing i.e

spacing between two successive words; (ii) inter-sentence spacing i.e spacing between two

successive sentences, (iii) additional spaces at the end of lines; and (iv) inter-paragraph

spacing, spacing between two consecutive paragraphs. An example of using white space

characters to hide a message is shown in the following:

<tag>, </tag> sending “0”

<tag >, </tag > sending “1”

In this example when tags are written without inserting a space character this sends

a 0, while inserting a space character sends a 1 (assuming that the messages to be hidden

is in binary form).

As in the case of APS there are many tools available for ICS. Examples include:

SNOW [60], Spacemimic [73], wbStego4open [91] and WhiteSteg [69]. The two se-

lected for use with respect to the work presented in the thesis were SNOW and wb-

Stego4open; these were selected because they are freely available, frequently referenced

in the steganography literature and because of their ease of use.

Using SNOW the message is embedded using white space characters at the end of

lines. When the host file is too short to accommodate the message SNOW embeds the

remaining message at the end of the host file. Before hiding, each character in the

message is encoded and written as a triplet (3 bits at a time) by introducing 0 to 7

spaces, the tab character is used as a delimiter for these triplets.

Using the wbStego4open steganography tool, white space characters are inserted

between words and sentences. Using wbStego4open a space character is used to em-

bed a 1 and a tab character to embed a 0. Unlike SNOW, before hiding the message

wbStego4open checks if the cover file is large enough to accommodate the message.
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2.8.3 Tag Letters Case Switching Steganography TLCSS

As mentioned before that HTML tags and attributes are case insensitive. This feature is

used in Tag Letters Case Switching Steganography (TLCSS) to hide messages in HTML

files. An example is given in Figure 2.6.

Figure 2.6: HTML steganography using tag letters case switching [25]

Both algorithms of Sui and Luo in [87] and Shen Y.[96] present approaches for

conducting TLCSS. The following definitions should be noted before the pseudo code

for the aforementioned steganography approaches are given:

• H: An (HTML encoded) webpage.

• M : A binary encoded text message to be hidden in H. M = {m1,m2,m3, . . .mn}.

• Q: A set of tag names in H.

The pseudo code for the method adopted in Sui and Luo [87] is shown in Algorithm

3. The input to the algorithm is a webpage H and a message M to be hidden, the

output is a stego webpage H ′. In the algorithm, if a message bit mi is equal to 1 then

the tag letter is switched to uppercase otherwise nothing is done. All tag letters are

utilized to hide the message. The approach presented in Shen Y. [96] is very similar to

that presented in Algorithm 3 except that only the first letter of each tag is used.

Again, although not included in Algorithm 3 a Maximum Embedding Capacity

(MEC) check is required before embedding can take place. For the approach of Sui

and Luo in Algorithm 3 this can be calculated using Equation 2.6, while for the ap-

proach of Shen Y.[96] it can be calculated using Equation 2.7. Note that the MEC

values resulting from equations 2.6 and 2.7 are in bytes. It should also be noted that Q

is a set that contains the tags that are included in the given webpage H, and that |Tj |
here refers to the number of English alphabet letters in tag Tj .

MEC1(H) =
1

8

∑
Tj∈Q

|Tj | (2.6)
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Algorithm 3: Tag letters case switching of Sui and Luo

1: Input a webpage H
2: Input a message M
3: Output= a stego webpage H ′

4: Find Q set
5: while M 6= 0 do
6: for each tag T ∈ Q do
7: if mi = 1 then
8: Switch a tag letter to uppercase
9: else

10: No switching
11: end if
12: M = M −mi

13: end for
14: end while

MEC2(H) =
1

8
∗ |Q| (2.7)

Unlike in the case of ICS, and like APS, the usage of TLCSS will not cause any

HTML file size to increase. However, the irregular use of upper and lower case used in

the tags can be readily detected from the raw HTML source code and therefore arouse

suspicion.

2.9 HTML Steganography Detection

HTML steganograohy detection approaches can be categorized according to whether

they are used in a dynamic (monitoring) context or a static (non-monitoring) context.

The two scenarios were briefly reviewed in Chapter 1. An alternative, and compatible,

categorization is according to the nature of the HTML steganography. As noted in the

previous section three types of HTML steganography are considered in this thesis: (i)

Attribute Permutation Steganography (APS), (ii) Invisible characters Steganography

(ICS) and Tag Letters Case Switching Steganography (TLCSS). In this penultimate

section of the literature review chapter the previous work on HTML steganography

detection is reviewed. The section is divided into three subsections corresponding to the

three types of HTML steganography considered in this thesis.

2.9.1 Attribute Permutation HTML Steganography Detection

In the literature there are two notable APS detection techniques that have been pro-

posed, that of L.Polak and Z. Kotulski [65] and that of W.Jian-feng et al. [95]. Both

are considered here, and both techniques are considered for the purpose of evaluating

the APS detection techniques proposed later in this thesis in Chapters 3 and 4.

The work presented of L.Polak and Z. Kotulski falls into the static APS detection

category and is based on the idea of identifying a predominant attribute pair ordering.
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For each pair of attributes the detection algorithm counts how many times the first

attribute appears before the second and vice-versa; the assumption is that a non-stego

webpage will have a more consistent ordering than in the case of a stego-webpage.

The ordering distribution is encapsulated using a value of W . More formally, given

a set of m webpage tags T = {t1, t2, t3, . . . tm} and the knowledge that each tag ti

has ki occurrences. Each tag occurrence ti,j has a set of attributes associated with it

Ai,j = {a1, a2, . . . } where i is the tag identifier and j is the occurrence number of the

tag (j ≤ k). If tag ti has a pair of attributes ax and ay ordered in such a way that ax

proceeds ay in most instances of ti then the value Rij(ax, ay) = 1 otherwise the R value

is 0. If it so happens that the distribution of both attribute pairs ax, ay and ay, ax is

equal, Rij(ax, ay) = 1 as well. The W value is then calculated using Equation 2.8 which

calculates the fraction of the ax and ay attribute pairs that occurs in different orderings

from the total number of pairings C.

∀x∀y x < y : W = 1−
∑m

n=1

∑k
i=1Rn,i(ax, ay)

C
(2.8)

When the value of W is high this indicates that the attribute pair ay and ax occurred

more often than the attributes pair ax and ay which is different from the predominant

order. This denotes a changing of webpage structure. Thus W can be used as an

indicator of APS given some threshold value.

The work presented of W.Jian-feng et al. in [95] falls into the dynamic APS detection

category. This work, as in the case of some of the work presented later in this thesis,

also falls into the supervised learning category. Similarly the work presented in [95]

is based on the idea of learning a classification model that can be used to predict the

presence or absence of APS. SVM classification was adopted, although any other form of

classification model generator could equally well have been used. Feature vectors were

generated using two statistics: (i) the distance between the attribute mean position

benchmark and the sample attribute mean position of the suspicious webpage and (ii)

the variance of attribute positions. In [95] three parameters were used with respect

to the selected attributes: (i) the number of attributes to be considered (BA), (ii) the

number of attribute appearances in terms of mean distance (TD) and (iii) the number of

attribute appearance in terms of variance (TV). The following parameter settings were

recommended in [95]: (i) BA = 3, (ii) TD = 3 and (iii) TV = 3.

The approaches of both L.Polak and Z. Kotulski [65] and W.Jian-feng et al. were

used for evaluation purposes with respect to the work presented later in this thesis in

Chapters 3 and 4.

2.9.2 Invisible Characters HTML Steganography Detection

As in the case of APS detection, there are a variety of mechanisms that have been

proposed in the literature for the purpose of ICS. Two mechanisms found in literature
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of Sui and Luo[68] and Huang et al. [43]; both are directed at static detection since they

used a single webpage snapshot to determine if steganography exists.

The idea presented by Sui and Luo in [68] is based on the usage of a probabilis-

tic model to detect whether additional invisible characters have been inserted into an

HTML file or not. Two occurrence probability values were used for this purpose: (i) the

probability of a white space character occurring (ptsco) and (ii) the probability of white

space character sequence occurrence (pscso). The first is calculated using Equation 2.9

where W is a webpage, while the second is calculated using Equation 2.10.

ptsco(W ) =
Nws

Nallchar
(2.9)

pscso(W ) =
Nwss

Nws
(2.10)

where:

• Nws: Is the number of white space characters in a webpage W .

• Nallchar: Is the number of all characters in a webpage W .

• Nwss: Is the number of space character sequences in a webpage W .

These probabilities were compared with predetermined thresholds to decide whether

a given webpage was a normal webpage or a stego-webpage. The thresholds in this case

were identified using Zipf’s and Heaps’ law, and a Finite-State Model [78]. The authors

estimated that the probability of occurrence of a white space character (ptsco) in a text

file was approximately 0.2 ± 0.1 (varying range), a threshold of 0.3 was thus proposed.

The authors also estimated that the total white space character sequence occurrence

probability (pscso), in a text file, was 0.2.

The work presented by Huang et al. in [43] was founded on the concept of “embedding

rate” (erate). This is the ratio between the length of a hidden message M and the size

of a given WWW page (Wallchar). M = size of a given webpage (Wallchar) - size of a

given webpage with invisible characters removed (Wwithout). Embedding rate of a given

webpage (erate(W )) can be calculated using Equation 2.11. The authors defined the

normal distribution of the embedding rate using the mean (µ) and standard deviation

(δ) of the erate distribution to define a threshold with which to distinguish normal

webpages from stego-webpages.

erate(W ) =
M

Wallchar
(2.11)
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The approaches proposed by Sui and Luo [68] and Huang et al. [43] were both

utilized for evaluation purposes with respect to the proposed ICS technique presented

later in this thesis (see Chapter 5).

2.9.3 Tag Letters Case Switching Steganography Detection

In the case of TLCSS the work of Huang et al.[44] is another static detection approach

found in literature considered in this thesis. The idea presented by Huang et al. is based

on the idea presented in [35] where image steganography is considered. More specifically

the idea of considering the Least Significant Bits LSBs in grayscale images to detect

the presence of hidden messages. The fundamental approach to TLCSS detection in

[44] is founded on the observation that switching the tag letters case will break the

inherent “smoothness” of the tag content. Tag letters will be a mixture of lowercase

letters (the set c = {26 lowercase ASCII characters}) and uppercase letters (the set

C = {26 uppercase ASCII characters}). The detection approach of Huang et al. used

the Tag Offset concept. This is the absolute value of the summation of the distance

between two adjacent letters in a tag. This Tag Offset is computed using the following

function F :

F (T (x1, x2, ...., xn)) =
n−1∑
i=1

|A(xi+1)−A(xi)|, (2.12)

Where T (x1, x2, ....xn) is an HTML tag. A(xi) ∈ (c′ ∪ C ′) such that:

set c′ = {lowercase ASCII codes} and set C ′ = {uppercase ASCII codes}. Hiding data

by switching tag letters will increase the Tag Offset, in other words the discrimination

F value (from Equation 2.12) will increase.

Switching tag letters can be performed using the following two flipping functions and

the mask M :

• Positive flipping f+1 :

– f+1(x) switches the lowercase→ uppercase.

• Negative flipping f−1 :

– f−1(x) switches the uppercase → lowercase.

Where M is a vector of length n comprised of the values +1, −1 and 0. There will

be M+ mask for positive flipping and M− mask for negative flipping. Note that for

TLCSS detection the locations of 1 and −1 values in both the M+ and M− masks are

the same. A third function f0(x) maintains the letter case as it is.

Applying these flipping functions to all letters in T (x1, x2, ...., xn) using a mask M

results in an altered tag T ′M (x1, x2, ...., xn) such that:

T ′M (x1, x2....xn) = T (fM(1)(x1), fM(2)(x2), . . . fM(n)(xn)) (2.13)
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The offset of T ′M (x1, x2, ....xn) is computed using the function F in Equation 2.12.

Accordingly the tags in a webpage are partitioned into three sets of tags Regular (R),

Singular (S), Unchanged (U); these sets are referred to as the RS statistics in the work

of Fridrich et.al [35] such that :

R = {T (x1, x2, ...., xn)|F (T ′M (x1, x2, ...., xn)) > F (T (x1, x2, ...., xn))}
S = {T (x1, x2, ...., xn)|F (T ′M (x1, x2, ...., xn)) < F (T (x1, x2, ...., xn))}
U = {T (x1, x2, ...., xn)|F (T ′M (x1, x2, ...., xn)) = F (T (x1, x2, ...., xn))}

According to the above, when applying positive flipping, the statistics are RM+ and

SM+ using mask M+ = [+1, 0]; and RM−, and SM− when applying negative flipping

using mask M− = [−1, 0].

An alternative discrimination function is proposed in this thesis in Chapter 6 as an

alternative to the Tag Offset function. A comparison of the TLCSS detection approach

presented by Huang et al. and that proposed in this thesis is presented in Chapter 6.

2.10 Summary

This chapter has provided the reader with a review of the existing work that underpins

the work presented in the thesis. The chapter commenced with a review of the history

of steganography from ancient times to the modern day. Definitions for the terminology

used in steganography were then presented, together with discussion of both the chal-

lenges of steganalysis and the methodologies that may be adopted. The central theme of

the work presented in this thesis is to address steganalysis using data mining approaches.

Data mining is a central step in the Knowledge Discovery in Data (KDD) process, this

process was thus also reviewed. There are a variety of data mining techniques that fall

within the domain of KDD, the technique adopted in this thesis was classification. An

overview of classification and the process of evaluating the performance of classification

models was thus included in the review. The chapter then went on to consider the nature

of HTML steganography, the type of steganography which the work presented in this

thesis is directed; especially the HTML steganalysis methods that have been proposed

in the literature. The significance of the later was that some of these mechanisms were

used for evaluation purposes with respect to the steganalysis methods proposed later in

the thesis. The next chapter describes the proposed SD detection approach for APS in

the monitoring context.





Chapter 3

HTML Attribute Position

Standard Deviation for APS

Detection

3.1 Introduction

This chapter presents the Statistical Detection (SD) proposed approach for detecting

Attribute Permutation Steganography (APS). Recall that the fundamental idea of APS,

as presented in Chapter 2, is the utilization of the HTML feature of insensitivity to tag

attribute ordering to hide messages. For example the two following tags are interpreted

identically by an HTML browser, without noticeable alteration in the rendered webpage:

<img src=“w3schools.jpg” alt=“W3Schools.com” > sending “0”

<img alt=“W3Schools.com” src=“w3schools.jpg” > sending “1”

Both of the above express the same information but the different attributes ordering

can be used to send a hidden message. Note also that any reordering does not result in

any increase in the HTML file size after hidden message embedding has taken place. This

makes it difficult to identify the possible presence of any steganography by inspection

of the HTML source code alone.

As also noted in Chapter 2, the APS algorithms used with respect to this thesis

were: (i) Huang et. al [45], (ii) Deogol [80] and (iii) Shen et. al [81]. The nature of

APS is governed by the number of tags, in a given carrier WWW page, with two or

more attributes. The fundamental idea underpinning the proposed SD APS detection

approach is to monitor the position changes of a webpage attributes in terms of the

position standard deviations (St.Ds) and to use these to identify the presence of a hidden

message or otherwise use some specified threshold. The utilization of this concept for

steganography detection entails two significant challenges:

35
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• The St.D computed for different HTML encoded webpages, without any embedded

messages, may vary significantly; hence it will be difficult to establish a global APS

detection threshold.

• In the case of dynamic webpages the St.D computed at time t1 may not be the

same as time t2.

Some experimental results evidencing the above are given in Section 3.3.

As noted in Chapter 2, previous work on APS detection can be found in L.Polak and

Z. Kotulski [65] and W.Jiang-feng et al. [95]. The first addressed APS in the dynamic

(monitoring) context, whilst the second considered the static (non-monitoring) context.

Recall also that in L.Polak and Z. Kotulski [65] a threshold W was used to describe the

ratio of HTML attribute pairs that occurs in different orderings to the total number of

HTML attribute pairings. It is suggested that W should be a constant when considering

webpages where the hidden message is transmitted continuously and a variable if the

hidden message is transmitted only over an appointed period of time, however, no specific

values for W were suggested. Similarly, the most suitable parameter settings for: (i)

total training time T , (ii) the interval between webpage snapshot captures τ and (iii) the

nature of an embedded message L, were not provided. Consequently, in the evaluation

reported on in this chapter the parameters used were those selected by the author.

Regarding the work presented by W.Jiang-feng et al. [95] this was directed at the

static (non-monitoring) context. In this work the following settengs were used: (i) a

feature vector representation was used as input to a SVM classifier model and that two

features were considered, distance between the attribute benchmark mean position to the

mean of the same attribute of the suspicious webpage and the variance of the attribute

positions; (ii) the detection rate of the reported experimental results varied between

72.4% and 84.6% and (iii) the length L, or the nature (natural English language text or

random text) of the hidden message was not considered in the reported evaluation.

The structure of the remainder of this chapter is as follows: Section 3.2 presents the

results of an investigation into the effect of APS on the attribute position statistics in

a webpage. Section 3.3 introduces the webpage SD concept. Section 3.4 then presents

the SD monitoring process. Section 3.5 presents the evaluation of the SD concept and

finally Section 3.6 presents a summary of the chapter and the main findings.

3.2 Attribute Positions Modification Resulting From APS

The process of using the standard deviation of attribute positions with respect to the

mean position in HTML files is founded on the observation that, generally speaking,

without any hidden message embedding, any given attribute tends to be located in the

same position in most of the tags. By reordering tag attributes to hide a message, the

coherency of the attribute positions changes.
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An example is presented in Table 3.1 using the rel 1 and the src 2 tag attributes.

The table lists the attribute positions before and after embedding an English language

message using Shen APS algorithm. From the table it can be seen that the attribute

position number changes as a result of message hiding. In the table the rel attribute

appears ten times at position “0” until message hiding takes place when the position

fluctuates between position “0” and position “1”. In the case of the case of the src

attribute the attribute appears 11 times, usually at position “3” and sometimes at other

positions before embedding. Again positions are changed after message hiding has taken

place.

Table 3.1: Attribute positions before and after embedding process

attribute positions attribute positions
attribute before embedding after embedding

rel 0000000000 0001010111

src 33333332001 32322312103

As shown in Table 3.1 the dispersion of attribute positions will increase if message

hiding is taking place, in other words the variance of attribute positions will increase and

consequently the standard deviation will increases as well. This in turn can be used as

an indicator of the presence of APS (as described in Chapter 2). Recall that in statistics

Standard Deviation is a measure used to quantify the dispersion of a set of data values

with respect to their mean. A low St.D value indicates that the distribution of the data

values is close to the mean, while a high St.D value indicates that the distribution of

the data values is much more spread. For any dataset S a standard deviation can be

calculated using the following equation:

St.D =

√∑n
i=1 (xi − µ)2

n
(3.1)

Where xi is a data value in set S, n is the number of data values in S and µ is the mean

of the data values in S.

3.3 Standard Deviation of an HTML File Calculation

After presenting the effect of APS on the distribution of attribute locations within HTML

tags in the previous section, the conjecture was that this can be usefully employed to

distinguish a stego webpage from a clean webpage. The main idea was to identify the

presence of APS by monitoring the St.D of attribute positions within webpages.

Before presenting the proposed APS detection algorithm the following definitions

should be noted:

1The rel is used with the a HTML tag to indicate the relationship between the current document
and the linked resource.

2The src is used with the img HTML tag to specify the URL of the image.
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• H: An input webpage.

• S: A set of tags T in H that have two attributes or more, S = {T1, T2, . . . }.

• Tj = {a1, a2, . . . , an} denotes the jth tag in S with its attributes.

• attPositions(ai): The array of positions in S for attribute ai, attPositions(ai) =

[p1, p2, . . . pm]. Each attribute has m occurrences such that: length(attPositions(ai))=m.

• VattPositions(ai) is the variance of attribute ai positions in attPositions(ai) array

and is calculated as follows:

V attPositions(ai) =

∑m
k=1 (pk − av)2

m
(3.2)

av =

∑m
k=1 pk
m

(3.3)

• V S is the total variance of attributes positions for all tags in S. The total variance

is equal to the summation of their variances as shown in equation 3.4 below:

V S =
n∑
i=1

V attPositions(ai) (3.4)

Where n is the total number of all tags attributes in S.

• St.D is the standard deviation of V S used to quantify the amount of variation in

webpage attribute positions, and is calculated using:

St.D =
√
V S (3.5)

The process for calculating the St.D of a webpage attributes locations is given in

Algorithm 4. The input to the algorithm is a webpage H, whilst the output is the

St.D of the attributes positions in the set of tags S. The algorithm commences by first

finding S, the set of tags with two or more attributes in the given webpage. The attribute

positions are collected in the the array attPositions(ai) using collectPositions(ai function.

The total variance of attributes positions, V S, is the calculated using the sequence of

an attribute positions in VattPositions(ai) for all attributes one by one. Finally the

associated value for St.D is obtained.

Table 3.2 gives the St.D values, computed using algorithm 4, for 10 webpages of

Monitoring dataset in Appendix A. This St.D values were computed before any embed-

ding of messages had taken place. From the table it can be seen that the calculated

St.D values vary significantly between the selected webpages illustrating the challenge

of identifying a suitable threshold for the purpose of detecting APS.
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Algorithm 4: Standard Deviation (St.D) calculation of a webpage attributes’
positions

1: Input: H
2: Output: St.D standard deviation of H
3: Find S The set of tags T with two attributes or more
4: VS=0
5: for each tag T ∈ S do
6: i=1
7: for each attribute ai ∈ T do
8: if notSeenBefore(ai) then
9: attPositions(ai)=collectPositions(ai)

10: m= length(attPositions(ai))
11: for each position p in attPositions(ai) do

12: av =
∑m

j=1 (pj)

m

13: V attPositions(ai) =
∑m

j=1 (pj−av)
2

m
14: end for
15: V S = V S + V attPositions(ai)
16: i=i+1
17: end if
18: end for
19: end for
20: St.D =

√
V S

Table 3.2: Standard Deviation (St.D) values calculated for 10 webpages of Monitoring
dataset

A webpage St.D before embedding

www.bbc.co.uk 3.01
www.nytimes.com 6.12
www.wikipedia.org 2.91
www.stackoverflow.com 2.41
www.sony.com 4.19
www.liverpool.ac.uk 4.43
www.ieee.org 5.84
www.webmd.com 4.83
www.microsoft.com 4.94
www.amazon.com 6.77

3.4 APS Monitoring Process

Using the above approach we can determine the attribute position St.D value for a

given WWW webpage H. By monitoring the St.D over a period of time the conjecture

is that we can identify attribute permutation steganography APS whenever unusual

St.D values are detected. This requires the establishment of a webpage steganography

detection threshold σ. The idea here is that the value for σ can be learnt by deliberately

seeding a training sequence of “snapshots” C = {s1, s2, . . . ,n } ofH with hidden messages

(using APS). In other words the monitoring commences with a “training process” during
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which the value for σ is learnt. More specifically snapshots of the webpage of interest are

collected periodically at intervals of time τ over a period of time T . For each snapshot

a message of length L is generated L ≤ MEC(H) (recall that MEC is a Maximum

Embedding Capacity as defined in Chapter 2 and the St.D before and after message

embedding is calculated. The value for σ is then calculated using the following equation:

σ = (α× St.Davbefore) + ((1− α)× St.Davafter) (3.6)

Where: (i) α is a user specified sensitivity factor of between 0 and 1 (ii) St.Davbefore is

the average St.D before message hiding and (iii) St.Davafter is the average St.D after

message hiding.

The inputs of the monitoring process are as follows:

• H: An (HTML encoded) webpage with dynamic content.

• α: A sensitivity factor, 0 < α < 1.

• T : The total training time.

• τ : The interval between webpage snapshot captures, for example every two hours.

• L: The length of the embedded message.

The actual monitoring process then comprises three steps:

1. Training Sequence Collection: Collect a series of snapshots of H with interval

τ over time period T to give the set C = {s1, s2, . . . , sn}

2. Threshold Calculation: Calculate the threshold σ as follows:

(a) For each si ∈ C compute the St.D of snapshot si, then embed a message

using some appropriate APS algorithm (in the evaluation presented later in

this chapter Shen et al. APS was used. the reason behind this is to investigate

other than Deogol APS algorithm which was used in both approaches L.Polak

and Z. Kotulski [65] and W.Jiang-feng et al. [95]).

(b) Compute the average of the St.Ds before embedding (St.Davbefore =
∑n

i=1 St.Di

n )

and the average of the St.Ds after embedding (St.Davafter =
∑n

i=1 St.Di

n );

Where n represents the number of snapshots

(c) The σ value is then calculated using equation 3.6.

3. Detecting: Compute the St.D value of each further collected instance of H and

compare it with σ; if St.D ≥ σ then the page is a stego webpage, otherwise the

webpage is clean.
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3.5 Evaluation of SD Concept

The results obtained from the evaluation of the proposed SD approach are presented in

this section. The objectives of the evaluation were as follows:

1. To confirm the conjecture that increases in the attribute position St.D of webpages

is indeed an indicator of APS regardless of the APS technique used.

2. To compare naturally occurring changes in St.D values caused by the changing

content of dynamic webpages with the changes caused by message embedding.

3. To test how different kinds of embedded messages might affect the proposed APS

detection mechanism.

4. To confirm that the attribute position St.D concept can be effectively used to

monitor webpages for APS.

The results obtained from experiments to establish the above objectives are presented

in Subsections 3.5.1 to 3.5.4 respectively.

3.5.1 Standard Deviation of HTML Files as an Indicator of APS

The experiments designed to establish that the attribute position St.D of webpages could

indeed be used to detect APS were founded on three “snapshots” of the landing page of

three well known websites: (i) Sony (ii) BBC and (iii) Wikipedia. This sample of three

webpages was selected from Monitoring dataset in Appendix A. In each case attribute

permutation steganography was used to embed hidden message using the algorithm

presented in Shen et al. [81] (as described previously in Chapter 2). Messages of different

length L were embedded from between 10% to 100% of the MEC, incrementing in steps

of 10%. The MEC for the BBC, Wikipedia, Sony pages were 70 bytes, 74 bytes and 117

bytes respectively.

The results are shown in Figure 3.1. In the figure the X-axis lists the message size as

a percentage of the MEC for each landing page, and the Y-axis the recorded St.D before

and after embedding. From the figure it can be observed that the St.D starts to increase,

with respect to the St.D for the landing page without any hidden message embedding,

as the size of the embedded message increases (obviously when the size of the embedded

message is 0% of the MEC the recorded St.D values will be the same). When the size of

the hidden message was equivalent to the MEC for each given landing page the recorded

increase in St.D equated to 13.1%, 14.6% and 21% respectively. Thus, from the above,

it was conclude that attribute position St.D can indeed be usefully employed for the

purpose of identifying attribute permutation steganography.

3.5.1.1 Standard Deviation Behavior Using a Range of APS Methods

This subsection presents the evaluation results obtained with respect to the investigation

conducted as to whether the fundamental idea of using attribute positions St.D as an
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Figure 3.1: Standard Deviation (St.D) of attribute positions with respect to messages
of different length

indicator of the presence or APS absence. The same landing pages and message length

(L) settings were used as in the case of the experiments reported on in the previous

section. Thus snapshots of the Sony, BBC and Wikipedia landing pages, and values

of L ranging 10% to 100% of the MEC incrementing in steps of 10%. APS message

embedding was conducted using both Huang et al.[45] and Deogol [80]. The results are

shown in Figure 3.2. On the left-hand side of the figure the results obtained with respect

to Huang et al. are given, and the right-hand side the results with respect to Deogol.

From Figure 3.2 it can be seen that in both cases the St.D values changed when

APS was applied and that the St.D difference increases as the hidden message length
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Figure 3.2: St.D values before and after the application of APS using: Huang et al.
(left) and Deogol (right)

increases. These results endorse the outcome from the previous set of experiments.

Supporting the conjecture that change in St.D can be usefully employed as an indicator

of APS.

3.5.2 Natural Changes in Standard Deviation vs Changes Caused by

Embedding

This Sub-section reports on the experiments conducted to compare naturally occurring

changes in St.D values, caused by the nature of the ever-changing content of dynamic

webpages, with St.D value changes caused by APS. For the experiments, Monitoring

dataset in Appendix A was used in its entirety. Recall that the dataset was constructed

using the following parameters: (i) T = one week and (ii) τ = every two hours. The

length of embedded message was L = 40% of webpage MEC. The St.D value was

calculated before and after message hiding using the APS algorithm of Shen et al.
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The results obtained with respect to a sample of eight of the Monitoring dataset in

Appendix A sequences are presented in Figure 3.3. In the Figure the X-axis gives the

index number (ID) for each snapshot in the given sequence, whilst the Y-axis gives the

recorded St.D value in each case. From the figure it can be seen that in every case

changes in the St.D values caused by message embedding, and the changes occurring

naturally, are significantly different. Thus conforming the utility of the proposed APS

detection mechanism, founded on attribute position change St.D, in the context of

monitoring dynamic webpage content.
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Figure 3.3: St.D values before (down) and after (up) message embedding for eight
selected webpages sequences from Monitoring dataset
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3.5.3 Effect of Different Types of Message Embedding

In the previous reported experiments, in each case, the same message type was embedded

(natural lowercase English text). The goal of the next series of experiments was to test

the effect of using a variety of different messages on APS detection performance using

the proposed attribute position SD mechanism. The Monitoring dataset in Appendix

A was again used, however, in this case the embedding was conducted using a variety

of different messages. In total 29 × 10 = 290 different messages were used; a mixture

of 29 natural English language messages and random messages (uppercase, lowercase,

numbers, symbols) and 10 different lengths ranging 10% to 100% of the MEC increasing

in steps of 10%. The results are presented in Table 3.3. In the table the “mean” row

gives the webpage averaged St.Ds after embedding, whilst the Sdeviation row gives the

standard deviation value for averaged St.Ds after embedding at each incrementing of

the hidden message. From the results presented in the table it can clearly be seen that

the nature of the hidden message does not have a adverse effect on APS detection.

Table 3.3: Before and after averaged St.D values using a variety of embedded mes-
sages

Length of embedded messages relative to a webpage MEC

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
mean 6.05 6.14 6.34 6.52 6.65 6.81 6.83 6.91 6.99 7.16
Sdeviation 0.04 0.06 0.10 0.12 0.11 0.12 0.12 0.16 0.15 0.17

3.5.4 Evaluation of the Monitoring Process

The final set of experiments reported on in this chapter was used to evaluate the usage of

the proposed SD mechanism in the context of webpage monitoring. This is the situation

where we wish to continuously check dynamic webpage content for the potential of APS.

Recall that the idea here was to first learn an appropriate detection threshold value σ.

The Monitoring dataset in Appendix A was again used but with the first 30 allocated

to training and the last 10 to testing. Message embedding, for evaluation purposes,

was conducted using Shen et al. APS. The embedded message was a natural English

language message. Once training was completed the effectiveness and sensitivity of the

monitoring process to both the length of the embedded message L and α could be tested.

The testing was conducted by embedding hidden English language messages using

APS, in the test set. Experiments were again conducted using different values for L

from L = 10% and increasing to L = 100% in steps of 10%.

Table 3.4 shows the values of St.D before (St.Db) and after (St.Da) embedding a

message of length 40% of a webpage MEC. Table 3.4 also shows how incrementing α

values from 0.1 to 0.9 will reduce the value of detection threshold σ for the webpages of

the Monitoring dataset in Appendix A.
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Table 3.4: Reducing APS detection threshold values σ when α increases

A webpage St.Db St.Da α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

www.bbc.co.uk 3.030 3.700 3.633 3.566 3.499 3.432 3.365 3.298 3.231 3.164 3.097
www.amazon.com 6.800 7.650 7.565 7.480 7.395 7.310 7.225 7.140 7.055 6.970 6.885
www.stackoverflow.com 2.400 3.400 3.300 3.200 3.100 3.000 2.900 2.800 2.700 2.600 2.500
www.ieee.org 5.840 6.500 6.434 6.368 6.302 6.236 6.170 6.104 6.038 5.972 5.906
www.wbmed.com 4.800 5.800 5.700 5.600 5.500 5.400 5.300 5.200 5.100 5.000 4.900
www.microsoft.com 4.900 5.600 5.530 5.460 5.390 5.320 5.250 5.180 5.110 5.040 4.970
www.liverpool.ac.uk 4.420 4.460 4.456 4.452 4.448 4.444 4.440 4.436 4.432 4.428 4.424
www.wikipedia.org 3.820 2.910 3.729 3.638 3.547 3.456 3.365 3.274 3.183 3.090 3.001
www.sony.com 5.300 4.100 5.180 5.060 4.940 4.820 4.700 4.580 4.460 4.340 4.220
www.ntimes 7.100 6.200 7.010 6.920 6.830 6.740 6.650 6.650 6.470 6.380 6.290

Table 3.5 shows the obtained results for one example of these webpages included,

namely the IEEE webpage. In Table 3.5 the testing results for 10 webpages of IEEE.org

using different obtained σ are presented. The table also shows that α values increases

from 0.1 to 0.9. The selected testing set was half seeded with APS with hidden messages

of length between 10% to 50% of a webpage MEC. From the table it can be noted that

when α = 0.1 and L = 40% the computed σ is 6.434 this is also shown in Table 3.4. Using

this thresold for testing faild to identify webpages with ID(6,7,8) as stego-webpages so

that False Negatives FN=3. When α = 0.9 the computed σ is 5.906 identifiedy webpages

with ID(2,3) as stego webpages while they are not so that False Positives FP=2.
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Table 3.5: False Positives FP and False Negatives FN for 10 tested webpages when
different values of σ and L = 40% of a webpage MEC

These results in Table 3.5 are also illustrated in Figure 3.4. The Figure shows how

the computed σ for L = 40% of a webpage MEC fails to identify stego-webpages with

hidden messages of length less than L (FN goes high). Also using high values of α will

cause identifying clean webpages as stego-webpages (FP goes high).
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Again the testing is repeated but this time for a hidden message length of L=60%.

Table 3.6 shows the obtained results for 10 webpages of IEEE.org using different σ.

The table also shows that α values increases from 0.1 to 0.9. Again the same previous

selected testing set was used. From the table it can be noted that how increasing of

L produces high σ which impacts the detection process (FN metric) when α is fixed.

Figure 3.5 depicts also this conclusion.
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Table 3.6: False Positives FP and False Negatives FN for 10 tested webpages when
different values of σ and L = 60% of a webpage MEC
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Figure 3.4: Derived detection threshold σ using different values for α when L = 40%
of the webpage MEC

3.6 Summary

In this chapter the proposed SD approach for detecting APS has been presented. The

approach is directed at the monitoring of dynamic webpages for APS. The fundamental
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idea was that a change in the standard deviation (St.D) value for a given webpage would

be an indicator of the existence of APS. More specifically that if the St.D value increased

above some specified threshold σ, APS could be said to exist. A particular challenge was

determining what the value for the σ threshold, to facilitate APS detection, should be; a

“one-size-fits-all threshold value was found to be inappropriate. The idea was to identify

a mechanism whereby the σ value for a particular WWW page could be learnt. This

process was fully described together with the evaluation conducted to determine whether

the conjecture that the monitoring St.D values can be used to detect the presence of

APS was correct or not. The reported evaluation results indicated that the conjecture

was correct; the Standard Deviation of a webpage could indeed be usefully employed

for the detection of APS. The next chapter presents the proposed APCC approach for

APS detection; an alternative to the SD mechanism present in this chapter for use in

the non-monitoring context.



Chapter 4

APS Detection Using Attribute

Position Changes Count

4.1 Introduction

In this chapter the proposed Attribute Position Changes Count (APCC) APS detec-

tion mechanism is presented. APCC is directed at detecting APS in the static context

(whereas the SD approach presented in the previous chapter was directed at dynamic

context). The APCC mechanism adopts a classification approach to APS detection.

The main idea is to train a classification model which can then be used to differentiate

between WWW pages as being either “stego pages” or “normal pages”. This approach

is inspired by the work of W.Jian-feng et al. in [95] who also proposed a classification

based approach to APS detection in the static context. In [95] a collection of webpages

were used for evaluation purposes with APS applied using Deogol [80]. The classification

model used was a Support Vector Machines (SVM) model.

Classification is a well understood branch of Machine learning [9], the challenge is

how best to transform the application focused data into a format appropriate for a

classifier generation. Most generators take, as input, a feature vector representation of

some sort. In the context of APS detection the requirement is thus to represent attribute

data in a feature vector format. The feature vector used in by W.Jian-feng et al. in

[95] comprised: (i) distance between the mean of the attribute positions in a benchmark

webpage to the mean of the same attribute positions in a suspicious webpage and (ii) the

attribute positions variance. However, it is argued here that using average position values

ignores the spread of position changes, which may in turn be important in the context

of APS detection; in other words important information may be lost when using average

values. Instead, the proposed APCC mechanism, as the name suggests, uses the concept

of attribute position changes count. The idea is motivated by the observation that APS

entails frequent attribute position changes which can thus be used to distinguish APS

WWW pages from non-APS WWW pages. The APCC metric is fully described later

49
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in this chapter together with how it was incorporated into the APCC APS detection

approach.

The proposed approach was evaluated using the Non-Monitoring dataset in Appendix

A and three different classifier generation models. The dataset was seeded using the three

most commonly referenced APS approaches, namely: (i) Deogol [80], (ii) Huang et al.

[45] and (iii) Shen et al. [81] (see Chapter 2). As a consequence three variations of the

dataset were produced labeled using the name of the APS algorithm used for message

hiding: (i) Deogol, (ii) Huang et al. and (iii) Shen et al. The three classification

paradigms used were: (i) Neural Networks, (ii) SVM and (iii) Naive Bayes. In each case

the operation of the proposed APCC approach was compared with three alternative

APS detection algorithms: (i) L.Polak and Z. Kotulski [65] , (ii) Sedeeq et al. [79] (see

Chapter 2) and (iii) W.Jian-feng et al. [95].

The remainder of this chapter is organised as follows: Section 4.2 demonstrates the

APS effect on the attribute positions in an HTML file and how this can be utilized

to introduce APCC metric. Section 4.3 presents the proposed classification model for

APS steganalysis using the APCC approach. Section 4.4 then presents the evaluation

of proposed APCC approach. Finally Section 4.5 gives a summary of the chapter.

4.2 The Attribute Position Change Count Concept

The concept of APS was introduced in earlier chapters where it was also noted that in

normal circumstances (no steganography present) attributes within HTML tags tend to

feature a consistent ordering, but once APS has taken place a consistent ordering is no

longer the case. To formalize the Attribute Position Change Count (APCC) concept we

allocate a position number to each attribute within a tag, the first position is given the

number 0, the second position 1 and so on. Thus, given an attribute ai belonging to

the set of attributes A featured in a HTML page this will have a set positions Pai =

{p1, p2, . . . } associated with it. In the absence of APS we would expect the values in P

to be more constant. Thus it is conjectured that by counting the number of attribute

position changes we have an indicator of the presence (or otherwise) of APS. We calculate

the position change count for an attribute as follows by comparing consecutive positions;

if there is a change in position we increment the change count for that attribute by 1.

Thus, given two consecutive positions for an attribute, pj and pj+1, we increment the

position change count so far by 1 if pj 6= pj+1.

The APCC concept is illustrated in Table 4.1 with respect to a fictitious website, and

two attributes: (i) content1 and (ii) rel2. The second column in Table 4.1 shows the

positions of the attributes in the HTML document that might exist if no APS has taken

place. Note that the first attribute features 9 times and the second 15 times (hence

1The content attribute is used with the meta HTML tag to provide additional information that can
be used by, for example, www browsers.

2The rel attribute specifies the relationship between the current document and the linked document
in a link HTM tag
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Table 4.1: Attribute position changes before and after APS

Attribute Att. pos. Apcc Att. pos. Apcc

before APS before APS after APS after APS

content 111111111 0 101001010 7

rel 000000000001111 1 101000110104242 11

9 and 15 positions respectively). The third column then lists the associated position

changes count. The forth column shows the positions of the attributes in the HTML

document that might exist if APS has taken place, whilst the fifth column shows the

associated position changes count. Note that a clear distinction can be observed before

and after APS (at least in this example).

Table 4.2 presents the attribute position changes count for the first three attributes in

ten selected webpages before and after ASP embedding.

Table 4.2: First three APCC values in selected webpages before and after APS em-
bedding

Webpage
Apcc before Apcc after Apcc after Apcc after
embedding applying applying applying

Huang et al. [45]) Deogol [80] Shen et al. [81]

www.wikipedia.org 2, 2, 6 12, 20, 15 14, 25, 16 17, 12, 11

www.stackoverflow.com 2, 12, 13 14, 14, 16 18, 16, 23 20, 8, 23

www.ieee.com 9, 2, 0 18, 15, 7 15, 15, 6 19, 18, 10

www.sony.com 4, 4, 3 14, 5, 1 1, 5, 15 16, 13, 17

www.bbc.com 14, 6, 3 12, 15, 19 19, 15, 16 17, 12, 11

www.dhl.com 7, 7, 7 9, 6, 11 7, 7, 13 13, 20, 18

www.linkedin.com 14, 4, 0 12, 3, 15 17, 8, 15 14, 9, 16

www.microsoft.com 4, 6, 16 5, 20, 10 5, 21, 10 9, 11, 17

www.sears.com 11, 4, 0 16, 9, 0 7, 16, 0 13, 18, 16

www.ox.ac.uk 7, 6, 14 10, 19, 18 11, 19, 16 16, 8, 19

The webpages were selected from the Non-Monitoring dataset in Appendix A used for

the evaluation of the proposed APCC approach discussed later in this chapter. A short

English language message of 17 characters was embedded in each case using the selected

APS algorithms: Huang et al., Deogol and Shen et al. Column 2 in the table gives

the APCC in each case before embedding, whilst columns 3, 4 and 5 give the APCC

values after embedding using each APS algorithm. From the Table it can be clearly

seen, in most cases, that the APCC values after embedding a message are higher than

the value before embedding. This idea is thus to use the APCC concept as a mechanism
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for detecting the presence (or otherwise) of APS. From the table it can also be noted

that in some cases the APCC value decreased after embedding had taken place, this

was attributed to the different implementations of the individual attribute permutation

APS algorithms that were used.

4.3 Proposed APCC Classification Approach for APS Ste-

ganalysis

Given the above, the idea is to use attribute position changes count information to

generate feature vectors and, given an appropriately defined training set featuring both

stego and non-stego WWW pages, to train a classification model for APS detection.

There are many algorithms available that can be used to build classification models

(also known as prediction models). Common examples include: (i) Neural Networks,

(ii) Support Vector Machines and (iii) Naive Bayes. What these algorithms have in

common is that they take as input a set of feature vectors of length n generated from an

n-dimensional feature space. In our case the feature space represents the set of attributes

A that we wish to consider. Each dimension represents an attribute whose values range

from 0 to some maximum number of possible position changes count.

The required training data comprises an n × m matrix where n is the number of

webpages in the training set and m is the number of attributes to be considered. The

value associated with each attribute is the position changes count generated as described

above. Before presenting the proposed algorithm used for counting the attribute position

changes, the following definitions should be noted:

• H: An input webpage.

• S: A set of tags T in H that have two attributes or more, S = {T1, T2, . . . }.

• FV : The generated feature vector of all tag attribute position changes count in S.

• attPositions(ai): The array of positions in S for attribute ai, attPositions(ai)

=[p1, p2, . . . pm].

• apcc(ai): The number of position changes for an attribute (ai), incremented when

pj 6= pj+1.

The pseudo code for generating APCC feature vector is presented in Algorithm 5. The

input to the algorithm is a WWW page H. The output is FV , a feature vector recording

the number of attributes position changes with respect to all the tags within S, the set

of tags with two attributes or more. The algorithm commences by finding S (line 3).

Next (lines 5 to 9) the algorithm loops through each tag T in S, and each attribute

ai in each tag, and records the attribute ai positions in attPositions(ai) array using

collectPositions(ai) function. Next (lines 10 to 16) the algorithm loops through each

attPositions(ai) array to calculate the attribute ai position changes count apcc according
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to the positions value associated with it. Each calculated apcc value is stored in FV

to generate the desired feature vector for the webpage. Note also that for the training

data each feature vector has a class label associated with it: class 1 represents a stego

webpage while class 2 represents a normal webpage.

Algorithm 5: APCC feature vector generation algorithm

1: Input: H
2: Output: FV a feature vector holding position changes count for attributes in H
3: Find S The set of tags T with two attributes or more
4: k=0
5: for each tag T ∈ S do
6: i=1
7: for each attribute ai ∈ T do
8: if notSeenBefore(ai) then
9: apcc=0

10: attPositions(ai)=collectPositions(ai)
11: j=1
12: for each position pj in attPositions(ai) do
13: if pj 6= pj+1 then
14: apcc = apcc+ 1
15: j=j+1
16: end if
17: end for
18: FV [k] = apcc
19: k = k + 1
20: end if
21: i = i+ 1
22: end for
23: end for

4.4 Evaluation of Proposed APCC Approach

To evaluate the proposed APCC approach the Non-Monitoring dataset in Appendix

A was used. The conjectured advantage of the proposed approach was that it would

operate well regardless of how the APS was conducted. To demonstrate this the three

most commonly used and referenced APS algorithms in literature, identified in Chapter

2, were again used to generate three evaluation datasets: (i) Deogol, (ii) Huang and (iii)

Shen. In each case half of the selected WWW pages were seeded using APS. In this case

the hidden message was a natural text message of 35 characters in length.

For the purpose of incorporating APS five tag attributes were selected. Consequently

the feature vectors had five “slots” each holding a position changes count. Thus the

entire data matrix in each case measured 150 × 5 (150 because this was the number of

webpages included in the non-monitoring dataset).

For the evaluation Ten-fold Cross Validation (TCV) was used throughout whereby

the input data was divided into 10 folds and the classifier generation process conducted
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and tested 10 times, each time using a different fold for the testing. The evaluation

metrics used were those recommended in [23], namely:

• Accuracy (Acc); the percentage of correctly classified samples.

• The Area Under the receiver operator characteristic Curve (AUC); a measure of

the area under the graphical plot of the true positives rate versus the false positives

rate.

The objectives of the evaluation were as follows:

1. To analyze the effectiveness of the proposed APCC mechanism in terms of a num-

ber of common APS algorithms and a number of classification model generators.

2. To determine the effect of the nature of the embedded message type, and its length,

on the classification models.

3. To determine whether the results obtained, with respect to the experiments con-

ducted to address the previous objective, were statistically significant or not.

4. To compare the operation of the proposed approach with alternative monitoring

approaches proposed in the literature, namely the approaches of L.Polak and Z.

Kotulski [65] and Sedeeq et al. [79] (presented in Chapter 3) and with alternative

non-monitoring approaches proposed in the literature, namely that of W.Jian-feng

et al.[95].

The conducted evaluation with respect to each objective is considered in further details

in Sub-sections 4.4.1 to 4.4.4 below.

4.4.1 Effectiveness of the APCC Approach

For the first of the above objectives three classifier generation models were considered,

as implemented in the Weka machine learning environment [32]: (i) Multi-Layer Per-

ceptron (MLP) Neural Network, (ii) SVM and (iii) Naive Bayes NB. Default settings

for the MLP and SVM classifiers in WEKA software were used and as follows: for MLP

classifier the parameters were as follows: one hidden layer, learning rate=0.3, momen-

tum=0.2 and number of epoches=500, while SVM classifier parameters were: complexity

parameter c=1 and tolerance parameter=0.001. Note that SVM was used because this

was the classification model used with respect to the APS detection approach proposed

by W.Jian-feng et al. [95]. Recall that the significance of the later is that, to the best

knowledge of the author, this is the only other previous work that adopts a classification

model approach to APS detection; however, as already noted, using a very different

feature vector representation. The results are summarized in Tables 4.3 and 4.4 (best

results highlighted in bold font). Table 4.3 shows the results obtained in terms of av-

erage Accuracy (Acc) while Table 4.4 shows the results obtained in terms of the AUC
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measure. The averaged standard deviation of both Acc and AUC for each fold of 10-

TCV is in parentheses. From the tables it can be seen that the proposed APCC feature

vector representation can be successfully used to train classifiers to distinguish between

normal webpages and stego webpages, regardless of the adopted APS algorithm. The

best performance was obtained with respect to the APS algorithm of Shen et al. From

the tables it can also be seen that there is little difference in operation between the

selected classifier generators.

Table 4.3: Average accuracy (Acc) using APCC (best results highlighted in bold font)

APS Algorithm MLP SVM NB

Deogol [80] 93.39% 90.71% 90.89%
(9.71) (10.54) (10.46)

Haung et al. [45] 90.36% 93.21% 88.75%
(11.17) (7.18) (13.10)

Shen et al. [81] 93.57% 96.07% 93.57%
(10.75) (6.34) (10.75)

Table 4.4: Average AUC using APCC (best results highlighted in bold font)

APS Algorithm MLP SVM NB

Deogol [80] 0.97 0.90 0.98
(0.06) (0.11) (0.05)

Haung et al. [45] 0.94 0.91 0.96
(0.11) (0.08) (0.07)

Shen et al. [81] 0.99 0.95 0.99
(0.03) (0.06) (0.03)

4.4.2 The Effect of Different Message Type and Length Embedding

To investigate the effect of the nature of the hidden message, and its length, on the

APS detection process two sets of experiments were conducted, the first using English

language embedded messages and the second using random messages (a mixture of

uppercase, lowercase letters and numbers). In each case the length of the embedded

message was varied ranging from between 10% to 100% of Maximum Embedding Ca-

pacity (MEC) incrementing in steps of 10%, although only results for lengths of 10% to

50% of the MEC are presented here because beyond this no change in the results was

detected. At each incrementing step ten different hidden messages were considered. The

embedding algorithms used, as in the case of earlier experiments, were: (i) Deogol, (ii)

Haung et al. and (iii) Shen et al.

The same classifier generators as considered with respect to the previously reported

experiment were also used: (i) Multi-Layer Perceptron (MLP) Neural Network, (ii) SVM

and (iii) Naive Bayes NB. For each APS algorithm two datasets were generated, one using
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natural English language text embedding and one using random text embedding. Each

dataset comprised 5 sub-datasets each containing message of different length as it is

shown in Table 4.5 column 1 in Sub-section 4.4.3.

The results obtained, using MLP, SVM and NB, are summarized in Figures 4.1, 4.2

and 4.3 respectively. In each case the graphs on the left were generated using English

language texts (the first set of experiments) and the graphs on the right using random

text (the second set of experiments). As in the case of the graphs used to report the

outcomes of the experiments reported on earlier in this chapter, the X-axis represents

the message length (expressed as a percentage of MEC) and the Y-axis represents the

accuracy and AUC. Inspection of the figures firstly indicates that the results were con-

sistent with the results presented previously in Tables 4.3 and 4.4. More specifically the

results confirmed the following:

• The proposed APCC approach can successfully be used to train classifiers to dis-

tinguish between stego and non-stego webpages, regardless of the APS algorithm

used.

• The nature of the embedded messages, random or otherwise, has no significant

effect on the performance of the classifiers.

• With respect to the length of the embedded message this has a significant impact

on classifier performance when the APS algorithm of Shen et al. is used. This is

considered as an advantage of using the APS algorithm of Shen et al. because it

it is hard to be detected with short messages.

4.4.3 Statistical Evaluation

This subsection reports on the experiments conducted to determine whether the ob-

tained results presented in Figures 4.1, 4.2 and 4.3 were indeed statistically significant,

and not purely a matter of chance. There are several available statistical tests avail-

able to compare the operation of classifiers. Demsar, in his comprehensive study [23]

concluded that non-parametric statistical tests are the most appropriate for comparing

classification algorithms over multiple datasets.

With respect to the work presented in this sub-section the Friedman non-parametric

statistical test was adopted. In this test each classifiers performance, with respect to

each dataset, is ranked. The best performing classifier is assigned a rank (r) of 1, the

second is a rank of r = 2 and so. The Friedman test statistic is calculated using Equation

4.1[90] [26].

X2
F =

12N

K(K + 1)

[
k∑
j=1

Rj −
K(K + 1)2

4

]
(4.1)

Where: (i) Rj = 1
N

∑N
i=1 ri is the average rank of the classifier over the used datasets,

(ii) N is the number of used datasets, (iii) K is the number of classifiers and (vi) ri is
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Figure 4.1: Performance of MLP classifier for detecting APS. Left: natural English
language messages embedding. Right: random messages embedding
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Figure 4.2: Performance of SVM classifier for detecting APS. Left: natural English
language messages embedding. Right: random messages embedding
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Figure 4.3: Performance of NB classifier for detecting APS. Left: natural English
language messages embedding. Right: random messages embedding
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the rank of the jth classifier with respect to the ith dataset. The Friedman statistic X2
F

is distributed according to the Chi-Squared distribution with K − 1 degrees of freedom

(df). The test is used to evaluate classifiers performance so that the null-hypothesis,

H0, that there is no significant difference between classifiers can be accepted or rejected.

The null hypothesis is rejected if the X2
F value is greater than the “null distribution”.

This is a pre-determined distribution with a most commonly used cut-off (significance

level) value of α = 0.05 [22, 29].

Also, for null hypothesis testing a p-value is used to weigh the strength of the evidence

against the null hypothesis. Therefore low values of p ≤ α provide strong evidence

against the null hypothesis, in which case H0 can be rejected; while high values of p > α

indicate weak evidence against the null hypothesis, in which case H0 is accepted. When

H0 is rejected an alternative hypothesis H1, that there is a significant difference between

classifiers, is established and a post-hoc test is applied to determine which classifier is

significantly better than the others.

Several post-hoc tests can be adopted for this purpose [23], however the Nemenyi

post-hoc test was adopted. The Nemenyi test holds that there is a statistically signifi-

cance difference between the performance of classifiers if the difference between classifier

average ranks is equal to or greater than a “Critical Difference” (CD) between them.

The critical difference is computed using the following equation [90] [26].

CD = qα

√
K(K + 1)

6N
(4.2)

Where the value for critical value qα is taken from the table given in Figure 4.4. This

table shows the critical value qα at both significance levels α = 0.05 and α = 0.01

according to the number of used classifiers.

For the purpose of the significance testing the AUC results from the experiments

reported in Sub-section 4.4.2 were used (see also Figures 4.1, 4.2 and 4.3). The resulting

Friedman test outcomes are given in Table 4.5 which gives the Friedman test statistics

when embedding both natural English and random messages using the three considered

APS techniques. Column 1 in Table 4.5 lists the datasets used, recall that each dataset

consisted of five sub-datasets as noted in column 2. The APS algorithm used to embed

the messages and the nature of the embedded messages are shown in columns 3 and 4

respectively. The previously obtained AUC values, using MLP, SVM and NB, are given

in columns 5, 6 and 7. In each case the Chi-Square Friedman test statistics and the

associated p-values are given in columns 7 and 8 respectively.

From Table 4.5 it can be seen that all p-values are less than or equal to the signifi-

cance level of α = 0.05; therefore the null-hypothesis (H0), that there is no significant

difference in the operation of the classifiers, can be rejected. It can be also noted from

Table 4.5 that for all generated datasets the highest average rank was obtained using

the NB classifier, followed by MLP and then SVM. Then, according to Friedman test

the rank given to NB is 1, MLP is 2 and SVM is 3. Since as mentioned that (H0) can

be rejected accordingly the Nemenyi post-hoc test was applied. The critical difference
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Figure 4.4: Critical values for Nemenyi test [23]

(CD) between the classifiers was calculated using Equation 4.2. Applying this equation

with the following parameters: (K = 3 the number of classifiers, N = 5 the number of

sub-datasets and q = 2.343 from Figure 4.4) will give CD = 1.4.

Table 4.5: Friedman test results using AUC values

Main Sub-Data APS Embedded MLP SVM NB Chi-Sequare p-value
Datasets Sets Algorithm Messages AUC

8.316 0.016

huangNatural

Ds10%

Huang et.al Natural English text

0.78 0.77 0.78
Ds20% 0.82 0.80 0.83
Ds30% 0.87 0.79 0.90
Ds40% 0.81 0.80 0.90
Ds50% 0.87 0.78 0.82

Average Rank 0.83 0.78 0.84

huangRandom

Ds10%

Huang et.al Random text

0.82 0.69 0.72

6.000 0.050
Ds20% 0.82 0.81 0.88
Ds30% 0.78 0.78 0.87
Ds40% 0.83 0.82 0.87
Ds50% 0.76 0.81 0.92

Average Rank 0.80 0.78 0.85

deogolNatural

Ds10%

Deogol Natural English text

0.85 0.76 0.80

6.632 0.036
Ds20% 0.82 0.82 0.90
Ds30% 0.97 0.76 0.93
Ds40% 0.92 0.80 0.93
Ds50% 0.92 0.80 0.95

Average Rank 0.89 0.78 0.90

deogolRandom

Ds10%

Deogol Random text

0.85 0.76 0.80

6.000 0.050
Ds20% 0.82 0.82 0.90
Ds30% 0.87 0.79 0.92
Ds40% 0.79 0.82 0.91
Ds50% 0.83 0.81 0.92

Average Rank 0.83 0.80 0.89

shenNatural

Ds10%

Shen et. al Natural English text

0.73 0.75 0.78

6.706 0.035
Ds20% 0.92 0.86 0.92
Ds30% 0.98 0.92 0.98
Ds40% 0.95 0.94 0.98
Ds50% 1.00 0.94 1.00

Average Rank 0.91 0.88 0.93

shenRandom

Ds10%

Shen et.al Random text

0.68 0.67 0.78

9.000 0.011
Ds20% 0.85 0.85 0.98
Ds30% 0.97 0.88 1.00
Ds40% 0.93 0.92 0.95
Ds50% 1.00 0.92 1.00

Average Rank 0.88 0.84 0.94

A visualization of Nemenyi test for results in Table 4.5 is given in Figure 4.5. The

figure displays the ranked classifiers along with the critical difference. From the figure it

can be clearly seen that NB is the best performing classifier, however this is statistically

significant only with respect to SVM and not significant to MLP (the CD tails overlap).
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Figure 4.5: Visualization of Nemenyi test results from Table 4.5

4.4.4 Comparisons with Other Detection Approaches

With respect to the fourth objective, comparisons with the operation of alternative APS

detection mechanisms in the context of the dynamic (monitoring) context with respect

to the operation of: (i) L.Polak and Z. Kotulski [65] and (ii) Sedeeq et al. [79] (details in

Chapter 3) and with the operation of the approach of W.Jian-feng et al. [95] in the static

(non-monitoring) context were conducted. The results are presented and discussed in

this sub-section. The Non-Monitoring dataset in Appendix A was used as before. For

each APS algorithm half of the dataset was seeded with hidden messages. In the case of

L.Polak and Z. Kotulski [65], the detection method was adapted so that feature vectors

were generated comprised of W values. Recall that W is the ratio of HTML attribute

pairs that occurs in different orderings from the total number of HTML attribute pairings

(see Chapter 2). Each webpage was thus represented by a single statistical feature W

calculated as described in Chapter 2. In the case of Sedeeq et al.[79], the detection

method was adapted so that feature vectors were generated comprised of the standard

deviation St.D values as described in Chapter 3. This resulted in each webpage being

represented by one feature, the standard deviation of attribute positions.

With respect to the approach of W.Jian-feng et al. [95], this detection approach, as

described in Chapter 2, adopted a classification model to classify single webpage snap-

shots as either clean or stego webpages in the non-monitoring context. Recall that the

distinction between the monitoring and non-monitoring context is that in the monitor-

ing context sequence of webpage snapshots are considered while in the non-monitoring

context single webpage snapshots are considered. For comparison with W.Jian-feng et

al. feature vectors were generated in the same manner as described in Chapter 2 using

two statistics: (i) the distance between the attribute mean position benchmark and the

sample attribute mean position of the webpage in question and (ii) the variance of the
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Table 4.6: Operation of L.Polak and Z. Kotulski [65] and (ii) Sedeeq et al. [79]
without classifiers

APS detection approach
Deogol Huang et al. Shen et al.

[80] [45] [81]
Acc AUC Acc AUC Acc AUC

L.Polak and Z. Kotulski [65] 75.00% 0.74 51.00% 0.51 56.00% 0.56

Sedeeq et al. [79] 81.00% 0.81 51.00% 0.50 56.00% 0.56

attribute positions. Note that with respect to the reimplementation of the detection ap-

proach in [95] the same three parameters for attributes selection were used as mentioned

in Chapter 2: (i) the number of attributes to be considered (BA), (ii) the number of

attribute appearances in terms of mean distance (TD) and (iii) the number of attribute

appearance in terms of variance (TV). The values used for these parameters were those

recommended in [95]: (i) BA = 3, (ii) TD = 3 and (iii) TV = 3.

Two experiments were conducted the first experiment was to investigate the opera-

tion of alternative APS detection mechanisms (i) L.Polak and Z. Kotulski [65] and (ii)

Sedeeq et al. [79] (details in Chapter 3) without using the classifiers and the results are

shown in Table 4.6. The used detection threshold to distinguish between clean webpages

and stego-webpges is computed using the average of the (St.Ds) and (Ws) of the stego

webpages. The Table shows that the proposed approach of Sedeeq et al. (Chapter 3)

performed better than the approach of L.Polak and Z. Kotulski in terms of detection

accuracy. Both detection approaches performed poorly in terms of AUC metric.

The second experiment was conducted to compare the operation of APCC with the

other detection approaches L.Polak and Z. Kotulski [65], Sedeeq et al. [79] and W.Jian-

feng et al.[95], also to investigate the operation of both approaches in L.Polak and Z.

Kotulski [65], Sedeeq et al. using the classifiers. For the evaluation, the three APS

algorithms considered previously (Deogol, Huang et al. and Shen et al.) and the three

classifier generation paradigms considered previously (Neural Network MLP, SVM and

Naive Bayes NB) were again used. Thus nine different combinations were considered.

The results are presented in Table 4.7.

Table 4.7: Comparison of APCC results with other detection approaches (best results
highlighted in bold font)

Classifier Detection Approach in APS Algorithm
Deogol Huang et al. Shen et al.

[80] [45] [81]
Acc AUC Acc AUC Acc AUC

MLP

L. Polak and Z.Kotulski [65] 74.64% 0.78 47.32% 0.48 44.46% 0.33
Sedeeq et al.[79] 75.36% 0.88 68.10% 0.84 61.37% 0.65
W. Jian-feng et al. [95] 86.61% 0.93 78.93% 0.91 77.32% 0.88
APCC 93.39% 0.97 90.36% 0.94 93.57% 0.99

SVM

L.Polak and Z.Kotulski [65] 61.96% 0.65 48.57% 0.50 47.32% 0.46
Sedeeq et al. [79] 76.79% 0.77 74.70% 0.74 58.10% 0.59
W. Jian-feng et al.[95] 88.04% 0.88 81.43% 0.82 75.54% 0.75
APCC 90.71% 0.90 93.21% 0.91 96.07% 0.95

NB

L.Polak and Z.Kotulski [65] 70.63% 0.75 51.43% 0.47 51.61% 0.53
Sedeeq et al. [79] 78.04% 0.89 74.70% 0.84 61.01% 0.65
W. Jian-feng et al.[95] 91.96% 0.99 89.64% 0.91 79.82% 0.89
APCC 90.89% 0.98 88.75% 0.96 93.57% 0.99
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Inspection of Table 4.7 indicates that, with respect to accuracy Acc, the APCC

approach produced best results in seven of nine cases; and, with respect to AUC, the

best result in eight of the nine cases. It is interesting to note that the proposed approach

of Sedeeq et al. (Chapter 3) performed better than the approach of L.Polak and Z.

Kotulski (however both detection approaches performed better without classifiers see

Table 4.6. From Table 4.7 it is also interesting to note that, although the authors

of the W.Jian-feng et al. detection approach considered only SVM classification [95],

their detection approach produced a better performance (in some cases better than the

proposed APCC algorithm) when Naive Bayes classification was applied.

4.5 Summary

In this chapter the Attribute Position Changes Count (APCC) APS detection approach

has been presented. This approach offers the dual advantages that: (i) it serves to

capture more detail concerning APS than methods that use average statistical values

and (ii) it can be readily used to generate feature vectors with which to train an APS

classification model. The evaluation was conducted by considering three alternative APS

methods and three classifier generation paradigms (thus three-by-three combinations).

Comparisons were presented between the proposed APCC approach and two alternative

APS detection approaches in the monitoring context, and between the proposed APCC

approach and an alternative APS detection approach in the non-monitoring context. In

each case the proposed APCC APS detection approach produced the best results, with

respect to accuracy (Acc.) and AUC, in the majority of cases thus indicating the viability

of the proposed approach. The next chapter presents the Detect Invisible Characters

(DIC) detection approach for Invisible Characters Steganography (ICS) detection.



Chapter 5

A Prediction Model for Invisible

Characters Detection

5.1 Introduction

In Chapters 3 and 4 the proposed SD and APCC algorithms were presented, both

were directed at Attribute Permutation Steganography (APS). This chapter considers

a different form of HTML steganography, Invisible Characters Steganography (ICS) or

Open Space Steganography (OSS) both introduced in Chapter 2. More specifically this

chapter presents the Detect Invisible Characters (DIC) detection approach. The mode

of operation of this approach is similar to the APCC non-monitoring approach presented

in the previous chapter. The idea is to build a classifier that uses frequency distribution

of continuous sequences (segments) of white space characters, of different lengths, to

distinguish between normal webpages and stego webpages.

Recall from Chapter 2 that HTML browsers ignore space characters when rendering

webpages. ICS utilizes this feature of HTML browsers for message (data) hiding. The

proposed DIC approach, presented in this chapter, is based on an idea first suggested

in Sui and Luo [68], namely that the embedding of a message using white space char-

acters will affect the frequency distributions of continuous white space characters used

in sequences; an observation that holds regardless of the adopted ICS method used to

hide data. The main challenge of ICS detection in WWW pages is the large number of

white space characters that will normally exists, regardless of whether embedding has

taken place or not.

Two previously proposed alternative ICS detection approaches, that of Sui and Luo

[68] and Huang et al.[43] were described in Chapter 2. Both approaches used probabilistic

models to identify HTML ICS. Both were used for comparison purposes with respect to

the evaluation of the proposed DIC approach (reported on later in this chapter).

As also noted previously in Chapter 2, there are several steganography tools that

can be used to hide messages in HTML files using ICS. Of these wbStego4open and

SNOW are freely available for download and hence were used in the context of the

65
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evaluation presented later in this chapter. SNOW utilizes end-of-line spacing to hide

data, whilst wbStego4open makes use of both inter-word spacing and inter-sentence-

spacing to embed data. Unlike SNOW, the wbStego4open tool also checks that the

cover file is large enough to accommodate the desired hidden message.

The proposed DIC approach used the Non-Monitoring dataset in Appendix A to

generate two WWW datasets. Two evaluation datasets were derived from this dataset,

the first seeded with hidden messages using wbStego4open and the second seeded with

hidden messages using SNOW. These two datasets were used to evaluate the proposed

DIC approach detailed later in this chapter. As in the case of the APCC approach

described in the foregoing chapter, the operation of the proposed DIC approach was

also considered in the context of three different classifier generation models: (i) Neural

Networks, (ii) SVM and (iii) Naive Bayes with the same settings in WEKA software

(for MLP classifier the parameters were as follows: one hidden layer, learning rate=0.3,

momentum=0.2 and number of epoches=500, while SVM classifier parameters were:

complexity parameter c=1 and tolerance parameter=0.001).

The rest of this chapter is organized as follows: Section 5.2 presents an analysis of

the alternative ICS detection approaches considered later in this chapter with respect

to the evaluation of the DIC approach. Section 5.3 provides a full description of the

idea behind the DIC method. Section 5.4 then presents the evaluation of the proposed

approach. Finally Section 5.5 concludes the chapter with a brief summary.

5.2 Analysis of Existing Methods

As noted in Chapter 2, previous work on ICS detection can be found in Sui and Luo [68]

and Huang et al. [43]. The work presented in this section commences with an analysis

of these existing approaches in the context of whether or not their operation could be

improved upon, and if so how this might be achieved. To analyze the two approaches

ICS was applied using both SNOW and wbStego4open to half of the the Non-Monitoring

dataset in Appendix A using a 72 characters English language text. In this manner two

datasets were generated, Dws and Dsnow, of 150 webpages each.

Recall, from Chapter 2, that Sui and Lou used two occurrence probabilities: (i) ptsco,

the probability of a white space character occurrence; and (ii) pscso, the probability of

a white space character sequence occurrence. The value of ptsco and pscso is calculated

using Equations 5.1 and 5.2 respectively (repeated from Chapter 2).

ptsco(W ) =
Nws

Nallchar
(5.1)

pscso(W ) =
Nwss

Nws
(5.2)



Chapter 5. A Prediction Model for Invisible Characters Detection 67

where:

• Nws: Is the number of white space characters in W webpage.

• Nallchar: Is the number of all characters in W webpage.

• Nwss: Is the number of space character sequences in W webpage.

The idea thus was to calculate these probabilities before and after suspected em-

bedding of a hidden message. If no embedding had taken place the before and after

values would of course be the same. Table 5.1 and Table 5.2 show the before and after

embedding values of ptsco and pscso obtained with respect to six of the sample webpages

in Dws and Dsnow where message hiding had taken place. Column 1 in 5.1 gives the

white space character occurrence probability ptsco before embedding while Column 1 in

5.2 gives the white space character sequence occurrences probability pscso. Both tables

give the same probabilities in columns 3 and 4 after embedding had taken place using

ICS tools wbStego4open and SNOW, respectively. From the tables it can clearly be

seen that all probabilities increased after embedding had taken place and there is a wide

variation in the range of ptsco and pscso values obtained. A full analysis with respect to

both datasets confirmed this result. A summary of this analysis, with respect to the ICS

seeded WWW pages, is given in Figure 5.1 and Figure 5.2. Each figure shows two “box

plots” one for each set of ICS seeded WWW pages. Note that a box plot is a diagram

used for displaying the distribution of data in terms of five limits [1]: (i) minimum, (ii)

first quartile, (iii) median, (iv) third quartile and (v) maximum. Inspection of both fig-

ures confirms that the range of ptsco and pscso values is substantial. Thus it would seem

that using a ptsco and pscso static threshold values to detect ICS, as proposed by Sui and

Luo[68], is unlikely to provide good ICS detection results because of this variability.

Table 5.1: The probability of white space character occurrence probability ptsco in
selected webpages before and after embedding

Webpage
ptsco Dws DSNOW

before embedding ptsco ptsco

www.bbc.co.uk 0.090 0.094 0.092
www.bbc.co.uk /weather 0.171 0.189 0.173
www.linkedin.com 0.032 0.078 0.046
www.cnn.com 0.046 0.053 0.048
www.liverpool.ac.uk 0.118 0.156 0.135
www.wikipedia.com 0.041 0.087 0.057

In the case of the approach proposed in Huang et al. [43], as described in Chapter

2, used the concept of “embedding rate” (erate). This is the ratio between the length of

a hidden message M and the size of a given WWW page Wallchar. M = size of a given

webpage Wallchar - size of a given webpage with invisible characters removed (Wwithout).
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Table 5.2: The probability of white space character sequence occurrences pscso in
selected webpages before and after embedding

Webpage
pscso Dws DSNOW

before embedding pscso pscso

www.bbc.co.uk 0.031 0.035 0.032
www.bbc.co.uk /weather 0.055 0.057 0.056
www.linkedin.com 0.002 0.031 0.015
www.cnn.com 0.033 0.036 0.034
www.liverpool.ac.uk 0.078 0.087 0.079
www.wikipedia.com 0.002 0.028 0.014

Figure 5.1: Box plots for ptsco

Figure 5.2: Box plots for pscso

Embedding rate of a given webpage erate(W ) can be calculated using Equation 5.3.

erate(W ) =
M

Wallchar
(5.3)

Table 5.3 shows the before and after embedding values of the embedding rate erate

obtained with respect to six of the sample webpages in Dws and Dsnow where message

hiding had taken place. As in Table 5.1 and Table 5.2 Column 1 in Table 5.3 gives
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the erate before embedding. The erate after embedding had taken place using ICS tools

wbStego4open and SNOW is given in Columns 3 and 4 respectively. From the table it

also can clearly be seen that all erate values increased after embedding had taken place

and there is a wide variation in the range of erate values obtained. A full analysis with

respect to both datasets confirmed this result. A summary of this analysis, with respect

to the ICS seeded WWW pages, is given in Figure 5.3. From the figure it can be seen

that the application of a static erate threshold for detecting ICS, as promoted in Huang

et al.[43], is also not ideal.

Table 5.3: The embedding rate erate of selected webpages before and after embedding

Webpage
erate Dws DSNOW

before embedding erate erate

www.bbc.co.uk 0.091 0.100 0.095
www.bbc.co.uk /weather 0.179 0.224 0.183
www.linkedin.com 0.046 0.138 0.062
www.cnn.com 0.049 0.063 0.053
www.liverpool.ac.uk 0.133 0.217 0.157
www.wikipedia.com 0.055 0.063 0.058

Figure 5.3: Box plots for erate

From the above analysis it is clear that the ICS detection approaches of Sui and Luo

and Huang et al. have disadvantages. The proposed DIC algorithm presented in this

chapter seeks to address these disadvantages.

5.3 Proposed DIC Detection Method

This section presents the proposed DIC detection method. The idea was to use the

frequency distributions of different lengths of sequences of a white space characters as

a mechanism for identifying ICS. To the best knowledge of the author the proposed

DIC ICS detection approach is unlike any other ICS detection approach presented in

the literature. The DIC approach is fully described in this section. However, prior to
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Table 5.4: First ten white space character segment lengths in selected webpages before
and after embedding

Webpage
Before After embedding After embedding
embedding (wbStego4open) (SNOW)

www.bbc.co.uk 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 1 · 1 · 1 · 1 · 1 · 1 · 1 · 8 · 1 · 1 2 · 6 · 5 · 3 · 2 · 3 · 1 · 1 · 1 · 1
www.dhl.com 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 1 · 3 · 1 · 1 · 1 · 1 · 1 · 5 · 1 · 1 1 · 1 · 1 · 1 · 1 · 1 · 1 · 7 · 6 · 7
www.ieee.org 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 1 · 1 · 1 · 1 · 1 · 1 · 5 · 1 · 1 · 1 1 · 1 · 1 · 1 · 7 · 6 · 1 · 1 · 1 · 1
www.google.com 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 2 · 1 · 1 · 1 · 1 · 1 · 7 · 1 · 1 · 1 6 · 1 · 3 · 3 · 5 · 1 · 1 · 1 · 1 · 1
www.sdwik.net 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 1 · 1 · 1 · 2 · 1 · 1 · 1 · 1 · 1 · 6 1 · 1 · 1 · 1 · 7 · 6 · 7 · 6 · 1 · 1
dailyroutines.typepad.com 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 2 · 1 · 2 · 1 · 1 · 1 · 1 · 5 · 1 · 1 1 · 1 · 1 · 1 · 6 · 1 · 1 · 1 · 1 · 3
www.khanacademy.com 1 · 1 · 1 · 1 · 1 · 1 · 1 · 8 · 1 · 1 4 · 1 · 1 · 1 · 1 · 1 · 4 · 1 · 1 · 1 7 · 6 · 7 · 6 · 5 · 3 · 1 · 1 · 1 · 1
www.sony.com 1 · 1 · 1 · 1 · 1 · 1 · 1 · 4 · 4 · 4 1 · 3 · 1 · 1 · 1 · 1 · 1 · 5 · 1 · 1 7 · 6 · 7 · 6 · 5 · 3 · 1 · 1 · 1 · 1

commencing the description, it should be noted that the term segment is used throughout

this section to describe contiguous sequences either of white space characters or non-

white space characters. Table 5.4 shows the length of the first ten white space character

segments before and after embedding for a selection of eight webpages from the Non-

Monitoring dataset in Appendix A. The · (dot) symbol used in the table indicates the

presence of character segments other than white space segments. From the table it

can clearly be seen, as expected, that the length of at least some of the white space

segments increases in the presence of ICS. Although some webpages already have space

character segments of length more than 1 before any embedding has taken place (the

Khan Academy and Sony webpages in the table). However, the table clearly indicates

that the idea of using the frequency distribution of different white space segments is

worth exploring.

The frequency distribution of a white space character segment of length l in a web-

page W , fcscsl(W ), can be calculated using Equation 5.4 where l is the segment length.

Note that
∑k

l=1 fcscsl(W ) = 1.0 (where k is the maximum size of the segments featured

in W ).

fcscsl(W ) =
number of segments of length l in W

total number of segments in W
(5.4)

Table 5.5 shows the fcscs5 values, before and after embedding, with respect to some

selected webpages from the Non-Monitoring dataset in Appendix A. From the table it

can clearly be seen, as expected, that the frequency distributions of the white space

segments will increase in presence of ICS. This same phenomena was observed with

respect to the remaining webpages (not shown in Table 5.5).

Given the above, the basic idea of using the frequency distribution of white space

segments, within webpages, of different length, with and without embedding, as an

indicator of ICS seems like a good one. More specifically the idea is to build a binary

prediction model (a classifier) generated using a n-dimensional feature space where n

is the number of different potential white space segment lengths of interest that might

be included in a webpage. The value for each dimension would then be the frequency
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Table 5.5: fcscs5 for some sample webpages before and after embedding

Webpage
fcscs5 fcscs5 after fcscs5 after
without embedding embedding
embedding (wbStego4open) (SNOW)

www.cnn.com 0.00000 0.03590 0.03990
www.wikipedia.com 0.00000 0.06870 0.15660
www.bbc.co.uk 0.02250 0.05580 0.06120
www.bbc.co.uk/weather 0.00630 0.03180 0.02560
www.adobe.com 0.00080 0.03360 0.02160
www.cisco.com 0.02310 0.05010 0.04320
www.stackoverflow.com 0.00066 0.02999 0.00880
www.sony.com 0.00170 0.03340 0.01760
www.ipod.com 0.00200 0.04330 0.02870
www.nbc.com 0.02300 0.03500 0.02660
www.amazon.com 0.00110 0.03500 0.01520
www.expedia.com 0.00600 0.03660 0.02400

distribution of the indicated white space segment in the given webpage. In this manner

a webpage would be defined in terms of a feature vector V = {v1, v2, . . . , vn}.
The process for generating a set of feature vectors, given a set of webpages D =

{w1, w2, . . . , wm}, with respect to the proposes DIC approach, is given by the pseudo

code presented in Algorithm 6. The input to the algorithm (line 1) is a set of webpages

D and the n the maximum length of white space segment to be considered. Using the

algorithm, for each webpage wi in D, a feature vector Vi of length n is created where

the elements are the frequency distribution of white space sequences of lengths 1 to n.

The process was used to generate sets of feature vectors for evaluation purposes. Note

that for the experimental the Non-Monitoring dataset in Appendix A maximum size of

a space character segment was found to be 30, hence n = 30.

Note also that for the training data each feature vector has a class label associated

with it; class 1 represented a stego webpage while class 2 represented a normal webpage.

Algorithm 6: Feature vector generation

1: Input: A set of webpages D = {w1, w2, . . . , wm}, and the maximum size of the
white space segments to be considered n

2: Output: A set of feature vectors Φ = {V1, V2, . . . Vm}
3: Φ = ∅
4: for all wi ∈ D do
5: s = number of white space character segments of length >= 1 in wi
6: for j = 1 to n do
7: t = number of segments in wi of length j
8: Vi[j] = t

s
9: end for

10: Φ = Φ ∪ Vi
11: end for
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5.4 Evaluation

In this section the evaluation of the proposed DIC ICS detection approach is discussed.

Two sets of experiments were conducted; using the feature vector represented datasets

generated as described above. The first set of experiments was conducted when hidden

messages were seeded using wbStego4open and the second set when hidden messages

were seeded using SNOW. The objectives of the evaluation were as follows:

1. To determine if the proposed detection approach can be effectively applied to

HTML webpage files to detect ICS.

2. To determine the effect of applying a feature selection strategy to the feature vector

representation prior to classifier generation.

3. To determine the effect of the nature of embedded message (English language or

random) and the message length on classifier performance.

4. To determine if the obtained results were statistically significant or not.

5. To provide a comparison between the proposed detection approach and the ap-

proaches to ICS detection of Sui and Lou [68] and Huang et al.[43], as identified

in Section 5.2 above.

The first two of the above objectives are considered in Subsection 5.4.1, while the

third and fourth in Sub-section 5.4.2 and the fifth in Sub-section 5.4.4.

5.4.1 Effectiveness of the proposed detection approach

The effectiveness of the proposed ICS detection technique was measured in terms of

accuracy (Acc.) and AUC. The experiments were conducted using the Non-Monitoring

dataset in Appendix A after embedding a message comprised of 72 natural English

language characters. The embedding process was conducted using both wbStego4open

and SNOW.

Ten Cross Validation TCV was used whereby the dataset was first stratified and

then divided into tenths and ten classifiers generated using different nine tenths and

tested on the remaining tenth. For the feature selection the “CfsubsetEval” attribute

evaluation algorithm, and best first search, as provided in the WEKA machine learning

workbench, was used. The idea behind feature selection, as noted in Chapter 2, is to

select a subset of the dimensions (recall that each dimension represents an attribute)

in the feature space, that are good discriminators of class. The search method used

defines how we search the feature space to identify the best attributes. Note that, unlike

other feature selection mechanisms, CfsubsetEval does not select the k best dimensions

(attributes) but the best performing dimensions according to some threshold. There are

many different techniques that can be used for both.
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Table 5.6: Effectiveness of proposed ICS detection technique using Dws without fea-
ture selection

TCV
MLP SVM NB

Acc.% AUC Acc.% AUC Acc.% AUC

1 93.33 1.00 100.00 1.00 1.00 1.00
2 100.00 1.00 93.33 0.94 93.33 0.88
3 86.67 0.96 93.33 0.94 73.33 0.65
4 100.00 1.00 100.00 1.00 100.00 1.00
5 93.33 1.00 93.33 0.94 86.67 0.96
6 86.67 0.80 86.67 0.87 86.67 0.88
7 93.33 0.96 100.00 1.00 86.67 0.86
8 100.00 1.00 100.00 1.00 93.33 1.00
9 86.67 0.86 93.33 0.93 73.33 0.88
10 80.00 0.82 93.33 0.94 86.67 0.95

Average 92.00 0.94 95.33 0.95 88.00 0.90
SD 6.89 0.08 4.50 0.04 9.32 0.11

Table 5.7: Effectiveness of proposed ICS detection technique using DSNOW without
feature selection

TCV
MLP SVM NB

Acc.% AUC Acc.% AUC Acc.% AUC

1 86.67 0.89 86.67 0.88 80.00 0.84
2 100.00 1.00 100.00 1.00 66.67 0.78
3 80.00 0.88 86.67 0.87 60.00 0.46
4 80.00 0.96 93.33 0.93 93.33 1.00
5 100.00 1.00 93.33 0.93 86.67 0.84
6 93.33 1.00 80.00 0.79 73.33 0.70
7 93.33 0.98 80.00 0.81 66.67 0.63
8 86.67 0.98 80.00 0.81 80.00 0.79
9 80.00 0.84 86.67 0.86 66.67 0.68
10 86.67 0.88 73.33 0.73 60.00 0.68

Average 88.67 0.94 86.00 0.86 73.33 0.74
SD 7.73 0.06 7.98 0.08 11.33 0.15

The results are presented in Tables 5.6 to 5.9 (best results highlighted in bold font).

Tables 5.6 and 5.7 show the results obtained without feature section, whilst Tables 5.8

and 5.9 the results obtained with feature selection. A summary is presented in Table

5.10. From the summary table it can be seen that better results were obtained when

using feature selection than without feature selection. With respect to the Dws dataset

SVM produced consistently the best accuracy, whilst best AUC was produced using

SVM and NB with feature selection. In the case of the DSNOW dataset best results

were obtained consistently using MLP.

With respect to the feature selection it is interesting to note that the selected values

of l, the length of white space segments with respect to Dws, were {1, 2, 3, 4, 5, 6, 7, 8, 21},
the value of 21 seems odd and might simply be an “outlier”. In the case of DSNOW the

selected values for l were {1, 2, 5, 7}.
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Table 5.8: Effectiveness of proposed ICS detection technique using Dws with feature
selection

TCV
MLP SVM NB

Acc.% AUC Acc.% AUC Acc.% AUC

1 93.33 1.00 100.00 1.00 100.00 1.00
2 100.00 1.00 100.00 1.00 93.33 0.88
3 93.33 0.96 93.33 0.94 93.33 0.96
4 100.00 1.00 100.00 1.00 100.00 1.00
5 93.33 0.98 93.33 0.94 100.00 1.00
6 86.67 0.98 93.33 0.94 93.33 1.00
7 93.33 1.00 100.00 1.00 93.33 1.00
8 100.00 1.00 100.00 1.00 100.00 1.00
9 93.33 0.86 93.33 0.93 93.33 1.00
10 86.67 1.00 93.33 0.94 86.67 0.98

Average 94.00 0.98 96.67 0.97 95.33 0.98
SD 4.92 0.04 3.51 0.03 4.5 0.04

Table 5.9: Effectiveness of proposed ICS detection technique using DSNOW with
feature selection

TCV
MLP SVM NB

Acc.% AUC Acc.% AUC Acc.% AUC

1 93.33 0.89 86.67 0.87 73.33 0.89
2 100.00 1.00 86.67 0.86 73.33 1.00
3 86.67 0.93 80.00 0.79 69.33 0.77
4 100.00 1.00 93.33 0.93 93.33 1.00
5 100.00 1.00 100.00 1.00 100.00 1.00
6 100.00 1.00 100.00 1.00 80.00 1.00
7 86.67 0.96 73.33 0.75 73.33 1.00
8 100.00 1.00 80.00 0.81 73.33 1.00
9 93.33 0.86 86.67 0.87 86.67 0.86
10 93.33 0.88 93.33 0.94 66.67 0.88

Average 95.33 0.95 88.00 0.88 78.89 0.94
SD 5.49 0.06 8.78 0.08 12.19 0.08

Table 5.10: Summary of results presented in Tables 5.6 to 5.9 (best results highlighted
in bold font)

Data Feature MLP SVM NB
Set Selection Acc.% AUC Acc.% AUC Acc.% AUC

Dws
No 92.00 0.94 95.33 0.95 88.00 0.90
Yes 94.00 0.98 96.67 0.97 95.33 0.98

DSNOW
No 88.67 0.94 86.00 0.86 73.33 0.74
Yes 95.33 0.95 88.00 0.88 78.89 0.94

5.4.2 The effect of Different Message Type and Length Embedding

To investigate the effect of the nature of the hidden message, and its length, on the ICS

detection two sets of experiments were conducted. The first used English language em-

bedded messages while the second random messages (a mixture of uppercase, lowercase

letters and numbers). For both sets of experiments:

• Messages of different lengths were embedded from between 20 to 100 characters,
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incrementing of steps of 20 characters. The length of a hidden message this time

is absolute not relative to the MEC because as mentioned in Appendix A that ICS

tools provide high embedding capacity. A relative increment of a hidden message

length (for example 30%, 40%. . . . , 100%) with respect to the MEC would result

in very long messages that can be easily detected.

• The wbStego4open and SNOW ICS tools were used to embed messages.

• For each message length ten selected (English language and random) messages

were embedded.

• Webpages were represented using a thirty attributes feature vector that containing

the white space character segment frequency distributions. These feature vectors

were the inputs to the classifiers (with class labels for training).

• Two performance metrics were recorded: (i) Accuracy (Acc) and (ii) Area Under

Curve (AUC).

• Three classification models were used: (i) MLP (ii) SVM and (iii) NB.

As a consequence of the above twenty datasets were generated in total using wb-

Stego4open ICS tool grouped into four categories: (i) webstegoNatural1, (ii) webstego-

Natural2, (iii) webstegoRandom1 and (iv) webstegoRandom2. Categories webstegoNat-

ural1 and webstegoNatural2 comprised English language message embedding datasets

generated using wbStego4open with and without feature selection respectively; whilst

categories webstegoRandom1 and webstegoRandom2 comprised random message em-

bedding datasets generated using wbStego4open with and without feature selection re-

spectively. Each category comprised five datasets, each including messages of a different

length. The same four categories are generated this time using SNOW ICS tool.

Figures 5.4 and 5.5 present the results obtained using AUC metric. The results showed

that the nature of the embedded messages (natural English language or random) has

no differential effect on the performance of the proposed DIC ICS detection approach.

However, the length of the embedded message did influence the performance of the

classifiers where wbStego4open ICS has been used for messages hiding. This influence is

clearer with respect to the recorded performance of the MLP and NB classifiers than in

the case of the SVM classifier. From the figures it can also be noted that when feature

selection is applied this improved the performance of the MLP and NB classifiers than

in the case of the SVM classifier. With respect where SNOW ICS has been used for

messages hiding it can be noted that from Figure 5.5 the recorded performance of the

MLP is better than in the case of the SVM and NB classifiers. The reason behind this

is that MLP classifier can support different data types and learn the important features

from any data structure.
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Figure 5.4: Operation of proposed DIC ICS detection approach using wbStego4open.
Left: English language messages embedding. Right: Random text embedding.
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Figure 5.5: Operation of proposed DIC ICS detection approach using SNOW. Left:
English language messages embedding. Right: Random text embedding.



Chapter 5. A Prediction Model for Invisible Characters Detection 78

5.4.3 Statistical Evaluation

To determine whether the obtained results presented in Figures 5.4 to 5.5, using wb-

Stego4open and SNOW, were indeed statistically significant and not simply a matter of

chance the Friedman Test was conducted (in similar manner to that described in Chap-

ter 4). The AUC values obtained with respect to the above reported experiments were

used for this purpose. The outcomes are presented in Tables 5.11 and 5.12, respectively.

Table 5.11: Friedman test results using AUC values for wbStego4open message em-
bedding

Main Sub-Data Feature Embedded MLP SVM NB Chi-Sequare p-value
Datasets Sets Selection Messages AUC

9.579 0.008

webstegoNatural1

Dws20

No Natural English Text

0.87 0.67 0.63
Dws40 0.80 0.62 0.62
Dws60 0.89 0.71 0.64
Dws80 0.91 0.81 0.69
Dws100 0.91 0.81 0.70

Average Rank 0.87 0.72 0.65

webstegoNatural2

Dws20

Yes Natural English Text

0.89 0.62 0.87

8.444 0.015
Dws40 0.91 0.68 0.89
Dws60 0.92 0.69 0.92
Dws80 0.92 0.72 0.93
Dws100 0.94 0.77 0.94

Average Rank 0.92 0.69 0.91

webstegoRandom1

Dws20

No Random Text

0.72 0.63 0.61

9.579 0.008
Dws40 0.78 0.63 0.63
Dws60 0.83 0.69 0.61
Dws80 0.86 0.76 0.68
Dws100 0.88 0.80 0.69

Average Rank 0.81 0.70 0.64

webstegoRandom2

Dws20

Yes Random Text

0.77 0.61 0.54

8.400 0.015
Dws40 0.90 0.60 0.75
Dws60 0.91 0.64 0.88
Dws80 0.93 0.66 0.90
Dws100 0.93 0.71 0.92

Average Rank 0.88 0.64 0.79

In Tables 5.11 and 5.12 Column 1 lists the the dataset category as mentioned in

previous section, whilst Column 2 lists the 5 datasets (each featuring a different embed-

ded message length) included in each category. Column 3 indicates if feature selection

was been applied or not. The nature of the embedded message is shown in Column 4.

The AUC values associated with the MLP, SVM and NB classification models are given

next. The values in Columns 8 and 9 give the Chi-Square Friedman test statistics and

the associated p-value.

From Table 5.11 it can be seen that in the case of wbStego4open all the obtained

p-values are less than the significance level of α = 0.05, therefore the null-hypothesis

H0 can be rejected. It can also be noted from Table 5.11 that regardless of whether

feature selection was applied or not, the best performance was obtained using MLP

classification. Since as mentioned that H0 can be rejected accordingly the Nemenyi test

was conducted using the same parameters (K, N and q) as in the previous chapter. The

Critical Difference (CD) was again = 1.4 (as in the previous chapter). Figure 5.6 presents

a visualization of the Nemenyi test for results in Table 5.11 for both cases with/without

feature selection. The figure lists again each classification model along with its CD
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Figure 5.6: Visualization of Nemenyi test for results given in Table 5.11 (a): no
feature selection is applied (b): feature selection is applied

value. When no feature selection was applied MLP performance was significant only

with respect to NB (the CD tails do not overlap). When feature selection was applied

MLP classifier performance was significant only with respect to SVM classification.

With respect to the SNOW ICS message embedding tool Table 5.12 presents the

Friedman test results. From the table it can be seen that p−value < α = 0.05, therefore

the null-hypothesis (H0) can be rejected and the Nemenyi test was applied. The same

CD value of 1.4 was used. A visualization of Nemenyi test for results in Table 5.12 is

presented in Figure 5.7. From the figure it can be observed that the best performance
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with/without applying feature selection was obtained using MLP classifier and this was

only significant for SVM classifier (the CD tails do not overlap).

Table 5.12: Friedman test results using AUC values for SNOW of natural and random
message embedding with and without feature selection

Main Sub-Data Feature Embedded MLP SVM NB Chi-Sequare p-value
Datasets Sets Selection Messages AUC

10.000 0.007

snowNatural1

DSnow20

No Natural English Text

0.75 0.65 0.69
DSnow40 0.77 0.66 0.68
DSnow60 0.76 0.65 0.66
DSnow80 0.78 0.65 0.68
DSnow100 0.76 0.67 0.69

Average Rank 0.76 0.65 0.68

snowNatural2

DSnow20

Yes Natural English Text

0.82 0.61 0.73

10.000 0.007
DSnow40 0.82 0.65 0.71
DSnow60 0.81 0.65 0.71
DSnow80 0.88 0.68 0.75
DSnow100 0.88 0.61 0.67

Average Rank 0.84 0.64 0.71

snowRandom1

DSnow20

No Random Text

0.79 0.66 0.69

10.000 0.007
DSnow40 0.79 0.67 0.69
DSnow60 0.77 0.64 0.69
DSnow80 0.76 0.66 0.69
DSnow100 0.77 0.66 0.69

Average Rank 0.77 0.65 0.69

snowRandom2

DSnow20

Yes Random Text

0.88 0.68 0.76

10.000 0.007
DSnow40 0.88 0.61 0.73
DSnow60 0.88 0.68 0.76
DSnow80 0.87 0.65 0.70
DSnow100 0.87 0.68 0.75

Average Rank 0.86 0.66 0.74

5.4.4 Comparison with other detection approaches

For the fifth and final objective, comparison with existing techniques, the comparison

was conducted with respect to the performance of the approaches of Sui and Luo [68] and

Huang et al.[43] (both previously described in Section 5.2). So that a fair comparison

could be arrived at the evaluation was again conducted using TCV, although it should

be noted that the approaches proposed by Sui and Lou and Huang et al. are both

statistical in nature and do not require any training. The intuition here was that the

evaluation would provide an unfair advantage to the proposed DIC system if it were

trained on the entire dataset and then tested on the same dataset (it might also result in

“overfitting”). For comparison both SVM and MLP classification with feature selection

were used with respect to the proposed method, as these had been shown to produce

the best performance. For both detection approaches the reported threshold values were

adopted. The evaluation metrics used were again accuracy and AUC.

The results are presented in Tables 5.13 and 5.14. Note that the accuracy values

for the proposed approach have been reproduced from Tables 5.8 and 5.9 respectively.

From the tables it can clearly be seen that the proposed approach outperformed the

previously proposed approaches by a significant margin. The proposed approach was

good at identifying ICS webpages while at the same time using both approaches Sui and

Luo and Huang et al. was poor. Given that the ICS and non-ICS classes were equally
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Figure 5.7: Visualization of Nemenyi test for results given in Table 5.12

distributed within the dataset the accuracies obtained using Sui and Luo, and Huang,

with message embedding using wbStego4open was 54.69% and 50.01% respectively, in

other words little better than a guess. In the case of message embedding using SNOW

accuracies of 51.00% and 46.00% were obtained, the last one worse than random guess-

ing. IN both cases of detection Sui and Luo, and Huang the average AUC was 0.2.

Table 5.13: Comparison of proposed DIC approach to ICS compared with Sui and
Luo, and Huang, using wbStego4open message embedding (best results highlighted on

bold font)

TCV
DIC Approach Sui and Luo Huang et al.

Acc.% AUC Acc.% AUC Acc.% AUC

1 100.00 1.00 53.00 0.54 53.33 0.56
2 100.00 1.00 60.00 0.58 60.00 0.63
3 93.33 0.94 53.33 0.52 33.33 0.36
4 100.00 1.00 60.00 0.57 53.33 0.56
5 93.33 0.94 40.00 0.38 47.00 0.50
6 93.00 0.94 47.00 0.47 73.00 0.75
7 100.00 1.00 47.00 0.47 33.33 0.38
8 100.00 1.00 60.00 0.59 53.33 0.56
9 93.33 0.93 53.33 0.53 47.00 0.50
10 100.00 0.94 73.33 0.73 47.00 0.50

Average 96.67 0.97 54.69 0.54 50.01 0.53
SD 3.51 0.03 8.79 0.08 11.16 0.11
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Table 5.14: Comparison of proposed DIC approach to ICS detection with Sui and
Luo, and Huang et al., using SNOW message embedding (best results highlighted on

bold font)

TCV
DIC Approach Sui and Luo Huang et al.

Acc.% AUC Acc.% AUC Acc.% AUC

1 93.33 0.89 46.67 0.46 46.67 0.49
2 100.00 1.00 53.33 0.51 60.00 0.63
3 86.67 0.93 53.33 0.52 33.33 0.36
4 100.00 1.00 60.00 0.57 53.33 0.56
5 100.00 1.00 40.00 0.38 40.00 0.34
6 100.00 1.00 40.00 0.40 73.33 0.75
7 86.67 0.96 46.67 0.45 26.67 0.29
8 100.00 1.00 60.00 0.59 53.33 0.56
9 93.33 0.86 46.67 0.46 40.00 0.43
10 93.33 0.88 66.67 0.66 46.67 0.50

Average 95.33 0.95 51.00 0.50 47.00 0.49
SD 5.49 0.06 0.08 0.08 0.13 0.13

5.5 Summary

In this chapter the proposed DIC approach for ICS detection has been presented. The

fundamental idea of the approach was founded on the observation that the length of

white space segments in webpages increases in the presence of ICS, and that this infor-

mation can be captured in a feature vector format and subsequently used to build an

ICS prediction (classification) model provided available pre-labeled training data. To

evaluate the proposed mechanism the Non-Monitoring dataset in Appendix A is used.

This was split into two, half seeded with an embedded messages and half not. In this

manner two 150 webpage test datasets were created, one using the wbStego4open ICS

tool and one using the SNOW ICS tool. The proposed approach was tested using three

well known classifier generation models and with and without feature selection. A best

average accuracy of 96.7% was obtained indicating the effectiveness of the proposed

approach compared with the previously proposed approaches of Sui and Luo [68], and

Huang et al. [43]. In the next chapter the proposed TV approach is presented which

was designed to address Tag Letters Case Switching Steganography (TLCSS) detection.



Chapter 6

Tag Letters Case Switching

Detection Using Tag Variance

6.1 Introduction

In this chapter the Tag Variance (TV) mechanism for detecting Tag Letters Case Switch-

ing Steganography (TLCSS) is presented. Recall that the fundamental idea of TLCSS

(see Chapter 2) is to switch the case of tag letters from upper to lower case and vice

versa so as to hide messages. Recall also that the switching has no effect on the way

that a webpage is rendered by a browser; so an ideal steganography method.

The proposed TV approach operates by comparing the tag letters case variance

between the current tag letter cases and the situations where some of the tag letters are

switched to either to upper case or to lower case. The idea being to simulate TLCSS

embedding. If as result the “smoothness” of the tag decreases TLCSS is considered to

have existed. The proposed approach is an alternative to the Tag Offset approach to

TLCSS detection proposed by Huang et al. [44] as also described in Chapter 2. The

mechanism of Huang uses an aggregate distance measure, the Tag Offset. However,

using this approach the identification of short messages becomes challenging because

their presence is not readily highlighted using the Tag Offset measure. Part of the

motivation underpinning the proposed TV approach presented in this chapter was thus

to address the detectection short messages embedded using TLCSS. The motivation was

also to try to identify a TLCSS detection mechanism that produced better overall results

than the Tag Offset mechanism.

The remainder of this chapter is organized as follows: Section 6.2 presents the pro-

posed TV approach to detecting TLCSS. Calculation of the Maximum Embedding Ca-

pacity (MEC) when using TLCSS is presented in Section 6.3 before considering the

evaluation of the proposed approach in Section 6.4. The evaluation was conducted by

comparing the operation of the proposed TV approach with the Tag Offset approach

using the TLCSS embedding mechanisms of Sui and Luo [87] and Shen Y. [96] (discussed

previously in Chapter 2). Recall that Sui and Luo utilized all tag letters for embedding

83
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a message while Shen Y used only the first letter. The chapter is concluded with a brief

summary presented in Section 6.5.

6.2 Identification of TLCSS using Tag Variance

This section presents the proposed TV approach to HTML TLCSS detection. As noted

in the introduction to this chapter the TV approach operates using a measure of the

change in distribution (spread) of upper case and lower case letters in a tag, a measure

referred to as the Tag Variance. The process of calculating Tag Variance, in contrast to

the Tag Offset measure proposed by Huang, is presented in Sub-section 6.2.1.

The calculated Tag Variances are then used to calculate a set of statistics, referred

to as the Regular Singular (RS) statistics. The same mechanism was used by Huang et

al. (who in turn took the idea from work on image steganography presented in [35]).

The mechanism was briefly described in Chapter 2; however, because of its significance

with respect to the work presented in this chapter, the process for generating the RS

statistics is described in more detail here.

The RS statistics are a set of four measures, {|RM+|, |RM−|, |SM+|, |SM−|}, where

RM+, RM−, SM+ and SM− are sets of tags {T1, T2, . . . }. The sets of tags are generated

using what is referred to as positive flipping and negative flipping. The difference between

the proposed Tag Variance and the Tag Offset measures is given in Sub-section 6.2.1.

The concept of flipping is discussed in further detail in Sub-section 6.2.2. The generation

of the final RS statistics is then discussed in Subsection 6.2.3. To summarize the work

presented in this section the entire TV process is enumerated in Sub-section 6.2.4

Before continuing with the remainder of the section it should be noted that through-

out the section we defined the letters in a tag using a list T = x1, x2, . . . , xn where xi is

the ASCII code for the letter at position i in the tag and n is the total number of letters

in the given tag.

6.2.1 Tag Variance versus Tag Offset

This section presents further detail concerning the calculation of Tag Variance. Before

providing any further detail it should be noted that both Tag Variance and Tag Offset are

designed to be measures describing the homogeneity or smoothness (the term dispersion

is also sometimes used) of a set of tag letters T ; the mix of uppercase and lower case

letters represented in T . In the case of Huang Tag Offset was calculated as follows:

Tag Offset(T ) =

n−1∑
i=1

|xi+1 − xi| (6.1)

Thus a low Tag Offset value will indicate a smooth (homogeneous) tag, while a high offset

will indicate the reverse. Note that the Tag Offset measure is a simple distance measure,

which does not take into consideration the “spread” from the average ambient value.
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The proposed Tag Variance measure takes this into consideration and is calculated as

follows:

Tag V ariance(T ) =

∑n
i=1 (xi − µ)2

n
(6.2)

Where: µ is the mean of the values in T = x1, x2, . . . , xn. Thus tag variance takes into

consideration the spread of uppercase and lowercase letters with respect to the average.

As in the case of Tag Offset a low Tag Variance value will indicate a smooth tag and a

high value a non-smooth tag.

6.2.2 Flipping Functions and Masks

Both the proposed TV approach and Huang’s approach use the concept of flipping

functions. Two types flipping are considered: (i) positive flipping using a function

f+1(Ti) and (ii) negative flipping using a function f−1(Ti). In the case of positive flipping

selected lower case letters in a tag Ti are switched to upper case letters; in the case of

negative flipping selected upper case letters in a tag Ti are switched to lower case letters.

A further “flipping” function used is the f0(Ti) function which does not do any letter

case changing (flipping without flipping!). To decide which letters to flip the concept

of a mask is used. A mask in this context is a vector, of length equal to the input tag

length n, with each element corresponding to a letter in the input tag Ti.

The values for the elements in a mask are set according to which flipping function is

to be applied. In case of f+1(Ti) a positive mask M+ is generated with the elements set

to 0 where there is to be no change, and 1 where a lower case letter is to be switched to

an upper case letter. In the case of f−1(Ti) a negative mask M− is generated with the

elements set to 0 if there is to be no change, and −1 where an upper case letter is to be

switched to a lower case letter. Note that for TLCSS detection the locations of 1 and −1

values in both the M+ and M− masks are the same. In the case of the f0 function the

mask represents that current case distribution in the tag. The output from a flipping

function is an altered tag, T ′i , that will be the input to the Tag Variance calculation (as

described above).

6.2.3 Calculation of RS statistics

The Tag Variance of the tags in a webpage to be tested in their current form and once

they have been altered are used to determine the RS statistics. The RS statistics are

calculated by generating sets of tags using both positive and negative flipping, and

predefined masks M+ and M−, as described above. In the case of positive flipping

three sets of tags are produced {RM+, SM+, UM+} (Regular, Singular and Unchanged),

generated as follows:

1. Regular tags RM+ = {T1, T2, . . . }, the set of tags where the tag variance after

flipping is greater than the tag variance before flipping.
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RM+ =

{T (x1, x2...., xn)|TagV ariance(T ′M (x1, x2, ...., xn)) > TagV ariance(T (x1, x2, ...., xn))}.

2. Singular tags SM+ = {T1, T2, . . . }, the set of tags where the tag variance after

flipping is less than the tag variance before flipping.

SM+ =

{T (x1, x2, ...., xn)|TagV ariance(T ′M (x1, x2, ...., xn)) < TagV ariance(T (x1, x2, ...., xn))}.

3. Unchanged UM+ = {T1, T2, . . . }, the set of tags where the tag variance before and

after flipping are equal.

UM+ =

{T (x1, x2, ...., xn)|TagV ariance(T ′M (x1, x2, ...., xn)) = TagV ariance(T (x1, x2, ...., xn))}.

In the case of negative flipping we have the sets of tags {RM−, SM−, UM−} defined in a

similar manner as above.

Once the sets have been determined we calculate the R and S statistics. These are the

lengths of the sets RM+, RM−, SM+ and SM− (the sets UM+ and UM− are generated for

completeness); thus |RM+|, |RM−|, |SM+| and |SM−|. Note that
|RM+|+|SM+|+|UM+|

m = 1

(where m is the total number of tags). Similarly
|RM−|+|SM−|+|UM−|

m = 1.

The operation of the RS statistic can be illustrated by considering the following. Firstly

considering examples where TLCSS is not present:

• If a webpage features all lowercase tag letters then |RM+| > 0 and —SM+| =

|SM−| = |RM−| = 0

• If a webpage features all uppercase tag letters then |RM−| > 0 and |SM−| =

|SM+| = |RM+| = 0.

However, when TLCSS does exist:

• If a webpage features all lowercase tag letters then |RM+| > |SM+|, |SM+| > 0

and |SM−| > |RM−|, |SM−| > 0, —RM−| > 0.

• If a webpage features all uppercase tag letters then |RM−| > |SM−|, |SM−| > 0

and |SM+| > |RM+|, |SM+| > 0, |RM+| > 0.

• When the length of a hidden message is 100% of the TLCSS Maximum Embedding

Capacity (MEC) of a webpage (see Section 6.3 below) |SM+| > |RM+|, |SM−| >
|RM−| and |SM+| > 0, |SM−| > 0 and |SM+| ≈ |SM−|, |RM+| ≈ |RM−|, |RM+| >
0, |RM−| > 0.
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6.2.4 The Tag Variance Algorithm

In this section the proposed TV algorithm for TLCSS detection is presented. The

algorithm is similar to that presented in Huang et al. [44] with the distinction that Tag

Variance is used instead of Tag Offset. The process is as follows:

1. Collect all tags in a webpage in set Q1 and compute the Tag Variance using

Equation 6.2.

2. Apply positive flipping to all tags in Q1 using f+1(T ) and f0(T ) with a mask M+

so that altered tags are obtained and saved in the set Q2.

3. Compute Tag Variance of the altered tags in Q2

4. Determine RM+ and SM+.

5. Apply negative flipping to all tags in Q1 using f−1(T ) and f0(T ) with mask M−
so that altered tags are again obtained and saved them in Q3 set.

6. Compute Tag Variance of the altered tags in Q3

7. Determine RM− and SM−.

8. Examine the relationship between RM+, SM+, RM−, SM− statistics to decide

whether a webpage is normal or stego.

6.3 Maximum Embedding Capacity Using TLCSS

Using TLCSS the maximum size of a message that could be held in a webpage depends

on the TLCSS algorithm used. Two TLCSS algorithms were considered with respect to

the work presented in this chapter: (i) Sui and Luo [87] and (ii) Shen Y. [96]. In Sui

and Luo all tag letters were used for the purpose of message hiding while in Shen Y.

only the first letter of each tag was used. Thus, in the case of Sui and Luo the MEC, in

bytes, is calculated as follows:

MECSui and Luo =

∑m
i=1 |Ti|

8
(6.3)

Where |Ti| is the length (number of letters) in tag Ti and m is the number of tags in

the given webpage. Division by 8 so the result is given in bytes. With respect to Shen

Y. the MEC is then calculated as follows:

MECShen Y. =
m

8
(6.4)
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6.4 Evaluation

In this section the results obtained from the evaluation of the proposed TV TLCSS

detection approach is presented. Four sets of experiments were conducted; the objectives

of which were as follows:

1. To analyze the behavior of the RS statistics given hidden messages of different

lengths.

2. To determine the effect of applying different masks M on the TLCSS detection.

3. To provide a comparison between the proposed TV approach and Tag Offset ap-

proach of Huang et al. with respect to both natural English language and random

message embedding.

4. To determine whether the results obtained with respect to the experiments con-

ducted to address the previous objective are statistically significant or not.

These objectives are considered in turn in Sub-sections 6.4.1, 6.4.2, 6.4.3 and 6.4.4

respectively. Note that for all the evaluation objectives the Non-Monitoring dataset in

Appendix Awas used. Two metrics were used for the evaluation:

• The True Positive rate (TP) , the percentage of correctly detected stego webpages

with respect to the total number of webpages considered.

• The False Negatives (FN) rate, the percentage of stego webpages identified as

non-stego webpages with respect to the total number of webpages considered.

It should be noted that the higher the TP rate the lower the FN and vice versa.

6.4.1 Behavior of The RS Statistics Given Hidden Message of Different

Length

With respect to the first of the above evaluation objectives, to analyze the behavior of the

RS Statistics given hidden message of different length, the experimentation comprised

two individual experiments as follows:

• A set of experiments using a single webpage from the TV dataset, the Wikipedia

landing page, repeatedly seeded with English language hidden messages of increas-

ing size, from 10% to 100% of the MEC, incrementing in steps of 10%.

• A set of experiments using thirty webpages from the TV dataset each seeded with

an English language hidden message of length equivalent to 100% of the MEC for

each webpage.
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In both cases Sui and Luo’s TLCSS embedding method was used. The proposed TV

approach was then applied and the obtained RS statistics recorded. The masks used

were: M+ = [1, 1, 1] for positive flipping and M− = [−1,−1,−1] for negative flipping.

The results are presented in Figures 6.1 and 6.2.

From Figure 6.1 it can be seen how the RS statistics increase/decrease in a more or

less linear manner as the relative size of the hidden message increases. Both SM+ and

SM− increase significantly, while in the case of RM− the increase is less significant. The

RM− statistic decreases as the size of the message decreases. These results confirm the

expected outcomes identified in Sub-section 6.2.3 .
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Figure 6.1: Effect of incremental increases in the hidden message size on the RS
Statistics (RM+, SM+, RM− and SM−)

In Figure 6.2 the X-axis; lists the ID number for the selected webpages, while the

Y-axis gives the RS values (RM+, SM+, RM− and SM−). From the figure the following

can be observed: (i) SM+ and SM− closely approximate each other, (ii) RM+ and RM−

also approximate each other (but less closely) and SM+ and SM− are greater that RM+

and RM−. These results again confirm the expected outcomes identified in Sub-section

6.2.3.

6.4.2 The Effect of Masking

Recall from Section 6.2 that the RS statistics are calculated as a consequence of applying

flipping functions to the letters featured in tags and that the nature of this flipping is

dictated by a mask. Recall also that we apply both positive and negative flipping (upper

case to lower case, and vice versa) using positive and negative masks (M+ and M−)

respectively. Thus the effectiveness of the proposed TLCSS detection approach was
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Figure 6.2: RS statistics generated using the TV approach when hidden messages (of
length equivalent to 100% of MEC) are embedded in selected webpages from the TV

dataset

dependent on the nature of the masks. A second set of experiments was thus conducted

to evaluate the usage of different masks on TLCSS detection.

For the experiments half of the webpages in the TV dataset were seeded with different

English Language messages, again using Sui and Luo’s TLCSS algorithm. The length of

the seeded messages varied between 2% and 10% of MEC, incrementing in steps of 2%.

The reason for using relatively short hidden messages was that the approach of Huang

et al. had founded these to be particularly challenging. A range of different masks were

used:

• For positive flipping:

M+ = {[1, 0, 1, 1], [1, 0, 1, 0], [1, 1, 1], [0, 1, 1], [1, 1, 0], [1, 0, 0], [0, 0, 1] and [0, 1, 0]}.

• For negative flipping:

M− = {[−1, 0,−1,−1], [−1, 0,−1, 0], [−1,−1,−1], [0,−1,−1], [−1,−1, 0], [−1, 0, 0],

[0, 0,−1] and [0,−1, 0]}.

In each case the TV algorithm was applied and the TP and FN rates were recorded.

Figure 6.3 shows the results obtained when using two of the above masks; M+ =

[1, 0, 1, 1] , M− = [−1, 0,−1,−1] and M+ = [1, 0, 1, 0], M− = [−1, 0,−1, 0]. The graph

on the top considers the TP rate, and that on the bottom the FN rate. In the figure

the X-axis represents length of the hidden messages, while the Y-axis represents either

the True Positives (TP) or False Negatives rate (FN). From the figure it can be seen

that the (TP) rate of 96% was attained with respect to hidden messages of a length of

2% of the MEC when using masks M+ = [1, 0, 1, 1] and M− = [−1, 0,−1,−1]. While
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when using masks M+ = [1, 0, 1, 0] and M− = [−1, 0,−1, 0], many stego webpages

were missed. This is consequently reflected on the recorded FN rate values. Using

masks M+ = [1, 0, 1, 1] and M− = [−1, 0,−1,−1] resulted that the FN rate was much

lower than when using masks M+ = [1, 0, 1, 0] and M− = [−1, 0,−1, 0]. From this set of

experiments it was concluded that the most appropriate masks to use were M+=[1,0,1,1]

and M−=[-1,0,-1,-1].
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Figure 6.3: Illustration of the use of different masks for TLCSS detection using the
proposed TV approach; top: TP rate, bottom: FN rate

6.4.3 Comparisons with Other Detection Approaches

For the comparison with other TLCSS detection approach the operation of the proposed

TV approach was compared to the Tag Offset approach of Huang et al. as presented

in [44]. The TLCSS embedding mechanisms of both Sui and Luo [87] and Shen Y. [96]

were used together with the Non-Monitoring dataset in Appendix A also used for earlier

experiments. The dataset was half seeded with hidden messages using one or other of

the selected TLCSS mechanisms. The comparisons were conducted firstly using natural

English language message embedding, and secondly using random message embedding.

Recall that when using Sui and Luo all the tag letters are used, while when using
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Shen Y. only the first letter of each tag are used. The MEC calculation for each is

therefore different as discussed in Section 6.3. For the experiments the masks were

used M+=[1,0,1,1] and M−=[-1,0,-1,-1] because earlier experiments, reported in the

foregoing subsection, has indicated that these masks worked well. In the case of Sui

and Luo the message lengths ranged from 2% to 6%, increasing in steps of 2%, with

respect to the relevant MEC. In the case of Shen Y. the lengths ranged from 4% to 14%

incrementing in steps of 2%.

This distinction was because experiments conducted earlier had indicated that pro-

posed Tag Variance could detect Sui and Luo TLCSS embedding, even when very short

hidden messages were used. In the case of detecting Shen Y. TLCSS embedding, ex-

periments conducted had indicated that the proposed Tag Variance operated best with

longer hidden messages (although still relatively short).

The results obtained are given in Figures 6.4 and 6.5. Figure 6.4 shows the results

obtained using Sui and Luo embedding, (a) natural English language messages and (b)

random messages. The X-axis in each case represents the hidden message length relative

to the MEC, while the Y-axis represents either: TP rate (left); or FN rate (right). From

the figure it can be noted that the performance of the TV proposed approach is better

than the performance of Huangs Tag Offset approach. In some cases the proposed TV

approach identified all of the stego webpages, a detection rate of 100% whereas the Tag

Offset approach did not. As a consequence the FN rate (missing stego webpages) in

the case of using proposed TV approach was much less than in the case of Huangs Tag

Offset approach. From the figure it can also be noted that the nature of the message

embedding made little difference with respect to TLCSS detection.

Figure 6.5 in turn shows the results obtained using Shen Y. From the figure it

can be seen that both approaches achieved a similar performance. An approximate

detection rate of 90% was achieved by both detection approaches with respect to hidden

messages of length 14% of the webpage MEC. webpages featuring shorter messages were

undetected, hence the high FN rate. Again the nature of message embedding made little

difference with respect to TLCSS detection.

6.4.4 Statistical Evaluation

This sub-section reports on the results of the statistical significance testing conducted

with respect to the results reported on in the previous sub-section. The aim of the signif-

icance testing was to answer the question whether the performance of the Tag Variance

approach compared to the performance of the Tag Offset is statistically significant or

simply a matter of chance. The test used was the Wilcoxon signed-rank test [23] because

only two True Positives (TP) rate samples, that of Tag Variance and Tag Offset, were

collected. The Wilcoxon signed-rank test is a non-parametric test used to compare two

related samples, matched samples or repeated measurements on a single sample. It is

an alternative to the paired t-test and is typically used to test the differences in the

mean of paired observations. These differences are ranked to produce two rank totals
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(a)  Natural English language message embedding 

  
   

(b) Random  message embedding 
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Figure 6.4: Comparison between the proposed Tag Variance approach and the Tag
Offset approach using Sui and Luo TLCSS embedding

(positive and negative) that are used later to find test statistics Appendix B. Under the

null hypothesis, H0, these two totals are the same. Since the results, presented above,

indicated that the nature of the embedded message has no effect on the True Positives

rate (TP) only the results of obtained using natural English language messages embed-

ding from Figures 6.4 and 6.5 were used. Figures 6.6 and 6.7 present the Wilcoxon

signed-rank test results obtained using Sui and Luo and Shen Y embedding respectively.

In Figure 6.6 it can be seen that the test statistics were z = −1.342 and p = 0.18, and

in Figure 6.7 that the test statistics were z = 0 and p = 1.000 . Since p for both tests is

greater than 0.05 (the significant level) it can be concluded that there is no statistical

difference in operation between the proposed TV approach and the Tag Offset approach;

in other words the null-hypothesis H0 is accepted.

6.5 Summary

In this chapter the proposed Tag Variance (TV) approach to detecting TLCSS has been

presented. The idea is founded on the Tag Offset approach proposed in Huang et al.
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Figure 6.5: Comparison between the proposed Tag Variance approach and the Tag
Offset approach using Shen Y. TLCSS embedding

 

Figure 6.6: Results of Wilcoxon test comparing statistical significance of the TV and
Tag Offset approaches using Sui and Luo TLCSS embedding

[44]. The reported evaluation demonstrated that the proposed Tag Variance mechanism,

when coupled with appropriate positive and negative masks, outperformed the TLCSS

detection approach of Huang et al., especially with respect to detection of Sui and Luo
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Figure 6.7: Results of Wilcoxon test comparing statistical significance of the TV and
Tag Offset approaches using Shen Y. TLCSS embedding

TLCSS embedding of short hidden messages (2% of a webpage’s MEC). Even though

the reported results showed that TV performed better than the Tag Offset approach,

the results were not found to be statistical significance using the Wilcoxon signed-rank

test. The next chapter concludes this thesis with a summary of the contributions and

main findings, and some suggestions for future research directions.





Chapter 7

Conclusions and Future Work

7.1 Introduction

This chapter provides a summary of the work presented in this thesis, a review of the

main findings in the context of the research question and research issues identified in

Chapter 1 and some suggestions for fruitful the future work directions.

7.2 Summary

In this thesis a set of HTML steganography detection methods have been proposed

directed at three different kinds of HTML steganography methods: (i) Attribute Per-

mutation Steganography (APS), (ii) Invisible Character Steganography (ICS) and (iii)

Tag Letters Case Switching Steganography (TLCSS). In total four algorithms were pro-

posed: (i) Statistical Detection (SD) (ii) Attribute Position Changes Count (APCC) (iii)

Detect Invisible Character (DIC) and (iv) Tag Variance (TV). The first two directed at

APS, and the third and fourth directed at ICS and TLCSS, respectively. A distinction

was also made between steganography monitoring in relation to dynamic context and

steganography detection in relation to static context.

The thesis commenced, in Chapter 2 with a literature review of previous work rele-

vant to the work presented in the thesis. The following four chapters covered the pro-

posed HTML steganography detection approaches, each directed at a specific approach

(as listed above). These chapters were all structured in a similar manner starting with

a description of the proposed approach and ending with a review of the evaluation con-

ducted with respect to each approach. All the proposed approaches were tested using

both natural English language and random embedded messages.

In more detail Chapter 3 presented the SD approach designed to detect APS in the

dynamic monitoring context. The fundamental idea was to use the standard deviation

of the change in tag attribute position as a measure for detecting the presence (or

otherwise) of APS. The proposed detection was tested with respect to the APS methods

of: Deogol [80], Huang et al.[45] and Shen et al.[81]. A mechanism whereby the SD

threshold σ value for a particular WWW page could be learnt was also given.
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Chapter 4 considered the proposed APCC approach to detecting APS in the non-

monitoring context. In this proposed approach the concept of the attribute position

changes count was used to detect the presence of steganography. Unlike in the case

of the proposed SD approach the steganography detection (steganalysis) problem was

formulated as a supervised learning problem. For the presented evaluation three clas-

sification models were used: (i) Multi-Layer Perceptron (MLP) Neural Network, (ii)

Support Vectors Machine (SVM) and (iii) Naive Bayes(NB). Classifiers performance

was evaluated in terms of: (i) Accuracy and (ii) Area Under the Receiver Operator

Characteristic Curve (AUC). The evaluation included an investigation of whether the

results were statistically significant or not by applying the Freidman Test. As in the case

of the SD approach the APCC approach was tested using the APS embedding methods

of Deogol, Huang et al. and Shen et al. The operation of the APCC approach was

compared with the approaches of L.Polak and Z.Kotulski [65] (dynamic context) and

W.Jian-feng et al. [95] (static context) and the SD approach from the previous chap-

ter. The evaluation results indicated the followings: (i) the APCC approach was more

efficient than the approach of W.Jian-feng et al (ii) the SD approach produced better

results than that of L.Polak and Z.Kotulski in the non-monitoring context.

Chapter 5 considered the DIC approach directed at detecting ICS in the non-monitoring

context. The fundamental idea was to use the frequency distribution of continuous se-

quences (segments) of a white space character to distinguish normal webpages from stego

webpages. An idea founded on the observation that the frequency of space character

segments will change when inserting additional white space characters to embed mes-

sages. Two freely available tools, SNOW [60] and wbStego4open [91], were used for the

purpose of embedding hidden messages using ICS. Again a supervised learning approach

was adopted, and for the evaluation the same classification models as considered previ-

ously with respect to the work presented in Chapter 4 were considered. The operation of

the proposed DIC approach was compared with the ICS detection approaches of Sui and

Luo [68] and Huang et al. [43]. The results demonstrated a significantly better detection

rate with respect to the DIC approach over the other two considered approaches. The

statistical significance of the results was also reported on.

Chapter 6 considered the proposed TV approach directed at the detection of TLCSS,

again, in the non-monitoring context. The idea was to use a measure of tag letters case

“smoothness” called Tag Variance, an improved version of the Tag offset mechanism of

Huang et al. [44]. For the evaluation the TLCSS embedding mechanisms of Sui and

Luo [87] and (ii) Shen Y. [96] were considered. The evaluation outcomes indicated that

the TV mechanism performed better than the TLCSS detection approach of Huang et

al., especially with respect to short hidden messages. The evaluation included an in-

vestigation of whether the results were statistically significant or not by applying the

Wilcoxon-signed rank test.



Chapter 7. Conclusions and Future Work 99

7.3 Main Findings and Contributions

This section presents the main findings resulting from the research presented in this

thesis. Recall that the original research question from Chapter 1 was “What are the

most appropriate detection approaches, dynamic and static, required to efficiently and

effectively detect hidden messages in HTML files?”. In Chapter 1 a number of subsidiary

questions were also postulated. Each of these will be considered in turn, before returning

the main overriding research question, as follows:

1. “What are the features of steganography that can best be adopted to facilitate de-

tection?”. The answer to this is that is depends on which HTML steganography

approach is adopted. Three were considered in this thesis: (i) APS (ii) ICS and

(iii) TLCSS. In the case of APS it was found that the standard deviation of the

position changes count worked well as did APCC. In the case of ICS it was found

that the frequency distributions of space character segments could be usefully em-

ployed. Finally in the case if TLCSS the proposed tag variance measure was found

to produce good results.

2. “How can steganography detection effectiveness be measured so that different tech-

niques can be assessed and compared to one another?”. Two different steganograhy

detection contexts were considered: (i) the dynamic (monitoring) context and (ii)

the static (non-monitoring) context. In the first case the idea presented was to

adopt a mechanism to identify a webpage steganography detection threshold. Af-

ter that measures such as True Positives (TP) and False Negatives (FN) could be

used to assess a steganography detection mechanism. In the second case the main

idea presented was to adopt a classification approach. Measures typically used to

evaluate supervised learning techniques were adopted. The used measures were: (i)

Accuracy and (ii) Area Under the Receiver Operator Characteristic Curve (AUC).

In the case of TLCSS detection as in the case of detecting APS in the monitoring

context the detection rate True Positives (TP) and False Negatives (FN) rate were

used.

3. “Given a set of webpages how should the content of those webpages be represented

so as to facilitate, dynamic or static, steganography detection?”. The resolution

to this question proved straight-forward. The answer, as in the case of the answer

to subsidiary Question 1 above, is that this depended on the nature of the HTML

steganography under consideration: (i) APS, (ii) ICS or (iii) TLCSS. In the case of

APS we only need to consider the attributes that appear in webpages. These were

therefore represented using either the standard deviation of their positions as in

Chapter 3 or by a feature vector of their positions changes count as in Chapter 4.

In case of ICS the entire webpage of interest needed to be considered, and thus was

represented by a feature vector of white space segment frequency distributions. In

case of TLCSS we only needed to consider the tags that appear in webpages.
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4. “Given a solution to the above, how can the performance of such techniques be

best improved so as to maximize effectiveness?. From the foregoing, at least for

static steganography, detection using feature selection maximized the effectiveness.

Parameter tuning was also important.

5. “What is the most appropriate mechanism for webpage monitoring in the context

of dynamic steganography detection?”. Monitoring was considered in detail in

Chapter 3. The fundamental idea presented was to repeatedly consider snapshots

of a webpage of interest, separated by a time intervals in a period of time. This

seemed to work well as indicated in the reported evaluation with respect to learning

a webpage steganography detection threshold.

6. “What is the effect on detection of the nature of messages that are hidden (English

language or random)?”. The reported evaluation results, using both English lan-

guage and random messages (the later simulating encrypted messages), indicated

that whether a hidden messages was a natural English language text or a random

one had no effect with respect to the operation of the proposed steganography

detection techniques.

7. “What is the effect on detection of the length of messages that are hidden?”. The

evaluation conducted using messages of different length reported on in the previous

four chapters, indicated that the length of a hidden message had a significant

influence on the effectiveness of detection.

Returning to the overriding research question in Chapter 1 “What are the most appro-

priate detection approaches, dynamic and static, required to efficiently and effectively

detect hidden messages in HTML files?” it can be concluded that for HTML steganog-

raphy detection in the dynamic context that the proposed SD algorithm was effectively

a mechanism whereby the steganography detection threshold for a particular webpage

could be learnt. In the case of HTML steganography detection in the static context the

work presented in this thesis clearly indicates that the both proposed APCC and DIC

approaches, coupled with appropriate classification techniques, could clearly distinguish

between stego and clean webpages in a way that was effective. Also proposed TV ap-

proach was an alternative enhancement of the approach of Huang et. al to detect very

short messages in the (non-monitoring) static context.

It is found that detection of HTML attribute permutation steganography APS mech-

anism is more attractive than other HTML steganography mechanisms. This is because

APS still difficult to discover as it does not neither cause increasing of the carrier object

size as in ICS nor it can be suspicious from the source code as in TLCSS.

Finally, to complete the main findings reported on in this section, the contributions

of the research presented in this thesis (originally itemized in Chapter 1) are presented

again here for completeness:

1. The SD approach to detect APS in the dynamic (monitoring) context.
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2. The APCC approach also directed at the detection of APS detection in the static

(non-monitoring) context.

3. The DIC approach to detect ICS in the static (non-monitoring) context.

4. The TV approach to detect TLCSS in the static (non-monitoring) context.

7.4 Future work

The research described in this thesis has suggested a number potential areas for future

work. This thesis is thus concluded with an itemization of these potential future research

directions:

• Alternative HTML steganography methods: A number of established HTML steganog-

raphy methods were investigated with respect to the work presented in this thesis.

It would be interesting to investigate the detection of further alternative steganog-

raphy methods, such as hiding data using links and scripts.

• Alternative datasets: The proposed approaches in this thesis have been tested

using small size datasets. A much more comprehensive evaluation is therefore

desirable.

• A universal HTML steganography detection technique: The proposed approaches

in this thesis have each been designed to detect a particular steganography HTML

method. A universal HTML steganography detection technique is desirable to

detect all forms of HTML steganography. This could also then be applicable to

HTML steganography mechanisms of the future. How this would operate is unclear

at present, but some form of machine learning approach might be appropriate.

• We can also consider the perspective of the steganographer and examine ways,

given knowledge of the techniques presented in this thesis, whereby detection can

be avoided!





Appendix A

Evaluation Datasets

This appendix presents a description of the datasets used for evaluation purposes with

respect to the work presented in this thesis. The techniques presented in this thesis

are divided between techniques for static non-monitoring steganography detection, and

dynamic monitoring steganography detection.

In total four distinct HTML Steganography detection mechanisms were proposed in this

thesis:

• Statistical Detection (SD) was directed at Attribute Permutation Steganography

(APS) in the monitoring context.

• Attribute Position Changes Count (APCC) was directed at Attribute Permutation

Steganography (APS) in the non-monitoring context.

• Detect Invisible Characters (DIC) was directed at Invisible Characters Steganog-

raphy (ICS), again in the non-monitoring context.

• Tag Variance (TV) was directed at Tag Letter Case Switching Steganography

(TLCSS) also in the non-monitoring context.

Whatever the case each dataset was half seeded with one of HTML steganography

mechanisms and constructed using a standard process as shown in Figure A.1 to produce

stego-webpages. From the figure it can be seen that a four steps process was adopted.

This process commenced by collecting a set of webpages (webpages collection was for the

period of 1/7/2015 to 7/7/2015) . In the case of static (non-monitoring) steganography

detection one webpage per web site was collected, in the case of dynamic (monitoring)

steganography a sequence of webpages was collected with respect to each site. The

next step in the process was to generate the messages to be hidden. Two categories

of message generation were considered: (i) natural English language messages and (ii)

random messages made up of mixtures of uppercase and lowercase letters, symbols

and numbers. At the same time, for each category, messages of different length were

considered. The prepared messages were then used to seeded the collected webpages
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Figure A.1: Stego-webpages generation process

using one of the selected HTML steganography methods: (i) APS, (ii) ICS and (iii)

TLCSS.

A summary of the datasets generated is presented in Table A.1. The table gives: (i)

the size of each dataset in terms of number of webpages, (ii) the HTML steganography

mechanism used for the “seeding”. Seven mechanisms were used in total: (i) Shen et.

al [81], (ii) Deogol [80] (iii) Huang et. al [45] (iv) wbstego4open [91] (v) SNOW [60] (vi)

Sui and Luo [87] and (vii) Shen Y. [96]. The first three for APS, the fourth and fifth for

ICS and the last two for TLCSS.

Table A.1: Summary of generated evaluation datasets

Dataset Dataset size Steganography seeding mechanisms
(wepages no.)

Monitoring 400 (APS) Shen et. al, Deogol and Huang et. al
Non-Monitoring 150 (APS) Shen et. al, Deogol, Huang et. al ,

(ICS) wbstego4open, SNOW, (TLCSS) Sui and Luo and Shen Y.
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A.1 Monitoring dataset

The Monitoring dataset was used to evaluate the proposed Statistical Detection (SD)

monitoring approach presented in this thesis (Chapter 3). In this approach the idea

was to monitor the presence of APS in HTML files using an attribute position standard

deviation mechanism. This dataset, was generated for monitoring purposes; in other

words, for each website considered, a sequence of samples of the website landing page

was collected at intervals of time τ over a period of time T . For the evaluation the

compiled dataset consisted of 10 well-known landing webpages:

• www.bbc.co.uk.

• www.nytimes.com (New York Times).

• www.wikipedia.org.

• www.stackoverflow.com.

• www.sony.com.

• www.liverpool.ac.uk (The University of Liverpool).

• www.ieee.org.

• www.webmd.com.

• www.microsoft.com.

• www.amazon.com.

These were all landing pages that were updated frequently. For each landing page 40

snapshots were collected at an interval of τ = 2 hours over a period of seven consecutive

days. The total final number of downloaded webpages was therefore 400 (10× 40).

The adopted steganography seeding mechanism was as follows: a message was em-

bedded in thirty out of the 40 snapshots for each webpage. The Standard Deviation

(St.D) values of the attributes position change were calculated before and after embed-

ding so that the detection threshold could be learned . The last 10 webpage were used

for steganography detection (half seeded and half unseeded). Hidden messages were

seeded using the Shen et. al [81], Deogol [80] and Huang et. al [45] mechanisms. Var-

ious lengths for the hidden messages were considered from 10% to 100%, incrementing

in steps of 10%, of Maximum webpage Embedding Capacity (MEC).

A.2 Non-Monitoring dataset

This dataset was used to evaluate three HTML steganography detection approaches in

non-monitoring context. These approaches were:



Appendix A. Evaluation Datasets 106

• The Attribute Position Changes Count (APCC) approach to detecting APS, more

details in Chapter 4.

• The Detect Invisible Characters approach (DIC) to detecting ICS, more details in

Chapter 5.

• The Tag Variance (TV) approach to detecting TLCSS , more details in Chapter

6.

This dataset also included the 10 landing pages used to construct the Monitoring

dataset. The webpages included in the dataset can be loosely categorized according to

“ the topic”, five topics were identified: (i) education, (ii) entertainment, (iii) business,

(iv) health and (v) news. Figure A.2 shows the distribution of topics across the dataset.

From the figure it can be seen that: 61 webpages were concerned with the education

(such as universities and schools), 32 with entertainment (such as sport, games and

music), 21 with business, 18 with health (such as nutrition, fitness and medical centers)

and 18 with news sites.
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Figure A.2: Distribution of webpages topics for the Non-Monitoring dataset

Subsections A.2.1 to A.2.3 give more details on how the Non-Monitoring dataset was

used to evaluate HTML steganography proposed approaches in non-monitoring context

in this thesis: APCC, DIC and TV in Chapters 4, 5 and 6 respectively.

A.2.1 Non-Monitoring Dataset usage for APCC Evaluation

To evaluate the APCC approach in Chapter 4 the Non-Monitoring dataset was prepared

as follows: the webpages were half seeded with hidden messages using the Shen et. al [81],
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Deogol [80] and Huang et. al [45] mechanisms. Various lengths for the hidden messages

were considered from 10% to 100%, incrementing in steps of 10%, of Maximum webpage

Embedding Capacity (MEC).

A.2.2 Non-Monitoring Dataset usage for DIC Evaluation

To evaluate DIC approach in 5, the Non-Monitoring dataset was used as follows: the

webpages were half seeded with hidden messages using ICS tools presented in Chapter

2, namely: (i) wbstego4open [91] and (ii) SNOW [60]. Messages of different length were

again embedded, although in this case message length was defined in terms of a number

of characters instead of a percentage of the MEC. The reason for this was that the

ICS tools used provided a high embedded capacity so a relative increment of a hidden

message length (for example 30%, 40%. . . . , 100%) with respect to the MEC would

result in very long messages that can be easily detected. Thus messages of lengths of

between 20 and 100 characters, incrementing in steps of 20 characters, were used.

A.2.3 Non-Monitoring Dataset usage for TV Evaluation

To evaluate TV approach described in Chapter 6. The Non-Monitoring dataset was used

as follows: the webpages were half seeded with hidden messages using TLCSS methods,

namely: (i) Sui and Luo [87] and (ii) Shen Y. [96] (both described previously in Chapter

2). Again messages of different length were considered, defined in terms of a percentage

of the MEC, however in this case the lengths considered were from 2% to 10% of the

MEC incrementing in steps of 2%. The reason for this incrementing was to investigate

the TV approach effectiveness to detect very short messages.





Appendix B

Wilcoxon-signed rank test

This appendix presents the steps for computing the Wilcoxon-signed rank test statistics

W that is used in this thesis.

The Wilcoxon-signed rank test is used to test for the median differences. The test

statistics W can be obtained using the following steps:

1. State the null hypothesis - in this case it is that the median difference, M, is equal

to zero.

2. Calculate each paired difference, di = xi-yi, where xi , yi are the pairs of observa-

tions.

3. Rank the dis, ignoring the signs (i.e. assign rank 1 to the smallest absolute value

of di, rank 2 to the next etc.).

4. Label each rank with its sign, according to the sign of yi.

5. Calculate W+, the sum of the ranks of the positive dis, and W-, the sum of the

ranks of the negative dis. (As a check the total, W+ + W-, should be equal to
n(n−1)

2 , where n is the number of pairs of observations in the sample).

6. Choose W = min(W-, W+).

7. Use tables of critical values for the Wilcoxon signed rank sum test to find the

probability of observing a value of W or more extreme. Most tables give both

one-sided and two-sided p-values. If not, double the one-sided p-value to obtain

the two-sided p-value.
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Feature Selection Methods

This appendix presents feature selection methods. There are three general methods of

feature selection: [59]:

• Filter methods: In these methods a rank or score is assigned to each feature and

the top k selected. This ranking can be determined using a variety of statistical

metrics. This rank is assigned according to the correlation of each feature with the

output variable (the class label). Figure C.1 presents the general process adopted

by these methods. Filter methods are frequently independent of any machine

learning algorithm, they are also fast because there is no training as in the case

of Wrapper methods (see below). Examples of these methods include: correlation

coefficient, chi square and information gain.

Figure C.1: Filter methods [55]

• Wrapper methods: In these methods a feature subset is chosen and a particular

model is trained using this subset. Based on the results obtained the relevance of

the features is verified. Various features combinations are considered when using

these methods, not the case with respect to Filter methods. However, searching all

combinations requires high computational time. Figure C.2 presents the general

process adopted by these methods. Examples of these methods include: forward

selection, backward selection [39] and recursive feature elimination [38].

Figure C.2: Wrapper methods [55]
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• Embedded methods: This is where the feature selection is embedded in the

data mining and hence it is no longer a preprocessing method. However, there are

a number of regression methods that use this approach; examples include: LASSO

(Least Absolute Shrinkage and Selection Operator) regression [30] and RIDGE

regression [61]. Figure C.3 presents the approach of these methods.

Figure C.3: Embedded methods [55]
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