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Abstract

The objective of the research presented in this thesis is to investigate and evaluate a

series of techniques directed at identifying banded patterns in zero-one data, starting

from 2D data and then increasing the number of dimensions to be considered to 3D and

then ND. To this end the term Banded Pattern Mining (BPM) has been coined; the

process of extracting hidden banded patterns from data. BPM has wide applicability in

areas where the domain of interest can be represented in the form of a matrix holding

1s and 0s. Five BPM algorithms are proposed (and a number of variations) directed at

finding bandings in zero-one data: (i) 2D-BPM, (ii) Approximate 3D-BPM, (iii) Exact

3D-BPM, (iv) Approximate ND (AND) and (iv) Exact ND (END) BPM. This thesis

describes and discusses each of these algorithms in detail.

The main challenges of BPM are: (i) how best to identify bandings in 2D data sets

without the need to consider large numbers of permutations, (ii) how to address situa-

tions where there is a possibility of multiple dots being located at individual locations in

a ND zero-one (dot) data space of interest and (iii) how best to identify bandings with

respect to large ND data sets that cannot be held in primary storage. To address the

first issue a banding score mechanism is proposed that avoids the need to consider large

numbers of permutations. This has been incorporated into the 2D-BPM algorithm. To

address the second issue, the idea was to use a “multiple dot” mechanism; a mechanism

in the context of both the approximate and exact BPM algorithms that includes the

possibility of some cells in the data space of interest holding more than one dot. To

address the third issue, sampling and segmentation techniques were proposed to identify

bandings in large ND data sets.

Full evaluations of each of the BPM algorithms are presented. For evaluation purpose

the data sets used were categorised as follows: (i) randomly generated synthetic data

sets, (ii) UCI data sets and (iii) a specific application; the Great Britain (GB) Cattle

Tracing System (CTS) database in operation in GB, from which 5D binary valued data

sets were extracted and used. In the latter case the dimensions were: (i) records (number

of animal movements), (ii) attributes, (iii) sender easting (x coordinate holding area),

(iv) sender northing (y-coordinate holding areas) and (v) time (month). Other Banding

application domains that could have been considered include: (i) network analysis, (ii)
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co-occurence analysis, (iii) VLSI chip design and (iv) graph drawing. An independent

metric, Average Band Width (ABW), was proposed and used to measure the quality

of bandings and provide a mechanism for the comparison of BPM algorithms. More

specifically, data sets from 2003 to 2006 across four specific counties in GB were used;

Aberdeenshire, Cornwall, Lancashire and Norfolk. The reported evaluation indicates

that the use of approximate BPM (rather than exact BPM) produces more efficient

results in terms of run-time, whilst the use of exact BPM provided promising results in

terms of the quality of the bandings produced. The reported evaluation also indicates

that a sound foundation has been established for future work with respect to high

performance computing variations of the proposed BPM algorithms.
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Chapter 1

Introduction

1.1 Overview

The work presented in this thesis is concerned with techniques for identifying “banded

patterns” in N-Dimensional (ND) binary valued data. A binary valued data set com-

prises only ones and zeroes. For ease of understanding, in this thesis, the presence of a

one is conceptualized as a dot (a sphere in 3D and a hypersphere in ND). The presence

of a zero is conceptualized as the absence of a dot (sphere or hyper-sphere), thus “empty

space”. Binary valued data occurs frequently in many real world application domains,

examples include bioinformatics (gene mapping and probe mapping) [7, 27, 94], informa-

tion retrieval [12] and paleontology (sites and species occurrences) [10, 106]. A binary

valued data set is said to feature a banding if the dimension indexes can be ordered

in such a way that the dots are arranged about the leading diagonal. Figures 1.1 and

1.2 depict examples of 2D and 3D banding. The central concerns of this thesis are the

mechanisms and processes whereby the dots that feature in a zero-one data set can be

effectively and efficiently rearranged so as to reveal a banding, or as close a banding as

possible.

More specifically the work presented in this thesis is concerned with techniques for

identifying “banded patterns” in ND binary valued data in the context of data mining.

Data mining is primarily concerned with the extraction of hidden, but useful knowl-

edge from data [45]. Data mining combines both statistics and computer science for

the purpose of extracting the desired knowledge. As the number and size of electroni-

cally generated data sets keeps increasing, the corresponding significance of data mining

methods also keeps increasing. Data mining encompasses a number of techniques which,

in a very general way, can be categorised in terms of classification, clustering and pattern

discovery. The work described in this thesis broadly spans all these techniques in that

it is concerned with zero-one data which can be used in any of these contexts, although

it can be argued that the discovery of banded patterns falls more within the domain of

pattern discovery. Note that the techniques presented for rearranging a given zero-one

data set do not change the content of the data, but simply reorders it.

1
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(a) (b)

Figure 1.1: 2D Banding Example: (a) original matrix and (b) original matrix with
the rows and columns reordered to reveal a banding

(a)

(b)

Figure 1.2: 3D Banding Example: (a) original 3D matrix and (b) original 3D matrix
with Dim1, Dim2 and Dim3 reordered to feature a banding

Existing work on identifying bandings in zero-one data [55, 56] has concentrated

on the generation and testing of permutations, whilst [92] used barycentric values to

identify bandings. The main issue with the identification of banded patterns in this

manner is the large number of permutations to be considered (especially in ND), this

makes the identification of banding in data a resource intensive enterprise which in turn

has lead to existing work being limited to 2D data. Although, using a variety of measures

(heuristics), the total number of permutations to be considered can be reduced, thereby
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producing a very good approximation solution. In ND, the task of finding bandings is

exponentially more challenging than in the case of 2D. To address this issue this thesis

presents an alternative solution to the permutation generation and test approach that

does not require the generation of permutations but instead operates using the concept

of a Banding Score (BS). The proposed solution is to iteratively reorder the items in

each dimension according to their individual BS until a “best” banding is arrived at,

defined in terms of a Global Banding Score (GBS). The thesis also considers additional

techniques for the identification of bandings in large data sets; namely sampling and

segmentation techniques.

The fundamental idea of the banding score concept presented in this thesis is that

the “bandedness” of a data set can be expressed in terms of a Global Banding Score

(GBS), a number between 0 and 1. A GBS of “0” will be obtained (if the entire data

space is filled with zeros (no dots)) while a GBS of “1” will be obtained (if the entire

data space is filled with “ones” (dots)).

It is further proposed that the GBS is calculated by summing and normalizing in-

dividual BS associated with individual columns and rows in a given 2D matrix (data

set). Individual BS will again be expressed as a number between 0 and 1. The idea is

that given a set of column (row) BS, these can be used to reorder the columns (rows)

to reveal a banding. Once the rows and columns have been reordered the individual BS

values will need to be recalculated, as it is likely that they will have changed as a result

of the reordering and a new GBS generated. The expectation is that the new GBS will

be “better” than the initial GBS calculated prior to the reordering.

It was also anticipated that the reordering would have to be undertaken over a

number of iterations until the GBS value “stabilised”. However, the important point

to note is that the time complexity of this approach is linear according to the number

of columns/rows, as opposed to the non-linear time complexity associated with the

permutation generation approaches.

The rest of this introductory chapter is organised as follows. In Section 1.2 the

motivation for the research is discussed in further detail. The specific research question

and associated research issues are presented in Section 1.3. Section 1.4 outlines the

research methodology adopted to address the research question and associated issues,

followed in Section 1.5 with a summary of the research contributions. Section 1.6 presents

details of published work produced as a result of the described research, followed in

Section 1.7 with an outline of the structure of the remainder of this thesis. Finally in

Section 1.8 the chapter is concluded with a brief summary.

1.2 Research Motivation

From the foregoing, the main aim of the work presented in this thesis is to investigate

and evaluate effective algorithms that will reveal banded patterns in zero-one data (if
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they exist) by rearranging the ordering of items within the dimensions. The motivation

for the rearranging of zero-one data, so as to reveal a banding, is desirable because:

1. It may be of interest in its own right in that it may enhance the interpretability of

the data and or provide a better understanding of the processes whereby the data

was generated.

2. It allows for the compression of the data, which may consequently enhance the

operation of data mining (and other) algorithms that work with zero-one data.

3. It also allows for the visualisation of the data, which may enhance the visibility of

useful information hidden in the data.

Natural interpretations of banded structures include overlapping communities in social

networks [106], patterns of species occurring in spatially correlated locations [86] and

overlapping roles of genes with respect to various diseases [55].

As noted above, research work on banded data analysis to date has tended mostly to

be permutation based and focused on 2D data sets [55, 56, 92] rather than ND data sets.

To the best knowledge of the author there is no work on the identification of bandings

in ND data. The technical motivation for the research described in this thesis can thus

be broadly identified as the desire to develop alternative banding mechanisms that do

not consider large numbers of permutations and operate in ND.

To act as a focus for the work a specific application is considered; the Cattle move-

ment Tracing System1 (CTS) in operation in Great Britain (GB) from which a 5D

(records, attributes, eastings, northings and time) binary valued data sets can be ex-

tracted. The application motivation was thus a desire to analyse the CTS data so as to

provide some insight into cattle movement in GB to support policy makers and other

interested parties who may wish to monitor the spread of cattle diseases. Further details

of the CTS data base are presented later in this thesis.

1.3 Research Questions and Issues

Given the research motivation presented in Section 1.2 above, the key objective of the

work presented in this thesis was to research and investigate effective and efficient mech-

anisms to identify banded patterns in ND data. This objective can be formulated as a

research question as follows:

What are the most appropriate mechanisms and techniques required to identify banded

patterns in ND zero-one data spaces in a manner that is both effective and efficient?

The provision of an answer to this research question encompass the resolution of a

number of subsidiary questions as follows:

1 https://www.gov.uk/guidance/animal-identification-movement-and-tracing-regulations.
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1. Mechanisms and Techniques: What mechanisms and techniques can best be

employed to identify a best banding? What are the most suitable techniques for

obtaining a best banding?

2. “Best” Banding: What is a “best” banding? How is a best banding determined?

How is the goodness of a banding measured?

3. ND Banded Data: What are the mechanisms that can best be employed to

ensure that any proposed banding algorithm will scale up to operate in ND?

4. Multiple “Dots”: How is the issue of more than one “1” value (dot) being

located at a location (a cell in the matrix of interest holding dots to be reordered

so as to achieve a best banding) in a ND data matrix best addressed?

5. Statistically Significant: What is the most appropriate mechanism for deter-

mining whether a best banding, when identified, is statistically significant or not?

1.4 Research Methodology

To provide an answer to the research question and associated research issues, as de-

scribed in the previous section, the adopted research methodology was to investigate

and evaluate a series of techniques directed at identifying banded patterns in zero-one

data starting with 2D data and then increasing the number of dimensions to be consid-

ered to 3D and then ND. The initial assumption was that only one dot could be held

at each location, this assumption was removed once suitable algorithms had been estab-

lished. In the context of scalability it was recognised that eventually all the proposed

algorithms would no longer be able to operate on a single machine, thus the research

methodology included the idea of investigating sampling and segmentation processes

compatible with the banded pattern mining concept.

To act as a focus, as noted above, data sets extracted from the Great Britain (GB)

Cattle Tracing System (CTS) database were used. This database was selected because:

(i) large multi-dimensional dot data sets could be extracted from it and (ii) the analysis

of the data would provide an example of the kind of application where ND banding might

be usefully employed. Evaluation was conducted predominantly using data extracted

from the CTS database. However, in the 2D context evaluation was also conducted using

synthetic data sets and a number of benchmark data sets taken from the University of

California Irvine (UCI) machine learning repository [18]. Note that the UCI data sets, by

default, are all 2D. Although in some cases it might have been possible to contrive higher

numbers of dimensions this was not done, and hence the UCI data sets were only used

in the 2D context. Where possible, comparisons were made with alternative existing

algorithms, although this was again only possible in the 2D context. An independent

metric, Average Band Width (ABW), was used for the comparison with existing work

because each algorithm, including those presented in this thesis, used different criteria

to identify a best banding.
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The following eight phase programme of work was adopted:

1. Representation: Investigation of mechanisms for conducting the necessary pre-

processing with respect to the targeted data sets.

2. 2D Banded Pattern Mining: Investigation into mechanisms to identify a best

banding in 2D data. The intention here was to develop a “benchmark” banded

pattern mining algorithm that could be analysed, evaluated and used as the foun-

dation for work conducted in the later stages of the programme of work.

3. 3D Banded Pattern Mining: Extension of the work on 2D banded pattern

mining from Phase 2 above to address banding in 3D. The idea was to consider two

alternative approaches: (i) approximate and (ii) exact. The intuition here was that

as the number of dimensions under consideration increased the time complexity

was also expected to increase; it was conjectured that the use of approximate

algorithms might mitigate against this increasing complexity while at the same

time producing acceptable bandings.

4. ND Banded Pattern Mining: Extension of the work on 3D banded pattern

mining from Phase 3 above to address banding in ND, concentrating on example

data sets taken from the CTS application.

5. Multiple Dots: For phases 2 to 4 the assumption was that locations could only

hold one dot each; this is true in the case of data sets where one of the dimen-

sions is record number, but this would not necessarily be the case if a subset of

the dimensions within a given data set were considered. Phase 5 was therefore

concerned with adapting the algorithms from earlier phases so that the “multiple

dots” scenario could be addressed.

6. Sampling Techniques: As noted above it was recognized from the start that

there would always be data sets whose size was such that they could not be pro-

cessed in their entirety. Two potential mechanisms for addressing this issue were:

(i) sampling and (ii) segmentation. Phase 6 was therefore concerned with sam-

pling, the idea of identifying a banding in a subset of the data set of interest and

then applying this to the entire data set. Note that sampling features the possi-

bility of multiple dots at locations, hence Phase 5 was required to preceed Phase

6.

7. Segmentation Techniques: Investigation of segmentation technique to address

the issue of finding bandings in very large ND data sets which cannot be held

in primary storage. The idea here was to conduct bandings sequentially using

sequences of data segments taken from a single large ND data set. Note that

segmentation also features the possibility of multiple dots at locations.
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8. Statistical Significance: The final phase of the programme of work was to

consider mechanisms whereby the statistical significance of discovered bandings

could be ascertained.

With respect to the above a number of Banded Pattern Mining (BPM) algorithms

were identified. These can be arranged in a hierarchy as shown in Figure 1.3. In the

figure, the leaf nodes indicate individual BPM algorithms while the root and interme-

diate nodes indicate categories or groupings of BPM algorithm. From the figure the

proposed BPM algorithms are grouped as follows: (i) 2D-BPM algorithm, (ii) 3D-BPM

algorithms and (iii) ND-BPM algorithms. The 2D-BPM algorithm identifies bandings in

two dimensional data, the 3D-BPM algorithms identify bandings in three dimensional

data and the ND-BPM algorithm identify bandings in N-dimensional data. The 3D-

BPM algorithm category is further sub-divided into: (i) Approximate 3D (A3D) BPM

and (ii) Exact 3D (E3D) BPM. The ND-BPM algorithm category in turn is also further

divided into: (i) Approximate ND (AND) BPM, (ii) Exact ND (END) BPM and (iii)

Multiple dots (MD) BPM. The latter also comprises: (i) Approximate BPM (ABPM)

and (ii) Exact BPM (EBPM) variations. Note that for each EBPM algorithm category

there is a Euclidean and a Manhattan variation (the significance will become apparent

later in this thesis). Although not included in the figure the proposed sampling and

segmentation techniques utilise the multiple dots BPM algorithms. The Approximate

3D and ND BPM algorithms, as the name suggests, find approximate bandings (by con-

sidering dimension pairings), while the Exact 3D and ND BPM algorithms find exact

bandings (by considering the entire data space).

As noted above, in the context of 2D-BPM, comparisons were undertaken with re-

spect to existing work on banded pattern mining [55, 56, 92]. Each of these proposed

mechanisms seeks to “optimise” a particular banding parameter. The BPM algorithms

presented in this thesis seek to minimise a Global Banding Score (GBS), essentially a

composite overall banding score for a given banding. So that a fair evaluation could

be undertaken comparison was undertaken in the context of an algorithm independent

measure, Average Band Width (ABW). With respect to the evaluation of the proposed

banding algorithms in the context of 3D and higher, evaluation was conducted in terms

of GBS and run time.

1.5 Research Contribution

The main contributions of the research work considered in this thesis are summarized

below. Note that for each item in the summary the chapter or chapters where the

contribution is discussed is included in parenthesis. Note also that with respect to the

proposed algorithms the reader might find it useful to refer back to Figure 1.3:

1. The concept of a banding score that supports the identification of bandings in

zero-one data without considering large numbers of permutations (Chapters 4, 5,

6, 7, 8 and 9). This is arguably the most significant contribution of the work.
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Figure 1.3: Hierarchical categorization of the BPM algorithms proposed and evalu-
ated in the context of the research presented in this thesis.

2. The 2D-BPM algorithm for discovering bandings in 2D data sets (Chapter 4).

3. The Approximate 3D (A3D) and Exact 3D (E3D) BPM algorithms, including the

Euclidean and Manhattan variations of the E3D-BPM algorithm (Chapters 5 and

6).

4. The Approximate ND (AND) and Exact ND (END) BPM algorithms (Chapter

7).

5. A mechanism for addressing the situation where a location holds multiple dots

(Chapter 8) in the context of both approximate and exact BPM (the MD-ABPM

and MD-EBPM algorithms).

6. A mechanism for applying bandings to very large data sets using a sampling tech-

nique integrated into the banded pattern mining process (Chapter 9).

7. A mechanism for applying bandings to very large data sets using a segmentation

technique integrated into the banded pattern mining process (Chapter 9).

8. An independent mechanism, the Average Band Width (ABW) mechanism, for

measuring the quality of a banding to support comparison of BPM algorithms

(Chapter 4).

9. A mechanism for considering the statistical significance of an identified banding

(Chapter 10).
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10. Some insights into the CTS database (Chapter 3).

1.6 Publications

Some of the work presented in this thesis has been the subject of a number of refereed

publications. These are itemised below. In each case a short description of the paper

is included highlighting its significance in the context of the work presented. Where

appropriate reference to the chapter where the material appears is also given.

Journal Paper

(a) Abdullahi, F. B and Coenen, F and Martin, R (2016). Banded Pattern

Mining Algorithms in Multi-Dimensional Zero-One Data. “Transac-

tions on Large Scale Data and Knowledge Centered Systems” (TLDKS

XXVI), Springer-Verlag Berlin, Heidelberg, pp. 1-31 volume 26 (2016),

Special Edition. Journal article comprising an extended, updated and revised

version of conference paper (b) (see below). In this work the approximate BPM

and exact BPM (both the Euclidean and Manhattan variations) algorithms were

presented. The presented evaluation was conducted using data extracted from the

CTS database (as in the case of work described in this thesis).

(b) Abdullahi, F. B and Coenen, F and Martin, R (2016). Scalable Banded

Pattern Mining Algorithms for Big Data. Submitted for refereeing to

the IEEE TKDE Journal. This journal paper summarised the BPM algorithms

presented in this thesis, the 2D-BPM and ND-BPM algorithms. Two techniques for

processing large data sets were considered, sampling and segmentation. Both were

able to identify banding in large data sets, although the segmentation approach

was found to to produce better quality bandings. The statistical significance of

the bandings produced was also considered and a mechanism founded on the use

of Gaussian distribution curves was presented to determine whether the bandings

generated using the BPM algorithms were statistical significant or not. Experi-

ments reported in the paper clearly indicated that this was a useful mechanism for

determining whether a banding is statistically significant or not. Note that similar

experimental results, to those described in the paper, are presented in Chapters 9

and 10.

Conference Papers

(a) Abdullahi, F. B and Coenen, F and Martin, R (2014). A Novel Ap-

proach for Identifying Banded Pattern Mining In Zero-One Data Us-

ing Column And Row Banding Score. 10th International Conference

on Machine Learning and Data Mining (MLDM’14 ), Springer-Verlag
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Berlin, Heidelberg, pp. 58-72. St. Petersburg, Russia. 21th-24th July,

2014. Conference paper reporting on some initial work on Banded Pattern Mining

(BPM). The paper was the first to propose the banding score mechanism that al-

lowed columns and rows to be rearranged without considering permutations. This

mechanism was incorporated into the proposed BPM algorithm to identify band-

ing in 2D data sets. The work was illustrated using a number of UCI data sets.

The content of this paper was used as the foundation for the work presented in

Chapter 4.

(b) Abdullahi, F. B and Coenen, F and Martin, R (2014). A Scalable Al-

gorithm for Banded Pattern Mining in Multi-Dimensional Zero-One

Data. 16th International Conference on Data Warehousing and Knowl-

edge Discovery (DaWaK’14). Springer-Verlag Berlin Heidelberg, pp.

345-356, Munich, Germany. 1st-5th September, 2014. In this conference

paper, the proposed approximate BPM algorithm for application to 3D zero-one

data was presented. The disadvantage of this algorithm (as anticipated) was that

it did not necessarily find a best banding but only an approximation best banding

because the algorithm did not consider the entire data space when calculating the

banding scores (it only consider dimension pairings). The work was illustrated us-

ing both UCI Data sets and the CTS database. The work described in this paper

provided the foundation for the material presented in Chapter 5.

(c) Abdullahi, F. B and Coenen, F and Martin, R (2015). Finding Banded

Patterns in Data: The Banded Pattern Mining Algorithm. 17th Inter-

national Conference on Big Data Analytics and Knowledge Discovery

(DaWaK’15). Springer-Verlag Berlin, Heidelberg, pp. 95-107, Valencia,

Spain. 1st-4th September, 2015. Conference paper describing the work pre-

sented with respect to the Exact BPM algorithm. Two alternative variations were

proposed, Euclidean and Manhattan, whereby banding scores could be calculated

in the context of 3D data. The reported evaluation was again conducted using the

CTS database used previously. The content of this paper features extensively with

respect to the work presented in Chapter 6.

(d) Abdullahi, F. B and Coenen, F and Martin, R (2015). Finding Banded

Patterns In Big Data Using Sampling. IEEE International Conference

on Big Data (IEEE BigData), pp. 2233-2242. Santa Clara, CA. 29th

October - 1st November, 2015). This workshop paper was the first to report on

technique for identifying bandings in large ND zero-one data sets using a sampling

technique. The paper presented a study of the application of the proposed Exact

BPM algorithm for large data sets, data sets that were too large to be held in

primary storage. The idea presented in the paper was to use a sampling technique

whereby the input data was divided into subgroups and records selected from each
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subgroup. The study again focused on CTS database. The content of this paper

was used in context of the work presented in Chapters 8 and 9.

1.7 Structure of Thesis

The rest of this thesis is organised as follows.

Chapter 2, Literature Review and Previous Work: Presents a literature review

of related research and some background material to the work on BPM presented

in this thesis. Of note are some comparitor algorithms, namely: (i) the Barycenter

(BC) algorithm and (ii) the Minimum Banded Augmentation (MBA) algorithm

and its two variations (Fixed Permutation (FP) and Bi-directional Fixed Permu-

tation (BFP)).

Chapter 3, Evaluation Framework: Presents a brief description of the selected data

sets used for evaluation purposes. As already noted three categories of data sets

were used: (i) randomly generated synthetic data, (ii) benchmark data sets taken

from the University of California Irvine (UCI) machine learning repository and

(iii) The GB cattle movement CTS database. The latter was used as the main

focus for the work described; the former two were used only in the 2D context.

Chapter 4, 2D Banding Mechanism: Introduces the proposed 2D-BPM algorithm

which is the foundation for much of the research work presented in this thesis.

This is where the concept of a “banding score” is proposed, arguably the main

contribution of the work. The chapter includes a worked example of the algorithm.

The evaluation presented is with respect to: (i) synthetic data and (ii) UCI data

sets. The effectiveness of banding with respect to Frequent Item-set Mining (FIM)

is also considered.

Chapter 5, Approximate Banding Mechanism: Introduces the Approximate 3D

BPM algorithm (A3D-BPM), the first of the 3D banding mechanism considered

in this thesis. The A3D-BPM algorithm operates using dimension pairings rather

than the entire data space to calculate approximate (as opposed to exact) banding

scores. The chapter includes a worked example of the algorithm.

Chapter 6, Exact Banding Mechanism: Describes the Exact 3D BPM (E3D-BPM)

algorithm. The chapter considers a number of alternative ways of calculating ex-

act banding scores, namely: (i) Euclidean and (ii) Manhattan. Again the chapter

includes a worked example. The chapter also considers the possibility of pre-

calculating parts of the banding score in the interest of reducing the time com-

plexity of the algorithm, an idea referred to as the “M-Table” concept. A particular

challenge associated with calculating exact banding scores in 3D (and above) is

determining what the maximum distance values are (required for normalization

purposes). The chapter thus also presents the Maximum Distance Calculation
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(MDC) algorithm for achieving this. The outcomes are reported from a series

of experiments undertaken to demonstrate the efficiency and effectiveness of the

algorithm in the context of: (i) 3D data sets with and without M-Tables and (ii)

the Approximate 3D-BPM algorithm presented in the previous chapter.

Chapter 7, ND Banded Pattern Mining Mechanisms: Presents the Approximate

ND (AND) and Exact ND (END) BPM algorithms. These are not significantly

different from the 3D BPM algorithms presented in the previous chapter although

designed for ND. Of particular note is the operation of the BPM algorithms and

the MDC algorithm in the context of ND. The chapter includes a complete com-

parison of the algorithms in the context of ND data sets extracted from the CTS

database.

Chapter 8, Multiple Dots Mechanism: Chapter considers the possibility of loca-

tions in the data space holding multiple dots which in turn requires adjustment

to the END-BPM and AND-BPM algorithms presented in the previous chapters.

Note that the assumption with respect to the foregoing algorithms was that indi-

vidual locations would hold only one dot.

Chapter 9, Discovering Bandings in Big Data Using Sampling and Segmen-

tation: Presents the two proposed techniques, sampling and segmentation, for

identifying bandings in very large data sets (too large to be held in primary stor-

age). The chapter reports on a series of experiments undertaken to illustrate the

scalability of the proposed sampling and segmentation techniques in the context

of: (i) 3D, (ii) 4D and (iii) 5D data sets extracted from the CTS database.

Chapter 10, Statistical Significance Testing Using Gaussian Distributions:

Reports on some ideas considered to determine the significance of identified band-

ings by considering the generated bandings with respect to the random bandings

that can be expected given a Gaussian distribution.

Chapter 11, Conclusion and Future Research: Concludes the thesis with a sum-

mary of the work presented, the main findings in terms of the identified research

question and subsidiary questions, and some discussion on possible future research

directions.

1.8 Summary

In summary, this chapter has provided an overview, and some background, for the

research presented in the remainder of this thesis, including details concerning the mo-

tivations for the work and the research question and subsidiary questions. It has also

provided a brief description of the research methodology and the contributions of the

research. In the following chapter, a literature review, intended to provide more detail

regarding the background concerning the research described in the thesis, is presented.



Chapter 2

Literature Review and Previous

Work

2.1 Introduction

As noted in Chapter 1, the research described in this thesis seeks to establish an effective

banding mechanisms that serves to identify banded patterns in N-dimensional zero-

one data. This chapter presents a review of the previous work related to the research

presented in this thesis. The organisation of the chapter is as follows. Section 2.2 presents

a general overview of Bandad Pattern Mining (BPM) in terms of its advantages and

disadvantages. A comprehensive review of the domain of BPM is then given in Section

2.3, including the current “state of the art” algorithms. Note that the significance of the

latter is that these algorithms were used with respect to the evaluation reported on later

in this thesis. A brief overview of the Knowledge Discovery in Databases (KDD) process,

and data mining in particular, in the context of banded pattern mining is presented

in Section 2.4. Section 2.5 then presents an overview of sampling and segmentation

techniques; the reason for their inclusion in this chapter is that work presented later in

this thesis, directed at providing mechanisms for applying bandings to very large ND

data sets, is founded on ideas concerning sampling and segmentation. To measure the

effectiveness of bandings there are a number of metrics that can be used. These are

presented in Section 2.6. Finally the chapter is concluded with a summary in Section

2.7.

2.2 Overview of Banded Pattern Mining

As noted in the introduction to this thesis the work described is directed at identifying

“bandings” in binary valued data (matrices). An illustration of a fully banded 2D data

(matrix) is given in Figure 2.1. Note that given a reasonable complex data set, a perfect

banding can typically not be achieved, but some “best” banding is always possible. This

section provides an overview of the background to the banded pattern mining concept

explored in this thesis.

13
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The concept of banded data has its origins in numerical analysis [74] where it has

been used, for example in the context of the resolution of linear equations using the

Gaussian elimination method. The concept of bandedness has also been considered in

the context of: (i) reorderable matrices to facilitate the graphical analysis (visualisation)

of 2D data [17, 16], (ii) the discovery of Reorderable Patterns in 2D data [56, 81],

patterns of all kinds that can be revealed by rearranging the data columns and rows,(iii)

bandwidth minimisation for the purpose of gaining algorithmic efficiency benefits [25, 26]

and (iv) matrix seriation of data to maximise the human visual perception of patterns

[81, 10, 111]. In the context of banded pattern mining, the subject of this thesis, the idea

was first proposed by Gemma et al. [56]; although the focus here was on minimising the

distance of non-zero entries from the main diagonal of a 2D data matrix by considering

permutation of the original matrix (ND data matrices were not considered).

The remainder of this section is organised as follows. In Subsection 2.2.1 some

general advantages of banding are first considered; this is followed in Subsection 2.2.2

with some discussion of the application of banding. Subsection 2.2.3 then presents an

overview of the concept of banding in the context of numerical analysis. Subsection

2.2.4 considers banding in the context of reorderable matrices to support graphical data

analysis, while Subsection 2.2.5 considers banding in the context of reorderable patterns.

Subsection 2.2.6 then goes on to present the bandwidth minimisation approach to the

banding problem. Subsection2.2.7 considers banding in the context of matrix seriation.

Previous reported work on banded pattern mining is then considered in Subsection

2.2.8. The section is concluded with a summary in Subsection 2.2.9. Note that what

distinguishes the above from the work presented in this thesis is firstly that the above

methods typically use the concept of permutations, in some form or another, to identify

banded patterns; and secondly that they operate only with respect to 2D data. (because

of the resources required with respect to permutation generation). Contrary to the above

banding methods, the BPM algorithms proposed later in this thesis use the concept of a

banding score to identify bandings, this is less resource intensive and consequently can

operate with respect to ND data.

2.2.1 Advantages of Banding

Broadly, banding offers advantages in the context of data interpretation [16] and process-

ing efficiency [19, 41, 8, 89]. More specifically the advantages offered may be summarized

as follows.

1. Data Analysis: Banding may be indicative of some interesting phenomena which

is otherwise hidden in the data and tells us something of significance about the

data.
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Figure 2.1: Example of a fully banded 2D matrix [56]

2. Algorithm Efficiency: Working with banded data is seen as preferable from a

computational point of view; the computational cost involved in performing cer-

tain operations, for example multiplication, falls significantly for banded matrices

leading to significant savings in terms of processing time [35].

3. Data Storage: Related to 2, when a matrix is banded, only the non-zero entries

along or near the diagonal need to be considered. Thus, when using banded storage

schemes the amount of memory required to store the data is directly proportional to

the bandwidth (the distance of dots from the main diagonal of a matrix). Therefore

finding a banding that minimizes the bandwidth is important for both reducing

storage space and algorithmic speed-up [93].

4. Data Ordering: Banding can enhance the operation of some algorithms that

work with zero one data because it imposes an ordering on the data. One example

where this advantage can be realised is in the case of frequent itemset mining [1].

5. Data Visualisation. The reordering of zero one data provides a useful data

visualisation (especially in the case of 2D and 3D data, visualisation becomes

more challenging in ND) [16, 17].

2.2.2 Banding Application Areas

Banding has a wide range of applicability in the context of data interpretation of all

kinds. This subsection reviews a number application domains where banding has been

utilised. The aim, following on from the foregoing subsection, is to provide the reader

with a deeper understanding of the benefits of banding. Five applications are considered:

(i) Network Data Analytics, (ii) Character Analysis in Literature, (iii) Co-occurence

Analysis in Data, (iv) Linguistic Study and (v) Very Large Scale Integration (VLSI).

Each is discussed in further detail below.
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1. Network Data Analytics: Network data analytics is concerned with the repre-

sentation of the relationship between data entities. For example in a social network

the vertices might represent individuals and the edges social interactions between

those individuals. Groups of vertices might then represents communities [13]. The

banding concept can be used to identify such communities. To do this, a network

of interest needs to be represented in the form of an adjacency matrix in which

the “dots” represent vertices that are connected by an edge. Where we have di-

rected edges the “from nodes” will be listed on one axis and the “to nodes” on

the other, in the case of non-directed edges cells are filled by considering edges to

be bi-directional. By rearranging the rows and columns of the adjacency matrix

a banding can be obtained that features groupings of nodes which in turn will be

indicative of communities. A specific example can be found in [55] where an Amer-

ican football network data set from the year 2000 [95] was considered. The vertices

in the network were teams while the edges indicated who played who (edges are

undirected). The network was thus represented as a 2D, 115× 115, adjacency ma-

trix where the rows and columns both represented teams. By identifying bandings

in the data it was possible to identify groupings of teams that played against each

other in the year 2000.

2. Character Analysis in Literature: Character analysis in literature is concerned

with identifying characters that frequently appear together. Again an adjacency

matrix is constructed with characters listed on the X and Y axes. By banding

the matrix groups of characters can be identified that appear together. A specific

example can be found in [55] with respect to the work of the French author Victor

Hugo. The character adjacency matrix in this case measured 77×77. By applying

a banding algorithm to the rows and columns, clusters of characters that co-occur

were identified.

3. Co-occurrence Analysis in Data: Co-occurrence analysis is concerned with the

identification of two different categories of entity that co-exist, for example animal

species and geographic locations. The data table (matrix) in this case has one

set of entities along the X-axis and another set of entities along the Y-axis. Cells

that are filled with a dot indcate a co-existence (co-occurrence) of the referenced

entities. A specific example can be found in Juntilla et al. [106], who considered a

paleontological application. In this case the rows in the 2D binary valued matrix

represented Neolithic sites and the columns fossil genera species. By banding the

data Juntilla et al. were able to demonstrate a correlation between certain fossil

species and particular Neolithic sites.

4. Linguistics study: The objective of banding in the context of linguistic study is

to conduct comparisons of specific words used in different geographic locations to

get a better understanding of their usage. In this case the 2D matrix comprises

words along one axis and geographic locations on the other. Banding then indicates
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locations where the same word is used. An example can be found in [55] where

1334 phonological features were considered with respect to a 506 municipalities in

Finland. By banding the data a visualisation of the spatial distribution of dialect

across different municipalities could be identified.

5. Very Large Scale Integration (VLSI): VLSI is concerned with the process

of creating an Integrated Circuit (IC) by combining thousands of transistors into

a single chip. Koebe and Knochel [76] refers to the application of the banding

algorithm in this case as the “block alignment problem”, where the problem of

designing a VLSI chip layout by finding channels between the circuit component

blocks was to be established. However, the assumption here was that the terminal

positions are fixed at one end of the block and at the other end the terminals are

divided into rearranged cells that minimises the number of crossing terminals.

2.2.3 Numerical Analysis

As noted in the introduction to this section the concept of bandedness has it origin in

numerical analysis [8, 60, 113]. Broadly, numerical analysis is concerned with the reso-

lution of all kinds of problems involving “continuous mathematics”. This is exemplified

by problems involving the numerical solution of systems of m linear equations with n

unknowns (Figure 2.2). In other words systems of equations of the form Ax = b where

A is an m × n matrix [aij ] of variable coefficients (1 ≤ i ≤ m and 1 ≤ j ≤ n), b is a

“column vector” with m entries (Figure 2.3) and x is “column vector” with n entries

(Figure 2.3). The standard numerical analysis method used for resolving such systems of

equations is the “Gaussian Elimination” method [19, 48, 87]. Using this method a given

system of equations must first be converted into an augmented matrix of the system

(the augmented matrix is obtained in this case by appending the column vector b to the

matrix [aij ]). Next the augmented matrix is converted into echelon matrix form using

row operations. Finally a backward substitution method is used to arrive at the final

solution. A matrix is in echelon form if:

1. Rows consisting of entirely zero entries are grouped at the bottom of the matrix.

2. The first non-zero entry of each row is “1” called the leading “1”.

3. All the entries below the leading 1 are zeros.

Note that an echelon matrix becomes a reduced echelon matrix if the elements above

the leading 1 are also all zeros (in a standard echelon matrix only elements below the

leading 1 are all zeros).

An example of Gaussian Elimination is presented below, using the system of linear

equations shown in Equations 2.1, 2.2 and 2.3. To solve this system using Gaussian

Elimination, the system is first converted into an augmented matrix form as shown

in Figure 2.4(a). Next the augmented matrix is converted into an echelon matrix by
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Figure 2.2: System of linear equations ([74])

Figure 2.3: Example of a system represented as matrix equation ([74])

creating zeros below pivot positions in the augmented matrix as shown in Figures 2.4(b),

2.4(c) and 2.4(d). Pivot positions in this case are the elements along the leading diagonal.

The echelon matrix is obtained using the row operations: (i) R2+R1, (ii) R3+(−2)R1,

(iii) R3+(−2)R2 and (iv) (1/2)R3. Next “backward substitution”, a method of working

the equation backwards is applied to the echelon matrix to arrived at the final reduced

echelon matrix, this corresponds to the row operations: (i) R1+(−2)R3, (ii) R2+(−3)R3

and (iii) R1 + (−3)R2 to give the reduced echelon matrix form presented in Figures

2.4(e) and 2.4(f). Note that the reduced echelon matrix form of the augmented matrix

demonstrates a banded matrix with the non-zero entries about the leading diagonal.

Contrary to the Banded Pattern Mining (BPM) algorithm presented in this thesis, the

Gaussian Elimination method does not operate by reorganising the rows and columns,

but performs arithmetic operations on the rows and columns to arrive at the banded

matrix [54]. The Gaussian Elimination method works well in the context of solving

systems of equations, but does not easily scale and is unsuited to higher dimensional

data matrices.

x1 + 2x2 + 3x3 + 2x4 = −1 (2.1)

− x1 − 2x2 + 2x3 + x4 = 2 (2.2)

2x2 − 4x2 + 8x3 + 12x4 = 4 (2.3)
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: Augmented matrix Figure 2.4(a) and process for deriving a reduced
echelon matrix form

2.2.4 Reorderable Matrices

This section presents the idea of reorderable matrices that support graphical data analy-

sis. A reorderable matrix is a visualisation of 2D tabular data that supports “movement”

(swapping) of rows and columns so as to attain a “better view” of the data. The idea

is that this “better” view of the data can be obtained after the rows and columns have

been rearranged [55]. Note that this does not necessarily mean banding; but if what

is meant by a “better view” is banding, then there is clearly a relationship with the

concept of banding as presented in this thesis and reorderable matrices. The distinction

is that we are interested in automatically finding “patterns” in data that might reveal

interesting information, while reorderable matrices are concerned with facilitating exper-

imentation through visual means which might or might not feature banding (although

the reordering as envisaged in this thesis will also facilitate visualisation). Note also

that the desired visualisation produced using the idea of reorderable matrices is also

sometimes augmented using additional mechanisms. For example in [15, 17, 16] symbols

such as rectangles or circles were used to represent the data, the symbols had a relative

size that reflected the actual data values.

Bertin [16], writing in 1999, used the terms “construction” and “reconstruction” to

described respectively, the process of generating a reorderable matrix from tabular data

and the process of moving rows and columns. The same terminology will be used in this

section.

The history of reorderable matrices in data analysis dates back to the 19th century

when Petrie, an English Egyptologist, applied a reordering technique to study archaeo-

logical data [81, 91]. Since then a number of reordering methods have been used with

respect to a variety of applications. For example Forsyth and Katz [110], in 1951, were

the first to introduce the idea of rearranging the rows and columns of “sociomatrices”,

tabular representations of data collected as part of some sociometric study, so as to
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obtain a better presentation of the results of sociometric tests. Brainerd and Robinson

in [110], proposed a form of matrix; where the highest values in the matrix were located

along the prime diagonal and decreased monotonically when moving away from this

diagonal. This matrix become known as the “Robinson Matrix” or (R-Matrix).

Figure 2.5: Bertin device for matrix construction and reconstruction [116]

Figure 2.6: The reorderable matrix user interface [116]

Bertin [16] identified three reorderable matrix construction methods: (i) manual

(without computer usage); (ii) interactive, whereby users manually order matrices within

some software environment; and (iii) fully automatic. The latter is thus akin to the

banded pattern mining idea presented in this thesis. Each is discussed in some further

detail below.

(i) Manual Method: The manual approach to reordering matrices was initially con-

ducted as a “paper and pencil” exercise; the matrix in question was redrawn after
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each reordering (permutation). The process was then documented by taking a pho-

tograph of each reordering step. However, in the mid 1960, Bertins [16] developed

a device (Figure 2.5) that rendered the redrawing method unnecessary.

(ii) Interactive Method: Interactive methods use computer software to display a

given matrix and allow the user to move rows and/or columns. Figure 2.6 shows

an example user interface taken from [16]. In [116], the various operations and pro-

cesses that are typically supported within the context of interactive construction

are categorised as follows:

• Moving operations: The process of moving rows and columns to new po-

sitions in order to potentially identify interesting patterns or to compare

adjacent pairs of rows or columns.

• Threading operations: The process of “sorting” an entire matrix by moving

rows or columns in an attempt to reveal some characteristic of the data.

• Blocking operations: The process of “locking down” an area where an in-

teresting pattern is detected in order to avoid accidental change. Note that

the entire locked down area can be moved, but only in its entirety. The

locked down area can thus be considered to represent a meta-row and column

combination.

• Arranging operations: The process whereby some predefined arrangement

is implemented automatically using software. For example some threading

operation (see second bullet point above). Note that the availability of ar-

ranging operations tends towards the fully automated mode of reorderable

matrix construction (see below).

(iii) Automatic Method: The automatic approach to constructing reorderable ma-

trices uses software to entirely automate the desired reordering process. Note that

the reordering of binary matrices, as in the case of the bandwidth minimisation

problem (see below), is known to be NP-Complete [102]. Makinen and Siirtola in

[116] were amongst the first to propose an algorithmic solution to the reorderable

matrix problem where the aim was to produce a banding. Since then a number of

algorithms have been proposed in order to achieve banding in the context of re-

orderable matrices. Of note are the 2D Sort and the Barycentric (BC) Algorithms:

• 2D Sort: The 2D Sort banding algorithm was concerned with sorting a

two-dimensional matrix iteratively so as to reveal a banding whereby the

non-zero entries, called “black areas” [116] are arranged along the leading

diagonal. Although, it should be noted that 2D Sort only performed well with

respect to relatively small subset of matrices. The Sort algorithm operated

by calculating the weighted sum of rows and columns, and comprised the

following five steps:
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1. Calculate the weighted sums of rows where the weights are the column

positions of each cell.

2. Arrange rows in the matrix in ascending order of the row sum.

3. Calculate the weighted sum of columns where the weights are the row

positions of each cell.

4. Arrange columns in the matrix in ascending order of the column sum.

5. Repeat steps 1-to-4 until no further row or column changes occur.

As such the Sort algorithm has some similarities with the banded pattern

mining algorithms presented later in this thesis, although the weightings used

are calculated in a very different manner and are applicable to ND data.

• Barycentric (BC) Algorithm: The BC algorithm was originally developed

to support graph drawing where the number of edge “cross-overs” should be

minimised. Graphs of interest in this case were translated into adjacency

matrices where a “1” entry, indicated an edge between the corresponding

vertices, represented by the indicated row and column [42, 72, 78, 116], for

bipartite graph layout. As already noted adjacency matrices are akin to the

zero-one matrices of interest with respect to this thesis. The BC algorithm

operates in a similar manner to the Sort algorithm but using what are referred

to as “barycentric” values.

The difference between the 2D Sort and BC algorithm is that the former operates by

calculating the weighted row (column) sums of the location indexes of dots within each

row (column), while the latter operates by calculating the average of location indexes

of dots within each row (column). The BC algorithm has been shown to be much

more efficient than the 2D Sort algorithm [116], hence the BC algorithm was used as a

comparator algorithm with respect to the evaluation presented later in this thesis. The

BC algorithm is therefore discuss in further detail in Section 2.3.1.

2.2.5 Reorderable Pattern

The concept of banding in the context of numerical analysis was discussed in Subsec-

tion 2.2.3 and in the context of reorderable matrices in Subsection 2.2.4. This section

considers the concept of banding in the context of reorderable patterns. The idea of

reorderable patterns is akin to reorderable matrices, the idea is to reorder columns and

rows so as to reveals some pattern of interests that may not otherwise have been noticed

in the data. The distinction between the idea of reorderable patterns and that of re-

orderable matrices is that the emphasis is not on visualisation but on pattern discovery.

As such the motivation for reorderable patterns can be argued to be the same as that for

the work on Banded Pattern Mining (BPM) presented in this thesis; the distinction is

that the idea of reorderable patterns is concerned with any pre-prescribed pattern that

can be revealed by reordering the columns and rows in a 2D matrix not just banding (it

is also not necessarily directed at zero-one data).
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Thus pattern discovery in binary 2D matrices, using the idea of reorderable patterns

[11, 39], involves the reordering of columns and rows so as to reveal the presence (or

otherwise) of some pre-specified pattern P of significance to some end application; for

example the pattern might reveal some feature of the data. This can be viewed as a

generalisation of the BPM problem of interest with respect to this thesis in the sense

that the pattern we are looking for in BPM is dots arranged about the leading diagonal,

P in this case would be the locations about the leading diagonal up to a certain distance

away. Of course in the context of the domain of reorderable patterns P can be any

shape. An example is given in Figure 2.7 where P is a rectangular pattern. Figure

2.7(a) shows the original 2D matrix, while Figure 2.7(b) show the matrix after the rows

and columns have been rearranged. The assumption here is that the rectangular shape

P is significant with respect to some end application.

The challenge of reorderable patterns is finding correct permutations by which the

pattern P is revealed. This is known to be a NP-Complete problem, because it requires

a factorial number of permutations of rows and columns to reveal the hidden patterns.

A description of a general framework for the discovery of reorderable pattern will be

presented next. Consider a pattern P , describing a property (structure) which we wish

to find in a binary valued matrix A. The set A′ is then the set of all permutations of A

that can be obtained by reordering its columns and rows (A′ = {A1, A2, . . . }). We say

matrix A features pattern P , if ∃(Ai ∈ A′ ∈ P ) such that P ⊆ Ai. Given a pattern P ,

its associated reorderable pattern R(P ) will comprise all the matrices in A′, that are a

subset of P (there may be none).

(a) (b)

Figure 2.7: (a) original matrix and (b) reordered rows and columns of original matrix
to reveal a pattern of interest [56]

The idea of Reorderable Patterns, patterns that can be generated by reordering

the columns and rows in a 2D matrix is significant with respect to the work presented

in this thesis, because it has some similarity with the idea of BPM except that the

patterns of interest are not necessarily banded patterns and the data considered does

not necessarily have to be zero-one data. The disadvantage of existing approaches to

reorderable pattern discovery is that they consider all possible permutations and thus

the proposed algorithms are therefore NP-Complete.
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2.2.6 Bandwidth Minimisation Problem (BMP)

Bandwidth minimisation [25, 26, 38, 40, 58, 90] is concerned with the process of min-

imising the bandwidth of the non-zero entries of a sparse 2D matrix by permuting (re-

ordering) its rows and columns such that the non-zero entries form a narrow “band” that

is as close as possible to the leading diagonal (see Figure 2.9) [102]. More specifically,

given a sparse matrix A = [aij ], the objective is to minimise:

{max|ı− | : aij 6= 0}

An example is given in Figure 2.9 [83, 102, 112]. Thus the idea is to use row-column

permutations to transform a given sparse matrix into banded form such that the band-

width will be as small as possible. This can be achieved, if as many non-zero elements

as possible can be arranged along the main diagonal.

The Bandwidth Minimisation Problem (BMP) is a well established combinatorial op-

timisation problem which originated in the 1950s [28, 35, 103, 53], is similiar to applied

mathematics and occurs with respect to many applications in science and engineering

[102]. One reported application domain [74] is the computerised structural analysis of

steel frameworks, where the reordering of the matrix tends to be beneficial for dealing

with what are known as “inversions and determinants”. More generally matrix opera-

tions with small bandwidth tend to require less space and time. However, it should be

noted that Bandwith Minimisation of binary matrices is known to be NP-Complete [35],

as it is related to the reordering of binary matrices [93].

Figure 2.8: Example bandwidth minimisation [116]

The BMP is clearly akin to the BPM of concern with respect to this thesis. The dis-

tinction is that BMP is directed at the specific objective of minimising bandwidth to aid

further processing of the 2D matrices of interest, while BPM is directed at data analysis

(a by-product of which happens to be bandwidth minimisation and also visualisation).

2.2.7 Matrix Seriation

Seriation, also known as sequencing, is concerned with rearranging of a set of objects in

a linear order so as to reveal structural information. Seriation is an important problem

in the field of combinatorial data analysis [9]. However, due to the combinatorial nature
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of the problem, the number of possible solutions grows with respect to the problem size

(number of objects n) by O(n!). Seriation has been applied to a variety of disciplines,

including: (i) archeology and anthropology, (ii) information visualisation, (iii) sociology

and sociometry. In archeology, Patrie [52] used the concept to find a chronological order

for graves discovered in the Nile area. Here, Cross-Tabulation of graves sites and objects

was used. By rearranging the table rows and columns, graves with similar objects were

found to be closer to each other (see Figure 2.9).

Seriation as an unsupervised data mining technique that reorders objects into se-

quence along a one-dimensional continuum so that it best reveals regularity and pat-

terns within the series [82]. Thus the problem is directly related to ranking [50]. The

idea is, given a similarity matrix that contain a set of n items, that these items can be

ordered along a chain (path) such that the similarity between these items decreases with

their distance along the path (that is a total order exists). The idea is to reconstruct

the underlying linear ordering using unsorted and possibly noisy, pairwise similarity in-

formation. Atkins et al. [10] produced a spectral algorithm that solves the seriation

problem exactly in the noiseless case, by showing that for similarity matrices computed

from serial variables, the ordering of the eigenvector that corresponds to the second

smallest eigenvalue of the Laplacian matrix (the Fiedler vector) matches that of the

variables. In practice, this means that performing spectral ordering on the similarity

matrix reconstructs the correct ordering provided the items are organized in a chain

(path).

The idea of matrix seriation with respect to generating structural information by

reordering a set of object in a linear order, so as to maximise the human visual perception

of patterns and the overall trend, is significant with respect to the work presented in this

thesis, because it has some similarity with the idea of BPM except that the generated

patterns of interest are not necessarily banded patterns and the data considered might

not necessarily be zero-one data. The disadvantage of the matrix seriation problem

solutions is that they considers all possible permutations and thus the problem is NP-

Complete.

Figure 2.9: Example Matrix Seriation[82]
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2.2.8 Banded Pattern Mining

There has been some limited previous work directed at Banded Pattern Mining (BPM) as

conceived of in this thesis where BPM is defined as the identification of hidden banding

in zero-one data. Of particular note in the context of existing work on BPM is the

work of Gemma et al. [55] who proposed the Minimum Banded Augmentation (MBA)

algorithm.

The MBA algorithm operates by minimising the distance, by considering row and

column permutations, of the non zero entries (dots) from the main diagonal of a given

2D matrix. The algorithm considers a series of column permutations to produce a num-

ber of permuted matrices (ordered matrices). Each column permutation is considered

to be fixed whilst row permutations are considered. The algorithm commences by “flip-

ping” zeros and/or ones so that the rows feature what Gemma et al. refer to as the

“Consecutive-Ones Property” (C1P). The C1P for a given row is where the 1s have a

consecutive arrangement. Next the algorithm remove all the “Sperner conflicts” (see

Section 2.3.1.2 for further detail). The result is a banding for each permutation. To

determine the quality of each bandings, the MBA algorithm uses an accuracy measure

(also discussed in further detail in Section 2.3.1.2 below).

To determine the column permutations some heuristical methods were proposed in

[56] to determine suitable permutations. These heuristic methods comprised similarity

measures for comparing columns and the spectral ordering method for finding a fixed

column permutation π [56]. More specifically:

1. Correlation Similarity: Heuristic concerned with measuring the similarity be-

tween two columns [84]. The aim is to compute a value that will evaluates the

strength of the association between the columns. The correlation similarity is

defined as follow:

CorrelationSimilarity = (1 + ρa,b)/2

Where ρa,b is the Pearson coefficient between two columns a and b with value “1”

indicating similar columns and “0” indicate non overlapping columns.

2. Jaccard Coefficient: An alternative heuristic is to use an overlapping measure

computed using the “Jaccard Coefficient” which has its origins in set comparison

theory [123, 97]. It is also sometimes referred to as the “Tanimoto measure”

[70, 108]. The Jaccard Coefficient is defined by the ratio of the common elements

of two columns a and b to the number of all the different columns as follows:

JaccardCorrelation = |A∩B|
|A∪B|

Where A and B are the set interpretation for columns a and b. The intuition here

is that the Jaccard Coefficient will capture the particularities of a banded structure

where it is expected that columns will overlap.
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3. Spectral Ordering: Heuristic based on the spectral analysis [10, 14, 96, 126] of a

similarity graph over columns of a given matrix, where the columns are rearranged

so that similar columns are put as close to each other as possible. Thus given

a symmetric similarity matrix (a matrix of scores that represent the similarity

between columns), the aim is to construct a Laplacian matrix L and to find its

eigenvector v that is associated with the second smallest eigenvalue of L [49, 77,

89, 104]. The values v are then sorted to produce the column permutation π [55].

A Laplacian matrix is a matrix defined as: L = D − A (where D is a diagonal

matrix and A its adjacency graph) [67].

Two variations of the MBA algorithms have been proposed [56]; the Minimum

Banded Augmentation “Fixed Permution” (MBAFP ) and the Minimum Banded Aug-

mentation “Bi-directional Fixed Permutation” MBABFP algorithm. Both algorithms

featured the joint disadvantages of: (i) being computationally expensive, and (ii) as

consequence, being only applicable to 2D data.

The significance of the MBAFP and MBABFP algorithms with respect to this thesis

is that they were used to compare the operation of the proposed BPM algorithms. The

two variations of the MBA algorithm are therefore considered, respectively, in further

detail in Sub-sections 2.3.1.1 and 2.3.1.2 below.

2.2.9 Banded Pattern Mining Summary and Discussion

In the foregoing a number of research topics related to banding have been discussed

namely: (i) numerical analysis, (ii) reorderable matrices, (iii) reorderable patterns, (iv)

bandwidth minimisation, (v) matrix seriation and (vi) banded pattern mining. In the

case of numerical analysis the objective was not the banding itself but its usage to solve

sets of linear equations. In the case of reorderable matrices the aim was to support the

visualisation of 2D data which might be binary (but not necessarily so) and might include

banding (but not necessarily so). With respect to reorderable patterns the aim was to

determine if predefined geometric patterns exist in a given data set. Again this data set

might be binary (but not necessarily so) and the pattern being looked for might be a

banding (but again not necessarily so). Bandwidth minimisation is concerned with the

efficiency with which 2D matrices can be processed, the banding is not a goal in its own

right nor is the objective to discover the nature of any banding that might exist in the

input data. With respect to matrix seriation the aim is to reveal the similarity between

items in order to maximise the human visual perception of patterns, and the overall

trend, which might not necessarily be binary and might not necessarily be bandings.

Previous work on banded pattern mining has mostly focussed on the use of row-column

permutations. The proposed BPM algorithms have advantages with respect to all of

the above. More particularly, because the proposed mechanism does not involve the

generation of large numbers of permutations, it is not NP complete; in other words it

scales to ND data (unlike the foregoing which, to the best knowledge of the author, were

all directed at 2D data).
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2.3 Review of Selected Banding Algorithms

This section provides more detail concerning the three algorithms identified above and

used for comparison purposes later in the thesis:

1. The Barycenter (BC) algorithm [92].

2. The Minimum Banded Augmentation “Fixed Permutation” (MBAFP ) algorithm

[55, 56].

3. The Minimum Banded Augmentation “Bidirectional Fixed Permutation” (MBABFP )

algorithm [55, 56].

The BC algorithm is therefore discussed in further detail in Subsection 2.3.1 below

and the two MBA algorithms in the following two Sub-section, Subsections 2.3.1.1 and

2.3.1.2.

2.3.1 Barycenter (BC) Algorithm

The Barycentric algorithm was introduced in Subsection 2.2.4 above. As noted above

the Barycenter (BC) algorithm was originally used with respect to graph drawing algo-

rithms [78], and more recently used to reorder binary matrices [92, 116]. In essence, the

Barycentric algorithm finds permutations for both rows and columns such that non-zero

entries are as close to each other as possible. It is based on the barycenter measure,

which is the average position of 1s (dots) in a given column/row. The pseudo code for

the Barycenter algorithm is presented in Algorithm 1. The input (Line 1) is a zero-one

data set A. The output is a rearranged matrix A (Line 2). The Barycenter algorithm

computes the barycenter measure for all rows in A (Lines 4 to 6), then permutates (re-

orders) the rows in ascending order of the barycenter value (Line 7). The algorithm then

transposes the matrix AT (Line 8) again and iterates until convergence (Line 9).

Algorithm 1: The Barycenter (BC) algorithm

1: Input: An n×m binary matrix A
2: Output: Permutation of rows and columns of A
3: loop
4: for each row i ∈ A do
5: Compute barycenter for row i
6: end for
7: A′ = A with rows rearranged in ascending order of the barycenter measure
8: AT = the transpose of A′

9: Repeat process on AT until convergence (no further changes)
10: A = AT

11: end loop
12: Exit with A

A simple example illustrating the operation of the BC algorithm is given in Figure

2.10. Figure 2.10(a) gives the input matrix. As already noted the algorithm first compute
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the barycenter for each row i, this is shown in Table 2.1. The rows are arranged in

ascending order of barycenter measure as shown in Figure 2.10(b). Next the matrix

is transposed and the barycenter values are recalculated for the columns to obtain the

results shown in Table 2.2. The columns in the matrix are again rearranged in ascending

order of the barycenter measure to produce the configuration shown in Figure 2.10(c).

The process is repeated on the next iteration. However in this case the same barycenter

measures are produced (indicating that no further changes can be made).

(a) input matrix (b) Rows rearranged (c) Columns rearranged

Figure 2.10: Example illustrating the Barycenter (BC) Algorithm [116]

Table 2.1: Calculation of barycenter values for row

Index Weighted sum of dots (index) Sum of Dots barycenter

1 (1 ∗ 2) + (2 ∗ 4) = 10 1 + 2 = 3 3.33

2 (1 ∗ 1) + (2 ∗ 3) + (3 ∗ 5) = 22 1 + 2 + 3 = 6 3.67

3 (1 ∗ 2) + (2 ∗ 4) + (3 ∗ 5) = 25 1 + 2 + 3 = 6 4.17

4 (1 ∗ 1) + (2 ∗ 2) + (3 ∗ 3) = 14 1 + 2 + 3 = 6 2.33

Table 2.2: Calculation of barycenter values for columns

Index Weighted sum of dots (index) Sum of dots barycenter

1 (1 ∗ 1) + (2 ∗ 2) = 5 1 + 2 = 3 1.67

2 (1 ∗ 1) + (2 ∗ 3) + (3 ∗ 4) = 19 1 + 2 + 3 = 6 3.17

3 (1 ∗ 1) + (2 ∗ 2) = 5 1 + 2 = 3 1.67

4 (1 ∗ 3) + (2 ∗ 4) = 11 1 + 2 = 3 3.67

5 (1 ∗ 2) + (2 ∗ 4) = 10 1 + 2 = 3 3.33

The BC algorithm uses what is referred to as the Mean Row Moment (MRM) to

evaluate the quality of the bandings produced. This is calculated as shown in Equation

2.4, where aij is the jth entry in row (column) i and n is the number of columns (rows)

MRM =

∑n
j=1 j � ai,j∑n
j=1 ai,j

(2.4)
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2.3.1.1 Fixed Permutation (MBA) Algorithm

The MBA algorithms, the MBAFP algorithm described in this Sub-section and the

MBABFP algorithm described in the following Sub-section, have significant similarity.

Firstly, in both cases, banding is defined as follows. A matrix is fully banded if there

exists a column permutation π and a row permutation κ whereby:

1. For each row/column the dots appear in continuous sequence [a, b] where a and b

are the start and end indices; the row/column is thus said to features the consec-

utive dots property [20, 65, 68, 101, 122, 124, 125, 128].

2. For each pair of rows i and i+ 1, that feature the consecutive dots property, with

sequences [ai, bi] and [ai+1, bi+1], ai ≤ ai+1 and bi ≤ bi+1. In other words the

matrix rows should be “stepped”. In [55] this requirement is presented in terms of

Sperner families of sets. A Sperner family, named after the German mathematician

Emmanuel Sperner, is a collection of sets where, for any pair of sets, neither is a

proper subset of the other.

Secondly both MBA algorithms operate using a given fixed column permutation

π. Thus, at first glance, to find a best banding all column permutations need to be

considered. Given m columns there will be m! permutations, However, the requirement

of the consecutive dots property, assuming full banding exists, means that some column

permutations will not need to be considered. In [55], it is suggested that the concept of

an “incompatibility graph” is used, a bipartite graph where the vertices are column index

pairs and the edges represent incompatibilities, to generate permutations. Alternatives

are suggested in [55].

The above all assumes that a full banding exists, in practice this is often not the

case, the solution embedded in both algorithms (but in different ways) is to “flip” zeros

to ones (no-dots to dots) and ones to zeroes (dots to non-dots). The MBAFP algorithm

considered in this sub-section only flips zeros to ones. Of course this serves to introduce

dots that were not in the original data set but it is argued that this is justified where

non-dots actually represent “dont knows”. Once a “best” banding has been identified

the newly introduced dots can be removed to ensure compatibility with the original data

set. A good solution is one that minimizes the flips. Note that the row ordering is not

changed.

The pseudo code for the MBAFP Algorithm is presented in Algorithm 2. As noted

above the pseudo code assumes a given column permutation π. Recall also that the

MBAFP only allows 0-to-1 flips. The basic idea behind the Algorithm is to: (i) process

the input matrix M so that it features the C1P and (ii) then resolve all Sperner conflicts

between rows. The inputs to Algorithm 2 (Line 1) are: (i) a zero-one matrix M and

(ii) a fixed column permutation π. To enforce the C1P, all possible 0s entries falling

between 1s for each row in Mπ (column permutation) (Lines 4 to 6) will be flipped.

Next the Sperner conflicts between rows of the given matrix Mπ are removed (Lines 7
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to 13), by ensuring that all row intervals have a pairwise overlapping sequence of rows;

that is any two given rows Mi and Mj will form a Sperner family of intervals.

Note that a matrix is said to have “Sperner conflicts”, if the rows do not form a

Sperner family of intervals: Two rows Mi = [a, b] and Mj = [a′, b′] with C1P, where

i 6= j, will form a Sperner family of intervals if they are overlapping such that a < a′

and b′ < b. Since only 0 to 1 flips are allowed, the solution is to extend the row intervals.

Here an extension of Mi = [a,b], refers to updating the endpoints of the interval for a

new endpoint [a′, b′] such that: a ≤ a′ and b′ ≤ b or a′ ≤ a and b ≤ b′. Note that at

every step the algorithm takes a row Mπ
i and computes its optimal extension.

This is done by selecting all the super-intervals Mπ
j � Mπ

i and checking all the

potential extensions for Mπ
i that could resolve the Sperner conflicts in row i with respect

to row j. An extension of Mπ
i that will resolves all Sperner-conflicts for that row which

can either be: (i) a left-hand side extension to the leftmost Mπ
j �Mπ

i (Line10 (A)), (ii) a

right-hand side extension to the rightmost Mπ
j �Mπ

i (Line 11 (B)) or (iii) extensions to

both the left and right hand sides with combination of two super-intervals (Line 12 (C)),

by checking the start point of each Mπ
j � Mπ

i in combination with the rightmost end

point from all other super-intervals Mπ
κ �Mπ

i . The algorithm then takes the extension

with the fewest transformations for row i.

Algorithm 2: The Fixed Permutation (FP) MBA Algorithm

1: Input: An n×m binary matrix M and column permutation π
2: Output: A permutation of κ rows
3: Mπ = The Input matrix M with permutation π imposed on it
4: for each row i ∈Mπ do
5: Flip 0s falling between the first and last 1s
6: end for
7: for each row i ∈Mπ featuring a consecutive dots sequence [a, b] do
8: C = {Mπ

j = [aj , bj ]| Mπ
j ≺Mπ

i } row j is contained in row i // conflicting rows
9: Extend Mπ

i = [x, y] from the following options so that y − x is minimum:
10: (A) x = min{aj |[aj , bj ] ∈ C} and y = b
11: (B) x = a and y = max{bj |[aj , bj ] ∈ C}
12: (C) x = aj and y = max{bk|[ak, bk] ∈ C, ak < aj}, for every Mπ

j = [aj , bj ] ∈ C
several combinations of a and b

13: end for
14: Sort the rows [a,b] of Mπ in ascending order of as, resolving ties with ascending

order of their bs

A simple example illustrating the operation of the MBAFP algorithm is given in

Figure 2.11. Figure 2.11(a) gives the input matrix. As already noted the algorithm

first assumes that the column permutation Mπ is given before hand, the algorithm

then needs to transform “0s” falling between “1s” so that the input matrix features

the consecutive-ones relation, this corresponds to flipping one 0 in the first row of the

matrix to a 1 entry as shown in Figure 2.11(b). Second the algorithm resolves the

Sperner conflicts between the rows. Note that there is a conflict between the second

and third row, and this can be resolved by flipping the bottom right “0” entry to a “1”



Chapter 2. Literature Review and Previous Work 32

entry as shown in Figure 2.11(c). The matrix is fully banded for this permutation after

making two 0-to-1 flips. The Bidirectional Fixed Permutation MBABFP variation of the

MBA algorithm is discussed next in following subsection.

(a) (b) (c)

Figure 2.11: Example illustrating the MBA Fixed Permutation (MBAFP ) Algorithm
[56]

2.3.1.2 Bi-directional Fixed Permutation (MBA) Algorithm

The Minimum Banded Augmentation Bidirectional Fixed Permutation (MBABFP ) vari-

ation of the MBA algorithm is presented in this sub-section. As before the description is

given in terms of a given column permutation π. Note that a good column permutation

tends to put similar columns close to each other. As noted above, the Jaccard Coeffi-

cient was used as a column similarity measure where the similarity measure returns the

value 1 when two columns are similar and 0 for non-ovalapping columns. The spectral

ordering in [56], on the other hand, was used to find a fixed column permutation π

on matrix M . The distinction between the two variations is that the former (MBAFP )

algorithms addresses the CIP only by flipping zero (0) entries to one (1) entries, while

the latter (MBABFP ) operates by flipping both zero (0) to one (1) entries and one (1)

to zero (0) entries. Given a row in M , to decide whether to flip from a zero to a one or

vice-versa, a weighting scheme was used whereby dots are given a “+1” and non-dots

a “−1”; the combination of flips that is closest to the sum of the original weightings is

then the most desirable. As before the MBABFP algorithm first adjusts the matrix so

that it features C1P and then resolves the Sperner conflicts between the rows. In [55],

the MBABFP algorithm is described as follows [55]; given a binary matrix M , find the

minimum number of bidirectional flips (flips from both zero (0) to one (1) entries and

one (1) to zero (0) entries) so that M becomes fully banded.

The pseudo code for the MBABFP algorithm is presented in Algorithm 3: The input

(Line 1) is a zero-one matrix M and a column permutation π. The algorithm considers

an n×m matrix M of weight W , where each one entry (dot) will be given a weight of

“+1” and each zero entry (no dot), a weight of “−1” (see Equation 2.5 in [56]). The

C1P for the bidirectional flips for Mπ, corresponds to solving the “maximum sub-array

problem” on weight W π
i . The objective of solving the maximum sub-array problem is,

given an array of numbers, to find the sub-array with the maximum sum of the numbers.

Note that it was established that this problem can be solved in Linear time with respect
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to the size of the array using the scan-line algorithm [33]. Furthermore, this method

returns interval boundaries which are used to solve the C1P on Mπ, by setting the fields

in Mπ to 1 (dot) and others to 0 (no dot) (Lines 4 to 8). Next the algorithm deals with

removing the Sperner conflicts between the rows of Mπ as described above. Note that

additional flips on the rows of Mπ are required so that the rows have the Sperner family

of intervals property. Let M̃ be the binary matrix M augmented with Mij = Mπ
i \Mπ

j ,

for every two rows Mπ
i ⊂ Mπ

j , M will be fully banded if and only if M̃ has C1P (see

proof in [55]). To remove all Sperner conflicts (Lines 9 to 16) between the row intervals

in Mπ, the algorithm will go through all the extra rows described in M̃ , thus solving

the maximum sub-array problem on the rows. Lastly, additional flips are required on

the extra rows to establish a C1P. Finally, the rows in Mπ are updated according to the

changes made over M̃ to get a banded matrix.

Algorithm 3: The Bidirectional Fixed Permutation (BFP) MBA Algorithm

1: Input: An n×m zero-one matrix M and a column permutation π
2: Output: A permutation κ of rows
3: Mπ = The Input matrix M with column permutation π imposed on it
4: for each row i ∈Mπ do
5: Let the weight vector for row i on matrix M be W π

i

6: Let the solution to the maximum consecutive subarray on W π
i be [a,b]

7: Update Mπ
i = [a,b]

8: end for
9: for each pair of row i, j ∈Mπ do

10: if Mπ
i ⊂Mπ

j then
11: Let Mπ

i \Mπ
j = A

12: Let the weight vector for A be WA

13: Let the solution to the maximum consecutive subarray on WA be [a,b]
14: Update Mπ

i so that it preserve Mπ
j \Mπ

i = [a, b]
15: end if
16: end for
17: Sort the rows [a,b] of Mπ in ascending order of as, resolving ties with ascending

order of their bs

It is note worthy that the MBA algorithms uses an accuracy (Acc) measure to

evaluate the performance of the banding produced and this is calculated as shown in

Equation 2.6; where (i) TP (true positives) is the number of 1s entries in the rows (or

columns) that remained unchanged, (ii) TN (true negatives) is the number of 0s entries

in the rows (or columns) that remained unchanged, (iii) FP (false positives) is the

number of 0 entries that have been transformed into a 1, and (iv) FN (false negatives)

is the number of 1s entries that have been transformed to a 0.

W (ij) =

+1 if Mij = 1

−1 if Mij = 0
(2.5)
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Acc =
TP + TN

TP + TN + FP + FN
(2.6)

A simple example illustrating the operation of the MBABFP algorithm is given in

Figure 2.12. Figure 2.12(a) gives the input matrix. As before the MBABFP algorithm

first assumes the column permutation Mπ is given before hand, the algorithm then needs

to transform the matrix so that it features the C1P for each row. In this example, this

corresponds to flipping the second “0” entry in the first row to a “1” entry as shown in

Figure 2.12(b). Secondly, the MBABFP algorithm resolves the Sperner conflicts between

the second, third and fourth rows, this will be resolved after flipping the last “1” entry

in the second row to a “0” entry as shown in Figure 2.12(c).

(a) (b) (c)

Figure 2.12: Example illustrating the MBA Bidirectional Fixed Permutation
(MBABFP ) Algorithm [56]

2.4 Data Mining And Knowledge Discovery in Databases

(KDD) Process

Given that the number of large data sets that are electronically available keeps increas-

ing, the assumption is that there is an increasing amount of valuable hidden knowledge

within this data. The suggestion is that the discovery of this knowledge may be useful

to decision makers and stakeholders. At its simplest the data is stored in relational

databases. However, query languages like SQL (Structured Query Language) are not

well suited to the discovery and extraction of the hidden knowledge that is believed to ex-

ist, such as relationships and/or patterns. The identification of such knowledge requires

alternative more sophisticated tools and mechanisms; this is the domain of Knowledge

Discovery in Databases (KDD). Banded patterns, as presented in this thesis, are a form

of hidden knowledge. Hence, the material presented in this thesis is considered to fall

within the domain of KDD.

The term Knowledge Discovery in Databases (KDD) and Data Mining (DM) have

been used interchangeably to describe the overall process of extracting or discovering

useful and meaningful information from data. However, in this thesis, and in line with

many other authors, the definition presented in [45] is used; KDD is the overall process
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of discovering useful information and knowledge (banded patterns with respect to this

thesis) from data, while DM is the sub-process within the overall KDD process where

data discovery takes place (hence banded pattern mining).

KDD integrates a number of processes, from raw data preparation prior to the ap-

plication of DM to final result visualisation. Figure 2.13 shows a schematic of the KDD

process as suggested by [23, 45, 85]. With reference to the figure each step is described

in further detail in Sub-section 2.4.1. Sub-section 2.4.2 is then directed at the DM stage

in particular. One of the motivations presented earlier in this thesis (see Subsection

2.2.1) was the conjecture that banding enhances the efficiency of certain data mining

operations. To demonstrate this, later in this thesis, a particular data mining approach

known as Frequent Itemset Mining (FIM) is considered. So that the reader has the

appropriate background knowledge concerning this DM technique the FIM process is

presented in Subsection 2.4.3.

Figure 2.13: KDD process functional steps [45]

2.4.1 The KDD Process

The KDD process as noted above, encompasses a number of stages as follows

1. Selecting and Understanding the application domain: The first stage is to

define the KDD problem’s scope and boundaries and to develop an understanding

of the application domain and the relevant prior knowledge. During this stage the

goals of the KDD exercise, from the end user point of view, are identified.

2. Data Cleaning and Preprocessing: This second stage is concerned with data

preparation. This stage comprises operations such as: the removal of noise or

outliers and the application of strategies for handling missing data.

3. Data Reduction and transformation: Often we do not require all the data, or

cannot process all the data. This stage thus involves finding the most useful fea-

tures to represent the data (feature selection). Dimensionality reduction methods
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are sometimes used to reduce the effective number of variables under considera-

tion. The data to be mined is also sometimes not in a format to which DM can

be applied and thus will need to be transformed into an appropriate format.

4. Data Mining: The data mining stage involves the actual searching for the hidden

knowledge of interest. For example patterns, classification rules, decision trees,

regression models or cluster configurations.

5. Evaluation: The final stage of the KDD process is the analysis of the data mining

results obtained. This may include the use of visualisation technique to help

analysts decide the utility of the extracted knowledge. The bandings identified

with respect to the work presented in this thesis may be argued to be a form of

visualisation.

The above process is equally applicable to banded pattern mining, as presented in

this thesis, although some of the stages required little attention. Typically there is no

need for “removal of noise or outliers” and typically there is no “missing data” (Stage

2). Similarly there is also no need for data reduction although the data does need to be

transformed into a zero-one format. How this was done with respect to the data sets used

for the evaluation reported on later in this thesis is described in the following chapter,

Chapter 3. The following subsection, Subsection 2.4.2, considers the Data Mining stage

(Stage 4) in more detail because of its significance with respect to this thesis.

2.4.2 The DM KDD Sub-Process

Data Mining (DM) is defined as the application of specific algorithms for extracting

patterns from data [23, 45, 85]. As noted above, it is the central element of the KDD

process. In [45], the goals of data mining are summarised using a figure, this figure has

been reproduced here; Figure 2.14. From the figure we can identify two high level goals:

(i) verification and (ii) discovery. Verification is directed at validating certain hypotheses

and discovery at finding patterns in data. The discovery goal is further subdivided into:

(i) prediction and (ii) description. Prediction is concerned with the discovery of patterns

indicative of future behaviour, while description is concerned with patterns that can be

used to represent facets of data. Thus, a DM activity such as classification is associated

with the prediction goal while activities such as clustering and frequent item set mining

(discussed further in Subsection 2.4.3 below) are associated with the description goal.

The banded pattern mining proposed in this thesis is also concerned with the description

goal.

2.4.3 Frequent Item-set Mining (FIM)

Frequent Itemset Mining (FIM) is concerned with finding patterns in (typically 2D)

binary data sets [2, 71, 127]. As noted above, the significance with respect to the work

presented in this thesis is that the operation of FIM algorithms, with and without banded
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Figure 2.14: Data Mining Goals [45]

data, can be used as an indictor of one of the claimed advantages of banding. Namely

that banding introduces efficiency savings with respect to some algorithms that operate

using binary valued matrices. This section describes the FIM algorithm used for such

comparison as reported on later in this thesis.

FIM has been widely reported in the literature typically in the context of transaction

data [1, 2, 22, 59]. Transaction data is data exemplified by supermarket basket data.

Frequency in this context is defined in terms of an occurrence count which must be

greater than a given threshold σ expressed in terms of a percentage of the number of

records in the data set under consideration. There are a great many FIM algorithms

that can be adopted, well known examples are Apriori [80] and FPgrowth [21]. For the

evaluation reported later in this thesis any existing algorithm could have been used,

however, the Total From Partial (TFP) FIM algorithm [4, 30] was selected because the

source code for this algorithm was readily available to the author.

The TFP algorithm is an established Frequent Pattern Mining (FPM) algorithm that

utilises the concept of a set enumeration tree structure called a P-tree (Partial support

tree) for fast lookup purposes and a second tree to hold support values called the T-tree

(Total tree) [5, 30]. TFP is itself an extension of an earlier algorithm called Apriori-T

which used only a T-tree. The T-tree is described as a reverse set enumeration tree, and

is argued to offer advantages in terms of time and storage effeciency when generating

frequent patterns [32, 51]. Details of the TFP algorithm, together with further details

concerning the P-tree and T-tree can be found in [4, 31].

2.5 Sampling and Segmentation Techniques

This section presents an overview of data sampling and segmentation. The significance is

that sampling and segmentation are used later in this thesis as mechanisms for processing

very large data sets (data sets that cannot be held in primary storage). Subsection 2.5.1

below considers sampling, while Subsection 2.5.2 considers segmentation.
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2.5.1 Sampling Technique

Sampling technique is concerned with the selection of a representative subset of a given

data set [24]. The term is often used in connection with market analysis where the view of

a “sample” of a population is sought so as to estimate the characteristics of a population.

In other words, given knowledge of a sample, inferences can be made regarding a whole

population. An example can be found in [79], where a sampling approach was used to

obtain data from homeless communities in order to estimate the prevalence of mental

disorder and assess the services needed by those communities. Further examples can be

found in [66, 37, 121]. A review of sampling techniques for market analysis is presented in

[24]. A summary of these techniques is presented in Table 2.3 taken from [24], including

advantages and disadvantages.

Table 2.3: Summary of Sampling Methods [24]

Sampling Method Advantages Disadvantages
Methods Summary

Simple A sampling method • Easy to generate. • If data set is
Random where each records in • Avoids bias. large method becomes

a data set under impracticable.
consideration has • Poor Represent-
an equal chance of ation of overall
being selected. data set.

Systematic Method used with • More precise • Biased.
Selection respect to stream data. than random • Under or Over

sampling. representation of
• Good coverage of data set likely.
data set.

Stratified Method whereby • Provides highly •Number of sub-
Sampling the data set is representative groups must be

divided into subgroups sample. predetermined.
(strata) and samples • Correlations and • Sampling frame
are randomly taken comparisons can has to be prepared
from each subgroup. be made. seperately for each

• Different sampling stratum.
approaches can be
applied to different
stratum.

Cluster Method whereby • Reduction in cost • More complicated
Sampling a clustering of preparing a than other sampling

algorithm is applied sampling frame. methods.
and representaive • Systematic.
samples selected • Suited to very
from each cluster. large data sets.

In the context of data mining, as already noted above, sampling is used where the

data set (population) under consideration is too large to be processed as a whole, by

processing a subset; the results are then assumed to be representative of the entire data
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set. For this assumption to hold the selected subset must be as representative of the

data as a whole as possible. There are various techniques which can be adopted to

achieve this [24]: (i) Simple Random Sampling, (ii) Systematic Selection, (iii) Stratified

Random Sampling and (iv) Cluster Sampling.

With respect to the work presented later in the thesis, a stratified sampling technique

was adopted, whereby the data is subdivided into subgroups; k records were then ran-

domly selected from each subgroup. The nature of this stratification will become clearer

later in this thesis in Chapter 9. The resulting sample was then used for banded pat-

tern mining and the identified banding applied to the entire data set. The reason for

adopting the stratified sampling technique was that it was considered to provide for a

more representative sample of the entire data set than the other sampling methods listed

above.

2.5.2 Segmentation technique

Segmentation in the context of data mining is a concerned with dividing a given data set

into a collection of “chunks” called segments and then analysing each segment individ-

ually (or only selected segments). Segmentation is an alternative technique to sampling

for mining large data sets. Sampling has the principal disadvantage that it can never

be guaranteed to be representative of the entire data set from which it is drawn. There

is also a general view in the data mining community that wherever possible the entire

data set should be taken into consideration to ensure good data mining results. Segmen-

tation offers a solution to these criticisms of sampling. In addition segmentation lends

itself to parallelisation/distribution. The challenges of segmentation are: (i) how best

to divide the data up so each segment has a similar representative chunk of the data

and (ii) how to combine the data mining results (contradictory data mining outcomes

may be obtained with respect to different segments). The work described in this thesis

adopted the following: (i) segmentation technique and combination using the best GBS

and (ii) segmentation technique and combination using the most frequent configuration

to identify a best banding.

It should also be noted that the term segmentation is much used in scientific literature

but often in alternative contexts to that considered in this thesis. For example the term

is frequently used in the context of marketing to identify potential “client segments”

(consumers or businesses) [114, 61] and in image analysis to isolate objects of interest

in images [115]. However, marketing and image segmentation is different from data

segmentation, and thus not of interest with respect to this thesis.

2.6 Evaluating Criteria

This section discusses the evaluation metrics used to measure the quality of the bandings

produced by the banding algorithms proposed later in this thesis and the comparator

algorithms. The latter was undertaken in two manners:
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1. Comparison of the quality of the generated banding with respect to the alternative

banding algorithms and variations of such algorithms.

2. Comparison of the effectiveness of the generated bandings, with respect to the

alternative banding algorithms and variations there of, in terms of efficiency with

respect to established mechanisms that manipulated large collections of binary

valued data; namely Frequent Item-Set Mining (FIM).

The first was directed at the quality of the bandings produced. While the second was

directed at investigating the suggested advantage that the proposed banding mechanism

can provide in terms of the run time efficiency with respect to various mechanisms for

manipulating binary valued matrices. More specifically, as already noted, FIM was used.

The metric used in this case was runtime.

In terms of the quality of the bandings produced, as noted earlier in Chapter 1,

the algorithms proposed in this thesis seek to minimise the concept of a Global Banding

Score (GBS), one of the main contributions of this thesis. When comparing the proposed

algorithms with the BC, MBABFP and MBAFP algorithms, that do not seek to minimise

GBS, it seemed unfair to do this in terms of GBS. Recall from earlier in this chapter

that the BC algorithm uses Mean Row Moment (MRM); whilst the MBA algorithms

uses accuracy (acc). Consequently, for the purposes of conducting comparisons, an

independent measure was proposed and adopted with respect to the evaluation presented

later in this thesis; namely the Average Band Width (ABW).

The ABW measure is the average distance of dots from the diagonal measured ac-

cording to the distances of the normals from the diagonal to each dot (Equation 2.7,

where D is the set of dots (with each dot defined in terms of a set of cartesian coor-

dinates) and maxABW is the maximum possible ABW value given a particular data

matrix size.

ABW =

∑i=|D|
i=1 distance di from leading diagonal

|D| ×maxABW
(2.7)

2.7 Summary

This chapter has presented a general background to the concept of banded patterns so

as to provide the reader with an appropriate level of background knowledge with re-

spect to the work presented later in this thesis. This chapter commenced by considering

the advantages/disadvantages of banding and some example application domains. More

specifically banded patterns were discussed in the following contexts: (i) numerical anal-

ysis, (ii) reorderable matrices, (iii) reorderable patterns, (iv) bandwidth minimisation

and, of course, (v) banded pattern mining. This was followed by a general overview of

Knowledge Discovery in Databases (KDD), and Data Mining (DM) in particular, so as

to place the proposed banded pattern mining in the context of KDD. Finally, the criteria

used to evaluate the performance and the significance of bandings was presented. Based
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on the literature review presented in this chapter, it can be noted that the challenge of

the reported relevant work on banded patterns has been: (i) the generation and test-

ing of large numbers of permutations and (ii) that the algorithms only operate in 2D.

However, this is not the case with respect to the proposed BPM algorithms presented

later in this thesis. As noted previously in the introductory chapter to this thesis one of

the research issues to be addressed by the work described in this thesis is to investigate

effective algorithms that avoid the need to consider large numbers of permutations and

operate in ND data. The work described in this thesis proposes the Banded Pattern

Mining series of algorithms which is based on the concept of banding scores. The next

chapter introduces the data sets used in this thesis for evaluation purposes.



Chapter 3

Evaluation Datasets

3.1 Introduction

This chapter describes the data sets used for evaluation purposes with respect to the

work presented in this thesis. These data sets can be categorised as follows: (i) randomly

generated sythentic data sets, (ii) UCI data sets and (iii) cattle movement data sets.

The first two categories comprised 2D data sets only, to allow comparison with existing

algorithms, while the third category comprises data sets of higher dimension. Amongst

the UCI data sets, some were selected because they are frequently used within the data

mining community and others so that a good spread of different sized (in terms of

numbers of rows and columns) data sets, with different “densities”, could be considered.

For the cattle movement data sets, the data sets were extracted from the GB cattle

movement database; they were specifically constructed by the author for the purpose of

conducting the desired evaluation presented later in this thesis. In the case of the UCI

and cattle movement data sets it was necessary to adopt a mechanism whereby the data

could be converted into a binary (dot) format.

The rest of this chapter is organised as follows: the synthetic data sets are introduced

in Section 3.2, the UCI data sets in Section 3.3 and the cattle movement data sets in

Section 3.4. Section 3.5 then concludes the chapter with a summary of all the data sets

employed in this thesis.

3.2 Randomly Generated Sythentic Data

The synthetic data sets were used specifically to evaluate the 2D-BPM algorithm pro-

posed later in this thesis (Chapter 4). The data sets were generated using the random

data generator proposed in [29]1; this was originally intended to produce data sets for

use in evaluating Association Rule Mining (ARM) algorithms but is equally applicable

in the context of banded pattern mining. Note that the random data generator software

could have been extended to generate ND data; however the reason for not doing this

1The LUCS-KDD Data generator software is available at http:// www.csc.liv.ac.uk /∼frans /KDD
/Software / LUCS KDD DataGen Generator.html

42
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was that the 2D case is a special case of the ND case. The inputs to the data genera-

tor were: (i) the desired number of attributes (columns) m, (ii) the desired number of

records (rows) n and (iii) the required density d. Density (d) is the percentage of cells

that contain dots in the required data set.

Algorithm 4 illustrates the synthetic data generation process. The inputs are the

desired n, m and d values. The output is a collection of Dots D. Dots are allocated to

cells 〈i, j〉 in a weighted random manner. The weighting could simply be done according

to d but this would mean each column would be likely to have the same number of dots,

an unbalanced distribution of dots was preferred because this was considered to be more

“realistic”. So that an unbalanced distribution is achieved each column is allocated a

probability value weighted by the desired density. This is done in (Lines 7 to 13) of the

algorithm. We commence by defining a set P of size m to hold the column probability

values (Line 7). For each item pi in P we allocate a random value between 0 and 100

(Line 9). We use a range of 0 to 100 for the probability values, rather than the more

usual range of 0.0 and 1.1, because the value for d is presented as a percentage. We

then adjust each value for pi so that it is weighted by d (Lines 9 and 11). How the

adjustment is done depends on whether d is greater or less than 50. Note that if d = 50,

there is no need for any adjustment. We then (Lines 14 to 21) consider each cell in the

data matrix in turn, and for each cell, generate another random number r between 0 to

100. We then compare r with the appropriate pi value, if r < pi the cell reference is

added to the set D. On completion, we have a collection of dots within a data matrix

where the density approximates to d (the exact desired density is unlikely to be achieved

because of the random elements included in the process) and the number of dots is not

balanced across the columns. Data sets generated in this manner were labeled using the

following format {n . . . ,m . . . , d . . . }. For example the label n100, m20, d50 indicates

a data set where n = 100, m = 20 and d = 50. Further details concerning individual

synthetic data sets used with respect to the evaluations reported on later in this thesis

are presented as appropriate.

3.3 University Of California Irvine (UCI) Data sets

This section briefly reviews the UCI data sets used with respect to the evaluations

presented later in this thesis. The UCI machine learning data repository [18] was created

in 1987, as an archive for benchmark data sets for use by the data mining and machine

learning community. Twelve data sets were selected from this repository in such a way

that they collectively featured a range of column sizes (m) and row sizes (n). In each

case the data was discretised/normalised using the LUCS-KDD (Liverpool University

Computer Science - Knowledge Discovery in Data) DN (Discretisation/Normalisation)

software [29]. Note that the reason for discretising and normalising the twelve selected

data sets used in this thesis was that they were continuous valued data sets and as such
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Algorithm 4: Random Data Generation Algorithm

1: Input:
2: n = Number of rows.
3: m = Number of columns.
4: d = Density.
5: Output:
6: D = Collection of dots
7: P = {p0, p1, . . . , pm−1} Set of m column probabilities
8: loop
9: for i = 1 to i = m do

10: pi generate random value between 0 and 100
11: if (d < 50) then
12: pi = pi − (pi∗d50 )
13: else
14: if (d > 50) then

15: pi = pi + ( (100−pi)∗(d−50)50 )
16: end if
17: end if
18: end for
19: for i = 0 to i = m do
20: for j = 0 to j = n do
21: r = random number between 0 and 100
22: if (r < pi) then
23: D = D ∪ 〈i, j〉
24: end if
25: end for
26: end for
27: end loop

required preprocessing into the desired zero-one format. Note also that there are very

few zero-one benchmark data sets available in the UCI collection.

According to [29], discretisation is the process of categorizing continuously valued

data attributes into sub-ranges such that each sub-ranges is identified by a unique inte-

ger label (column number). Normalisation on the other hand is the process of converting

data attributes with nominal values into unique integer label/column formats. Discreti-

sation can be conducted in two manners:

1. Equal Size Discretisation (ESD) where the “dots” are equally distributed

across a number of sub-ranges; each sub-range defined so that it holds approxi-

mately the same number of dots.

2. Equal Width Discretisation (EWD) where the ranges are all of equal length,

which in turn usually means that the dots will not be equally distributed across

the sub-ranges.

With respect to the UCI data sets EWD was used.
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The LUCS-KDD-DN software was originally developed to convert data files available

in the UCI data repository into a binary format suitable for use with Association Rule

Mining (ARM) software. However the software could clearly equally well be used with

respect to other application domains that require binary valued (zero-one) data such as

the banded pattern mining application domain of interest with respect to this thesis.

Some statistical information regarding the selected UCI evaluation data sets is given

in Table 3.1. In the table the data sets are listed in order of n (number of records). In

each case the density value was calculated using equation 3.1.

Table 3.1: Statistical summary of selected UCI data sets

Name Num Num. Num. Density

Records (n) Columns (m) Dots (d)

Lympography 148 59 2812 32.20

Hepatitis 155 56 3100 35.71

Wine 178 68 2492 20.59

Heart 303 52 4242 26.92

HorseColic 368 85 8464 27.06

Annealing 898 73 35,022 53.42

Mushroom 8124 90 186,852 25.56

Waveform 5000 101 110,000 21.78

PenDigits 10992 89 186,864 19.10

LetRecognition 20000 106 340,000 16.04

ChessKRvK 28056 58 196,392 12.07

Adult 48842 97 732,630 15.46

D =
Num. Dots

n×m
× 100 (3.1)

A feature of the UCI data sets is that they are all 2D; the columns represent specific

attribute and the rows records. Once discretised the columns represent attribute-values

(or in some cases ranges of attributes). Whatever the case the situation where a “cell”

may have more than one dot will not arise. It can also be noted that rearranging the

record and attribute ordering will not adversely affect the information contained in the

data sets in any way.

3.4 Great Britain (GB) Cattle Tracing System

The randomly generated and UCI discretised data sets were all 2D in nature. This

section introduces the ND data sets extracted from the database associated with the

Great Britain (GB) Cattle Tracing System (CTS). The database is maintained by the

UK Department for Environment, Food and Rural Affairs (DEFRA) and records all
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the movements of cattle registered within, or imported into GB. The CTS database has

been previously studied by a number of authors [62, 98, 109], but not in the context of

banding; however the CTS data provides a good example of a large multi-dimensional

(ND) data set. Overall the data set was conceptualised as comprising five dimensions: (i)

records, (ii) attributes, (iii) “Eastings” (x coordinates of holding areas), (iv) “Northings”

(y coordinates of holding areas) and (v) Time. In its raw form each record represents

a single animal moved; however, so as to make the data more manageable, some pre-

processing was applied so as to collapse records that were identical except for the ID

of the animal moved (an extra attribute,“number of animals moved” was added to

compensate). The CTS data sets can be viewed in terms of a graph where the vertices

represent holding areas and the edges cattle movements. To get a better appreciation of

this graph conceptualisation of the CTS data, Figure 3.1(a) shows the vertices (holding

areas where cattle were either moved from or moved to), and 3.1(b) the associated edges,

with respect to data for the month of January 2013. It is interesting to note from Figure

3.1(a) that the shape of GB can be clearly identified. Figure 3.2 presents a close up of

a section of the map given in Figure 3.1(a) that features North Wales and parts of the

north-west coast of England.

(a) (b)

Figure 3.1: January 2013 GB cattle movement data: (a) vertices (locations) and (b)
edges (cattle movements)
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Figure 3.2: Close up of Figure 3.1(a) showing North Wales and part of the west coast
of England

For the experimental analysis reported on later in this thesis, data sets from 2003

to 2006 across four specific counties were extracted, namely: Aberdeenshire, Cornwall,

Lancashire and Norfolk (these counties were selected because they gave a good geo-

graphical distribution). More specifically the CTS data sets used with respect to the

evaluations reported on later in this thesis can be broadly divided into: (i) 3D data sets,

(ii) 5D data sets, (iii) data sets used in the context of sampling and (iv) data sets used

in the context of segmentation (the terms sampling and segmentation were introduced

in Section 2.5 of Chapter 2).

The rest of this section is organised as follows. Subsection 3.4.1 describe the CTS

data construction. Subsection 3.4.2 introduces the 3D CTS data sets, while Subsection

3.4.3, presents the 5D CTS data sets. Subsection 3.4.4 then, considers the GB cattle

movement CTS data sets used in the context of sampling and Subsection 3.4.5 the CTS

data sets used in the context of segmentation.

3.4.1 CTS Data Set Construction

The CTS database describes individual cattle movement, but typically cattles are moved

in batches therefore records describing cattle movement that occur on the same day,

with respect the same sender and receiver location and the same breed of the same cat-

tle were grouped together. To this end additional attribute the number of cattle moved

was added. Thus each record described the movement of a number of animals of the
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same breed and gender, on the same day from specific sender location to specific receiver

location. The receiver and sender location attributes referenced using the eastings and

northings coordinate system used by the Ordinance Survey of Great Britain (OSGB).

Thus as noted above, the data could be conveniently referenced to five dimensions: (i)

records (features the sender location,receiver location and the animal moved), (ii) at-

tributes (individual attributes in the records), (iii) sender easting (x- coordinate holding

area), (iv) sender northing (y- coordinate holding area) and (v) time. The attribute

values were discretised/ normalised using the LUCS-KDD-DN Software [29]2; this was

originally intended to convert data files available in the UCI data repository [29] into

a binary format suitable for use in Association Rule Mining (ARM) algorithms but is

equally applicable in the context of banded pattern mining.

The LUCS-KDD-DN software operate by considering the column attributes as either

numeric or nominal as follows:

(a) Numeric Attributes

1. Divide range of attributes into N discrete sub-ranges where the range is less

than or equal to 100.

2. For each sub-range,the number of records are counted with respect to the

available classes.

3. For each divisions dominant classes are determined with reference to the

nearest neighbouring classes.

4. Identical sub-ranges with dominant classes are then combined to form a set

of divisions.

5. The number of divisions can either be merged by combining the probability

of the resulting dominant classes or selecting the highest probabilty.

(a) Nominal Attributes

1. Divide range of attributes into N discrete divisions.

2. Count the number of records that falls into this division with respect to the

available classes.

3. Dominant classes for each divisions are identified if they exist otherwise they

are removed.

4. Merging the divisions with the joint probability in excess of 90%.

3.4.2 3D CTS data sets

This sub-section reviews the 3D data sets extracted from the CTS database. In total

48 data sets were obtained covering the years 2003, 2004, 2005 and 2006 and divided

into three equal sized groups. For the first group the dimensions were: (i) Records, (ii)

2The LUCS-KDD-DN software is available at http:// www.csc.liv.ac.uk /∼frans /KDD /Software /
LUCS KDD DN/lucs-kdd DN.html
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Attributes and (iii) Eastings. For the second group the dimensions were: (i) Records,

(ii) Attributes and (iii) Northings, whilst for the third group the dimensions were: (i)

Records, (ii) Attributes and (iii) Time. The term record, as used here, describes the

movement of a number of animals of the same breed and gender, on the same day,

from a specific sender location to a specific receiver location. The motivation for the 3D

categories was that they featured more than two dimensions, and hence could be used to

assess the proposed banding mechanisms in the context of a higher number of dimensions

than 2D, while still allowing for the visualisation of the outcomes. The values for the

Eastings and Northings dimensions represented the easting or northing associated with

the sender location (holding areas), whilst the temporal dimension respresented the

months in a year. The Eastings and Northings dimensions were discretised into ten

sub-ranges, whilst the temporal dimension was discretised into twelve sub-ranges using

EWD. The attribute dimension comprised the following individual attributes: (i) animal

gender, (ii) animal age, (iii) cattle-beef, (iv) cattle-dairy, (v) sender location in terms

of Eastings and Northings, (vi) sender location type, (vii) receiver location type, (viii)

receiver location in terms of Eastings and Northings and (ix) the number of cattle moved

where appropriate the attribute values were discretised/normalised in the same manner

as described for the UCI data sets above using Equal Size Discretisation with a maximum

of five ranges (using the LUCS-KDD DN Software). In the case of the cattle gender;

cattle-beef and cattle-dairy attributes only two attributes were required: male/female,

(yes/no) and (yes/no). Tables 3.2 presents a statistical overview of the 3D CTS data

sets. With respect to the table the following should be noted:

1. The statistics for each group of 3D data sets are the same, so are presented as a

single table.

2. The number of values for the attribute dimension is not constant as the four coun-

ties considered had different numbers of possible attribute values for the holding

area type and cattle breed type attributes.

3. The data sets are sparser than the 2D data sets.

It should also be noted that the 3D CTS data sets did not feature multiple dots.

3.4.3 5D CTS data sets

This section introduces the 5D data sets extracted from the CTS database. In total 64

data sets were identified covering the four quarters of the years 2003, 2004, 2005 and

2006 and the four counties used previously (thus 4× 4× 4 = 64). The dimensions were:

(i) Records, (ii) Attributes, (iii) Eastings, (iv) Northings and (v) Time (in months). As

before; the Eastings and Northings represented the eastings and northings associated

with the sender location (holding areas), and were discretised into ten sub-ranges using

EWD. The temporal dimension was divided into 3 intervals such that each interval

represented a month (recall that each data set represented a quarter). The attribute
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Table 3.2: Statistical summary of 3D CTS data sets

Counties Years # # # Eings. Num. Density
Recs. Atts. /Nings. Dots (d)

Aberdeenshire

2003 178172 83 10 1,781,720 12.05
2004 173612 83 10 1,736,120 12.05
2005 157033 83 10 1,570,330 12.05
2006 236206 83 10 2,362,060 12.05

Cornwall

2003 170243 86 10 1,702,430 11.63
2004 169053 86 10 1,690,530 11.63
2005 154569 86 10 1,545,690 11.63
2006 167281 86 10 1,672,810 11.63

Lancashire

2003 167919 80 10 1,679,190 12.50
2004 217566 82 10 2,175,660 12.50
2005 157142 80 10 1,571,420 12.50
2006 196292 80 10 1,962,920 12.50

Norfolk

2003 46977 83 10 469,770 12.05
2004 46246 83 10 462,460 12.05
2005 35914 83 10 359,140 12.05
2006 45150 83 10 451,500 12.05

dimension comprised the same components as in the case of the 3D CTS data sets. As

before, continuous values other than the Eastings and Northings were discretised using

a maximum of five ranges (again using the LUCS-KDD DN software). Some statistics

concerning the 5D CTS data sets are presented in Tables 3.3, 3.4, 3.5 and 3.6. Note

that the number of values for the Easting, Northing and Time dimensions are constant

across all the data sets.

Table 3.3: Statistical summary of 5D CTS data sets for 2003

Counties Years # # # # # Num. Density
Recs. Atts. Eings. Nings. Time Dots (d)

Aberdeenshire

Q1 42962 98 10 10 3 386,658 9.18
Q2 46187 101 10 10 3 415,683 8.91
Q3 41181 104 10 10 3 370,629 8.65
Q4 47842 107 10 10 3 430,578 8.41

Cornwall

Q1 40501 101 10 10 3 364,506 8.91
Q2 39626 104 10 10 3 356,634 8.65
Q3 40226 107 10 10 3 362,034 8.41
Q4 49890 110 10 10 3 449,010 8.18

Lancashire

Q1 34325 97 10 10 3 308,925 9.27
Q2 40926 100 10 10 3 368,334 9.00
Q3 45765 103 10 10 3 411,885 8.73
Q4 47392 106 10 10 3 426,528 8.49

Norfolk

Q1 11280 98 10 10 3 101,520 9.18
Q2 14557 101 10 10 3 131,013 8.91
Q3 9460 104 10 10 3 85,140 8.65
Q4 11680 107 10 10 3 105,120 8.41
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Table 3.4: Statistical summary of 5D CTS data sets for 2004

Counties Years # # # # # Num. Density
Recs. Atts. Eings. Nings. Time Dots (d)

Aberdeenshire

Q1 43900 98 10 10 3 395,100 9.18
Q2 43221 101 10 10 3 388,989 8.91
Q3 38429 104 10 10 3 345,861 8.65
Q4 47995 107 10 10 3 431,955 8.41

Cornwall

Q1 40126 101 10 10 3 361,134 8.91
Q2 38226 104 10 10 3 344,034 8.65
Q3 38751 107 10 10 3 348,759 8.41
Q4 51950 110 10 10 3 467,550 8.18

Lancashire

Q1 53976 97 10 10 3 485,784 9.27
Q2 54326 100 10 10 3 488,934 9.00
Q3 53926 103 10 10 3 485,334 8.73
Q4 65694 106 10 10 3 591,246 8.49

Norfolk

Q1 11701 98 10 10 3 105,309 9.18
Q2 12993 101 10 10 3 110,637 8.91
Q3 9290 104 10 10 3 83,610 8.65
Q4 12262 107 10 10 3 110,358 8.41

Table 3.5: Statistical summary of 5D CTS data sets for 2005

Counties Years # # # # # Num. Density
Recs. Atts. Eings. Nings. Time Dots (d)

Aberdeenshire

Q1 41086 98 10 10 3 369,774 9.18
Q2 41317 101 10 10 3 371,853 8.91
Q3 30635 104 10 10 3 275,715 8.65
Q4 43995 107 10 10 3 395,955 8.41

Cornwall

Q1 40226 101 10 10 3 362,034 8.91
Q2 38076 104 10 10 3 342,684 8.65
Q3 31301 107 10 10 3 281,709 8.41
Q4 44986 110 10 10 3 404,874 8.18

Lancashire

Q1 45526 97 10 10 3 409,734 9.27
Q2 38676 100 10 10 3 348,084 9.00
Q3 30351 103 10 10 3 273,159 8.73
Q4 42591 106 10 10 3 383,319 8.49

Norfolk

Q1 8557 98 10 10 3 77,013 9.18
Q2 10549 101 10 10 3 94,941 8.91
Q3 7066 104 10 10 3 63,594 8.65
Q4 9742 107 10 10 3 876,78 8.41

3.4.4 GB cattle CTS data set For Sampling

Later in this thesis (Chapter 9) a number of technique are considered whereby very

large data sets, data sets that cannot be held in primary storage, can be banded. The

techniques considered fall into two categories according to the adopted paradigm for
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Table 3.6: Statistical summary of 5D CTS data sets for 2006

Counties Years # # # # # Num. Density
Recs. Atts. Eings. Nings. Time Dots (d)

Aberdeenshire

Q1 54196 98 10 10 3 487,764 9.18
Q2 56878 101 10 10 3 511,902 8.91
Q3 56026 104 10 10 3 504,234 8.65
Q4 69108 107 10 10 3 621,972 8.41

Cornwall

Q1 38276 101 10 10 3 344,484 8.91
Q2 41099 104 10 10 3 369,891 8.65
Q3 40601 107 10 10 3 365,409 8.41
Q4 47305 110 10 10 3 425,745 8.18

Lancashire

Q1 41176 97 10 10 3 370,584 9.27
Q2 48601 100 10 10 3 437,409 9.00
Q3 51151 103 10 10 3 460,035 8.73
Q4 55362 106 10 10 3 498,258 8.49

Norfolk

Q1 9659 98 10 10 3 86,931 9.18
Q2 13707 101 10 10 3 123,363 8.91
Q3 8945 104 10 10 3 80,505 8.65
Q4 12839 107 10 10 3 115,551 8.41

handling the large data sets: (i) sampling and (ii) segmentation. This subsection presents

the CTS evaluation data sets used in the context of the sampling techniques considered

later in this thesis (the data sets used in the context of segmentation are considered in the

following subsection). When conducting sampling, as the name applies, only a sample

of the available data is considered and banding performed on this sample. However, this

needs to be done in the context of a reference dimension which is not included in the

banding exercise. In most cases it makes sense to use the record dimension (if such a

dimension exists with respect to the application of interest). In other words given a ND

sample data set, banding is considered in terms of (N-1)D; the resulting banding is then

imposed on the remainder of the data set; it would therefore not make sense to reorder

the records in the sample. It should be noted that when one dimension is left out the

remaining data space can feature multiple dots (hence the necessity for the proposed

banding algorithms to also be able to operate in the context of multiple dots).

For the evaluation of the proposed sample based banding, 3D, 4D and 5D data sets

were extracted from the CTS database (although in each case, for the reason noted

above, banding was applied to N − 1 dimensions). The 3D and 5D data sets were those

presented above with the distinction that for the 5D data sets the time dimension was

divided into 12 (one month) values. The reason this was not done previously (quarters

were considered divided into 3 individual month values) was because of the resource

overload that this would have entailed if the data set was considered in its entirety;

hence the need for sampling (or segmentation). The dimensions for the 4D data sets

comprised: (i) Records, (ii) Attributes (the same attribute set as used previously), (iii)

Eastings and (iv) Northings. Sixteen 4D data sets were extracted for the years 2003,
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2004, 2005 and 2006, and the four counties of: Aberdeenshire, Cornwall, Lancashire and

Norfolk (the same years and counties as used with respect to the 3D and 5D data sets).

A statistical summary concerning the 3D data sets was presented previously in Table

3.2. Similar summaries are presented with respect to the 4D and 5D “sampling” data

sets in Tables 3.7 and 3.8.

Table 3.7: Statistical summary of the 16 (sample) 4D CTS data sets

Counties Years # # # # Num. Density
Recs. Atts. Eings. Nings. Dots d

Aberdeenshire

2003 178172 95 10 10 1,603,548 9.47
2004 173612 95 10 10 1,562,508 9.47
2005 157033 95 10 10 1,413,297 9.47
2006 236206 95 10 10 2,125,854 9.47

Cornwall

2003 170243 98 10 10 1,532,187 9.18
2004 169053 98 10 10 1,521,477 9.18
2005 154569 98 10 10 1,391,121 9.18
2006 167281 98 10 10 1,505,529 9.18

Lancashire

2003 167919 94 10 10 1,511,271 9.57
2004 217566 94 10 10 1,958,094 9.57
2005 157142 94 10 10 1,414,278 9.57
2006 196292 94 10 10 1,766,628 9.57

Norfolk

2003 46977 95 10 10 422,793 9.47
2004 46246 95 10 10 416,214 9.47
2005 35914 95 10 10 323,226 9.47
2006 45150 95 10 10 406,350 9.47

Table 3.8: Statistical summary of the 16 (sample) 5D CTS data sets

Counties Years # # # # #
Recs. Atts. Eings. Nings. Time

Aberdeenshire

2003 178172 95 10 10 12
2004 173612 95 10 10 12
2005 157033 95 10 10 12
2006 236206 95 10 10 12

Cornwall

2003 170243 98 10 10 12
2004 169053 98 10 10 12
2005 154569 98 10 10 12
2006 167281 98 10 10 12

Lancashire

2003 167919 94 10 10 12
2004 217566 94 10 10 12
2005 157142 94 10 10 12
2006 196292 94 10 10 12

Norfolk

2003 46977 95 10 10 12
2004 46246 95 10 10 12
2005 35914 95 10 10 12
2006 45150 95 10 10 12
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3.4.5 GB cattle CTS data set For Segmentation

This section briefly introduces the data sets used for evaluating the segmentation banding

techniques proposed later in this thesis as an alternative to sampling (see above). Using

segmentation local bandings are calculated according to individual segments and then

combined to form a global banding for the entire data set. As in the case of the sampling

technique considered above, the banding is conducted according to a reference dimension.

Again, in most cases it makes sense to use the record dimension (dimension that features

the details concerning the sender location, receiver location and the animal moved);

provided such a dimension exists given a particular application. The data sets used for

the evaluation were the same as those used with respect to the evaluation of the sampling

technique considered above. Namely the 3D, 4D and 5D CTS data sets as summarised

in Tables 3.2, 3.7 and 3.8.

3.5 Summary of Data

This chapter has described the data sets used for evaluating the proposed Banded Pat-

tern Mining algorithms presented later in this thesis. The presented evaluation data

sets were split over three categories: (i) randomly generated synthetic data sets, (ii)

UCI data sets and (iii) the GB cattle movement CTS data sets. The first two comprised

only 2D data sets. The latter was divided into four further sub-categories: (i) 3D, (ii)

5D, (iii) sampling and (iv) segmentation. In each case, where necessary the attribute

values were discretised and normalised to form the desired binary (zero-one) value data

sets. The next chapter describes the proposed 2D Banded Pattern Mining (2D-BPM)

algorithm, the first of the BPM algorithms considered in this thesis.



Chapter 4

2D Banding Mechanism

4.1 Introduction

The chapter considers the concept of Banded Pattern Mining (BPM) in the context of 2D

zero-one data, a special case of ND for the case of simplicity. Recall that the fundamental

idea is to rearrange the rows and columns of a given 2D data matrix so that the dots (the

non-zero entries) are located about the leading diagonal. Recall also that in Chapter 2,

Previous Work, a number of alternative banding algorithms, that have been previously

proposed, were described. These algorithms were also directed at identifying bandings

in binary data, but tended to operate either by considering permutations or using an

alternative mechanism to the banding score mechanism considered in this thesis; thus in a

manner different to that presented in this thesis. The suggested significant disadvantage

of these alternative banding algorithms was that they were computationally expensive.

Thus, anything that can be done to address the computational overhead associated with

these existing banding algorithms will be beneficial. This chapter introduces the novel

concept of “banding scores” and demonstrates how this concept can be incorporated into

a 2D Banded Pattern Mining algorithm, the 2D-BPM algorithm, for extracting banded

patterns from 2D data.

The rest of this chapter is arranged as follows. A formalism for BPM in 2D is pre-

sented in Section 4.2. Section 4.3 then discusses the process for calculating 2D Banding

Scores (BS), whilst Section 4.4 presents the process for calculating 2D Global Banding

Scores (GBS); the distinction between BS and GBS will become clear later in the chap-

ter. Section 4.5 presents the 2D-BPM algorithm, while Section 4.6 considers a worked

example illustrating how the 2D-BPM algorithm operates. Section 4.7 then reports on

the evaluation conducted with respect to the operation of the proposed 2D-BPM algo-

rithm. Finally, in Section 4.8, the chapter is concluded with a brief summary of the

main findings.

55
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4.2 2D Banding Formalism

Given a 2D data set the “space” (matrix) can be conceptualised as comprising a k1× k2
grid where k1 is the size of the ‘x’ dimension (Dimx) and k2 is the size of the ‘y’ dimension

(Dimy). We can think of Dimx as comprising columns and Dimy as comprising rows.

With respect to the 2D data sets used for evaluation purposes later in this chapter the

columns represent attributes and the rows records. Each individual grid square can then

hold a 1 or a 0. However, it should be recalled that in this thesis “ones” are represented

by dots and “zeroes” by empty grid squares (as illustrated in Figures 4.1(a) and 4.1(b)).

Note that with respect to all 2D grids presented in this chapter the origin is always in

the top left-hand corner.

Thus (in 2D), each dot can be defined by a coordinate pair 〈x, y〉 where 0 ≤ x ≤ k1

and 0 ≤ y ≤ k2. Therefore, a 2D data set D, can be considered to comprise a set of

m dots, D = {d1, d2, ..., dm} such that each di is represented by a pair of coordinates

〈i, j〉 where i ∈ Dimx and j ∈ Dimy. Thus in the case of the configuration given

in Figure 4.1(a), we have D = {d1, d2, d3} = {〈0, 0〉, 〈1, 1〉, 〈2, 2〉}, and with respect

to Figure 4.1(b), D = {d1, d2, d3} = {〈0, 2〉, 〈1, 1〉, 〈2, 0〉}. The banding problem is

then to rearrange the ordering of the indexes in Dimx (the column/attribute numbers)

and the indexes in Dimy (the row/record numbers) thereby achieving a “best” banding

(the expectation was that in many cases, a perfect banding would not exist; hence the

objective was to find a “best” banding). Figure 4.1(a) presents an example of a perfect

2D banding, where dots are arranged along the leading diagonal, of the form we are

looking for; Figure 4.1(b) presents an example of an alternative 2D banding, which

could also be argued to be perfect but is not of the form we are looking for. We indicate

a particular index i in Dimx using the notation Dimxi , and a particular index j in Dimy

using the notation Dimyj .

(a) (b)

Figure 4.1: Examples of 2D dot configurations featuring: (a) a perfect banding and
(b) an alternative banding

For the discussion regarding BS calculation presented in the next section, when

considering the indexes in Dimx we wish to only consider the Dimy coordinates and

vice versa. Thus when considering the set of dots Dotsxi associated with index i in

Dimx, we wish to consider only the relevant Dimy coordinates in Dotsxi , thus the set

Ciy = {y1, y2, . . . }. Conversely when considering the set of dots Dotsyj associated with
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index j in Dimy we wish to consider only the relevant Dimx coordinates in Dotsyj , thus

the set Cjx = {x1, x2, . . . }. It may ease understanding to note that Ciy , in the context

of frequent itemset mining [1, 2], is referred to as a Transaction ID list or a TID list.

Definition 4.1. Perfect Banding: A zero-one matrix A can be “perfectly banded” if

there exist a permutation of columns {1, 2, . . . ,m} and rows {1, 2, . . . , n} such that: (i)

for every element in Cj , the values occur consecutively at row indexes {ik, ik+1, ik+2, . . . }
and the “starting index” for Cj is less than or equal to the starting index for Cj+1;

and (ii) for every element in Ri the values occur consecutively at column indexes

{jk, jk+1, jk+2, . . . } and the starting index for Ri is less than or equal to the starting

index for Ri+1.

4.3 2D Banding Score Calculation

This section presents a mechanism for calculating Banding Scores (BS). A simple mech-

anism for calculating BS, given a set of dots Dotsxi associated with index i in Dimx, is

given in Equation 4.1:

BSxj =

n=|Ciy |∑
n=1

cn (4.1)

where Ciy is the set of y-coordinates associated with Dotsxi (|Dotsxi | ≡ |Ciy |). Similarly,

given a set of dots Dotsyj , associated with index j in Dimy a BS can be calculated using

Equation 4.2:

BSyj =

n=|Cjx |∑
n=1

cn (4.2)

where Cjx is the set of x-coordinates associated with Dotsyj (|Dotsyj | ≡ |Cjx |).
However, we would like to normalise these banding scores so that the banding score

for any column xj or row yi is 1. The reason being that by insisting that the banding

score is limited to values between 0 and 1 comparisons can be made as to the quality of

bandings produced with respect to different data sets that feature different numbers of

dimensions, different dimension sizes and different number of dots. Thus:

BSxj =

∑n=|Ciy |
n=1 cn∑n=|Ciy |

n=1 k2 − n+ 1
(4.3)

BSyj =

∑n=|Cjx |
n=1 cn∑n=|Cjx |

n=1 k1 − n+ 1
(4.4)

With respect to the above two equations recall, from Section 4.2 above, that k1 is the

maximum size for dimension Dimx and k2 is the maximum size for dimension Dimy

respectively. It should also be noted that, with respect to the divisions featured in
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Equations 4.3 and 4.4 that the dividend is the sum of the distances that the dots are

from the origin while the divisor is the sum of the maximum distances that the dots can

be from the origin (given a particular index under consideration).

Referring back to Figures 4.1(a) and 4.1(b), using Equations 4.3 and 4.4, the BS for

the two configurations will be calculated as follows:

BSx1 =
1

3
= 0.33 BSx2 =

2

3
= 0.67 BSx3 =

3

3
= 1.0

BSy1 =
1

3
= 0.33 BSy2 =

2

3
= 0.67 BSy3 =

3

3
= 1.0

and

BSx1 =
3

3
= 1.0 BSx2 =

2

3
= 0.67 BSx3 =

1

3
= 0.33

BSy1 =
3

3
= 1.0 BSy2 =

2

3
= 0.67 BSy3 =

1

3
= 0.33

Thus, using the above, to achieve a best banding the BS need to be ordered, from the

origin, in ascending order.

4.4 2D Global Banding Score Calculation

In Section 1.1, it was suggested that, we could now simply sum the individual banding

scores to obtain an overall average global banding score for a particular configuration:

GBS =
GBSx +GBSy

2
(4.5)

where GBSx is the GBS for Dimx (calculated using Equation 4.6 presented below), and

GBSy is the GBS for Dimy (calculated using Equation 4.7 below). Note that in Equation

4.5 we divide by 2 so as to normalise the total GBS (we have two dimensions).

GBSx =

∑j=k1
j=1 BSxj

k1
(4.6)

GBSy =

∑j=k2
j=1 BSyj

k2
(4.7)

where the individual BS are calculated using Equations 4.3 and 4.4 as discussed in the

previous section.

However, using the above, would mean that the GBS for the configuration pre-

sented in Figure 4.1(a) would be the same as that for the configuration presented in

Figure 4.1(b) (which features an entirely different kind of banding). Not the desired

result. Thus we need to weight the columns and rows as well. The columns and rows

can be weighted as follows:
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GBSx =

∑j=k1
j=1 BSxj × (k1 − j + 1)∑j=k1

j=1 j
(4.8)

GBSy =

∑j=k2
j=1 BSyj × (k2 − j + 1)∑j=k2

j=1 j
(4.9)

Referring back to Figures 4.1(a) and 4.1(b) the GBS for the two configurations,

calculated using Equations 4.8, 4.9 and 4.5 respectively, will now be as follows:

GBSx =
0.33× (3− 1 + 1) + 0.67× (3− 2 + 1) + 1.0× (3− 3 + 1)

1 + 2 + 3
=

3.33

6
= 0.56

GBSy =
0.33× (3− 1 + 1) + 0.67× (3− 2 + 1) + 1.0× (3− 3 + 1)

1 + 2 + 3
=

3.33

6
= 0.56

GBS =
0.56 + 0.56

2
= 0.56

and

GBSx =
1.0× (3− 1 + 1) + 0.67× (3− 2 + 1) + 0.33× (3− 3 + 1)

1 + 2 + 3
=

4.67

6
= 0.78

GBSy =
1.0× (3− 1 + 1) + 0.67× (3− 2 + 1) + 0.33× (3− 3 + 1)

1 + 2 + 3
=

4.67

6
= 0.78

GBS =
0.78 + 0.78

2
= 0.78

From the above, it can be seen that the GBS calculation serves to distinguish between

the two configurations. Note also that using these equations a best banding is achieved

when the total GBS is minimised using Equations 4.8 and 4.9. With respect to the

configurations shown in Figures 4.1(a) and 4.1(b) global banding scores of 0.56 and 0.78

were obtained respectively. However, it is worth noting that a global banding score of

“1” will only be obtained if the entire data space is filled with “ones” (dots), and a

global banding score of “0” will only be obtained if the entire data space is filled with

zeros (no dots); unlikely situations in practice (Figures 4.2(a) and 4.2(b)).

Returning to the configuration given in Figure 4.1(a), this configuration can be permuted

in six different ways. The different configurations are illustrated in Figure 4.3, together

with their GBS. From Figure 4.3 it can clearly be seen that the GBS values serve to

differentiate between the different configurations. It can also be seen that if wish to

identify a “best” banding score we need to minimise the GBS value.
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(a) (b)

Figure 4.2: Example data configurations: (a) all dots (“worst” GBS of 1) and (b) no
dots (“best” GBS of 0)

(a) GBS = 0.56+0.56
2 = 0.56

(b) GBS = 0.61+0.61
2 = 0.61

(c) GBS = 0.61+0.61
2 = 0.61 (d) GBS = 0.72+0.72

2 = 0.72

(d) GBS = 0.72+0.72
2 = 0.72 (d) GBS = 0.78+0.78

2 = 0.78

Figure 4.3: Permutations for dot marix given in Figure 4.1
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4.5 The 2D Banded Pattern Mining (2D-BPM) Algorithm

This section presents the 2D-BPM algorithm for identifying bandings in 2D data sets

using the banding score concept presented above. The algorithm operates by iteratively

rearranging the column and row indexes until the GBS is minimised. The pseudo code

for the algorithm is presented in Algorithm 5. The inputs (Lines 1 and 2) are: (i) a value

for k1, the size of Dimx (thus the maximum ‘x’ index) from which an index list Dimx is

calculated for dimension x, (ii) a value for k2, the size of Dimy (thus the maximum ‘y’

index) from which an index list Dimy is calculated for dimension y, (iii) a dots (zero-one)

matrix D measuring k1 × k2 and (iv) a counter. The counter is used to set a maximum

on the number of iterations. The output is a reordered matrix D that features a “best”

banding. The algorithm proceeds in an iterative manner. Initially the GBSsofar value

is set to 1.0 because using the identified equations we wish to minimise the GBS value

to find a “best” banding. On each iteration the algorithm sequentially rearranges the

Dimx and Dimy indexes according to their banding scores (bsindex) values. The process

is continued until a minimum value for GBSsofar is reached or the input counter reaches

0. More specifically, on each iteration, the banding score for each index i in Dimx is

calculated (Line 10). The index list Dimx is then rearranged in ascending order of BSxi

to produce Dim′x (Line 12). The matrix D is then rearranged accordingly to give D′

(Line 13) and a GBS value for the x-dimension calculated (GBS′x), using Equation 4.8

(Line 14). The same process is then followed for Dimy so as to produce Dim′y (Lines 15

to 18). The matrix D′ is rearranged to give D′′ (Line 19) and a GBS value calculated for

the y-dimension (GBS′y) using Equation 4.9 (Line 20). A new global banding score is

then calculated using GBS′x and GBS′y to give GBSnew (Line 21). If GBSnew is greater

than or equal to the previously recorded GBS value the loop is exited (Lines 22 to 24)

and we return D and the GBS value (this will not be the case on the first iteration so

the algorithm will always iterate at least twice). Otherwise the counter is decremented,

and we assign D′′ to D, Dim′x to Dimx, Dim′y to Dimy and GBSnew to GBSsofar (Line 25)

and repeat. On the start of each iteration the counter is tested, if it has reached zero, the

loop is exited (Lines 6 to 8). Although not shown in Algorithm 5 the implementation of

the algorithm is such that the loop is also exited if no changes (index rearrangements)

are made.

With respect to parallising the 2D-BPM algorithm presented in this section, the

idea might be to divide the problem into a set of of sub-problems that can be solved

concurrently, where each sub-problems can be assigned to a processing element and

consequently the sub-processes can be executed simultenously. A Hadoop map reduce

framework (or similar) can be adopted to process large data sets, splitting them into

subsets and processing each subset on a different processor and combining the results ob-

tained. In the future work section presented at the end of this thesis, it is suggested that

a fruitful avenue for further work is the parallelisation of the proposed BPM algorithms.
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Algorithm 5: The 2D-BPM Algorithm

1: Input: k1 (Dimx = {0, 1, . . . , k1}), k2 (Dimy = {0, 1, . . . , k2})
2: D, a dots 2D data set subscribing to Dimx and Dimy, counter
3: Output: the matrix D rearranged so that the columns and rows serve to minimize
GBS

4: GBSsofar = 1.0
5: loop
6: if (counter == 0) then
7: break
8: end if
9: for all index ∈ Dimx do

10: bsxi = Banding score for current index using Equation 4.3
11: end for
12: Dim′x = Rearranged Dimx in ascending order according to bsindex for Dimx

13: D′ = D rearranged according Dim′x
14: GBSx = Global banding score for Dim′x using Equation 4.8
15: for all index ∈ Dimy do
16: bsindex = Banding score for current index using Equation 4.4
17: end for
18: Dim′y = Rearranged Dimy in ascending order according to bsindex for Dimy

19: D′′ = D′ rearranged according Dim′y
20: GBSy = Global banding score for Dim′y using Equation 4.9
21: GBSnew = Overall Global banding score using Equation 4.5
22: if (GBSnew ≥ GBSsofar) then
23: break
24: else
25: GBSsofar = GBSnew, Dimx = Dim′x, Dimy = Dim′y, D = D′′

26: end if
27: counter = counter − 1
28: end loop
29: Exit with D and GBS

4.6 A Working Example using the 2D-BPM Algorithm

To assist in the understanding of the operation of the 2D-BPM algorithm as presented

above this section presents a working example. Let us assume a 2D dot matrix measuring

4 × 4 and configured as shown in Figure 4.4(a) (recall that the origin is in the top left

hand corner). Thus k1 = 4 and k2 = 4 and:

D = {〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 1〉, 〈2, 2〉, 〈3, 1〉, 〈3, 2〉, 〈3, 4〉, 〈4, 3〉, 〈4, 4〉}.

As noted above the 2D-BPM algorithm commences by considering the x-dimension first,

the calculated banding scores are shown in Table 4.1; the sequence of banding scores is

BSx = {1.00, 0.43, 0.78, 1.00}. We thus rearrange the indexes in Dimx in ascending order

of BS. Note that (not shown in Algorithm 5) in the case where two or more elements

have the same score the ordering is conducted so that the index associated with the

largest number of dots is nearest to the centre of the data space, and so on. The result

is as shown in Figure 4.4(b).
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(a) Raw Data (b) After rearrangement
of Dimx

(c) After rearrangement
of Dimy

Figure 4.4: Example of the operation of the 2D-BPM algorithm

Table 4.1: Calculation of BS values for Dimx

Index Dist from origin Max. dist. from origin bs

1 2 + 3 + 4 = 9 2 + 3 + 4 = 9 1.00

2 1 + 2 = 3 3 + 4 = 7 0.43

3 1 + 2 + 4 = 7 2 + 3 + 4 = 9 0.78

4 3 + 4 = 7 3 + 4 = 7 1.00

Total 3.21

Considering dimension y next, the BS are calculated as shown in Table 4.2. This

produced the set of banding scores BSy = {0.43, 0.67, 1.00, 1.00}. Thus in this case the

indexes in Dimy are more or less already arranged in ascending order of BS. We only

need to swap the last two indexes so that the element with the greater number of dots is

nearer the centre of the data space. The result is as shown in Figure 4.4(c). The GBSx

and GBSy values are then calculated as follows:

Table 4.2: Calculation of BS values for Dimy

Index Dist from origin Max. dist. from origin bs

1 1 + 2 = 3 3 + 4 = 7 0.43

2 1 + 2 + 3 = 6 2 + 3 + 4 = 9 0.67

3 3 + 4 = 7 3 + 4 = 7 1.00

4 2 + 3 + 4 = 9 2 + 3 + 4 = 9 1.00

Total 3.10

GBSx =
(1.0× 4) + (0.43× 3) + (0.78× 2) + (1.0× 1)

1 + 2 + 3 + 4
=

7.85

10
= 0.79

GBSy =
(0.43× 4) + (0.67× 3) + (1.0× 2) + (1.0× 1)

1 + 2 + 3 + 4
=

6.73

10
= 0.67

The overall global banding score (GBS) is:
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GBS =
0.79 + 0.67

2
= 0.73 (4.10)

The process is repeated on the next iteration. However in this case the same overall

GBS value is produced (indicating that a best banding has already been arrived at).

The rearranged dot matrix is as follows (Figure 4.4(c)):

D′ = {〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈2, 2〉, 〈2, 3〉, 〈3, 2〉, 〈3, 3〉, 〈3, 4〉, 〈4, 3〉, 〈4, 4〉}.

4.7 Evaluation of the 2D-BPM Algorithm

This section reports on the evaluation of the proposed 2D-BPM algorithm. The evalu-

ation was conducted using the data sets described in Chapter 3. The objectives of the

evaluation were as follows:

1. Number of Iterations: To analyse the operation of the 2D-BPM algorithm in

terms of the number of iterations required to arrive at a banding.

2. Efficiency using synthetic data: To compare the efficiency of the 2D-BPM

algorithm with the established BC, MBABFP and MBAFP algorithms, in terms

of the size of the data sets (number of rows and columns, and density), using

synthetic 2D data sets.

3. Efficiency using UCI data: To compare the operation of the 2D-BPM algorithm

with the established BC, MBABFP and MBAFP algorithms, in terms of efficiency

using 2D data sets taken from the UCI machine learning repository.

4. Quality of bandings using UCI data: To compare the operation of the 2D-

BPM algorithm with the established BC, MBABFP and MBAFP algorithms, in

terms of the quality of the bandings produced using 2D data sets taken from the

UCI machine learning repository.

5. Frequent Itemset Mining: To illustrate the advantages that can be gained using

banding with respect to a standard dot (zero-one) algorithm, namely Frequent Item

Set Mining (FIM).

.

Each of these objectives are considered in the following five subsections (subsections

4.7.1 to 4.7.5). All the proposed BPM algorithms were implemented using the JAVA

programminig language. All the reported experiments were conducted using a 2.7 GHz

Intel Core i5 with 16 GB 1333 MHz DDR3 memory, running OS X 10.8.5 (12F45).
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4.7.1 Analysis of 2D-BPM algorithm in terms of number of iterations

To determine the nature of the operation of the 2D-BPM algorithm, in terms of the

number of iterations required to arrive at a “best” banding, a sequence of experiments

was conducted using the selected UCI data sets introduced in Chapter 3. In each case,

on each iteration, the GBS value was recorded; a maximum number of iterations counter

value of 10 was used. Note that with respect to the competing approaches the generate

and test mode of the operation of these systems does not feature iteration. The sig-

nificance of the experiments considered in this subsection was to demonstrate how the

2D-BPM algorithm progresses over the iterations. The results for eight of the UCI data

sets are shown in the plots given in Figure 4.5 where the x axis represents the number of

iterations and the y axis the GBS values (plots for the remaining four data sets are given

in Appendix D). From the graphs it can be seen, as expected, that GBS values improve

(approach 0) as the 2D-BPM algorithm progresses. Closer inspection of the figure indi-

cates that the gain in GBS shows that significant improvement occurs in the first few

iterations, between the first two. It can also be seen that the 2D-BPM algorithm always

stops before the counter decreases from 10 to 0 (the maximum number of permitted

iterations), this is because a best GBS has been found prior to the counter reaching

0. Note that similar results were also obtained for the remaining four UCI data sets,

although the associated plots have not been included here because of their similarity to

those shown in Figure 4.5 (they are given in Appendix D). Given the results obtained

it was concluded that the most appropriate counter value was 10; and consequently this

value was used with respect to the remainder of the experiments reported on in this

thesis.

4.7.2 Efficiency of 2D-BPM Algorithm using Synthetic Data sets

This subsection presents the results obtained from the comparative analysis of the oper-

ation of the proposed 2D-BPM algorithm with respect to the BC, MBABFP and MBAFP

algorithms using synthetic data sets of varying size and density. For the experiments

synthetic data sets were used because this allowed for the specification of parameters.

More specifically the data sets were generated using the LUCS-KDD data generator

described in Section 3.2 of Chapter 3 [29]. Note that the generated data sets featured

equal numbers of rows and columns; the reason being that this was a convenient way

of generating data sets that incrementally included more dots. Two sets of experiments

were conducted:

1. Matrix Size: Experiments using a sequence of ten randomly generated synthetic

data sets of increasing numbers of cells from approximately 10,000 to 100,000

increasing in steps of approximately 10,000. Approximate because using the LUCS-

KDD data generator described, the number of cells could only be specified in terms

of number of rows and columns. More specifically dot matrices of the following

sizes were generated: (i) 100× 100, (ii) 141× 141, (iii) 173× 173, (iv) 200× 200,
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(a) Adult Data (b) ChessKRvk Data

(c) HorseColic Data (d) Lympography Data

(e) Wine Data (f) Hepatitus Data

(g) Annealing Data (h) PenDigits Data

Figure 4.5: GBS value per number of iterations obtained using eight of the UCI data
sets and the 2D-BPM algorithm

(v) 224× 224, (vi) 245× 245, (vii) 265× 265, (viii) 283× 283, (ix) 300× 300 and

(x) 316× 316. A dot density of 10% was used (in other words, on average 10% of

the cells in each row/column contained a dot).

2. Density: Experiments using a sequence of five randomly generated synthetic

data of increasing dot density from 10% to 50% increasing in steps of 10%. A data

matrix of size 100× 100 was generated in each case.
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Figure 4.6 shows the runtime results obtained in the context of dot matrices of

increasing size. In the figure the x-axis represents data set size, and the y-axis the

recorded run-times (seconds). In the figure the colour coding was used simply for ease

of comparison, it has no other significance. From the figure, as expected, it can be

seen that there is a clear correlation between data set size and run-time; as the data

set size increased the processing time also increased with respect to all the algorithms

considered. However what is significant with respect to the figure, is that the proposed

2D-BPM algorithm out performed all the other algorithms because it obviates the need

for the generation of large numbers of permutations. Note that with respect to Figure

4.6, it is noteworthy that the 2D-BPM algorithm required less processing time. The

reason being, as noted aboved, that 2D-BPM did not need to generate large numbers of

permutations.
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Figure 4.6: Recorded run time (seconds) using the 2D-BPM, BC, MBABFP and
MBAFP algorithms and a range of data sets of increasing size (10, 000 to 100, 000 in

steps of 10, 000)

Figure 4.7 shows the runtime results obtained in the context of dot matrices of

increasing density. In the figure the x-axis represents density, while the y-axis records

run-time (seconds). From the figure it can be seen, again as expected, that the run

time increased with dot density. The figure also again demonstrates that the proposed

2D-BPM algorithm is faster than the comparator algorithms considered.

For completeness Table 4.3 shows the GBS values obtained (a more detailed compar-

ative study of the effectiveness of the proposed 2D-BPM algorithm is given in Sub-section

4.7.4). The table also gives: (i) the number of columns (attributes values after discreti-

sation) for each dataset, (ii) the number of rows (records) for each data set, and (iii) the

approximate total number of cells. GBS values are shown before any banding has taken

place, for the proposed 2D-BPM algorithm, and for the three comparator algorithms

considered (for each data set the best recorded GBS value is given in bold font). From
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Figure 4.7: Recorded run time (seconds) using the 2D-BPM, BC, MBABFP and
MBAFP algorithms and a range of data sets of increasing density (10% to 50% increasing

in steps of 10%)

the table, it can be seen that the proposed 2D-BPM algorithm performed well compared

to the other established algorithms, in terms of GBS, regardless of the size of the data

matrix considered.

Table 4.3: GBS results obtained using the 2D-BPM algorithm and the comparator
algorithms for a range of dot matrices of increasing size

Data # # Apprx GBS

sets Rows Cols. # Cells Bef. Band. 2D-BPM BC MBABFP MBAFP

Syn1 100 100 10,000 0.5275 0.4470 0.4776 0.5059 0.4880

Syn2 141 141 20,000 0.5044 0.4609 0.4718 0.5183 0.4929

Syn3 173 173 30,000 0.5328 0.4644 0.4852 0.5066 0.5075

Syn4 200 200 40,000 0.5252 0.4798 0.4922 0.5099 0.5019

Syn5 224 224 50,000 0.5097 0.4777 0.4851 0.5040 0.5091

Syn6 245 245 60,000 0.5258 0.4775 0.4899 0.5013 0.5034

Syn7 265 265 70,000 0.5133 0.4753 0.4841 0.5143 0.5153

Syn8 283 283 80,000 0.5236 0.4783 0.4925 0.5081 0.5075

Syn9 300 300 90,000 0.5231 0.4850 0.4976 0.5055 0.5071

Syn10 316 316 100,000 0.5285 0.4854 0.4968 0.5081 0.5129

Average 225 225 55,000 0.5214 0.4731 0.4873 0.5082 0.5046

4.7.3 Run-time Comparison Using UCI Data sets

In Subsection 4.7.2, runtime comparisons were presented using synthetic data sets. In

this section runtime comparison are presented using the UCI data sets also used in
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Subsection 4.7.4 below where the quality of the bandings produced are considered. Again

the operation of the proposed 2D-BPM algorithm is compared with respect to the BC,

MBABFP and MBAFP algorithms. Table 4.4 shows the runtime results obtained (best

results in bold font). For convenience the table also records: the number of records

for each data sets and the number of attributes (after discretisation). From the table,

it can be observed (as before) that there is a clear correlation between the number of

records in the data sets and run time, as the number of records increases there is a

corresponding increase in the processing time required. Whatever the case the table

also clearly demonstrates that the proposed 2D-BPM algorithm requires less processing

time to identify bandings than the three alternative banding algorithms considered.

The worst recorded run time was obtained using the MBABFP algorithm. These results

corroborate the results presented earlier in Subsection 4.7.2 above.

Table 4.4: Run-time (RT) Results (seconds) Using UCI data sets.

Data # # runtime (secs)

sets Rows Cols 2D-BPM BC MBABFP MBAFP

Lympography 148 59 0.01 0.08 0.08 0.06

Hepatitis 155 56 0.01 0.08 0.06 0.06

Wine 178 68 0.01 0.09 0.09 0.06

Heart 303 52 0.02 0.08 0.12 0.11

HorseColic 368 85 0.02 0.09 0.20 0.12

Annealing 898 73 0.05 0.22 0.26 0.20

Mushroom 8124 90 02.24 08.47 09.07 08.14

Waveform 5000 101 0.88 02.28 03.05 02.41

PenDigits 10992 89 02.81 10.12 12.94 11.85

LetRecognition 20000 106 10.28 26.38 24.54 21.31

ChessKRvK 28056 58 11.46 23.27 27.90 27.81

Adult 48842 97 76.74 175.84 185.95 140.95

Average 10255 78 08.71 20.58 22.02 17.76

4.7.4 Banding Quality of 2D-BPM algorithm Using UCI Data sets

This section presents the results of the comparative analysis of the proposed 2D-BPM

algorithm and the BC, MBABFP and MBAFP algorithms with respect to the quality of

the bandings produced using the UCI data sets. In Table 4.3 GBS comparisons regarding

the quality of bandings produced with respect to a range of dot matrices of increasing

size was presented. However, the comparison was conducted in terms of GBS values,

the metric that the 2D-BPM algorithm seeks to minimise. It can be argued that using

GBS favours the 2D-BPM algorithm, the BC, MBABFP and MBAFP algorithms were not

intended to operate using GBS. The BC algorithm seeks to maximize the MRM value

(see Sub-section 2.3.1), while the MBABFP and MBAFP and algorithms seek to maximise
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Accuracy (see Sub-section 2.3.1.2). Thus comparisons were conducted using all three

measures and the independent ABW measure presented in Section 2.6 of Chapter 2.

The results in terms of GBS, MRM, Acc and ABW are presented in Tables 4.5, 4.6,

4.7 and 4.8 respectively. In the tables best results, with respect to each data set, are

presented in bold font. Note also that the data sets are listed according to number of

rows. From Table 4.5, it can be seen that in terms of GBS, the proposed 2D-BPM

algorithm produces the best results in all cases. As noted above, it can be argued that

this is to be expected as the other algorithms are not directed at minimising GBS.

In terms of MRM (Table 4.6), the BC algorithm produces best results in only 4 out

of the 12 cases, the 2D-BPM algorithm produced the best result with respect to all

the remaining cases. With respect to Accuracy (Table 4.7), the MBABFP algorithm

performed well in only 5 out of the 12 cases, the 2D-BPM algorithm produced the best

in the remaining seven case. It is interesting to note with respect to Tables 4.6 and

4.7 that the union of the data sets for which BC produced the best performance and

MBABFP produced the best performance was the mushroom data set. It seems to be

the case that BC algorithm works well with respect to a different subset of the data sets

than the MBABFP algorithm.

The most interesting results are those produced using the independent ABW mea-

sure (Table 4.8), where the proposed 2D-BPM algorithm produces the best banding in

every case. Note that the “before” banding results were worst in all cases indicating

that the application of banding has made a difference. It should also be noted that the

MBAFP algorithm did not produce any best results.

Table 4.5: Quality of banding in terms of GBS using 2D UCI data set (best results
presented in bold font).

Data # # GBS

sets Rows Cols Bef. Band. 2D-BPM BC MBABFP MBAFP

Lymphograph 148 59 0.4581 0.2487 0.4005 0.4540 0.4359

Hepatitis 155 56 0.4619 0.2063 0.3997 0.4279 0.4240

Wine 178 68 0.4564 0.2785 0.3965 0.4015 0.3970

Heart 303 52 0.4318 0.1502 0.4005 0.2833 0.3387

HorseColic 368 85 0.3857 0.2367 0.3702 0.3760 0.3801

Annealing 898 73 0.4133 0.1218 0.3448 0.3162 0.3300

Mushroom 8124 90 0.3473 0.1774 0.2977 0.3018 0.3284

Waveform 5000 101 0.3402 0.2091 0.2904 0.3215 0.2958

PenDigits 10992 89 0.3453 0.2064 0.2651 0.2874 0.2775

LetRecog. 20000 106 0.3325 0.1682 0.2561 0.2632 0.2751

ChessKRvK 28056 58 0.3473 0.1791 0.2629 0.2832 0.3699

Adult 48842 97 0.3662 0.1294 0.2738 0.2539 0.2869
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Table 4.6: Quality of banding in terms of MRM using 2D UCI data set (best results
presented in bold font).

Data # # MRM

sets Rows Cols Bef. Band. 2D-BPM BC MBABFP MBAFP

Lympho. 148 59 90.05 94.36 91.10 93.58 93.36

Hepatitis 155 56 86.55 109.26 94.84 101.44 102.45

Wine 178 68 101.59 109.27 111.71 105.77 108.08

Heart 303 52 205.05 224.09 215.29 215.35 214.30

HorseC. 368 85 201.34 231.38 241.83 219.26 213.30

Anneal. 898 73 450.64 556.46 540.44 541.46 540.71

Mushrm. 8124 90 4634.61 5098.44 5191.25 5004.24 4713.75

Wavefm. 5000 101 3074.02 3189.91 3173.97 3189.53 3189.76

PenDigit. 10992 89 6632.27 6967.84 6773.69 6634.89 6634.68

LetRecog. 20000 106 11730.43 13598.88 12445.07 13076.70 13162.99

ChessKR 28056 58 15626.24 18826.96 18863.96 18853.93 16345.88

Adult 48842 97 25507.77 32869.56 28156.61 32852.85 32842.56

Table 4.7: Quality of banding in terms of Accuracy using 2D UCI data set (best
results presented in bold font).

Data # # Accuracy

sets Rows. Cols. Bef. Band. 2D-BPM BC MBABFP MBAFP

Lymphograph 148 59 31.72 73.661 73.838 73.887 72.998

Hepatitis 155 56 30.02 78.701 74.631 78.928 79.677

Wine 178 68 49.33 70.046 68.700 68.565 69.070

Heart 303 52 46.86 76.777 71.480 74.759 75.389

HorseColic 368 85 46.01 68.222 66.933 66.997 67.076

Annealing 898 73 47.39 80.772 77.692 77.359 79.025

Mushroom 8124 90 40.28 68.211 69.123 69.173 63.119

Waveform 5000 101 49.76 66.395 59.875 66.270 61.588

PenDigits 10992 89 48.82 70.636 70.539 71.802 60.236

LetRecog. 20000 106 48.21 73.313 69.539 67.557 56.597

ChessKRvK 28056 58 46.96 76.713 72.121 67.275 65.722

Adult 48842 97 48.22 63.434 62.987 64.099 54.102
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Table 4.8: Quality of banding in terms of ABW using 2D UCI data sets (best results
presented in bold font).

Data # # ABW

sets Rows. Cols. Bef. Band. 2D-BPM BC MBABFP MBAFP

Lympography 148 59 0.3356 0.2804 0.3324 0.2826 0.2887

Hepatitis 155 56 0.4438 0.2957 0.3438 0.2962 0.3032

Wine 178 68 0.4430 0.2027 0.3384 0.3061 0.3645

Heart 303 52 0.4346 0.3016 0.3423 0.3338 0.4142

HorseColic 368 85 0.4009 0.3205 0.3353 0.3881 0.4001

Annealing 898 73 0.4433 0.3630 0.3826 0.3779 0.4389

Mushroom 8124 90 0.4297 0.2638 0.3297 0.3845 0.3866

Waveform 5000 101 0.4372 0.2414 0.2833 0.2951 0.3774

PenDigits 10992 89 0.4276 0.2197 0.3276 0.2872 0.3318

LetRecog. 20000 106 0.4125 0.2885 0.3246 0.3152 0.3407

ChessKRvK 28056 58 0.4444 0.2208 0.3240 0.3246 0.3816

Adult 48842 97 0.4487 0.3318 0.3394 0.3617 0.4116

To enhance the appreciation of the results presented in Tables 4.5 to 4.8. Figures

4.8 to 4.10 show the dot matrices for the Wine, Iris and Glass UCI data sets before

banding and after applying banding using the 2D-BPM, BC and MBABFP algorithms

(dot matrices generated using the MBAFP algorithm are not shown because this did not

produce any “best” bandings). Inspection of these figures indicates that clear bandings

can be identified in all cases. However, from further inspection of the figures it is

suggested that the bandings produced using the proposed 2D-BPM algorithm are better.

For example considering the bandings produced when the BC algorithm is applied to

the Wine, Iris and Glass data sets (Figures 4.8(c), 4.9(c) and 4.10(c)) the banding is

less dense than in the case of that produced using the 2D-BPM algorithm. Similarly,

when the MBABFP algorithm is applied to the Wine, Iris and Glass data sets (Figures

4.8(d), 4.9(d) and 4.10(d)), the resulting banding includes dots (1s) in the top-right

and bottom-left corners, while the 2D-BPM algorithm does not (it features a smaller

bandwidth). It is therefore argued that the proposed GBS measure is a more effective

measure for banding quality.
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(a) (b)

(c) (d)

Figure 4.8: Wine raw data set: (a) Before banding, (b) Banding resulting from 2D-
BPM algorithm, (c) Banding resulting from BC algorithm and (d) Banding resulting

from MBABFP algorithm
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(a) (b)

(c) (d)

Figure 4.9: Iris raw dataset: (a) Before banding, (b) Banding resulting from 2D-BPM
algorithm, (c) Banding resulting from BC algorithm and (d) Banding resulting from

MBABFP algorithm



Chapter 4. 2D Banding Mechanism 75

(a) (b)

(b) (b)

Figure 4.10: Glass raw dataset: (a) Before banding, (b) Banding resulting from 2D-
BPM algorithm (c) Banding resulting from BC algorithm and (d) Banding resulting

from MBABFP algorithm
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4.7.5 Effectiveness of Banding with respect to Frequent Item-set Min-

ing (FIM)

As noted in Section 4.7 of this thesis, it is conjectured that banding has benefits in

terms of enhancing the efficiency of some algorithms that use matrices or tabular zero-

one data, in addition to being an indicator of some pattern that may exist in zero-one

data. One example is Frequent Item-set Mining (FIM) [1, 2] where large binary valued

data collections, stored in the form of sets of feature vectors (drawn from a vector space

model of the data) are processed. Another example where banding may have benefits

is with respect to algorithms that uses n × n affinity matrices, such as in the case of

spectral clustering algorithms [126], to identify communities in networks (where n is

the number of network nodes). This section presents the results from an experimental

analysis conducted to determine the advantages that can be gained from banding in the

context of FIM. The FIM process was described in Subsection 2.4.3 of Chapter 2.

For the experiments, the twelve data sets from the UCI machine learning data repos-

itory, considered previously, were again used. For the frequent item-set mining the Total

From Partial (TFP) algorithm [30] was used, but any alternative FIM algorithm could

equally well have been adopted. The TFP algorithm was applied to the data sets in

banded and non-banded form (a support threshold σ of 2% was used). The results,

respectively using 2D-BPM, MBABFP , MBAFP and BC, are presented in Tables 4.9,

4.10, 4.11 and 4.12 (best results in bold font). In the Table the data sets are again listed

according to number of rows. If we consider only Table 4.9, which shows the timings

produced with respect to the proposed 2D-BPM algorithm, it can be seen that, if we do

not include the time to conduct the banding, the FIM is much more efficient when using

banded data than non-banded data. If the banding time is included, in 8 out of the 12

cases using 2D-BPM, the FIM is still more efficient. It is interesting to note from Table

4.9 that the 4 cases where when the banding is included, FIM is less efficient is where

the number of rows is greater than 5,000.

Considering Tables 4.10, 4.11 and 4.12 the total banding and FIM time is shorter

in 4 out of the 12 cases using MBABFP and MBAFP , and 5 out of the 12 cases using

BC. These results suggest that the bandings produced using 2D-BPM are somehow

better. The four relevant data sets with respect to MBABFP and MBAFP are the same

(Lypography, Hepatitus, Annealing and Waveform).
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Table 4.9: FIM runtime (seconds) with and without banding using 2D-BPM (σ =
2%)

# # Banding FIM time Total FIM time

Datasets Rows Cols Time with Banding (a+ b) without

(a) (b) Banding

Lympography 148 59 0.010 7.997 8.007 12.658

Hepatitis 155 56 0.020 0.055 0.075 22.416

Wine 178 68 0.010 0.155 0.165 0.169

Heart 303 52 0.020 0.294 0.314 0.387

HorseColic 368 85 0.030 0.899 0.929 1.242

Annealing 898 73 0.080 0.736 0.816 2.889

Mushroom 8124 90 3.110 874.104 877.214 1232.740

WaveForm 5000 101 1.320 119.220 120.540 174.864

PenDigits 10992 89 3.730 2.107 5.837 2.725

LetRecognition 20000 106 12.460 3.004 15.464 6.763

ChessKRvK 28056 58 14.190 0.082 14.272 0.171

Adult 48842 97 83.960 2.274 86.234 5.827

Table 4.10: FIM runtime (seconds) with and without banding using MBABFP (σ =
2%)

# # Banding FIM time Total FIM time

Datasets Rows Cols Time with Banding (a+ b) without

(a) (b) Banding

Lympography 148 59 0.077 11.187 11.264 12.658

Hepatitis 155 56 0.061 19.104 10.165 22.416

Wine 178 68 0.093 0.211 0.304 0.169

Heart 303 52 0.124 0.461 0.585 0.387

HorseColic 368 85 0.200 2.134 2.334 1.242

Annealing 898 73 0.260 1.733 1.993 2.889

Mushroom 8124 90 9.070 1595.949 1605.019 1232.740

WaveForm 5000 101 3.057 125.624 128.781 174.864

PenDigits 10992 89 12.940 2.731 15.671 2.725

LetRecognition 20000 106 24.538 9.216 30.759 6.763

ChessKRvK 28056 58 27.909 0.075 27.984 0.171

Adult 48842 97 185.955 10.525 196.480 5.827
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Table 4.11: FIM runtime (seconds) with and without banding using MBAFP (σ =
2%)

# # Banding FIM time Total FIM time

Datasets Rows Cols Time with Banding (a+ b) without

(a) (b) Banding

Lympography 148 59 0.060 11.331 11.391 12.658

Hepatitis 155 56 0.059 18.876 18.935 22.416

Wine 178 68 0.060 0.202 0.262 0.169

Heart 303 52 0.109 0.457 0.566 0.387

HorseColic 368 85 0.122 2.174 2.296 1.242

Annealing 898 73 0.220 1.985 2.205 2.889

Mushroom 8124 90 8.140 1695.349 1703.489 1232.740

WaveForm 5000 101 2.416 127.613 130.029 174.864

PenDigits 10992 89 11.859 2.741 14.600 2.725

LetRecognition 20000 106 21.314 9.216 30.530 6.763

ChessKRvK 28056 58 27.815 0.085 27.900 0.171

Adult 48842 97 140.954 11.225 152.179 5.827

Table 4.12: FIM runtime (seconds) with and without banding using BC (σ = 2%)

# # Banding FIM time Total FIM time

Datasets Rows Cols Time with Banding (a+ b) without

(a) (b) Banding

Lympography 148 59 0.080 10.597 10.677 12.658

Hepatitis 155 56 0.085 19.007 19.092 22.416

Wine 178 68 0.090 0.267 0.357 0.169

Heart 303 52 0.080 0.673 0.758 0.387

HorseColic 368 85 0.090 1.538 1.628 1.242

Annealing 898 73 0.200 1.660 1.860 2.889

Mushroom 8124 90 8.470 941.725 950.195 1232.740

LetRecognition 20000 106 26.380 8.214 34.504 6.763

WaveForm 5000 101 2.280 129.173 131.452 174.864

PenDigits 10992 89 10.120 3.528 21.158 2.725

ChessKRvK 28056 58 33.270 0.081 33.351 0.171

Adult 48842 97 175.840 5.512 181.352 5.827

4.8 Summary

This chapter has introduced the concepts of Banding Scores (BS) and Global Banding

Scores (GBS). This chapter has also presented the 2D-BPM algorithm for identifying
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bandings in 2D zero-one data and illustrated its operation using a worked example. The

experimental analysis and evaluation of the 2D-BPM algorithm presented in this chapter,

was conducted using the randomly generated synthetic and UCI data sets introduced in

Chapter 3 and in comparison with the established BC, MBABFP and MBAFP algorithms.

The analysis was conducted in terms of; (i) Global Banding Score (GBS), (ii) run-

time, (iii) the Average Band Width (ABW), (iv) Accuracy and (v) Mean Row Moment

(MRM). Recall that ABW was designed to be an independent measure. The main

findings from the reported evaluation of the proposed 2D-BPM algorithm indicated

that:

1. The 2D-BPM algorithm produces better results than the other three banding algo-

rithms considered in terms of both GBS and the independent ABW metric (The

main finding from the reported evaluations indicated that the most effective and

efficient algorithm was the proposed 2D-BPM algorithm (Section 4.7.3)).

2. In many cases the 2D-BPM algorithm also produced better results than the other

three banding algorithms considered when using Accuracy (in 7 out of the 12 cases)

and MRM (in 8 out of the 12 cases), despite the fact that 2D-BPM did not seek

to maximise these metrics.

3. The 2D-BPM algorithm was consistently more efficient than the other three algo-

rithms considered because it avoids the need to consider large number of permu-

tations.

4. Banding improves the effectiveness of applications such as Frequent Itemset Mining

(FIM).

Overall the 2D-BPM algorithm produce the best banding and consistently outperform

the three algorithms considered.

In the next chapter the Approximate 3D Banded Pattern Mining (A3D-BPM) algorithm

will be: presented, illustrated using a worked example and evaluated in the context of

3D data sets extracted from the CTS database.



Chapter 5

Approximate Banding Mechanism

5.1 Introduction

The previous chapter considered banding in 2D and presented the 2D-BPM algorithm for

finding banded patterns in 2D zero-one data. This chapter, and the following two chap-

ters, consider the banding problem in terms of higher dimensions commencing with 3D

banding a special case of ND BPM algorithm. This chapter proposes the Approximate

3D Banded Pattern Mining (A3D-BPM) algorithm designed to find an “approximate”

banding in 3D data. The algorithm is founded on the 2D-BPM algorithm presented

in the foregoing chapter extended to address 3D data. As the name suggest, for rea-

sons of efficiency, the algorithm features an approximation; the precise nature of this

approximation will become clear later in this chapter. The conjecture was that despite

producing an approximate banding the outcome would still be acceptable while at the

same time being generated in a manner that would be more efficient than if an exact

banding was generated. Whatever the case, to the best knowledge of the author, no

work has been directed at the banding of 3D data other than the work presented in this

and the following two chapters of this thesis.

Recall that a 2D binary valued data set is said to feature a banding if the dimension

indexes can be ordered in such a way that the “dots” are arranged about the leading

diagonal. The same applies in the case of 3D data (and ND data). Recall also that, given

a reasonably complex data set, it is unlikely that a perfect banding can be achieved,

however some “close to” best banding is always possible.

The rest of this chapter is organized as follows. We commence in Section 5.2 by

considering the formalism associated with the 3D banding problem and the calculation

of banding scores in the context of the A3D-BPM algorithm. Section 5.3 then goes on

to consider the A3D-BPM algorithm in detail. A worked example illustrating how the

A3D-BPM algorithm operates is presented in Section 5.4 and Section 5.5 then concludes

the chapter with a brief summary. No evaluation is presented because at this point in the

thesis there is no alternative algorithm with which the proposed A3D-BPM algorithm

can be compared. This is done in Chapter 6 where alternative 3D BPM algorithms are

considered.

80
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5.2 3D Approximated Banding Formalism and Calculation

of Banding Scores

In the context of the research presented in this thesis, a 3D data space can be conceptu-

alised as comprising a (k1× k2× k3) grid where k1 is the size of dimension one, k2 is the

size of dimension two and so on. The data space can be conceived of in terms of a x-y-z

cartesian space; or, alternatively, as comprising column, rows and slices. The indexes

associated with dimension x (columns) might be record numbers, the indexes associated

with dimension y (rows) might be attribute value identifiers and the indexes associated

with dimension z (slices) might be discrete time stamps. Note that a particular index p

belonging to a dimension i will be indicated using the notation eip and that the dimen-

sions are not all necessarily of equal size. The set of dimensions is indicated using the

notation DIM = {Dimx, Dimy, Dimz}, where each dimension comprises a set of indexes

(which we wish to order so as to reveal a best banding).

As before, each grid cube in the data space representing a “one” is conceptualised

as containing a dot, whilst each grid cube representing a “zero” is conceptualised as

being empty. Figures 5.1 and 5.2, present 3D configurations made up of three “columns”

(Dimx), three “rows” (Dimy) and three “slices” (Dimz). Figure 5.1 represents a perfect

banding as defined in this thesis, whilst Figure 5.2 presents some alternative banding.

Note that each dot can be defined by a coordinate tuple of the form 〈x, y, z〉 where

0 ≤ x ≤ k1, 0 ≤ y ≤ k2 and 0 ≤ z ≤ k3. Therefore, a 3D data set D can be considered

to comprise a set of m dots, D = {d1, d2, ..., dm}, such that each di is represented by a

tuple of the form 〈xi, yi, zi〉.

Figure 5.1: Example of a 3D dot Configuration featuring a perfect banding

As will become clearer later in this chapter the A3D-BPM algorithm operate by con-

sidering pairing of dimensions. Thus given two dimensions Dimi and Dimj , we calculate

the banding scores for index p in Dimi with respect to Dimj indicated using the notation

bsijp as shown in Equation 5.1. The similarity between this and Equation 4.3 presented

in the previous chapter should be noted. In Equation 5.1 the set W is the set of Dimj

indexes {w1, w2, . . . }, representing “dots” whose Dimi coordinate equates to p.
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Figure 5.2: Example of a 3D dot Configuration featuring an alternative banding

bsijp =

∑p=|W |
p=1 wp∑q=|W |

q=1 (|Dimq| − k + 1)
(5.1)

Note that using Equation 5.1 means that in the 3D case all three dimensions are

not taken into consideration when calculating individual banding scores; only pairs of

dimensions are considered. This is thus the approximation featured by the A3D-BPM

algorithm. However, it was conjectured that this approximate approach would result in

sufficiently accurate bandings without the need for the extra resource to calculate more

complex (exact) banding scores. It should be noted that although the approach only

considers pairs of dimensions this does not mean that the other dimensions are ignored

(the 3rd dimensions in the 3D case), as all dimension pairing are considered during the

process. The Global Banding Score for dimension Dimi with respect to dimension Dimj ,

given by GBSij , is calculated using Equation 5.2 where ki is the size of dimension Dimi.

GBSij =

∑p=ki
p=1 bsijp

ki
(5.2)

The Global Banding Score for a dimension i, given by GBSi, is then calculated using

Equation 5.3 where I is the set of dimension identifiers excluding Dimi.

GBSi =

∑|I|
j=1GBSij

|I|
(5.3)

Thus we have:

GBSx =
GBSxy +GBSxz

2
(5.4)

GBSy =
GBSyx +GBSyz

2
(5.5)

GBSz =
GBSzx +GBSzy

2
(5.6)

The overall GBS value is then calculated using Equation 5.7.
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GBS =

∑i=|DIM |
i=1

|DIM |
=
GBSx +GBSy +GBSz

3
(5.7)

Usage of the above can be illustrated using the configurations featured in Figures 5.1

and 5.2. Starting with Figure 5.1 the set of banding scores for Dimx, Dimy and Dimz,

calculated using Equation 5.1, will be:

BSxy =
1

3
+

2

3
+

3

3
= 2.0 BSxz =

1

3
+

2

3
+

3

3
= 2.0

BSyx =
1

3
+

2

3
+

3

3
= 2.0 BSyz =

1

3
+

2

3
+

3

3
= 2.0

BSzx =
1

3
+

2

3
+

3

3
= 2.0 BSzy =

1

3
+

2

3
+

3

3
= 2.0

Similarly, for the configuration shown in Figure 5.2, the set of banding scores for Dimx,

Dimy and Dimz will be:

BSxy =
1

3
+

2

3
+

1

3
= 1.33 BSxz =

1

3
+

2

3
+

1

3
= 1.33

BSyx =
1

3
+

2

3
+

1

3
= 1.33 BSyz =

1

3
+

2

3
+

1

3
= 1.33

BSzx =
1

3
+

2

3
+

1

3
= 1.33 BSzy =

1

3
+

2

3
+

1

3
= 1.33

Referring back to the dot configuration shown in Figures 5.1 the GBS for: (i) dimen-

sion x with respect to dimension y, (ii) dimension x with respect to dimension z and

(iii) dimension y with respect to dimension z, calculated using Equation 5.2, will be as

follows:

GBSxy =
2

3
= 0.67 GBSxz =

2

3
= 0.67

GBSyx =
2

3
= 0.67 GBSyz =

2

3
= 0.67

GBSzx =
2

3
= 0.67 GBSzy =

2

3
= 0.67

and in the case of the configuration shown in Figure 5.2:

GBSxy =
1.33

3
= 0.44 GBSxz =

1.33

3
= 0.44

GBSyx =
1.33

3
= 0.44 GBSyz =

1.33

3
= 0.44
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GBSzx =
1.33

3
= 0.44 GBSzy =

1.33

3
= 0.44

As noted above, to obtain the GBS for each dimension, we simply sum the indvidual

banding scores and divide by the number of dimensions minus one using Equations 5.4,

5.5 and 5.6. Recall that we divide by 2 so as to normalise the dimension GBS values

(because we have two dimensions pairings). The values GBSx, GBSy and GBSz for the

configuration in Figure 5.1 will thus be:

GBSx =
0.67 + 0.67

2
=

1.34

2
= 0.67

GBSy =
0.67 + 0.67

2
=

1.34

2
= 0.67

GBSz =
0.67 + 0.67

2
=

1.34

2
= 0.67

and for the configuration shown in Figures 5.2:

GBSx =
0.44 + 0.44

2
=

0.88

2
= 0.44

GBSy =
0.44 + 0.44

2
=

0.88

2
= 0.44

GBSz =
0.44 + 0.44

2
=

0.88

2
= 0.44

The GBS values are the same because the two configurations are symmetric about the

diagonal.

Using Equation 5.7 the overall global banding Score (GBS) for the two configurations

will be calculated as follows:

GBS =
0.67 + 0.67 + 0.67

3
= 0.67

GBS =
0.44 + 0.44 + 0.44

3
= 0.44

Note that this result serves to distinguish between the perfect banding shown in Figure

5.1 and the alternative banding shown in Figure 5.2.

5.3 Overview of Approximate 3D Banded Pattern Mining

(A3D-BPM) Mechanism

The A3D-BPM algorithm operates in a similar manner to the 2D-BPM algorithm; we

loop through the dimensions rearranging the dimension indexes according to the banding



Chapter 5. Approximate Banding Mechanism 85

score concept. The process continues until a best banding has been arrived at or we

reach some maximum number of permitted iterations monitored by a counter variable.

For the A3D-BPM algorithm it should be noted that the banding scores are calcu-

lated in the same manner as the 2D-BPM algorithm presented in Chapter 4. However,

this was a 2D mechanism, thus we have to consider all possible pairings. The maximum

number of pairings can be calculated using Equation 5.8, where |DIM | is the size of the

set of dimensions DIM , in other words the number of dimensions. Where |DIM | = 3,

as in the case of 3D data, the maximum number of parings will be 3× 2 = 6.

Max pairings = |DIM | × (|DIM | − 1) (5.8)

The pseudo code for the A3D-BPM algorithm is presented Algorithm 6. The in-

puts are (Lines 1 to 3): (i) a dot data set D, (ii) the set of dimensions DIM =

{Dimx, Dimy, Dimz} and (iii) a maximum number of iterations counter. The output

is a rearranged data space D that minimises the GBS value (Line 4). Because we are

seeking to minimise the GBS score, on start up, the GBS value sofar is set to 1.0 (Line

5). The algorithm iteratively loops over the data space. On each iteration the algorithm

rearranges the indexes in Dimi according to the calculated banding scores. Recall that

this is done by considering all possible 2D pairings. For each pairing Dimij the banding

score bsijp for each index p in Dimi is calculated (Lines 10 to 18) with respect to Dimj

and used to rearrange dimensions Dimi to give Dim′i (Line 15). A GBS value for Dimx,

Dimy and Dimz is calculated and stored in a set G (Lines 19 to 23). Once all the pair-

ings have been considered, a GBSnew value is calculated (Line 25). If GBSnew is worse

than the current GBSsofar value, or there has been no change, we exit with the current

configuration D (Line 33). Otherwise we set D to D′ and GBSnew to GBSsofar (Line

29) and repeat. Note that although not shown in Algorithm 6, termination also occurs

whenever no changes have taken place.

5.4 A Working Example Using the A3D-BPM Algorithm

This section presents a worked example to illustrate the operation of the proposed A3D-

BPM algorithm using the 3D configuration shown in Figure 5.3. The same configuration

is shown in Figures 5.4 and 5.5 but from different perspectives. Note that the data set

is made up of: five “columns” (Dimx), six “rows” (Dimy) and two “slices” (Dimz).

The A3D-BPM algorithm commence by calculating the BSijp scores for Dimx, Dimy

and Dimz to obtain: BSxy = 1.0000, BSxz = 0.6296, BSyx = 0.8095, BSyz = 0.6188,

BSzx = 0.2794 and BSzy = 0.3333. Using this set of scores the items in Dimx, Dimy and

Dimz are rearranged as shown in Figures 5.6, 5.7 and 5.8. The GBS for Dimx, Dimy and

Dimz are: GBSx = 0.8148, GBSy = 0.7142 and GBSz = 0.3064; and the overall GBS

value for the configuration is now:

GBS =
0.8148 + 0.7142 + 0.3064

3
= 0.6120
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Algorithm 6: The A3D-BPM Algorithm

1: Input: DIM = a set of dimensions {Dimx, Dimy, Dimz} each comprised of a set of
indexes

2: D = a binary valued data matrix subscribing to DIM
3: counter = a maximum number of iterations
4: Output: D rearranged so as to minimise the GBS
5: GBSsofar = 1.0
6: loop
7: if (counter == 0) then
8: break
9: end if

10: for i = 0 to i = |DIM | do
11: for j = i+ 1 to j = |DIM | do
12: for p = 0 to p = ki do
13: bsijp = Banding score for index p in Dimi w.r.t. Dimj calculated using

Equation 5.1
14: end for
15: DIM ′i = Rearranged Dimi according to banding scores for Dimi w.r.t

Dimj

16: D′ = D Rearranged according to Dim′i
17: end for
18: end for
19: for i = 0 to i = |DIM | do
20: for j = 0 to j = |DIM | and j 6= i do
21: G = GBSij calculated using Equation 5.2
22: end for
23: end for
24: GBSi calculated using Equation 5.3
25: GBSnew = overall GBS calculated using G and Equation 5.7
26: if (GBSnew ≥ GBSsofar) then
27: break
28: else
29: DIM = DIM ′, D = D′, GBSsofar = GBSnew
30: end if
31: counter = counter − 1
32: end loop
33: Exit with D and GBS

On the second iterations, the process is repeated and the BSijp scores for Dimx, Dimy

and Dimz are now: BSxy = 0.9524, BSxz = 0.7593, BSyx = 0.9286, BSyz = 0.5805 and

BSzx = 0.2794 and BSzy = 0.2963. As a consequence the items in Dimx, Dimy and Dimz

are rearranged to produce the configuration shown in Figures 5.9, 5.10 and 5.11 .

The Global banding scores for Dimx, Dimy and Dimz are now: GBSx = 0.8559

(previously this was 0.8148), GBSy = 0.7546 (was 0.6950) and GBSz = 0.2879 (was

0.3064) and the overall GBS value is now:

GBS =
0.8559 + 0.7546 + 0.2879

3
= 0.6328
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Figure 5.3: Input Data Perspective 1

Figure 5.4: Input Data Perspective 2

Figure 5.5: Input Data Perspective 3

On the previous iteration it was 0.6120, however no changes have been made on this

second iteration so the process terminates.

5.5 Summary

This chapter has described the operation of the proposed A3D-BPM algorithm. The

algorithm was presented in detail and its operation illustrated with a worked example.
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Figure 5.6: Input Data rearranged using A3D-BPM after the first iteration, perspec-
tive 1

Figure 5.7: Input Data rearranged using A3D-BPM after the first iteration, perspec-
tive 2

Figure 5.8: Input Data rearranged using A3D-BPM after the first iteration, perspec-
tive 3

The algorithm produces only an approximate banding in the sense that when calculating

banding scores it only considers pairs of dimensions, all dimensions are not considered

simultaneously when calculating banding scores. The significance of the A3D-BPM algo-

rithm was that it was conjectured that sufficiently accurate bandings would be generated
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Figure 5.9: Input Data rearranged using A3D-BPM after the second iteration, per-
spective 1

Figure 5.10: Input Data rearranged using A3D-BPM after the second iteration, per-
spective 2

Figure 5.11: Input Data rearranged using A3D-BPM after the second iteration, per-
spective 3

without the complexity of considering all dimensions simultaneously, which it was an-

ticipated would entail a computational overhead. To determine whether this conjecture

was correct or not an exact 3D BPM algorithm was required so that comparisons could

be made. The following chapter thus presents the Exact 3D Banded Pattern Mining

(E3D-BPM) algorithm and also presents a comparison of the two algorithms.



Chapter 6

Exact Banding Mechanism

6.1 Introduction

In the previous chapter the Approximate 3D Banded Pattern Mining (A3D-BPM) al-

gorithm was presented. The A3D-BPM algorithm was a natural progression from the

2D-BPM algorithm presented in Chapter 4, but it entailed a simplification in that band-

ing scores were calculated in terms of 2D in a very similar manner to that used in the

2D-BPM algorithm. However, it was conjectured that the advantage offered might be

that the finding of approximate banded patterns would be more efficient than finding ex-

act patterns, and that the resulting patterns would be of sufficient quality. To establish

whether this was indeed the case an exact 3D banding algorithm would be required. This

is therefore discussed in this chapter. More specifically the Exact 3D Banded Pattern

Mining (E3D-BPM) algorithm a special case of ND BPM algorithm is presented.

As will become clear later in this chapter, the proposed E3D-BPM algorithm is more

complex than the A3D-BPM algorithm because it takes into consideration the entire

data space. It does this by calculating banding scores using the concept of “distance

from origin” of individual dots. These distances can be calculated in variety of ways;

two obvious choices, and those considered in this chapter, are: (i) Euclidean and (ii)

Manhattan distance calculation. To normalise the calculated banding score, again as will

become clear later in this chapter, we use maximum “distance from origin”. Because,

given any reasonably sized data set, maximum distances would be frequently calculated

this chapter also presents the idea of pre-calculating these distances and storing them

in a maximum distance table (an M-Table).

The rest of this chapter is organised as follows. Section 6.2 presents some formal

definitions to support the E3D-BPM algorithm. Section 6.3 considers the M-Table

concept, while Section 6.4 considers the E3D-BPM algorithm it-self. Section 6.5 then

presents an evaluation of the E3D-BPM algorithm in comparison with the A3D-BPM

algorithm presented in the previous chapter. The evaluation was conducted in the

context of the CTS data sets introduced in Chapter 3. A summary of the work considered

in this chapter and some conclusions, are presented in Section 6.6.

90
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6.2 Formalism and Banding Score Calculation

As in the case of the A3D-BPM algorithm, the data space of interest comprises a set

of 3-Dimensions, DIM = {Dimx, Dimy, Dimz} such that each dimension comprises a set

of index positions (which we wish to rearrange to achieve a banding). Note that the

dimensions are not necessarily all of the same size. As before the dots within the space

are referenced using x-y-z coordinate tuples of the form 〈c1, c2, c3〉. Consequently, again

as in the case of the A3D-BPM algorithm, a dot data set D = {d1, d2, . . . } comprises

a set of coordinate tuples each representing a dot. The situation where more than one

dot might occur at a location is excluded at the present, thus any given coordinate tuple

can appear only once in D.

The Banding Score (BS) for a particular index j in dimension Dimi, indicated in this

chapter using the notation bsij , is determined according to the location of the subset of

dots S = {s1, s2, . . . } in D whose ci coordinate is equal to j (recall that each dot in D

is define by a coordinate tuple of the form 〈c1, c2, c3〉). For each dot in S we calculate

the distance to the origin in terms of a data sub-space that does not include the current

dimension Dimi. We exclude the current dimension because this is the dimension we

want to rearrange. Thus the banding score bsij is calculated as follow:

bsij =

p=|S|∑
p=1

dist(sp) (6.1)

where dist(sp) is the distance from the “zero” origin of the data space to the point sp.

However, as before, we wish to normalise the Banding Scores (BS). To this end we need

to divide by an equal number of maximum distances. Thus we need to devise a set

Max = {m1,m2, . . . } holding these maximum distances such that there is a one-to-one

correspondence between the set Max and the set S. Recall that the assumption has

been made that only one dot can be held at a given location. Thus the normalised

banding score is calculated as follows:

bsij =

∑p=|S|
p=1 dist(sp)∑p=|Max|
p=1 mp

(6.2)

As noted in the introduction, there are two obvious mechanisms for calculating the

distance of a dot’s location to the origin of the data space: (i) Euclidean (Equation 6.3)

and (ii) Manhattan (Equation 6.4).

w =
√

(c1)2 + (c2)2 + · · ·+ (cn)2 (6.3)

w =
k=n∑
k=1

ck (6.4)
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Thus we have two variations of the E3D-BPM algorithm: (i) Euclidean E3D-BPM and

(ii) Manhattan E3D-BPM.

Given the above, GBS values can be calculated as follows (regardless of whether

Euclidean or Manhattan distance calculation is used). Recall that, a 3D data set D

can be considered to comprise a set of m dots, D = {d1, d2, ..., dm} such that each di is

represented by a tuple of the form 〈c1, c2, c3〉. Therefore, the GBS, for Dimx, Dimy and

Dimz may be obtained thus:

GBSx =

∑j=k1
j=0 bsij × (k1 − j)
k1(k1 + 1)/2

(6.5)

GBSy =

∑j=k2
j=0 bsyj × (k2 − j)
k2(k2 + 1)/2

(6.6)

GBSz =

∑j=k3
j=0 bszj × (k3 − j)
k3(k3 + 1)/2

(6.7)

and the total GBS for the given 3D configuration using Equation 6.8:

GBS =
GBSx +GBSy +GBSz

3
(6.8)

Usage of the above can be illustrated by considering the banding configurations used

previously with respect to the A3D-BPM algorithm; these were given in Figures 5.1

and 5.2 in Chapter 5. Starting with the configuration given in Figure 5.1 and using the

Euclidean variation of the E3D-BPM algorithm the banding scores for Dimx, Dimy and

Dimz (calculated using Equation 5.1) will be:

bsx1 =
0.0000

2.8284
= 0.0000 bsx2 =

1.4142

2.8284
= 0.5000 bsx3 =

2.8284

2.8284
= 1.0000

bsy1 =
0.0000

2.8284
= 0.0000 bsy2 =

1.4142

2.8284
= 0.5000 bsy3 =

2.8284

2.8284
= 1.0000

bsz1 =
0.0000

2.8284
= 0.0000 bsz2 =

1.4142

2.8284
= 0.5000 bsz3 =

2.8284

2.8284
= 1.0000

The GBS values for Dimx, Dimy and Dimz, GBSx, GBSy and GBSz will then be:

GBSx =
0.0000× 2 + 0.5000× 1 + 1.0000× 0

2(2 + 1)/2
=

0.5000

3
= 0.1667

GBSy =
0.0000× 2 + 0.5000× 1 + 1.0000× 0

2(2 + 1)/2
=

0.5000

3
= 0.1667
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GBSz =
0.0000× 2 + 0.5000× 1 + 1.0000× 0

2(2 + 1)/2
=

0.5000

3
= 0.1667

Note that the above GBSx, GBSy and GBSz values are the same because the configu-

ration in Figure 5.1 is symmetrical. The final GBS is then as follows:

GBS =
0.1667 + 0.1667 + 0.1667

3
= 0.1667

Similarly when, using the Manhattan variation of the E3D-BPM algorithm the band-

ing scores for Dimx, Dimy and Dimz (for the configuration given in Figure 5.1) will

be:

bsx1 =
0

4
= 0.0000 bsx2 =

2

4
= 0.5000 bsx3 =

4

4
= 1.0000

bsy1 =
0

4
= 0.0000 bsx2 =

2

4
= 0.5000 bsx3 =

4

4
= 1.0000

bsz1 =
0

4
= 0.0000 bsx2 =

2

4
= 0.5000 bsx3 =

4

4
= 1.0000

The values for GBSx, GBSy and GBSz will then be:

GBSx =
0.0× 2 + 0.5× 1 + 1.0× 0

2(2 + 1)/2
=

0.5

3
= 0.1667

GBSy =
0.0× 2 + 0.5× 1 + 1.0× 0

2(2 + 1)/2
=

0.5

3
= 0.1667

GBSz =
0.0× 2 + 0.5× 1 + 1.0× 0

2(2 + 1)/2
=

0.5

3
= 0.1667

The final GBS value for the configuration will then be:

GBS =
0.1667 + 0.1667 + 0.1667

3
= 0.1667

If we now consider the configuration given in Figure 5.2 the set of banding scores for

Dimx, Dimy and Dimz using the Euclidean E3D-BPM algorithm will be:

bsx1 =
2.0000

2.8284
= 0.7071 bsx2 =

1.4142

2.8284
= 0.5000 bsx3 =

2.0000

2.8284
= 0.7071

bsy1 =
2.0000

2.8284
= 0.7071 bsy2 =

1.4142

2.8284
= 0.5000 bsy3 =

2.0000

2.8284
= 0.7071

bsz1 =
2.0000

2.8284
= 0.7071 bsz2 =

1.4142

2.8284
= 0.5000 bsz3 =

2.0000

2.8284
= 0.7071
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and the corresponding GBSx, GBSy and GBSz values will be:

GBSx =
0.7071× 2 + 0.5000× 1 + 0.7071× 0

2(2 + 1)/2
=

1.9142

3
= 0.6380

GBSy =
0.7071× 2 + 0.5000× 1 + 0.7071× 0

2(2 + 1)/2
=

1.9142

3
= 0.6380

GBSz =
0.7071× 2 + 0.5000× 1 + 0.7071× 0

2(2 + 1)/2
=

1.9142

3
= 0.6380

Consequently the final GBS value for the dot configuration given in Figure 5.2, using

the Euclidean E3D-BPM algorithm will be:

GBS =
0.6380 + 0.6380 + 0.6380

3
= 0.6380

Using the Manhattan variation of the E3D-BPM algorithm applied to the dot con-

figuration given in Figure 5.2 the set of banding scores for Dimx, Dimy and Dimz will

be:

bsx1 =
2

4
= 0.5000 bsx2 =

2

4
= 0.5000 bsx3 =

2

4
= 0.5000

bsy1 =
2

4
= 0.5000 bsy2 =

2

4
= 0.5000 bsy3 =

2

4
= 0.5000

bsz1 =
2

4
= 0.5000 bsz2 =

2

4
= 0.5000 bsz3 =

2

4
= 0.5000

which will give rise to the following GBS values:

GBSx =
0.5× 2 + 0.5× 1 + 0.5× 0

2(2 + 1)/2
=

1.5

3
= 0.5000

GBSy =
0.5× 2 + 0.5× 1 + 0.5× 0

2(2 + 1)/2
=

1.5

3
= 0.5000

GBSz =
0.5× 2 + 0.5× 1 + 0.5× 0

2(2 + 1)/2
=

1.5

3
= 0.5000

and a final GBS value of:

GBS =
0.5 + 0.5 + 0.5

3
= 0.5000

The above illustrations are summarised in Table 6.1 with respect to the final GBS

values obtained. From the table it can be seen that, regardless of whether the Euclidean

or Manhattan E3D-BPM variation is used, the resulting overall GBS value finally arrived

at can be used to distinguish between the two configurations given in Figures 5.1 and

5.2.
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Table 6.1: Summary of final GBS values obtained with respect to illustration given
in Section 6.2

Perfect banding Alternative banding
(Figure 5.1) (Figure 5.2)

Euclidean E3D-BPM 0.1667 0.6380

Manhattan E3D-BPM 0.1667 0.5000

6.3 Maximum Distance Tables

The mechanism for calculating banding scores presented in the previous section, Sec-

tion 6.2 involves normalisation using maximum distances from (to) the origin. With

reference to the illustrations using the exact banding process presented in Section 6.2,

the maximum number of dots associated with each index in each dimension is one, we

only need one maximum value, however, the maximum distance is calculated repeatedly

(Equation 6.3 or 6.4 will be invoked again and again). The number of maximum dis-

tances required will be equivalent to the maximum number of dots held with respect to

any one index in any dimension. Thus for most genuine data sets there will be many

“maximum” distance calculations and it is likely that the same maximum distances will

be calculated again and again. The idea presented in this section is that these values

can be precalculated and stored in a table called an M-Table.

An example M-Table is given in Figure 6.1. In the figure the rows represent the

dimensions and columns the maximum distances starting with the largest and then

decreasing. The length of each row depends on the maximum number of dots with

respect to any one index in the associated dimension. The value vij included in the table

indicated the value for dimension i for the jth dot. Note that with respect to the example

given in Figure 6.1 the maximum number of dots per dimension is not equal. Figure

6.2(a) and (b) show the M-Tables (using Euclidean and Manhattan distance calculation

respectively) for the “toy” configurations shown in Figures 5.1 and 5.2. In this case,

because the maximum number of dots associated with each index in each dimension is

one, we only have one maximum value per row. Also, because both configurations are

symmetrical, the maximum distance is the same for each dimension.

Figure 6.1: Example M-Table
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(a) (b)

Figure 6.2: M-Tables for example configurations given in Figures 5.1 and 5.2: (a)
Euclidean and (b) Manhattan

The remainder of this section is organised as follows. Subsection 6.3.1 considers the

generation of M-Tables. It is proposed that this be done using an algorithm referred to as

the Maximum Distance Calculation (MDC) Algorithm. An example of the construction

of an M-Table, using the MDC algorithm, is then presented in Subsection 6.3.2.

6.3.1 M-Table Generation and the MDC Algorithm

From the foregoing, because maximum distances are calculated repeatedly, it is suggested

that it might be expedient to calculate the potential maximum distances that may be

required in advance and store these in a Maximum Distance Table (an M-Table). The

number of dimension featured in such an M-Table will always be one less than |DIM |,
the maximum number of dimensions. This is because, as noted above, when calculating

banding scores we ignore the current dimension as this is the dimension we wish to

rearrange. Note also that the entire data space does not need to be covered (this would

require a significant computational overhead), we only need to consider the maximum

number of dots that can occur with respect to each dimension.

The calculation of the longest possible distance from the origin to a dot within a

ND space is straight forward as the maximum coordinates are known. The second most

longest distance is harder, especially where the ND space under consideration is not

symmentrical. Similarly with the third longest distance and so on. Other than for

the maximum distance there will be a number of candidates locatons that will give the

nth most longest distance. To generate an M-Table, given the foregoing, the Maximum

Distance Calculation (MDC) algorithm is proposed.

The pseudo code for the proposed MDC algorithm is given in Algorithms 7 and

Algorithm 8. Algorithm 7 is the “top-level” algorithm for calculating M-Tables while

Algorithm 8 is used to calculate maximum values for a specified row in a desired M-Table.

Returning to Algorithm 7, the inputs (Line 1) are: (i) the dimension sizes {k1, k2, k3}
for the data space under consideration, (ii) the set of dimensions DIM defining the



Chapter 6. Exact Banding Mechanism 97

data space and (iii) the dot data set under consideration D. The output (Line 2) is an

M-Table as defined above. The algorithm commences (Lines 3 to 12) by determining

the maximum number of dots for each dimensions Dimi ∈ DIM by considering each

index j in dimension Dimi in turn. The result is stored in the MaxDots array. The

information is then used to define the size of the desired M-Tables (Line 13). We then

loop through the dimensions (Lines 14 to 17). On each iteration we first (Line 15) collate

the dimension sizes, excluding the current dimension Dimi, and hold these in DimSizes.

Then (Line 16) the function calculateMtableRow is called (Algorithm 8) to generate the

required M-Tables row of maximum distances for the current dimension Dimi. In this

manner the M-Table is built up.

Algorithm 7: MDC Algorithm

1: Input: K = {k1, k2, k3}, DIM = {Dimx, Dimy, Dimz} set of dimensions,D set of
dots held in the data space under consideration

2: output: M-Table
3: MaxDots = {max1,max2,max3} = {0, 0, 0}
4: loop
5: for i = 1 to i = DIM do
6: for j = 1 to j = Ki do
7: count = number of dots with index equal to j for dimension i
8: if (count > maxi) then
9: maxi = count

10: end if
11: end for
12: end for
13: Define M-Table of size |K| by content of MaxDots
14: for i = 1 to i = DIM do
15: DimSizes = array of dimension sizes from K excluding dimension size for

Dimi

16: M-Tablei = calculateMtableRow(MaxDotsi,DimSizes)
17: end for
18: end loop

The pseudo code for the calculatedMtableRow function is given in Algorithm 8. The

inputs to the algorithm are: (i) the number of maximum values to be returned (thus

the size of M-Table row under consideration) and (ii) the dimension sizes (excluding the

current dimension). The output is a sequence of maximum distances, starting with the

greatest distance, which become a row in a desired M-Table. On start up the location

which will feature the maximum distance is identified and stored in the set Locs (Line 5).

Recall that this location is a tuple of the form 〈c1, c2, . . . 〉 where each coordinate value

corresponds to one of the dimension specified for the data space of interest excluding the

current dimension (the dimension whose indexes we wish to rearrange). The associated

maximum distance is then calculated and stored in the set Dists (Line 6). These row

sets are updated as the algorithm progresses.
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The algorithm then continues, in an iterative manner, according to the numV alues

input parameter. On each iteration the longest distance distj is extracted from the set

Dists (Line 8). The set Locs is then pruned (Line 10) by removing the location locj as-

sociated with the maximum distance distj identified in the previous line. The Dists set

is also pruned by removing distj (Line 11). We then identify the two locations immedi-

ately above and to the left of locj (assuming the origin of the space under consideration

is in the top-left hand corner) and store them in NewLocs (Line 12). The associated

set of distances are also calculated and stored in NewDists (Line 13). In some cases, if

we have reached either the top or left boundary of the data space, only one location will

be generated. Given a data space populated entirely with dots the origin location will

eventually be reached and no new locations will be generated. The sets NewLocs and

NewDists are then merged with the existing (pruned) sets Locs and Dists such that

no repetitions are included (Lines 14 and 15). The process repeats in this manner until

the required maximum number of values is reached.

Algorithm 8: Calculate M-Table Row Algorithm

1: Function: calculateMtableRow
2: Input: numV alues = the number of “maximum” values to be returned
3: DimSizes = {k1, k2, . . . } The dimension sizes excluding the current dimension
4: output: Row = A list of maximum values of length numV alues
5: Locs = {loc1} = {〈k1, k2, . . . 〉}
6: Dists = {dist1} = {distCalc(loc1)}
7: for (i = 0 to i = numV alues) do
8: distj =getLongestdistIndex(Dists);
9: Row[i] = distj

10: Locs = (Locs− locj) Prune location locj from Locs
11: Dists = (Dist− distj) Prune distance distj from Dists
12: NewLocs = calculateNewLocations (locj)
13: NewDists = calculateNewDistances (NewLocs)
14: Locs = Locs ∪NewLocs
15: Dists = Dists ∪NewDists
16: end for

6.3.2 M-Table Construction Example

This subsection presents an example to illustrate the operation of the MDC algorithm

using a 3D configuration measuring 8×5×6, in otherwords K = {8, 5, 6} corresponding

to Dim1, Dim2 and Dim3 respectively. If we assume that the maximum number of dots

associated with each dimension in this case is ten. Thus we need ten maximum values

with respect to each dimension. It should be recalled that the maximum number of dots

per dimension are not necessarily equal, however with respect to the example presented

in this section an equal maximum number of dots was assumed. Recall from above that

the number of dimensions to be considered when calculating M-Table values is always

one less than |DIM | (the maximum number of dimensions). Therefore in the case of the
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example presented here, the MDC algorithm calculates the maximum values for each

Dimx, Dimy and Dimz in context of: (i) a 5× 6 space, (ii) a 8× 6 space and (iii) a 8× 5

space. Figure 6.3 presents the order in which distance values were selected. Figures

6.3(a), (c) and (e) with respect to Euclidean distance calculation, and Figures 6.3(b),

(d) and (f) with respect Manhattan distance calculation. In each case the first value,

value 0 is at the bottom-right hand corner; after that the location of the following values

varies.

Table 6.2 shows the associated calculations with respect to the orderings presented in

Figures 6.3. In the tables the first column, locj , gives the location identifier; the second

column the associated coordinates for the location; the third column the Euclidean

or Manhattan distance calculation as appropriate; and the fourth (final) column the

consequent distance. The associated M-Tables (Euclidean and Manhattan) are gven in

Figures 6.4(a) and (b).

6.4 The Exact 3D Banded Pattern Mining (E3D-BPM)

Algorithm

This section considers the proposed E3D-BPM algorithm in more detail. The section is

divided into two subsections. The first, Subsection 6.4.1 considers the operation of the

algorithm; pseudo code describing the algorithm is presented and discussed. Subsection

6.4.2 then gives a worked example of the algorithm’s operation.

6.4.1 The E3D-BPM Algorithms

The pseudo code for the proposed E3D-BPM algorithm is presented in Algorithm 9. The

inputs (Lines 1-3) are: (i) the set of dimensions DIM = {Dimx, Dimy, Dimz}, (ii) a zero-

one data set D and (iii) a maximum number of iterations counter. The output (Line 4)

is a rearranged data space that serve to minimise the GBS value. As in the case of the

2D-BPM and A3D-BPM algorithms presented earlier in Chapters 4 and 5 respectively,

the E3D-BPM algorithms proceeds in an iterative manner. On each iteration the indexes

in the dimensions are rearranged according to the calculated banding scores (Line 12).

Banding scores are calculated using Equation 6.2 and either Euclidean or Manhattan

distance calculation with or without recourse to an M-Table (see above). This process

continues until either: (i) the GBS is minimised or (ii) the number of iterations is reached.

A worked example illustrating how the E3D-BPM algorithm operates is presented in the

following subsection, Subsection 6.4.2 below.

6.4.2 A Working Example Using the E3D-BPM Algorithms

This subsection presents a working example to illustrate the operation of the E3D-BPM

algorithm using the dot configuration used to describe the operation of the A3D-BPM

algorithm in the previous chapter. More specifically the configuration shown, from



Chapter 6. Exact Banding Mechanism 100

(a) Dim2 ×Dim3 (b) Dim2 ×Dim3

(c) Dim1 ×Dim3 (d) Dim1 ×Dim3

(e) Dim1 ×Dim2 (f) Dim1 ×Dim2

Figure 6.3: The order in which locations are selected when generating M-Tables using
Euclidean and Manhattan distance calculation, for the spaces 5× 6, 8× 6 and 8× 5.

three different perspectives, in Figures 5.3, 5.4 and 5.5 in Section 5.4 of Chapter 5. The

operation of both the Euclidean and Manhattan variations of the E3D-BPM algorithm
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Table 6.2: MDC using Euclidean and Manhattan distance calculations

locj index(i, j) Euclid. Dist

loc0 (4, 5)
√

42 + 52 6.4031

loc1 (3, 5)
√

32 + 52 5.8309

loc2 (4, 4)
√

42 + 42 5.6568

loc3 (2, 5)
√

22 + 52 5.3851

loc4 (1, 5)
√

12 + 52 5.0990

loc5 (0, 5)
√

02 + 52 5.0000

loc6 (4, 3)
√

42 + 32 5.0000

loc7 (3, 4)
√

32 + 42 5.0000

loc8 (4, 2)
√

42 + 22 4.4721

loc9 (2, 4)
√

22 + 42 4.4721

(a)

locj index(i, j) Manhat. Dist

loc0 (4, 5) (4 + 5) 9
loc1 (4, 4) (4 + 4) 8
loc2 (3, 5) (3 + 5) 8
loc3 (4, 3) (4 + 3) 7
loc4 (5, 2) (5 + 2) 7
loc5 (4, 3) (3 + 4) 7
loc6 (2, 4) (2 + 4) 6
loc7 (1, 5) (1 + 5) 6
loc8 (3, 3) (3 + 3) 6
loc9 (2, 4) (2 + 4) 6

(b)

locj index(i, j) Euclid. Dist

loc0 (7, 5)
√

72 + 52 8.6023

loc1 (7, 4)
√

72 + 32 8.0622

loc2 (6, 5)
√

62 + 52 7.8102

loc3 (7, 3)
√

72 + 32 7.6157

loc4 (7, 2)
√

72 + 22 7.2801

loc5 (6, 4)
√

62 + 42 7.2111

loc6 (7, 1)
√

72 + 12 7.0710

loc7 (5, 4)
√

52 + 42 7.0710

loc8 (7, 0)
√

72 + 02 7.0000

loc9 (6, 3)
√

62 + 32 6.7082

(c)

locj index(i, j) Manhat. Dist

loc0 (7, 5) (7 + 5) 12
loc1 (7, 4) (7 + 4) 11
loc2 (6, 5) (6 + 5) 11
loc3 (7, 3) (7 + 3) 10
loc4 (5, 5) (5 + 5) 10
loc5 (6, 4) (6 + 4) 10
loc6 (7, 2) (7 + 2) 9
loc7 (4, 5) (4 + 5) 9
loc8 (6, 3) (6 + 3) 9
loc9 (5, 4) (5 + 4) 9

(d)

locj index(i, j) Euclid. Dist

loc0 (7, 4)
√

72 + 42 8.0622

loc1 (7, 3)
√

72 + 32 7.6157

loc2 (7, 2)
√

72 + 22 7.2801

loc3 (6, 4)
√

62 + 42 7.2111

loc4 (7, 1)
√

72 + 12 7.0710

loc5 (7, 0)
√

72 + 02 7.0000

loc6 (6, 3)
√

62 + 32 6.7082

loc7 (5, 4)
√

52 + 42 6.4031

loc8 (6, 2)
√

62 + 22 6.3245

loc9 (6, 1)
√

62 + 12 6.0827

(e)

locj index(i, j) Manhat. Dist

loc0 (7, 4) (7 + 4) 11
loc1 (7, 3) (7 + 3) 10
loc2 (6, 4) (6 + 4) 10
loc3 (7, 2) (7 + 2) 9
loc4 (6, 3) (6 + 3) 9
loc5 (5, 4) (5 + 4) 9
loc6 (7, 1) (7 + 1) 8
loc7 (6, 2) (6 + 2) 8
loc8 (5, 3) (5 + 3) 8
loc9 (4, 4) (4 + 4) 8

(f)

will be considered so that the distinction between the operation of the variations can be

made clear.

Considering the Euclidean E3D-BPM algorithm first; the set of banding scores for

the Dimx indexes locations are as follows: bsx0 = 0.4730, bsx1 = 0.5581, bsx2 = 0.0000,
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(a)

(b)

Figure 6.4: Example M-Tables (Euclidean and Manhattan) for the illustration of the
operation of the MDC algorithm given in Section 6.3.2

bsx3 = 0.6154, bsx4 = 0.4157. The banding scores for Dimy are: bsy0 = 0.1212, bsy1 =

0.6546, bsy2 = 0.6715, bsy3 = 0.6063, bsy4 = 0.7712, bsy5 = 0.4851. The banding scores

for Dimz are: bsz0 = 0.3126 and bsz1 = 0.7657. The indexes in Dimx, Dimy and Dimz are

thus rearranged accordingly to produce the configuration shown, from three different

perspectives, in Figures 6.5, 6.6 and 6.7.

Figure 6.5: Input Data rearranged using Euclidean E3D-BPM after the first iteration,
perspective 1

The GBS values for Dimx, Dimy and Dimz are then GBSx = 0.2788, GBSy = 0.3439

and GBSz = 0.1042; and the total GBS value is:

GBS =
0.2788 + 0.3439 + 0.1042

3
= 0.2423
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Algorithm 9: The E3D-BPM Algorithm

1: Input: DIM = a set of dimensions {Dimx, Dimy, Dimz} comprised of a set of
indexes

2: D = binary valued data matrix subscribing to DIM
3: counter = a maximum number of iterations
4: Output: A rearranged data space D that serves to minimise GBS
5: GBSsofar = 1.0
6: loop
7: if (counter == 0) then
8: break
9: end if

10: for i = 0 to i = |DIM | do
11: for j = 0 to |Dimi| do
12: Calculate bsij Banding score for current index j in Dimi using Equation 6.2
13: end for
14: DIM ′ = Rearranged Dimi according to banding scores for Dimi

15: D′ = D Rearranged according to DIM ′i
16: end for
17: GBSx = calculate GBS for Dimx using Equation 6.5
18: GBSy = calculate GBS for Dimy using Equation 6.6
19: GBSz = calculate GBS for Dimz using Equation 6.7
20: GBSnew = Global banding score for DIM ′ using Equation 6.8
21: if (GBSnew ≥ GBSsofar) then
22: break
23: else
24: DIM = DIM ′, D = D′, GBSsofar = GBSnew
25: end if
26: counter = counter − 1
27: end loop
28: Exit with D and GBS

Figure 6.6: Input Data rearranged using Euclidean E3D-BPM after the first iteration,
perspective 2

On the second iterations, the set of banding scores for the Dimx are now: bsx0 =

0.0000, bsx1 = 0.3349, bsx2 = 0.6708, bsx3 = 0.4028, bsx4 = 0.9043. For Dimy the

banding scores are: bsy0 = 0.1212, bsy1 = 0.3638, bsy2 = 0.6063, bsy3 = 0.6565, bsy4 =
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Figure 6.7: Input Data rearranged using Euclidean E3D-BPM after the first iteration,
perspective 3

0.6715 and bsy5 = 0.8835. And for Dimz the banding scores are: bsz0 = 0.2546 and

bsz1 = 0.7864. Using this set of scores the items in Dimx, Dimy and Dimz are again

rearranged as shown, again from three different perspectives, in Figures 6.8, 6.9 and

6.10.

Figure 6.8: Input Data rearranged using Euclidean E3D-BPM after the second iter-
ation, perspective 1

Figure 6.9: Input Data rearranged using Euclidean E3D-BPM after the second iter-
ation, perspective 2
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Figure 6.10: Input Data rearranged using Euclidean E3D-BPM after the second
iteration, perspective 3

The GBS values for Dimx, Dimy and Dimz are now: GBSx = 0.1833, GBSy = 0.2793

and GBSz = 0.0849; and the overall total GBS value is now:

GBS =
0.1833 + 0.2793 + 0.0849

3
= 0.1825

However, no changes have been made on this second iteration so the process terminates.

We will now consider the Manhattan E3D-BPM variation with respect to the same

input data as used for the above illustration of the Euclidean E3D-BPM variation. In this

case the set of banding scores obtained for the Dimx are: bsx0 = 0.4444, bsx1 = 0.5556,

bsx2 = 0.0000, bsx3 = 0.5556 and bsx4 = 06667. Similarly, the set of banding scores for

Dimy are: bsy0 = 0.2000, bsy1 = 0.6000, bsy2 = 0.6000, bsy3 = 0.4000, bsy4 = 0.7000 and

bsy5 = 0.3000. The Dimz banding scores are then: bsz0 = 0.4630 and bsz1 = 0.5000. As

a consequence the indexes in the Dimx, Dimy and Dimz are rearranged accordingly so as

to produce the configuration shown (from three different perspectives) in Figures 6.11,

6.12 and 6.13.

Figure 6.11: Input Data rearranged using Manhattan E3D-BPM after the first iter-
ation, perspective 1

The GBS values for Dimx, Dimy and Dimz are now: GBSx = 0.2667, GBSy = 0.3190

and GBSz = 0.1543; the total GBS value on completion of this first iteration is:
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Figure 6.12: Input Data rearranged using Manhattan E3D-BPM after the first iter-
ation, perspective 2

Figure 6.13: Input Data rearranged using Manhattan E3D-BPM after the first iter-
ation, perspective 3

GBS =
0.2667 + 0.3190 + 0.1543

3
= 0.2467

Better than the 1.0 default start value, thus we proceed with a second itteration.

On the second iteration, the set of banding scores for Dimx are: bsx0 = 0.0000,

bsx1 = 0.5000, bsx2 = 0.7778, bsx3 = 0.5556 and bsx4 = 0.6667. For Dimy the banding

scores are: bsy0 = 0.1000, bsy1 = 0.7000, bsy2 = 0.6000, bsy3 = 0.5000, bsy4 = 0.2000,

bsy5 = 0.9000. And for Dimz the banding scores are: bsz0 = 0.4630 and bsz1 = 0.5926.

Using this set of scores the items in Dimz, Dimx and Dimy are again rearranged as shown,

with respect to the three perspectives presented used previously, in Figures 6.14, 6.15

and 6.16.

The GBS values for Dimx, Dimy and Dimz are now: GBSx = 0.2482, GBSy = 0.3000

and GBSz = 0.1543. The total GBS value at the end of the iteration two is thus:

GBS =
0.2482 + 0.3000 + 0.1543

3
= 0.2342

Better than the 0.2342 recorded previously, however, no changes have been made hence

the process terminates. From the above it should be noted that the resulting final GBS

values are different when using Euclidean and Manhattan E3D-BPM because they are
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Figure 6.14: Input Data rearranged using Manhattan E3D-BPM after the second
iteration, perspective 1

Figure 6.15: Input Data rearranged using Manhattan E3D-BPM after the second
iteration, perspective 2

Figure 6.16: Input Data rearranged using Manhattan E3D-BPM after the second
iteration, perspective 3

calculated differently; 0.1825 and 0.2423 respectively. Although the GBS associated

with the Euclidean variation is better, in this simple example the same bandings are

produced. As will be shown later in this chapter this not the case with respect to more

complex examples.
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6.5 Evaluation of E3D-BPM Mechanism

This section reports on the experimental analysis conducted to evaluate the performance

of the proposed E3D-BPM algorithm presented in this chapter. The objectives of the

evaluation were:

1. Efficency: To compare the operation of the A3D-BPM algorithm, presented pre-

viously in Chapter 5, and the E3D-BPM algorithm presented in this chapter, in

terms of the runtime efficiency of the banding process in each case.

2. M-Tables: To determine whether, in relation to the E3D-BPM algorithm, it is

better to use the concept of M-Tables or not.

3. Effectiveness: To compare the operation of the A3D-BPM algorithm, presented

previously in Chapter 5, and the E3D-BPM algorithm presented in this chapter,

in terms of the quality of the bandings produced in each case.

Recall that when using M-Tables maximum distance values are only calculated once,

whislt when not using M-Tables the likelihood is that maximum distance values will be

calculated many times.

The evaluation was conducted using the 3D CTS data sets introduced in Section

3.4 of Chapter 3. Recall that 48 3D data sets were extracted from the CTS database

covering four selected counties and the years 2003, 2004, 2005 and 2006. The 3D CTS

data sets was divided into three equal sized groups. For the first group, the Eastings

data sets, the dimensions were: (i) Records, (ii) Attributes and (iii) Eastings. For the

second group, the Northings data sets, the dimensions were: (i) Records, (ii) Attributes

and (iii) Northings. And for the third group, the Temporal data sets, the dimensions

were: (i) Records, (ii) Attributes and (iii) Time.

The outcomes from the experiments related to the first and second of the above

objectives are presented in Subsection 6.5.1. It was anticipated that the quality of the

bandings produced using the E3D-BPM algorithm would be better than those produced

using the A3D-BPM algorithm; while the A3D-BPM algorithm would be more efficient

than the E3D-BPM algorithm. The outcomes from the experiments related to the third

of the above objectives are presented in Subsection 6.5.2. Note that in this case the

E3D-BPM algorithm was run using both the Euclidean and Manhattan variations of

the algorithm.

6.5.1 Comparison Between E3D-BPM And A3D-BPM Algorithms In

Term of Run-times

This section considers the results from the comparative evaluation of the E3D-BPM and

A3D-BPM algorithms in terms of the runtime. Runtime values using both Euclidean

and Manhattan distance measurement and with and without the usage of M-Table,

were obtained. The results are presented in Tables 6.3, 6.4 and 6.5. Table 6.3 shows the
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results obtained using the Eastings data sets, Table 6.4 shows the results obtained using

the Northings data sets and Table 6.5 shows the results obtained using the Temporal

data sets. Each table includes a column indicating the number of records in each data

set.

From Tables 6.3, 6.4 and 6.5, it can be seen, as might be expected, that there is a

correlation between the number of records in the data sets and the run times, as the

number of records increased the processing time increased correspondingly. As also an-

ticipated, Manhattan distance calculation was more efficient than Euclidean distance

calculation because it is simpler (both when using M-Tables and when not using M-

Tables). More specifically the complexity of Manhattan distance calculation is given

by O(K1(n − 1)) where n is the number of dimensions and K1 is the complexity of an

addition operation. In the case of Euclidean distance calculation, the complexity is given

by O(K1(n− 1) +K2n+K3), where K2 is the complexity of a multiplication operation

and K3 is the complexity of a square root operation. Although the values of K1, K2 and

K3 vary according to how the associated operations are implemented the relationship

K1 < K2 < K3 usually holds. Returning to Tables 6.3, 6.4 and 6.5, it is interesting to

note that there is a significant difference in run time between using M-Tables and not us-

ing M-Tables; using M-Tables is significantly more efficient. This was because, although

the same maximum distances were used repeatedly, the calculation of the M-Tables is

done only once, whilst when not using M-Tables the same maximum distances are cal-

culate repeatedly, thereby introducing an additional computational overhead. There are

mechanisms whereby the M-Table pre-calculation can further be improved and these are

included as items for future work presented in Chapter 11. With respect to the compar-

ison between the E3D-BPM and A3D-BPM algorithms, the approximate algorithm, as

conjectured in the previous chapter, was the fastest. Although on each iteration of the

A3D-BPM algorithm, more reordering is done because each dimension is considered with

respect to each other dimension (thus six reorderings on each iteration compared to only

three for E3D-BPM), there is much less calculation; although coupling the E3D-BPM

algorithm with the usage of M-Tables does speed up its operation.

6.5.2 Comparison Between E3D-BPM And A3D-BPM Algorithms In

Term of Global Banding Score (GBS) Values

This sub-section considers the results from the comparative evaluation conducted with

respect to the E3D-BPM and A3D-BPM algorithms in terms of the bandings produced.

This was measured in terms of GBS values. The results are presented in Tables 6.6 to

Tables 6.8. Table 6.6 presents the results using the sixteen Eastings data sets, Table

6.7 presents the results using the Northings data sets, whilst Table 6.8 presents the

results using the Temporal data sets. The naming convention used in the tables for the

different variations of the E3D-BPM algorithm are: (i) “E3D-BPMM” for Manhattan

E3D-BPM, (ii) “E3D-BPME” for Euclidean E3D-BPM and (iii) “A3D-BPM” for the

approximate 3D-BPM algorithm. Note that with respect to the tables the GBS results
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Table 6.3: Comparative results in terms of Run time (seconds) using the E3D-BPM
(with and without M-Tables) and A3D-BPM Algorithms applied to the Eastings data

sets.

runtime (sec)
Data # E3D-BPM M -Tab. E3D-BPM no M -Tab. A3D-BPM
Sets Recs. Manhat. Euclid. Manhat. Euclid.

Abd-2003 178172 358.90 478.14 492.12 842.95 348.24
Abd-2004 173612 365.43 479.54 437.77 882.33 318.52
Abd-2005 157033 292.26 396.83 406.62 852.33 281.34
Abd-2006 236206 536.86 758.14 713.44 1248.21 374.40

Corn-2003 170245 440.89 648.22 499.65 831.94 277.99
Corn-2004 169053 333.35 483.91 442.25 845.95 228.80
Corn-2005 154589 299.45 433.47 412.25 791.20 249.03
Corn-2006 167281 341.27 438.91 414.39 905.88 316.35

Lanc-2003 167919 306.91 424.64 438.08 798.30 276.74
Lanc-2004 217566 559.22 741.41 670.54 1058.08 376.69
Lanc-2005 157142 253.89 387.12 402.26 844.84 201.93
Lanc-2006 196290 409.25 452.03 529.62 920.02 322.19

Nolf-2003 46977 42.83 58.90 47.09 94.69 30.99
Nolf-2004 46246 35.47 51.42 50.82 101.73 19.33
Nolf-2005 35914 20.91 49.61 37.98 105.12 12.75
Nolf-2006 45150 40.55 51.11 50.75 113.45 19.37

Average 144961 289.84 395.84 377.85 702.31 228.42

Table 6.4: Comparative results in terms of Run time (seconds) using the E3D-BPM
(with and without M-Tables) and A3D-BPM Algorithms applied to the Northings data

sets

runtime (sec)
Data # E3D-BPM M -Tab. E3D-BPM no M -Tab. A3D-BPM
Sets Recs. Manhat. Euclid. Manhat. Euclid.

Abd-2003 178172 443.70 661.73 471.11 942.95 376.23
Abd-2004 173612 426.87 582.33 453.52 862.85 377.60
Abd-2005 157033 364.24 508.62 466.01 742.85 273.93
Abd-2006 236206 505.28 1753.57 773.10 1121.4 455.99

Corn-2003 170243 336.52 447.06 446.47 822.80 317.46
Corn-2004 169053 355.01 497.07 458.72 861.86 322.62
Corn-2005 154589 326.65 448.06 412.57 865.66 284.15
Corn-2006 167281 390.26 467.53 470.10 828.12 313.20

Lanc-2003 167919 400.48 497.84 506.77 898.30 231.86
Lanc-2004 217566 461.83 592.33 542.88 1058.08 416.50
Lanc-2005 157142 322.43 463.37 435.09 844.84 278.40
Lanc-2006 196292 445.15 670.21 530.11 920.02 395.76

Nolf-2003 46977 40.89 60.58 49.93 93.72 29.86
Nolf-2004 46246 34.50 57.47 48.79 108.89 14.71
Nolf-2005 35914 27.40 54.80 46.58 108.37 14.15
Nolf-2006 45150 40.42 58.74 33.26 104.17 19.45

Average 144961 307.60 426.33 384.06 699.06 258.24

with and without the usage of M-Table are the same so only a single result is presented).

Inspection of the results presented in the three tables confirms firstly, as expected, that

the E3D-BPM algorithm (both variations) produced better bandings than the A3D-

BPM algorithm. The difference between the operation of the Euclidean E3D-BPM

and Manhattan E3D-BPM algorithms are because the first is better at differentiating

between potential configurations. This can be illustrated by considering the 2D space

given in Figure 6.17. Points A and B are both a Manhattan distance of 4 away from
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Table 6.5: Comparative results in terms of Run time (seconds) using the E3D-BPM
(with and without M-Tables) and A3D-BPM Algorithms applied to the Temporal data

sets

runtime (sec)
Data # E3D-BPM M -Tab. E3D-BPM no M -Tab. A3D-BPM
Sets Recs. Manhat. Euclid. Manhat. Euclid.

Abd-2003 178172 434.98 640.27 437.27 813.44 334.73
Abd-2004 173612 303.86 540.07 440.53 707.77 320.81
Abd-2005 157033 311.51 518.53 352.55 785.75 217.27
Abd-2006 236206 593.89 854.01 603.33 1116.56 420.03

Corn-2003 170243 430.64 539.71 441.66 839.71 319.59
Corn-2004 169053 330.95 437.11 418.99 853.78 317.33
Corn-2005 154589 296.25 319.16 395.11 837.36 215.63
Corn-2006 167281 343.16 404.13 483.42 834.71 316.57

Lanc-2003 167919 376.75 434.23 483.26 854.01 217.40
Lanc-2004 217566 601.14 624.96 678.70 1121.95 416.44
Lanc-2005 157142 289.51 327.36 351.30 876.91 216.66
Lanc-2006 196292 504.85 534.35 534.69 912.09 315.99

Nolf-2003 46977 48.05 59.25 51.27 89.35 26.56
Nolf-2004 46246 32.76 44.76 41.38 84.76 15.46
Nolf-2005 35914 26.46 35.67 28.17 80.33 13.49
Nolf-2006 45150 41.38 55.45 45.01 96.63 17.28

Average 144961 310.37 398.06 361.67 681.57 231.33

the origin. However, the Euclidean distance from the origin for point A is “3.1623”

(
√

32 + 12) while that for point B is “2.8284” (
√

22 + 22).
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Figure 6.17: A 2D space illustrating the distinction between Euclidean and Manhat-
tan distance calculation
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Table 6.6: Comparative result in terms of GBS Using the E3D-BPM and A3D-BPM
Algorithms applied to the Eastings data sets (best results in bold font).

Counties Year # GBS
Recs E3D-BPMM E3D-BPME A3D-BPM

Aberdeenshire

2003 178172 0.5533 0.5146 0.6953
2004 173612 0.6062 0.5756 0.6412
2005 157033 0.6283 0.5841 0.7258
2006 236206 0.6276 0.6141 0.6478

Cornwall

2003 170243 0.5007 0.4763 0.5360
2004 169053 0.5118 0.4924 0.5936
2005 154589 0.6032 0.5347 0.6135
2006 167281 0.5553 0.5106 0.5933

Lancashire

2003 167919 0.5811 0.5506 0.6973
2004 217566 0.5794 0.5250 0.6232
2005 157142 0.5643 0.4749 0.6720
2006 196292 0.6015 0.4894 0.6486

Norfolk

2003 46977 0.5932 0.5876 0.7282
2004 46246 0.6603 0.6592 0.7161
2005 35914 0.5922 0.5783 0.5932
2006 45150 0.5449 0.5392 0.6865

Average 144961 0.5818 0.5442 0.6507

Table 6.7: Comparative result in terms of GBS Using the E3D-BPM and A3D-BPM
Algorithms applied to the Northing data sets (best results in bold font).

Counties Year # GBS
Recs E3D-BPMM E3D-BPME A3D-BPM

Aberdeenshire

2003 178172 0.5564 0.5500 0.7174
2004 173612 0.5822 0.5467 0.6488
2005 157033 0.5963 0.5745 0.7715
2006 236206 0.6572 0.6224 0.7697

Cornwall

2003 170245 0.5193 0.5092 0.6466
2004 169053 0.5737 0.4908 0.6069
2005 154589 0.5662 0.5285 0.6579
2006 167281 0.5451 0.5048 0.7466

Lancashire

2003 167919 0.5695 0.5432 0.5841
2004 217566 0.5913 0.4953 0.6396
2005 157142 0.5572 0.5382 0.5968
2006 196290 0.5972 0.5032 0.6459

Norfolk

2003 46977 0.6407 0.6097 0.7747
2004 46246 0.6952 0.6622 0.7940
2005 35914 0.6287 0.5940 0.7323
2006 45150 0.6309 0.6124 0.7498

Average 144961 0.5942 0.5553 0.6927

6.6 Summary

This chapter has presented the Exact Banded Pattern Mining (E3D-BPM) algorithm.

The algorithm was considered in detail and its operation illustrated using a number of

worked examples. Unlike the A3D-BPM algorithm presented in the previous chapter,

that only considered dimension pairings when calculating banding scores and conse-

quently produced approximate bandings, the E3D-BPM algorithm considered all di-

mensions simultaneously and consequently produced exact bandings. The algorithm

operated by using distances of dots to the origin of the data space under consideration
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Table 6.8: Comparative result in terms of GBS Using the E3D-BPM and A3D-BPM
Algorithms applied to the Temporal data sets (best results in bold font).

Counties Year # GBS
Recs E3D-BPMM E3D-BPME A3D-BPM

Aberdeenshire

2003 178172 0.5721 0.5163 0.7996
2004 173612 0.5531 0.5314 0.6352
2005 157033 0.5638 0.5625 0.7110
2006 236206 0.5457 0.5255 0.7517

Cornwall

2003 170245 0.5279 0.5074 0.8184
2004 169053 0.5822 0.5406 0.7603
2005 154589 0.5756 0.5660 0.7857
2006 167281 0.5875 0.5474 0.7128

Lancashire

2003 167919 0.5995 0.5424 0.8220
2004 217566 0.5297 0.4671 0.7135
2005 157142 0.5425 0.5295 0.7013
2006 196290 0.6586 0.6378 0.8485

Norfolk

2003 46977 0.6407 0.6053 0.8659
2004 46246 0.6730 0.6681 0.7128
2005 35914 0.6046 0.5351 0.7070
2006 45150 0.6604 0.6332 0.7675

Average 144961 0.5886 0.5572 0.7571

to calculate banding scores. Two mechanisms were identified for calculating distances,

Euclidean and Manhattan distance calculation. The banding scores were normalised

with respect to maximum distances to the origin. To this end the observation was

made that these maximum distances are calculated repeatedly and therefore it might

be beneficial to pre-calculate these and store them in what was termed an M-Table.

The evaluation of the E3D-BPM algorithm variations was conducted by comparing its

operation with the A3D-BPM algorithm presented in the previous chapter, Chapter 5.

From the reported evaluation the following overall observations can be made:

1. In terms of GBS, the best bandings were produced using the E3D-BPM algorithm

with Euclidean distance calculation.

2. Using the A3D-BPM algorithm is more efficient than using E3D-BPM (regardless

of whether Euclidean or Manhattan distance calculation is adopted or whether

M-Tables are used or not).

3. Manhattan distance calculation is more efficient than Euclidean distance calcula-

tion (as expected).

4. The concept of M-Tables did offer efficiency advantages with respect to the E3D-

BPM algorithm.

In the next chapter the work presented in this, and the previous Chapter 5, will be

extended by considering bandings in ND data.



Chapter 7

ND Banded Pattern Mining

Mechanisms

7.1 Introduction

In the previous chapters, Chapter 5 and Chapter 6, the A3D-BPM and the E3D-BPM al-

gorithms. The reason for considering the 2D and 3D case, which are afterall special forms

of the general ND case, was to facilitate reader understanding. This chapter extends the

ideas presented in these previous two chapters by considering the adaptation of these

algorithms in the context of ND data. More specifically two N-Dimensional Banded Pat-

tern Mining (ND-BPM) algorithms are presented: the Approximate ND (AND) and the

Exact ND (END) BPM algorithms. As before two mechanism for distances calculation,

Euclidean and Manhattan, were considered. Note that the two ND-BPM algorithms

are not significantly different from the 3D-BPM algorithms presented in Chapter 5 and

Chapter 6 except that they are directed at the generation of ND bandings which adds

an extra level of complexity. To this end a much more sophisticated mechanism for

calculating M-Tables is required, this is also presented in this chapter.

The rest of the chapter is organised in a similar manner to the earlier chapters

that described banded pattern mining algorithms. Section 7.2 presents some formal

definitions to support the discussion of the ND-BPM algorithms, whilst Section 7.3

reviews the M-Table concept in terms of ND. Section 7.4 then consider the proposed

AND-BPM and END-BPM algorithms in detail. Section 7.5 presents an evaluation of the

AND-BPM and END-BPM algorithms in the context of the CTS data sets introduced

in Chapter 3. Finally, Section 7.6 concludes the chapter with a brief summary of the

main findings.

114
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7.2 ND Banding Formalism and Calculation of Banding

Score

In the context of the research presented in this thesis, an ND data space of interest is

conceptualised in terms of a (k1×k2×k3×· · ·×kn). As with respect to earlier discussions,

this space can be conceived of as being comprised of a (k1 × k2 × k3 × · · · × kn) “hyper-

grid”, where k1 is the size of dimension one (Dim1), k2 is the size of dimension two

(Dim2) and so on. Note that the dimensions are not necessarily of equal size. Using

this conceptualisation each location in this space representing a “one” contains a dot (a

hyper-sphere to be more exact), a locaton representing a “zero” is empty. As before the

challenge, given an ND data set, is to rearrange the indexes in each dimension so that

the dots are arranged along the main diagonal (or as close to it as possible). For ND,

the set of dimensions is represented using the notation DIM = {Dim1, Dim2, . . . , Dimn}
where each subset Dimi comprises a set of indexes. Thus each dot (hyper-sphere) in this

ND space will be represented by a set of coordinates (indexes) 〈c1, c2, . . . , cn〉 (where n

is the number of dimensions) such that c1 ∈ Dim1, c2 ∈ Dim2 and so on.

In the case of the AND-BPM algorithm, as before, individual banding scores are

calculated by only considering dimension pairings. Previously it was conjectured that

this approximate approach would result in sufficiently accurate bandings without the

need for the extra resource required to calculate exact bandings using an exact BPM

algorithm. In the case of 3D it was found that this was not necessarily the case; however,

for completeness, the approximate approach is still consider in this chapter. Recall that

given two dimensions Dimi and Dimj , the banding score for index p in Dimi with respect

to Dimj , bsijp , is calculated as follows:

bsijp =

∑p=|W |
p=1 (wp)∑q=|W |

q=1 (|Dimq| − k + 1)
(7.1)

where the set W is the set of Dimj indexes representing “dots” whose Dimi coordinate

equates to p (W = {w1, w2, . . . }). Note that Equation 7.1 is identical to Equation 5.1

given in Chapter 5.

The normalised GBS for each dimension i with respect to dimension j (GBSij) is

then calculated as follows:

GBSij =

∑p=ki
p=1 bsijp

ki
(7.2)

Again note that Equation 7.2 is identical to Equation 5.2 given in Chapter 5.

The GBS for a dimension i is then given by the sum of the GBS for the individual

pairings divided by the number of pairings (which will be the number of dimensions

minus one):

GBSi =

∑j=|DIM |,j 6=i
j=1 GBSij

|DIM | − 1
(7.3)
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The normalised overall GBS for the entire configuration is then calculated thus:

GBS =

∑i=|DIM |
i=1 GBSi
|DIM |

(7.4)

Putting equations 7.3 and 7.4 together we get:

GBS =

∑i=|DIM |
i=1

∑j=|DIM |,j 6=i
j=1 GBSij

|DIM | × |DIM | − i
(7.5)

In the case of the END-BPM, the normalised banding score bsip for index p in

dimension i is calculated by dividing the sum of the distances that each relevant dot is

from the origin by the sum of the maximum distances that the dots can be from the

origin:

bsij =

∑p=|W |
p=1 dist(wp)∑q=|M |

q=1 mq

(7.6)

where: (i) W is set of dots whose Dimi index equates to p and (ii) M is a set of maximum

distances (|W | = |M |). More specifically W = {w1, w2, . . . }, where each element is a

tuple describing the coordinates 〈c1, c2, . . . 〉 of a dot in terms of the set DIM but

excluding the current dimension Dimi. Note that distances can be calculated in terms

of Euclidean or Manhattan distance according to which variation of the END-BPM

algorithm is being used.

The normalised GBS for a dimension Dimi is obtained by adding up all the individual

bsip scores and dividing by the size of the dimension:

GBSi =

∑p=ki
p=1 bsip

ki
(7.7)

The overall normalised GBS is obtained by adding up all the individual GBSi and

dividing by the total number of dimensions:

GBS =

∑i=|DIM |
i=1 GBSi
|DIM |

(7.8)

7.3 M-Tables in ND Space

In Section 6.3 of the previous chapter, Chapter 6, the concept of M-Tables was introduced

including the Maximum Distance Calculation (MDC) algorithm. This section considers

M-Tables in the context of ND data spaces. As before maximum distances from the origin

(zero location) of the ND data space under consideration are calculated in the context

of all the dimension in the ND data space under consideration but excluding the current

dimension (the dimension we wish to reorder). For ND space, M-Tables are calculated

in almost the same manner as for 3D space. In other words using the MDC algorithm

given in Algorithms 7 and Algorithm 8. Recall that Algorithm 7 dimensions the desired
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M-Table while Algorithm 8 calculates the maximum distance values for a given row in

an M-Table. The only distinction between the 3D M-Table algorithm and that required

for ND is that in Algorithm 8, Line 12, next locations are calculated by identifying the

neighbouring |DIM | − 1 locations with respect to the appropriate dimensions (not the

current dimension whose indexes are being reordered). In the previous version of the

algorithm only two dimensions required consideration. Thus for ND there may be many

more “next locations” than in the case of 3D.

7.4 ND Banded Pattern Mining (ND-BPM) Algorithms

This section provides more detail concerning the two variations of the proposed ND-BPM

algorithms:

1. The Approximate ND Banded Pattern Mining (AND-BPM) algorithm.

2. The Exact ND Banded Pattern Mining (END-BPM) algorithm.

The section is divided into two subsections. The AND-BPM algorithm is discussed

in further detail in Subsection 7.4.1 whilst the END-BPM algorithm is discussed in

further detail in the following subsection, Subsection 7.4.2. The section is concluded

with Subsection 7.4.3 which considers the theoretical complexity of the proposed ND-

BPM algorithms.

7.4.1 Approximate ND Banded Pattern Mining (AND-BPM) Algo-

rithm

The AND-BPM algorithm operates in a similar manner as the A3D-BPM algorithm

presented in Chapter 5, the only distinction is with respect to the number of dimen-

sions to be considered. For the AND-BPM algorithm, as noted above, the banding is

conducted by considering all possible pairings. The maximum number of pairings can

be calculated using Equation 5.8 given in Chapter 5 reproduced and, for convenience,

in Equation 7.9. Thus if we have |DIM | = 5, as in the case of ND data sets used for

evaluation purposes with respect to the work presented in this chapter, the number of

pairings will be 5× 4 = 20.

Max pairings = |DIM | × (|DIM | − 1) (7.9)

The pseudo code for the AND-BPM algorithm is presented in Algorithm 10. The

input are (Lines 1 to 3): (i) the set of dimensions DIM = {Dim1, Dim2, . . . , Dimn} for

the data space under consideration, (ii) a dot data set D, comprising a set of tuples of

the form 〈c1, c2, . . . 〉, describing the location of each dot in the data space, and (iii) a

maximum iteration counter. The output is a rearranged dot data set D that minimises

the GBS value (Line 4). The algorithm iteratively loops over the data space. On each

iteration the algorithm attempts to rearrange the indexes in the set of dimensions DIM .
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It does this by considering all possible dimension pairings pq. For each pairing the bsijp

value for each index p in dimension Dimi is calculated with respect to Dimj (Line 13).

The calculated BS values are then used to rearrange the dimension Dimi (Line 15) and

consequently the data space D (Line 16). Once all pairings for dimension Dimi have been

calculated a GBS value for the dimension is calculated (Line 18). Once all dimensions

have been considered the final GBS for this iteration is obtained, GBSnew (Line 21). If

GBSnew is worse (higher) than the current GBS value (GBSsofar), or there has been no

change (not shown in Algorithm 10), the algorithm exits with the current configuration

D (Line 29). Otherwise, D is set to D′, and GBSnew is set to GBSsofar (Line 25), and

the process repeats.

Algorithm 10: The AND-BPM Algorithm

1: Input: DIM = a set of dimensions {Dim1, Dim2, . . . , Dimn}
2: D =binary valued data matrix subscribing to DIM
3: counter = a maximum number of iterations
4: Output: D Rearranged data space that serves to minimise GBS
5: GBSsofar = 1.0
6: loop
7: if (counter == 0) then
8: break
9: end if

10: for i = 1 to i = |DIM | − 1 do
11: for j = i+ 1 to j = |DIM | and j 6= i do
12: for p = 1 to p = |Ki| do
13: Calculate bsijp for index p in Dimi w.r.t. Dimi using Equation 7.1 as

appropriate
14: end for
15: DIM ′ = Rearranged Dimi according to bsijp for Dimi

16: D′ = D Rearranged according to DIM ′i
17: end for
18: GBSij = Global banding score for each Dimi with respect to Dimj using

Equation 7.2
19: end for
20: GBSi = Calculated GBS value for Dimi using Equation 7.3
21: GBSnew = Global banding score for DIM ′ using Equation 7.5
22: if (GBSnew ≥ GBSsofar) then
23: break
24: else
25: DIM = DIM ′, D = D′, GBSsofar = GBSnew
26: end if
27: counter = counter − 1
28: end loop
29: Exit with D and GBS
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7.4.2 Exact ND Banded Pattern Mining (END-BPM) Algorithm

As in the case of the AND-BPM algorithm the END-BPM algorithm operates in a similar

manner to the E3D-BPM algorithm. The pseudo code for the END-BPM algorithm

(using either Manhattan or Euclidean distance weighting calculation) is presented in

Algorithm 11. As before the inputs are (Lines 1 to 3): (i) the set of dimensions DIM =

{Dim1, Dim2, . . . , Dimn} for the dot data space under consideration, (ii) a dot data set

D (comprising tuples of the form 〈c1, c2, . . . 〉) and (iii) a maximum number of iterations

counter. The output (Line 4) is a rearranged data space D that serves to minimise the

GBS value. As in the case of the previously proposed BPM algorithms the END-BPM

algorithm iteratively loops over the data space calculating banding scores for each index

p in each dimension Dimi. For each dimension, the bsip values are used to rearrange the

indexes in the dimension (Line 14). Once all dimensions have been calculated a GBSnew

value is calculated (Line 18). If GBSnew is worse (higher) than the current GBS value

(GBSsofar) the algorithm exits with the current configuration D (Line 24). Otherwise

D is set to D′ and GBSsofar to GBSnew (Line 20), and the process is repeated.

Algorithm 11: The END-BPM Algorithm

1: Input DIM, a set of dimensions {Dim1, Dim2, . . . , Dimn}
2: D, binary valued data matrix subscribing to DIM
3: counter = a maximum number of iterations
4: Output: D Rearranged data space that serves to minimise GBS
5: GBSsofar = 1.0
6: loop
7: if (counter == 0) then
8: break
9: end if

10: for i = 1 to i = |DIM | do
11: for p = 1 to p = ki do
12: Calculate bsip for current index p Dimi using Equation 7.6
13: end for
14: DIM ′ = Rearranged Dimi according to bsij for Dimi

15: D′ = D Rearranged according to for DIM ′i
16: end for
17: GBSi = Calculated GBS value for Dimi using Equation 7.7
18: GBSnew = Global banding score for DIM ′ using Equation 7.8
19: if (GBSnew ≥ GBSsofar) then
20: DIM = DIM ′, D = D′, GBSsofar = GBSnew
21: end if
22: counter = counter − 1
23: end loop
24: Exit with D and GBS
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7.4.3 Theoretical Complexity of the ND Banded Pattern Mining (ND-

BPM) Algorithm

The theoretical complexity of the ND-BPM algorithms is largely founded on the number

of times that the indexes in each dimension are rearranged on a single iteration of the

algorithm. Considering a single dimension and the AND-BPM algorithm, the complexity

of the banding identification can be said to be O(n − 1) (where n is the number of

dimensions) because dimension pairings are considered. In the case of the END-BPM

algorithm, and considering only one dimension the complexity of the banding score

calculation is then given by O(1) because banding score are calculated with respect to all

other dimensions. Taking into account the overall number of dimension rearrangements

that take place on each iteration; the complexity of the AND-BPM algorithm, per

iteration, is given by O(n(n− 1)); while for the END-BPM algorithm it given by O(n).

Note that in 2D the complexity is the same for both algorithms; but as n is increased

the complexity increases in a linear manner with respect to the END-BPM algorithm,

and in an exponential manner with respect to the AND-BPM algorithm (Figure 7.1).

However, as will be demonstrated later in the evaluation section included in this chapter,

Section 7.5, there are some further subtleties in the calculation of banding scores that

makes the AND-BPM algorithm faster than the END-BPM algorithm.

Figure 7.1: Compartive Complexity of END-BPM and AND-BPM algorithms

7.5 Evaluations of the ND Banded Pattern Mining (ND-

BPM) Mechanism

This section reports on the experimental analysis conducted to evaluate the operation

of the proposed ND-BPM algorithms. The evaluation consists of two components (ob-

jectives):
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1. To compare the efficiency of the performance of the AND-BPM and END-BPM

algorithms in terms of runtime (seconds).

2. To compare the effectiveness of the AND-BPM and END-BPM algorithms in terms

of the bandings produced measured using GBS values.

For the evaluation the sixty-four 5D data sets extracted from the CTS database and

introduced in Section 3.4 of Chapter 3 were used. Recall that these comprised data for

four counties (Aberdeenshire, Cornwall, Lancashire and Norfolk) for each quarter of the

years 2003, 2004, 2005 and 2006. Note also that with respect to the END-BPM algo-

rithm both variations are considered, Euclidean and Manhattan distance measurement.

With respect to the runtime comparison we also consider the use (or not) of M-Tables.

The first of the above objectives is considered in Subsection 7.5.1, while the second is

considered in Subsection 7.5.2.

7.5.1 Comparison Between END-BPM And AND-BPM Algorithms

In Term of Run-times

The section considers the results from the comparative evaluation of the END-BPM and

AND-BPM algorithms in terms of runtime. In the case of the END-BPM algorithm

runtimes using both Euclidean and Manhattan distance measurement, and with and

without M-Tables, were recorded. The results are presented in Tables 7.1, 7.2, 7.3 and

7.4 for the years 2003, 2004, 2005 and 2006 respectively. The 5 dimensions comprised:

(i) Records (movement of a number of animals of the same breed and gender, on the

same day, specific sender location to specific receiver location), (ii) Attributes, (iii)

Eastings (x-cordinate holding area), (iv) Northings (y-cordinate holding area) and (v)

Time (in months). From the tables it can firstly be noted that the runtime results vary

with respect to different counties, quadrants and years. Closer inspection of the table

indicates that this is to be expected because there is a correlation between the number

of records in the data sets and the run-times; as the number of records increased the

processing time also increased. More specifically, from the tables, the following can be

noted:

1. Using the AND-BPM algorithm is more efficient than using END-BPM (regardless

of whether Euclidean or Manhattan distance calculation is adopted or the usage

of M-Table or not).

2. Using the M-Table requires less runtime than when not using such tables (a result

that corroborates the results obtained with respect to earlier reported experiments

regarding the E3D-BPM algorithm).

3. Using Manhattan distance calculation is faster than Euclidean distance calculation,

again corroborating results obtained earlier.
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Table 7.1: Runtime results (seconds) for 2003 5D CTS data sets using: (i) Manhattan
END-BPM and Euclidean END-BPM and M-Tables (ii) Manhattan END-BPM and

Euclidean END-BPM and no M-Tables and (iii) AND-BPM

runtime (sec)
Month # END-BPM M Tab. END-BPM and no M Tab. AND-BPM
id Recs. Manhat. Euclid. Manhat. Euclid.

Abd-Q1 42962 15.66 48.68 61.13 69.13 10.95
Abd-Q2 46187 19.82 50.95 60.01 79.04 16.95
Abd-Q3 41181 30.29 43.86 58.32 61.89 08.83
Abd-Q4 47842 28.01 45.16 32.22 51.59 16.44

Corn-Q1 40501 28.73 43.82 45.35 53.42 07.83
Corn-Q2 39626 20.32 39.33 51.60 75.91 06.92
Corn-Q3 40226 33.13 54.41 67.87 71.86 07.58
Corn-Q4 49890 48.92 54.68 61.35 80.43 18.88

Lanc-Q1 34325 27.66 46.68 51.02 67.29 05.13
Lanc-Q2 40926 36.50 50.95 63.11 72.74 09.91
Lanc-Q3 45765 25.74 52.03 59.85 64.87 13.86
Lanc-Q4 47392 36.29 55.52 80.52 88.89 15.99

Nolf-Q1 11280 05.32 26.70 19.65 36.21 01.58
Nolf-Q2 14557 17.04 25.85 47.40 56.82 02.29
Nolf-Q3 9460 10.48 22.23 45.17 56.20 01.27
Nolf-Q4 11680 13.34 25.84 46.38 53.15 02.23

Average 35238 24.82 42.92 54.39 64.97 09.17

Table 7.2: Runtime results (seconds) for 2004 5D CTS data sets using: (i) Manhattan
END-BPM and Euclidean END-BPM and M-Tables (ii) Manhattan END-BPM and

Euclidean END-BPM and no M-Tables and (iii) AND-BPM

runtime (sec)
Month # END-BPM M Tab. END-BPM and no M Tab. AND-BPM
id Recs. Manhat. Euclid. Manhat. Euclid.

Abd-Q1 43900 27.37 45.01 51.47 69.13 12.02
Abd-Q2 43221 35.44 53.12 60.44 72.82 17.72
Abd-Q3 38496 30.22 36.43 48.93 62.15 06.52
Abd-Q4 47995 34.40 46.77 41.22 60.41 18.65

Corn-Q1 40126 22.14 43.71 55.32 65.71 07.32
Corn-Q2 38226 25.63 44.67 54.42 78.78 16.12
Corn-Q3 38751 20.22 33.57 50.80 83.57 15.23
Corn-Q4 51950 33.75 50.83 64.82 94.86 20.88

Lanc-Q1 53976 40.71 62.49 66.99 96.02 22.35
Lanc-Q2 54326 60.36 74.91 75.58 113.69 30.83
Lanc-Q3 53926 65.43 70.63 72.95 103.53 33.60
Lanc-Q4 65694 73.97 85.04 90.52 125.94 40.73

Nolf-Q1 11701 05.49 29.06 13.57 45.84 01.91
Nolf-Q2 12993 08.44 31.71 15.31 47.16 02.78
Nolf-Q3 9290 07.49 26.43 28.01 38.20 01.32
Nolf-Q4 12262 06.07 21.12 16.08 28.68 02.48

Average 138552 31.08 47.21 50.40 74.16 15.65

The distinction between the operation of the AND-BPM and END-BPM algorithms

merits some further discussion. Earlier, in Subsection 7.4.3, it was noted that the com-

plexity of the END-BPM algorithms is less than that for the AND-BPM algorithm when

considering the number of reorderings that take place on each iteration. However, this

calculation did not take into account the complexity of the banding score calculation

which, for the AND-BPM algorithm is much simpler than for the END-BPM algorithm.

Consequently, as indicated by the results presented in Tables 7.1, 7.2, 7.3 and 7.4, the

AND-BPM algorithm is more efficient than the END-BPM algorithm (despite the use
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Table 7.3: Runtime results (seconds) for 2005 5D CTS data sets using:: (i) Manhattan
END-BPM and Euclidean END-BPM and M-Tables (ii) Manhattan END-BPM and

Euclidean END-BPM and no M-Tables and (iii) AND-BPM

runtime (sec)
Month # END-BPM M Tab. END-BPM and no M Tab. AND-BPM
id Recs. Manhat. Euclid. Manhat. Euclid.

Abd-Q1 41086 20.23 55.52 64.08 74.46 12.17
Abd-Q2 41317 20.06 43.50 54.06 103.50 15.99
Abd-Q3 30635 23.86 38.45 43.86 78.55 11.13
Abd-Q4 43995 36.02 56.19 56.12 106.91 26.52

Corn-Q1 40226 27.89 50.10 45.35 63.42 16.03
Corn-Q2 38076 25.34 44.94 59.14 61.76 14.16
Corn-Q3 31301 23.15 34.76 67.05 74.94 13.86
Corn-Q4 44986 32.77 52.06 78.27 82.26 20.52

Lanc-Q1 45526 39.76 55.97 59.46 84.34 23.96
Lanc-Q2 38676 28.29 45.80 58.34 75.83 15.38
Lanc-Q3 30351 26.74 40.62 56.70 69.22 10.79
Lanc-Q4 42591 39.87 46.83 56.82 96.23 20.93

Nolf-Q1 8557 02.71 21.13 12.71 20.13 01.69
Nolf-Q2 10549 03.17 27.48 23.17 44.48 02.35
Nolf-Q3 7066 02.23 20.15 22.23 33.15 01.04
Nolf-Q4 9742 02.87 23.55 22.87 35.55 01.81

Average 31543 22.19 41.07 48.76 69.05 13.02

Table 7.4: Runtime results (seconds) for 2006 5D CTS data sets using:: (i) Manhattan
END-BPM and Euclidean END-BPM and M-Tables (ii) Manhattan END-BPM and

Euclidean END-BPM and no M-Tables and (iii) AND-BPM

runtime (sec)
Month # END-BPM M Tab. END-BPM and no M Tab. AND-BPM
id Recs. Manhat. Euclid. Manhat. Euclid.

Abd-Q1 54196 40.45 87.51 88.22 107.51 14.12
Abd-Q2 56876 52.58 86.94 78.18 106.94 15.03
Abd-Q3 56026 53.59 82.15 71.26 102.17 14.69
Abd-Q4 69108 56.55 84.19 76.52 184.19 43.50

Corn-Q1 38276 22.52 46.01 53.79 96.01 10.56
Corn-Q2 41099 33.79 55.56 66.39 85.64 22.52
Corn-Q3 40601 33.03 76.89 61.03 86.89 13.49
Corn-Q4 47305 44.60 51.61 64.26 91.16 28.45

Lanc-Q1 41176 30.55 55.18 60.51 70.26 22.94
Lanc-Q2 48601 37.56 55.97 67.52 75.79 31.53
Lanc-Q3 51151 34.60 40.60 60.26 76.67 24.62
Lanc-Q4 55362 37.90 52.04 72.04 108.24 27.98

Nolf-Q1 9659 03.35 24.52 13.65 34.20 01.61
Nolf-Q2 13707 07.11 22.54 33.24 42.67 02.67
Nolf-Q3 8945 04.10 21.78 28.12 31.88 01.69
Nolf-Q4 12839 06.55 28.50 42.38 48.60 02.14

Average 39490 31.18 54.50 58.59 84.30 17.35

of M-Tables).

7.5.2 Comparison Between END-BPM And AND-BPM Algorithms

In Term of Global Banding Score (GBS) Values

This section considers the result from the comparative evaluation conducted with respect

to the END-BPM and AND-BPM algorithms in terms of the final GBS values produced.

The results are presented in Tables 7.5, 7.6, 7.7 and 7.8 for the years 2003, 2004, 2005

and 2006 respectively. In this case the naming conventions used are: (i) “END-BPMM”
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to indicate the Manhattan variation of END-BPM algorithm, (ii) “END-BPME” to

indicate the Euclidean variation of the END-BPM algorithm and (iii) “AND-BPM” to

indicate the AND-BPM algorithm. The results presented in the tables confirm that the

END-BPM algorithm (both variations) produced better banding results than the AND-

BPM algorithm (although the latter was more efficient). In addition, as also noted with

respect to the reported evaluation of the END-BPM algorithm, the Euclidean distance

measurement was found to out-perform Manhattan distance measurement.

It should be recalled from Subsection 6.5.2 of Chapter 6, that the difference between

the operation of the Euclidean E3D-BPM and Manhattan E3D-BPM algorithms was

that the former is better at differentiating between potential configurations than the

latter. This can be better illustrated by considering the 3D data space presented in

Figure 7.2. The data space features points A, B and C. These have a Manhattan

distance to the origin of “6”, “6” and “9”. However the Euclidean distance from the

origin of point A is “3.7416” (
√

32 + 12 + 22), point B is “3.4641” (
√

22 + 22 + 22) and

point C is “5.3651” (
√

42 + 32 + 22). Thus it can be observed that Manhattan distance

does not serve to differentiate between the two points A and B, whilst the Euclidean

distance does.

Figure 7.2: A 3D space illustrating the distinction between Euclidean and Manhattan
distance calculation

Closer inspection of the bandings generated using the 5D CTS data sets indicated

various phenomena. For example it could be observed that:

1. Male cattle breeds from Aberdeenshire county were moved more often in the east

of the county for the year 2003 than in the west of the county.

2. In 2005 male cattle of age = 1 in the Cornwall county were more frequently moved

in the north of the county than in the south.
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Table 7.5: GBS results for 2003 data sets using: (i) Manhattan END-BPM, (ii)
Euclidean END-BPM and (iii) AND-BPM

Month # GBS
id Recs END-BPMM END-BPME AND-BPM

Abd-Q1 42962 0.5272 0.4831 0.8795
Abd-Q2 46187 0.5281 0.4754 0.8776
Abd-Q3 41181 0.5322 0.4824 0.8824
Abd-Q4 47842 0.5324 0.4734 0.8957

Corn-Q1 40501 0.5070 0.4658 0.9420
Corn-Q2 39626 0.5222 0.4634 0.9837
Corn-Q3 40226 0.5276 0.5144 0.8663
Corn-Q4 49890 0.5286 0.5097 0.9983

Lanc-Q1 34325 0.5351 0.5235 0.9126
Lanc-Q2 40926 0.5338 0.5317 0.8816
Lanc-Q3 45765 0.5360 0.5213 0.9961
Lanc-Q4 47392 0.5254 0.5090 0.9859

Norf-Q1 11526 0.5152 0.4658 0.8159
Norf-Q2 14311 0.5198 0.4702 0.8376
Norf-Q3 9460 0.5315 0.5202 0.8820
Norf-Q4 11680 0.5243 0.4642 0.8227

Average 35238 0.5267 0.4921 0.9037

Table 7.6: GBS results for 2004 data sets using: (i) Manhattan END-BPM, (ii)
Euclidean END-BPM and (iii) AND-BPM

Month # GBS
id Recs END-BPMM END-BPME AND-BPM

Abd-Q1 43900 0.5146 0.5009 0.9318
Abd-Q2 43221 0.5182 0.5077 0.8852
Abd-Q3 38429 0.5312 0.5030 0.8836
Abd-Q4 47995 0.5205 0.5066 0.8085

Corn-Q1 40126 0.5405 0.5163 0.8671
Corn-Q2 38226 0.5352 0.5213 0.8095
Corn-Q3 38751 0.5335 0.5186 0.9164
Corn-Q4 51950 0.5327 0.5252 0.9246

Lanc-Q1 53976 0.5313 0.5152 0.9746
Lanc-Q2 54326 0.5338 0.5336 0.9014
Lanc-Q3 53926 0.5340 0.5285 0.8458
Lanc-Q4 65694 0.5234 0.4697 0.8938

Norf-Q1 11701 0.5235 0.5208 0.9174
Norf-Q2 12993 0.5308 0.5169 0.9149
Norf-Q3 9290 0.5224 0.5128 0.9334
Norf-Q4 12262 0.5350 0.5069 0.9485

Average 38552 0.5285 0.5128 0.8973

3. With respect to the county of Norfolk, for the years 2003 and 2006, fewer cattle

were moved in the east and north of the county than the south and west.

4. With respect to the county of Aberdeenshire, for all the data sets considered, more

cattle were moved in the east and north of the county than in the south and west.

The above examples give an illustration of the kind of information that can be extracted

from data as a result of the application of banding.
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Table 7.7: GBS results for 2005 data sets using: (i) Manhattan END-BPM, (ii)
Euclidean END-BPM and (iii) AND-BPM

Month # GBS
id Recs END-BPMM END-BPME AND-BPM

Abd-Q1 41086 0.5285 0.4157 0.8219
Abd-Q2 41317 0.5299 0.4136 0.8716
Abd-Q3 30635 0.5433 0.5174 0.9141
Abd-Q4 43995 0.5288 0.5021 0.8484

Corn-Q1 40226 0.4231 0.3768 0.9357
Corn-Q2 38076 0.4582 0.4056 0.8960
Corn-Q3 31301 0.5293 0.5209 0.9460
Corn-Q4 44986 0.5312 0.4746 0.9520

Lanc-Q1 45526 0.5266 0.5230 0.9101
Lanc-Q2 38676 0.5835 0.4027 0.8441
Lanc-Q3 30351 0.5342 0.5124 0.8995
Lanc-Q4 42591 0.5262 0.5229 0.9498

Norf-Q1 8557 0.5225 0.4676 0.8375
Norf-Q2 10549 0.5240 0.4689 0.8230
Norf-Q3 7066 0.5221 0.5472 0.9232
Norf-Q4 9742 0.5240 0.4688 0.8357

Average 31543 0.5207 0.4713 0.8880

Table 7.8: GBS results for 2006 data sets using: (i) Manhattan END-BPM, (ii)
Euclidean END-BPM and (iii) AND-BPM

Month # GBS
id Recs END-BPMM END-BPME AND-BPM

Abd-Q1 54196 0.5059 0.4959 0.9061
Abd-Q2 56878 0.5226 0.4874 0.8890
Abd-Q3 56026 0.5032 0.4786 0.9366
Abd-Q4 69108 0.5967 0.4788 0.9375

Corn-Q1 38276 0.5265 0.5109 0.9239
Corn-Q2 41099 0.5358 0.5358 0.9918
Corn-Q3 40601 0.5333 0.5196 0.9189
Corn-Q4 47305 0.5285 0.5248 0.8680

Lanc-Q1 41176 0.5249 0.5429 0.9058
Lanc-Q2 48601 0.5275 0.5244 0.9863
Lanc-Q3 51151 0.5390 0.5187 0.8025
Lanc-Q4 55362 0.5289 0.5271 0.9103

Norf-Q1 9659 0.5248 0.4945 0.8811
Norf-Q2 13707 0.5343 0.4912 0.9220
Norf-Q3 8945 0.5399 0.4789 0.9544
Norf-Q4 12839 0.5371 0.5091 0.8896

Average 39490 0.5308 0.5096 0.9140

7.6 Summary

This chapter has presented N-Dimensional Banded Pattern Mining (ND-BPM). Two al-

gorithms were presented, the AND-BPM and END-BPM algorithms. These were based

respectively on the A3D-BPM and E3D-BPM algorithms presented in the previous chap-

ter. As before the exact algorithm featured both Euclidean and Manhattan variations

and the option to use M-Tables or not. The evaluation of the algorithms was conducted
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by comparing their operation in terms of runtime (seconds) and the final GBS values

arrived at. From the reported evaluation the following main findings can be noted:

1. The AND-BPM algorithm was more efficient than the END-BPM algorithm (re-

gardless of the variation used) because the banding score calculation mechanism

was much simpler than in the case of the mechanism used with respect to the

END-BPM algorithm.

2. In terms of the recorded GBS values, although the approximate algorithm is faster

and produced an approximate, the best (most accurate) bandings were produced

using the END-BPM algorithm with Euclidean distance calculation because Eu-

clidean distance calculation is better able to differentiate between potential con-

figurations.

3. The concept of M-Tables, in the context of the END-BPM algorithm, offered

efficiency advantages.

Note that to use either exact or approximate banding, given a particular application

depends on whether, the user wishes to maximise accuracy or efficiency. In most case,

it is desirable to maximise accuracy.

In the next chapter the ideas presented in this chapter will be further developed to

address the situation where locations within the data space can hold more than one

dot. The significance, as will become clear later in this thesis, is in the context of the

sampling and segmentation mechanisms proposed in Chapter 9 to allow much larger

data sets (than those considered so far) to be banded.



Chapter 8

Multiple Dot Mechanism

8.1 Introduction

In the previous chapter, Chapter 7 two ND-BPM algorithms were presented, AND-

BPM and END-BPM. Both algorithms were developed from earlier work on 2D and 3D

banding presented earlier in this thesis. All the banding algorithms considered in this

thesis so far have assumed that the maximum number of dots held at a location is one.

This makes sense if we are considering data sets comprised of records and attributes

of some kind, as in the case of the evaluation data sets identified in Chapter 3. We

can envisage situations where this might not be the case. One such situation is where

we are determining a banding in the context of a subset of the available dimensions.

Why we might want to do this is explored in the following Chapter. In preparation

for the work presented in the following chapter this chapter presents the multiple dots

Banded Pattern Mining (MD-BPM) algorithm; more specifically, following on from the

work in the previous chapter, two variations of the MD-BPM algorithm are presented,

approximate and exact (MD-ABPM and MD-EBPM). Note that although the MD-

BPM algorithms are designed for the “multiple dots” situation, they will work equally

well where we have one dot per location although some unnecessary processing will be

conducted.

The reminder of this chapter is arranged as follows. Section 8.2 presents some formal

definitions to support the MD-BPM algorithm discussion, while Section 8.3 considers

the MD-ABPM and MD-EBPM algorithms in detail. Section 8.4 presents an example

illustrating the operation of the proposed MD-BPM algorithms. Finally in Section 8.5

the chapter is concluded with a brief summary. Note that some further evaluation using

the proposed MD-BPM algorithms was conducted although not expressely reported on

in this chapter. More specifically, experiments were conducted to determine the number

of iterations that would be required for the MD-BPM algorithms to find a best banding.

However, the results were very similar to those reported for the 2D-BPM algorithm in

Section 4.7.1 of Chapter 4. Hence these have been included in Appendix D.

128
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8.2 Multiple Dot Banding Formalism and Calculation of

Banding Score

The data space of interest, as before comprise, a set of dimensions DIM , where DIM =

{Dim1, Dim2, . . . , Dimn}. As before the dimensions are not necessarily of equal size, and

each dimension Dimi comprises a sequence of k index values {ei1, ei2, . . . , eik}. However,

in this case each location may contain zero, one or more dots. The precise distribution

of the dots depends on the nature of the application domain. As before each dot (hyper-

sphere in ND space) will be represented by a set of coordinates: 〈c1, c2, . . . , cn〉. The

challenge is then to rearrange the indexes in the dimensions so that the dots are arranged

along the leading diagonal (or as close to it as possible) taking into consideration that

individual locations may hold multiple dots. Note that having multiple dots at a cell

location is not the same as considering integer valued data sets. The two are very

different the latter would require an entire rethink of the banding score concept. The

potential for applying the work presented in this thesis to alternative data format is

considered as a potential avenue for future work (see Chapter 11). As will become clear

later in the chapter, the idea is to consider co-located dots as a “meta dots”.

In the context of the MD-ABPM algorithm the banding score bsijp for an index p in

dimension Dimi with respect to dimension Dimj is calculated as follows:

bsijp =

∑u=|Wijp |
u=1 wu × qu∑v=|Wijp |

v=1 (ki − q + 1)× q′v
(8.1)

where:
Wijp The set of Dimj indexes for the locations that feature index p in Dimi

and hold one or more dots, W = {w1, w2, . . . }.
qu The number of dots at location wu, qu ∈ Qijp , where Qijp is the set of

the number of dots at index p in Dimi with respect to dimension Dimj

Qijp = {q1, q2, . . . }, |Qijp | = |Wijp |.
q′v The vth element in the set Q′ijp , the set of location quantities Qijp but

in descending order of size so that elements with the largest number of

dots are associated with the maximum distance from the origin.

The GBS for Dimi with respect to Dimj (GBSij) is calculated in the same way as

before:

GBSij =

∑p=ki
p=1 bsijp

ki
(8.2)

The GBS for a dimension Dimi is then given by (as before):

GBSi =

∑j=|DIM |,j 6=i
j=1 GBSij

|DIM | − 1
(8.3)
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The normalised overall GBS for the entire configuration is then calculated thus (as

before):

GBS =

∑i=|DIM |
i=1 GBSi
|DIM |

(8.4)

In the case of the MD-EBPM algorithm, the banding score bsip for an index p in

Dimi is calculated as follows:

bsip =

∑u=|Wip |
u=1 wu ∗ qu∑v=|Mip |
v=1 mv ∗ q′v

(8.5)

Wip The set of distances from the origin for the locations that feature index

p in Dimi and hold at least one dot Wip = {w1, w2, . . . }. Note that

the distances can be calculated using either Euclidean or Manhattan

distance calculation.

qu The number of dots at location wu, qu ∈ Qip , Qip = {q1, q2, . . . }, |Qip | =
|Wip |.

q′v The vth element in the set Q′ip , the set of location quantities Qip , but

in descending order of size so that elements with the largest number of

dots are associated with the maximum distance from the origin.

The GBS for a dimension Dimi is calculated in the same way as before:

GBSi =

∑p=ki
p=1 bsip

ki
(8.6)

The overall normalised GBS is then:

GBS =

∑i=|DIM |
i=1 GBSi
|DIM |

(8.7)

8.3 MD Banded Pattern Mining (MD-BPM) Algorithms

The MD-ABPM and MD-EBPM algorithms operate in the same manner as the AND-

BPM and END-BPM algorithms presented in the previous chapter other than including

provision for multiple dots as described above. We iterate through the dimensions and

use the individual banding scores to reorder the dimension indexes. In the case of the

MD-EBPM algorithm the use of M-Tables might again be expedient. Because of the

similarity with the previous algorithms the pseudo code for the MD-ABPM and MD-

EBPM algorithms are not presented here. The mechanism for constructing M-Tables is

identical to that presented in the previous chapter except that the concept of meta-dots

is used where dots are co-located, so also not detailed in this chapter.
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Figure 8.1: Input “Dot matrix” for worked example

8.4 A Worked Example Using the MD-BPM Algorithms

This section presents a working example illustrating the operation of the MD-EBPM

algorithm; the MD-ABPM algorithm will operate in a similar manner other than in

how the banding scores are calculated and thus a worked example using the MD-ABPM

algorthm is not included here. For this illustration the 2D 4× 4 configuration given in

Figure 8.1 will be used. The configuration features DIM = {x, y}, Dimx = {0, 1, 2, 3}
and Dimy = {0, 1, 2, 3} with multiple dots in some cells. The input D to the MD-EBPM

algorithms is thus:

D = {〈0, 0〉, 〈0, 1〉, 〈0, 1〉, 〈0, 1〉, 〈0, 1〉, 〈0, 2〉, 〈0, 3〉, 〈1, 1〉,
〈1, 2〉, 〈1, 2〉, 〈1, 2〉, 〈1, 3〉, 〈2, 0〉, 〈2, 3〉, 〈2, 3〉, 〈3, 0〉}.

The MD-EBPM algorithm starts by considering dimension x first, the banding scores

are calculated (taking into account the number of dots per location) using Equation 8.5.

This produces the banding scores {0.60, 0.83, 0.75, 0.00}, calculated as shown in Table

8.1. Consequently we rearrange the indexes (elements) in Dimx in ascending order of

their banding scores to produce the result shown in Figure 8.2.

D = {〈0, 0〉, 〈1, 0〉, 〈1, 1〉, 〈1, 1〉, 〈1, 1〉, 〈1, 1〉, 〈1, 2〉, 〈1, 3〉,
〈2, 0〉, 〈2, 3〉, 〈2, 3〉, 〈3, 1〉, 〈3, 2〉, 〈3, 2〉, 〈3, 2〉, 〈3, 3〉}.

Table 8.1: Calculation of banding scores for dimension x (iteration 1)

Index Dist from origin Max. dist. from origin bs

0 (0 ∗ 1) + (1 ∗ 4) (0 ∗ 1) + (1 ∗ 1) 0.60
+(2 ∗ 1) + (3 ∗ 1) +(2 ∗ 1) + (3 ∗ 4)

= 9.0 = 15.0

1 (1 ∗ 1) + (2 ∗ 3) (1 ∗ 1) + (2 ∗ 1) 0.83
+(3 ∗ 1) = 10.0 +(3 ∗ 3) = 12.0

2 (0 ∗ 1) + (3 ∗ 2) (2 ∗ 1) + (3 ∗ 2) 0.75
= 6.0 = 8.0

3 (0 ∗ 1) = 0.0 ((3 ∗ 1) = 3.0 0.00

Total 2.18
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Figure 8.2: Dot matrix after rearrangement of Dimx (iteration 1)

Table 8.2: Calculation of banding scores for dimension y (iteration 1)

Index Dist from origin Max. dist. from origin bs

0 (0 ∗ 1) + (1 ∗ 1) (1 ∗ 1) + (2 ∗ 1) 0.50
+(2 ∗ 1) = 3.0 +(3 ∗ 1) = 6.0

1 (1 ∗ 4) + (3 ∗ 1) (2 ∗ 1) + (3 ∗ 4) 0.50
= 7.0 = 14.0

2 (1 ∗ 1) + (3 ∗ 3) (2 ∗ 1) + (3 ∗ 3) 0.91
= 10.0 = 11.0

3 (1 ∗ 1) + (2 ∗ 2) (1 ∗ 1) + (2 ∗ 1) 0.89
+(3 ∗ 1) = 8.0 +(3 ∗ 2) = 9.0

Total 2.80

Figure 8.3: Dot matrix after rearrangement of Dimy (iteration 1)

Considering dimension y next, we calculate the banding scores as shown in Table

8.2. This produces the banding scores {0.50, 0.50, 0.91, 0.89}. The indexes (elements)

in y are more or less already in ascending order of bsy; we only need to swap the last

two elements (the effect is that the index with the greater number of dots is moved to

be nearer the centre of the data space). The result is as shown in Figure 8.3. We now

have:

D′ = {〈0, 0〉, 〈1, 0〉, 〈1, 1〉, 〈1, 1〉, 〈1, 1〉, 〈1, 1〉, 〈1, 2〉, 〈1, 3〉,
〈2, 0〉, 〈2, 2〉, 〈2, 2〉, 〈3, 1〉, 〈3, 2〉, 〈3, 3〉, 〈3, 3〉, 〈3, 3〉}.
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Figure 8.4: Dot matrix after rearrangement of Dimx (iteration 2)

The final GBS for this configuration is then calculated using Equation 8.7 (the

sum of the individual banding scores divided by the total number of indexes in the

configuration):

GBS =
0.0

3.0
+

9.0

15.0
+

6.0

8.0
+

10.0

12.0
+

3.0

6.0
+

7.0

14.0
+

8.0

9.0
+

10.0

11.0
= 0.6122

Testing the new GBS value against the stored value we find that GBSnew < GBSsofar

(recall that GBSsofar was set to 1.0 on start up), thus GBSsofar = GBSnew and D = D′

and the process is repeated. Note that the maximum number of iterations has not yet

been reached.

On the next iteration new banding score values are first calculated for Dimx. The

new banding scores produced for Dimx are {0.00, 0.60, 0.50, 1.00} calculated as shown

in Table 8.3. The indexes in Dimx are arranged accordingly; the result is as shown in

Figure 8.4. Similarly, new banding scores are produced for Dimy, {0.50, 0.79, 0.78, 1.00},
calculated as shown in Table 8.4. As a result the indexes in Dimy are also rearranged

accordingly. The result is as shown in Figure 8.5 (we only needed to swap the second

and third indexes). We now have:

D′ = {〈0, 0〉, 〈1, 0〉, 〈1, 2〉, 〈1, 2〉, 〈2, 0〉, 〈2, 1〉, 〈2, 1〉, 〈2, 1〉,
〈2, 1〉, 〈2, 2〉, 〈2, 3〉, 〈3, 1〉, 〈3, 2〉, 〈3, 3〉, 〈3, 3〉, 〈3, 3〉}.

Table 8.3: Calculation of banding scores for dimension x (iteration 2)

Index Dist from origin Max. dist. from origin bs

0 (0 ∗ 1) = 0.0 (3 ∗ 1) = 3.0 0.00

1 (0 ∗ 1) + (1 ∗ 4) (0 ∗ 1) + (1 ∗ 1) 0.60
+(2 ∗ 1) + (3 ∗ 1) +(2 ∗ 1) + (3 ∗ 4)

= 9.0 = 15.0

2 (0 ∗ 1) + (2 ∗ 2) (1 ∗ 2) + (3 ∗ 2) 0.50
= 4.0 = 8.0

3 (1 ∗ 1) + (2 ∗ 1) (1 ∗ 1) + (2 ∗ 1) 1.00
(3 ∗ 3) = 12.0 (3 ∗ 3) = 12.0

Total 2.10
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Figure 8.5: Dot matrix after rearrangement of Dimy (iteration 2)

The new GBS′ value is calculated as follows:

GBS =
0.0

3.0
+

4.0

8.0
+

9.0

15.0
+

12.0

12.0
+

3.0

6.0
+

7.0

9.0
+

11.0

14.0
+

11.0

11.0
= 0.6392

This newly calculated GBS value of 0.6392 is greater (worse) than the previously calcu-

lated value of GBS = 0.6122, so the algorithm exits with D from the previous iteration.

Thus:

D = {〈0, 0〉, 〈0, 1〉, 〈1, 1〉, 〈1, 1〉, 〈1, 1〉, 〈1, 1〉, 〈2, 1〉, 〈3, 1〉,
〈0, 2〉, 〈2, 2〉, 〈2, 2〉, 〈1, 3〉, 〈2, 3〉, 〈3, 3〉, 〈3, 3〉, 〈3, 3〉}.

Table 8.4: Calculation of banding scores for dimension y (iteration 2)

Index Dist from origin Max. dist. from origin bs

0 (0 ∗ 1) + (1 ∗ 1) (1 ∗ 1) + (2 ∗ 1) 0.50
+(2 ∗ 1) = 3.0 +(3 ∗ 1) = 6.0

1 (2 ∗ 4) + (3 ∗ 1) (2 ∗ 1) + (3 ∗ 4) 0.79
= 11.0 = 14.0

2 (1 ∗ 2) + (2 ∗ 1) (1 ∗ 1) + (2 ∗ 1) 0.78
+(3 ∗ 1) = 7.0 +(3 ∗ 2) = 9.0

3 (2 ∗ 1) + (3 ∗ 3) (2 ∗ 1) + (3 ∗ 3) 1.00
= 11.0 = 11.0

Total 3.07

Further worked examples using the MD-BPM algorithms are presented in Appendix

A

8.5 Summary

This short chapter has presented two Multiple Dot Banded Pattern Mining (MD-BPM)

algorithms, the MD-ABPM and MD-EBPM algorithms. The first was based on the

AND-BPM algorithm, and the second on the END-BPM algorithm (both presented in

previous chapters). Of note were the mechanisms used to calculate banding scores such

that the possibility of multiple dots existing at locations was taken into account. The
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significance of MD-BPM is that it can be used to find bandings with respect to subsets

of the dimensions that might feature in a given dot data set. We can imagine situations

where we might wish to do this, but this is also important where we are considering very

large data sets that cannot be held in primary storage. How bandings can be discovered

in such very large data sets is considered in the following chapter. The central idea is

that we rearrange a subset of the data and then apply the discovered banding to the

entire data set. To do this the MD-BPM approach presented in this chapter must be

adopted. In the following chapter, the discovery of bandings in very large data sets is

presented in more detail.



Chapter 9

Discovering Bandings in Big Data

Using Sampling and

Segmentation

9.1 Introduction

In the previous chapter Multiple Dots Banded Pattern Mining (MD-BPM) was consid-

ered. At the end of the chapter it was noted that MD-BPM has application with respect

to the identification of banding in the context of big data. For the purpose of this chap-

ter we define big data as data that cannot be easily stored and processed in primary

storage. Other definitions of big data exist [3, 64, 6, 117]. In this chapter two techniques

are proposed for discovering bandings in big data; sampling and segmentation. In the

first, banding is conducted with respect to a subset, a “sample”, of the data; and the

identified banding is then applied to the remainder of the data. In the second the data

is divided into “segments” and the banding conducted with respect to each segment.

The identified individual banding configurations are then combined to identify a global

banding.

The challenge with respect to the sampling technique is how best to identify a sam-

ple that is representative of the entire data set. The challenge with respect to the

segmentation technique is how best to combine the identified banding configurations

(it is likely that the configuration for each segment will not be identical to the rest).

In both cases the sampling or segmentation needs to be conducted with respect to

one of the dimensions, for the evaluation presented later in this chapter the dimension

representing records was used. Whatever dimension is selected this dimension should

not be considered when banded pattern mining is applied to the data, consequently

locations defined within the context of the remaining dimensions may hold multiple

dots, and hence MD-BPM will be required. This can be illustrated as follows. Given

DIM = {Dimx, Dimy, Dimz} and a data configuration:

136
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D =

{〈0, 0, 0〉, 〈0, 0, 1〉, 〈0, 0, 3〉, 〈0, 1, 1〉, 〈0, 1, 2〉, 〈1, 1, 2〉, 〈1, 1, 3〉, 〈1, 1, 4〉, 〈1, 1, 5〉, 〈1, 2, 2〉
〈2, 2, 3〉, 〈2, 2, 4〉, 〈2, 2, 5〉, 〈2, 3, 0〉, 〈2, 3, 4〉, 〈3, 2, 4〉, 〈3, 3, 3〉, 〈3, 3, 4〉}.

if we remove dimension Dimx, we are left with a 2D data configuration that features

multiple dots as follows:

D′ = {〈0, 0〉, 〈0, 1〉, 〈0, 3〉, 〈1, 1〉, 〈1, 2〉, 〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈1, 5〉, 〈2, 2〉, 〈2, 3〉, 〈2, 4〉, 〈2, 5〉
〈3, 0〉, 〈3, 4〉, 〈2, 4〉, 〈3, 3〉, 〈3, 4〉}.

The proposed sampling and segmentation techniques operate using either the MD-

ABPM or MD-EBPM algorithm (as described in the foregoing chapters). In the case

of the MD-EBPM algorithm it was noted previously that this can operate using either

Euclidean or Manhattan distance calculation with or without M-Tables. Both the Eu-

clidean and Manhattan variations are considered in this chapter coupled with the use of

M-Tables. The reason behind considering only variations with M-Tables, and not with-

out, was beacause the previously reported experiments in Subsection 6.5.1 in Chapter

6 and subsection 7.5.1 in Chapter 7 had demonstrated that this was significantly more

efficient.

The rest of this chapter is organised as follows. Section 9.2 presents an overview of the

BPM sampling technique, while Section 9.3 consider the BPM segmentation technique.

Section 9.4 then presents a comparative evaluation of the two techniques. The chapter

is concluded in Section 9.5 with a summary and some conclusions.

9.2 BPM Sampling Technique

This section presents the BPM sampling technique for identifying bandings in large ND

data sets. As already noted, processing very large data sets (data sets that will not fit

into primary storage) remains a challenge, especially when the data sets under consid-

eration is comprised of many dimensions. The suggested proposed solution presented in

this section was to adopt a sampling technique whereby a best banding was identified

using a subset S of the original dot data sets D and then applied to the entire data

set. As noted in the introduction to this chapter the challenge when using sampling

is to select an appropriately representative subset of the original data set. From the

literature, a number of data sampling techniques have been proposed (see for example

[24, 66, 37, 79, 121]). Recall also from Subsection 2.5.1 that these were itemised as

follows: (i) Simple Random Sampling, (ii) Systematic Selection, (iii) Stratified Random

Sampling and (iv) Cluster Sampling. However with respect to the work presented in this

thesis, the stratified sampling technique was adopted, where the data set is divided into

subgroups (strata) and records randomly selected from each subgroup. The reason for

adopting stratified sampling, as opposed to the other sampling techniques that might

have been selected, was that it was considered to provide a highly representative sample

of the whole data set.
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Another important consideration with respect to the sampling approach is deciding

on sample size. Clearly this has to be small enough to allow it to be processed but

large enough for it to be representative. In [75] the following formula was proposed to

determine a sample size:

S ≥
( z ∗ σ
MOE

)2
(9.1)

where: (i) z corresponds to the value of confidence level taken from the standard normal

distribution to estimate the sample mean, (ii) σ is the standard deviation of the sample

data and (iii) MOE is the Margin Of Error used to determine the reliability of the sample

size. The formula presented in [75] was adopted with respect to the work presented in

this thesis determine a minimum sample size:

S ≥
(

1.96 ∗ 1414

20

)2

= 19202

where the value 1.96 is the z score equivalent to 95% confidence level, the value 1414 is

the standard deviation of the sample size and 20 is the a margin of error. Because the

above was considered to be a minimum sample size, for the evaluation presented later

in this a chapter, a sample size of 24,000 was actually used.

As noted in the introduction to this chapter the stratification was conducted with re-

spect to a particular dimension. The obvious dimension to use was the record dimension

(assuming such a dimension exists with respect to the data set under consideration). In

the context of the evaluation presented later in this chapter, where 5D data sets were

considered, the record dimension was used. Which dimension is selected depends very

much on the application domain. Whatever case the sampling as proposed here, and

the segmentation proposed in Section 9.3, will both feature the possibility of multiple

dots at a location.

The derivation of bandings using the proposed sampling technique is described by

the pseudo code presented in Algorithm 12. The algorithm incorporates calls to either

the MD-ABPM or the MD-EBPM algorithms presented in the previous chapter. The

pseudo code assumes that these algorithms have been adapted so that they return a

set of reordered dimensions DIM ′ (the algorithms as presented in the previous chap-

ter returned a rearranged data space configuration D). Returning to the pseudo code

presented in Algorithm 12 the input, as in the case of the BPM algorithms previously

presented in this thesis, are: (i) a dot data set D comprised of a set of tuples of the form

〈c1, c2, . . . 〉, (ii) a set of dimensions DIM = {Dim1, Dim2, . . . } and (iii) a maximum

number of iterations counter. The output (Line 6) is a reconfigured data set D that

features a “best banding”. The algorithm proceeds by identifying a data sample S using

the stratified sampling technique detailed above. This sample is then used for banding

discovery and a reconfigured set of dimensions returned, DIM ′ (Line 8). This banding

configuration is then applied to the entire input data set D to give a reconfigured data

set that features a “best” banding D′ (Line 9). The final GBS value is then calculated
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(Line 10) using Equation 8.4 or Equation 8.7 as appropriate from Chapter 8 depending

on whether approximate or exact banding is adopted.

Algorithm 12: BPM with Sampling Algorithm

1: Input:
2: D = Binary valued input data set
3: DIM = the set of indexes per dimension
4: counter = The maximum number of iterations
5: Output:
6: D = The original data set D re-arranged so as to display as near a banding as

possible
7: S = A subset of records from D
8: DIM ′ = nd bpmAlgorithm(S,DIM, counter) (either Algorithm 10 or 11)
9: D′ = Data set D rearranged according to DIM ′

10: GBSnew = Final GBS calculated using either Equation 8.4 or 8.7

9.3 BPM Segmentation Technique

Following on from the previous section on sampling, this section presents the BPM

segmentation technique. As already noted the basic idea was to conduct banding se-

quentially using a sequence of data segments R taken from a single large ND data set D

and then to combine the different bandings on completion. Again the segmentation has

to be conducted with respect to a particular dimension. In the context of the evaluation

presented later in this chapter the record dimension was again used. The size of R will

depend on the size of the data subset that can be processed at any one time. With

respect to the evaluation presented later in this chapter |R| = 6 was used.

There are two ways that the bandings that result from the proposed segmentation

technique can be combined: (i) best GBS and (ii) most frequent. The first is done by

conducting bandings on the segmented data sets and then selecting the banding with the

best GBS and applying this to the whole data set. The second involves selecting the most

frequently occurring banding from all the potential segment bandings and then applying

this to the entire data sets to achieve an overall banding. In the unexpected situation

where two or more most frequent bandings are found one will have to be selected in an

arbitrary manner. In the evaluation reported on below both mechanisms are considered

in further detail.

The psuedo code for the BPM segmentation technique is presented in Algorithm 13.

The input to the algorithm (Lines 1 to 3) comprises: (i) a dot data set D, (ii) the set

of dimensions DIM = {Dim1, Dim2, . . . , Dimn} for the data space under consideration

and (iii) a maximum iteration counter. The output is the dot data set D rearranged

so as to feature a best banding (Line 4). As in the case of the sampling technique

the algorithm incorporates calls to either the MD-ABPM or the MD-EBPM algorithms

presented in the previous chapter. The pseudo code assumes that these algorithms

have been adapted so that they return a tuple of the form 〈bi, gi〉, where: (i) b′ is a
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dimension configuration reordered so as to feature a best banding, and (ii) g′ is the

associated GBS value (the algorithms as presented in the previous chapter return a

rearranged data space configuration D). The segmentation algorithm commence (Line

5) by segmenting the data set D to give a collection of segments R. As the algorithm

proceeds each configuration bi and associated GBS values gi are stored in a set of sets

B and and a set GBSSET respectively. These are defined in (Lines 6 and 7) in the

algorithm. The algorithm then iteratively loops over the set of segments R. On each

iteration a configuration for the current segment R is determined (Line 9). The resulting

configuration is then stored in the set B (Line 10) and the associated GBS value in the

set GBSSET (Line 11). We then (Line 13) select the “best” configuration b′ using either

a most frequent or best GBS strategy. This selected configuration is then applied to the

entire data set D to give a reconfigured data set D′ (Line 14). The process is completed

with the calculation of the final GBS value (Line 15).

Algorithm 13: BPM with Segmentation Algorithm

1: Input: D = Binary valued input data set
2: DIM = {Dim1, Dim2, . . . , Dimn} the set of indexes per dimension
3: counter = The maximum number of iterations
4: Output: D′ = The original data set D rearranged so as to display a “best”

banding and the associated GBS′ value
5: R = A sequence of data segments from D
6: B = {b1, b2, . . . , b|R|} A set of sets in which to hold bandings
7: GBSSET = {g1, g2, . . . , g|R|} A set to hold GBS values associated with each

banding
8: for i = 1 to i = |R| do
9: 〈bi, gi〉 = nd bpmAlgorithm(R,DIM, counter) (either Algorithm 10 or 11)

10: B = B ∪ bi
11: GBSSET = GBSSET ∪ gi
12: end for
13: bi = selected banding from B
14: D′ = Data set D rearranged according to contents of b′

15: GBSnew = Final global banding score for D′ calculated using either Equation 8.4
or 8.7

9.4 Evaluation

This section reports on the experimental analysis conducted to evaluate the performance

of the BPM sampling and segmentation techniques advocated in this chapter. The

evaluation was conducted using the 3D, 4D and 5D data sets extracted from the CTS

database introduced in Section 3.4.4 of Chapter 3. For the evaluation a total of 48 data

sets were used: 16 3D data sets, 16 4D data sets and 16 5D data sets. In each case

the data sets covered the four identified counties Aberdeenshire, Cornwall, Lancashire

and Norfolk. Note also that the data sets spanned the years 2003, 2004, 2005 and

2006. In the case of the 3D data sets the three dimensions were: (i) Records, (ii)
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Attributes and (iii) Time (in months). For the 4D data sets the four dimensions were:

(i) Records, (ii) Attributes, (iii) Eastings and (iv) Northings. For the 5D data sets

the dimensions were: (i) Records, (ii) Attributes, (iii) Eastings, (iv) Northings and (v)

Time (in months). The Eastings and Northings were discretised into 10 sub-ranges.

In all cases the sampling/segmentation was done with respect to the record dimension.

Note that there is no gold standard or benchmark data sets. The Average Band Width

(ABW), measure was defined as an independent mechanism for measuring bandings. In

the context of the utility of the bandings produced, some examples are given in Section

7.5.2 of Chapter 7.1 in the context of the CTS data sets.

Table 9.1: Statistical summary of number of records per segmentation

Year Segmentation Data sets
1 2 3 4 5 6

Aberdeenshire

2003 28158 34033 26958 25036 37115 26872

2004 27285 34648 25188 23732 33088 29253

2005 24532 33458 24413 21295 26082 27253

2006 40427 40778 39952 37889 40072 37083

Cornwall

2003 21949 28860 26327 25879 37083 30145

2004 20454 29659 27551 28409 33713 29267

2005 17503 28886 25059 23263 31611 28267

2006 22636 27369 29370 25182 33452 29272

Lancashire

2003 21183 27714 24506 27667 37599 29250

2004 33032 40274 38730 37129 40500 38257

2005 20076 25448 25326 25991 33321 26980

2006 26373 27716 32164 34081 40095 35861

Norfolk

2003 7012 9701 9124 5753 7747 7640

2004 7123 8894 8677 5645 7989 7918

2005 4882 7769 6455 4630 5911 6267

2006 5608 8905 8853 5830 7740 8214

For the sampling each data set was divided into subsets where each subset represented

a month in a particular year, thus we have 12 subsets per data set. 2000 records were

selected from each subset to give a total sample size of 24000 records. In the case of the

segmentation, the data set was divided into a sequence of six data segments, six because

this corresponded to the maximum amount of data could easily be processed on a single

machine. A statistical summary concerning the number of records per segment in the

segmentation data sets is presented in Table 9.1.

The objectives of the evaluation reported on in this section were as follows:

1. To determine the relative efficiency of the two techniques; sampling and segmen-

tation in terms of run time (seconds).
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2. To determine the relative effectiveness of the two techniques in terms of the quality

of the bandings produced measured using the final GBS value arrived at.

3. To determine the effectiveness of the two alternative selection mechanisms used

with respect to segmentation by comparing the quality of the bandings produced

in terms of the final GBS value arrived at.

The first of the above objectives is considered in Sub-section 9.4.1 below, while the

second and third are considered in Sub-section 9.4.2.

9.4.1 Efficiency Comparison Using Sampling and Segmentation

This subsection considers the results from the comparative evaluation of the sampling

and segmentation techniques in terms of run time (in seconds). The evaluation was

conducted by considering the Euclidean MD-EBPME , Manhattan MD-EBPMM and

MD-ABPM algorithms. Note also that with respect to the reported run times this is

the time taken to identify the final global best banding.

The results are presented in Tables 9.2, 9.3, 9.4 and 9.5 (best results highlighted in

bold font). Table 9.2 and 9.3 show the run time results obtained using the 3D and 4D

data sets. Table 9.2 gives the results for the counties of Aberdeenshire and Cornwall,

while Table and 9.3 gives the results for the counties of Lancashire and Norfolk. For each

data set recall that the data sets are split across years. In the tables the last four columns

give the recorded run times in each case. The runtime results presented in the tables are

the average of ten runs. For each data set, and with reference to the table, run times are

given for: (i) the run time used to determine a banding for the selected sample S, (ii) the

run time used to determine a banding with respect to the collection of segments, (iii) the

run time to determine the final banding using the sampling technique, (iv) the run time

to produce the final global banding using the segmentation technique and selecting the

configuration according to the best GBS value and (v) the run time to produce the final

global banding using segmentation technique and selecting the configuration according

to the most frequent combination found. For the 4D data sets run times obtained using

the MD-EBPM (both variations) and the MD-ABPM algorithms are given. For the 3D

data only the run time results obtained using MD-EBPM are presented because the

MD-ABPM algorithm when applied to 2D data (3D minus one dimension) operates in

the same manner as the MD-EBPM algorithm. Tables 9.4 and 9.5 presents the sampling

and segmentation runtime results obtained with respect to the 5D data sets; the tables

are organised in the same manner as the previous two tables.

From the tables, as before, it can be seen that there is a correlation between the

number of records in the data sets and the run-time. As data sets size increases there

is a corresponding increase in processing time. With respect to the 4D data sets the re-

sults presented shows that using sampling and segmentation, and using the MD-ABPM

algorithm, requires less run time than when using sampling and segmentation and the
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Table 9.2: Sampling and Segmentation Runtime results (seconds) for 3D and 4D CTS
data sets using the MD-EBPM and MD-ABPM Algorithms with M-Tables (Aberdeen-

shire and Cornwall)

Year
runtime (sec)

Euclid. Manhat. Approx. 3D

Aberdeenshire

Banding of Sample 2003 02.68 02.26 01.47 01.58
Banding of Segments 16.02 15.19 13.21 11.98
Final band. using Sampling 18.38 16.08 14.83 16.13
Final band. Seg. (Best GBS) 22.37 16.38 15.56 14.96
Final band. Seg. (most freq.) 22.26 16.23 15.01 14.17

Banding of Sample 2004 01.76 01.56 01.39 01.92
Banding of Segments 16.82 15.61 12.70 11.97
Final band. using Sampling 15.84 14.36 10.36 13.13
Final band. Seg. (Best GBS) 17.13 13.56 12.46 13.97
Final band. Seg. (most freq.) 17.26 13.20 12.45 13.57

Banding of Sample 2005 02.95 02.45 01.61 01.85
Banding of Segments 17.95 15.05 13.62 12.72
Final band. using Sampling 18.24 14.74 13.24 12.98
Final band. Seg. (Best GBS) 30.84 17.77 13.09 12.95
Final band. Seg. (most freq.) 30.73 17.18 13.90 12.06

Banding of Sample 2006 01.79 01.69 01.42 01.48
Banding of Segments 20.04 16.04 15.72 13.83
Final band. using Sampling 20.74 15.87 10.88 14.47
Final band. Seg. (Best GBS) 21.31 16.61 13.94 14.66
Final band. Seg. (most freq.) 21.13 16.59 13.41 14.06

Cornwall

Banding of Sample 2003 01.71 01.61 01.38 01.51
Banding of Segments 15.25 15.05 12.18 11.82
Final band. using Sampling 20.87 18.30 16.30 16.13
Final band. Seg. (Best GBS) 20.39 18.74 14.50 16.64
Final band. Seg. (most freq.) 20.32 18.40 14.25 16.60

Banding of Sample 2004 03.41 02.41 01.74 02.55
Banding of Segments 18.44 16.26 14.09 12.64
Final band. using Sampling 16.44 14.11 13.05 18.28
Final band. Seg. (Best GBS) 15.67 13.47 12.44 14.20
Final band. Seg. (most freq.) 15.99 13.30 12.25 14.10

Banding of Sample 2005 02.90 02.60 02.09 01.53
Banding of Segments 18.22 15.37 13.26 12.23
Final band. using Sampling 14.61 14.26 12.16 14.32
Final band. Seg. (Best GBS) 17.18 15.31 14.19 14.27
Final band. Seg. (most freq.) 17.08 15.26 14.10 14.17

Banding of Sample 2006 06.01 05.31 02.40 02.27
Banding of Segments 18.54 16.80 13.95 12.75
Final band. using Sampling 18.60 17.88 15.69 14.50
Final band. Seg. (Best GBS) 18.61 17.34 14.08 13.30
Final band. Seg. (most freq.) 18.34 17.16 14.61 13.20

MD-EBPM algorithm (both variations). The main points to note from the results pre-

sented in the tables are:

1. When using either sampling or segmentation, using either the MD-EBPM or the

MD-ABPM algorithm, bandings can be successfully identified in large ND data

sets within reasonable computation time.
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Table 9.3: Sampling and Segmentation Runtime results (seconds) for 3D and 4D CTS
data sets using the MD-EBPM and MD-ABPM Algorithms with M-Tables (Lancashire

and Norfolk)

Year
runtime (sec)

Euclid. Manhat. Approx. 3D

Lancashire

Banding of Sample 2003 02.97 02.10 01.70 01.59
Banding of Segments 18.60 16.69 14.59 12.18
Final band. using Sampling 18.93 16.59 14.39 13.94
Final band. Seg. (Best GBS) 19.81 16.38 14.69 20.34
Final band. Seg. (most freq.) 19.18 16.38 14.69 20.32

Banding of Sample 2004 02.91 02.10 01.15 01.48
Banding of Segments 19.96 17.86 09.35 09.90
Final band. using Sampling 19.99 18.24 14.04 15.25
Final band. Seg. (Best GBS) 20.17 19.53 17.73 18.95
Final band. Seg. (most freq.) 20.70 19.53 17.73 18.50

Banding of Sample 2005 02.62 01.97 01.87 01.57
Banding of Segments 18.63 15.75 13.88 12.17
Final band. using Sampling 18.87 16.65 15.97 16.08
Final band. Seg. (Best GBS) 17.67 16.39 15.35 16.15
Final band. Seg. (most freq.) 17.15 16.85 14.50 16.05

Banding of Sample 2006 02.43 02.37 01.93 01.57
Banding of Segments 16.98 15.59 13.46 12.44
Final band. using Sampling 18.83 18.64 12.44 14.72
Final band. Seg. (Best GBS) 19.57 17.84 14.70 15.95
Final band. Seg. (most freq.) 19.96 17.17 14.37 15.59

Norfolk

Banding of Sample 2003 05.09 02.59 02.24 01.51
Banding of Segments 18.20 15.49 13.49 12.46
Final band. using Sampling 12.09 11.03 09.75 11.77
Final band. Seg. (Best GBS) 20.34 17.96 15.43 14.51
Final band. Seg. (most freq.) 20.43 17.60 15.34 14.45

Banding of Sample 2004 07.24 05.94 03.41 02.99
Banding of Segments 20.45 17.40 14.40 13.51
Final band. using Sampling 27.05 17.14 12.77 16.42
Final band. Seg. (Best GBS) 15.81 13.66 12.14 10.81
Final band. Seg. (most freq.) 15.99 13.30 12.25 10.31

Banding of Sample 2005 02.16 02.10 01.74 01.15
Banding of Segments 16.05 15.74 13.60 11.43
Final band. using Sampling 15.02 11.23 10.46 10.85
Final band. Seg. (Best GBS) 17.30 14.90 12.42 14.10
Final band. Seg. (most freq.) 17.05 14.49 12.24 14.14

Banding of Sample 2006 01.83 01.53 01.29 01.52
Banding of Segments 15.48 14.01 13.83 12.54
Final band. using Sampling 14.74 13.03 11.30 11.10
Final band. Seg. (Best GBS) 14.11 13.06 12.94 12.30
Final band. Seg. (most freq.) 14.01 13.51 12.40 12.90

2. Regardless of whether sampling or segmentation is adopted, the MD-EBPM algo-

rithm was always slower than when using the MD-ABPM algorithm.

With respect to the last point it should be recalled, from the results presented in the

previous chapter, that although the MD-ABPM algorithm was found to be faster (be-

cause it entails less calculations) it was not as effective in terms of the final GBS values

produced (this will be demonstrated further in the following sub-section).
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Table 9.4: Sampling and Segmentation Runtime results (seconds) for 5D CTS data
sets using the MD-EBPM and MD-ABPM Algorithms with M-Tables (Aberdeenshire

and Cornwall)

Year
runtime (sec)

Euclid. Manhat. Approx.

Aberdeenshire

Banding of Sample 2003 24.69 19.22 14.72
Banding of Segments 39.14 37.98 29.97
Final band. using Sampling 36.94 31.89 29.09
Final band. Seg. (Best GBS) 36.51 31.40 29.13
Final band. Seg. (most freq.) 36.45 31.42 29.33

Banding of Sample 2004 26.93 21.78 12.41
Banding of Segments 39.90 33.82 27.90
Final band. using Sampling 34.40 32.24 30.10
Final band. Seg. (Best GBS) 34.98 32.66 31.30
Final band. Seg. (most freq.) 34.87 32.04 31.50

Banding of Sample 2005 15.66 14.56 09.19
Banding of Segments 31.92 29.41 27.54
Final band. using Sampling 31.35 29.67 26.60
Final band. Seg. (Best GBS) 31.58 29.49 26.26
Final band. Seg. (most freq.) 31.50 29.25 29.30

Banding of Sample 2006 18.41 17.58 07.41
Banding of Segments 38.28 32.34 25.06
Final band. using Sampling 35.41 30.18 28.13
Final band. Seg. (Best GBS) 36.44 31.24 28.23
Final band. Seg. (most freq.) 36.24 31.24 28.36

Cornwall

Banding of Sample 2003 24.09 17.59 09.61
Banding of Segments 39.91 37.34 35.20
Final band. using Sampling 37.65 33.06 28.15
Final band. Seg. (Best GBS) 38.85 33.35 28.60
Final band. Seg. (most freq.) 38.80 33.28 28.68

Banding of Sample 2004 22.62 14.15 10.61
Banding of Segments 55.02 47.58 39.10
Final band. using Sampling 36.28 31.81 29.80
Final band. Seg. (Best GBS) 36.34 32.23 29.08
Final band. Seg. (most freq.) 36.29 32.50 29.42

Banding of Sample 2005 27.43 23.52 14.92
Banding of Segments 46.82 39.85 31.11
Final band. using Sampling 27.02 24.62 21.23
Final band. Seg. (Best GBS) 28.37 25.45 20.32
Final band. Seg. (most freq.) 28.25 25.07 20.45

Banding of Sample 2006 29.89 20.89 15.41
Banding of Segments 49.91 46.86 43.07
Final band. using Sampling 33.64 30.24 28.05
Final band. Seg. (Best GBS) 34.81 30.32 28.24
Final band. Seg. (most freq.) 34.28 30.62 28.14

To enhance the appreciation of the results obtained, Figure 9.1 and 9.2 presents

the results from Tables 9.2, 9.3, 9.4 and 9.5 in bar graph form. In the figures the

numbering along the x-axis should be interpreted as follows: (i) Aberdeenshire 2003,
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Table 9.5: Sampling and Segmentation Runtime results (seconds) for 5D CTS data
sets using the MD-EBPM and MD-ABPM Algorithms with M-Tables (Lancashire and

Norfolk)

Year
runtime (sec)

Euclid. Manhat. Approx.

Lancashire

Banding of Sample 2003 24.19 20.10 10.02
Banding of Segments 48.29 43.14 32.12
Final band. using Sampling 34.30 32.22 22.02
Final band. Seg. (Best GBS) 32.36 30.25 25.03
Final band. Seg. (most freq.) 32.12 30.08 25.04

Banding of Sample 2004 24.29 20.45 14.09
Banding of Segments 49.98 45.85 31.26
Final band. using Sampling 38.24 35.20 30.23
Final band. Seg. (Best GBS) 39.33 35.23 30.12
Final band. Seg. (most freq.) 39.15 35.14 30.15

Banding of Sample 2005 19.25 15.55 09.84
Banding of Segments 35.35 30.66 27.35
Final band. using Sampling 31.46 28.31 26.25
Final band. Seg. (Best GBS) 32.72 29.51 27.32
Final band. Seg. (most freq.) 32.50 29.41 27.30

Banding of Sample 2006 20.31 15.30 11.49
Banding of Segments 38.21 34.22 29.71
Final band. using Sampling 32.35 30.27 28.02
Final band. Seg. (Best GBS) 32.63 30.15 28.32
Final band. Seg. (most freq.) 32.25 30.34 28.34

Norfolk

Banding of Sample 2003 20.84 18.84 10.72
Banding of Segments 32.77 28.06 15.30
Final band. using Sampling 35.09 25.35 18.30
Final band. Seg. (Best GBS) 36.74 26.43 18.41
Final band. Seg. (most freq.) 36.40 26.35 18.96

Banding of Sample 2004 29.29 25.60 21.99
Banding of Segments 35.13 30.94 28.00
Final band. using Sampling 35.90 32.36 24.16
Final band. Seg. (Best GBS) 36.81 32.42 24.79
Final band. Seg. (most freq.) 36.18 32.24 24.90

Banding of Sample 2005 25.25 20.55 17.84
Banding of Segments 35.59 28.10 25.07
Final band. using Sampling 18.69 16.79 14.79
Final band. Seg. (Best GBS) 18.79 16.50 15.31
Final band. Seg. (most freq.) 18.15 16.70 15.10

Banding of Sample 2006 36.01 25.31 22.40
Banding of Segments 44.33 32.48 29.68
Final band. using Sampling 19.77 15.70 13.41
Final band. Seg. (Best GBS) 17.46 14.27 12.93
Final band. Seg. (most freq.) 17.62 14.20 12.27

(ii) Aberdeenshire 2004, (iii) Aberdeenshire 2005, (iv) Aberdeenshire 2006, (v) Cornwall

2003, (vi) Cornwall 2004, (vii) Cornwall 2005, (viii) Cornwall 2006, (ix) Lancashire

2003, (x) Lancashire 2004, (xi) Lancashire 2005, (xii) Lancashire 2006, (xiii) Norfolk
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2003, (xvi) Norfolk 2004, (xv) Norfolk 2005, (xiv) Norfolk 2006. From comparison of

the figures, it can be seen that there is a significant difference in the run time between

using sampling and segmentation and the MD-ABPM and MD-EBPM algorithms. From

the figures it can also be confirmed that, regardless of whether sampling or segmentation

is used, the Manhattan variation of the MD-EBPM algorithm performs better than the

Euclidean variation (fewer calculations are required).

With respect to the results presented in this subsection using the sampling technique

these were obtained using a sample size of 24,000 for reasons noted in Section 9.2 above.

Some further experiments using sample sizes of 12,000 and 36,000 are reported on in

Appendix B. The results from these experimentss coroborate the results presented in

this chapter so were not reported on in the body of this thesis.

9.4.2 Effectiveness of MD-EBPM and MD-ABPM Algorithms Using

Sampling and Segmentation

This section considers the evaluation of the proposed sampling and segmentation tech-

niques with respect to the effectiveness of the techniques, using the MD-EBPM (both

variations) and MD-ABPM algorithms, in the context of ND data. To determine the

effectiveness of the techniques the final GBS values produced were considered. Experi-

ments were conducted, as in the case of the foregoing sub-section, with respect to 3D,

4D and 5D data.

The results in the context of the 3D and 4D data are presented in Tables 9.6 and

9.7, while Tables 9.8 and 9.9 presents the results in the context of the 5D data. In the

tables, the columns reference the three MD-BPM (Euclidean MD-EBPM, Manhattan

MD-EBPM and Approximate MD-ABPM) algorithms. The rows indicate: (i) the final

GBS value obtained with respect to the the banding identified in the selected sample

S, (ii) the final GBS value with respect to the best configuration obtained when uisng

segmentation, (iii) the final overall GBS values obtained when the sample banding con-

figuration is applied to the entire data set, (iv) the final overall GBS value obtained when

the best configuration from the segmentation is selected using best GBS and applied to

the entire data set, (v) the final overall GBS value obtained when the best configuration

from the segmentation is selected using the most frequently occurring configuration and

applied to the entire data set and (vi) the GBS value obtained when no banding is

conducted.

As noted in the previous subsection in 3D the sampling and segmentation technique

using either the MD-EBPM or MD-ABPM algorithm operate in the same manner, and

consequently produce the same GBS values; therefore only one of the results is presented.

For ease of understanding the results from Tables 9.6, 9.7, 9.8 and 9.9 are also

presented in bar graph form in Figures 9.3 and 9.4. Figure 9.3 shows the GBS results

in terms of the 3D data sets with respect to both sampling and segmentation for 2003,

while Figure 9.4 shows the GBS results in terms of the 4D and 5D data sets for 2003

with respect to sampling and segmentation. Note that the graph results for 2004, 2005
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(a) 3D Data

(b) 4D Data

(c) 5D Data

Figure 9.1: Sampling Run time results for 2003-2006 using the MD-EBPME , MD-
EBPMM and MD-ABPM algorithms in the context of: (a) 3D, (b) 4D and (c) 5D data

sets

and 2006 were very similar to those obtain for 2003, so were not included in the body

of the thesis.

Inspection of the tables indicates that when using sampling and segmentation, and

the Euclidean variation of the MD-EBPM algorithm, best GBS values were produced.

From the tables, it can also be seen that by imposing the banding identified in a sample
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(a) 3D Data

(b) 4D Data

(c) 5D Data

Figure 9.2: Segmentation Run time results for 2003-2006 with respect to entire data
set using the MD-EBPME , MD-EBPMM and MD-ABPM algorithms in the context of:

(a) 3D, (b) 4D and (c) 5D data sets

on the entire data set, the GBS values for the entire data set was improved (this is to

be expected). Similarly, when using segmentation (regardless of whether best GBS or

most frequent selection was adopted) the final GBS was improved.

More specifically, from the tables, it can be observed that:
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1. The application of both the sampling and segmentation techniques served to pro-

duce an effective banding, in terms of the final GBS values obtained; better than

if no banding was applied.

2. Segmentation tended to produce a better overall banding than sampling because

the banding produced using segmentation was the best of a number of dimension

index re-orderings (unlike in the case of sampling).

3. Out of the two segmentation banding combination techniques considered, best

GBS and most frequent, in most cases the most frequent combination technique

produced a better overall GBS.

4. The most effective MD-BPM algorithm, in terms of GBS, and in the context of

both sampling and segmentation, was the Euclidean MD-EBPM.

The results presented in Tables 9.6, 9.7, 9.8 and 9.9 below, with respect to the

segmentation technique only list GBS values for the segment with the best (lowest)

GBS value. For completeness the GBS values with respect to all the segments are given

in Appendix C.

Figure 9.3: GBS values for 2003 comparison of 3D data sets using the Euclidean
MD-EBPM Algorithm
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Table 9.6: Sampling and Segmentation GBS Result for 2003 to 2006 3D and 4D CTS
data set (Aberdeenshire and Cornwall)

Year
GBS

Euclid. Manhat. Approx. 3D

Aberdeenshire

Banding of Sample 2003 0.2929 0.2936 0.4006 0.3770

Banding of Segments 0.2391 0.2398 0.3398 0.3049

Final band. using Sampling 0.3061 0.3133 0.4158 0.3811

Final band. Seg. (Best GBS) 0.2780 0.2794 0.4037 0.3479

Final band. Seg. (most freq.) 0.2247 0.2350 0.2807 0.2638

no banding 0.3176 0.3261 0.4557 0.3937

Banding of Sample 2004 0.2409 0.2420 0.3526 0.3686

Banding of Segments 0.2396 0.2442 0.3411 0.3023

Final band. using Sampling 0.2497 0.2586 0.3620 0.3710

Final band. Seg. (Best GBS) 0.2400 0.2490 0.3401 0.3403

Final band. Seg. (most freq.) 0.1724 0.1937 0.2799 0.2514

no banding 0.2383 0.2964 0.4242 0.3947

Banding of Sample 2005 0.3113 0.3180 0.4155 0.3869

Banding of Segments 0.2138 0.2366 0.3087 0.2890

Final band. using Sampling 0.3206 0.3276 0.4294 0.3977

Final band. Seg. (Best GBS) 0.2650 0.2677 0.3680 0.3278

Final band. Seg. (most freq.) 0.2233 0.2280 0.3097 0.2551

no banding 0.3290 0.3305 0.4595 0.3987

Banding of Sample 2006 0.2397 0.2483 0.3449 0.3670

Banding of Segments 0.2231 0.2305 0.3213 0.3106

Final band. using Sampling 0.2397 0.2483 0.3449 0.3709

Final band. Seg. (Best GBS) 0.2266 0.2284 0.3285 0.3322

Final band. Seg. (most freq.) 0.1819 0.1902 0.2694 0.2421

no banding 0.2743 0.2756 0.3936 0.3733

Cornwall

Banding of Sample 2003 0.2911 0.2923 0.4180 0.4039

Banding of Segments 0.2503 0.2556 0.3606 0.3263

Final band. using Sampling 0.2996 0.3083 0.4306 0.4048

Final band. Seg. (Best GBS) 0.2835 0.2871 0.4155 0.3572

Final band. Seg. (most freq.) 0.2190 0.2256 0.3340 0.2706

no banding 0.3139 0.3152 0.4557 0.4370

Banding of Sample 2004 0.3181 0.3194 0.3743 0.3944

Banding of Segments 0.2717 0.2750 0.3855 0.3140

Final band. using Sampling 0.3243 0.2723 0.3901 0.4023

Final band. Seg. (Best GBS) 0.2639 0.2793 0.3372 0.3524

Final band. Seg. (most freq.) 0.2020 0.2051 0.2867 0.2756

no banding 0.3213 0.3281 0.4570 0.4043

Banding of Sample 2005 0.2730 0.2758 0.3943 0.3696

Banding of Segments 0.2365 0.2412 0.3427 0.3073

Final band. using Sampling 0.2822 0.2881 0.4097 0.3786

Final band. Seg. (Best GBS) 0.2779 0.2865 0.3331 0.3580

Final band. Seg. (most freq.) 0.2281 0.2314 0.3284 0.2785

no banding 0.2281 0.2314 0.4633 0.4142

Banding of Sample 2006 0.3065 0.3081 0.4336 0.3886

Banding of Segments 0.2812 0.2858 0.3971 0.3160

Final band. using Sampling 0.3092 0.3177 0.4455 0.3901

Final band. Seg. (Best GBS) 0.2844 0.2923 0.4049 0.3449

Final band. Seg. (most freq.) 0.1767 0.1999 0.2979 0.2676

no banding 0.3220 0.3234 0.4542 0.4060
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Table 9.7: Sampling and Segmentation GBS Result for 2003 to 2006 3D and 4D CTS
data set (Lancashire and Norfolk)

Year
GBS

Euclid. Manhat. Approx. 3D

Lancashire

Banding of Sample 2003 0.2947 0.3024 0.4199 0.4105

Banding of Segments 0.2807 0.2830 0.3966 0.3394

Final band. using Sampling 0.3076 0.3146 0.4393 0.4136

Final band. Seg. (Best GBS) 0.2922 0.3041 0.4176 0.3747

Final band. Seg. (most freq.) 0.2092 0.2104 0.3083 0.2909

no banding 0.3139 0.3236 0.4906 0.4206

Banding of Sample 2004 0.2817 0.2855 0.3959 0.3593

Banding of Segments 0.2317 0.2343 0.3190 0.2417

Final band. using Sampling 0.3076 0.3146 0.4393 0.3769

Final band. Seg. (Best GBS) 0.2421 0.2445 0.3449 0.3925

Final band. Seg. (most freq.) 0.1996 0.2083 0.2770 0.2655

no banding 0.3237 0.3248 0.4430 0.3908

Banding of Sample 2005 0.2940 0.2965 0.4142 0.3974

Banding of Segments 0.2678 0.2741 0.3830 0.3354

Final band. using Sampling 0.2948 0.2978 0.4241 0.4007

Final band. Seg. (Best GBS) 0.2787 0.2893 0.3589 0.3797

Final band. Seg. (most freq.) 0.2010 0.2022 0.2797 0.2782

no banding 0.3061 0.3100 0.4392 0.4059

Banding of Sample 2006 0.2847 0.2874 0.4071 0.3970

Banding of Segments 0.2731 0.2765 0.3875 0.3346

Final band. using Sampling 0.2856 0.2880 0.4113 0.3999

Final band. Seg. (Best GBS) 0.2899 0.2962 0.3252 0.3729

Final band. Seg. (most freq.) 0.2029 0.2163 0.2863 0.3040

no banding 0.3085 0.3122 0.4386 0.4011

Norfolk

Banding of Sample 2003 0.3079 0.3216 0.4575 0.4255

Banding of Segments 0.2191 0.2300 0.3171 0.3192

Final band. using Sampling 0.3103 0.3226 0.4578 0.4270

Final band. Seg. (Best GBS) 0.2742 0.2788 0.3930 0.3399

Final band. Seg. (most freq.) 0.2172 0.2265 0.3100 0.2657

no banding 0.3319 0.3333 0.4653 0.4370

Banding of Sample 2004 0.2810 0.2910 0.4005 0.3607

Banding of Segments 0.2678 0.2688 0.3715 0.2894

Final band. using Sampling 0.2917 0.3017 0.4166 0.3653

Final band. Seg. (Best GBS) 0.2689 0.2696 0.3840 0.3278

Final band. Seg. (most freq.) 0.2051 0.2062 0.2915 0.2453

no banding 0.3076 0.3093 0.4507 0.3698

Banding of Sample 2005 0.3215 0.3279 0.4422 0.4058

Banding of Segments 0.2174 0.2226 0.3137 0.2910

Final band. using Sampling 0.3222 0.3287 0.4469 0.4075

Final band. Seg. (Best GBS) 0.2713 0.2782 0.3832 0.2837

Final band. Seg. (most freq.) 0.2093 0.2253 0.3390 0.2511

no banding 0.3291 0.3302 0.4548 0.4148

Banding of Sample 2006 0.2566 0.2629 0.3635 0.3802

Banding of Segments 0.1978 0.2036 0.2835 0.2653

Final band. using Sampling 0.2568 0.2654 0.3645 0.3817

Final band. Seg. (Best GBS) 0.2161 0.2251 0.3068 0.3154

Final band. Seg. (most freq.) 0.1752 0.1807 0.2461 0.2537

no banding 0.2600 0.2668 0.4172 0.3986
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Table 9.8: Sampling and Segmentation GBS Result for 2003 to 2006 5D CTS data
set (Aberdeenshire and Cornwall)

Year
GBS

Euclid. Manhat. Approx.

Aberdeenshire

Banding of Sample 2003 0.2352 0.2370 0.4226

Banding of Segments 0.1735 0.1761 0.3208

Final band. using Sampling 0.2467 0.2541 0.4431

Final band. Seg. (Best GBS) 0.2303 0.2383 0.4175

Final band. Seg. (most freq.) 0.1794 0.1808 0.3214

no banding 0.2580 0.2653 0.4781

Banding of Sample 2004 0.2020 0.2027 0.3814

Banding of Segments 0.1744 0.1794 0.3180

Final band. using Sampling 0.2085 0.2099 0.3945

Final band. Seg. (Best GBS) 0.2013 0.2104 0.3429

Final band. Seg. (most freq.) 0.1542 0.1553 0.2667

no banding 0.2383 0.2462 0.4415

Banding of Sample 2005 0.2496 0.2582 0.3620

Banding of Segments 0.1592 0.1712 0.3056

Final band. using Sampling 0.2584 0.2655 0.4581

Final band. Seg. (Best GBS) 0.2219 0.2299 0.4018

Final band. Seg. (most freq.) 0.1908 0.1927 0.3547

no banding 0.2671 0.2699 0.4837

Banding of Sample 2006 0.2002 0.2088 0.3780

Banding of Segments 0.1679 0.1713 0.3219

Final band. using Sampling 0.2015 0.2099 0.3789

Final band. Seg. (Best GBS) 0.1922 0.1943 0.3591

Final band. Seg. (most freq.) 0.1469 0.1568 0.2770

no banding 0.2238 0.2299 0.4092

Cornwall

Banding of Sample 2003 0.2402 0.2428 0.4426

Banding of Segments 0.1822 0.1842 0.3421

Final band. using Sampling 0.2488 0.2508 0.4543

Final band. Seg. (Best GBS) 0.2357 0.2385 0.4398

Final band. Seg. (most freq.) 0.1822 0.1945 0.3425

no banding 0.2589 0.2613 0.4670

Banding of Sample 2004 0.2178 0.2260 0.4050

Banding of Segments 0.2011 0.2052 0.3650

Final band. using Sampling 0.2277 0.2289 0.4156

Final band. Seg. (Best GBS) 0.2321 0.2353 0.4224

Final band. Seg. (most freq.) 0.1643 0.1675 0.3021

no banding 0.2577 0.2617 0.4831

Banding of Sample 2005 0.2271 0.2290 0.4175

Banding of Segments 0.1705 0.1753 0.3196

Final band. using Sampling 0.2342 0.2368 0.4289

Final band. Seg. (Best GBS) 0.2321 0.2351 0.4219

Final band. Seg. (most freq.) 0.1886 0.2029 0.3483

no banding 0.2657 0.2687 0.4821

Banding of Sample 2006 0.2510 0.2520 0.4554

Banding of Segments 0.2123 0.2138 0.3876

Final band. using Sampling 0.2542 0.2633 0.4589

Final band. Seg. (Best GBS) 0.2352 0.2385 0.4292

Final band. Seg. (most freq.) 0.1666 0.1742 0.3096

no banding 0.2626 0.2699 0.4754
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Table 9.9: Sampling and Segmentation GBS Result for 2003 to 2006 5D CTS data
set (Lancashire and Norfolk)

Year
GBS

Euclid. Manhat. Approx.

Lancashire

Banding of Sample 2003 0.2434 0.2488 0.4429

Banding of Segments 0.2070 0.2106 0.3777

Final band. using Sampling 0.2544 0.2631 0.4673

Final band. Seg. (Best GBS) 0.2436 0.2465 0.4482

Final band. Seg. (most freq.) 0.1770 0.1775 0.3041

no banding 0.2609 0.2647 0.4830

Banding of Sample 2004 0.2384 0.2451 0.4179

Banding of Segments 0.1733 0.1777 0.3180

Final band. using Sampling 0.2483 0.2550 0.4344

Final band. Seg. (Best GBS) 0.2070 0.2163 0.3886

Final band. Seg. (most freq.) 0.1742 0.1764 0.3266

no banding 0.2650 0.2676 0.4749

Banding of Sample 2005 0.2456 0.2541 0.4437

Banding of Segments 0.1999 0.2017 0.3703

Final band. using Sampling 0.2470 0.2546 0.4475

Final band. Seg. (Best GBS) 0.2319 0.2342 0.4255

Final band. Seg. (most freq.) 0.1620 0.1658 0.3021

no banding 0.2518 0.2559 0.4660

Banding of Sample 2006 0.2382 0.2466 0.4369

Banding of Segments 0.2026 0.2065 0.3770

Final band. using Sampling 0.2419 0.2455 0.4515

Final band. Seg. (Best GBS) 0.2370 0.2395 0.4385

Final band. Seg. (most freq.) 0.1620 0.1829 0.3043

no banding 0.2535 0.2576 0.4635

Norfolk

Banding of Sample 2003 0.2663 0.2695 0.4663

Banding of Segments 0.1629 0.2632 0.3004

Final band. using Sampling 0.2695 0.2698 0.4573

Final band. Seg. (Best GBS) 0.2316 0.2366 0.4206

Final band. Seg. (most freq.) 0.1644 0.1881 0.3588

no banding 0.2795 0.2817 0.4959

Banding of Sample 2004 0.2350 0.2449 0.4266

Banding of Segments 0.1972 0.1999 0.3612

Final band. using Sampling 0.2418 0.2517 0.4432

Final band. Seg. (Best GBS) 0.2237 0.2317 0.4200

Final band. Seg. (most freq.) 0.1603 0.1703 0.3253

no banding 0.2512 0.2544 0.4859

Banding of Sample 2005 0.2572 0.2647 0.4540

Banding of Segments 0.1615 0.1628 0.3016

Final band. using Sampling 0.2580 0.2657 0.4551

Final band. Seg. (Best GBS) 0.2273 0.2347 0.4154

Final band. Seg. (most freq.) 0.1760 0.1788 0.3341

no banding 0.2640 0.2664 0.4781

Banding of Sample 2006 0.2134 0.2225 0.3948

Banding of Segments 0.1482 0.1497 0.2824

Final band. using Sampling 0.2139 0.2172 0.4004

Final band. Seg. (Best GBS) 0.1857 0.1869 0.3460

Final band. Seg. (most freq.) 0.1327 0.1436 0.2708

no banding 0.2153 0.2242 0.4985
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(a) Aberdeenshire 4D (b) Aberdeenshire 5D

(c) Cornwall 4D (d) Cornwall 5D

(e) Lancashire 4D (f) Lancashire 5D

(g) Norfolk 4D (h) Norfolk 5D

Figure 9.4: GBS values comparison for 4D and 5D data set in the context of: (i)
Segmentation banding applied to all data (most frequent), (ii) Segmentation banding
applied to all data (best GBS) and (iii) Sample banding applied to all data using the

Euclidean MD-EBPM, Manhattan MD-EBPM and MD-ABPM Algorithms
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9.5 Summary

This chapter has presented the BPM sampling and segmentation techniques for identi-

fying bandings in very large data sets, data sets that can not be held in primary storage.

The techniques were combined with the MD-ABPM and MD-EBPM algorithms pre-

sented in the previous chapter. Both techniques were fully described and evaluated

using a series of experiments to illustrate the operation of the proposed techniques, and

the banding concept in general, in the context of: (i) 3D, (ii) 4D and (iii) 5D data sets.

From the reported evaluations, the following overall observations can be made:

1. Both the sampling and segmentation techniques were found to be effective with

respect to identifying bandings in large data sets better than if no banding was

applied.

2. In the context of both sampling and segmentation, segmentation produced a better

banding than the sampling technique; the reason being that the banding produced

using segmentation was conducted by considering the entire dataset (best bandings

were obtained from a number of segment bandings) while in the case of sampling

only a subset of the data set was used.

3. In the context of segmentation the eventual global banding produced using most

frequent configuration selection (selection of the most frequently occuring bandings

from all possible segment bandings) tended to produce better (more accurate)

bandings than in the case of best GBS value configuration selection (selection of

the banding from segment bandings with the best GBS values).

4. The most efficient MD-BPM algorithm, in terms of runtime, in the context of both

sampling and segmentation was the MD-ABPM algorithm.

5. The most effective MD-BPM algorithm in terms of the final overall GBS obtained,

in the context of both sampling and segmentation, was the MD-EBPM algorithm

(regardless of the variation used).

6. The MD-ABPM algorithm in the context of sampling and segmentation produce

the worst GBS values because of the general disadvantages of the MD-ABPM

algorithms noted previously in Sub-section 9.4.2.

The following chapter considers mechanisms for determining the statistical signif-

icance of the banded pattern mining concept in the context of randomly generated

synthetic data sets using normal (Gaussian) distribution curves.



Chapter 10

Statistical Significance Testing

Using Gaussian Distributions

10.1 Introduction

In the foregoing chapters a variety of BPM algorithms have been presented. The re-

ported evaluations indicated that in all cases a better GBS value was produced after

banding than existed prior to banding. The question remained as to whether the de-

tected bandings were in fact statistically significant or not. This short chapter reports

on an exploration of a mechanism that can be adopted to determine whether a banding

is statistically significant or not. The basic idea was that if we had n randomly generated

dot data sets, all featuring the same dimensions and approximately the same density,

each of these data sets would have a GBS value associated with it. It was assumed that

these values would be distributed following the normal (Gaussian) distribution. Given

a GBS value generated after banding had been applied the expectation was that this

would be located away from the median of this distribution by a distance of at least

one standard deviation. The normal (Gaussian) distribution was selected because in the

absence of any information to the contrary it was assumed that the data sets to which

banding was to be applied were likely to follow this distribution; the Gaussian distribu-

tion is the most common continuous probability distribution. Further reasons were that

the Gaussian distribution is easy to work with and many statistical test can be derived

from it. This chapter explores this idea and demonstrates that normal distributions can

be usefully employed to establish the statistical significance of banding.

The rest of the chapter is organised as follows; Section 10.2 presents an overview of

statistical significance testing in the context of the banding concept investigated in this

thesis. Section 10.3 then reports on the process for generating normal distributions with

respect to a set of example data set configurations without banding. This is followed in

Section 10.4 with examples of how the normal distributions generated in the previous

section can be used for the purpose of testing the statistical significance of generated

banded patterns. Finally, Section 10.5 concludes the chapter.

157
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10.2 Overview of Statistical Significance Testing

This section presents a more detailed discussion, than that presented in the previous

section, of statistical significance testing. Given a randomly generated synthetic data

set, some form of banding will exist as indicated by the associated GBS value. However,

as noted above, the question is whether the identified banding is statistically significant

or not. From the literature, there are a number of statistical techniques used to perform

statistical significance comparison. With respect to the work presented in this thesis,

the normal (Gaussian) distribution was used. The normal distribution is concerned

with the operation of a continuous probability distribution [44, 57, 73, 99, 100, 34, 43]

that represents a real-valued random variable. The normal distribution is described by

the probability density function φ(x) given in Equation 10.1, where x is an observation

of some kind. Note that the factor
√

2π ensures the total area under curve φ(x) is

one [44, 46, 47, 57, 118] and that the distribution has a unit variance (unit standard

deviation).

φ(x) =
e1/2x2√

2π
(10.1)

Though, authors differ on which normal distribution should be called the “standard”

one, Gauss [63] defined standard normal distribution as having variance σ2 = 1/2 and

a probability density function of:

φ(x) =
ex

2

√
π

(10.2)

while Stigler [119, 120] define standard normal distribution as having a variance σ2 =

1/(2π) and a probability density function of:

φ(x) = ex
2π

(10.3)

Using the probability density function φ(x) given in Equations 10.1, 10.2 and 10.3, for

a range of values for x describes a “bell curve” [107] with a mean µ, a standard deviation

σ and a variance σ2. Figure 10.1, taken from [69] presents a number of examples of bell

curves associated with the normal (or Gaussian) distribution. In the figure the X-axis

indicates a range of values for the variable x from −5 to 5 and the Y-axis represents

the frequency or probability of the occurence count. The red curve in the figure is the

standard normal curve with (µ = 0, σ = 1), The blue and green curves represents the

normal curves with (µ = 0, σ = 0.2) and (µ = −2, σ = 0.5), whilst the purple curve is a

normal curve with (µ = 0, σ = 5.0). Thus the normal distribution is symmetric about

its mean µ. As such it may not be a suitable model for variables that are inherently

positive or strongly skewed. The normal distribution value tends to zero when the value

x lies more than a few standard deviations away from the mean.

Standard normal distribution values are often presented in tabular form; Figure 10.2

gives an example taken from [88]. Note that in the table the variable z is used instead
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of x as used in the above discussion and in Figure 10.1. Note also that in the table the

“0.1”s run along the Y-axis and the “0.01”s along the X-axis (in this way we avoid a

very large table).

Figure 10.1: Gaussian or Normal Probability Curve [69]

Figure 10.2: Standard Normal Distribution Table [88]

In the Normal distribution, the three-sigma rule is used to show the percentage

of values that lie within a band around the mean width of “one”, “two” and “three”

standard deviations; this means that; 68.27%, 95.45% and 99.73% of the values lie within

one, two and three standard deviations from the mean. In other words, for the normal

distribution, values of less than one standard deviation away from the mean account

for 68.27% of the values, two standard deviation from the mean account for 95.45% of

the values and three standard deviation account for 99.73% of the values. Figure 10.3

taken from [105], illustrates the three-sigma rule for the normal distribution (see also

[36, 129]).
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Figure 10.3: three-sigma rule for the normal distribution [105]

10.3 Normal Distribution Curve Generation

The theoretical foundation for testing the significance of a banding (expressed in terms of

a GBS value) was presented in the foregoing section. This section reports on the adopted

process whereby this theory was applied by considering the generation of collections of

banding normal distributions. The idea was to create a bank of normal distribution

curves, from randomly generated data sets to which banding had not been applied,

which could then be used to establish whether a generated banding was significant or

not in terms of distance from the mean. Of course there will be different distributions

associated with different data as defined by the parameters for these data sets (size and

dot density).

To demonstrate the application of the above theoretical approach to testing, two sets

of experiments were conducted, each involving a collection of 1000 data sets grouped

into batches of 100 according to row/column size. More specifically the row and column

dimensions used were: (i) 100 × 100, (ii) 141 × 141, (iii) 173 × 173, (iv) 200 × 200, (v)

224 × 224, (vi) 245 × 245, (vii) 265 × 265 and (viii) 285 × 285, (ix) 300 × 300 and (x)

316× 316. The effect was to have data sets ranging from 10,000 to 100,000 locations in

steps of 1,000. The distinction between the two sets of experiments was the dot density

used:

• Static Dot Density value: Experiments using a collection of data sets, using a

static dot density of 10%.

• Range of Dot Density Values: Experiments using dot density values ranged

from 10% to 50% increasing in steps of 10% (each data set size featured five

different dot densities distributed evenly).

The rational for the second set of experiments was to determine the more general

applicability of the approach. The data sets were generated using the LUCS-KDD

generator used with respect to previously reported experiments [29]. The results were

then used to define ten normal distributions, one for each data set configuration. The

normal distributions associated with the first set of experiments is discussed in further
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detail in Subsection 10.3.1 while that associated with the second set is discussed in

Subsection 10.3.2.

10.3.1 Static Dot Density

In this subsection, the experimental result using a static dot density of 10% is presented.

Table 10.1 lists the natural GBS occurrence counts for each data set configuration (with-

out banding), whilst Table 10.2 lists the accompanying µ, σ and one and two standard

deviation limits. Figure 10.4 shows the normal distribution curves associated with the

distributions (and the information in Tables 10.1 and 10.2). Inspection of the figure

(and tables) indicates that similar distribution curves result regardless of data set size.

The significance of these distribution curves is that they can now be used to compare

GBS values obtained from similar data sets (same size and density) after banding has

taken place. This is illustrated in the following section.

Table 10.1: List of GBS Occurrence Counts per data set configuration (static dot
density)

Data sets
100 141 173 200 224 245 265 283 300 316

GBS × × × × × × × × × ×
100 141 173 200 224 245 265 283 300 316

0.56 1 - - - - - - - - -

0.57 18 6 1 1 - - - - - -

0.58 60 15 5 10 - - - - - -

0.59 19 57 26 78 1 1 - 1 - -

0.60 2 17 46 10 20 15 2 14 5 3

0.61 - 5 21 1 58 65 18 35 20 18

0.62 - - 1 - 20 18 61 34 53 59

0.63 - - - - 1 1 17 15 18 18

0.64 - - - - - - 2 1 4 2

Total 100 100 100 100 100 100 100 100 100 100

Table 10.2: Mean and Standard Deviation values extracted from data presented in
Table 10.1 (static dot density)

Data sets
100 141 173 200 224 245 265 283 300 316
× × × × × × × × × ×

100 141 173 200 224 245 265 283 300 316

µ 0.58 0.59 0.60 0.61 0.61 0.61 0.62 0.615 0.62 0.62

σ 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01

1SD
µ− σ 0.57 0.58 0.58 0.60 0.59 0.60 0.61 0.595 0.61 0.61
µ+ σ 0.59 0.60 0.62 0.62 0.63 0.62 0.63 0.635 0.63 0.63

2SD
µ− 2σ 0.56 0.57 - 0.59 - 0.59 0.60 - 0.60 0.60
µ+ 2σ 0.60 0.61 - 0.63 - 0.63 0.64 - 0.64 0.64
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(a) 100× 100 (b) 141× 141

(c) 173× 173 (d) 200× 200

(e) 224× 224 (f) 245× 245

(g) 265× 265 (h) 283× 283

(i) 300× 300 (j) 316× 316

Figure 10.4: Standard distribution curves for data presented in Table 10.1 (static dot
density)
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10.3.2 Range of Dot Density Values

This subsection considers the normal distributions that result with respect to data set

generated using a range of dot density values instead of a static value. More specifically

dot density values ranging from 10% to 50% increasing in steps of 10%. In the same

manner as in the previous subsection. Table 10.3 lists the natural GBS occurrence

counts for each data set configuration (without banding), whilst Table 10.4 lists the

accompanying µ, σ and one and two standard deviation limits. The associated normal

distribution curves are given in Figure 10.5. Inspection of the figure indicates that similar

distributions are produced; however, comparison with the distribution curves presented

previously in Figure 10.4 indicates a marked difference in shape indicating that it is not

a “one size fits all” situation. The significance of the distribution curves, as already

noted was that they can be used to compare the GBS values obtained from data sets

(same size but different dot densities) after banding has taken place to determine if the

resulting banding is statistically significant or not.

Table 10.3: List of GBS Occurrence Counts per data set configuration (ranged dot
density)

Data sets

100 141 173 200 224 245 265 283 300 316

GBS × × × × × × × × × ×
100 141 173 200 224 245 265 283 300 316

0.51 1 1 - - - - - - - -

0.52 - 1 1 1 1 2 - 1 - -

0.53 - - - - - 3 1 - 1 1

0.54 2 - 5 3 3 - 1 3 - -

0.55 - - - - - 5 - - 3 5

0.56 - - 6 - 5 - 2 - - -

0.57 5 - - - - 7 - - 7 7

0.58 - 3 8 4 7 - - 5 - -

0.59 - - - - - - - - 9 -

0.60 7 - 14 5 10 9 4 7 - 10

0.61 - - - - - - - - - -

0.62 - 4 - 9 12 12 10 - - -

0.63 9 - - - - - - 10 14 12

0.64 - 5 - - 25 27 15 - - -

0.65 - 9 27 - - - - - - -

0.66 50 - - 15 11 - - - - 32
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0.67 - 13 - - - - - 12 31 -

0.68 - - - 23 10 10 35 - - -

0.69 10 26 - - - - - 26 - -

0.70 - 14 15 15 - - - - - -

0.71 8 - - - - - - - - -

0.72 - 9 9 10 7 9 14 11 15 11

0.73 - - - - - - - - - -

0.74 5 5 8 6 5 7 9 10 9 9

0.75 - - - - - - - - - -

0.76 - - - 5 - - 5 - - -

0.77 2 4 - - - - - - - -

0.78 - - 6 3 3 5 2 7 7 7

0.79 1 3 - 1 - - - 5 - -

0.80 - 2 1 - 1 3 1 2 3 5

0.81 - 1 - - - 1 1 1 1 1

Total 100 100 100 100 100 100 100 100 100 100

Table 10.4: Mean and Standard Deviation values extracted from data presented in
Table 10.3 (ranged dot density)

Data sets

100 141 173 200 224 245 265 283 300 316

× × × × × × × × × ×
100 141 173 200 224 245 265 283 300 316

µ 0.66 0.68 0.65 0.68 0.64 0.64 0.68 0.68 0.67 0.66

σ 0.06 0.07 0.06 0.09 0.07 0.09 0.07 0.09 0.07 0.09

1SD
µ− σ 0.60 0.61 0.57 0.59 0.57 0.55 0.61 0.59 0.60 0.57

µ+ σ 0.72 0.75 0.71 0.77 0.71 0.73 0.75 0.77 0.74 0.75

2SD
µ− 2σ 0.54 - 0.53 - 0.50 - 0.54 - 0.53 -

µ+ 2σ 0.78 - 0.77 - 0.78 - 0.82 - 0.81 -
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(a) 100× 100 (b) 141× 141

(c) 173× 173 (d) 200× 200

(e) 224× 224 (f) 245× 245

(g) 265× 265 (h) 283× 283

(i) 300× 300 (j) 316× 316

Figure 10.5: Standard distribution curves for data presented in Table 10.3 (ranged
dot density)
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10.4 Banded Pattern Mining Significance Testing

To evaluate the proposed approach to significance testing of generated banded patterns

two set of experiments were conducted using: (i) a static dot density value of 10% and

(ii) a range of dot density values (the same range as used to generate the distribution

curves described above). In each case a number of additional synthetics data sets were

generated, 10 for each of the dot data set configuration used above to generate distri-

bution curves. The resulting GBS values produced as a result of applying banding were

then compared with the normal distributions. Note that for this purpose the 2D-BPM

banding algorithm (reported on in Section 4.5 of Chapter 4) was used. The results are

presented in Tables 10.5 and 10.6. In the tables, for each data set configuration, the

columns indicate: (i) the average GBS value obtained after banding, (ii) the distance of

the average GBS value from the corresponding (µ) value shown in Tables 10.2 and 10.4

as appropriate, (iii) whether the results were significant or not (yes/no) with respect

to one standard deviation (1SD) and (iv) whether the results were significant or not

(yes/no) with respect to two standard deviation (2SD). From the tables it can be seen

that the generated average GBS values after banding had been applied in every case was

found to be located at least one or two standard deviations away from the median. It is

therefore argued that these bandings are statistically significant. The results also show

that the proposed mechanism of determining the statistical significant of bandings is a

viable approach; the normal (Gaussian) distribution can be effectively used to determine

the statistical significance of bandings.

Table 10.5: GBS results with Normal Distribution (static dot density)

Data Mean Distance Significant w.r.t Significant w.r.t
Set GBS from µ 1SD (yes/no) 2SD (yes/no)

100 × 100 0.41 0.02 no yes

141 × 141 0.42 0.01 yes no

173 × 173 0.43 0.01 yes no

200 × 200 0.44 0.01 yes no

224 × 224 0.46 0.02 no yes

245 × 245 0.45 0.02 no yes

265 × 265 0.45 0.03 no yes

283 × 283 0.46 0.02 yes no

300 × 300 0.46 0.03 no yes

316 × 316 0.46 0.03 no yes

10.5 Summary

This chapter has presented some ideas on how to determine whether generated bandings

are statistically significant or not. Two set of experiments were conducted using: (i) a

static dot density value and (ii) a range of dot density values. The idea was that any dot

data set irrespective of the dot density used and size, will feature some form of banding
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Table 10.6: GBS results with Normal Distribution (ranged dot density)

Data Mean Distance Significant w.r.t Significant w.r.t
Set GBS from µ 1SD (yes/no) 2SD (yes/no)

100 × 100 0.57 0.10 no yes

141 × 141 0.57 0.09 no yes

173 × 173 0.58 0.09 no yes

200 × 200 0.59 0.09 yes no

224 × 224 0.59 0.09 no yes

245 × 245 0.59 0.09 yes no

265 × 265 0.59 0.09 no yes

283 × 283 0.59 0.09 yes no

300 × 300 0.60 0.09 no yes

316 × 316 0.60 0.09 yes no

defined by a GBS value and these values will form a normal distribution. Whether, after

indexes have been reordered using the banding score concept, the resulting banding is

significant or not can then be determined by how far the new GBS value is away from

the mean of the associated normal distribution (µ). To analyse this approach twenty

normal distributions were derived using ten 2D data set configurations. The usage of

these distributions were then evaluated by using them to determine the significance of a

number of further bandings. The evaluation results presented indicated the significance

of bandings with respect to either 1SD or 2SD. A criticism of the approach is that the

normal distribution for a data set under consideration has to be derived in each case,

however, the results show that it is possible to generate generic normal distribution

curves using ranges of density values (but a fixed size). The experiments clearly indicated

a useful mechanism for determining whether a banding is statistically significant or not.

In the following chapter, the thesis is concluded with a summary of the work presented,

along with the main findings in the context of the research objectives presented in

Chapter 1, and some suggestions for future work.



Chapter 11

Conclusion and Future Research

Works

11.1 Introduction

This concluding chapter presents an overall summary of work described in this thesis

with the main findings and contributions. The chapter also provide some suggestions

for future work. The chapter is arranged as follows. In Section 11.2, a summary of the

thesis is presented. The main finding and contributions are then reported in Section

11.3. Finally some suggested ideas for future work are presented in Section 11.4 in the

context of further potential areas of research based on the work described in this thesis.

11.2 Summary

This section presents the summary of the work presented in this thesis. The thesis com-

menced in Chapter 2 with a review of previous work and then went on in Chapter 3

to consider the data sets used with respect to the evaluations reported on later in the

thesis. Three categories of data set were considered: (i) synthetic data sets generated

using the random data generator proposed in [29], (ii) selected data sets from the UCI

machine learning data repository and (iii) data sets extracted from the GB Cattle Trac-

ing System (CTS) database. The second and third categories were the main focuses

of the evaluations presented in this thesis, while the first was intended to illustrate the

wider applicability of the BPM idea. For the second and third categories, the raw data

sets were translated into a zero-one format so that BPM, as envisaged in this thesis,

could be applicable.

The following five chapters, presented a sequence of BPM algorithms of increas-

ing sophistication directed at larger and larger dot data sets, from 2D to “big data”

commencing with 2D data in Chapter 4. Each of these chapters were structured in

a similar manner comprising formalism, algorithm and evaluation sections. Chapter 4

presented the required formalism for 2D banding and presented the 2D-BPM algorithm.

The operation of this algorithm was compared with three previously proposed banding
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algorithms: (i) the Barycenter (BC), (ii) the Minimum Banded Augmentation “Bidi-

rectional Fixed Permutation” (MBABFP ) and (iii) the Minimum Banded Augmentation

“Fixed Permutation” (MBAFP ) algorithms. The reported evaluation indicated that the

proposed 2D-BPM algorithm produced better results than the other three banding al-

gorithms considered, both in terms of GBS and the independent ABW metric. The

proposed 2D-BPM algorithm was also consistently more efficient than the other three

algorithms considered, because it did not require the generation and testing of many

permutations.

Chapters 5 and 6 then considered two alternative 3D approaches to BPM, approxi-

mate and exact. The chapters provided essential “stepping stone” material for the work

on ND-BPM presented in the following chapter. In Chapters 5 and 6 the A3D-BPM

and E3D-BPM algorithms were proposed. The first was a variation of the 2D-BPM al-

gorithm presented in the previous chapter but applied to 3D in that dimension pairings

were considered. An important element of the proposed E3D-BPM algorithm was the

number of maximum distance calculations required for banding purposes. The idea pre-

sented was to precalculate the maximum distances and store these in an M-Table. It was

also noted that, in the case of the E3D-BPM algorithm, there were a number of ways of

calculating the distances of dots from the origin of the data space. Thus, two variations

of the E3D-BPM algorithm were proposed, Euclidean and Manhattan. The reported

evaluation comparing the usage of the A3D-BPM and the E3D-BPM algorithms found

that: (i) the GBS values produced using exact BPM were better than those produced

using the A3D-BPM algorithm, (ii) the Euclidean variation of the E3D-BPM algorithm

was more effective than the Manhattan variation, (iii) in the case of the E3D-BPM al-

gorithm the use of M-Tables produced efficiency advantages, (iv) A3D-BPM was more

efficient than E3D-BPM (regardless of whether Euclidean or Manhattan distance calcu-

lation was adopted or M-Tables were used or not) and (v) the Manhattan variation of

the E3D-BPM algorithm was more efficient than the Euclidean variation.

Chapter 7 proposed two N-Dimensional BPM algorithms founded on the 3D algo-

rithms presented in the foregoing chapters, the AND-BPM and END-BPM algorithms.

The main issue here was how best to scale up the 3D BPM algorithm to operate in

ND. The evaluation was conducted by comparing the usage of the AND-BPM and the

END-BPM in terms of GBS and runtime (using M-Tables and without M-Tables, and

using Euclidean and Manhattan distance calculation in the case of END-BPM). The

recorded evaluation confirmed the results obtained with respect to the evaluation for

3D-BPM algorithms. Namely that the AND-BPM algorithm is more efficient than the

END-BPM algorithm (regardless of whether Euclidean or Manhattan distance calcula-

tion was adopted or the usage of M-Tables or not), while the best banding with respect to

GBS was produced using the END-BPM algorithm with Euclidean distance calculation.

Chapter 8 proposed the MD-BPM algorithm in the context of the approximate and

exact BPM approaches presented earlier. Two multiple dot BPM algorithms were pro-

posed, the MD-ABPM and MD-EBPM algorithms. The main issue here was how to
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address a situation where a location holding multiple dots can be banded. The signif-

icance of the proposed multiple dot BPM algorithms was with respect to the banding

of very large (big data) dot data sets. This was considered in Chapter 9 where two

techniques for banding very large dot data sets were proposed, sampling and segmen-

tation. Sampling involved applying a banding to a data set sample and applying this

to the entire data set. The issue here was how best to identify an appropriate sample.

Segmentation involved dividing the data set into chunks, called “segments”, banding

each segment and then combining the banding definitions (index arrangements). The

issue here was how best to combine the configurations, two mechanisms were proposed:

best GBS and most frequent. The recorded evaluation indicated that the MD-EBPM

algorithm was less efficient than the MD-ABPM algorithm. However, the best banding

with respect to the GBS was produced using the MD-EBPM algorithm with Euclidean

distance calculation. Of the big data banding techniques it was found that the segmen-

tation technique combined with most frequent banding segment selection was the best.

It was also noted that when using either sampling or segmentation the overall GBS for

the entire data set improved compared to the GBS when no banding was applied.

Chapter 10 then considered the statistical significance of the bandings that might

be produced using the proposed BPM algorithms. The idea presented was that the

GBS values associated with a particular data set size and density will have a normal

distribution associated with it and that this distribution could be used to determine the

significance of bandings in terms of how far a GBS value resulting from a banding exercise

was from the mean of the associated distribution. This in turn could be expressed in

terms of standard deviations.

11.3 Main Findings and Contribution

This section revisits the overriding research question presented in Chapter 1 (Section

1.5), and the associated subsidiary research questions. The section addresses these in

terms of the “main findings” of the research presented in this thesis. The section is

organised by considering each of the identified subsidiary research questions first and

then returning to the overriding research question.

1. Mechanisms and Techniques:“What mechanisms and techniques can best be

employed to identify a best banding? What are the most suitable techniques for

obtaining a best banding?”. The challenge of which mechansim and techniques can

best be employed to identify a best banding was resolved initially by proposing the

“banding score” concept. However, there were a variety of ways in which banding

scores could be calculated depending on the number of dimensions and size of the

dot data sets under consideration. The idea of banding scores was incorporated

into a sequence of BPM algorithms which operated by iterating over dimensions

and reordering each dimension in turn; in case of the approximate algorithms the

same dimension might be reordered several times in a single iteration. According
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to the conducted evaluation, presented in Chapter 4, the usage of the banding score

mechanism incorporated into a BPM algorithm was found to be significantly more

effective than the other banding algorithms considered. The reason for this was

that the proposed 2D-BPM mechanism identified bandings such that the indexes

in each dimension were allocated a banding score which could be used to rearrange

the indexes, thus avoiding the computational expense of considering large numbers

of permutations (as in the case of some of the other algorithms considered). The

conducted experimental analysis established that the best mechanism/technique

for identifying bandings was to use the banding score concept proposed by the

author (because it avoided the consideration of large numbers of permutations

and because it produced better bandings).

2. “Best” Banding:“What is a banding? How is a best banding determined? How

is the goodness of a banding measured?”. Banding was defined, with respect to

the proposed BPM algorithms, in terms of a final Global Banding Score (GBS)

arrived at the end of the proposed process, a number between “0” and “1”, where

a GBS of 0 indicates a best (perfect) banding and “1” the worst (most imperfect)

banding. The GBS value was the value that the proposed BPM algorithms thus

wished to minimise. It was noted that the competitor algorithms used alternative

mechanisms for measuring best banding, and thus it would be unfair to measure

their performance using GBS. Hence an independent measure, the ABW metric,

was used for comparison purposes (with good results with respect to the proposed

BPM algorithms). Overall it was found that the proposed GBS measure was

an effective measure for measuring banding quality. Note that with respect to

the competitor algorithms BC seeks to maximise the MRM and MBA seeks to

maximise accuracy, while the proposed BPM algorithm seeks to minimise GBS.

Hence, for a fair comparison, an independent mechanism, the ABW mechanism,

was proposed that measures the quality of banding in an independent manner.

3. ND Banded Data:“What are the mechanisms that can best be employed to en-

sure that any proposed banding algorithm will scale up to operate in ND?”. The

challenge of determining whether the proposed BPM algorithm would scale up

was initially addressed by considering the development of a number of ND algo-

rithms and variations. The expedient of the use of M-Tables was also considered.

The END-BPM and AND-BPM algorithms were proposed for identifying bandings

in ND data. However, whatever algorithm is used, there will always be a point

where a dot data set is too large to be processed in primary storage. To this end

two techniques were proposed whereby very large data sets (big data sets) could

be processed, sampling and segmentation. The reported evaluation conducted to

evaluate these two techniques indicated that these techniques could be successfully

applied to find bandings in large (big) dot data sets.
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4. Multiple “Dots”:“How is the issue of more than one “1” value (dot) being located

at a location in a ND data matrix best addressed?”. The sampling and segmenta-

tion techniques proposed to address the banding of very large data sets entailed

the selection of a reference dimension with respect to which the sampling/segmen-

tation would be conducted. This dimension would therefore need to be excluded

from the banding exercise. This in turn resulted in locations in the remaining data

matrix possibly holding more than one dot. Initially it was assumed that locations

could only hold one dot, the proposed sampling and segmentation techniques thus

necessitated that this assumption could no longer hold. The challenge of having

more than one dot at individual locations in ND zero-one (dot) data was resolved

by proposing the Multiple Dots mechanism in the context of both the approxi-

mate and exact BPM algorithms proposed earlier leading to the MD-ABPM and

MD-EBPM algorithms. These algorithms were then employed in the context of

the proposed sampling and segmentation techniques to band very large dot data

sets.

5. Statistically Significant:“What is the most appropriate mechanism for deter-

mining whether a best banding, when identified, is statistically significant or not?

”. The challenge of identifying the most appropriate mechansim for determin-

ing whether a derived banding was statistically significant or not was addressed

towards the end of the thesis. The idea was to use the anticipated standard distri-

bution for a given dot data set configuration. Evaluation of the proposed approach

indicated that this was a good mechanism for establishing the statistical signifi-

cance of generated bandings using the proposed BPM algorithms.

Returning the main research question:

What are the most appropriate mechanisms and techniques required to

identify banded patterns in ND zero-one data spaces in a manner that is

both effective and efficient?

From the foregoing, a number of BPM algorithms were considered founded on the con-

cept of the “Banding Score” mechanism. Of note were the following algorithms: (i)

2D-BPM, (ii) A3D-BPM, (iii) E3D-BPM, (iv) AND-BPM (v) and END-BPM, (vi) MD-

ABPM and (vii) MD-EBPM. From the evaluation conducted, each of the BPM algo-

rithms provided different advantages. However, the best banding was produced using

the exact BPM algorithms in the context of 3D and ND data sets, whilst the most

efficient was the approximate BPM algorithm (also in the context of both 3D and ND

data). The Multiple Dot (MD-BPM) mechanism was proposed to address the possibility

of some cells holding more than one dot which in turn was utilised in the context of sam-

pling and segmentation for banding very large data sets. A mechanism for determining

the statistical significance of the bandings produced was also formulated. Overall the

reported evaluations indicated that by using the BPM algorithms effective bandings can

be achieved.
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The main contributions of the research presented in this thesis were presented in

Chapter 1. These are restated here, for completeness, as follows:

1. The concept of a banding score that supports the identification of bandings in

zero-one data without considering large numbers of permutations (the reason being

that the proposed BPM algorithms presented in this thesis use the banding score

concept that avoids the need to generate and test large numbers of permutations

by assigning to each individual index in each individual dimension banding scores

and then reordering accordingly) (Chapters 4, 5, 6, 7, 8 and 9). This is arguably

the most significant contribution of the work.

2. The 2D-BPM algorithm for discovering bandings in 2D data sets (Chapter 4).

3. The Approximate 3D (A3D) and Exact 3D (E3D) BPM algorithms, including the

Euclidean and Manhattan variations of the E3D-BPM algorithm (Chapters 5 and

6).

4. The Approximate ND (AND) and Exact ND (END) BPM algorithms (Chapter

7).

5. A mechanism for addressing the situation where a location holds multiple dots

(Chapter 8) in the context of both approximate and exact BPM (the MD-ABPM

and MD-EBPM algorithms).

6. A mechanism for applying bandings to very large data sets using a sampling tech-

nique integrated into the banded pattern mining process (Chapter 9).

7. A mechanism for applying bandings to very large data sets using a segmentation

technique integrated into the banded pattern mining process (Chapter 9).

8. An independent mechanism, the Average Band Width (ABW) mechanism, for

measuring the quality of a banding to support comparison of BPM algorithms

(ABW calculates the average distance of dots from the main diagonal and is mea-

sured according to the length of the normal from each dot to the leading diagonal,

while the GBS mechanism calculates the normalised sum of the individual banding

scores)(Chapter 4).

9. A mechanism for considering the statistical significance of an identified banding

(Chapter 10).

10. Some insights into the CTS database (Chapter 3).

11.4 Future Work

The work presented in this thesis has demonstrated that in the context of ND zero-

one data, banded pattern mining can be effectively achieved using the proposed BPM
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algorithms. Despite the results produced, improvements and enhancements can be envi-

sioned. This concluding section suggests some potential areas for future work as follows.

1. Utilising alternative high performance computing approaches to Banded

Pattern Mining (BPM): One limiting factor of the proposed BPM algorithms,

as discussed in the foregoing chapters, was the computing resources required to

identify bandings in very large data set. Although, two techniques were consid-

ered, sampling and segmentation, another potential solution that merits further

investigation is the adoption of some form of multi-core or parallel computing so-

lution to bandings that will improve the efficiency and effectiveness of the BPM

algorithms, allowing them to be applied to very large ND data sets. Investigating

of appropriate parallel approaches is thus considered to be a fruitful avenue for

future work.

2. Alternative Evaluation: To date the proposed BPM algorithms have only been

applied to: (i) synthetically generated data sets, (ii) data sets from the UCI ma-

chine learning repository and (iii) data sets extracted from the Great Britain (GB)

Cattle Tracing System (CTS). A much wider evaluation seems desirable. Even in

the context of the CTS application, the data sets used with respect to the work

presented in this thesis, were limited to only four specific counties (Aberdeenshire,

Cornwall, Lancashire and Norfolk); in the context of the CTS application it would

be beneficial to consider a greater number of counties.

3. Using alternative data sets especially non-binary data: Only binary valued

data sets was considered with respect to the work presented in this thesis, this was

because of the wide usage of such data sets in many application domains. Where

necessary, for evaluation purposes, data sets were translated into this format. It is

suggested that it would be worth investigating bandings in a non-binary data set

contexts. The idea here, is to relax the requirement for bandings from zero-one

data to either positive integers or real valued numbers, where the structure in the

banded patterns can be described as a variation from large to small values. The

assumption is that in the case of a real valued dataset, the banding score for each

index in each dimension can be calculated by taking into account the values in

each cell (location).

4. Visualisation of ND Banded Patterns: The ability to generate a visualisation

for a banded pattern and display the banding result graphically can be difficult to

comprehend, especially in the context of ND, therefore an effective visualisation

tool is desirable. The availabilty of such a tool would be of great help to users

in that it would: (i) provide valuable insights into the data sets and (ii) provides

different views of the data sets. Recall, referring back to chapter 2, that one of the

motivations for banding was data visualisation.
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5. Investigation of other ways of assessing the statistical significance of

Banded Patterns: In chapter 10 a mechanism for assessing the statistical sig-

nificance of bandings was proposed. This was shown to operate well, however it

necessitated the generation of normal distributions for each data set configuration

(defined in terms of number of row and columns and the density). Better mech-

anisms for determining the statistical significance of generated bandings would

therefore be a fruitful avenue for further research.

6. Further improvement on M-Table generation: In chapters 6 and 7 the idea

of M-Tables was presented in the context 3D and ND exact BPM. The advantage

offered by the use of M-Tables was that it increased the efficiency of the proposed

exact BPM algorithms. Using the proposed algorithms one global M-Table was

generated given a particular banding problem. However, it is suggested that an-

other way of doing this might be to store the maximum distance values for each

dimension separately using individual M-Tables. The assumption here is that this

might further improve the efficiency of the proposed Exact BPM algorithms and

therefore provide another suggested area for further research.

Overall the work presented in this thesis has produced a significant improvement

over alternative approaches to identifying bandings in 2D data; an approach that scales

up to higher dimensions.
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Appendix A

Additional 2D-BPM Worked

Examples

A.1 Introduction

In this appendix some additional worked examples to those given in Chapters 4 and

8, in the context of 2D (single and multiple dots per location), are presented. These

were not included in the body of the thesis because of space limitations and are thus

presented here. The appendix is organised as follows. Sub-appendix A.2, presents

additional worked examples illustrating the operation of a 2D-BPM algorithm, whilst

Sub-appendix A.3 presents additional worked examples illustrating the operation of a

MD-BPM algorithm.

A.2 A Worked Example Using 2D-BPM Algorithm

This sub-appendix presents additional working examples illustrating the operation of

the 2D-BPM algorithm. Two worked examples are considered, one using a 5×5 matrix,

and another using a 5 × 4 matrix. The first 2D example is presented in Sub-appendix

A.2.1 and the second in Sub-appendix A.2.2.

A.2.1 A Worked Example 1

Considering a 2D matrix measuring 5 × 5 is shown in Figure A.1. Thus k1 = 5 and k2

= 5 and:

D = {〈1, 1〉, 〈1, 3〉, 〈1, 5〉, 〈2, 2〉, 〈2, 3〉, 〈2, 4〉, 〈3, 1〉, 〈3, 2〉,
〈3, 5〉, 〈4, 3〉, 〈4, 4〉, 〈4, 5〉, 〈5, 1〉, 〈5, 2〉, 〈5, 4〉}.

The 2D-BPM algorithm commences by considering the x-dimension first, the calculated

banding scores are shown in Table A.3; the sequence of banding scores is {0.67, 0.75, 0.67,

1.00, 0.58}. We thus rearrange the indexes in Dimx in ascending order of banding score.

The result is as shown in Figure A.2. We now have:

186



Appendix A. Additional 2D-BPM Worked Example 187

Figure A.1: Input matrix

Table A.1: Example 1 Calculation of banding scores for dimension x (iteration 1)

Index Dist from origin Max. dist. from origin bs

1 1 + 3 + 5 3 + 4 + 5 0.67
= 8.0 = 12.0

2 2 + 3 + 4 3 + 4 + 5 0.75
= 9.0 = 12.0

3 1 + 2 + 5 3 + 4 + 5 0.67
= 8.0 = 12.0

4 3 + 4 + 5 3 + 4 + 5 1.00
= 12.0 = 12.0

5 1 + 2 + 4 3 + 4 + 5 0.58
= 7.0 = 12.0

Figure A.2: Input matrix after rearrangement of Dimx (iteration 1)

D′ = {〈1, 1〉, 〈1, 2〉, 〈1, 4〉, 〈2, 1〉, 〈2, 3〉, 〈2, 5〉, 〈3, 1〉, 〈3, 2〉,
〈3, 5〉, 〈4, 2〉, 〈4, 3〉, 〈4, 4〉, 〈5, 3〉, 〈5, 4〉, 〈5, 5〉}.

Considering dimension y next, the banding scores are calculated as shown in Table A.2.

This produced a set of banding scores {0.50, 0.58, 0.91, 0.83, 0.83}. Thus in this case the

indexes in Dimy are more or less already arranged in ascending order of banding score,
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Figure A.3: Input matrix after rearrangement of Dimy (iteration 1

we simply need to move the third row to the last place. The result is as shown in Figure

A.3. We now have:

Table A.2: Example 1 Calculation of banding scores for dimension y (iteration 1)

Index Dist from origin Max. dist. from origin bs

1 1 + 2 + 3 3 + 4 + 5 0.50
= 6.0 = 12.0

2 1 + 2 + 4 3 + 4 + 5 0.58
= 7.0 = 12.0

3 3 + 4 + 5 3 + 4 + 5 1.00
= 11.0 = 12.0

4 1 + 4 + 5 3 + 4 + 5 0.83
= 10.0 = 12.0

5 2 + 3 + 5 3 + 4 + 5 0.83
= 10.0 = 12.0

D′′ = {〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈2, 1〉, 〈2, 4〉, 〈3, 1〉, 〈3, 2〉, 〈3, 4〉,
〈3, 5〉, 〈4, 2〉, 〈4, 3〉, 〈4, 5〉, 〈5, 3〉, 〈5, 4〉, 〈5, 5〉}.

The GBSx and GBSy values are then calculated as follows (note that the individual

GBS values for the columns have changed because of the reorganisation of the rows):

GBSx =
(0.67× 5) + (0.75× 4) + (0.67× 3) + (1.0× 2) + (0.58× 1)

1 + 2 + 3 + 4 + 5
=

10.94

15
= 0.7293

GBSy =
(0.50× 5) + (0.58× 4) + (1.0× 3) + (0.83× 2) + (0.83× 1)

1 + 2 + 3 + 4 + 5
=

10.31

15
= 0.6873

The overall global banding score (GBS) value is then calculated as:

GBS =
0.7293 + 0.6873

2
= 0.7083 (A.1)
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Figure A.4: Input matrix after rearrangement of Dimx (iteration 2

The process is then repeated because we have reduced the GBS value and because

the maximum number of iterations has not yet been reached. In this second iteration the

banding scores, {0.50, 0.58, 0.83, 0.83, 1.00}, are produced for dimension x calculated as

shown in Table A.3, and thus no changes to the index (element) ordering in dimension x

is undertaken; the result remains as shown in Figure A.4. Similarly, the banding scores,

{0.50, 0.58, 0.83, 0.83, 1.00}, are produced for dimension y calculated as shown in Table

A.4, as a result no changes were made with respect to dimension y either and hence the

process terminates. Note that the GBS values for the columns and rows are the same

because the configuration is now symmetrical. The resulting configuration remains as

shown in Figure A.5 and:

D′′ = {〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈2, 1〉, 〈2, 4〉, 〈3, 2〉, 〈3, 3〉, 〈3, 5〉,
〈4, 1〉, 〈4, 2〉, 〈4, 4〉, 〈4, 5〉, 〈5, 3〉, 〈5, 4〉, 〈5, 5〉}.

Table A.3: Example 1 Calculation of banding scores for dimension x (iteration 2)

Index Dist from origin Max. dist. from origin bs

1 1 + 2 + 3 3 + 4 + 5 0.50
= 6.0 = 12.0

2 1 + 2 + 4 3 + 4 + 5 0.58
= 7.0 = 12.0

3 1 + 4 + 5 3 + 4 + 5 0.83
= 10.0 = 12.0

4 2 + 3 + 5 3 + 4 + 5 0.83
= 10.0 = 12.0

5 3 + 4 + 5 3 + 4 + 5 1.00
= 12.0 = 12.0

GBSx =
(0.50× 5) + (0.58× 4) + (0.83× 3) + (0.83× 2) + (1.0× 1)

1 + 2 + 3 + 4 + 5
=

9.97

15
= 0.6647
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Figure A.5: Input matrix after rearrangement of Dimy (iteration 2

Table A.4: Example 1 Calculation of banding scores for dimension y (iteration 2)

Index Dist from origin Max. dist. from origin bs

1 1 + 2 + 3 3 + 4 + 5 0.50
= 6.0 = 12.0

2 1 + 2 + 4 3 + 4 + 5 0.58
= 7.0 = 12.0

3 1 + 4 + 5 3 + 4 + 5 0.83
= 10.0 = 12.0

4 2 + 3 + 5 3 + 4 + 5 0.83
= 10.0 = 12.0

5 3 + 4 + 5 3 + 4 + 5 1.00
= 12.0 = 12.0

GBSy =
(0.50× 5) + (0.58× 4) + (0.83× 3) + (0.83× 2) + (1.0× 1)

1 + 2 + 3 + 4 + 5
=

9.97

15
= 0.6647

The overall GBS value is then calculated as:

GBS =
0.6647 + 0.6647

2
= 0.6647 (A.2)

A.2.2 A Worked Example 2

For the second worked example a 2D matrix measuring 5 × 4 was used as shown in

Figure A.16. Thus k1 = 5 and k2 = 4 and:

D = {〈1, 1〉, 〈1, 2〉, 〈1, 4〉, 〈2, 3〉, 〈2, 4〉, 〈2, 5〉, 〈3, 1〉, 〈3, 5〉, 〈4, 2〉, 〈4, 3〉, }.

Considering the x-dimension first, the banding scores (calculated as shown in Ta-

ble A.5) are {0.58, 1.00, 0.67, 0.56}. We thus rearrange the indexes in Dimx in ascending

order of banding score. The result is as shown in Figure A.7 and:

D′ = {〈1, 1〉, 〈1, 2〉, 〈1, 4〉, 〈2, 2〉, 〈2, 3〉, 〈3, 1〉, 〈3, 5〉, 〈4, 3〉, 〈4, 4〉, 〈4, 5〉, }.



Appendix A. Additional 2D-BPM Worked Example 191

Figure A.6: Example matrix

Figure A.7: Example matrix after rearrangement of Dimx (iteration 1)

Table A.5: Example 2 Calculation of banding scores for dimension x (iteration 1)

Index Dist from origin Max. dist. from origin bs

1 1 + 2 + 4 3 + 4 + 5 0.58
= 7.0 = 12.0

2 3 + 4 + 5 3 + 4 + 5 1.00
= 12.0 = 12.0

3 1 + 5 = 6.0 4 + 5 = 9.0 0.67

4 2 + 3 = 5.0 4 + 5 = 9.0 0.56

Considering the y-dimension next the banding score (calculated as shown in Ta-

ble A.6) are {0.57, 0.43, 0.86, 0.71, 1.00}. We thus rearrange the indexes in Dimy in

ascending order of banding score to give the result shown in Figure A.8.

The banding scores for the x and y dimensions are then calculated as follows:

GBSx =
(0.58× 4) + (1.0× 3) + (0.67× 2) + (0.56× 1)

1 + 2 + 3 + 4
=

7.220

10
= 0.7220
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Table A.6: Example 2 Calculation of banding scores for dimension y (iteration 1)

Index Dist from origin Max. dist. from origin bs

1 1 + 3 = 4.0 3 + 4 = 7.0 0.57

2 1 + 2 = 3.0 3 + 4 = 7.0 0.43

3 2 + 4 = 6.0 3 + 4 = 7.0 0.86

4 1 + 4 = 5.0 3 + 4 = 7.0 0.71

5 3 + 4 = 7.0 3 + 4 = 7.0 1.00

Figure A.8: Example matrix after rearrangement of Dimy (iteration 1)

GBSy =
(0.57× 5) + (0.43× 4) + (0.86× 3) + (0.71× 2) + (1.0× 1)

1 + 2 + 3 + 4 + 5
=

9.48

15
= 0.6320

The overall GBS value is then calculated as:

GBS =
0.7220 + 0.6320

2
= 0.6770 (A.3)

The overall GBS value has been reduced, and we have not reached the maximum

number of iterations, thus the process is repeated. New banding scores of {0.50, 0.56, 0.67, 1.00}
are produced for dimension x calculated as shown in Table A.7, and we thus rearrange

the indexes (elements) in x accordingly; the result is as shown in Figure A.9. Similarly,

new banding scores of {0.43, 0.58, 0.71, 0.86, 1.00} are produced for dimension y calcu-

lated as shown in Table A.8, as a result no changes were made. The result is as shown

in Figure A.10 and:

D′′ = {〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈2, 1〉, 〈2, 4〉, 〈3, 2〉, 〈3, 5〉, 〈4, 3〉, 〈4, 4〉, 〈4, 5〉, }.

GBSx =
(0.50× 4) + (0.56× 3) + (0.67× 2) + (1.0× 1)

1 + 2 + 3 + 4
=

6.02

10
= 0.6020
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Figure A.9: Example matrix after rearrangement of Dimx (iteration 2)

Table A.7: Example 2 Calculation of banding scores for dimension x (iteration 2)

Index Dist from origin Max. dist. from origin bs

1 1 + 2 + 3 3 + 4 + 5 0.50
= 6.0 = 12.0

2 1 + 4 = 5.0 4 + 5 = 9.0 0.56

3 2 + 5 = 6.0 4 + 5 = 9.0 0.67

4 3 + 4 + 5 3 + 4 + 5 1.00
= 12.0 = 12.0

Figure A.10: Example matrix after rearrangement of Dimy (iteration 2)

GBSy =
(0.43× 5) + (0.57× 4) + (0.71× 3) + (0.86× 2) + (1.0× 1)

1 + 2 + 3 + 4 + 5
=

9.28

15
= 0.6187

The overall Global Banding Score (GBS) value is then calculated as:

GBS =
0.6020 + 0.6187

2
= 0.6104 (A.4)
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Table A.8: Example 2 Calculation of banding scores for dimension y (iteration 2)

Index Dist from origin Max. dist. from origin bs

1 1 + 2 = 3.0 3 + 4 = 7.0 0.43

2 1 + 3 = 4.0 3 + 4 = 7.0 0.57

3 1 + 4 = 5.0 3 + 4 = 7.0 0.71

4 2 + 4 = 6.0 3 + 4 = 7.0 0.86

5 3 + 4 = 7.0 3 + 4 = 7.0 1.00

Figure A.11: Dot matrix

A.3 A Worked Example Using MD-BPM Algorithm

This sub-appendix presents two working examples illustrating the operation of the MD-

EBPM algorithm. Both examples uses a 2D configuration measuring 4×4 with multiple

dots in some cells. The first example is presented in Sub-appendix A.3.1, while the

second example is presented in Sub-appendix A.3.2.

A.3.1 A Multiple Dots Example 1

Given the 2D 4 × 4 configuration given in Figure A.11. The configuration features:

DIM = {x, y}, Dimx = {0, 1, 2, 3} and Dimy = {0, 1, 2, 3} with multiple dots in some

cells. Note that multiple dots are arranged along the leading diagonal and that the data

configuration is symmetric about the leading diagonal. The input D to the MD-EBPM

algorithm is thus:

D = {〈0, 0〉, 〈0, 0〉, 〈0, 2〉, 〈0, 3〉, 〈1, 1〉, 〈1, 1〉, 〈1, 3〉, 〈2, 0〉,
〈2, 2〉, 〈2, 2〉, 〈3, 0〉, 〈3, 1〉, 〈3, 3〉, 〈3, 3〉}.

The MD-EBPM algorithm starts by considering dimension x first, the banding scores

are calculated, taking into account the number of dots per location, as shown in Ta-

ble A.9. This produces the banding scores {0.56, 0.63, 0.50, 0.78}. Thus, we rearrange

the indexes (elements) in Dimx in ascending order of their banding score to produce the

result shown in Figure A.12 and:

D′ = {〈0, 0〉, 〈0, 2〉, 〈0, 2〉, 〈1, 0〉, 〈1, 0〉, 〈1, 2〉, 〈1, 3〉, 〈2, 1〉,
〈2, 1〉, 〈2, 3〉, 〈3, 0〉, 〈3, 1〉, 〈3, 3〉, 〈3, 3〉}.
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Figure A.12: Dot matrix after rearrangement of Dimx (iteration 1)

Figure A.13: Dot matrix after rearrangement of Dimy (iteration 1)

Table A.9: Example 3 Calculation of banding scores for dimension x (iteration 1)

Index Dist from origin Max. dist. from origin bs

0 (0 ∗ 2) + (2 ∗ 1) (1 ∗ 1) + (2 ∗ 1) 0.56
+(3 ∗ 1) = 5.0 +(3 ∗ 2) = 9.0

1 (1 ∗ 2) + (3 ∗ 1) (2 ∗ 1) 0.63
= 5.0 +(3 ∗ 2) = 8.0

2 (0 ∗ 1) + (2 ∗ 2) (2 ∗ 1) + (3 ∗ 2) 0.50
= 4.0 = 8.0

3 (0 ∗ 1) + (1 ∗ 1) (1 ∗ 1) + (2 ∗ 1) 0.78
+(3 ∗ 2) = 7.0 +(3 ∗ 2) = 9.0

Considering dimension y next, the banding scores in this case are calculated as shown

in Table A.10 (taking into account the number of dots per location). This produces

the banding scores {0.56, 0.88, 0.13, 1.00}. Thus, we rearrange the elements in Dimy in

ascending order of their banding score to produce the configuration shown in Figure

A.13 and:

D′′ = {〈0, 0〉, 〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉, 〈1, 1〉, 〈1, 3〉, 〈2, 2〉,
〈2, 2〉, 〈2, 3〉, 〈3, 1〉, 〈3, 2〉, 〈3, 3〉, 〈3, 3〉}.

The GBS for this configuration is then calculated using Equation 8.7 given in Chap-

ter 8 (the sum of the individual banding scores divided by the total number of indexes

in the configuration):
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Table A.10: Example 3 Calculation of banding scores for dimension y (iteration 1)

Index Dist from origin Max. dist. from origin bs

0 (0 ∗ 1) + (1 ∗ 2) (1 ∗ 1) + (2 ∗ 1) 0.56
(3 ∗ 1) = 5.0 +(3 ∗ 2) = 9.0

1 (2 ∗ 2) + (3 ∗ 1) (2 ∗ 1) + (3 ∗ 2) 0.88
= 7.0 = 8.0

2 (0 ∗ 2) + (1 ∗ 1) (2 ∗ 1) + (3 ∗ 2) 0.13
= 1.0 = 8.0

3 (1 ∗ 1) + (2 ∗ 1) (1 ∗ 1) + (2 ∗ 1) 1.00
+(3 ∗ 2) = 9.0 +(3 ∗ 2) = 9.0

GBS =
5.0

8.0
+

5.0

9.0
+

4.0

8.0
+

7.0

9.0
+

1.0

8.0
+

5.0

9.0
+

7.0

8.0
+

9.0

9.0
= 0.6324

The process is then repeated but the same banding scores; {0.13, 0.56, 0.88, 1.00}
as before are produced for dimension x (calculated as shown in Table A.11); thus no

changes to the elements in x dimension results. The result is as shown in Figure A.14.

Similarly, the same banding scores {0.13, 0.56, 0.88, 1.00} are also produced for dimension

y (calculated as shown in Table A.12), as a result no changes to the ordering of the

elements in the y index are undertaken either. The result is as shown in Figure A.15.

As before:

D′′ = {〈0, 0〉, 〈0, 0〉, 〈1, 0〉, 〈0, 1〉, 〈1, 1〉, 〈1, 1〉, 〈1, 3〉, 〈2, 2〉,
〈2, 2〉, 〈2, 3〉, 〈3, 1〉, 〈3, 3〉, 〈3, 3〉, 〈3, 3〉}.

Table A.11: Example 3 Calculation of banding scores for dimension x (iteration 2)

Index Dist from origin Max. dist. from origin bs

0 (0 ∗ 2) + (1 ∗ 1) (2 ∗ 1) + (3 ∗ 2) 0.13
= 1.0 = 8.0

1 (0 ∗ 1) + (2 ∗ 2) (1 ∗ 1) + (2 ∗ 1) 0.56
(3 ∗ 1) = 5.0 +(3 ∗ 2) = 9.0

2 (2 ∗ 2) + (3 ∗ 1) (2 ∗ 1) + (3 ∗ 2) 0.88
= 7.0 = 8.0

3 (1 ∗ 1) + (2 ∗ 1) (1 ∗ 1) + (2 ∗ 1) 1.00
+(3 ∗ 2) = 9.0 +(3 ∗ 2) = 9.0

And

D′′ = {〈0, 0〉, 〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉, 〈1, 1〉, 〈1, 3〉, 〈2, 2〉,
〈2, 2〉, 〈2, 3〉, 〈3, 1〉, 〈3, 2〉, 〈3, 3〉, 〈3, 3〉}.

The GBS for this configuration is then calculated as follows (using Equation 8.7

from Chapter 8):
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Figure A.14: Dot matrix after rearrangement of Dimx (iteration 2)

Table A.12: Example 3 Calculation of banding scores for dimension y (iteration 2)

Index Dist from origin Max. dist. from origin bs

0 (0 ∗ 2) + (1 ∗ 1) (2 ∗ 1) + (3 ∗ 2) 0.13
= 1.0 = 8.0

1 (0 ∗ 1) + (1 ∗ 2) (1 ∗ 1) + (2 ∗ 1) 0.56
+(3 ∗ 1) = 5.0 +(3 ∗ 2) = 9.0

2 (2 ∗ 2) + (3 ∗ 1) (2 ∗ 1) + (3 ∗ 2) 0.88
= 7.0 = 8.0

3 (1 ∗ 1) + (2 ∗ 1) (1 ∗ 1) + (2 ∗ 1) 1.00
+(3 ∗ 2) = 9.0 +(3 ∗ 2) = 9.0

Figure A.15: Dot matrix after rearrangement of Dimy (iteration 2)

GBS =
1.0

8.0
+

5.0

9.0
+

7.0

8.0
+

9.0

9.0
+

1.0

8.0
+

5.0

9.0
+

7.0

8.0
+

9.0

9.0
= 0.6471

Because there have been no changes after iteration 2, the algorithm exits with D′.

A.3.2 A Multiple Dots Example 2

For the second example the 2D multiple dot configuration, measuring 4 × 4, presented

in Figure A.16 was used. Again the configuration is symmetrical about the leading

diagonal. The configuration features DIM = {x, y}, Dimx = {0, 1, 2, 3} and Dimy =

{0, 1, 2, 3} with multiple dots in some cells. The input D to the MD-BPM algorithm is

thus:
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Figure A.16: Input dot matrix

Figure A.17: Input dot matrix after rearrangement of Dimx (iteration 1)

D = {〈0, 0〉, 〈0, 1〉, 〈0, 1〉, 〈0, 2〉, 〈1, 2〉, 〈1, 3〉, 〈1, 3〉, 〈2, 0〉,
〈2, 0〉, 〈2, 1〉, 〈3, 1〉, 〈3, 2〉, 〈3, 2〉, 〈3, 3〉}.

The MD-BPM algorithm starts by considering dimension x first. The banding score

is calculated as shown in Table A.13. This produces banding scores of {0.44, 1.00, 0.13, 0.89}.
Thus, we rearrange the indexes (elements) in Dimx in ascending order of their banding

score to produce the result shown in Figure A.17 and:

D′ = {〈0, 0〉, 〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉, 〈1, 1〉, 〈1, 2〉, 〈2, 1〉,
〈2, 2〉, 〈2, 2〉, 〈2, 3〉, 〈3, 2〉, 〈3, 3〉, 〈3, 3〉}.

Table A.13: Example 4 Calculation of banding scores for dimension x (iteration 1)

Index Dist from origin Max. dist. from origin bs

0 (0 ∗ 1) + (1 ∗ 2) (1 ∗ 1) + (2 ∗ 1) 0.44
+(2 ∗ 1) = 4.0 +(3 ∗ 2) = 9.0

1 (2 ∗ 1) + (3 ∗ 2) (2 ∗ 1) + (3 ∗ 2) 1.00
= 8.0 = 8.0

2 (0 ∗ 2) + (1 ∗ 1) (2 ∗ 1) + (3 ∗ 2) 0.13
= 1.0 = 8.0

3 (1 ∗ 1) + (2 ∗ 2) (1 ∗ 1) + (2 ∗ 1) 0.89
+(3 ∗ 1) = 8.0 +(3 ∗ 2) = 9.0

Considering dimension y next, the banding score is calculated, as shown in Table

A.14, to produce {0.13, 0.44, 0.88, 1.00}. Thus, we rearrange the elements in Dimy in

ascending order of their banding score to produce the result shown in Figure A.18 and:
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Figure A.18: Input dot matrix after rearrangement of Dimy (iteration 1)

D′′ = {〈0, 0〉, 〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉, 〈1, 1〉, 〈1, 2〉, 〈2, 1〉,
〈2, 2〉, 〈2, 2〉, 〈2, 3〉, 〈3, 2〉, 〈3, 3〉, 〈3, 3〉}.

Table A.14: Example 4 Calculation of banding scores for dimension y (iteration 1)

Index Dist from origin Max. dist. from origin bs

0 (0 ∗ 2) + (1 ∗ 1) (2 ∗ 1) + (3 ∗ 2) 0.13
= 1.0 = 8.0

1 (0 ∗ 1) + (1 ∗ 2) (1 ∗ 1) + (2 ∗ 1) 0.44
+(2 ∗ 1) = 4.0 +(3 ∗ 2) = 9.0

2 (1 ∗ 1) + (2 ∗ 2) (1 ∗ 1) + (2 ∗ 1) 0.88
+(3 ∗ 1) = 8.0 +(3 ∗ 2) = 9.0

3 (2 ∗ 1) + (3 ∗ 2) (2 ∗ 1) + (3 ∗ 2) 1.00
= 8.0 = 8.0

The GBS for this configuration is then:

GBS =
1.0

8.0
+

4.0

9.0
+

8.0

9.0
+

8.0

8.0
+

1.0

8.0
+

4.0

9.0
+

8.0

9.0
+

8.0

8.0
= 0.6176

The process is repeated on the next iteration. However in this case the same overall

GBS value is produced (indicating that a best banding has already been arrived at).

The rearranged dot matrix is as follows (Figure A.18) and:

D′′ = {〈0, 0〉, 〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉, 〈1, 1〉, 〈1, 2〉, 〈2, 1〉,
〈2, 2〉, 〈2, 2〉, 〈2, 3〉, 〈3, 2〉, 〈3, 3〉, 〈3, 3〉}.



Appendix B

Additional Sampling

Experimental Result

B.1 Introduction

In this appendix some additional experimental results to those given in Chapter 9 in

the context of run time (in seconds) and GBS values are presented. More specifically

results obtained using sample sizes of 12,000 and 36,000 records are presented. Recall

that in Chapter 9 only results using a sample size of 24,000 records (2,000 per month)

were considered. This was because of space restrictions within the main body of the

thesis. For completeness these additional results are thus presented here. The objective

was to determine what effect sample size had on the process. Note that M-Tables were

used throughout.

The appendix is organised in the same manner as in the case of Chapter 9 by di-

viding it into four sub-appendixes; run time is considered in Sub-appendix B.2 to B.4

with respect to sample sizes of 12,000 and 36,000 respectively, whilst GBS values are

considered in Sub-appendix B.3 to B.5. The results corroborated the results presented

earlier, namely:

1. The most efficient MD-BPM algorithm, in terms of runtime, in the context of both

sample sizes of 12,000 and 36,000 was the MD-ABPM.

2. The most effective MD-BPM algorithm, in terms of GBS value, in the context of

both sample sizes of 12,000 and 36,000 was the Euclidean MD-EBPM.

3. The MD-ABPM algorithm in the context of both sample sizes of 12,000 and 36,000

produce the worst GBS values.

4. Both sample sizes of 12,000 and 36,000 were also found to be effective with respect

to idenfying a banding in large data sets.

200
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B.2 Comparison of MD-EBPM and MD-ABPM Algorithms

Using Sampling Technique in Terms of Run time (RT)

for 12,000 Records (1,000 per month)

Tables B.1 and B.2 presents the runtime comparative evaluation for the MD-EBPM and

MD-ABPM algorithms in terms of 3D, 4D and 5D data, and the sampling technique,

using a sample size of 12,000 records (1,000 records per month).

Table B.1: Sampling runtime results (seconds) for 3D and 4D CTS data sets using
MD-EBPM and MD-ABPM algorithms with M-Tables

Year
runtime (sec)

Euclid. Manhat. Approx. 3D

Aberdeenshire

Banding of Sample 2003 02.38 02.02 01.27 01.28

Final band. using Sampling 15.09 14.55 12.83 16.15

Banding of Sample 2004 01.53 01.39 01.09 01.55

Final band. using Sampling 16.66 13.48 10.36 12.48

Banding of Sample 2005 02.37 02.30 01.23 01.48

Final band. using Sampling 17.18 15.15 14.74 11.05

Banding of Sample 2006 01.53 01.37 01.12 01.30

Final band. using Sampling 16.46 15.78 10.88 14.52

Cornwall

Banding of Sample 2003 01.50 01.30 01.18 01.35

Final band. using Sampling 17.04 16.40 15.30 17.93

Banding of Sample 2004 02.75 02.23 01.54 01.94

Final band. using Sampling 25.13 17.08 15.05 14.19

Banding of Sample 2005 02.23 02.15 01.19 01.41

Final band. using Sampling 24.00 18.17 14.26 12.03

Banding of Sample 2006 04.21 03.82 01.35 02.17

Final band. using Sampling 25.70 17.13 15.69 13.36

Lancashire

Banding of Sample 2003 01.83 01.72 01.07 01.13

Final band. using Sampling 24.74 17.04 15.93 13.85

Banding of Sample 2004 02.76 02.26 01.05 01.13

Final band. using Sampling 22.25 19.07 14.04 12.83

Banding of Sample 2005 02.36 01.28 01.17 01.06

Final band. using Sampling 24.23 19.17 15.97 12.82

Banding of Sample 2006 02.35 02.20 01.27 01.42

Final band. using Sampling 27.93 18.64 12.44 21.45

Norfolk

Banding of Sample 2003 02.85 01.97 01.24 01.39

Final band. using Sampling 15.65 11.58 09.75 17.27

Banding of Sample 2004 05.12 04.92 02.40 01.75

Final band. using Sampling 21.79 19.89 12.77 11.70

Banding of Sample 2005 02.08 02.00 01.60 01.04

Final band. using Sampling 19.31 13.45 11.76 12.06

Banding of Sample 2006 01.60 01.47 01.19 01.44

Final band. using Sampling 20.64 13.03 11.23 14.75



Appendix B. Additional Sampling Experimental Result 202

Table B.2: Sampling runtime results (seconds) for 5D CTS data sets using MD-EBPM
and MD-ABPM algorithms with M-Tables

Year
runtime (sec)

Euclid. Manhat. Approx.

Aberdeenshire

Banding of Sample 2003 19.50 15.66 10.97
Final band. using Sampling 43.47 39.02 21.09

Banding of Sample 2004 19.87 17.07 16.40
Final band. using Sampling 36.33 31.25 20.94

Banding of Sample 2005 15.66 14.56 09.19
Final band. using Sampling 47.88 45.67 42.56

Banding of Sample 2006 20.30 18.67 16.21
Final band. using Sampling 32.75 30.32 25.10

Cornwall

Banding of Sample 2003 24.09 17.59 09.61
Final band. using Sampling 50.87 51.66 48.27

Banding of Sample 2004 25.62 17.15 14.61
Final band. using Sampling 77.18 61.28 41.28

Banding of Sample 2005 20.43 13.52 11.92
Final band. using Sampling 43.53 41.53 40.11

Banding of Sample 2006 20.89 17.89 15.41
Final band. using Sampling 94.80 84.52 70.25

Lancashire

Banding of Sample 2003 15.19 12.19 10.02
Final band. using Sampling 96.30 92.22 82.02

Banding of Sample 2004 19.29 15.45 10.09
Final band. using Sampling 85.90 83.20 63.02

Banding of Sample 2005 15.25 12.55 10.84
Final band. using Sampling 49.82 47.13 34.24

Banding of Sample 2006 16.31 13.30 11.49
Final band. using Sampling 52.79 42.76 39.62

Norfolk

Banding of Sample 2003 15.84 12.84 10.72
Final band. using Sampling 20.90 20.70 18.30

Banding of Sample 2004 19.29 15.60 10.99
Final band. using Sampling 35.90 34.36 24.16

Banding of Sample 2005 15.25 13.55 10.84
Final band. using Sampling 18.69 16.79 14.79

Banding of Sample 2006 16.01 13.31 10.40
Final band. using Sampling 21.77 21.70 20.41
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B.3 Comparison of MD-EBPM and MD-ABPM Algorithms

Using Sampling Techniques in Terms of Global Band-

ing Score (GBS) for 12,000 records (1,000 per month)

Tables B.3 and B.4 presents the GBS comparative evaluation of the MD-EBPM and

MD-ABPM Algorithms in terms of 3D, 4D and 5D data, and the sampling technique

using a sample size of 12,000 records (1,000 records per month).

Table B.3: Sampling GBS result for 2003 to 2006 3D and 4D CTS data set

Year
GBS

Euclid. Manhat. Approx. 3D

Aberdeenshire

Banding of Sample 2003 0.2674 0.2688 0.3732 0.3494

Final band. using Sampling 0.2853 0.2873 0.4039 0.3632

Banding of Sample 2004 0.2192 0.2200 0.3180 0.3425

Final band. using Sampling 0.2270 0.2279 0.3283 0.3464

Banding of Sample 2005 0.2876 0.2901 0.3987 0.3684

Final band. using Sampling 0.3028 0.3057 0.4198 0.3811

Banding of Sample 2006 0.2256 0.2272 0.3256 0.3516

Final band. using Sampling 0.2337 0.2353 0.3401 0.3591

Cornwall

Banding of Sample 2003 0.2748 0.2751 0.4000 0.3882

Final band. using Sampling 0.2843 0.2851 0.4150 0.3891

Banding of Sample 2004 0.2496 0.2518 0.3565 0.3349

Final band. using Sampling 0.2710 0.2734 0.3901 0.3589

Banding of Sample 2005 0.2680 0.2698 0.3872 0.3615

Final band. using Sampling 0.2775 0.2796 0.3964 0.3691

Banding of Sample 2006 0.2954 0.2966 0.4209 0.3718

Final band. using Sampling 0.3003 0.3011 0.4455 0.3766

Lancashire

Banding of Sample 2003 0.2796 0.2813 0.4005 0.3918

Final band. using Sampling 0.2928 0.2950 0.4171 0.3943

Banding of Sample 2004 0.2695 0.2726 0.3959 0.3544

Final band. using Sampling 0.2812 0.2849 0.4088 0.3598

Banding of Sample 2005 0.2809 0.2818 0.4045 0.3861

Final band. using Sampling 0.2817 0.2978 0.4096 0.3910

Banding of Sample 2006 0.2739 0.2818 0.3912 0.3814

Final band. using Sampling 0.2829 0.2856 0.4098 0.3960

Norfolk

Banding of Sample 2003 0.3058 0.3179 0.4460 0.4124

Final band. using Sampling 0.3081 0.3208 0.4502 0.4142

Banding of Sample 2004 0.2583 0.2598 0.3667 0.3285

Final band. using Sampling 0.2698 0.2713 0.3806 0.3447

Banding of Sample 2005 0.3124 0.3142 0.4253 0.3977

Final band. using Sampling 0.3134 0.3171 0.4268 0.4006

Banding of Sample 2006 0.2330 0.2353 0.3395 0.3625

Final band. using Sampling 0.2461 0.2486 0.3518 0.3724
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Table B.4: Sampling GBS result for 2003 to 2006 5D CTS data set

Year
GBS

Euclid. Manhat. Approx.

Aberdeenshire

Banding of Sample 2003 0.2171 0.2192 0.3882
Final band. using Sampling 0.2327 0.2332 0.4161

Banding of Sample 2004 0.1871 0.1883 0.3485
Final band. using Sampling 0.1932 0.1945 0.3611

Banding of Sample 2005 0.2334 0.2346 0.4226
Final band. using Sampling 0.2456 0.2471 0.4382

Banding of Sample 2006 0.1899 0.1912 0.3527
Final band. using Sampling 0.1964 0.1977 0.3662

Cornwall

Banding of Sample 2003 0.2276 0.2319 0.4208
Final band. using Sampling 0.2357 0.2399 0.4298

Banding of Sample 2004 0.2178 0.2260 0.4050
Final band. using Sampling 0.2263 0.2275 0.4156

Banding of Sample 2005 0.2214 0.2245 0.4175
Final band. using Sampling 0.2283 0.2319 0.4289

Banding of Sample 2006 0.2425 0.2428 0.4407
Final band. using Sampling 0.2465 0.2471 0.4589

Lancashire

Banding of Sample 2003 0.2339 0.2350 0.4297
Final band. using Sampling 0.2443 0.2459 0.4522

Banding of Sample 2004 0.2235 0.2335 0.4179
Final band. using Sampling 0.2323 0.2429 0.4344

Banding of Sample 2005 0.2360 0.2362 0.4329
Final band. using Sampling 0.2372 0.2546 0.4400

Banding of Sample 2006 0.2325 0.2388 0.4220
Final band. using Sampling 0.2406 0.2413 0.4380

Norfolk

Banding of Sample 2003 0.2613 0.2632 0.4663
Final band. using Sampling 0.2638 0.2653 0.4673

Banding of Sample 2004 0.2177 0.2181 0.3899
Final band. using Sampling 0.2259 0.2264 0.4175

Banding of Sample 2005 0.2487 0.2513 0.4540
Final band. using Sampling 0.2524 0.2552 0.4551

Banding of Sample 2006 0.1977 0.1980 0.3710
Final band. using Sampling 0.2074 0.2075 0.3863
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B.4 Comparison of MD-EBPM and MD-ABPM Algorithms

Using Sampling Technique in Terms of Run time (RT)

for 36,000 Records (3,000 per month)

Tables B.5 and B.6 presents the runtime comparative evaluation of the MD-EBPM and

MD-ABPM algorithms in terms of 3D, 4D and 5D data, sampling technique using a

sample size of 36,000 records (3,000 per month).

Table B.5: Sampling runtime results (seconds) for 3D and 4D CTS data sets using
the MD-EBPM and MD-ABPM algorithms with M-Tables

Year
runtime (sec)

Euclid. Manhat. Approx. 3D

Aberdeenshire

Banding of Sample 2003 08.05 05.02 02.74 02.08

Final band. using Sampling 15.09 14.55 12.83 16.15

Banding of Sample 2004 11.39 09.28 05.22 04.12

Final band. using Sampling 16.66 13.48 10.36 12.48

Banding of Sample 2005 18.17 16.20 08.06 05.07

Final band. using Sampling 17.18 15.15 14.74 11.05

Banding of Sample 2006 15.09 12.09 09.02 06.14

Final band. using Sampling 16.46 15.78 10.88 14.52

Cornwall

Banding of Sample 2003 16.02 14.10 09.18 07.87

Final band. using Sampling 17.04 17.04 16.30 17.93

Banding of Sample 2004 17.99 15.16 12.17 07.02

Final band. using Sampling 25.13 17.08 15.05 14.19

Banding of Sample 2005 19.11 17.27 13.19 05.11

Final band. using Sampling 24.00 14.17 14.26 12.03

Banding of Segments 18.54 16.80 13.95 12.75

Final band. using Sampling 25.70 17.13 15.69 13.36

Lancashire

Banding of Sample 2003 16.38 15.27 11.70 04.31

Final band. using Sampling 24.75 17.04 18.93 13.85

Banding of Sample 2004 16.76 14.46 08.15 02.13

Final band. using Sampling 22.25 19.07 14.04 12.83

Banding of Sample 2005 14.30 12.34 11.23 07.54

Final band. using Sampling 24.23 14.17 15.97 12.82

Banding of Sample 2006 12.65 10.08 09.23 04.24

Final band. using Sampling 27.93 18.64 12.44 21.45

Norfolk

Banding of Sample 2003 12.43 10.23 08.40 03.63

Final band. using Sampling 15.65 11.58 09.75 17.27

Banding of Sample 2004 13.21 11.23 09.23 04.54

Final band. using Sampling 21.79 19.89 12.77 11.70

Banding of Sample 2005 12.23 10.04 09.46 05.43

Final band. using Sampling 19.31 13.45 11.76 12.06

Banding of Sample 2006 14.07 12.25 09.09 03.42

Final band. using Sampling 20.64 13.03 11.23 14.75
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Table B.6: Sampling runtime results (seconds) for 5D CTS data sets using the MD-
EBPM and MD-ABPM algorithms with M-Tables

Year
runtime (sec)

Euclid. Manhat. Approx.

Aberdeenshire

Banding of Sample 2003 34.69 28.22 20.14
Final band. using Sampling 47.85 41.89 31.09

Banding of Sample 2004 30.39 27.78 22.41
Final band. using Sampling 45.80 43.94 40.94

Banding of Sample 2005 28.60 24.56 19.19
Final band. using Sampling 47.88 45.67 42.56

Banding of Sample 2006 24.22 20.85 15.14
Final band. using Sampling 56.01 50.11 45.10

Cornwall

Banding of Sample 2003 27.90 22.59 17.09
Final band. using Sampling 50.87 51.66 48.27

Banding of Sample 2004 30.25 17.15 12.11
Final band. using Sampling 77.18 61.28 41.28

Banding of Sample 2005 30.31 26.25 14.20
Final band. using Sampling 43.53 41.53 41.11

Banding of Sample 2006 30.81 25.12 20.14
Final band. using Sampling 94.80 84.52 70.25

Lancashire

Banding of Sample 2003 30.19 25.91 18.02
Final band. using Sampling 96.30 92.22 82.02

Banding of Sample 2004 39.29 24.45 19.09
Final band. using Sampling 85.90 83.20 63.02

Banding of Sample 2005 25.52 22.50 19.48
Final band. using Sampling 49.82 47.13 34.24

Banding of Sample 2006 28.31 23.03 17.42
Final band. using Sampling 52.79 42.76 39.62

Norfolk

Banding of Sample 2003 25.48 20.14 12.27
Final band. using Sampling 20.90 20.70 18.30

Banding of Sample 2004 39.19 29.05 27.34
Final band. using Sampling 35.90 34.36 24.16

Banding of Sample 2005 29.02 22.25 19.14
Final band. using Sampling 18.69 16.79 14.79

Banding of Sample 2006 29.11 25.11 17.01
Final band. using Sampling 21.77 21.70 20.41
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B.5 Comparison of MD-EBPM and MD-ABPM Algorithms

Using Sampling Techniques in Terms of Global Band-

ing Score (GBS) for 36,000 Records (3,000 per month)

Tables B.7 and B.8 presents the GBS comparative evaluation of the MD-EBPM and

MD-ABPM algorithms in terms of 3D, 4D and 5D data, sampling technique using a

sample size of 36,000 records (3,000 per month).

Table B.7: Sampling GBS result for 2003 to 2006 3D and 4D CTS data set

Year
GBS

Euclid. Manhat. Approx. 3D

Aberdeenshire

Banding of Sample 2003 0.3034 0.3246 0.3732 0.3934

Final band. using Sampling 0.3117 0.3142 0.4039 0.3887

Banding of Sample 2004 0.2525 0.2545 0.4172 0.3766

Final band. using Sampling 0.2539 0.2550 0.3007 0.3839

Banding of Sample 2005 0.3137 0.3164 0.4184 0.3924

Final band. using Sampling 0.3149 0.3175 0.4260 0.3944

Banding of Sample 2006 0.2256 0.2272 0.3256 0.3516

Final band. using Sampling 0.2502 0.2523 0.3078 0.3827

Cornwall

Banding of Sample 2003 0.2986 0.3002 0.3308 0.4144

Final band. using Sampling 0.2994 0.3013 0.3368 0.4188

Banding of Sample 2004 0.2878 0.3013 0.4085 0.3944

Final band. using Sampling 0.2916 0.2939 0.4083 0.3892

no banding 0.3213 0.3281 0.4570 0.4043

Banding of Sample 2005 0.2789 0.2816 0.4078 0.3809

Final band. using Sampling 0.2871 0.2896 0.4190 0.3885

Banding of Sample 2006 0.3096 0.3121 0.4296 0.3964

Final band. using Sampling 0.3003 0.3011 0.4513 0.3766

Lancashire

Banding of Sample 2003 0.3085 0.3119 0.4413 0.4166

Final band. using Sampling 0.3093 0.3127 0.4491 0.4192

Banding of Sample 2004 0.2790 0.2806 0.3991 0.3639

Final band. using Sampling 0.2902 0.2924 0.4184 0.3817

Banding of Sample 2005 0.2937 0.2968 0.4313 0.4036

Final band. using Sampling 0.2951 0.2972 0.4096 0.4068

Banding of Sample 2006 0.2990 0.3016 0.4309 0.4202

Final band. using Sampling 0.2856 0.2999 0.4323 0.4228

Norfolk

Banding of Sample 2003 0.3095 0.3246 0.4358 0.4265

Final band. using Sampling 0.3181 0.3253 0.4436 0.4250

Banding of Sample 2004 0.3003 0.3095 0.4205 0.3932

Final band. using Sampling 0.3008 0.2713 0.4207 0.3927

Banding of Sample 2005 0.3182 0.4010 0.4421 0.4058

Final band. using Sampling 0.3189 0.3221 0.4434 0.4042

Banding of Sample 2006 0.2572 0.2597 0.3724 0.3867

Final band. using Sampling 0.2600 0.2603 0.4014 0.3880
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Table B.8: Sampling GBS result for 2003 to 2006 5D CTS data set

Year
GBS

Euclid. Manhat. Approx.

Aberdeenshire

Banding of Sample 2003 0.3034 0.3246 0.4359
Final band. using Sampling 0.2502 0.2527 0.3489

Banding of Sample 2004 0.2095 0.2113 0.3886
Final band. using Sampling 0.2101 0.2116 0.3962

Banding of Sample 2005 0.2514 0.2528 0.4568
Final band. using Sampling 0.2529 0.2545 0.4610

Banding of Sample 2006 0.2073 0.2088 0.3898
Final band. using Sampling 0.2083 0.2099 0.3880

Cornwall

Banding of Sample 2003 0.2451 0.2466 0.4517
Final band. using Sampling 0.2994 0.3013 0.4595

Banding of Sample 2004 0.2352 0.2489 0.4420
Final band. using Sampling 0.2384 0.2407 0.4440

Banding of Sample 2005 0.2300 0.2340 0.4316
Final band. using Sampling 0.2357 0.2397 0.4466

Banding of Sample 2006 0.2538 0.2548 0.4580
Final band. using Sampling 0.2465 0.2561 0.4625

Lancashire

Banding of Sample 2003 0.2537 0.2559 0.4620
Final band. using Sampling 0.2565 0.2575 0.4664

Banding of Sample 2004 0.2346 0.2377 0.4240
Final band. using Sampling 0.2441 0.2550 0.4431

Banding of Sample 2005 0.2469 0.2481 0.4627
Final band. using Sampling 0.2470 0.2546 0.4475

Banding of Sample 2006 0.2481 0.2488 0.4627
Final band. using Sampling 0.2413 0.2522 0.4635

Norfolk

Banding of Sample 2003 0.2687 0.2695 0.4750
Final band. using Sampling 0.2690 0.2698 0.5005

Banding of Sample 2004 0.2513 0.2518 0.4606
Final band. using Sampling 0.2264 0.2524 0.4665

Banding of Sample 2005 0.2572 0.2647 0.4733
Final band. using Sampling 0.2580 0.2657 0.4581

Banding of Sample 2006 0.2134 0.2225 0.4001
Final band. using Sampling 0.2139 0.2172 0.4065



Appendix C

Additional Experimental Result

on Segmentation

C.1 Introduction

In this appendix, the full experimental results with respect to the evaluation of the

segmentation techniques are presented. Recall from Chapter 9 that, in the context of

the segmentation technique, the data set D was divided into a sequence of six equal

sized segments, to give a set of segments R. However, due to space restriction within

the main body of the thesis results for only the segment featuring the best GBS value

were presented; results for the remaining segments were not included. For completeness

these additional results are thus presented here.

The appendix is organised as follows. Sub-appendix C.2, presents the quality of band-

ing result in terms of GBS using the Euclidean MD-EBPM Algorithm, Sub-appendix C.3

presents the banding result in terms of GBS using the Manhattan MD-EBPM Algo-

rithm, and Sub-appendix C.4 presents the results using the MD-ABPM Algorithm. In

each case, for each county and year combination, the tables give the individual GBS

results per segment and the GBS result had that segment been selected and the asso-

ciated banding applied to the entire data set. The final best GBS score in each case is

highlighted in bold font.

From the tables it can be seen that if we use best GBS value as the criterion for

selecting a segmentation, in many cases, the best segment is not selected. This was born

out by the results presented in the body of the thesis where the most frequent approach

for selecting a banding was found to produce a best banding.

C.2 Effectiveness Results in Terms of GBS Using the Eu-

clidean MD-EBPM Algorithm

The GBS results presented in this sub-appendix are those obtained using the Euclidean

MD-EBPM algorithm. Tables C.1, C.2, C.3 and C.4 presents the GBS values in terms

209
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of the counties considered: Aberdeenshire, Cornwall, Lancashire and Norfolk.

Table C.1: GBS results using the Euclidean MD-EBPM algorithm for Aberdeenshire

Data segment Year MD-EBPME

id id 3D 4D 5D

Aberdeenshire

Banding of Segment 1 2003 0.3242 0.2384 0.1768

Banding of Segment 2 0.3332 0.2492 0.1836

Banding of Segment 3 0.3244 0.2398 0.1756

Banding of Segment 4 0.3049 0.2371 0.1726

Banding of Segment 5 0.3623 0.3259 0.2364

Banding of Segment 6 0.3083 0.2451 0.1768

Final band. using Segment 1 0.3607 0.2877 0.2382

Final band. using Segment 2 0.3677 0.2928 0.2407

Final band. using Segment 3 0.3528 0.2954 0.2431

Final band. using Segment 4 0.3643 0.2871 0.2372

Final band. using Segment 5 0.3863 0.3214 0.2640

Final band. using Segment 6 0.3479 0.2780 0.2303

Banding of Segment 1 2004 0.3744 0.2665 0.2002

Banding of Segment 2 0.3539 0.2578 0.1914

Banding of Segment 3 0.3318 0.2426 0.1798

Banding of Segment 4 0.3299 0.2489 0.1838

Banding of Segment 5 0.3165 0.2432 0.1786

Banding of Segment 6 0.3023 0.2385 0.1736

Final band. using Segment 1 0.3842 0.2792 0.2284

Final band. using Segment 2 0.3785 0.2665 0.2191

Final band. using Segment 3 0.3507 0.2508 0.2101

Final band. using Segment 4 0.3707 0.2553 0.2122

Final band. using Segment 5 0.3570 0.2509 0.2103

Final band. using Segment 6 0.3403 0.2400 0.2013

Banding of Segment 1 2005 0.2899 0.2131 0.1587

Banding of Segment 2 0.3206 0.2487 0.1841

Banding of Segment 3 0.3237 0.2513 0.1843

Banding of Segment 4 0.2986 0.2361 0.1729

Banding of Segment 5 0.3506 0.3099 0.2271

Banding of Segment 6 0.2890 0.2360 0.1702

Final band. using Segment 1 0.3278 0.2708 0.2253

Final band. using Segment 2 0.3468 0.2717 0.2259

Final band. using Segment 3 0.3603 0.2848 0.2353

Final band. using Segment 4 0.3440 0.2650 0.2219

Final band. using Segment 5 0.3923 0.3157 0.2565

Final band. using Segment 6 0.3573 0.2785 0.2319

Banding of Segment 1 2006 0.3106 0.2218 0.1673

Banding of Segment 2 0.3116 0.2292 0.1712

Banding of Segment 3 0.3427 0.2487 0.1829

Banding of Segment 4 0.3182 0.2325 0.1705

Banding of Segment 5 0.3413 0.2520 0.1729

Banding of Segment 6 0.3213 0.2463 0.1803

Final band. using Segment 1 0.3322 0.2266 0.1922

Final band. using Segment 2 0.3359 0.2307 0.1949

Final band. using Segment 3 0.3588 0.2532 0.2093

Final band. using Segment 4 0.3533 0.2442 0.2034

Final band. using Segment 5 0.3677 0.2572 0.1940

Final band. using Segment 6 0.3653 0.2482 0.2083
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Table C.2: GBS results using the Euclidean MD-EBPM algorithm for Cornwall

Data segment Year MD-EBPME

id id 3D 4D 5D

Cornwall

Banding of Segment 1 2003 0.3442 0.2584 0.1888

Banding of Segment 2 0.3341 0.2497 0.1817

Banding of Segment 3 0.3483 0.2659 0.1914

Banding of Segment 4 0.3297 0.2555 0.1836

Banding of Segment 5 0.3676 0.2999 0.2266

Banding of Segment 6 0.3263 0.2591 0.1840

Final band. using Segment 1 0.3735 0.2874 0.2381

Final band. using Segment 2 0.3717 0.2866 0.2383

Final band. using Segment 3 0.3715 0.2944 0.2429

Final band. using Segment 4 0.3572 0.2835 0.2357

Final band. using Segment 5 0.3996 0.3025 0.2493

Final band. using Segment 6 0.3628 0.2852 0.2365

Banding of Segment 1 2004 0.3324 0.2697 0.2036

Banding of Segment 2 0.3528 0.2866 0.2149

Banding of Segment 3 0.3335 0.2812 0.2092

Banding of Segment 4 0.3358 0.2805 0.2079

Banding of Segment 5 0.3307 0.2833 0.2082

Banding of Segment 6 0.3140 0.2731 0.1993

Final band. using Segment 1 0.3566 0.2853 0.2350

Final band. using Segment 2 0.3779 0.2945 0.2415

Final band. using Segment 3 0.3710 0.2922 0.2395

Final band. using Segment 4 0.3762 0.2639 0.2385

Final band. using Segment 5 0.3661 0.2931 0.2404

Final band. using Segment 6 0.3524 0.2826 0.2321

Banding of Segment 1 2005 0.3276 0.2423 0.1769

Banding of Segment 2 0.3202 0.2409 0.1747

Banding of Segment 3 0.3206 0.2420 0.1746

Banding of Segment 4 0.3073 0.2362 0.1699

Banding of Segment 5 0.3864 0.3148 0.2350

Banding of Segment 6 0.3144 0.2496 0.1776

Final band. using Segment 1 0.3657 0.2821 0.2339

Final band. using Segment 2 0.3594 0.2822 0.2328

Final band. using Segment 3 0.3679 0.2835 0.2355

Final band. using Segment 4 0.3635 0.2779 0.2321

Final band. using Segment 5 0.3880 0.3147 0.2579

Final band. using Segment 6 0.3580 0.2783 0.2316

Banding of Segment 1 2006 0.3186 0.790 0.2107

Banding of Segment 2 0.3246 0.2843 0.2128

Banding of Segment 3 0.3269 0.2925 0.2174

Banding of Segment 4 0.3269 0.2856 0.2119

Banding of Segment 5 0.3550 0.3133 0.2309

Banding of Segment 6 0.3322 0.3011 0.2207

Final band. using Segment 1 0.3449 0.2844 0.2352

Final band. using Segment 2 0.3520 0.2896 0.2385

Final band. using Segment 3 0.3524 0.2948 0.2423

Final band. using Segment 4 0.3514 0.2926 0.2411

Final band. using Segment 5 0.3837 0.3177 0.2583

Final band. using Segment 6 0.3697 0.3042 0.2491
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Table C.3: GBS results using the Euclidean MD-EBPM algorithm for Lancashire

Data segment Year MD-EBPME

id id 3D 4D 5D

Lancashire

Banding of Segment 1 2003 0.3556 0.2793 0.2096

Banding of Segment 2 0.3755 0.2996 0.2244

Banding of Segment 3 0.3604 0.2991 0.2255

Banding of Segment 4 0.3779 0.3065 0.2027

Banding of Segment 5 0.3673 0.2969 0.2182

Banding of Segment 6 0.3394 0.2796 0.2047

Final band. using Segment 1 0.3747 0.2965 0.2436

Final band. using Segment 2 0.3949 0.3086 0.2521

Final band. using Segment 3 0.3834 0.3110 0.2529

Final band. using Segment 4 0.4025 0.2922 0.2601

Final band. using Segment 5 0.4002 0.3123 0.2549

Final band. using Segment 6 0.3830 0.2991 0.2466

Banding of Segment 1 2004 0.2465 0.2330 0.1766

Banding of Segment 2 0.2568 0.2335 0.1776

Banding of Segment 3 0.3345 0.2859 0.2135

Banding of Segment 4 0.3538 0.2966 0.2210

Banding of Segment 5 0.2417 0.2308 0.1722

Banding of Segment 6 0.3101 0.2470 0.1768

Final band. using Segment 1 0.3197 0.2598 0.2192

Final band. using Segment 2 0.3025 0.2421 0.2070

Final band. using Segment 3 0.3585 0.3001 0.2477

Final band. using Segment 4 0.3767 0.3005 0.2491

Final band. using Segment 5 0.3105 0.2451 0.2092

Final band. using Segment 6 0.3696 0.2967 0.2512

Banding of Segment 1 2005 0.3586 0.2726 0.2037

Banding of Segment 2 0.3475 0.2678 0.2009

Banding of Segment 3 0.3631 0.2823 0.2115

Banding of Segment 4 0.3526 0.2780 0.2060

Banding of Segment 5 0.3608 0.2846 0.2099

Banding of Segment 6 0.3354 0.2728 0.1988

Final band. using Segment 1 0.3843 0.3041 0.2381

Final band. using Segment 2 0.3797 0.2901 0.2319

Final band. using Segment 3 0.3866 0.2787 0.2387

Final band. using Segment 4 0.3834 0.2893 0.2386

Final band. using Segment 5 0.3953 0.2926 0.2414

Final band. using Segment 6 0.3862 0.2870 0.2359

Banding of Segment 1 2006 0.3465 0.2768 0.2088

Banding of Segment 2 0.3569 0.2739 0.2047

Banding of Segment 3 0.3613 0.2821 0.2101

Banding of Segment 4 0.3451 0.2721 0.2011

Banding of Segment 5 0.3619 0.2886 0.2156

Banding of Segment 6 0.3586 0.2858 0.2084

Final band. using Segment 1 0.3729 0.2927 0.2417

Final band. using Segment 2 0.3816 0.2937 0.2427

Final band. using Segment 3 0.3916 0.3008 0.2473

Final band. using Segment 4 0.3854 0.2899 0.2393

Final band. using Segment 5 0.3901 0.2975 0.2459

Final band. using Segment 6 0.3951 0.3042 0.2498
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Table C.4: GBS results using the Euclidean MD-EBPM algorithm for Norfolk

Data segment Year MD-EBPME

id id 3D 4D 5D

Norfolk

Banding of Segment 1 2003 0.3192 0.2290 0.1712

Banding of Segment 2 0.3277 0.2395 0.1774

Banding of Segment 3 0.3239 0.2407 0.1764

Banding of Segment 4 0.2889 0.2188 0.1605

Banding of Segment 5 0.3509 0.2936 0.2306

Banding of Segment 6 0.3207 0.2493 0.1806

Final band. using Segment 1 0.3576 0.2873 0.2365

Final band. using Segment 2 0.3717 0.2995 0.2475

Final band. using Segment 3 0.3600 0.2956 0.2439

Final band. using Segment 4 0.3399 0.2742 0.2316

Final band. using Segment 5 0.3881 0.2920 0.2570

Final band. using Segment 6 0.3591 0.2936 0.2442

Banding of Segment 1 2004 0.3201 0.2550 0.2091

Banding of Segment 2 0.3085 0.2713 0.2017

Banding of Segment 3 0.3065 0.2760 0.2036

Banding of Segment 4 0.3092 0.2788 0.2065

Banding of Segment 5 0.2980 0.2671 0.1968

Banding of Segment 6 0.2894 0.2665 0.1951

Final band. using Segment 1 0.3427 0.2810 0.2365

Final band. using Segment 2 0.3336 0.2801 0.2311

Final band. using Segment 3 0.3568 0.2993 0.2445

Final band. using Segment 4 0.3508 0.2900 0.2393

Final band. using Segment 5 0.3476 0.2811 0.2325

Final band. using Segment 6 0.3278 0.2689 0.2237

Banding of Segment 1 2005 0.2985 0.2149 0.1618

Banding of Segment 2 0.3219 0.2203 0.1643

Banding of Segment 3 0.2911 0.2387 0.1750

Banding of Segment 4 0.2910 0.2194 0.1611

Banding of Segment 5 0.3381 0.3001 0.2206

Banding of Segment 6 0.2933 0.2259 0.1609

Final band. using Segment 1 0.3387 0.2713 0.2273

Final band. using Segment 2 0.3465 0.2735 0.2304

Final band. using Segment 3 0.2837 0.2811 0.2351

Final band. using Segment 4 0.3447 0.2751 0.2304

Final band. using Segment 5 0.3805 0.3061 0.2501

Final band. using Segment 6 0.3397 0.2740 0.2286

Banding of Segment 1 2006 0.2718 0.1947 0.1477

Banding of Segment 2 0.3860 0.2216 0.1658

Banding of Segment 3 0.2888 0.2110 0.1576

Banding of Segment 4 0.2726 0.2109 0.1568

Banding of Segment 5 0.2944 0.2204 0.1622

Banding of Segment 6 0.2653 0.2023 0.1491

Final band. using Segment 1 0.3154 0.2170 0.1857

Final band. using Segment 2 0.3405 0.2347 0.1979

Final band. using Segment 3 0.3296 0.2257 0.1908

Final band. using Segment 4 0.3211 0.2214 0.1893

Final band. using Segment 5 0.3402 0.2338 0.1978

Final band. using Segment 6 0.3165 0.2161 0.1861
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C.3 Effectiveness Results in Terms of GBS Using the Man-

hattan MD-EBPM Algorithm

This sub-appendix gives the results using the Manhattan variation of the MD-EBPM

Algorithm. The results obtained, with respect to each county, are listed in Tables C.5,

C.6, C.7 and C.8.

Table C.5: GBS results using the Manhattan MD-EBPM algorithm for Aberdeenshire

Data segment Year MD-EBPMM

id id 3D 4D 5D

Aberdeenshire

Banding of Segment 1 2003 0.3242 0.2398 0.1776

Banding of Segment 2 0.3332 0.2503 0.1840

Banding of Segment 3 0.3244 0.2408 0.1761

Banding of Segment 4 0.3049 0.2391 0.1735

Banding of Segment 5 0.3623 0.3281 0.2381

Banding of Segment 6 0.3083 0.2461 0.1773

Final band. using Segment 1 0.3607 0.2946 0.2399

Final band. using Segment 2 0.3677 0.2968 0.2482

Final band. using Segment 3 0.3528 0.2977 0.2499

Final band. using Segment 4 0.3643 0.2897 0.2385

Final band. using Segment 5 0.3863 0.3274 0.2662

Final band. using Segment 6 0.3479 0.2794 0.2383

Banding of Segment 1 2004 0.3744 0.2690 0.2009

Banding of Segment 2 0.3539 0.2589 0.1921

Banding of Segment 3 0.3318 0.2434 0.1811

Banding of Segment 4 0.3299 0.2507 0.1850

Banding of Segment 5 0.3165 0.2442 0.1794

Banding of Segment 6 0.3023 0.2396 0.1744

Final band. using Segment 1 0.3842 0.2875 0.2294

Final band. using Segment 2 0.3785 0.2693 0.2281

Final band. using Segment 3 0.3507 00.2597 0.2190

Final band. using Segment 4 0.3707 0.2593 0.2213

Final band. using Segment 5 0.3570 0.2539 0.2193

Final band. using Segment 6 0.3403 0.2490 0.2104

Banding of Segment1 2005 0.2899 0.2138 0.1592

Banding of Segment 2 0.3206 0.2499 0.1850

Banding of Segment 3 0.3237 0.2521 0.1849

Banding of Segment 4 0.2986 0.2366 0.1733

Banding of Segment 5 0.3506 0.3129 0.2297

Banding of Segment 6 0.2890 0.2368 0.1712

Final band. using Segment 1 0.3278 0.2786 0.2331

Final band. using Segment 2 0.3468 0.2798 0.2339

Final band. using Segment 3 0.3603 0.2884 0.2435

Final band. using Segment 4 0.3440 0.2677 0.2299

Final band. using Segment 5 0.3923 0.3172 0.2577

Final band. using Segment 6 0.3573 0.2794 0.2400

Banding of Segment 1 2006 0.3106 0.2231 0.1679

Banding of Segment 2 0.3116 0.2305 0.1721

Banding of Segment 3 0.3427 0.2503 0.1839

Banding of Segment 4 0.3182 0.2342 0.1713

Banding of Segment 5 0.3413 0.2544 0.1735

Banding of Segment 6 0.3213 0.2481 0.1809

Final band. using Segment 1 0.3322 0.2284 0.1943

Final band. using Segment 2 0.3359 0.2394 0.1962

Final band. using Segment 3 0.3588 0.2577 0.2175

Final band. using Segment 4 0.3533 0.2465 0.2117

Final band. using Segment 5 0.3677 0.2589 0.1968

Final band. using Segment 6 0.3653 0.2496 0.2177
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Table C.6: GBS results using the Manhattan MD-EBPM algorithm For Cornwall

Data segment Year MD-EBPMM

id id 3D 4D 5D

Cornwall

Banding of Segment 1 2003 0.3442 0.2590 0.1896

Banding of Segment 2 0.3341 0.2503 0.1822

Banding of Segment 3 0.3483 0.2661 0.1923

Banding of Segment 4 0.3297 0.2556 0.1842

Banding of Segment 5 0.3676 0.3036 0.2296

Banding of Segment 6 0.3263 0.2593 0.1845

Final band. using Segment 1 0.3735 0.2971 0.2446

Final band. using Segment 2 0.3717 0.3062 0.2449

Final band. using Segment 3 0.3715 0.2991 0.2487

Final band. using Segment 4 0.3572 0.2880 0.2385

Final band. using Segment 5 0.3996 0.3087 0.2499

Final band. using Segment 6 0.3628 0.2871 0.2497

Banding of Segment 1 2004 0.3324 0.2717 0.2052

Banding of Segment 2 0.3528 0.2883 0.2159

Banding of Segment 3 0.3335 0.2830 0.2105

Banding of Segment 4 0.3358 0.2825 0.2095

Banding of Segment 5 0.3307 0.2843 0.2093

Banding of Segment 6 0.3140 0.2750 0.2011

Final band. using Segment 1 0.3566 0.2932 0.2350

Final band. using Segment 2 0.3779 0.3026 0.2482

Final band. using Segment 3 0.3710 0.3007 0.2485

Final band. using Segment 4 0.3762 0.2393 0.2398

Final band. using Segment 5 0.3661 0.2979 0.2404

Final band. using Segment 6 0.3524 0.2886 0.2353

Banding of Segment 1 2005 0.3276 0.2426 0.1775

Banding of Segment 2 0.3202 0.2412 0.1754

Banding of Segment 3 0.3206 0.2425 0.1753

Banding of Segment 4 0.3073 0.2365 0.1705

Banding of Segment 5 0.3864 0.3302 0.2396

Banding of Segment 6 0.3144 0.2499 0.1778

Final band. using Segment 1 0.3657 0.2901 0.2351

Final band. using Segment 2 0.3594 0.2865 0.2391

Final band. using Segment 3 0.3679 0.2906 0.2417

Final band. using Segment 4 0.3635 0.2791 0.2399

Final band. using Segment 5 0.3880 0.3191 0.2590

Final band. using Segment 6 0.3580 0.2866 0.2388

Banding of Segment 1 2006 0.3186 0.2812 0.2123

Banding of Segment 2 0.3246 0.2858 0.2144

Banding of Segment 3 0.3269 0.2933 0.2186

Banding of Segment 4 0.3269 0.2873 0.2138

Banding of Segment 5 0.3550 0.3167 0.2335

Banding of Segment 6 0.3322 0.3041 0.2235

Final band. using Segment 1 0.3449 0.2923 0.2385

Final band. using Segment 2 0.3520 0.2979 0.2470

Final band. using Segment 3 0.3524 0.2977 0.2471

Final band. using Segment 4 0.3514 0.2969 0.2495

Final band. using Segment 5 0.3837 0.3183 0.2583

Final band. using Segment 6 0.3697 0.3114 0.2562
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Table C.7: GBS results using the Manhattan MD-EBPM algorithm for Lancashire

Data segment Year MD-EBPMM

id id 3D 4D 5D

Lancashire

Banding of Segment 1 2003 0.3556 0.2807 0.2106

Banding of Segment 2 0.3755 0.3014 0.2264

Banding of Segment 3 0.3604 0.3020 0.2229

Banding of Segment 4 0.3779 0.3080 0.2272

Banding of Segment 5 0.3673 0.3000 0.2199

Banding of Segment 6 0.3394 0.2830 0.2070

Final band. using Segment 1 0.3747 0.3041 0.2465

Final band. using Segment 2 0.3949 0.3062 0.2541

Final band. using Segment 3 0.3834 0.3190 0.2551

Final band. using Segment 4 0.4025 0.3109 0.2603

Final band. using Segment 5 0.4002 0.3133 0.2562

Final band. using Segment 6 0.3830 0.3059 0.2483

Banding of Segment 1 2004 0.2465 0.2343 0.1779

Banding of Segment 2 0.2568 0.2342 0.1789

Banding of Segment 3 0.3345 0.2888 0.2157

Banding of Segment 4 0.3538 0.2971 0.2226

Banding of Segment 5 0.2417 0.2317 0.1733

Banding of Segment 6 0.3101 0.2474 0.1777

Final band. using Segment 1 0.3197 0.2682 0.2275

Final band. using Segment 2 0.3025 0.2445 0.2163

Final band. using Segment 3 0.3585 0.3169 0.2494

Final band. using Segment 4 0.3767 0.3186 0.2581

Final band. using Segment 5 0.3105 0.2483 0.2183

Final band. using Segment 6 0.3696 0.3036 0.2586

Banding of Segment 1 2005 0.3586 0.2746 0.2053

Banding of Segment 2 0.3475 0.2678 0.2017

Banding of Segment 3 0.3631 0.2847 0.2137

Banding of Segment 4 0.3526 0.2789 0.2076

Banding of Segment 5 0.3608 0.2875 0.2118

Banding of Segment 6 0.3354 0.2741 0.1999

Final band. using Segment 1 0.3843 0.3072 0.2456

Final band. using Segment 2 0.3797 0.2969 0.2342

Final band. using Segment 3 0.3866 0.2787 0.2396

Final band. using Segment 4 0.3834 0.2893 0.2387

Final band. using Segment 5 0.3953 0.2951 0.2494

Final band. using Segment 6 0.3862 0.2942 0.2431

Banding of Segment 1 2006 0.3465 0.2768 0.2099

Banding of Segment 2 0.3569 0.2765 0.2065

Banding of Segment 3 0.3613 0.2834 0.2122

Banding of Segment 4 0.3451 0.2731 0.2026

Banding of Segment 5 0.3619 0.2928 0.2181

Banding of Segment 6 0.3586 0.2876 0.2105

Final band. using Segment 1 0.3729 0.2962 0.2396

Final band. using Segment 2 0.3816 0.2965 0.2403

Final band. using Segment 3 0.3916 0.3027 0.2443

Final band. using Segment 4 0.3854 0.2967 0.2370

Final band. using Segment 5 0.3901 0.2988 0.2435

Final band. using Segment 6 0.3951 0.3054 0.2475
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Table C.8: GBS results using the Manhattan MD-EBPM algorithm for Norfolk

Data segment Year MD-EBPMM

id id 3D 4D 5D

Norfolk

Banding of Segment 1 2003 0.3192 0.2300 0.1718

Banding of Segment 2 0.3277 0.2403 0.1780

Banding of Segment 3 0.3239 0.2416 0.1788

Banding of Segment 4 0.2889 0.2191 0.1629

Banding of Segment 5 0.3509 0.2936 0.2326

Banding of Segment 6 0.3207 0.2498 0.1810

Final band. using Segment 1 0.3576 0.2938 0.2366

Final band. using Segment 2 0.3717 0.3056 0.2482

Final band. using Segment 3 0.3600 0.2979 0.2458

Final band. using Segment 4 0.3399 0.2788 0.2392

Final band. using Segment 5 0.3881 0.2966 0.2583

Final band. using Segment 6 0.3591 0.2988 0.2483

Banding of Segment 1 2004 0.3201 0.2750 0.2106

Banding of Segment 2 0.3085 0.2722 0.2029

Banding of Segment 3 0.3065 0.2780 0.2054

Banding of Segment 4 0.3092 0.2791 0.2080

Banding of Segment 5 0.2980 0.2688 0.1999

Banding of Segment 6 0.2894 0.2678 0.1972

Final band. using Segment 1 0.3427 0.2887 0.2375

Final band. using Segment 2 0.3336 0.2894 0.2327

Final band. using Segment 3 0.3568 0.2999 0.2454

Final band. using Segment 4 0.3508 0.2989 0.2397

Final band. using Segment 5 0.3476 0.2897 0.2346

Final band. using Segment 6 0.3278 0.2696 0.2317

Banding of Segment 1 2005 0.2985 0.2174 0.1628

Banding of Segment 2 0.3219 0.2226 0.1649

Banding of Segment 3 0.2911 0.2396 0.1753

Banding of Segment 4 0.2910 0.2208 0.1615

Banding of Segment 5 0.3381 0.3027 0.2231

Banding of Segment 6 0.2933 0.2275 0.1629

Final band. using Segment 1 0.3387 0.2782 0.2347

Final band. using Segment 2 0.3465 0.2795 0.2377

Final band. using Segment 3 0.2837 0.2863 0.2420

Final band. using Segment 4 0.3447 0.2788 0.2327

Final band. using Segment 5 0.3805 0.3134 0.2578

Final band. using Segment 6 0.3397 0.2799 0.2353

Banding of Segment 1 2006 0.2718 0.1978 0.1482

Banding of Segment 2 0.3860 0.2229 0.1661

Banding of Segment 3 0.2888 0.2139 0.1581

Banding of Segment 4 0.2726 0.2123 0.1573

Banding of Segment 5 0.2944 0.2214 0.1628

Banding of Segment 6 0.2653 0.2036 0.1497

Final band. using Segment 1 0.3154 0.2261 0.1869

Final band. using Segment 2 0.3405 0.2437 0.1981

Final band. using Segment 3 0.3296 0.2264 0.1987

Final band. using Segment 4 0.3211 0.2224 0.1987

Final band. using Segment 5 0.3402 0.2358 0.1989

Final band. using Segment 6 0.3165 0.2251 0.1953
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C.4 Effectiveness Results in Terms of GBS Using the MD-

ABPM Algorithm

This sub-appendix presents the results obtained using the MD-ABPM algorithm. The

results, with respect to each county, are presented in Tables C.9, C.10, C.11 and C.12.

Table C.9: GBS results using the MD-ABPM algorithm for Aberdeenshire

Data segment Year MD-ABPM

id id 3D 4D 5D

Aberdeenshire

Banding of Segment 1 2003 0.3242 0.3415 0.3318

Banding of Segment 2 0.3332 0.3526 0.3429

Banding of Segment 3 0.3244 0.3502 0.3354

Banding of Segment 4 0.3049 0.3398 0.3208

Banding of Segment 5 0.3623 0.4301 0.4206

Banding of Segment 6 0.3083 0.3511 0.3299

Final band. using Segment 1 0.3607 0.4037 0.4306

Final band. using Segment 2 0.3677 0.4127 0.4380

Final band. using Segment 3 0.3528 0.4221 0.4459

Final band. using Segment 4 0.3643 0.4043 0.4336

Final band. using Segment 5 0.3863 0.4318 0.4175

Final band. using Segment 6 0.3479 0.4557 0.4781

Banding of Segment 1 2004 0.3744 0.3824 0.3791

Banding of Segment 2 0.3539 0.3684 0.3622

Banding of Segment 3 0.3318 0.3481 0.3423

Banding of Segment 4 0.3299 0.3593 0.3466

Banding of Segment 5 0.3165 0.3514 0.3328

Banding of Segment 6 0.3023 0.3411 0.3257

Final band. using Segment 1 0.3842 0.4009 0.4224

Final band. using Segment 2 0.3785 0.3843 0.4092

Final band. using Segment 3 0.3507 0.3601 0.3429

Final band. using Segment 4 0.3707 0.3678 0.3970

Final band. using Segment 5 0.3570 0.3613 0.3892

Final band. using Segment 6 0.3403 0.3401 0.3763

Banding of Segment 1 2005 0.2899 0.3087 0.3056

Banding of Segment 2 0.3206 0.3509 0.3446

Banding of Segment 3 0.3237 0.3573 0.3452

Banding of Segment 4 0.2986 0.3370 0.3179

Banding of Segment 5 0.3506 0.4294 0.4145

Banding of Segment 6 0.2890 0.3335 0.3119

Final band. using Segment 1 0.3278 0.3826 0.4116

Final band. using Segment 2 0.3468 0.3785 0.4121

Final band. using Segment 3 0.3440 0.3759 0.4018

Final band. using Segment 4 0.3923 0.3680 0.4561

Final band. using Segment 5 0.3573 0.3884 0.4240

Final band. using Segment 6 0.3403 0.3401 0.3763

Banding of Segment 1 2006 0.3106 0.3213 0.3219

Banding of Segment 2 0.3116 0.3304 0.3259

Banding of Segment 3 0.3427 0.3588 0.3461

Banding of Segment 4 0.3182 0.3366 0.3213

Banding of Segment 5 0.3413 0.3655 0.3343

Banding of Segment 6 0.3213 0.3559 0.3351

Final band. using Segment 1 0.3322 0.3285 0.3591

Final band. using Segment 2 0.3359 0.3306 0.3602

Final band. using Segment 3 0.3588 0.3646 0.3877

Final band. using Segment 4 0.3533 0.3531 0.3748

Final band. using Segment 5 0.3677 0.3706 0.3671

Final band. using Segment 6 0.3653 0.3568 0.3822
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Table C.10: GBS results using the MD-ABPM algorithm for Cornwall

Data segment Year MD-ABPM

id id 3D 4D 5D

Cornwall

Banding of Segment 1 2003 0.3442 0.3702 0.3559

Banding of Segment 2 0.3341 0.3606 0.3421

Banding of Segment 3 0.3483 0.3851 0.3624

Banding of Segment 4 0.3297 0.3699 0.3441

Banding of Segment 5 0.3676 0.4410 0.4242

Banding of Segment 6 0.3263 0.3746 0.3422

Final band. using Segment1 0.3735 0.4092 0.4355

Final band. using Segment 2 0.3717 0.4122 0.4376

Final band. using Segment 3 0.3715 0.4221 0.4509

Final band. using Segment 4 0.3572 0.4098 0.3271

Final band. using Segment 5 0.3996 0.4404 0.4626

Final band. using Segment 6 0.3628 0.4057 0.4334

Banding of Segment 1 2004 0.3324 0.3855 0.3826

Banding of Segment 2 0.3528 0.4103 0.4007

Banding of Segment 3 0.3335 0.4005 0.3851

Banding of Segment 4 0.3358 0.4028 0.3889

Banding of Segment 5 0.3307 0.4035 0.3822

Banding of Segment 6 0.3140 0.3863 0.3650

Final band. using Segment 1 0.3566 0.4050 0.4317

Final band. using Segment 2 0.3779 0.3455 0.4428

Final band. using Segment 3 0.3710 0.4128 0.4389

Final band. using Segment 4 0.3762 0.3867 0.4224

Final band. using Segment 5 0.3661 0.4068 0.4395

Final band. using Segment 6 0.3524 0.3372 0.4248

Banding of Segment 1 2005 0.3276 0.3550 0.3395

Banding of Segment 2 0.3202 0.3524 0.3296

Banding of Segment 3 0.3206 0.3552 0.3306

Banding of Segment 4 0.3073 0.3427 0.3196

Banding of Segment 5 0.3864 0.4532 0.4337

Banding of Segment 6 0.3144 0.3644 0.3316

Final band. using Segment 1 0.3657 0.4050 0.4291

Final band. using Segment 2 0.3594 0.4041 0.4264

Final band. using Segment 3 0.3679 0.4098 0.4318

Final band. using Segment 4 0.3635 0.3943 0.4219

Final band. using Segment 5 0.3880 0.3284 0.4729

Final band. using Segment 6 0.3580 0.4013 0.4259

Banding of Segment 1 2006 0.3186 0.3971 0.3951

Banding of Segment 2 0.3246 0.4011 0.3980

Banding of Segment 3 0.3269 0.4095 0.4007

Banding of Segment 4 0.3160 0.4033 0.3876

Banding of Segment 5 0.3550 0.4447 0.4243

Banding of Segment 6 0.3322 0.4235 0.4042

Final band. using Segment 1 0.3449 0.4049 0.4292

Final band. using Segment 2 0.3520 0.4101 0.4399

Final band. using Segment 3 0.3524 0.4127 0.4415

Final band. using Segment 4 0.3514 0.4022 0.4363

Final band. using Segment 5 0.3837 0.4494 0.4684

Final band. using Segment 6 0.3697 0.4274 0.4541
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Table C.11: GBS results using the MD-ABPM algorithm for Lancashire

Data segment Year MD-ABPM

id id 3D 4D 5D

Lancashire

Banding of Segment 1 2003 0.3556 0.3966 0.3920

Banding of Segment 2 0.3755 0.4316 0.4213

Banding of Segment 3 0.3604 0.4174 0.4088

Banding of Segment 4 0.3779 0.4328 0.4178

Banding of Segment 5 0.3673 0.4244 0.4024

Banding of Segment 6 0.3394 0.4027 0.3777

Final band. using Segment 1 0.3747 0.4176 0.4482

Final band. using Segment 2 0.3949 0.4361 0.4625

Final band. using Segment 3 0.3834 0.4302 0.4739

Final band. using Segment 4 0.4025 0.4458 0.4712

Final band. using Segment 5 0.4002 0.4434 0.4660

Final band. using Segment 6 0.3830 0.4237 0.4493

Banding of Segment 1 2004 0.2465 0.3190 0.3188

Banding of Segment 2 0.2568 0.3342 0.3341

Banding of Segment 3 0.3345 0.4058 0.3890

Banding of Segment 4 0.3538 0.4116 0.4104

Banding of Segment 5 0.2417 0.3302 0.3180

Banding of Segment 6 0.3101 0.3520 0.3267

Final band. using Segment 1 0.3197 0.3593 0.3975

Final band. using Segment 2 0.3025 0.3449 0.3897

Final band. using Segment 3 0.3585 0.4216 0.4431

Final band. using Segment 4 0.3767 0.4261 0.4568

Final band. using Segment 5 0.3105 0.3497 0.3886

Final band. using Segment 6 0.3696 0.4252 0.4555

Banding of Segment 1 2005 0.3586 0.3861 0.3845

Banding of Segment 2 0.3475 0.3830 0.3799

Banding of Segment 3 0.3631 0.4067 0.3989

Banding of Segment 4 0.3526 0.3933 0.3868

Banding of Segment 5 0.3608 0.4121 0.3944

Banding of Segment 6 0.3354 0.3891 0.3703

Final band. using Segment 1 0.3843 0.4101 0.4308

Final band. using Segment 2 0.3797 0.3589 0.4255

Final band. using Segment 3 0.3866 0.4144 0.4476

Final band. using Segment 4 0.3834 0.4155 0.4419

Final band. using Segment 5 0.3953 0.4182 0.4421

Final band. using Segment 6 0.3862 0.4057 0.4351

Banding of Segment 1 2006 0.3346 0.3882 0.3927

Banding of Segment 2 0.3569 0.3875 0.3822

Banding of Segment 3 0.3613 0.4004 0.3918

Banding of Segment 4 0.3451 0.3909 0.3770

Banding of Segment 5 0.3619 0.4253 0.4083

Banding of Segment 6 0.3586 0.4108 0.3860

Final band. using Segment 1 0.3729 0.4049 0.4423

Final band. using Segment 2 0.3816 0.4182 0.4430

Final band. using Segment 3 0.3916 0.4247 0.4472

Final band. using Segment 4 0.3854 0.4060 0.4385

Final band. using Segment 5 0.3901 0.4284 0.4623

Final band. using Segment 6 0.3951 0.3252 0.4571
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Table C.12: GBS results using the MD-ABPM algorithm for Norfolk

Data segment Year MD-ABPM

id id 3D 4D 5D

Norfolk

Banding of Segment 1 2003 0.3192 0.3333 0.3256

Banding of Segment 2 0.3277 0.3440 0.3323

Banding of Segment 3 0.3239 0.3477 0.3369

Banding of Segment 4 0.2889 0.3171 0.3004

Banding of Segment 5 0.3509 0.4232 0.4099

Banding of Segment 6 0.3207 0.3602 0.3364

Final band. using Segment 1 0.3576 0.4101 0.4326

Final band. using Segment 2 0.3717 0.4220 0.4543

Final band. using Segment 3 0.3600 0.4213 0.4465

Final band. using Segment 4 0.3399 0.3930 0.4206

Final band. using Segment 5 0.3881 0.4247 0.4564

Final band. using Segment 6 0.3591 0.4147 0.4437

Banding of Segment 1 2004 0.3201 0.3920 0.3877

Banding of Segment 2 0.3085 0.3715 0.3681

Banding of Segment 3 0.3065 0.3893 0.3679

Banding of Segment 4 0.3092 0.3941 0.3792

Banding of Segment 5 0.2980 0.3796 0.3648

Banding of Segment 6 0.2894 0.3867 0.3612

Final band. using Segment 1 0.3427 0.4015 0.4368

Final band. using Segment 2 0.3336 0.3840 0.4241

Final band. using Segment 3 0.3568 0.4191 0.4472

Final band. using Segment 4 0.3508 0.3918 0.4389

Final band. using Segment 5 0.3476 0.3964 0.4298

Final band. using Segment 6 0.3698 0.4208 0.4459

Banding of Segment1 2005 0.2985 0.3137 0.3066

Banding of Segment 2 0.3219 0.3163 0.3088

Banding of Segment 3 0.2911 0.3419 0.3290

Banding of Segment4 0.2910 0.3138 0.3016

Banding of Segment 5 0.3381 0.4302 0.4098

Banding of Segment 6 0.2933 0.3247 0.3033

Final band. using Segment 1 0.3387 0.3832 0.4154

Final band. using Segment 2 0.3465 0.3859 0.4179

Final band. using Segment 3 0.2837 0.3981 0.4262

Final band. using Segment 4 0.3447 0.3843 0.4212

Final band. using Segment 5 0.3805 0.4274 0.4585

Final band. using Segment 6 0.3397 0.3846 0.4156

Banding of Segment 1 2006 0.2718 0.2835 0.2824

Banding of Segment 2 0.3860 0.3189 0.3144

Banding of Segment 3 0.2888 0.3069 0.2984

Banding of Segment 4 0.2726 0.3015 0.2948

Banding of Segment 5 0.2944 0.3195 0.3057

Banding of Segment 6 0.2653 0.2933 0.2798

Final band. using Segment 1 0.3154 0.3075 0.3476

Final band. using Segment 2 0.3405 0.3319 0.3665

Final band. using Segment 3 0.3296 0.3216 0.3538

Final band. using Segment 4 0.3211 0.3171 0.3523

Final band. using Segment 5 0.3402 0.3328 0.3723

Final band. using Segment 6 0.3165 0.3068 0.3460
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Some Additional Analysis

Concerning Number of Iterations

to Arrive at a Best Banding

D.1 Introduction

In this appendix some additional results to those presented in Chapters 4 and 9 are pre-

sented. More specifically in Chapter 4 analysis concerning the operation of the proposed

2D-BPM algorithm was presented in terms of the number of iterations required to ar-

rive at a best banding; some further results in this respect are presented here. Similarly

in Chapter 9, analysis with respect to the effectiveness of the proposed sampling and

segmentation techniques in terms of the quality of the bandings produced when using

MD-BPM algorithms. Further evaluation is presented here concerning the number of

iterations that the MD-BPM algorithms require to arrive at a best banding.

The appendix is organised as follows. Sub-appendix D.2, presents the further analysis

concerning the 2D-BPM algorithm in terms of number of iterations; while Sub-appendix

D.3, presents the further analysis of the operation of the MD-BPM algorithms (MD-

EBPM and MD-ABPM) in terms of the number of iterations required to arrive at a best

banding.

D.2 Further Analysis of 2D-BPM Algorithm in Terms of

Number of Iterations

This sub-appendix provides some additional analysis of the operation of the 2D-BPM

algorithm proposed in Chapter 4 in terms of the number of iterations required to arrived

at a best banding. Recall that in Chapter 4, graphs were presented indicating the number

of iterations required for the 2D-BPM algorithm to find a best configuration (a best GBS

value). This was done using eight of the twelve UCI data sets considered in this thesis.

However, because of space limitations, four of the UCI data sets were excluded. This

222
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sub-appendix presents the graphs associated with the four remaining UCI data sets.

The relevant graphs are presented Figure D.1, in the given plots the x axis represents

the number of iterations and the y axis the GBS values. Inspection of the figures further

confirms the significant improvement of GBS values after the first few iterations and that

the best GBS value (the minimal GBS value) is reached before the prescribed maximum

number of iterations of “10” is reached.

(a) Heart Data (b) Mushroom Data

(c) LetRecognition Data (d) Waveform Data

Figure D.1: GBS values per number of iterations obtained for the remaining four
UCI data sets using the 2D-BPM algorithm.

D.3 Further Analysis of MD-BPM Algorithm in Terms of

Number of Iterations

In this sub-appendix some graphs are presented indicating the number of iterations

required using the Euclidean MD-EBPM, Manhattan MD-EBPM and MD-ABPM Al-

gorithms to identify a best configuration. In the body of the thesis this was reported

only in the context of the 2D-BPM algorithm. The objective was thus to analyse the op-

eration of the MD-BPM (MD-EBPM and MD-ABPM) algorithms discussed in Chapter

8 in terms of the number of iterations required to identify a banding.

The result are presented in Figures D.2 and D.3 which show how the GBS value

decreases with the number of iterations. In the graphs the iteration number is given on

the X-axis and the GBS value on the Y-axis. In Figure D.2 graphs (a), (b), (c) and (d)

shows the behaviour using Euclidean MD-EBPM, and graphs (e), (f),(g) and (h) shows
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the behaviour using Manhattan MD-EBPM, while in Figure D.3, graphs (a), (b), (c)

and (d) shows the behaviour with respect to the four identified counties (Aberdeenshire,

Cornwall, Lancashire and Norfolk using the MD-ABPM algorithms From the graphs,

the GBS values improved (tend towards zero) as the MD-BPM algorithms progresses.

Closer inspection indicates that significance improvements were made after the first

few iterations. This results corroborates the results presented previously in Chapter 4

indicating that the MD-BPM algorithms operate in a similar manner.

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure D.2: GBS values versus the number of iterations using the Euclidean MD-
EBPM algorithm for the four counties: (a) Aberdeenshire, (b) Cornwall, (c) Lancashire
and (d) Norfolk, and Manhattan MD-EBPM Algorithm for: (e) Aberdeenshire, (f)

Cornwall, (g) Lancashire and (h) Norfolk.

(a) (b)

(c) (d)

Figure D.3: GBS values versus the number of iterations using the MD-ABPM algo-
rithm for the four counties: (a) Aberdeenshire, (b) Cornwall, (c) Lancashire and (d)

Norfolk.
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