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Abstract

In this thesis a number of hierarchical ensemble classification approaches are proposed as

a solution to the multi-class classification problem. The central idea is that a more effec-

tive classification can be produced if a “coarse-grain” classification (directed at groups of

classes) is first conducted followed by increasingly more “fine-grain” classifications. The

Hierarchical ensemble classification model comprises a set base classifiers held within

the nodes of the hierarchy (one classifier per node). Nodes near the root hold classifiers

designed to discriminate between groups of class labels while the leaves hold classifiers

designed to distinguish between individual class labels. Two types of hierarchy (struc-

tures) are considered, Binary Tree (BT) hierarchies and Directed Acyclic Graph (DAG)

hierarchies. With respect to the DAG structure, two alternative DAG structures to

support the generation of the desired hierarchical ensemble classification model are con-

sidered: (i) rooted DAG, and (ii) non-rooted DAG. The main challenges are: (i) how

best to distribute class labels between nodes within the hierarchy, (ii) how to address the

“successive miss-classification” issue associated with hierarchical classification where if a

miss-classication occurs early on in the process (near the root of the hierarchy) there is

no possibility of rectifying this error later on in the process, and (iii) how best to deter-

mine the starting node within the non-rooted DAG approach. To address the first issue

different techniques, based on the concepts of clustering, splitting, and combination, are

proposed. To address the second and the third issues the idea is to utilise probability

or confidence values associated with Naive Bayes and CARM classifiers respectively to

dictate whether single or multiple paths should be followed at each hierarchy node, and

to select the best starting DAG node with respect to the non-rooted DAG approach.

Keywords: Hierarchical Classification, Multi-class classification, Ensemble classifi-

cation, Binary Tree (BT), Directed Acyclic Graph (DAG).
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Chapter 1

Introduction

1.1 Overview

With the increasing availability of very large data collections the automated extraction

(mining) of patterns from within such datasets is becoming increasingly challenging.

This is true with respect to a variety of data mining processes including classification,

especially where the classification task features a large number of class labels. Classifi-

cation is a well established element of machine learning concerned with the creation of

models, using pre-labelled “training” data, that can be used to allocate labels (classes)

to previously unseen data. Classification can be viewed as a three-step process: (i)

generation of the classifier using appropriately formatted “training” data, (ii) testing of

the effectiveness of the generated classifier using test data and (iii) application of the

classifier using previously unseen data. The first two steps are sometimes combined for

experimental purposes.

The nature of the classification problem is characterised by two main factors: (i) the

number of class labels that can be assigned to an instance (single-label versus multi-label

classification) and (ii) the number of classes from which the class labels may be drawn

(binary versus multi-class classification). In single-label classification a classifier model

is generated using a set of training examples where each example is associated with a

single class label c taken from a set of disjoint class labels C (|C| > 1). If |C| = 2 we have

a binary classification problem; if |C| > 2, we have a multi-class classification problem.

The distinction between single-label and multi-label classification is that in multi-label

classification the examples are each associated with a set of class labels Z, Z ⊆ C. In

the work presented in this thesis we focus on the multi-class single-label classification

problem where examples are associated with exactly one element of the set of class

labels C. For simplicity, throughout this work, we will refer to this simply as “multi-

class” classification. An issue with multi-class classification is that when |C| is large

the effectiveness of the classification tends to diminish. There has been extensive work

directed at the generation of effective classifiers for multi-class classification problems

[27, 56, 86, 93]. It is worth noting that, to date, no one classification model has been

found to be superior to all others in terms of classification effectiveness [42].
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Chapter 1. Introduction 2

Three main methodologies for addressing the multi-class classification problem can

be identified: (i) using a single all-encompassing classifier, (ii) utilising a collection of

binary classifiers and (iii) using an “ensemble” of classifiers. The Ensemble methodology

is considered to be one of the most effective strategies to handle the multi-class problem

[8, 26, 42, 45, 75, 77, 83, 108]. The ensemble model is a composite model comprised

of a number of learners (classifiers), often referred to as base learners or weak learners,

that “collaborate” to obtain a better classification performance than can be obtained

from using a single “stand-alone” model. Classifiers making up an ensemble can be

arranged in two main formats: (i) concurrent such as “Bagging” [12] and (ii) sequential

such as “Boosting” [34]. In more recent work on ensemble classification, hierarchical

arrangements of classifiers have been used [4, 20, 56, 58, 66, 99]. A commonly adopted

structure is a binary tree constructed in either a bottom-up or top-down manner [11, 56].

The work presented in this thesis is directed at hierarchical ensemble classification.

The central idea espoused in this thesis is that a more effective classification can be

produced if a “coarse-grain” classification (directed at groups of classes) is first conducted

followed by increasingly more “fine-grain” classifications. To this end the generation and

usage of a hierarchical ensemble classification models, that involve arranging the base

classifiers in the form of a Binary Tree (BT) or Directed Acyclic Graph (DAG) structure,

is proposed. Using these structures each node in the BT or DAG holds a classifier. Nodes

near the root hold classifiers designed to discriminate between groups of class labels while

the leaves hold classifiers designed to distinguish between individual class labels.

The remainder of this introductory chapter is organised as follows. Section 1.2

presents the motivations for the work presented in this thesis. Section 1.3 describes

the main research question and the associated research issues to be addressed by the

thesis. The adopted research methodology is presented in Section 1.4. Section 1.5

describes the contributions of the work presented. The organisation of the remainder of

this thesis is presented in Section 1.6. Section 1.7 lists the publications resulting from

the research presented in this thesis. Finally this chapter is concluded in Section 1.8

with a brief summary.

1.2 Motivations

From the foregoing, the work in this thesis is focused on using hierarchical ensemble

classification to solve the multi-class classification problem.

The primary motivation for the work described in this thesis was a desire to provide

a solution to a recognised problem in machine learning, the “multi-class” classification

problem. It is generally simpler to construct a classifier for two mutually exclusive classes

than for many (more than two) mutually exclusive classes. Multi-class classification

is the problem of classifying instances into more than two classes. Given a training

data set D of the form (xi, yi), where xi ∈ Dn is the ith example (record) in D, and

yi ∈ {1, . . . , k} is the ith class label in a given set C of such labels, the aim is to learn
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a model M such that M(xi) = yi for new previously unseen examples. Multi-class

classification is challenging because: (i) each class is represented by fewer examples in

the training dataset than in the case of binary training data and (ii) a suitable subset of

features that can be used to discriminate between large numbers of classes (more than

two) is often difficult to identify.

Using ensembles of classifiers arranged in a hierarchical form is expected to provide

an effective classification with respect to the multi-class classification problems for two

reasons: (i) the established observation that ensemble methods tend to improve classi-

fication performance [8, 26, 42, 45, 75, 77, 83, 108] and (ii) dealing with smaller subsets

of class labels at each node might produce better results.

In addition to the above motivations, the work described in this thesis was also

motivated by two further challenges specific to the operation of hierarchical ensemble

classification models. The first was how best to organise (group) the class labels at nodes

so as to produce a hierarchy that generates the most effective classification. The second,

and one which (to the best knowledge of the author) has not been addressed previously,

was the “successive miss-classification” issue associated with hierarchical classification

models. In other words, how to deal with the issue that if a record is miss-classified early

on in the process (near the root of the hierarchy) it will continue to be miss-classified

at deeper levels of the hierarchy, regardless of the classifications proposed at lower level

nodes and the final leaf nodes.

From the forgoing, the motivation for the work described in this thesis can be sum-

marised as follows:

1. A desire to provide a more effective form of classification for multi-class classifi-

cation problems, especially in the case of datasets that feature a large number of

class labels.

2. The expectation that the hierarchical classification model will produce an effective

classification with respect to the multi-class classification problems.

3. A desire to address the “successive miss-classification” issue associated with hier-

archical classification.

4. The necessity of a comprehensive study concerning a recent form of ensemble

classification; namely hierarchical ensemble classification.

1.3 Research Question and Issues

Given the motivations presented in the foregoing section, the main research question to

be addressed by this thesis was:

“What are the most appropriate mechanisms that can be employed to

generate effective hierarchical classification models?”
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In order to answer this research question, the resolution of a number of subsidiary

research questions was required. These questions can be summarised as follows:

1. Is a hierarchical classifier best arranged using a Binary Tree structure, or is it better

to adopt a Directed Acyclic Graph (DAG), to effectively classify data collections

that feature a large number of class labels?

2. How can the nodes in a hierarchical classifier best be connected to achieve an

effective classification?

3. Can a better classification accuracy be achieved by following more than one path

within the hierarchy? And if so how do we decide which paths to follow?

4. Following on from (3) above, when adopting a multiple path strategy, how do we

combine a number of possibly contradictory final classifications to provide a single

end classification?

5. Following on from (3) and (4) above, will using a multiple path serve to address the

“successive miss-classification” issue associated with hierarchical ensemble classi-

fication models?

6. What is the best way of dividing up a given set of class labels between nodes (in

a Binary Tree hierarchy or DAG)? Previous research on hierarchical classification,

which is mostly directed at the use of Binary Tree structures, proposed some

techniques to distribute class labels between nodes within the hierarchy. However,

to the best knowledge of the author, no previous work has provided a comparative

study of these techniques. In another words, no recommendation for the “best”

data segmentation technique has been proposed.

7. What is the most appropriate classification algorithm to be held at individual

nodes? In addition to the efficiency and effectiveness concerns usually used to

evaluate classification algorithm, a further consideration is the support that indi-

vidual classification algorithms provide with respect to any multiple path strategy

that might be adopted.

8. Is it indeed the case that Binary Tree hierarchical classifiers and/or DAG classifiers

can be more effectively used (than when using alternative techniques) to classify

data collections that feature a large number of class labels?

The specific objectives of the research were thus to find answers to the above research

question and associated subsidiary questions.

1.4 Research Methodology

The adopted research methodology was to consider a series of techniques to generate

classification hierarchies starting with simple Binary Tree structures and moving on to



Chapter 1. Introduction 5

more complex DAG structures. Regardless of the structure of the desired hierarchies a

key issue was how class labels are to be assigned to nodes and how the nodes are to be

connected. Several techniques were considered to achieve this including: splitting, clus-

tering and combination techniques. For each structure, how best to follow several paths

in the hierarchy was also a consideration. Figure 1.1 presents the different structures,

strategies, techniques, and mechanisms that have been considered in this thesis.

K-means 
Data 

splitting 
Hierarchical 
Clustering 

Rooted 
DAG 

Non-rooted DAG 

Hierarchical Classification 

Binary Tree DAG 

All- 
level 

Two- 
level 

Max- 
level 

Single Path 
Strategy 

Multiple Path 
Strategy 

Voting 

Min- 
level 

Single Path 
Strategy 

Multiple Path 
Strategy 

BIP/BIC NAP/NAC NAP/NAC BIP/BIC Voting 

Figure 1.1: Hierarchical classification structures, techniques, strategies, and mecha-
nisms

The first investigation conducted was directed at the use of a Binary Tree structure

to generate the desired hierarchical classification model. To generate the Binary Tree

hierarchy three different grouping techniques were proposed in order to divide the data

during the hierarchy generation process (founded on ideas concerned with clustering

and splitting techniques): (i) k-means, (ii) data splitting and (iii) divisive hierarchical

clustering (as shown in Figure 1.1). The use of two different styles of classifier at each

hierarchy node was also proposed: (i) single “stand-alone” classifiers and (ii) “bagging”

ensemble classifiers. Three alternative classification algorithms were considered: (i)

Decision tree, (ii) Naive Bayes and (iii) Classification Association Rule Mining (CARM).

Two classification strategies were proposed: (i) “Single-Path” and (ii) “Multiple-

Path” (again as shown in Figure 1.1). In the first case the strategy was to select the class

at the leaf node label by following a “single path” within the hierarchy from the root node

to the leaf node. The second strategy allowed for more than one path to be followed. This
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second strategy was proposed to address the “successive miss-classification” problem

identified earlier in this chapter. In the case of the Multiple Path strategy this was

specifically designed to operate using Naive Bayes or CARM classification, which feature

probability or confidence values that can be used to determine whether single or multiple

paths should be followed at each hierarchy node. In the case where more than one path

is followed, it was anticipated that a number of alternative class labels would result,

three alternatives for arriving at a final decision were proposed (as shown in Figure 1.1):

(i) a voting mechanism; (ii) selecting the class label associated with the leaf node that

features the highest probability (confidence) a measure referred as the Best Individual

Probability or Confidence (BIP/BIC) measure; and (iii) taking into consideration the

probability (confidence) values identified along the path back to the root node to produce

an accumulated value, a measure referred to as the Normalised Accumulated Probability

or Confidence (NAP/NAC) measure.

The second structure to be investigated was the use of DAGs to generate the desired

hierarchical classification model. With reference to Figure 1.1 two alternative DAG hi-

erarchical classification structures were proposed: (i) rooted DAG, and (ii) non-rooted

DAG. To generate the DAG classification model “combination techniques” were pro-

posed to distribute (organise) the class labels between nodes within the DAG. Again,

as in the case of the proposed Binary Tree hierarchies, three alternative classification

algorithms were considered: (i) Decision tree, (ii) Naive Bayes and (iii) Classification

Association Rule Mining (CARM). Two classification strategies were again considered:

(i) “Single-Path” and (ii) “Multiple-Path” together with, in the later case, the three al-

ternatives for arriving at a final classification decision as used with respect to the binary

tree structure investigated earlier: (i) Voting, (ii) BIP/BIC and (iii) NAP/NAC. The

non-rooted DAG models were found to perform well, however, in order to improve the

performance (effectiveness, efficiency, and scalability) of the non-rooted DAG model two

forms of pruning were considered, depth and breadth pruning.

It is worth to noting here the reasons behind choosing Decision tree, Naive Bayes

and CARM classification algorithms to generate the node classifiers:

1. A requirement for multi-class classification algorithms in the case of the DAG

models.

2. The expectation that a better classification accuracy would be obtained when

multi-class classification algorithms were utilised.

3. The fact that with respect to Naive Bayes and CARM classifiers, probability and

confidence values could be utilised to: (i) support mechanisms for following mul-

tiple paths within a hierarchy and (ii) to determine the “start node” (root node)

from which a classification process should best commence, with respect to the

non-rooted DAGs.

4. A desire to use a consistent set of classification algorithms with respect to the

evaluation of the different hierarchical classification models suggested.
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In the context of the evaluation reported on later in this thesis, fourteen different

data sets (with different numbers of class labels) were used taken from the UCI machine

learning repository [61]. These were processed using the LUCS-KDD-DN data pre-

processing software system [22]. Ten-fold Cross Validation (TCV) was used throughout.

The evaluation measures used were average accuracy, average AUC (Area Under the

receiver operating Curve) [44], and run time. The effectiveness of the proposed models

were evaluated by comparing with more conventional existing models (stand-alone multi-

class classifiers, collection of binary classifiers and ensemble models). To determine

whether the results obtained were statistically significant a precise and comprehensive

statistical analysis of the results was conducted using the Wilcoxon signed rank test for

comparing two classification models, and the Friedman test (coupled with a Nemenyi

post-hoc test where appropriate) for comparing several classification models (more than

two).

1.5 Research Contributions

The main contributions of the research presented in this thesis can be summarised as

follows:

1. A set of alternative techniques to distribute class labels between nodes within a

Binary Tree hierarchy. With respect to the existing work on Binary Tree hier-

archies, it should be noted that the most frequently used methods for dividing

classes between nodes do not allow overlapping between the class groups. In this

work both overlapping and non-overlapping techniques were considered. The con-

jecture of allowing overlapping was that this would mitigate against the early

miss-classification issue.

2. An evaluation of the use of a number of alternative classification algorithms, to

generate node classifiers within a Binary Tree hierarchy. Note that existing work

on Binary Tree hierarchies has mainly utilised binary classification algorithms such

as SVM.

3. An “ensemble of ensembles” approach with respect to Binary Tree hierarchies.

More specifically, using Bagging ensembles at each node within a binary tree hi-

erarchy.

4. A Multiple Path strategy, which allows for more than one path to be followed

within a hierarchy during the classification stage. This strategy is completely novel

and it was proposed to address the “successive miss-classification” issue associated

with hierarchical classification. Note here that this strategy was considered with

respect to both the proposed Binary Tree and DAG hierarchies.

5. Three alternative mechanisms (Voting, BIP/BIC and NAP/NAC) for arriving at

a final classification decision with respect to the Multiple Path strategy. The aim
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was to address the issue in the case where more than one path is followed where

we end up with a number of alternative candidate class labels.

6. A unique rooted DAG structure for hierarchical multi-class classification.

7. A novel non-rooted DAG structure for hierarchical multi-class classification.

8. A novel mechanism for applying breadth pruning to the non-rooted DAG structure.

The conjecture here was that this would improve the effectiveness and efficiency

of the DAG classification model, because “weak” classifiers would be pruned.

9. A comprehensive study and statistical analysis of the proposed hierarchical ensem-

ble classification models to identify the “best” structure, classification algorithm,

data segmentation technique and classification strategy to be adopted in order to

obtain an effective and efficient hierarchical classification model.

10. A suggested framework for utilising parallel computing to generate and operate the

proposed rooted DAG hierarchical classification model. The conjecture here was

that this would generate a more efficient and effective DAG classification model

that could be directed at even larger numbers of class labels.

1.6 Organisation of the Thesis

The remainder of this thesis is organised as follows:

Chapter 2 provides a review of the previous work that is of relevance with respect to

the work presented in this thesis.

Chapter 3 describes the evaluation datasets used, and reviews the metrics used to

measure classification performance throughout this thesis.

Chapter 4 presents the hierarchical ensemble classification model for multi-class clas-

sification founded on a Binary Tree (BT) structure.

Chapter 5 describes the nature of the proposed rooted DAG hierarchical ensemble

classification model.

Chapter 6 presents the non-rooted DAG structure, rather than a rooted DAG structure,

to generate the desired hierarchical classification model. The chapter also considers

the application of depth pruning with respect to the non-rooted (DAG) structure.

Chapter 7 considers the application of breadth pruning with respect to the non-rooted

(DAG) hierarchical ensemble classification model. The chapter also presents an

evaluation of the application of both depth pruning and breadth pruning with

respect to the non-rooted (DAG) structure.

Chapter 8 gives a precise statistical comparison of the different structures, strategies,

techniques, and mechanisms that are considered in this thesis.
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Chapter 9 considers how parallel computing can be used to generate the rooted DAG

hierarchical classification model, in the context of future work.

Chapter 10 begins by presenting some conclusions, then lists the main findings of the

work presented in this thesis, and then presents some potential directions for future

work.

1.7 Publications

Five papers, three published, one waiting publication, and one presented for refereeing

have arisen out of the work presented in this thesis and these are listed and summarised

in this section.

1. Journal Papers:

(a) Esra’a Alshdaifat, Frans Coenen, and Keith Dures. The Directed

Acyclic Graph (DAG) Ensemble Classification Model: An Alter-

native Architecture for Hierarchical Classification. Submitted for

refereeing to the International Journal of Data Warehousing and

Mining (IJDWM). This paper summarises the work presented in this the-

sis. More specifically, the paper proposes the two alternative DAG structures

to support the generation of the desired DAG hierarchical classification ap-

proach: (i) rooted DAG and (ii) non-rooted DAG. The paper also presents

a comparison between the Binary Tree and DAG structures to generate the

hierarchical classification model. A comparison between the hierarchical clas-

sification and the well-established conventional models for multi-class classi-

fication was also included in this paper. The work in this paper is included

in Chapters 5, 7 and 8.

2. Conference Papers:

(a) Esra’a Alshdaifat, Frans Coenen, and Keith Dures. Hierarchical

Single Label Classification: An Alternative Approach. In Max

Bramer and Miltos Petridis, editors, the thirty-third BCS SGAI In-

ternational Conference on Artificial Intelligence (BCS SGAI 2013),

pages 39-52. Springer, 2013. This paper presents the use of the Binary

Tree structure for use with the desired hierarchical classification model. In

this paper a comparison between two different styles of classification at each

hierarchy node was also considered: (i) single “stand-alone” classification and

(ii) “bagging” ensemble classification. A comparison between the three differ-

ent techniques for identifying the classes covered by nodes was also included:

(i) k-means, (ii) data splitting and (iii) divisive hierarchical clustering. The

work presented in this paper acted as the foundation for the work described

in Chapter 4 of this thesis.
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(b) Esra’a Alshdaifat, Frans Coenen, and Keith Dures. Hierarchical

Classification for Solving Multi-class Problems: A New Approach

Using Naive Bayesian Classification. In Hiroshi Motoda, Zhaohui

Wu, Longbing Cao, Osmar R. Zaiane, Min Yao, and Wei Wang,

editors, the 9th International Conference on Advanced Data Mining

and Applications (ADMA 2013) (1), Lecture Notes in Computer

Science, volume 8346, pages 493-504. Springer, 2013. This paper was

the first to introduce the idea of following multiple paths within a Binary Tree

ensemble hierarchy. The paper presented a comparison between the Single

and Multiple Path strategies with respect to Naive Bayes classification. The

paper also considered two mechanisms for arriving at a final classification

decision with respect to the Multiple Path strategy. The majority of the

content of this paper is included in Chapter 4 of this thesis.

(c) Esra’a Alshdaifat, Frans Coenen, and Keith Dures. A Multi-path

Strategy for Hierarchical Ensemble Classification. In Petra Perner,

editor, the 10th Machine Learning and Data Mining in Pattern

Recognition (MLDM 2014), Lecture Notes in Computer Science,

volume 8556, pages 198-212. Springer, 2014. This paper proposed

utilising the confidence values associated with CARM classifiers for follow-

ing multiple paths within a Binary Tree hierarchical classification model. A

comparison was presented between the operation of: (i) the Single and Multi-

ple Path strategies with respect to CARM classification, (ii) two mechanisms

for arriving at a final classification decision in context of the Multiple Path

strategy, (iii) the three different techniques to distribute class labels between

nodes within the hierarchy and (iv) the Binary Tree hierarchical classification

model and conventional models for multi-class classification. The majority of

the content of this paper was included in Chapter 4.

(d) Esra’a Alshdaifat, Frans Coenen, and Keith Dures. Directed Acyclic

Graphs for Multi-Class Classification. Proceeding AI 2015, Spring-

er, in press. This paper proposed the non-rooted DAG classification model

for multi-class hierarchical ensemble classification. The paper also presented

the application of breadth and depth pruning with respect to the proposed

non-rooted DAG classification model. The work presented in this paper is

incorporated into Chapter 7 of this thesis.

1.8 Summary

This introductory chapter has presented a general overview and a background to the

research described in this thesis. The motivation for the research, the research question

together with the associated issues to be addressed, the adopted research methodology,

and the contributions of the research have all been presented. The main objective of the
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research is to utilise hierarchical ensemble classification to provide a more effective clas-

sification mechanism for multi-class classification, especially in the context of datasets

that feature a large number of class labels. The next chapter (Chapter 2) provides a

literature review aimed at providing the necessary background to the work presented in

this thesis.



Chapter 2

Literature Review

2.1 Introduction

As noted earlier in the introduction to this thesis, single-label classification (as opposed

to multi-label classification) is concerned with the learning of classifiers, using a set of

training examples, where each example is associated with a single class label c taken

from a set of disjoint class labels C. If |C| = 2 we have a simple “binary” classification

problem, if |C| > 2 it is referred to as a “multi-class” classification problem. In com-

parison with single-label classification, multi-label classification is more general, since it

allows one instance to have more than one label simultaneously [80]. Multi-label classi-

fication methods have been increasingly used in modern applications such as: (i) music

categorisation where the same song can belong to several different classes, (ii) semantic

classification where (say) an image can be classified as belonging to a number of classes,

(iii) text categorisation where a document can belong to more than one conceptual class

and (iv) medical diagnosis where a number of diagnosis (classes) may be applicable (fur-

ther examples can be found in [95]). However, the majority of real-world classification

problems tend to involve single-labels. Examples of single-label classification applica-

tions include: (i) social classification such as in the case of the UCI Nursery data set

[61], (ii) medical diagnoses such as predicting the absence or presence of some condition

and (iii) biology applications such as the prediction of protein localisation sites. Many

examples of single class-label data sets can be found in the UCI machine learning data

repository [61].

In the context of the work described in this thesis, as also noted in the introduc-

tion to this thesis, the focus is on single-label multi-class classification problem where

examples are associated with exactly one element of the set of class labels C. We refer

to this simply as “multi-class” classification. An issue with multi-class classification is

that when |C| is large the effectiveness of the classification tends to degrade. It is widely

accepted that multi-class problems can be solved in three ways: (i) using “stand-alone”

classification algorithms, (ii) using a set of binary classifiers and (iii) using ensemble clas-

sifiers arranged in some specific form. Basic surveys of the fundamental techniques used

to solve multi-class classification problems can be found in [3, 69]. However, these two

12
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published surveys only give an overview of small number of techniques that can be used

to address multi class-classification problems. In this chapter, a more comprehensive

overview is presented.

The section is organised as follows: Section 2.2 considers the classification algorithms

that can be directly used to address multi-class classification problems. Section 2.3 re-

views using binary classifiers to solve the multi-class problem. Section 2.4 then considers

the usage of ensemble methodologies in the context of the multi-class classification prob-

lem. This is followed in Section 2.5 with a generic overview of clustering algorithms, the

reason behind the inclusion of this section is that clustering algorithms were utilised to

distribute classes between nodes within the proposed ensemble hierarchies. Finally, a

summary of this chapter is presented in Section 2.6.

2.2 Using “Stand-alone” Classification Algorithms to Solve

Multi-class Classification Problems

Some classification algorithms are specifically designed to address binary classification,

for example support vector machines [97]. However, such algorithms can be adapted to

handle multi-class classification by building sequence of binary classifiers. Other clas-

sification algorithms can directly handle any number of class labels; examples include:

decision tree classifiers [81], Classification Association Rule Mining (CARM) [23], Neural

Networks [107], k-Nearest Neighbors[9], and Bayesian classification [59]. Among these,

decision tree algorithms are of interest with respect to the work described in this thesis

because it can be argued that the proposed hierarchies have some similarity with the

concept of decision trees. Decision trees have a number of advantages with respect to

some other classification techniques: (i) they can be constructed relatively quickly, (ii)

they are easy to understand (and modify), (iii) the tree can be expressed as a set of “de-

cision rules” (which is of benefit with respect to some applications) and (iv) the accuracy

of decision tree classifiers is comparable or superior to other classification models [62].

Decision trees are constructed by inducing a “split” in the training data according to the

values associated with the available attributes. The splitting is frequently undertaken

according to “Information Gain” [81], “Gini Gain” [14] or “Gain Ratio” [81]. No one

attribute selection measure has been found to be superior to others, most measures give

quite good results [42]. Each leaf node of a decision tree holds a class label. A new

example is classified by following a path from the root node to a leaf node, the class held

at the identified leaf node is then considered to be the class label for the example [42].

Amongst the most frequently quoted decision tree generation algorithms are: ID3 [81],

C4.5 [82] and CART [14]. A comprehensive survey of work on decision tree classifiers

can be found in [72].

Bayesian classification algorithms are also of interest with respect to the work de-

scribed in this research because of the Bayesian probability values generated; as will

become clear later in this thesis, these probability values were used so as to enable more



Chapter 2. Literature Review 14

than one branch in a hierarchy to be followed. Bayesian classification is based on Bayes’

theorem [42]. A simple Bayesian classifier is known as a Naive Bayesian classifier. Naive

Bayes classification assumes that the effect of an attribute value on a given class is in-

dependent of the values of other attributes. This is the well-known “class conditional

independence” assumption which is made to simplify the computations involved [42].

By Bayes’ theorem the probability that example E is of class Ci is given by [42]:

P (Ci|E) =
P (E|Ci)P (Ci)

P (E)
(2.1)

where: (i) P (Ci|E) is the posterior probability, or a posteriori probability, of Ci condi-

tioned on E (the probability that example E is of class Ci), (ii) P (E|Ci) is the posterior

probability of E conditioned on Ci and (iii) P (Ci) is the prior probability of Ci and (iv)

P (E) is the prior probability of E.

As P (E) is constant for all classes, only P (E|Ci)P (Ci) need be maximised. Naive

Bayes is an extremely effective, but straightforward, form of classification. Consequently

it is often used as a baseline standard by which other classifiers can be measured [37].

Various comparative studies, with respect to decision tree and neural network classi-

fiers, have found the operation of Naive Bayes to be comparable [17, 29, 57]. Bayesian

classifiers have also exhibited high accuracy and speed when applied to large databases

[42].

Classification Association Rule Mining (CARM) algorithms are also of interest with

respect to the work described in this thesis. The significance is that CARM incorpo-

rates the concept of confidence values which in turn, it is argued later in this thesis,

can be used to determine the most appropriate paths through a hierarchical ensemble

classification model. CARM integrates Association Rule Mining (ARM) and classifica-

tion. CARM algorithms work by applying an association rule mining style algorithm,

such as Apriori [1] or FPgrowth [43], to produce classification rules from pre-labelled

training data [23] according to: (i) a user defined support (frequency) threshold1 and

(ii) a user defined confidence threshold2. The aim is to generate association rules that

have only a single class label in the consequent. The generated association rules are

referred to as Classification Association Rules (CARs) [60], which collectively form the

desired classifier. CARM algorithms can be categorised according to how the pruning

of low confidence CARs is performed [23]: (i) two stage or (ii) integrated. In the two

stage approach all CARs are generated in the first stage and pruned in the second stage.

Examples of this approach include Classification based on Multiple Association Rules

(CMAR) [60], and Classification Based on Associations (CBA) [63]. Using integrated

algorithms the classifier generation is accomplished in a single processing step encom-

passing both rule generation and pruning. Examples of this latter approach include

1The support of a rule describes the number of instances (records) in the training data where the
rule antecedent and consequent occur [23].

2The confidence of a rule is the ratio of its support to the support for its antecedent [23].
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Classification based on Predictive Association Rules (CPAR) [106] and Total From Par-

tial Classification (TFPC) [23]. Although experimental work has shown that CARM

improves classification accuracy when compared to stand-alone classification algorithms

such as C4.5 [60, 63], two main drawbacks can be identified: (i) high processing over-

head, due to the generation of large number of association rules and (ii) overfitting as

the result of the application of the confidence-based rule evaluation measure [106].

2.3 Using a Collection of Binary Classifiers to Solve Multi-

class Classification Problems

With the availability of many robust binary classification algorithms; the multi-class

classification problems can be addressed by utilising a collection of binary classifiers;

the multi-class problem is thus decomposed into a number of binary classification sub-

problems that can be resolved using binary classifiers. We can, from the literature,

identify three commonly referenced methods of using binary classifiers to solve multi-

class problems: (i) One-Versus-All (OVA) [86] (ii) One-Verses-One (OVO) [93] and

Error-Correcting-Output-Codes (ECOC) [27].

Commencing with the simplest method of using binary classifiers to solve multi-

class problem, which involves training N binary classifiers to handle a N class problem.

Each classifier is trained to discriminate the records in a single class from the records

in all remaining classes. This method is thus the OVA method [86]. The ideal case, for

classifying a new record, is that one classifier generates output 1 and all the remaining

classifiers generate output -1; as a result class with the output 1 will be assigned to the

new record. However, the following cases might be raised: (i) more than one classifier

assigns the record to its class or (ii) none of the classifiers assign the record to its class.

In order to address these issues a winner-take-all (WTA) strategy [46] can be adopted,

where a real-valued function is assigned to each class in order to determine the class

membership. For classifying a new example, the classifier that generate the maximum

output is considered the “winner”.

With respect to OVO [93] (also called All-Versus-All (AVA) [42]), a classifier is

trained for every possible pair of classes. Consequently, if we have N classes, then

(N(N − 1)/2) classifiers are required to be trained. For classifying a new unseen record,

each classifier “votes”, and the class with the maximum number of votes is assigned to

the new record (Max-wins [35]). However, if more than one class is assigned with the

same number of votes, a number of “candidate classes” will be available. Then, the final

classification result will be selected randomly form the set of “candidate classes”. The

main drawback is the large number of classifiers required, although reports from the

literature suggest that OVO tends to be superior to OVA [42].

The ECOC method operates by changing the definition of the class a single classifier

has to learn [27]. The original motivation for ECOC was to improve the operation of

binary classification but it can be applied with respect to the multi-class problem. A
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unique binary string “codeword” of length n is assigned to each class. For each bit

position of the binary strings a classifier is trained, resulting in n binary classifiers. For

classifying a new record each of the n binary classifiers are evaluated, thus a binary string

of length n will be produced. Then the resulting string is compared to each codeword

(associated with each class), the record is assigned to the class associated with the

closest codeword. “Hamming distance” is the most widely used distance measure for

this purpose 3. For simplicity, this method is always represented by a matrix M where

each row of M represents a specific class and each column is used to train a binary

classifier. The main challenge is to design a good code matrix; a general idea is to

have large row and column separation. ECOC has been successfully applied to a several

application domains, due to its ability to correct errors generated by the individual

base classifiers [32]. In addition ECOC has often been found to be able to outperform

the direct use of single multi-class learning algorithms [27, 88]. However, it has been

reported that the usage of the simple OVO (AVA) approach produces comparable, or in

some cases superior, classification results to ECOC [54].

Another attempt to improve classification accuracy, with respect to using a set of

binary classifiers to solve the multi-class classification problem, was the combination of

OVO and OVA [38], so called One and All (OAA). The idea behind OAA is to discard the

incorrect votes produced using OVO and improve the accuracy of OVA. More specifically,

N(N + 1)/2 binary classifiers are trained, where N(N − 1)/2 classifiers use OVO and

the remaining N classifiers use OVA. For classifying a new unseen record, the record is

first classified using the OVA framework and the two classes associated with the highest

values are identified. The OVO classifier, corresponding to the identified classes, is then

used to classify the record so as to arrive at a final classification decision. Thus the

number of classifiers that are required to label a new instance is N + 1. With respect

to effectiveness a small improvement has been reported in comparison with OVO and

OVA [38].

From the foregoing, OVO (AVA) can be considered as the “state-of-the-art” with

respect to the usage of a set of binary classifiers to address the multi-class classification

problem.

2.4 Using Ensemble Classifiers to Solve Multi-class Clas-

sification Problems

This section provides a review of “Ensemble” methods for solving the multi-class clas-

sification problem. An ensemble model is a composite model comprised of a number of

learners (classifiers), called base learners or weak learners, that are used together to ob-

tain a better classification performance than can be obtained from using a single “stand

alone” model. Classification algorithms such as: decision tree, Naive Bayes, CARM, and

neural network can be utilised to generate the base classifiers. If the base learners in

3Hamming distance counts the number of different bits.
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an ensemble model are all comprised of the same classification algorithm the ensemble

model is referred to as a homogeneous learner, while when different classification algo-

rithms are used the ensemble model is referred to as a heterogeneous learner [108]. In

general, most ensemble methods are categorised as homogeneous learners [108]. Many

researches [45, 47, 55, 76] have demonstrated that generating a “good” ensemble requires

base classifiers that tend to make errors on different groups of examples.

Much research work has been directed, by numerous researchers, at ensemble clas-

sification due to the potential benefits of the method with respect to classification ef-

fectiveness. The history of ensemble methods goes back to 1977 when the idea of an

ensemble, made up of two linear regression models, was reported in [96]. More recently

Luo and Liu [64] reported that work, using ensembles of neural networks, conducted by

Hansen and Salamon [45] was the most significant in the context of better performance

and reduced generalisation error4. Many researchers have demonstrated that using mul-

tiple classifiers reduces the generalisation error [8, 28, 75, 83]. In addition, theoretical

evidence that bias-error can be reduced by using ensembles of classifiers was presented

in [7]. A novel multi-strategy (hybrid) ensemble, that combined a number of ensemble

approaches, reported in [100], noted that ensembles of ensembles were more accurate

than their component ensembles.

Although many researchers have demonstrated that ensembles often outperform their

“base classifiers” when used on their own [26, 42, 77, 108], few have provided a reasonable

answer to the question “why are ensembles superior to stand-alone classifiers?”. A

suggested answer was provided in [77] that related the better performance of ensembles

over single classifiers to the usage of all the available classification information. A more

comprehensive answer was provided by Dietterich in [26],who considered the answer

in terms of the following three headings: (i) statistical, (ii) computational and (iii)

representational . More specifically:

1. Statistical reason. The nature of the data is such that it is often not possible to

choose a particular classification model; there are often many different competing

classification models that provide the same accuracy on the dataset. Consequently,

combining these classifiers produces an average result that is better than that of the

individual classifiers. This will avoid choosing the wrong classifier and circumvent

the unrelated errors of individual classifiers.

2. Computational reason. Using ensembles avoids fruitless, and computationally

expensive, searches for the “best” classifier.

3. Representational reason. It is assumed that a given learning algorithm is look-

ing for a “best” hypothesis within the hypothesis space, in most machine learning

applications the hypothesis space might not contain the true target function, how-

ever adopting an ensemble approach can produce a good approximation.

4 Generalization: “The most central concept in machine learning, which characterises how well the
result learned from a given training dataset can be applied to unseen new data” [108].
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With respect to the consensus that the ensemble concept is a general methodology

for improving the accuracy of “stand-alone” classification algorithms; the ensemble ap-

proach is applicable and can be employed in all areas where classification techniques can

be applied. Examples of application domains where ensemble have been used include:

text categorisation [71], bioinformatics [105] (due to their ability to deal with high-

dimensionality and complex data structures), manufacturing [67], e-learning evaluation

system [52], and medical diagnosis [91].

According to Rokach [87] four main factors can be used to characterise the various

ensemble methods:

1. Inter-classifier relationship. This refers to the relationships between classifiers

forming the ensemble and how these classifiers affect each other. Two main types

of ensemble can be differentiated: concurrent (parallel) and sequential (cascad-

ing). The hierarchical ensemble, which is a much more recent approach, can be

considered as a special case of a sequential ensemble. Most proposed ensemble

models fall into the concurrent category. In a concurrent ensemble the classifiers

are independent and their results are combined together using some combination

scheme (see factor 2 below). In a sequential ensemble the classifiers are arranged

sequentially (or hierarchically). More details concerning concurrent, sequential,

and hierarchical ensembles are provided in the following sub-sections.

2. Adopted Combination scheme. Regardless of how an ensemble system might

be configured, an important issue is how results are combined to produce a final

classification. The simplest approach is to use some kind of voting system [8].

Voting algorithms can be divided into two types: those that adaptively change

the distribution of the training set based on the performance of previous classifiers

(as in boosting methods) and those that do not (as in Bagging). Averaging is

another scheme to combine the results of several classifiers, which is suitable for

use with classifiers that generate (say) confidence or probability values. A more

complicated combination method can be adopted that utilises the concept of a

“meta learner” such as stacking [104]. Stacking is usually used to combine models

of different types, however it is not widely used.

3. Ensemble size. This refer to the number of classifiers forming the ensemble. A

number of issues should be taken into consideration here: (i) accuracy, (ii) compu-

tational complexity and (iii) the number of available processors. Some researchers

have claimed that the usage of large numbers of classifiers improves classification

accuracy [45], however this is clearly not true with respect to the disjoint partition-

ing methods, where if the subset sizes are too small, insufficient information will

be available for learning effective classifiers with which to populate the ensemble

[87].

4. Diversity. The concept of the diversity of an ensemble refers to the generation

of a set of base classifiers that are as diverse as possible so that they will produce
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uncorrelated errors; it is suggested that consequently a better overall effective-

ness (classification accuracy) can be obtained [49]. The simplest way to obtain

a diversified ensemble is to use different representations of the training data. In

other words manipulating the training records, as in bagging where each classifier

is learned using a different subset of the original training data. Manipulating the

attribute set is another way of obtaining diversity, however it is not commonly

used. The idea is to assign a different attribute set to each classifier [87].

Before continuing with the discussion on the usage of ensemble classifiers to solve the

multi-class classification problem a number of open issues associated with the ensemble

methodology should first be considered, these can be summarised as follows:

1. The best way to construct ensemble of classifiers. It is generally acknowl-

edged that there is no “best” ensemble, the reason for this is simply because

there is no “best” classification algorithm. However, some researchers have rec-

ommended ways of constructing ensembles for specific situations, for example one

study recommend not using sequential ensemble when the data set is highly noisy

[83].

2. No comprehensive comparison available in the literature. The available

studies vary regarding to the used: (i) ensemble approaches, (ii) evaluation data

sets and (iii) evaluation criteria.

3. Computational cost. It is clear that combining a set of classifiers is compu-

tationally more expensive than using single “stand-alone” classifier. However,

the promising benefit, obtaining accurate classification, generally considered to be

worth while. In order to address the issue of complexity associated with ensem-

ble systems two options have been suggested: (i) the usage of parallel process-

ing, especially for concurrent ensembles as suggested by Breiman [12] and (ii) the

elimination of similar representations from ensembles of classifiers, in other words

pruning, as suggested by Dietterich [25].

4. Difficulty in understanding the final classification decision. For example,

and as noted by Dietterich [25], it is easy to understand the classification result of

a single decision tree. However, it is difficult to understand a final classification

result of an ensemble comprised of two hundreds decision trees.

The rest of this section is divided into four parts. Part 1 provides a general overview

of concurrent ensembles and presents the most popular concurrent ensemble approaches.

Then Part 2 goes on to consider sequential ensembles and provides a review of the most

well known sequential ensemble approaches. Part 3 then provides a detailed survey of

the domain of binary tree based hierarchical ensemble classification. Followed, in Part

4, by a discussion of DAG based hierarchical ensemble classification. The reason for this

division is that the work on hierarchical ensemble classification presented later in this

thesis can also be divided into binary tree and DAG based approaches.
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Part 1: Concurrent Ensemble Methods

Using the concurrent ensemble methodology, the original data set is divided into several

partitions, either disjoint (mutually exclusive) or overlapping. Each partition is used to

learn a classifier. More specifically, several classifiers are trained concurrently. When

classifying a new unseen record the final classification result will be some combination

of individual classification results. The main goal of the parallel ensemble methodology

is to improve the classification performance, both in terms of effectiveness and efficiency

[68]. The latter, can be realised when utilising some form of parallel or distributed

processing.

The simplest and the first proposed parallel ensemble method is the “Bagging”

method (the name was obtained from the phrase “Bootstrap Aggregation”) [65]. In

bagging what is termed “sampling with replacement” is used [12]. What this means is

that each classifier is trained using a different random sample of the training data set

(note that the same record may be sampled more than once). More specifically, the orig-

inal training data set is divided into N samples of the same size as the original training

data set. Thus the sampling process might result in: (i) the appearance of some records

more than once within the same sample and/or (ii) the non-appearance of some records

in any sample. With respect to classifying new unseen record a simple voting process is

usually adopted. The following advantages can be identified for bagging ensembles: (i)

implementation simplicity and (ii) improving classification performance (efficiency and

effectiveness). A well-known bagging algorithm is the “Random Forest” algorithm [13],

which combines the output from a collection of decision trees. The reasons behind the

popularity of the random forest algorithm are: (i) relatively low computational cost and

(ii) ability to achieve excellent classification performance compared with many other

classification methods [16].

There are some variations of bagging, often referred to as “Bagging-Like-Strategies”,

which handle smaller sized partitions of the training data. As in the case of standard

bagging, the original training data set is divided into N subsets of the same size, and

each is used to train an individual classifier. The combination of the individual classi-

fiers produces a composite classifier. From the literature we can identify four different

methods for conducting “Bagging-like” partitioning [65]:

1. Disjoint partitions. In which a record can be found only in one partition and

only once within that partition.

2. Small bags. In which a record can be found in several partitions and/or several

times within a partition.

3. No replication. In which a record can be found in one partition, several parti-

tions, or no partition; however, a record can only be found once within the same

partition.
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4. Disjoint bags. In which a record can be found several times within the same

partition, but cannot be found in other partitions.

A more intelligent partitioning technique based on clustering was proposed by Chawla

et al. [19] where clustering was used to create “meaningful” partitions of the original

data set. More specifically the algorithm identified a set of clusters (partitions) from

the original data set, a classifier was then trained using each partition. The suggested

technique was compared with a simple data partitioning techniques that split the data

set into random disjoint parts (random splitting). The reported results showed that

the clustering based method outperformed the random partitioning method and C4.5

decision tree classification.

The significance of the partitioning methods discussed in this sub-setion, with respect

to the work presented later in this thesis, is that the proposed hierarchical partitioning

methods also feature partitioning. However, the partitioning is directed at grouping

classes rather than records.

Part 2: Sequential Ensemble Methods

Using the sequential ensemble approach, unlike in the case of the concurrent approach,

there is interaction between the different classifiers (the outcome of one feeds into the

next). The main conjectured advantage is that the knowledge generated in a previous

iteration can be utilised to guide the learning process in the next iterations. In this sec-

tion a number of well documented sequential ensemble methods are considered, namely:

(i) boosting, (ii) windowing and (iii) stacking.

One well studied form of sequential ensemble classification is known as “Boosting”,

where a sequence of weak classifiers is “chained” together to produce a single composite

strong classifier in order to achieve a higher combined accuracy than that which would

have been obtained if the weak classifiers were used independently. A well-known boost-

ing algorithm is Adaboost [34]. The main idea of Adaboost is to assign a weight to

each record (example) in the training data set. Initially, all weights are equal, but in

every iteration the weights are adjusted to reflect the effectiveness of the corresponding

classifiers. More specifically, the weights of the miss-classified records are increased, and

the weight of the correctly classified records decreased. The central goal is to force the

weak learner to focus on the “difficult” instances of the training set, so the resulting

classifiers “complement” one another. The final composite classifier combines the base

classifiers by voting, but each classifier’s vote is a function of its accuracy. The following

advantages can be identified for AdaBoost: (i) implementation simplicity, (ii) flexibility,

(any classification algorithm can be used to produce the base classifiers) [34], (iii) abil-

ity to identify outliers (examples with the highest weight are always considered to be

outliers) [34], (iv) the generated composite classifier (ensemble) has fewer classification

errors than the base classifiers [87] and (v) versatility (the ensemble can be applied to

a wide variety of applcations). On the other hand it has been suggested that, a large

number of iterations may generate a very sophisticated classifier that tends to be less
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accurate than a single classifier [83]. Regardless of this disadvantage, “Boosting” is one

of the most widely used sequential ensemble methods.

Windowing is another example of a sequential ensemble method. Windowing was

proposed to enable the ID3 decision tree classifier to address classification problems that

requires very large memory capacity [82]. Windowing commences by selecting a random

subset of the training data set, a “window”. The subset is then used to train a classifier.

The next step is an evaluation step, in which the generated classifier is evaluated using

the remaining training examples. If the obtained accuracy is “not sufficient”, all the

miss-classified records are removed from the evaluation set and added to the window for

the next iteration. This procedure is repeated until “sufficient accuracy” is obtained.

Note that the last trained classifier is considered to be the final classifier. Windowing has

not played a significant role in machine learning, in comparison to “Boosting” or even

other ensemble methods, due to: (i) the fast development of computer hardware which

has made more memory available and (ii) a dedicated empirical study, which applied

windowing using ID3 with respect to several domains, that found that windowing did

not enhance classification efficiency [103].

“Stacking” [104] can be considered as another form of sequential ensemble approach.

More specifically it is: (i) a combination of the sequential and concurrent ensemble

approaches (provided parallel processing is applied in the first stage) and (ii) a way of

combining results from ensemble classifiers. The central idea of staking is to generate

a “meta-dataset”, using an ensemble of classifiers referred to as the “first-level” that

serves as input to a “second-level” classifier. More specifically, given a training data set

of N records, the training procedure is as follows:

1. Use N − 1 records to train the first level classifiers.

2. Classify the leave-out record using all the first-level classifiers. The prediction

results are then used to form a meta-record for the corresponding leave-out record.

More specifically, the class labels, resulting from the first-level classifier, will form

the attributes of the meta-record. Note here that the class label of the record will

be maintained as in the original training data set.

3. Repeat the previous step for all records in the training data set. Consequently, a

corresponding “meta-record” will be produced for each training record.

4. Use the resulting “meta-dataset” to learn the second-level classifier.

5. Train the first level classifiers using all records in the training data set (N records

instead of N − 1). The objective here is to use all available information to train

the first-level classifiers.

For classifying a new record, the first-level classifiers classify the record, then the

classification results (class labels) are passed onto the second-level classifier to produce

the final prediction.
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Part 3: Binary Tree Based Hierarchical Ensemble Methods

As noted earlier in this chapter a more recent approach to solving the multi-class classi-

fication problem involves the creation of hierarchical ensemble classifiers [4, 20, 56, 58,

66, 99]. A common structure adopted for hierarchical classification is a binary tree con-

structed in either a bottom-up or top-down manner [11, 56]. In a binary tree hierarchical

classification model, as the name suggests, the classifiers are arranged in a binary tree

formation. As noted above the desired binary tree structure can be constructed in either

a bottom-up or a top-down manner; however, top down construction is the most widely

used because it tends to produces a more balanced structure and because it is easier to

implement [4]. Using the top down approach the process is as follows: starting at the

root of the tree, a grouping technique is used to segment the records into two clusters,

each cluster is labelled with a group-class label. Then, a classifier is trained to classify

records using the two group-classes. The process continues recursively until classifiers

are arrived at that can assign single class labels to individual records. The bottom-up

model comprises a merging process similar to agglomerative hierarchical clustering. On

each iteration the two most similar nodes are merged to form a node describing a new

meta-class [11]. For classifying a new record a “path” is followed from the root, accord-

ing to the classification at each hierarchy node, until a leaf node associated with a single

class label is reached.

The work on binary tree hierarchical classification can be differentiated depending

on: (i) the classification algorithm used and (ii) the adopted technique to distribute

class labels between nodes within the hierarchy. In the remainder of this section a

number of approaches to binary tree based hierarchical ensemble classification will be

considered: (i) Binary Hierarchical Classifier (BHC), (ii) Hierarchical Support Vector

Machines (HSVM), (iii) Divide-By-2 (DB2), (iv) Half-Against-Half (HAH), (v) Sup-

port Vector Machines Binary Decision Tree (SVM-BDT) and (vi) Binary Classification

Tree with Observation based clustering (BCT-OB). The reason behind the inclusion

and explanation of these approaches to binary tree based ensemble classification is to

differentiate the work presented in this thesis from the previous work with respect to

binary tree hierarchical classification.

Commencing with the work suggested by Kumar et al. [56], the Binary Hierarchical

Classifier (BHC) approach. The BHC is a binary tree hierarchical classification approach

where the ensemble is generated in a top-down manner. Given a data set with C classes,

the resulting binary tree has C leaf nodes, one for each class, and C − 1 internal nodes.

Kumar et al. implemented the BHC approach using a Bayesian classifier at each tree

node; Bayes rule was utilised to partition the classes at each tree node into two disjoint

subsets, referred to as “meta-classes”. More specifically, each class was treated as an

instance, a class is assigned to one of the two meta-classes based on posterior proba-

bility that the class belonging to a specific meta-class. The assignments of the classes

are updated several times over multiple iterations. It is interesting to note here that, in

addition to the Bayesian classifier held at each internal node, a linear feature extractor
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was also used. The objective of the latter was to extract features from remotely sensed

hyper-spectral data 5 that was used to evaluate the proposed BHC model. Classes

partitioning and feature extraction were conducted simultaneously (coupled within the

same algorithm). According to the reported evaluation, BHC operated in a significantly

better manner than approaches based on other feature extraction and problem decom-

position techniques. Further empirical studies reported that BHC: (i) was applicable to

the multi-class classification problems and (ii) that the obtained results were compara-

ble (both in terms of efficiency and effectiveness) to ECOC [84] (as described in Section

2.3). The main motivation for this work was to address the problem of high dimensional

data not particularly the multi-class classification problem. Consequently, the data seg-

mentation procedure, which was combined with a feature extraction procedure, does not

permit overlapping between class labels to reduce the complexity of the problem. While

the work presented in this thesis considers both overlapping and non-overlapping set of

class labels using different data segmentation techniques.

Hierarchical Support Vector Machines (HSVM) [20] are a form of binary tree hi-

erarchical classification. The HSVM approaches comprises: (i) a max-cut hierarchical

decomposition and (ii) SVM classification. More specifically, the input data is con-

sidered as an undirected graph where nodes represent classes and edges represent the

average “Kullback-Leibler” distance between the density function of the two classes at

the end nodes. A Max-Cut hierarchical decomposition method is applied to split the

classes (graph nodes) into two partitions. This is done by identifying the maximum

total distance between two class partitions (maximum total pairwise distance measure).

The max cut procedure is applied recursively, thus a binary hierarchical decomposition

is achieved. The reported evaluation results showed that the HSVM approach achieves

high classification accuracy when sample sizes are small in terms of number of attributes

and the number of classes is large. Again, as the case of BHC, this approach was applied

to hyperspectral data and no overlapping between classes was permitted.

Vural and Dy [99] introduced a binary tree based hierarchical classification called

Divide-By-2 (DB2). The main motivation for this work was to extend the use of support

vector machines (SVM) to address multi-class problems. DB2 utilised three different

techniques to divide the data into two subsets at each hierarchical level:

1. K-means. A technique whereby each class is represented with its corresponding

mean6, the k-means algorithm is used to group the class means.

2. Spherical shells. This is a technique whereby a threshold is used to group

the classes. Again, each class is represented by a class mean. The threshold is

calculated as the mean of classes means. Then the procedure is as follows. The

class associated with a class mean smaller than the threshold is considered to be

5180 dimensions and 12 classes
6The class mean/class center is a “prototype” record derived from the means of the attribute values

for the records/examples that belong to that class.
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the negative class, while the class associated with a class mean greater than the

threshold is considered to be positive class.

3. Balanced subset. This is a technique whereby the data is divided into two

subsets such that the difference in the number of examples (records) in each subset

is minimised.

No overlapping of classes between subsets was permitted, thus the number of the

classifiers to be trained was N − 1 where N is the number of class labels in a given

data set. For the evaluation purpose, DB2 was compared with: (i) OVO, (ii) OVA and

(iii) SVM Directed Acyclic Graph (SVM DAG). The reported evaluation indicated that

DB2 is always faster than OVO and OVA in terms of classification time, and it is faster

than DAGSVM when the data set is unbalanced. With respect to effectiveness, DB2

produced a comparable accuracy results to the alternative methods considered.

Half-Against-Half (HAH) is another binary tree hierarchical classification approach

suggested by Lei and Govindaraju [58]. HAH use an SVM classifier at each tree node

and hierarchical clustering to distribute the class labels into two subsets. As in the case

of the earlier work conducted by Vural and Dy [99]; the classes are divided into two

disjoint (no overlapping) partitions based on a distance measure. The distance between

two classes is defined as the mean of the distance between the training examples (records)

for the two classes. Lei and Govindaraju provided a theoretical study, and experimental

results, indicating that: (i) HAH is more efficient than OVA, DAG SVM, and OVO in

terms of classification and generation speed; and (ii) with respect to effectiveness, HAH

is comparable to OVO, SVM DAG and OVA, in terms of classification accuracy. Again,

as in the case of the previous approaches, no overlapping between the class groups is

permitted.

Another approach, similar to DB2, that utilised SVM and distance measures to

generate a binary tree hierarchical classifier is the Support Vector Machines Binary

Decision Tree (SVM-BDT) approach reported in [66]. Using the SVM-BDT approach

the classes are divided into two disjoint groups by calculating N gravity centres for the

N different classes. Then, the two classes with the highest distance from each other are

assigned to each of the two groups. Next, as in the case of some clustering procedures,

the remaining classes are assigned to groups using a distance measure. The centre of

each group is updated on each occasion. The process continues until all classes are

assigned to one of the two possible groups. The grouping procedure is repeated at each

tree node until only one class is left in each group, this then represents a leaf node in the

tree. Because no overlapping of classes across groups is permitted, only N − 1 classifiers

need to be trained. SVM-BDT gains advantages from: (i) the efficient computation

of the decision tree architecture and (ii) the high classification accuracy of SVMs. For

evaluation purpose SVM BDT was compared with: (i) SVM based approaches (OVO,

OVA, and SVM DAG), (ii) Ensemble of trees (Random Forest) and (iii) neural network

based approaches. The reported evaluation indicated a comparable or better accuracy,
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and improved generation and classification times for the proposed SVM-BDT approach.

Again no overlapping between classes was permitted.

A more recent approach to binary tree hierarchical classification is the Binary Clas-

sification Tree with Observation based clustering (BCT-OB) approach; a novel approach

to tree splitting [4] whereby, unlike the previous approaches, classes are partitioned by

performing clustering on observations (examples/records) instead of class means (cen-

ters). Thus, classes can appear in both clusters (overlapping) and as a result it will

be considered in both sub-trees. K-means and SVM are the two algorithms used with

respect to the BCT-OB approach. The classes partitioning process, at each tree node,

is conducted as follows:

1. K-means clustering is applied to the examples, with K = 2, to give two clusters.

2. A data cleaning process is performed. More specifically, the proportion of each

class in each cluster is calculated by dividing the number of examples of class x

in cluster i with the number of examples of x. Observations (examples) belonging

to a specific class in a specific cluster where the proportion value is less than a

predefined threshold will be eliminated from the cluster.

The advantages of the BCT-OB approach can be summarised as follows: (i) allow-

ing some classes to be addressed in different sub-trees offers an opportunity to detect

any sub-patterns in a class and (ii) the cleaning process prevents redundant learning

(from small sub-groups) and also serves to reduce the computation time. On the other

hand the limitations of the BCT-OB approach are as follows: (i) the performance is

highly affected by the adopted clustering algorithm (K-means or otherwise) and (ii) the

threshold value affects both tree construction and classification performance, a larger

tree will be produced if a low threshold is used than when a high threshold is used. Also,

classification accuracy will be decreased if the threshold is too high due to information

loss. In comparison with other binary classification tree algorithms the reported exper-

imental results showed that BCT-OB performs comparably. To the best knowledge of

the author this work is the only previous work that considers overlapping between class

groups, as also considered later in this thesis. The difference between the work presented

in this thesis and the BCT-OB algorithm is that, in the work presented in this thesis,

no threshold was used to eliminate records from a class group (cluster). The reasons for

this were: (i) the threshold value can highly affect classification accuracy as reported

in [4] and (ii) the threshold value results in eliminating some instances (records) from a

class group, thus the number of records available for the training process will decrease

(information loss).

The foregoing binary tree hierarchal ensemble classification approaches can be con-

sidered to be significant with respect to the work presented in this thesis because a

groups of class labels are addressed at each binary tree node (except leaf nodes). A

less significant work, with respect to the work presented in this thesis, that made use of

binary tree structures to combine the results of a set of binary classifiers [70]. This can
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be viewed as a special case of using a set of binary classifiers to handle the multi-class

classification problem. More specifically, given a data set with C classes, all pairwise

classes of C are identified and handled by using a set of binary classifiers. However,

instead of applying voting to combine the predictions, as in OVO, the binary tree struc-

ture (Directed Binary Tree (DBT)) was utilised for this purpose. An example of DBT is

presented in Figure 2.1. For classifying a new example, starting from the root, one class

is eliminated at each level until a leaf node is arrived at. Then leaf class will be assigned

to the example. Some researchers have tried to find strategies to determine the optimal

order of the classifiers within the binary tree so as to obtain a better overall classification

accuracy. The proposed ordering strategies have been mainly focused on some features

of SVM classifiers such as margin size or number of support vectors (classifier-dependent

attributes) [70]. Note that the reasons behind the inclusion and explanation of DBT

approach here are: (i) to differentiate it from the work presented later in this thesis,

where both used binary tree structure to solve the multi-class classification problem and

(ii) this approach was proposed to solve the multi-class classification problem which is

the main motivation of this thesis.

Figure 2.1: Directed Binary Tree (DBT) example [70]

As noted earlier in this section, the previous work, with respect to binary tree hierar-

chical classification model, can be differentiated according to the adopted classification

algorithm, and the manner in which the classes are distributed between nodes within

the hierarchy. From this previous work, the following can be noted:

1. SVM is most frequently used as the base classification algorithm. There is little

reported work in using other forms of classification algorithms such as decision

trees, neural networks, or Naive Bayes algorithms. Much of the SVM based work on

binary tree ensembles is directed at allowing the application of SVMs (essentially

a binary classification algorithm) to the multi-class problem.
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2. A straight forward splitting techniques is the most frequently used methods for

dividing the classes between nodes (without overlapping between the class groups).

Thus the number of required classifiers can be determined previously (NumOfClas-

sifiers = C - 1 ).

3. To the best knowledge of the author, the splitting or clustering techniques reported

on in the literature, for dividing classes between nodes, are always applied to the

classes centres (means) not directly to the examples (observations) themselves.

Only one recent work applied clustering algorithms directly on records [4].

4. From the literature the operation of the resulting hierarchical ensembles are always

compared with OVO and OVA instead of comparing with other ensemble methods

such as Bagging or Boosting, the author has only found one published paper which

considered comparison with other forms of tree ensembles (bagging and random

forest) [66].

5. No work has been found by the author that addresses the most significant drawback

of the hierarchical model, which is that if a record is miss-classified early on in the

process it will continue to be miss-classified throughout the process.

6. Relating to the previous point, only single-paths are followed within the hierarchy.

Part 4: DAG Based Hierarchical Ensemble Classification Methods

This section presents previous work that has utilised DAG structures to solve the multi-

class classification problem. As will be seen, this previous work is significantly different

than the work presented in this thesis, with respect to utilisation of DAG structures

for hierarchical ensemble classification. More specifically the previous work on DAG

hierarchical ensemble classification has focused on utilising a DAG structure to combine

the prediction results obtained from a set of binary classifiers, while with respect to the

work presented in this thesis, groups of class labels are considered at each DAG node not

two classes (binary classification), this will become more apparent later in this thesis.

The work presented in this section can be considered to be a special case of using a set

of binary classifiers to solve the multi-class classification problem presented in Section

2.3. The reason behind the inclusion and explanation of this work here is to differentiate

it from the work presented later in this thesis.

This section presents three examples of previous work that has utilised DAG struc-

ture to solve the multi-class classification problem: (i) Decision Directed Acyclic Graph

(DDAG), (ii) Adaptive Directed Acyclic Graph (ADAG) and (iii) Reordering Adaptive

Directed Acyclic Graph (RADAG).

Platt et. al. [78] were the first to suggest using a (rooted) Directed Acyclic Graph

(DAG) for hierarchical ensemble classification in 2000. More specifically, the rooted DAG

structure was utilised to arrange several binary classifiers into a single classifier called a

DDAG (Decision Directed Acyclic Graph) [78]. In DDAG the nodes are organised in a
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triangular form, starting with single node at the top (root), two nodes at the next level,

and so on, till arriving at the last level (the leaf level) where the individual class labels

are represented (one per node). Each DAG node holds a SVM classifier. The algorithm

used to generate the DDAG, the SVMDAG algorithm, generates N(N − 1)/2 classifiers

for N class labels, as in the case of OVO, where every pairwise classes is considered.

Figure 2.2 presents a DDAG example. To classify a new instance, starting at the root

of the DAG, the first binary classifier classifies the given instance and consequently we

proceed down the left or right branch depending on this classification result. The process

continues until a leaf node is reached that holds the predicted class. More specifically the

classes are ordered arbitrarily in a list. Reordering the classes was found not to result in

any significant change in accuracy. Classification process adopted in [78] is essentially

an elimination process; one class will be eliminated from the list at each node. At the

root node the list contains all the classes, the root classifier classifies the new example

either to the first or the last class in the list. If the predicted class is one of the two

classes, the other is eliminated, the process continues with respect to the first and the

last classes in the list, until only one class remains, which is the predicted class for the

new example and the SVMDAG algorithm terminates.

Figure 2.2: Decision Directed Acyclic Graph (DDAG) example [90]

An issue with the DDAG, as reported in [53], is that the number of nodes that needed

to be evaluated in order to obtain a final resulting class label is “unnecessarily” large,

and affects the classification accuracy. More specifically, the number of times that the

correct class should be evaluated against the rest is N − 1 (the depth of the DDAG)

where N is the number of the classes in a given dataset. Consequently, the probability

of cumulative error increases.

To address this problem Kijsirikul et. al. suggested the Adaptive Directed Acyclic

Graph (ADAG) which modified the DDAG to obtain better classification accuracy by
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reducing the number of classifiers that needed to be evaluated before arriving at a final

classification decision. Using an ADAG the nodes are organised in a reverse triangle.

Given N class labels, the top level will include N/2 nodes (rounded up), N/22 nodes

at the second level, and so on, till arriving at one node at the last level. Thus, ADAG

generates N(N − 1)/2 binary classifiers, as in the case of SVMDAG, arranged in N − 1

internal nodes. Figure 2.3 presents an ADAG example. For classifying a new instance

the process commences at the top level by evaluating all nodes. As a result a preferred

class will be passed on to the next level, where the number of possible classes is reduced

by half. A node in this next level is then selected according to the passed class. The

process continues till the final level is arrived at where only one node exist, evaluating

this node will result in the class label for the new instance. Reported theoretical and

experimental results have shown that the ADAG structure gives a better classification

accuracy than the DDAG structure, especially when the number of class labels is large.

Figure 2.3: Adaptive Directed Acyclic Graph (ADAG) example [90]

Although it was reported that the ADAG approach produced a better classification

accuracy than DDAG by reducing number of the classifiers that the correct class should

be evaluated against (only log2N , while N − 1 for DDAG), the sequence in which the

classifiers at nodes were invoked still affecting the classification accuracy. In order to

resolve this node sequence dependency, the Reordering Adaptive Directed Acyclic Graph

(RADAG) approach was proposed by Patoomsiri et. al. [90]. Here what was referred to

as generalisation error, which is the actual performance of the classifier when evaluated
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on unseen data7, was utilised to select the optimal classifiers. The RADAG approach

is similar to the ADAG approach except: (i) the initialisation of the classifier at the

first level and (ii) the order of the classes in the lower levels. The generalisation errors

of all possible pairs of classes are calculated at the beginning of the algorithm, using

k-fold-cross-validation. At each level the classifiers that have the smallest sum of gen-

eralisation errors will be used in the evaluation process. Reported experimental results

demonstrated that the RADAG approach generates higher classification accuracies than

ADAG.

Generalisation error has also employed in DDAG, to select the most suitable classi-

fiers in the evaluation stage. Two models to enhance DDAG were suggested based on the

use of generalisation error, Strong Elimination (SE) of Classifiers, and Weak Elimination

(WE) of Classifiers [90]. Classifiers associated with the minimum generalisation error

are evaluated first. The distinction between SE and WE is that in SE, at each evaluation

level, the classifiers related to the eliminated class are ignored (the same procedure as

in the case of the original DDAG approach). While when using WE a classifier will be

ignored only if its two associated classes are eliminated, the reason behind this is that

classifiers associated with high generalisation ability can be helpful when eliminating the

remaining candidate classes. Experimental results demonstrated that both SE and WE

produce a higher accuracy than the DDAG approach; best results were produced using

the WE method.

2.5 Clustering

This section provides a generic overview of the clustering concept. The significance

is that clustering techniques are, in some cases, used by the hierarchical ensemble ap-

proaches presented later in this thesis to distribute classes between nodes. Clustering is

an unsupervised learning process that aims to partition a set of observations (examples)

into groups (clusters), so that examples that belong to a single cluster are in some sense

similar to each other and dissimilar to examples in other clusters [30]. Although it is

difficult to categorise clustering techniques according to the nature of their operation,

because many clustering techniques share elements of their mode of operation with other

techniques [42], four basic categories can be identified:

1. Partitioning techniques. Partitioning techniques are considered to be the most

widely used [5]; the idea is to produce disjoint clusters (each example belongs

to a distinct cluster). Commencing with the initial partitioning, instances are

reassigned to clusters till a specific criteria, usually distance-based, is arrived at

[68]. K-means is the most commonly used partitioning algorithm.

7 Generalisation error = number of miss-classified records / number of records.
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2. Hierarchical techniques. These techniques operate in a hierarchical manner by

grouping examples either in a top-down (divisive) or bottom-up (agglomerative)

manner.

3. Density-Based techniques. The goal of these techniques is to discover arbi-

trarily shaped clusters not necessarily convex shaped clusters (spherical-shaped

clusters) [68].

4. Grid-Based techniques. These methods, as the name suggests, use a grid data

structure (comprised of multi-rectangular cells) to partition the problem space into

cells. Examples within a cell are represented by the cell. Clustering is applied to

the cells instead of the data. Consequently, low processing time is required, in

comparison with other clustering techniques [10].

Among the above clustering techniques, partitioning and hierarchical techniques are

of interest with respect to the work described in this thesis because: (i) partitioning

algorithms, specifically k-means, are the most well-known and widely used and (ii) hi-

erarchical algorithms, specifically divisive hierarchical clustering, fit well with respect

to the vision of hierarchical ensemble classification presented in this thesis. A more

detailed explanation of k-means and divisive hierarchical clustering is thus presented in

the remainder of this section.

Commencing with the k-means algorithm, this partitions a data set into k clusters,

thus k must be specified previously. Each cluster is associated with a center (also called

the cluster centroid, mean or center-point). Observations (examples) are assigned to the

cluster associated with their closest centroid, distance metrics are typically used for this

purpose. The procedure can be summarised as follows:

1. Randomly Select k examples to be the initial clusters centers (means).

2. Assign each remaining example to the closest cluster (formation of the clusters).

3. Update the mean for each cluster.

4. If the means change, repeat from 2 (the process terminated when no changes in

clusters means).

With respect to divisive (top-down) hierarchical clustering, the examples are recur-

sively partitioned in a top-down hierarchical manner (which can be illustrated using

a dendrogram). The process commences with all observations in one cluster, on each

successive iteration, a cluster is split into smaller clusters, based on some metric (such

as cohesion or dissimilarity), until a “best” cluster configuration is arrived at. The

“best” configuration indicates a configuration where either: (i) each example is in its

own cluster or (ii) the examples in a cluster are sufficiently similar [42]. In order to

measure distance between two clusters a number of measures have been proposed, such

as the single-link (also called minimum distance or nearest-neighbour) and complete-link
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measures [51]. Using the single-link measure the distance between two clusters is the

minimum of the distances between all pairs of examples in the two clusters. Using the

complete-link measure the distance between two clusters is the maximum of all pairwise

distances between examples in the two clusters [51].

2.6 Summary

In summary, this chapter has presented a literature review of the most widely used

approaches to solve the multi-class classification problem, namely:

1. Stand-alone classification.

2. Collections of binary classifiers. From the literature, the most significant work is

OVO.

3. Ensemble classifiers arranged in either: (i) concurrent, (ii) sequential, (iii) binary

tree hierarchical form and (iv) DAG hierarchical form.

In the context of binary hierarchical ensemble classification, the previous work can be

categorised into two main categories with respect to the adopted technique to distribute

class labels between nodes within the binary tree: (i) overlapping between classes at

nodes and (ii) no-overlapping between classes at nodes. The work presented in this

thesis considered both categories. The previous work on DAG hierarchical ensemble

classification has focused on using binary classifiers at nodes rather than groups of

classes as proposed in this thesis. As noted earlier in this chapter this can be considered

to be a special case of using a set of binary classifiers to solve the multi-class classifi-

cation problem. Also it can be considered as a way to combine the results from OVO

decomposition.

In addition an overview of clustering algorithms has been presented. The reason for

this is that clustering algorithms were utilised to distribute classes between nodes within

the hierarchy with respect to the work presented later in this thesis. The next chapter,

Chapter 3, provides a general overview of the evaluation data sets and measures used

with respect to the work considered in this thesis.
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Evaluation data sets, and Criteria

3.1 Introduction

This chapter provides an overview of the data sets used to evaluate the proposed hierar-

chical ensemble classification approaches. A generic overview of the adopted evaluation

metrics used with respect to the evaluation data sets is also presented. The rest of this

chapter is organised as follows. Section 3.2 presents the data sets, whilst Section 3.3

provides an overview of the evaluation metrics. Section 3.4 concludes the chapter with

a summary and a look ahead.

3.2 Evaluation data sets

In this section an overview of the main characteristics of the evaluation data sets is

presented. Fourteen different data sets (with various numbers of class labels), taken

from the University of California Irvine (UCI) machine learning repository [61], and

pre-processed using the LUCS-KDD-DN software [22], were considered for evaluating

the proposed hierarchical classification approaches. The pre-processing involved data

discretisation and normalisation. Discretisation processes involve replacing a range of

continuous values (intervals), associated with a numeric attribute, with a unique integer

label (the interval label). Normalisation, in general, refers to scaling data to fall within

a smaller, specified range such as 0.0-1.0 [42]. However, with respect to LUCS-KDD-

DN software, normalisation refers to converting values of nominal attributes into unique

integer labels [22].

The UCI machine learning repository was initiated so as to provide the machine

learning community with a collection of data sets that can be used to benchmark machine

learning algorithms [61]. The evaluation data sets considered in this thesis are as follows:

1. WaveForm. Features three types of waves, each wave is classified according two

twenty-one numeric attributes. The general characteristics of the data set are

provided in Table 3.1.

34
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Table 3.1: Waveform Characteristics

Number of records 5000
Number of attributes 21

Number of classes 3

Number of records per class:

Class Num. Rec. %
1 1657 33.14
2 1647 32.94
3 1696 33.92

2. Wine. Derived from chemical analysis of wines and features thirteen attributes

(Alcohol, Malic acid, Ash, Alcalinity of ash, Magnesium, Total phenols, Flavanoids,

Non flavanoid phenols, Proanthocyanins, Color intensity, Hue, OD280/OD315 of

diluted wines, Proline), three types of wine can be identified (three classes). The

general characteristics are presented in Table 3.2.

Table 3.2: Wine Characteristics

Number of records 178
Number of attributes 13

Number of classes 3

Number of records per class:

Class Num. Rec. %
1 59 33.15
2 71 39.89
3 48 26.97

3. Nursery. This data set was obtained from the process of ranking applications

for nursery schools in Slovenia. It features eight attributes (Parents’ occupation,

Child’s nursery (has nursery), Form of the family, Number of children, Housing

conditions, Financial standing of the family, Social conditions, and Health condi-

tions); note that some of the attribute labels are slightly eccentric and consequently

difficult to interpret. Five class labels are identified: (i) Not recommend, (ii) Rec-

ommend, (iii) Very recommend, (iv) Priority and (v) Specific Priority. The general

characteristics of the data set are shown in Table 3.3.

Table 3.3: Nursery Characteristics

Number of records 12960
Number of attributes 8

Number of classes 5

Number of records per class:

Class Num. Rec. %
1 4320 33.33
2 2 0.02
3 328 2.53
4 4266 32.92
5 4044 31.20

4. Heart. This data set uses 14 attributes (age, sex, chest pain type, resting blood

pressure, cholesterol, fasting blood sugar, resting electrocardiographic results, max-

imum heart rate achieved, exercise induced angina, ST depression induced by
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exercise relative to rest, slope of the peak exercise ST segment, number of major

vessels coloured by fluoroscopy, heart rate (normal, fixed defect, reversible defect))

to predict the presence or absence of heart disease in the patient. Five different

classes are identified. Four of these classes indicate the presence of heart disease,

whilst the remaining class refers to the absence of heart disease. Some general

characteristics for the data set are provided in Table 3.4.

Table 3.4: Heart Characteristics

Number of records 297
Number of attributes 13

Number of classes 5

Number of records per class:

Class Num. Rec. %
1 160 53.87
2 54 18.18
3 35 11.79
4 35 11.79
5 13 4.38

5. PageBlocks. Data set representing a primary process associated with document

analysis; namely the separation of text from graphical areas. Each record repre-

sents one block of the page layout of a document obtained from a segmentation

process. The data set comprises ten attributes and five classes. The attributes are

as follows: (i) height of the block, (ii) length of the block, (iii) area of the block

(height * length), (iv) eccentricity of the block (length / height), (v) percentage of

black pixels within the block, (vi) percentage of black pixels after the application of

the Run Length Smoothing Algorithm (RLSA), (vii) mean number of white-black

transitions, (viii) total number of black pixels in the original bitmap of the block,

(ix) total number of black pixels in the bitmap of the block after the RLSA and

(x) number of white-black transitions in the original bitmap of the block). The

five classes are: (i) text, (ii) horizontal line, (iii) picture (iv) vertical line and (v)

graphic. The general characteristics of the Page Blocks data set are given in Table

3.5.

Table 3.5: PageBlocks Characteristics

Number of records 5473
Number of attributes 10

Number of classes 5

Number of records per class:

Class Num. Rec. %
1 4913 89.77
2 329 6.01
3 28 0.51
4 88 1.61
5 115 2.10

6. Dermatology. The goal of the classification process with respect to Dermatology

data set is to predict a specific type of “Erythema-Squamous” Disease. The data
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set comprises twelve attributes. Each record results from a patient clinical eval-

uation. The attributes are: (i) erythema, (ii) scaling, (iii) definite borders, (iv)

itching, (v) koebner phenomenon, (vi) polygonal papules, (vii) follicular papules,

(viii) oral mucosal involvement, (ix) knee and elbow involvement, (x) scalp involve-

ment, (xi) family history and (xii) age. Six specific Erythema-Squamous types are

used for the class labels: (i) Lichen Planus, (ii) Psoriasis, (iii) Seborrheic, (iv)

Chronic Dermatitis, (v) Pityriasis Rosea and (vi) Pityriasis Rubra. More details

concerning this data set can be found in [41]. The general characteristics of the

data set are given in Table 3.6.

Table 3.6: Dermatology Characteristics

Number of records 358
Number of attributes 12

Number of classes 6

Number of records per class:

Class Num. Rec. %
1 71 19.83
2 111 31.00
3 60 16.76
4 48 13.41
5 48 13.41
6 20 5.59

7. Glass. The aim of the classification process with respect to the Glass data set is to

predict the type of the glass. Based on nine attributes and seven classes. The at-

tributes are: (i) refractive index, (ii) Sodium, (iii) Magnesium, (iv) Aluminium, (v)

Silicon, (vi) Potassium, (vii) Calcium, Barium and (viii) Iron. The class labels are:

(i) building windows float processed, (ii) building windows non float processed, (iii)

vehicle windows float processed, (iv) vehicle windows non float processed, (v) con-

tainers, (vi) tableware and (vii) headlamps. The general characteristics of the data

are presented in Table 3.7.

Table 3.7: Glass Characteristics

Number of records 214
Number of attributes 10

Number of classes 7

Number of records per class:

Class Num. Rec. %
1 70 32.71
2 76 35.51
3 17 7.94
4 0 0.00
5 13 6.07
6 9 4.21
7 29 13.55

8. Zoo. The goal of the classification process with respect to the Zoo data set is to

classify animals into seven classes. The data set comprises sixteen animal features:

(i) hair, (ii) feathers, (iii) eggs, (iv) milk, (v) airborne, (vi) aquatic, (vii) predator,
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(viii) toothed, (ix) backbone, (x) breathes, (xi) venomous, (xii) fins, (xiii) legs,

(xiv) tai, (xv) domestic and (xvi) cat size). There are seven groups of animals

identified:

(a) Aardvark, antelope, bear, boar, buffalo, calf, cavy, cheetah, deer, dolphin, ele-

phant fruitbat, giraffe, girl, goat, gorilla, hamster, hare, leopard, lion, lynx,

mink, mole, mongoose, opossum, oryx, platypus, polecat, pony, porpoise,

puma, pussycat, raccoon, reindeer,seal, sea lion, squirrel, vampire, vole, wal-

laby, and wolf.

(b) Chicken, crow, dove, duck, flamingo, gull, hawk, kiwi, lark, ostrich, parakeet,

penguin, pheasant, rhea, skimmer, skua, sparrow, swan, vulture, and wren.

(c) Pit viper, sea snake, slowworm, tortoise, and tuatara.

(d) Bass, carp, catfish, chub, dogfish, haddock, herring, pike, piranha, seahorse,

sole, stingray, and tuna.

(e) Frog, frog, newt, and toad.

(f) Flea, gnat, honeybee, housefly, ladybird, moth, termite, and wasp.

(g) Clam, crab, crayfish, lobster, octopus, scorpion, sea wasp, slug, starfish, and

worm.

The general characteristics of the Zoo data set are given in Table 3.8.

Table 3.8: Zoo Characteristics

Number of records 101
Number of attributes 16

Number of classes 7

Number of records per class:

Class Num. Rec. %
1 41 40.59
2 20 19.80
3 5 4.95
4 13 12.87
5 4 3.96
6 8 7.92
7 10 9.90

9. Ecoli. The Ecoli data set comprises eight attributes and eight classes. The aim of

classification when applied to this data set is to classify proteins into their various

cellular localisation sites based on their amino-acid sequences [48]. The eight

attributes are: (i) sequence name, (ii) mcg, (iii) lip, (iv) chg, (v) aac, (vi) alm1,

(vii) alm2, and (viii) gvh. The eight localisation sites (classes) are as follows: (i)

cytoplasm, (ii) inner membrane without signal sequence, (iii) perisplasm, (iv) inner

membrane un-cleavable signal sequence, (v) outer membrane, (vi) outer membrane

lipoprotein, (vii) inner membrane and (vii) lipoprotein inner membrane cleavable

signal sequence. More details concerning this data set are available in [48]. Some

general characteristics associated with the Ecoli data set are provided in Table 3.9.
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Table 3.9: Ecoli Characteristics

Number of records 336
Number of attributes 7

Number of classes 8

Number of records per class:

Class Num. Rec. %
1 143 45.56
2 77 22.92
3 52 15.48
4 35 10.42
5 20 5.95
6 5 1.49
7 2 0.60
8 2 0.60

10. Led. This data set feature seven boolean attributes, because the Light-Emitting

Diodes (LED) display is assumed to comprise seven diodes. The boolean value

associated with each attribute indicates whether the corresponding diode is on

or off. Based on the seven attributes (light1, light2, . . . , light7) ten “concepts

are identified (the set of decimal digits 0-9). These concepts are the ten classes

featured in the data set. The general characteristics of the data set are listed in

Table 3.10.

Table 3.10: Led Characteristics

Number of records 3200
Number of attributes 7

Number of classes 10

Number of records per class:

Class Num. Rec. %
1 329 10.28
2 350 10.94
3 313 9.78
4 307 9.59
5 312 9.75
6 313 9.78
7 301 9.41
8 314 9.81
9 327 10.22
10 334 10.44

11. Pen-Based Recognition of Handwritten Digits Data Set (PenDigits). As

the name indicates, the aim of the classification process with respect to this data

set is to classify a record according to the set of digits 0 through to 9 (thus 10

classes). The data set is based on sixteen attributes describing x and y points

collected as each digit was written. More details concerning this data set can be

found in [2]. Some general characteristics concerning the data set are provided in

Table 3.11.

12. Soybean. The aim of the classification process with respect to the Soybean

data set is to classify an instance into one of fifteen soybean diseases. The data
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Table 3.11: PenDigits Characteristics

Number of records 10992
Number of attributes 16

Number of classes 10

Number of records per class:

Class Num. Rec. %
1 1143 10.40
2 1143 10.40
3 1144 10.41
4 1055 9.60
5 1144 10.41
6 1055 9.60
7 1056 9.61
8 1142 10.39
9 1055 9.60
10 1055 9.60

set comprises thirty five attributes (date, plant-stand, precip, temp, hail, crop-

hist, area-damaged, severity, seed-tmt, germination, plant-growth, leaves, leaf-

spots-halo, leaf-spots-marg, leaf-spot-size, leaf-shread, leaf-malf, leaf-mild, stem,

lodging, stem-cankers, canker-lesion, fruiting-bodies, external decay, mycelium,

int-discolor, sclerotia, fruit-pods, fruit-pods, fruit spots, seed, mold-growth, seed-

discolor, shriveling and roots). The class set is: diaporthe-stem-canker, charcoal-

rot, rhizoctonia-root-rot, phytophthora-rot, brown-stem-rot, powdery-mildew, downy-

mildew, brown-spot, bacterial-blight, bacterial-pustule, purple-seed-stain, anthrac-

nose, phyllosticta-leaf-spot, alternarialeaf-spot and frog-eye-leaf-spot,). Some gen-

eral characteristics of the data set are provided in Table 3.12.

Table 3.12: Soybean Characteristics

Number of records 562
Number of attributes 35

Number of classes 15

Number of records per class:

Class Num. Rec. %
1 20 3.56
2 20 3.56
3 20 3.56
4 20 3.56
5 44 7.83
6 20 3.56
7 20 3.56
8 92 16.37
9 20 3.56
10 20 3.56
11 20 3.56
12 44 7.83
13 20 3.56
14 91 16.19
15 91 16.19
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13. Chess King-Rook v. King (Chess KRvK). The aim of the classification

process with respect to this data set is to predict the optimal “depth of win” for

the white player in 0 to 16 moves inclusive (or a draw) using only the white king

and rook and the black king chess pieces. The data set comprises six attributes:

(i) White King file, (ii) White King rank, (iii) White Rook file, (iv) White Rook

rank, (v) Black King file and (vi) Black King; and eighteen classes (draw, zero,

one, two, three, . . . , sixteen). Some general characteristics of the data set are

provided in Table 3.13.

Table 3.13: Chess KRvK Characteristics

Number of records 28056
Number of attributes 6

Number of classes 18

Number of records per class:

Class Num. Rec. %
1 2796 9.97
2 27 0.1
3 78 0.28
4 246 0.88
5 81 0.29
6 198 0.71
7 471 1.68
8 592 2.11
9 683 2.43
10 1433 5.11
11 1712 6.1
12 1985 7.08
13 2854 10.17
14 3597 12.82
15 4194 14.95
16 4553 16.23
17 2166 7.72
18 390 1.39

14. Letter Recognition. This data set describes black-and-white rectangular pixel

displays, each representing one of the twenty six capital letters available in the

English alphabet. The data set comprises sixteen attributes related to x and y

coordinates (i) x-box, (ii) y-box, (iii) width, (iv) high, (v) onpix, (vi) x-bar, (vii)

y-bar, (viii) x2bar, (ix) y2bar, (x) xybar, (xi) x2ybr, (xii) xy2br, (xiii) x-ege, (xiv)

xegvy, (xv) y-ege and (cvi) yegvx. The class labels are the set of twenty six capital

letters (A, B, C, D, . . . , Z). The general characteristics of the data set are provided

in Table 3.14.

3.3 Evaluation Criteria

In order to evaluate the effectiveness of the proposed hierarchical classification ap-

proaches, average accuracy and average AUC (Area Under the receiver operating Curve)
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Table 3.14: Letter Recognition Characteristics

Number of records 20000
Number of attributes 16

Number of classes 26

Number of records per class:

Class Num. Rec. %
1 789 3.95
2 766 3.83
3 736 3.68
4 805 4.03
5 768 3.84
6 775 3.88
7 773 3.87
8 734 3.67
9 755 3.78
10 747 3.74
11 739 3.70
12 761 3.81
13 792 3.96
14 783 3.92
15 753 3.77
16 803 4.01
17 783 3.92
18 758 3.79
19 748 3.74
20 796 3.98
21 813 4.07
22 764 3.82
23 752 3.76
24 787 3.94
25 786 3.93
26 734 3.67

were used. To describe the calculation of these metrics in further detail it is first neces-

sary to present some terminology in the context of binary classifiers:

1. True Positives (TP): The number of positive records that are correctly labelled as

positive.

2. True Negatives (TN): The number of negative records that are correctly labelled

as negative.

3. False Positives (FP): The number of negative records that are incorrectly labelled

as positive.

4. False Negatives (FN): The number of positive records that are incorrectly labelled

as negative.

Given the above, the accuracy of a classifier, the percentage indicating the number

of instances that are correctly classified, is calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)
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More simply the accuracy of a given classifier is the number of records that are correctly

classified divided by the total number of records in a given test set.

From the foregoing, accuracy is a straightforward and easy to calculate measure.

However, the accuracy measure does not take into consideration the class priors. Conse-

quently, it is preferable to consider an alternative evaluation measure that does take the

class priors into account. Within the data mining community the most commonly used

metric in this context is the Area Under the ROC Curve (AUC) metric [50]. AUC takes

the class priors into account, and as a result it considered to be a more informative

measure, especially when considering very unbalanced data sets (as the case of work

presented in this thesis).

To fully understand the AUC evaluation measure, it is first necessary to know what

a ROC Curve. A Receiver Operating Characteristic (ROC) Curve is a visual represen-

tation of the trade-off between the true positive rate1 (Recall/Sensitivity) and the false

positive rate2 (1-Specificity). Figure 3.1 shows three ROC curves for three different clas-

sifiers. The diagonal line indicates random guessing. A ROC curve located above the

diagonal line indicates that the performance is better than a guess, while a ROC curve

located below the diagonal line indicates that the performance is worse than guessing. A

best performance is indicated by a ROC curve located close to the top left hand corner

of the plot. Thus, with respect to the ROC curves presented in Figure 3.1 the yellow

curve is the best. Rather than considering the individual curves it is simpler to consider

the area under the ROC curve, hence the AUC measure. An AUC of 1 indicates a per-

fect performance; an AUC of 0.5 indicates guessing; an AUC of less than 0.5 indicates a

performance that is worse than guessing. A detailed example of the AUC calculation is

provided in Appendix A.

Figure 3.1: ROC curve example [92]

In addition to classification effectiveness, efficiency was also considered with respect

to the work presented in this thesis. Efficiency was measured according to run times,

1TPR = TP
TP+FN

2FPR = FP
TN+FP
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both hierarchical ensemble generation time and classification time. Note here that all

experiments were conducted using a 2.7 GHz Intel Core i5 with 16 GB 1333 MHz DDR3

memory, running OS X 10.9.2 (13C64).

In order to obtain more accurate results average accuracies and average AUC values

were obtained using the Tenfold Cross Validation (TCV) method. Using TCV a given

data set D is partitioned into ten disjoint partitions, d1, d2,. . . , d10, each of approxi-

mately equal size. Training is performed ten times each time using a different tenth as

the test set and the remaining nine tenths as the training set. On each iteration accuracy

and AUC was measured and at the end of process the overall accuracy and AUC were

calculated.

It should be noted here that an issue arises when considering TCV with respect to

the AUC value for some highly unbalanced data sets. More specifically, assuming a

highly unbalanced data set that feature less than ten instances (records) of a specific

class, dividing the data set into ten folds results in some folds without any instances

from that class. During the testing stage, the classifier will not be actually evaluated

against that class for some test folds (the folds that do not include any instance of

that class). However the AUC calculations assume the complete number of class labels.

Consequently a low AUC values will be produced. With respect to the work presented

in this thesis, this case was found for four data sets: (i) Nursery, (ii) Glass, (iii) Zoo and

(iv) Ecoli. An example of such case is presented in Appendix A.

3.4 Summary

In this chapter an overview of the data sets used to evaluate the hierarchical classification

approaches, proposed later in this thesis, has been presented. This chapter has also

presented an overview of the adopted evaluation metrics used. In the following chapter

(Chapter 4) the hierarchical ensemble classification model for multi-class classification

based on the usage of a Binary Tree (BT) structure will be presented.



Chapter 4

The Binary Tree Hierarchical

Classification Model

4.1 Introduction

The nature of the proposed Binary Tree hierarchical classification approach is presented

in this chapter. As noted earlier in the introduction to this thesis, the binary tree

hierarchical classifier is a form of ensemble classifier. Each node in the hierarchy holds a

classifier. Classifiers at the leaves conduct fine-grained (binary) classifications while the

classifiers at non-leaf nodes further up the hierarchy conduct coarse-grained classification

directed at categorising records using groups of labels. An example Binary Tree hierarchy

is presented in Figure 4.1. At the root we classify into two groups of class labels {a, b, c, d}
and {e, f, g}. At the next level we split into smaller groups, and so on till we reach

classifiers that can associate single class labels with records. Recall from Chapter 2

that there has been some previous work on binary tree based hierarchical ensemble

classification (Section 2.4).

The challenges of hierarchical single-label classification, as conceived in this thesis

are: (i) how best to distribute (organise) the class labels between nodes so as to produce

a Binary Tree classifier that generates the most effective classifications and (ii) how to

address the successive miss-classification issue imposed by the hierarchical structure. To

address the first issue this chapter reports on several techniques considered to organise

(group) the class labels so as to produce a hierarchy that generates an effective classifi-

cation. These were founded on ideas concerned with the use of clustering and splitting

techniques to distribute the class labels as noted in Section 2.4. With respect to the

second issue a Multiple Path strategy was proposed (facilitated by the probability or

confidence values generated by Naive Bayes and CARM classifiers respectively hosted

at the Binary Tree nodes). The first issue is discussed further in Section 4.2 where the

generation of the DAG ensemble approach is presented in detail. While the second issue

is addressed in Section 4.3 where the operation of the proposed approach is presented.

Section 4.4 presents an overview of the conducted experiments and the obtained results.

45
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Classifier	  
(a,	  b,	  c,	  d)	  (e,	  f,	  g)	  

Classifier	  
(a)	  (b)	  

Classifier	  
(e)	  (f,	  g)	  

Classifier	  
(a,	  b)	  (c,	  d)	  

Classifier	  
(f)	  (g)	  

Classifier	  
(c)	  (d)	  

e	  

a	   b	   d	  c	   f	   g	  

Figure 4.1: Binary Tree Hierarchy example.

While Section 4.5 provides a comparison with the previous work on binary tree based hi-

erarchical ensemble methods. Finally, a summary of this chapter is presented in Section

4.6.

4.2 Binary Tree Hierarchical Model Generation

In this section the generation of the proposed Binary Tree hierarchical classification

model is explained in detail. Recall that in the proposed model classifiers nearer the root

of the hierarchy conduct coarse-grain classification with respect to subsets of the available

set of classes. Classifiers at the leaves of the hierarchy conduct fine-grain (binary)

classification. To create the hierarchy a classifier needs to be generated for each node in

the hierarchy using an appropriately configured training set. The process is illustrated

in Figure 4.1 where the root classifier classifies the data set into two sets of class labels

{a, b, c, d} and {e, f, g}, the level two classifiers are then directed at further subsets and

so on. The sets of class labels (the label groupings) are identified by repeatedly dividing

the data using one of the proposed clustering or splitting techniques discussed in more

detail later in this section. Note that Figure 4.1 is just an example of the proposed

hierarchical model; non-leaf child nodes may end up with overlapping classifications

because the adopted clustering algorithms may assign records belonging to the same

class to different clusters.
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Figure 4.2: Binary Tree hierarchical classification model, (a) using a single classifier
at each node and (b) using a Bagging ensemble at each node.

The nature of the classifiers held at each node can be of any form. Three different

types of classifier were used: (i) Decision tree, (ii) Naive Bayes and (iii) Classification

Association Rule Mining (CARM). Among these decision trees algorithms were of in-

terest with respect to the work described in this thesis because it can be argued that

our hierarchies have some similarity with the concept of decision trees. The reasons

behind using Naive Bayes and CARM, as noted above, was so that the probability and

confidence values produced by these techniques could be utilised; this will be discussed

further in Section 4.3.

Two classification styles were considered with respect to the nodes in the proposed

binary tree ensemble hierarchy: (i) straight forward single “stand-alone” classifiers (Fig-

ure 4.2(a)) and (ii) Bagging ensembles (Figure 4.2(b)). With respect to the first style,

a simple classifier (of any form Decision Tree, Naive Bayes, or CARM) was generated

for each node in the hierarchy. With respect to Bagging, the data set D associated with

each node was randomly divided into N disjoint partitions and a classifier generated for

each (in the evaluation reported in Section 4.4, N = 3 was used).

In order to group (divide) the input data D during the hierarchy generation process,

three different techniques were considered: (i) k-means clustering, (ii) divisive hierarchi-

cal clustering and (iii) data splitting. K-means and divisive hierarchical clustering were

both described in Section 2.5 in Chapter 2. Among these k-means is the most commonly
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used partitioning method where records (classes) are divided into k partitions (in our

model k = 2 was used because of the binary nature of our hierarchies). Hierarchical clus-

tering creates a hierarchical decomposition of the given data. In the context of the work

described in this thesis a “divisive” hierarchical clustering (top-down) was used because

this fits well with respect to the vision of hierarchical ensemble classification presented in

this thesis. Recall from Chapter 2 that the process commences with all records (classes)

in one cluster, on each successive iteration, a cluster is split into smaller clusters until

a “best” cluster configuration is arrived at (measured using cluster cohesion and sep-

aration measures). The idea behind the use of clustering algorithms is, at each level

and branch of the hierarchy, to group the available class labels into two disjoint groups

(clusters) so that the classes within each group share some similar characteristics. Data

splitting comprises a simple “cut” of the data into two groups so that each contains a

disjoint subset of the entire set of class labels.

The proposed Binary Tree hierarchy generation algorithm is presented in Algorithm

1. The algorithm assumes a data structure, called hierarchy, comprised of the following

fields:

1. Classifier: A classifier at each tree node.

2. Left: Reference to left branch of the hierarchy (root and body nodes only, set to

null at leaves).

3. Right: Reference to right branch of the hierarchy (root and body nodes only, set

to null at leaves).

Considering the algorithm presented in Algorithm 1 in further detail. The Gen-

erate Hierarchy procedure is recursive. On each recursion the input to the Gener-

ate Hierarchy procedure is the data set D (initially this is the entire training set). If the

number of classes represented in D is one (all the records in D are of the same class)

a leaf hierarchy node will be created (labelled with the appropriate class label) (lines

15-17). If the number of classes featured in D is two, a binary classifier is constructed

(to distinguish between the two classes) (lines 19-21). The most sophisticated part of

the Generate Hierarchy procedure is where the number of classes featured in D is more

than two. In this case the records in D are divided into two groups D1 and D2 each

with a meta-class label, K1 and K2, associated with it (line 23). A Classifier is then

constructed to discriminate between K1 and K2 (line 25). The Generate Hierarchy

procedure is then called again, once with D1 (representing the right branch of the hi-

erarchy) and once with D2 (representing the left branch of the hierarchy) (lines 27 and

29).

It is interesting to note that, if the clustering algorithms, k-mean or divisive hier-

archical clustering, are used to divide class labels between nodes during the generation

process; the number of classifiers that will be generated can not be calculated in advance.

While if a data splitting technique is used during the hierarchy generation process, the
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Algorithm 1 Binary Tree Hierarchy Generation

1: INPUT
2: D, the input training dataset
3: Classification method, procedure for building the classifiers at the hierarchy nodes
4: Clustering (or splitting) technique, procedure for splitting the classes between nodes
5: OUTPUT
6: The generated Binary Tree Hierarchy
7:

8: Start
9: root = the root node for the Binary Tree

10: root = Generate Hierarchy(D)
11: End
12:

13: function Generate Hierarchy(D)
14: create a hierarchy node N ;
15: if number of classes featured in D == 1 then
16: return N as a leaf node labeled with the corresponding class label
17: assign null value to hierarchy left, and right
18: else
19: if number of classes featured in D == 2 then
20: create a hierarchy classifier (using classification method), to distinguish between

the two (real) classes (binary classification)
21: assign null value to hierarchy left, and right
22: else
23: cluster D into two clusters K1 and K2 (using clustering or splitting)
24: recast labels in D so that they correspond to K1 and K2;
25: create a hierarchy classifier (using classification method), to distinguish between

K1 and K2;
26: D1 = records in D containing class labels in K1;
27: hierarchy right = Generate Hierarchy (D1);
28: D2 = records in D containing class labels in K2;
29: hierarchy left = Generate Hierarchy (D2);
30: end if
31: end if
32: return N ;
33: end function

number of classifiers needed to be trained is N−1, where N is the number of class labels

in a given dataset.

4.3 Binary Tree Hierarchical Model Operation

Section 4.2 explained the generation of the proposed Binary Tree hierarchical classifica-

tion model. After the model has been generated the intention is to use it to classify new

unseen data records. In this section the process whereby this is achieved is explained.

Two strategies were considered for classifying individual records: (i) Single Path and

(ii) Multiple Path. The Single Path strategy is the most straightforward, with which

to classify a new record, whereby the aim is to identify a single path leading through

the hierarchy, as dictated by the node classifiers, until a leaf node associated with a

single class label is arrived at. However, this strategy does not address the issue that

if a record is miss-classified early on in the process it will continue to be miss-classified
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later on in the process. The second strategy attempts to address this issue by allowing

more than one path to be followed. The Multiple Path strategy was realised by utilising

Naive Bayes classifiers and Classification Association Rule Miners (CARM), which fea-

ture respectively probability and confidence values that can be used to determine where

single or multiple paths should be followed. More specifically, more than one path was

followed within the hierarchy according to a predefined threshold σ, in the case of Naive

Bayes classifiers 0 ≤ σ < 1, while in the case of Classification Association Rule Miners

(CARM) 0 ≤ σ ≤ 100.

A further issue that results when more than one path is followed through the hierar-

chy is that more than one final “candidate class” label may be arrived at, the question

then is which class label to select? Three different mechanisms were suggested to deter-

mine the final resulting class label: (i) simply selecting the candidate class associated

with the highest “individual” probability (or confidence) value, (ii) generating an ac-

cumulated weight for each candidate class and selecting the class associated with the

highest accumulated weight or (iii) applying some Voting scheme and selecting the can-

didate class associated with the highest vote. Thus we have three variations of the

Multiple Path strategy: (i) Multiple Path with Best Individual Probability/Confidence

(BIP/BIC) class label selection, (ii) Multiple Path with Normalised Accumulated Prob-

ability/Confidence (NAP/NAC) class label selection and (iii) Multiple Path with Voting

class label selection

The rest of this section is organised as follows: Sub-section 4.3.1 explains the Single

Path strategy, while Sub-section 4.3.2 considers the Multiple Path strategy.

4.3.1 Single Path Strategy

In the Single Path strategy only one path will be followed according to the classification

at each hierarchy node. Recall from the above that during the generation process sets

of class labels are grouped. For simplicity, and in acknowledgement of the binary nature

of our example hierarchies, we refer to these groups as the left and right groups. The

procedure for using the hierarchy to classify a record, r, is summarised in Algorithm

2. The BinaryTreeSinglePathClassify procedure is recursive. On each recursion the

algorithm is called with two parameters: (i) r, the record to be classified and (ii) a

pointer to the current node location in the hierarchy (at start this will be the root

node). How the process proceeds then depends on the nature of the class label returned

by the classifier at the current node in the hierarchy. If the returned class belongs to one

of either the right or left groups the BinaryTreeSinglePathClassify procedure will

be called again with the parameters: (i) either the left or right child node as appropriate,

and of course (ii) the record r (lines 17 and 19). If the returned class label is a specific

class label (as opposed to some grouping of labels) this class label will be returned as

the label to be associated with the given record and the algorithm terminated (lines 13

and 14).
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Algorithm 2 Binary Tree Hierarchy Single Path Classification

1: INPUT
2: r = A new unseen record
3: N a pointer to the current node in the hierarchy (root node at start)
4: OUTPUT
5: The predicted class label c for the input record r
6:

7: Start
8: c = BinaryTreeSinglePathClassify(r,N)
9: End

10:

11: function BinaryTreeSinglePathClassify(r,N)
12: C = Classification result for r using classifier at node N
13: if |C| == 1 then
14: return C
15: else
16: if C ∈ N.rightClassGroup then
17: return (BinaryTreeSinglePathClassify(r,N.rightBranch))
18: else
19: return (BinaryTreeSinglePathClassify(r,N.leftBranch))
20: end if
21: end if
22: end function

In the same way that it is not possible to calculate how many nodes there will be in

the binary tree prior to generation of the tree when using clustering (either k −means
or divisive hierarchical clustering) to distribute class labels between nodes; it was not

possible to calculate in advance of generating the tree the number of classifiers that will

need to be evaluated in order to classify a new record. While when a data splitting

technique is used during the hierarchy generation process, the number of classifiers that

will need to be evaluated when only a single path is followed within the hierarchy will

be, in the worst case, log2N (the depth of the tree); where N is the number of class

labels in a given dataset.

4.3.2 Multiple Path Strategy

As already noted, a possible issue with the single path strategy is that if a miss-

classification occurs early on in the process there is no opportunity for rectifying this

situation later on in the process. To address this problem a Multiple Path strategy was

proposed. As mentioned earlier, Naive Bayes classifiers and Classification Association

Rule Miners (CARM) were used, so that the Bayesian probability p (or confidence value)

associated with the individual class groups, at each tree node, could be used to dictate

whether one or two branches will be followed according to a predefined threshold σ.

In order to decide the final class label from the collection of “candidate classes”

resulting from following multiple paths, two different mechanisms were suggested to

determining the final resulting class label: (i) Best Individual Probability/Confidence

(BIP/BIC), (ii) Normalised Accumulated Probability/Confidence (NAP/NAC) and (iii)

Voting. Using the BIP or BIC mechanisms the “individual” probability (confidence)
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values associated with the identified candidate classes at the leaf nodes were used to

select a final class label. Using the NAP or NAC mechanism all probability (confi-

dence) values in a followed path are taken into consideration to produce an accumulated

value. More specifically, the probability (confidence) values for a followed path are

summed and then divided by the number of classifiers used in the path to produce

a NormalisedAccumulatedProbability (NormalisedAccumulatedConfidence) value,

(0 <NormalisedAccumulatedProbability < 1, while 0 < NormalisedAccumulatedCon-

fidence ≤ 100). The NAP (NAC) value is calculated for each candidate class, the

candidate class associated with the highest value will be retrieved as the class label for a

given record. Using the Voting mechanism, the number of votes for each candidate class

is calculated and the candidate class associated with the highest vote will be assigned

as the class label for the given record.

The remainder of this sub-section is organised as follows: Sub-section 4.3.2 considers

the multiple path strategy when using CARM classifiers at the nodes in the binary

hierarchy, while Sub-section 4.3.2 considers the multiple path strategy when using Naive

Bayes classifiers at the nodes in the binary hierarchy.

The Multiple Path Strategy Using CARM Classifiers at Nodes

Using the confidence values generated by CARM classifiers to follow multiple paths

within the hierarchy, the confidence value Conf associated with a class group (Conf

N.leftClassGroup or ConfN.rightClassGroup) is used to indicate whether one or two branches

(due to the binary structure of our hierarchy) will be followed using the proposed σ

threshold. If the Conf value of the branch associated with the highest confidence is less

than σ both branches emanating from the node will be explored further, otherwise the

branch with the highest associated Conf value will be selected.

With respect to the above it should be recalled that a classifier generated using a

CARM algorithm comprises a set of CARs whereby the CARs are typically ordered

according to confidence value. CARs with the highest confidence are listed first. If two

CARs have the same confidence usually the more general rule (that with the smallest

antecedent) will appear first, with more specific rules appearing later1. Typically the

classifier will also include a default rule to be fired when no other rule fits the given

example, which will return the most frequently occurring class label in the original

training set. Given a new record to be classified, the first rule whose antecedent matches

the record (or the default rule) is used to classify the record. However, our Multiple

Path strategy requires that we have confidence values for both branches emanating from

a node. Thus the CARM classifiers used were modified so that, where possible, the

confidence values associated with both branches were returned by finding the first rule

in the rule base with respect to both classes (where such rules existed).

1Some authors argue that the more specific rule should be listed first, this remains an open question.
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When using the Multiple Path strategy coupled with the (BIC) mechanism the sug-

gested procedure is presented in Algorithm 3. The algorithm is similar to the pro-

posed Single Path strategy algorithm (Algorithm 2) except with respect to the use of

the σ threshold to decide whether to follow a single branch or both branches emanat-

ing from a node. At the end of the algorithm a list L, which holds all the identified

potential class labels with their associated confidence values for the given case, is pro-

cessed to select the class label c with the highest confidence value. The procedure

MultiPathBestConf(r,N) is called recursively as the process progresses. On each re-

cursion the CARM classifier held at the current node is used to produce a confidence

value (line 8), with respect to r for the leftClassGroup and the rightClassGroup. We

then follow one or two branches according to the relative nature of the confidence values

returned using the CARM classifier at the current node and the σ threshold. Whenever

the size of a class group considered at a node is equal to one (lines 11 and 23), indicating

that the group comprises a single class label, the class label and associated confidence

value are added to L (lines 12 and 24). At the end of the process (line 35) L is processed

to identify the class label with the highest associated confidence value.

Algorithm 4 presents the Multiple Path strategy coupled with the Normalised Accu-

mulated Confidence (NAC) mechanism. The main difference between the BIC and NAC

mechanisms is that for the later all confidence values are stored with respect to each path

followed (not just the confidence values at the leaf nodes). Consequently a weighting

may be derived for each candidate class. We refer to this weighting as the Normalised

Accumulated Confidence (NormalisedAccumulatedConf) value. In order to determine

the Normalised Accumulated Confidence value associated with a path two additional

parameters (in addition to the parameters in Algorithm 3) are used: AccumConf and

ConfCount, where AccumConf is used to store the summation of the confidence values

for the path followed, while ConfCount is used to store the number of confidence values

for the path followed (so that the final accumulated confidence can be normalised). More

specifically, the Normalised Accumulated Confidence value, which will be associated with

each candidate class label, is calculated as follows:

NormalisedAccumConf = AccumConf ÷ Confcount (4.1)

where 0 < NormalisedConf ≤ 100.

As notes above the generated CARM classifiers held at nodes were modified to re-

turn the confidence value associated with both class labels represented by each node.

However, in some cases it was not possible to identify both confidence values. In

this case only the single identified confidence value was used when calculating the

NormalisedAccumulatedConfidence value for a specific path (See Algorithm 4, lines

23-27 and 44-48). If the path that did not feature a confidence value was followed, no

confidence value was assumed.
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Algorithm 3 Multiple Path Classification Coupled with BIC

1: INPUT
2: r a new unseen record
3: N a pointer to the current node in the hierarchy (root node at start)
4: OUTPUT
5: c the predicted class label of the input record r

6: L the set of class labels, together with their associated confidence values, maintained as the
procedure progresses, set to {} at start

7: START PROCEDURE MultiPathBestConf(r,N)
8: C = Class label set for r with the associated confidence values (Conf) generated using

classifier held at node N (C = {N.leftClassGroup,N.rightClassGroup})
9: if ( (Conf(N.leftClassGroup) > Conf(N.rightClassGroup) ) then

10: if (Conf(N.leftClassGroup) > σ) then
11: if (|N.leftClassGroup| == 1) then
12: Add class label ci (c ∈ N.leftClassGroup) to class list L with Confci
13: else
14: MultiPathBestConf(r,N.leftBranch)
15: end if
16: else
17: MultiPathBestConf(r,N.leftBranch)
18: MultiPathBestConf(r,N.rightBranch)
19: end if
20:

21: else
22: if (Conf(N.rightClassGroup) > σ) then
23: if (|N.rightClassGroup| == 1) then
24: Add class label ci(c ∈ N.rightClassGroup) to class list L with Confci
25: else
26: MultiPathBestConf(r,N.rightBranch)
27: end if
28: else
29: MultiPathBestConf(r,N.leftBranch)
30: MultiPathBestConf(r,N.rightBranch)
31: end if
32:

33: end if
34: END PROCEDURE MultiPathBestConf(r,N)

35: Process L and select class label c with highest confidence

With respect to the Multiple Path strategy coupled with Voting class label selection

mechanism, the algorithm is very similar to Algorithm 3 and 4, but much simpler as

there is no need to store confidence values during the classification process. Only the

individual class labels obtained during traversal of the BT will be added to L. On

completion L will contain a set of candidate class labels, the class label with highest

occurrences count in L will be assigned to the record under consideration.
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Algorithm 4 Multiple Path Coupled with NAC

1: INPUT
2: r a new unseen record
3: N a pointer to the current node in the hierarchy (root node at start)
4: AccumConf the Accumulated summation of the Confidence Value in the followed path

(initially 0.0)
5: ConfCount Confidence counter keeping the number of confidence values in the followed path
6: OUTPUT
7: c the predicted class label of the input record r
8: L the set of class labels, together with their associated normalised accumulated confidence

values, maintained as the procedure progresses, set to {} at start
9: START PROCEDURE MultiPathNormalisedConf(r,N,AccumConf,ConfCount)

10: C = Class label set for r with the associated confidence values (Conf) generated using
classifier held at node N (C = {N.leftClassGroup,N.rightClassGroup})

11: if (Conf(N.leftClassGroup) > Conf(N.rightClassGroup) ) then
12: leftAccumConf = Conf(N.leftClassGroup) + AccumConf
13: leftConfCount = ConfCount + 1
14: if (Conf(N.leftClassGroup) > σ) then
15: if (|N.leftClassGroup| == 1) then
16: leftNormalisedAccumConf = leftAccumConf/leftConfCount
17: Add class label ci (c ∈ N.leftClassGroup) to class list L with the
18: leftNormalisedAccumConf.
19: else
20: MultiPathBestConf(r,N.leftBranch, leftAccumConf, leftConfCount)
21: end if
22: else
23: if (Conf(N.rightClassGroup) != Null) then
24: rightAccumConf = Conf(N.rightClassGroup) + AccumConf
25: rightConfCount = ConfCount+ 1
26: else
27: rightAccumConf = AccumConf
28: end if
29: MultiPathBestConf(r,N.rightBranch, rightAccumConf, rightConfCount)
30: MultiPathBestConf(r,N.leftBranch, leftAccumConf, leftConfCount)
31: end if
32: else
33: rightAccumConf = Conf(N.rightClassGroup) + AccumConf
34: rightConfCount = ConfCount + 1
35: if (Conf(N.rightClassGroup) > σ) then
36: if (|N.rightClassGroup| == 1) then
37: rightNormalisedAccumConf = rightAccumConf/rightConfCount
38: Add class label ci (c ∈ N.rightClassGroup) to class list L with the
39: rightNormalisedAccumConf.
40: else
41: MultiPathBestConf(r,N.rightBranch, rightAccumConf, rightConfCount)
42: end if
43: else
44: if (Conf(N.leftClassGroup) != Null) then
45: leftAccumConf = Conf(N.leftClassGroup) + AccumConf
46: leftConfCount = ConfCount+ 1
47: else
48: leftAccumConf = AccumConf
49: end if
50: MultiPathBestConf(r,N.rightBranch, rightAccumConf, rightConfCount)
51: MultiPathBestConf(r,N.leftBranch, leftAccumConf, leftConfCount)
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Algorithm 4 Multiple Path Coupled with NAC (Continued)

52: end if
53: end if
54: END PROCEDURE MultiPathNormalisedConf(r,N,AccumConf,ConfCount)

55: Process L and select class label c with highest normalised accumulated confidence
value

The Multiple Path Strategy Using Naive Bayes Classifiers at Nodes

With respect to utilising Naive Bayes probability values to follow multiple paths within

the binary tree hierarchy, in a similar manner to that when using confidence val-

ues generated by CARM classifiers to follow multiple paths within the hierarchy, the

Bayesian probability P associated with individual class groups (PN.leftClassGroup and

PN.rightClassGroup) was used to dictate whether one or two branches (because of the

binary nature of our hierarchy) will be followed according to the predefined threshold

sigma (σ). If PN.leftClassGroup > σ and PN.rightClassGroup > σ then both branches will

be explored, otherwise the branch with the highest associated P value will be selected.

The Multiple Path BIP algorithm is presented in Algorithm 5. While Algorithm 6

presents the multiple path strategy coupled with normalised accumulated probability.

Algorithm 5 is similar to Algorithm 3, while Algorithm 6 is similar to 4 as explained

earlier. However, the probability value for both class groups at any node can be identi-

fied, unlike in the case when using CARM confidence values where in some cases it was

not possible to identify both confidence values.

Again, if the clustering algorithms, k−mean or divisive hierarchical clustering, are

used to divide class labels between nodes during the generation process; the number

of classifiers that need to be evaluated in order to classify a new record can not be

calculated in advance. While if a data splitting technique is used during the hierarchy

generation process, the number of classifiers that need to be evaluated when multiple

paths are followed within the hierarchy is N − 1 classifiers in the worst case (visit all

nodes in the tree), where N is the number of class labels in a given dataset.

4.4 Experiments and Results

In this section we present an overview of the adopted experimental set up and the eval-

uation results obtained. The effectiveness of the suggested Binary Tree hierarchical

classification model was evaluated using the fourteen different data sets identified in

Chapter 3, and pre-processed using the LUCS-KDD-DN software [22]. Ten-fold Cross

Validation (TCV) was used throughout. The evaluation measures used were average

accuracy and average AUC (Area Under the receiver operating Curve). Although the

results in terms of average accuracy and average AUC are both included in this section,

we will discuss the results in terms of average AUC only because of: (i) the theoreti-

cal and empirical evidences that AUC is a better measure than accuracy for evaluating
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Algorithm 5 Multiple Path Classification Coupled with BIP

1: INPUT
2: r a new unseen record
3: N a pointer to the current node in the hierarchy (root node at start)
4: OUTPUT
5: c the predicted class label of the input record r

6: C = Class label set for r with the associated probabilities generated using classifier held at
node N (C = {N.leftClassGroup,N.rightClassGroup})

7: if (PN.leftClassGroup > σ and PN.righttClassGroup > σ) then
8: if (|N.leftClassGroup| = 1) then
9: Add class label ci (c ∈ N.leftClassGroup) to class list L with prob. Pci

10: else
11: MultiPathBestPro(r,N.leftBranch)
12: end if
13: if (|N.rightClassGroup| = 1) then
14: Add class label ci (c ∈ N.rightClassGroup) to class list L with prob. Pci

15: else
16: MultiPathBestPro(r,N.rightBranch)
17: end if
18: else
19: if (PN.leftClassGroup > PN.rightClassGroup) then
20: if (|N.leftClassGroup| = 1) then
21: Add class label ci (c ∈ N.leftClassGroup) to class list L with prob. Pci

22: else
23: MultiPathBestProb(r,N.leftBranch)
24: end if
25: else
26: if (|N.rightClassGroup| = 1) then
27: Add class label ci (c ∈ N.rightClassGroup) to class list L with prob. Pci

28: else
29: MultiPathBestProb(r,N.rightBranch)
30: end if
31: end if
32: end if
33: Process L and select class label c with highest probability

learning algorithms[50] and (ii) the inclusion of unbalanced datasets within the consid-

ered evaluation datasets (accuracy does not take class priors into consideration). Note

here that the low AUC values associated with the Nursery, Glass, Zoo, and Ecoli data

sets are caused, at least partially, by the issue reported earlier in Chapter 3 the usage

of TCV with concerning data set where some of the classes only appear in a very small

number of records.

For the evaluation three classification algorithms (Decision Tree, Naive Bayes, CARM)

and two classification styles (Stand-alone, and Bagging) were used coupled with the three

proposed partitioning techniques (k-mean, divisive hierarchical clustering and splitting

technique) and the two proposed classification strategies (Single and Multiple Path).

In addition, with respect to the Multiple Path strategy, both proposed mechanisms for

arriving at a final classification decision, BIP (BIC) and NAP (NAC), were considered.

Thus, in total, eighteen different Binary Tree hierarchical classification model variations
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Algorithm 6 Multiple Path Coupled with NAP

1: INPUT
2: r a new unseen record
3: N a pointer to the current node in the hierarchy (root node at start)
4: AccumWieght the accumulated Weight for the followed path (initially 0.0)
5: OUTPUT
6: c the predicted class label of the input record r

7: C = Class label set for r with the associated probabilities generated using classifier held at
node N (C = {N.leftClassGroup,N.rightClassGroup})

8: if (PN.leftClassGroup > σ and PN.rightClassGroup > σ) then
9: leftAccumWeight = AccumWeight+ PN.leftClassGroup

10: rightAccumWeight = AccumWeight+ PN.rightClassGroup

11: if (|N.leftClassGroup| = 1) then
12: Add class label ci (c ∈ N.leftClassGroup) to class list L with weight.
13: leftAccumWeight
14: else
15: MultiPathBestPro(r,N.leftBranch, leftAccumWeight)
16: end if
17: if (|N.rightClassGroup| = 1) then
18: Add class label ci (c ∈ N.rightClassGroup) to class list L with weight.
19: rightAccumWeight
20: else
21: MultiPathBestPro(r,N.rightBranch, rightAccumWeight)
22: end if
23: else
24: if (PN.leftClassGroup > PN.rightClassGroup) then
25: leftAccumWeight = AccumWeight+ PN.leftClassGroup

26: if (|N.leftClassGroup| = 1) then
27: Add class label ci (c ∈ N.leftClassGroup) to class list L with weight.
28: leftAccumWeight
29: else
30: MultiPathBestProb(r,N.leftBranch, leftAccumWeight)
31: end if
32: else
33: rightAccumWeight = AccumWeight+ PN.rightClassGroup

34: if (|N.rightClassGroup| = 1) then
35: Add class label ci (c ∈ N.rightClassGroup) to class list L with weight.
36: rightAccumWeight
37: else
38: MultiPathBestProb(r,N.rightBranch, rightAccumWeight)
39: end if
40: end if
41: end if
42: Process L and select class label c with highest weight

were considered:

1. K-means and Decision tree (K-means&DT): The proposed approach using k-means

(k=2 ) to group data with decision tree classifiers at each node.

2. Data splitting and Decision tree (DS&DT): The proposed approach using data

splitting to group data with decision tree classifiers at each node.
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3. Hierarchical clustering and Decision tree (HC&DT): The proposed approach using

divisive hierarchical clustering to group data with decision tree classifiers at each

node.

4. K-means and Decision Tree Bagging (K-means&DTB): The proposed approach

using k-means (k=2 ) to group data with decision tree bagging at each node (N =

3).

5. Data splitting and Decision Tree Bagging (DS&DTB): The proposed approach

using data splitting to group data with decision tree bagging at each node (N = 3).

6. Hierarchical clustering and Decision Tree Bagging (HC&DTB): The proposed ap-

proach using divisive hierarchical clustering to group data with decision tree bag-

ging at each node (N = 3).

7. K-means and Naive Bayes (K-means&N): The proposed approach using k-means

(k = 2) to group data with Naive Bayes classifiers at each node.

8. Data splitting and Naive Bayes (DS&N): The proposed approach using data split-

ting to group data with Naive Bayes classifiers at each node.

9. Hierarchical clustering and Naive Bayes (HC&N): The proposed approach using

divisive hierarchical clustering to group data with Naive Bayes classifiers at each

node.

10. K-means and Naive Bagging (K-means&NB): The proposed approach using k-

means (k = 2) to group data with Naive Bayes bagging at each node (N = 3).

11. Data splitting Naive Bagging (DS&NB): The proposed approach using data split-

ting to group data with Naive Bayes bagging at each node (N = 3).

12. Hierarchical clustering and Naive Bagging (HC&NB): The proposed approach us-

ing divisive hierarchical clustering to group data with Naive Bayes bagging at

each node (N = 3).

13. K-means and CARM (K-means&CARM): The proposed approach using k-means

(k = 2) to group data with CARM classifiers at each node.

14. Data splitting and CARM (DS&CARM): The proposed approach using data split-

ting to group data with CARM classifiers at each node.

15. Hierarchical clustering and CARM(HC&CARM): The proposed approach using

divisive hierarchical clustering to group data with CARM classifiers at each node.

16. K-means and CARM Bagging (K-means&CARMB): The proposed approach using

k-means (k = 2) to group data with CARM bagging at each node (N = 3).

17. Data splitting CARM Bagging (DS&CARMB): The proposed approach using data

splitting to group data with CARM bagging at each node (N = 3).
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18. Hierarchical clustering and CARM Bagging (HC&CARMB): The proposed ap-

proach using divisive hierarchical clustering to group data with CARM bagging

at each node (N = 3).

With respect to the Bagging methods three classifiers were generated with respect to

each node. Both the Single and Multiple Path classification strategies were considered

for each of the above variations.

For comparison purposes alternative forms of classification were also applied to the

data sets as follows:

1. A number of “stand alone” classifiers, namely: Naive Bayes, Decision tree, and

CARM. Other forms of single classification model could have been selected but

Naive Bayes, Decision tree, and CARM were chosen because these were also used

in the context of the Binary Tree (BT) model.

2. A Bagging ensemble using a combination of three classifiers, again Naive Bayes,

Decision tree, and CARM were used as the base classifiers.

The objectives of the evaluation were as follows:

1. To compare the classification effectiveness of the three proposed class grouping

techniques: (i) k-means, (ii) divisive hierarchical clustering and (iii) data splitting.

2. To compare the classification effectiveness of the three considered node classifiers:

(i) Decision Tree, (ii) Naive Bayes and (iii) CARM.

3. To compare the classification effectiveness of the two considered classification

styles: (i) Stand-alone and (ii) Bagging.

4. To compare the three proposed class label selection methods associated with the

Multiple Path strategy: (i) BIP (or BIC), (ii) NAP (or NAC) and (iii) Voting, in

terms of classification effectiveness.

5. To compare the use of the Single Path strategy against the use of the Multiple

Path strategy for hierarchical ensemble classification.

6. To compare the classification effectiveness of the proposed Binary Tree hierarchi-

cal ensemble classification model with respect to stand-alone classification versus

alternative established ensemble methods (namely Bagging).

7. To compare the efficiency of the proposed binary tree hierarchical ensemble clas-

sifiers in terms of generation time and evaluation time.

The results obtained are presented in the following Sub-sections. These are organised

as follows. Sub-section 4.4.1 presents the results obtained using the Single Path strategy

with respect to: (i) the three alternative classification algorithms, (ii) the two consid-

ered classification styles (stand-alone and bagging) and (iii) the three considered class
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grouping techniques. Sub-section 4.4.2 presents the results obtained using the Multiple

Path strategy with respect to: (i) the two classification algorithms considered (Naive

Bayes and CARM), (ii) the three considered class grouping techniques and (iii) the two

proposed class label selection methods. Sub-section 4.4.3 then provides a comparison

between the Single Path and Multiple Path strategies, whilst Sub-section 4.4.4 consid-

ers the results obtained when comparing the usage of conventional methods, stand-alone

and bagging with the results obtained from the proposed Binary Tree hierarchical clas-

sification model.

In the context of the above listed evaluation objectives, the results in the context

of the first three of these are discussed in Sub-sections 4.4.1 and 4.4.2. The reasons for

this are that: (i) the comparisons of the different considered grouping techniques, the

different considered classifier generators, and the different considered classification styles

are required to be conducted with respect to both Single and Multiple Path strategies;

(ii) to consider the settings associated with the Multiple Path strategy before commenc-

ing to compare the different classifiers, grouping techniques or classification styles; (iii)

to avoid repetition of the presented results; and (iv) to maintain consistency with the

way that evaluation results are presented in later chapters (these are all presented in a

similar manner as in this chapter). The results in the context of the fourth, fifth and

sixth evaluation objective are discussed in Sub-sections 4.4.2, 4.4.3 and 4.4.4 respec-

tively. With respect to the last evaluation objective, the comparative efficiency of the

proposed binary tree hierarchical ensemble classifiers, this is considered throughout the

results sub-sections.

4.4.1 Single Path Experiments and Results

This section presents the results obtained using the Single Path strategy for the different

Binary Tree hierarchical classification model variations. More specifically, in this chap-

ter a comparison between: (i) the different considered grouping techniques (k-means,

divisive hierarchical clustering, and data splitting), (ii) the different considered classifier

generators (Decision Tree, Naive Bayes and CARM) and (iii) the different considered

classification styles (Stand-alone and Bagging), with respect to the Single Path strategy

is presented. First the results obtained from each classifier, in stand-alone or Bagging

mode, with respect to different data grouping techniques are presented. Consequently,

a comparison of the different grouping techniques, and the two classification styles with

respect to each of the considered classifiers is presented. Then a comparison between

the different considered classifiers is conducted.

Commencing with the results obtained when using Decision Tree classifiers at each

tree node, both stand-alone decision tree and bagging of decision trees, coupled with

the three alternative data grouping techniques. Table 4.1 presents the obtained results

in terms of average accuracy, and average AUC (best results highlighted in bold font).

From the table it can be clearly observed that usage of a single (stand-alone) decision

tree classifier at each tree node outperforms usage bagging at each node. The reason
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behind the weakness of bagging is the insufficient information for training the classifiers

as we drill down in the tree. Recall that disjoint partitions were used to assign samples

for the base classifiers within the Bagging, the reason behind choosing this form of

sampling was to limit the complexity of the proposed model. More specifically, using

other forms of sampling such as sampling with replacement, will result in a higher

generation and classification times. With respect to comparing the three considered

data grouping techniques, it can be noted that the results of k-means and data splitting

are very close and outperform hierarchical clustering. The reason behind the weakness

of the hierarchical clustering, especially when dealing with large data sets, was that

redundant clusters were generated at the first levels in the tree where high overlap of

class labels occurred between clusters, as a consequence of which: (i) more levels where

generated with respect to the resulting tree, thus the likelihood of miss-classification

increased during the classification stage and (ii) it became harder for individual classifier

to distinguish between the groups of class labels. The best overall results, in terms of

average AUC, were obtained when stand-alone Decision Tree classifiers were generated

at each tree node coupled with usage of the data splitting technique for distributing data

between nodes within the hierarchy.

The results obtained with respect to the run-time experiments for both Decision

Tree classifiers and Bagging of decision tree classifiers at nodes coupled with the three

considered data distribution techniques, are presented in Table 4.2. The table includes

the generation and classification times for each. With respect to the data segmentation

techniques it can be observed that the lowest generation and classification times resulted

when using data splitting, followed by k-means and hierarchical clustering respectively.

In addition, it can be observed that the lowest generation and classification times were

obtained when using Bagging of decision trees at nodes and data splitting, to generate

the binary tree hierarchical classification model. Note here that disjoint partitions were

used with respect to the generated samples using for the bagging, however, using another

sampling technique would result in higher run times.

With respect to the results obtained when using Naive Bayes classifiers at each

tree node, both stand-alone Naive Bayes and Bagging of Naive Bayes, coupled with

the three proposed data grouping techniques, Table 4.3 presents the obtained results

in terms of average accuracy, and average AUC (best results highlighted in bold font).

From the table it can be clearly observed, as in the case of the Decision Tree hierarchies

discussed above, that using single (stand-alone) Naive Bayes classifiers at each tree

node outperforms using Bagging of Naive Bayes at each node. Comparing the three

considered data grouping techniques, it can be noted that the results of k-means and

data splitting are similar, both clearly outperformed the usage of hierarchical clustering.

The best overall results, in terms of average AUC, were obtained when stand-alone

Naive classifiers were generated for each tree node coupled with the k-means technique

for distributing data between nodes within the hierarchy.



Table 4.1: Average Accuracy and AUC values obtained using Decision Tree classifiers and Bagging of Decision Trees classifiers at nodes coupled
with the three alternative data grouping techniques: (i) k-means, (ii) divisive hierarchical clustering and (iii) data splitting

Data set Classes
K-means&DT DS&DT HC&DT K-means&DTB DS&DTB HC&DTB
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

WaveForm 3 59.68 0.60 58.56 0.59 58.98 0.59 58.08 0.58 57.48 0.58 59.44 0.59
Wine 3 68.75 0.67 65.22 0.64 70.54 0.68 64.05 0.64 62.45 0.60 60.09 0.59

Nursery 5 35.69 0.19 33.51 0.27 59.70 0.32 86.20 0.46 64.55 0.32 67.32 0.36
Heart 5 47.97 0.31 49.89 0.32 47.48 0.26 47.41 0.24 51.42 0.28 52.86 0.25

PageBlocks 5 92.56 0.49 92.40 0.48 74.28 0.36 89.77 0.20 91.56 0.28 72.88 0.20
Dermatology 6 58.90 0.55 61.37 0.60 60.25 0.54 51.90 0.43 54.54 0.49 47.30 0.42

Glass 7 60.44 0.39 60.91 0.38 56.95 0.34 52.10 0.28 57.43 0.28 52.90 0.25
Zoo 7 85.00 0.50 85.00 0.50 82.09 0.51 76.27 0.44 71.36 0.41 75.45 0.43
Ecoli 8 76.90 0.33 78.72 0.35 56.29 0.28 63.59 0.23 71.63 0.23 49.44 0.22
Led 10 75.00 0.75 75.00 0.75 59.94 0.59 71.75 0.72 73.22 0.73 51.75 0.51

PenDigits 10 67.30 0.67 66.78 0.67 66.30 0.66 67.22 0.67 66.74 0.67 59.44 0.59
Soybean 15 64.62 0.65 63.02 0.56 52.67 0.47 48.74 0.38 59.06 0.49 48.01 0.39

ChessKRVK 18 25.97 0.21 27.41 0.25 24.67 0.18 30.04 0.20 29.98 0.17 25.02 0.15
LetRecog 26 42.99 0.43 42.76 0.43 38.59 0.39 31.12 0.31 36.92 0.37 24.26 0.24

Mean 61.56 0.48 61.47 0.49 57.77 0.44 59.87 0.41 60.60 0.42 53.30 0.37



Table 4.2: Run time results (in seconds) obtained using Decision Tree classifiers and Bagging of Decision Tree classifiers at nodes coupled with the
three considered data distribution techniques: (i) k-means, (ii) divisive hierarchical clustering and (iii) data splitting

Data set
Generation Time Classification Time

K-means DS& HC& K-means& DS& HC& K-means& DS& HC& K-means& DS& HC&
DT DT DT DTB DTB DTB DT DT DT DTB DTB DTB

Waveform 2.255 1.213 3.816 1.890 1.080 3.127 0.390 0.388 0.064 0.043 0.436 0.417
Wine 0.181 0.167 0.193 0.176 0.162 0.183 0.002 0.001 0.002 0.002 0.001 0.001

Nursery 1.609 1.226 5.312 1.558 1.217 5.083 0.093 0.098 1.000 0.086 0.047 0.085
Heart 0.264 0.204 0.264 0.295 0.204 0.267 0.006 0.010 0.003 0.014 0.010 0.004

PageBlocks 0.873 0.769 2.870 0.852 0.785 2.847 0.009 0.009 0.012 0.011 0.009 0.014
Dermatology 0.266 0.228 0.293 0.282 0.237 0.295 0.007 0.006 0.004 0.013 0.010 0.004

Glass 0.200 0.178 0.228 0.205 0.174 0.230 0.003 0.002 0.002 0.002 0.002 0.002
Zoo 0.128 0.123 0.134 0.139 0.123 0.161 0.001 0.001 0.001 0.001 0.001 0.001
Ecoli 0.237 0.201 0.229 0.248 0.204 0.255 0.002 0.001 0.002 0.002 0.003 0.002
Led 0.568 0.532 0.722 0.586 0.544 0.745 0.013 0.012 0.015 0.019 0.017 0.020

PenDigits 4.652 2.289 9.253 3.550 1.991 7.644 0.091 0.090 0.099 0.469 0.090 0.084
Soybean 0.533 0.485 0.614 0.532 0.460 0.593 0.006 0.006 0.008 0.006 0.005 0.011

ChessKRvK 24.583 2.946 40.116 31.808 2.876 43.766 0.365 0.385 0.422 0.361 0.243 0.345
LetterRecog 15.037 6.004 34.139 11.083 4.191 30.764 0.282 0.242 0.315 0.225 0.294 0.328

Mean 3.670 1.183 7.013 3.800 1.018 6.854 0.091 0.089 0.139 0.090 0.083 0.094



Table 4.3: Average Accuracy and AUC values obtained using Naive Bayes classifiers and Bagging of Naive Bayes classifiers at nodes coupled with
the three alternative data grouping techniques: (i) k-means, (ii) divisive hierarchical clustering and (iii) data splitting with respect to the Single

Path Strategy

Data set
K-means&N DS&N HC&N K-means&NB DS&NB HC&NB
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Waveform 68.42 0.69 74.30 0.74 43.12 0.43 67.82 0.68 74.28 0.74 57.70 0.58
Wine 92.54 0.93 94.49 0.95 28.31 0.34 90.19 0.90 94.31 0.95 44.45 0.44

Nursery 91.92 0.56 90.12 0.44 31.80 0.17 88.42 0.52 90.07 0.44 36.56 0.18
Heart 53.76 0.37 57.70 0.41 19.39 0.20 52.53 0.36 54.66 0.40 14.21 0.16

PageBlocks 92.44 0.44 91.96 0.34 1.68 0.22 89.77 0.20 91.83 0.29 73.44 0.23
Dermatology 78.64 0.75 79.80 0.79 10.60 0.17 78.07 0.75 77.67 0.76 21.55 0.19

Glass 62.04 0.41 63.94 0.43 15.01 0.12 57.28 0.36 59.26 0.40 20.40 0.12
Zoo 95.09 0.60 93.18 0.59 12.00 0.13 92.09 0.56 92.18 0.58 17.91 0.15
Ecoli 79.98 0.35 82.31 0.36 15.17 0.13 77.51 0.28 77.60 0.29 27.48 0.11
Led 61.22 0.61 60.16 0.60 15.16 0.15 64.53 0.64 65.50 0.66 12.50 0.13

PenDigits 82.68 0.82 68.56 0.68 10.69 0.10 85.03 0.85 65.64 0.65 11.05 0.11
Soybean 79.00 0.84 79.55 0.81 7.30 0.07 55.48 0.58 74.03 0.75 11.24 0.09

ChessKRvK 46.28 0.42 35.18 0.27 5.69 0.06 39.87 0.35 29.01 0.19 12.05 0.06
LetterRecog 41.40 0.41 39.16 0.39 4.85 0.05 34.74 0.35 35.05 0.35 3.80 0.04

Mean 73.24 0.59 72.17 0.56 15.77 0.17 69.52 0.53 70.08 0.53 26.02 0.19
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The results obtained with respect to the run-time experiments for Naive Bayes clas-

sifiers and Bagging of Naive Bayes classifiers at nodes coupled with the three considered

data distribution techniques are presented in Table 4.4. As before the table shows the

generation and classification times for each. Again, as in the case of the Decision tree

hierarchies, the lowest generation and classification times were obtained when using the

data splitting technique, followed by k-means and hierarchical clustering respectively.

Regarding the classification style used at each tree node; using stand-alone Naive clas-

sifiers resulted in a lower generation and classification times than when using Bagging

of Naive Bayes classifiers. From the table it can be observed that the lowest generation

and classification times were obtained when using stand-alone Naive Bayes and data

splitting to generate the binary tree hierarchical classification model.

With respect to using CARM to generate the base classifiers in the desired Binary

Tree hierarchical classification model, a confidence threshold of 40% (τ = 40 %) and a

support threshold of 1% (s = 1%) were used. A range of alternative threshold values

were considered, not reported here, and it was found that (τ = 40 %, and s = 1%)

produced the best performance with respect to the considered evaluation datasets.

The results obtained when using CARM classifiers at each tree node, when using

both stand-alone CARM and Bagging of CARM, coupled with the three alternative

data grouping techniques are presented in Table 4.5. From the table it can be clearly

observed, as in the case of the Decision Tree and Naive Bayes hierarchies, that using

single (stand-alone) CARM classifiers at each tree node outperformed using Bagging of

CARM classifiers at each node, regardless of the adopted data segmentation technique.

With respect to comparing the three considered data grouping techniques, it can be

noted that in this case best results were generated using k-means, followed by data

splitting and hierarchical clustering respectively. The best overall results were obtained

when using stand-alone CARM classifiers at each tree node coupled with the k-means

technique for distributing data between nodes within the binary tree hierarchy.

The associated results obtained for the run-time experiments with respect to CARM

classifiers and Bagging of CARM classifiers at nodes coupled with the three considered

data distribution techniques: are presented in Table 4.6. As before the table gives the

generation and classification times for each. The results corroborate the results obtained

when using the Decision tree and Naive Bayes hierarchies presented above; the lowest

generation and classification times were obtained when using data splitting, followed by

k-means and hierarchical clustering respectively. Regarding the classification style used

at each tree node, using stand-alone CARM classifiers resulted in lower generation and

classification times than when using Bagging of CARM classifiers. From the table it

can be observed that the lowest generation and classification times were obtained when

using stand-alone CARM and data splitting to generate the binary tree hierarchical

classification model.



Table 4.4: Run time results (in seconds) obtained using Naive Bayes classifiers and Bagging of Naive Bayes classifiers at nodes coupled with the
three considered data distribution techniques: (i) k-means, (ii) divisive hierarchical clustering and (iii) data splitting

Data set
Generation Time Single Path Classification Time

K-means& DS& HC& K-means& DS& HC& K-means& DS& HC& K-means& DS& HC&
N N N NB NB NB N N N NB NB NB

Waveform 0.839 0.730 1.880 1.124 0.747 1.948 0.011 0.003 0.013 0.010 0.008 0.015
Wine 0.213 0.167 0.180 0.176 0.170 0.160 0.001 0.000 0.001 0.001 0.001 0.001

Nursery 1.197 1.048 4.452 1.420 1.146 4.591 0.017 0.008 0.017 0.012 0.010 0.019
Heart 0.295 0.229 0.226 0.437 0.873 0.205 0.001 0.001 0.001 0.002 0.012 0.001

PageBlocks 0.763 0.741 2.598 1.023 0.883 2.789 0.007 0.005 0.010 0.010 0.012 0.012
Dermatology 0.241 0.218 0.248 0.323 0.228 0.227 0.001 0.000 0.001 0.001 0.001 0.001

Glass 0.209 0.197 0.192 0.328 0.184 0.174 0.001 0.001 0.001 0.002 0.001 0.001
Zoo 0.146 0.127 0.131 0.158 0.142 0.115 0.001 0.001 0.001 0.001 0.002 0.001
Ecoli 0.215 0.197 0.211 0.345 0.197 0.193 0.001 0.001 0.001 0.003 0.001 0.001
Led 0.558 0.530 0.692 0.579 0.527 0.663 0.004 0.003 0.006 0.012 0.007 0.008

PenDigits 1.359 1.138 5.138 1.886 1.217 5.175 0.011 0.014 0.015 0.016 0.015 0.019
Soybean 0.458 0.362 0.460 0.649 0.494 0.438 0.002 0.001 0.003 0.004 0.003 0.005

ChessKRvK 2.021 1.555 17.740 4.468 1.925 18.288 0.046 0.022 0.060 0.063 0.024 0.065
LetterRecog 1.998 1.481 16.636 4.078 1.745 17.207 0.027 0.018 0.039 0.038 0.035 0.043

Mean 0.751 0.623 3.627 1.214 0.748 3.727 0.009 0.006 0.012 0.013 0.009 0.014



Table 4.5: Average Accuracy and AUC values obtained using CARM classification and Bagging of CARM classification at nodes coupled with the
three alternative data grouping techniques: (i) k-means, (ii) divisive hierarchical clustering and (iii) data splitting with respect to the Single Path

Strategy

Data set
K-means&CARM DS&CARM HC&CARM K-means&CARMB DS&CARMB HC&CARMB
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Waveform 58.92 0.59 57.02 0.58 61.62 0.61 40.50 0.40 57.80 0.58 42.84 0.42
Wine 78.99 0.81 78.59 0.76 84.28 0.86 65.62 0.66 70.33 0.68 70.54 0.70

Nursery 84.41 0.43 86.81 0.43 53.07 0.27 82.11 0.42 80.10 0.39 43.80 0.22
Heart 53.76 0.24 52.39 0.20 53.35 0.23 51.97 0.22 52.45 0.22 52.04 0.21

PageBlocks 90.79 0.24 89.77 0.20 73.73 0.25 89.77 0.20 89.77 0.20 72.84 0.20
Dermatology 74.92 0.64 60.28 0.46 71.39 0.66 62.85 0.47 57.87 0.40 49.58 0.43

Glass 48.46 0.29 61.56 0.31 52.19 0.30 48.21 0.28 59.49 0.28 46.95 0.26
Zoo 88.00 0.52 85.00 0.49 85.00 0.49 76.09 0.39 77.09 0.40 69.09 0.36
Ecoli 65.15 0.28 66.57 0.20 52.17 0.21 67.48 0.24 67.23 0.19 68.79 0.26
Led 54.78 0.55 45.53 0.45 35.16 0.35 28.63 0.28 25.06 0.24 15.78 0.15

PenDigits 61.12 0.61 42.68 0.42 50.74 0.51 54.68 0.54 55.96 0.56 35.92 0.36
Soybean 79.01 0.76 88.97 0.89 57.36 0.52 62.50 0.46 76.13 0.76 46.98 0.38

ChessKRvK 32.99 0.18 28.13 0.14 22.50 0.11 23.67 0.11 10.35 0.08 18.83 0.10
LetterRecog 29.58 0.30 33.12 0.33 21.54 0.22 12.87 0.13 20.01 0.20 13.00 0.13

Mean 64.35 0.46 62.60 0.42 55.29 0.40 54.78 0.34 57.12 0.37 46.21 0.30



Table 4.6: Run time results (in seconds) obtained using CARM classification and Bagging of CARM classification at nodes coupled with the three
considered data distribution techniques: (i) k-means, (ii) divisive hierarchical clustering and (iii) data splitting

Data set
Generation Time Single Path Classification Time

K-means DS& HC& K-means& DS& HC& K-means& DS& HC& K-means& DS& HC&
CARM CARM CARM CARMB CARMB CARMB CARM CARM CARM CARMB CARMB CARMB

Waveform 12.296 1.420 12.647 31.626 1.927 30.558 0.009 0.009 0.009 0.013 0.043 0.014
Wine 0.473 0.460 0.996 1.376 0.957 2.182 0.001 0.001 0.001 0.001 0.001 0.001

Nursery 1.513 1.186 5.233 2.294 1.347 5.934 0.011 0.006 0.011 0.014 0.009 0.015
Heart 5.115 0.724 3.982 7.428 1.767 5.883 0.002 0.001 0.001 0.001 0.001 0.002

PageBlocks 0.978 0.912 2.964 1.127 1.087 3.266 0.003 0.002 0.006 0.003 0.005 0.007
Dermatology 2.120 0.801 2.918 3.452 2.018 4.709 0.001 0.001 0.001 0.002 0.003 0.002

Glass 0.406 0.298 0.456 0.581 0.437 0.608 0.001 0.001 0.001 0.001 0.001 0.002
Zoo 1.270 0.925 1.468 2.513 2.253 3.801 0.000 0.001 0.000 0.001 0.000 0.001
Ecoli 0.404 0.332 0.393 0.374 0.321 0.425 0.001 0.001 0.000 0.002 0.001 0.002
Led 0.665 0.593 0.829 0.791 0.711 0.918 0.002 0.002 0.008 0.005 0.006 0.007

PenDigits 37.004 4.913 57.562 111.709 7.267 165.690 0.015 0.013 0.017 0.018 0.015 0.016
Soybean 6.182 4.804 11.658 10.525 8.275 18.811 0.004 0.002 0.003 0.006 0.006 0.006

ChessKRvK 4.068 1.510 19.765 6.144 1.929 21.755 0.049 0.026 0.045 0.054 0.023 0.058
LetterRecog 203.600 11.160 340.029 313.510 17.222 365.035 0.024 0.025 0.061 0.049 0.026 0.089

Mean 19.721 2.146 32.921 35.246 3.394 44.970 0.009 0.007 0.012 0.012 0.010 0.016
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Table 4.7 presents the results obtained using the Single Path strategy coupled with

the three alternative classification algorithms for generating the node classifiers in the

Binary Tree: Decision Tree, Naive Bayes, and CARM, with respect to the three consid-

ered data distribution techniques. Because the foregoing discussion established that it is

not effective to use Bagging at each binary tree node, Bagging results are not presented

in the table. From the table it can be seen that the best results, with respect to the

majority of the datasets considered, were obtained when using Naive Bayes classifiers at

the tree nodes.

As noted earlier with respect to the usage of Naive Bayes classifiers at tree nodes,

the results produced when using k-means and data splitting are similar, and clearly

outperform the hierarchical clustering results. However, the best overall results, in terms

of average AUC, was obtained when Naive classifiers were used at each tree node coupled

with the k-means technique for distributing data between nodes within the hierarchy.

Regarding the efficiency comparison between the three alternative classification al-

gorithms for generating the node classifiers in the Binary Tree, from Tables 4.2, 4.4, and

4.6 it can be observed that the lowest generation and classification times were obtained

when using Naive Bayes classifiers at the tree nodes.

From the above discussion, we can conclude that the choice of: (i) the base classifier

and (ii) the data distribution technique, to generate the proposed Binary Tree hier-

archical classification model, can significantly affect the classification accuracy of the

resulting ensemble model. The most effective and efficient classifier was found to be the

Naive Bayes classifier. Regarding the data segmentation technique it was found that

k-means and data splitting results are similar, and clearly outperform the hierarchical

clustering results.

4.4.2 Multiple Path Experiments and Results

This section presents the results obtained using the Binary Tree hierarchical classifi-

cation model coupled with the Multiple Path strategy. As noted earlier, the Multiple

Path strategy was realised using the Naive Bayes and CARM classification models be-

cause these featured probability and confidence values respectively that could be used

to determine whether single or multiple paths should be followed. Consequently, this

section is divided into three sub-sections as follows: (i) Sub-section 4.4.2 discuss the

conducted experiments, and the obtained results, when following multiple paths using

Naive Bayes classifiers with respect to the different considered grouping techniques, and

the three class label selection mechanisms (BIP, NAP and Voting), (ii) Sub-section 4.4.2

presents the conducted experiments, and the obtained results, when following multiple

paths using CARM as the base classifier with respect to the different considered group-

ing techniques, and the two class label selection mechanisms (BIC and NAC); and (iii)

Sub-section 4.4.2 presents a comparison between the two.



Table 4.7: Average Accuracy and AUC values obtained using the Single Path strategy coupled with the three alternative classification algorithms
for generating the node classifiers in the Binary Tree: (i) Decision Tree, (ii) Naive Bayes and (iii) CARM, with respect to the three considered data

distribution techniques: (i) k-means, (ii) divisive hierarchical clustering and (iii) data splitting

Data set
k-means Data splitting divisive hierarchical clustering

DT Naive CARM DT Naive CARM DT Naive CARM
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Waveform 59.68 0.60 68.42 0.69 58.92 0.59 58.56 0.59 74.30 0.74 57.02 0.58 58.98 0.59 43.12 0.43 61.62 0.61
Wine 68.75 0.67 92.54 0.93 78.99 0.81 65.22 0.64 94.49 0.95 78.59 0.76 70.54 0.68 28.31 0.34 84.28 0.86

Nursery 35.69 0.19 91.92 0.56 84.41 0.43 33.51 0.27 90.12 0.44 86.81 0.43 59.70 0.32 31.80 0.17 53.07 0.27
Heart 47.97 0.31 53.76 0.37 53.76 0.24 49.89 0.32 57.70 0.41 52.39 0.20 47.48 0.26 19.39 0.20 53.35 0.23

PageBlocks 92.56 0.49 92.44 0.44 90.79 0.24 92.40 0.48 91.96 0.34 89.77 0.20 74.28 0.36 1.68 0.22 73.73 0.25
Dermatology 58.90 0.55 78.64 0.75 74.92 0.64 61.37 0.60 79.80 0.79 60.28 0.46 60.25 0.54 10.60 0.17 71.39 0.66

Glass 60.44 0.39 62.04 0.41 48.46 0.29 60.91 0.38 63.94 0.43 61.56 0.31 56.95 0.34 15.01 0.12 52.19 0.30
Zoo 85.00 0.50 95.09 0.60 88.00 0.52 85.00 0.50 93.18 0.59 85.00 0.49 82.09 0.51 12.00 0.13 85.00 0.49
Ecoli 76.90 0.33 79.98 0.35 65.15 0.28 78.72 0.35 82.31 0.36 66.57 0.20 56.29 0.28 15.17 0.13 52.17 0.21
Led 75.00 0.75 61.22 0.61 54.78 0.55 75.00 0.75 60.16 0.60 45.53 0.45 59.94 0.59 15.16 0.15 35.16 0.35

PenDigits 67.30 0.67 82.68 0.82 61.12 0.61 66.78 0.67 68.56 0.68 42.68 0.42 66.30 0.66 10.69 0.10 50.74 0.51
Soybean 64.62 0.65 79.00 0.84 79.01 0.76 63.02 0.56 79.55 0.81 88.97 0.89 52.67 0.47 7.30 0.07 57.36 0.52

ChessKRvK 25.97 0.21 46.28 0.42 32.99 0.18 27.41 0.25 35.18 0.27 28.13 0.14 24.67 0.18 5.69 0.06 22.50 0.11
LetterRecog 42.99 0.43 41.40 0.41 29.58 0.30 42.76 0.43 39.16 0.39 33.12 0.33 38.59 0.39 4.85 0.05 21.54 0.22

Mean 61.56 0.48 73.24 0.59 64.35 0.46 61.47 0.49 72.17 0.56 62.60 0.42 57.77 0.44 15.77 0.17 55.29 0.40
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Because the foregoing section (Section 4.4.1) established that it is not effective nor

efficient to use Bagging classification at each tree node, the results presented in this

section have all been generated using “stand-alone” classification at nodes.

Using Naive Bayesian Probability Values for Following Multiple Paths Within

the Binary Tree Hierarchical Classification Model

In this section the conducted experiments and the obtained results when following mul-

tiple paths utilising Naive Bayes probability values, with respect to the different consid-

ered data grouping techniques, are presented. This section also presents a comparison

between the three different proposed mechanisms for arriving at a final classification

result: (i) BIP, (ii) NAP and (iii) Voting. Recall that the objective here was to identify

the most effective mechanism for selecting the final class label for a given, previously

unseen, record.

Using the BIP class label mechanism experiments using a range of alternative σ

values were conducted that demonstrated that σ = 0.1 × 10−1, σ = 0.1 × 10−6 and

σ = 0.0 produced the best performance with respect to k-means, data splitting and

divisive hierarchical clustering respectively (for completeness these results are included

in Appendix B). With respect to the NAP class label selection mechanism experiments

using a range of alternative σ values demonstrated that σ = 0.1× 10−2, σ = 0.1× 10−6

and σ = 0.0 produced the best performance with respect to k-means, data splitting and

divisive hierarchical clustering respectively (See Appendix B). Regarding the Voting

mechanism σ = 0.1× 10−2, σ = 0.1× 10−2 and σ = 0.0 produced the best performance

with respect to k-means, data splitting and divisive hierarchical clustering respectively

(for completeness these results are included in Appendix B).

A comparison between the three alternative class label selection mechanisms: BIP,

NAP and Voting with respect to the three considered data distribution techniques: (i)

k-means, (ii) divisive hierarchical clustering and (iii) data splitting, is presented in Table

4.8 (best AUC results with respect to each data distribution technique is highlighted in

bold font). According to the table, the best average (mean) AUC was obtained when

using the NAP mechanism and any of the three considered data distribution mechanisms.

From the table it can be observed that the results of BIP and NAP mechanisms are

similar, regardless of the data distribution technique; slightly better results are perhaps

obtained using the NAP mechanism. In addition, NAP and BIP outperformed the

Voting mechanism, regardless of the data distribution technique. The reason why the

Voting mechanism sometimes produced worse results than the NAP or BIP mechanisms

is that the Voting mechanism can be significantly affected by votes associated with

inaccurate paths whereas the NAP or BIP mechanisms assign a specific weights to each

candidate class thus avoiding the problem of counting votes from inaccurate paths.

While the reason why the BIP mechanism sometimes produced worse results than the

NAP mechanism is that the BIP mechanism depends only on the classification result



Table 4.8: Average Accuracy and AUC values obtained using the Multiple Path strategy coupled with the three alternative class label selection
mechanisms: (i) BIP, (ii) NAP and (iii) Voting with respect to the three considered data distribution techniques: (i) k-means, (ii) divisive hierarchical

clustering and (iii) data splitting

Data set
k-means Data Splitting divisive hierarchical clustering

BIP NAP Voting BIP NAP Voting BIP NAP Voting
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Waveform 68.42 0.69 68.42 0.69 68.42 0.69 74.98 0.75 76.44 0.76 74.30 0.74 53.36 0.53 53.62 0.53 55.90 0.56
Wine 92.54 0.93 92.54 0.93 92.54 0.93 95.67 0.96 96.26 0.96 94.49 0.95 54.82 0.57 56.59 0.58 46.80 0.48

Nursery 91.90 0.56 91.88 0.57 91.91 0.56 87.41 0.58 89.09 0.58 90.12 0.44 46.49 0.30 46.37 0.30 42.36 0.28
Heart 53.42 0.37 53.01 0.38 53.49 0.36 53.08 0.38 53.77 0.36 57.70 0.41 23.39 0.22 24.43 0.22 11.18 0.17

PageBlocks 92.34 0.44 92.09 0.45 91.56 0.31 90.10 0.45 91.27 0.48 91.96 0.34 82.38 0.34 82.38 0.36 82.05 0.26
Dermatology 77.50 0.76 74.53 0.71 79.62 0.78 82.94 0.82 84.60 0.84 79.80 0.79 41.95 0.33 43.28 0.34 41.22 0.30

Glass 59.73 0.40 57.35 0.39 62.51 0.41 50.99 0.49 55.28 0.51 63.94 0.43 48.06 0.34 46.23 0.34 46.48 0.16
Zoo 95.09 0.60 95.09 0.60 95.09 0.60 91.27 0.58 92.18 0.58 93.18 0.59 80.36 0.51 84.18 0.52 26.00 0.13
Ecoli 76.75 0.32 74.62 0.32 78.07 0.31 68.65 0.34 64.15 0.27 82.31 0.36 43.68 0.27 44.59 0.28 55.92 0.23
Led 52.69 0.53 70.72 0.71 48.13 0.48 60.41 0.60 61.13 0.61 47.38 0.48 44.72 0.44 44.16 0.44 25.66 0.26

PenDigits 82.66 0.82 82.47 0.82 82.66 0.82 83.30 0.83 81.18 0.81 68.56 0.68 59.58 0.60 60.80 0.61 23.11 0.24
Soybean 79.00 0.84 78.82 0.84 79.00 0.84 75.45 0.73 83.71 0.83 79.55 0.81 60.67 0.69 64.23 0.71 24.93 0.14

ChessKRvK 45.26 0.42 42.79 0.39 45.11 0.41 28.58 0.35 33.88 0.37 35.18 0.27 19.92 0.22 18.59 0.21 14.61 0.06
LetterRecog 41.32 0.41 41.20 0.41 41.30 0.41 54.59 0.54 53.44 0.53 39.16 0.39 28.89 0.29 30.41 0.30 9.02 0.09

Mean 72.04 0.58 72.54 0.59 72.10 0.57 71.24 0.60 72.60 0.61 71.26 0.55 49.16 0.40 49.99 0.41 36.09 0.24
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from only a single classifier (last classifier in the path), while the NAP mechanism

considers all the classifiers along the followed path. The NAP mechanism was therefore

considered to be the most appropriate mechanism for selecting the final resulting class

label. NAP was thus the mechanism adopted with respect to the remaining experiments

reported in this chapter. From Table 4.8 it can also be observed that the best overall

results, with respect to the Multiple Path strategy, were obtained when using the data

splitting technique for data distribution.

The results obtained for the run-time experiments with respect to the Multiple Path

strategy coupled with Naive Bayes classification and the three considered data distri-

bution techniques, are presented in Table 4.9. The table gives both the generation and

classification times for each. Again, and as in the case of the Single Path strategy, the

lowest generation and classification times were obtained when using the data splitting

technique, followed by k-means and hierarchical clustering respectively.

Table 4.9: Run time results (in seconds) obtained using the Multiple Path strat-
egy coupled with Naive Bayes classification and the three considered data distribution

techniques: (i) k-means, (ii) data splitting and (iii) divisive hierarchical clustering

Data set
Multiple Path Classification Time
K-means&N DS&N HC&N

Waveform 0.285 0.226 0.247
Wine 0.009 0.009 0.009

Nursery 0.659 0.576 0.609
Heart 0.045 0.020 0.029

PageBlocks 0.254 0.266 0.281
Dermatology 0.028 0.021 0.026

Glass 0.015 0.011 0.015
Zoo 0.018 0.017 0.018
Ecoli 0.031 0.024 0.027
Led 0.171 0.153 0.189

PenDigits 0.732 0.507 0.554
Soybean 0.038 0.047 0.033

ChessKRvK 1.981 1.254 2.338
LetterRecog 1.176 0.909 1.126

Mean 0.389 0.289 0.393

Using CARM Confidence Values for Following Multiple Paths Within the

Binary Tree Hierarchical Classification Model

In this section the experimental results obtained when following multiple paths within

the Binary Tree structure utilising the confidence values generated using CARM classi-

fiers at each tree node are presented. This section also presents a comparison between

the three different proposed mechanisms for arriving at a final classification result, BIC,
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NAC and Voting class label selection, in the context of CARM classification and with

respect to the objective of identifying the most effective mechanism.

Experiments were conducted using BIC, NAC and Voting to identify the most appro-

priate value of σ in each case. Some detail concerning these experiments are presented

in Appendix B. Using BIC, NAC and Voting mechanisms, it was found that σ = 70

produced the best performance regardless the adopted data distribution technique. Al-

though, as a general rule σ = 70 had been found to produce the best performance for

most of the datasets considered, a specific best value for σ could be identified for each

dataset.

A comparison between the three alternative class label selection mechanisms: BIC,

NAC and Voting with respect to the three considered data distribution techniques: (i)

k-means, (ii) divisive hierarchical clustering and (iii) data splitting is presented in Table

4.10 (best AUC results with respect to each data distribution technique highlighted in

bold font). From the table it can be observed that the results obtained using the three

mechanisms, BIC, NAC and Voting, are very similar, with a little improvement obtained

from NAP and BIC over Voting with respect to the data splitting technique. More

specifically, with respect to the average (mean) AUC the three mechanisms resulted in

the same value, in the context of k-means and divisive hierarchical clustering. While, a

higher average AUC was obtained when using BIP and NAP than Voting with respect

to the data splitting technique. From Table 4.10 it can also be observed that the best

overall results, with respect to the Multiple Path strategy, were obtained when using

k-means technique for data distribution.

The results obtained for the run-time experiments with respect to the Multiple Path

strategy using CARM classifiers coupled with the three considered data distribution

techniques: (i) k-means, (ii) divisive hierarchical clustering and (iii) data splitting, are

presented in Table 4.11. The table presents the generation and classification times for

each. Again, and as in the case of the Single Path strategy, the lowest generation and

classification times were obtained from using the data splitting technique, followed by

k-means and hierarchical clustering respectively.

An issue with the Multiple Path strategy when using CARM is that the confidence

values used to determine wether one or two paths should be followed, can not always

be obtained. Consequently the unknown confidence values affected the outcomes pro-

duced when using the Multiple Path strategy (coupled with BIC, NAC, or Voting),

consequently it was pound to be of less value than initially anticipated.

Comparison Between Using Probability Values and Confidence Values for

Following Multiple Paths Within the Binary Tree Hierarchy

In this sub-section a comparison between using Naive Bayesian probability values and

CARM confidence values, for following multiple paths within the Binary Tree hierarchi-

cal classification model, is presented.



Table 4.10: Average Accuracy and AUC values obtained using the Multiple Path strategy coupled with the two alternative class label selection
mechanisms: (i) BIC, (ii) NAC and (iii) Voting with respect to the three considered data distribution techniques: (i) k-means, (ii) divisive hierarchical

clustering and (iii) data splitting

Data set
k-means Data Splitting divisive hierarchical clustering

BIC NAC Voting BIC NAC Voting BIC NAC Voting
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Waveform 59.02 0.59 59.02 0.59 58.90 0.59 57.12 0.58 57.44 0.58 57.02 0.58 61.58 0.61 61.58 0.61 61.54 0.61
Wine 78.99 0.81 78.99 0.81 78.79 0.81 78.59 0.76 78.59 0.76 78.59 0.76 84.28 0.86 84.28 0.86 84.28 0.86

Nursery 82.53 0.42 80.28 0.40 82.79 0.42 86.81 0.43 86.81 0.43 86.81 0.43 53.12 0.27 53.06 0.27 53.06 0.27
Heart 53.76 0.24 53.76 0.24 53.76 0.24 52.39 0.20 52.39 0.20 52.39 0.20 53.35 0.23 53.35 0.23 53.35 0.23

PageBlocks 90.79 0.24 91.17 0.35 90.79 0.24 89.77 0.20 89.77 0.20 89.77 0.20 73.88 0.23 73.75 0.26 73.88 0.23
Dermatology 75.73 0.65 77.34 0.68 74.64 0.64 60.28 0.46 60.28 0.46 60.28 0.46 71.16 0.66 71.16 0.66 71.16 0.66

Glass 48.46 0.29 48.93 0.29 46.48 0.26 61.56 0.31 61.56 0.31 58.20 0.20 51.24 0.30 51.71 0.30 50.11 0.27
Zoo 88.00 0.52 88.00 0.52 88.00 0.52 85.00 0.49 85.00 0.49 85.00 0.49 85.00 0.49 85.00 0.49 85.00 0.49
Ecoli 64.55 0.28 64.85 0.28 70.37 0.29 66.57 0.20 66.57 0.20 66.57 0.20 51.86 0.20 52.17 0.21 51.86 0.20
Led 52.16 0.52 52.13 0.52 48.56 0.49 41.38 0.41 41.53 0.41 37.53 0.37 35.38 0.35 37.94 0.38 40.41 0.40

PenDigits 61.12 0.61 60.86 0.61 66.42 0.66 43.89 0.43 40.12 0.40 40.45 0.40 50.41 0.50 50.43 0.50 51.26 0.51
Soybean 79.01 0.76 79.01 0.76 79.01 0.76 88.43 0.89 88.43 0.89 88.43 0.89 56.82 0.52 56.83 0.52 56.64 0.52

ChessKRvK 32.16 0.17 31.06 0.17 32.13 0.17 26.58 0.13 27.28 0.13 24.66 0.13 22.48 0.11 22.20 0.11 22.80 0.11
LetterRecog 29.17 0.29 27.87 0.28 28.35 0.28 29.13 0.29 27.39 0.27 29.50 0.29 21.67 0.22 21.57 0.22 21.73 0.22

Mean 63.96 0.46 63.81 0.46 64.21 0.46 61.96 0.41 61.65 0.41 61.09 0.40 55.16 0.40 55.36 0.40 55.51 0.40



Chapter 4. Binary Tree Hierarchical Classification Model 77

Table 4.11: Run time results (in seconds) obtained using the Multiple Path strategy
coupled with CARM classifiers and the three considered data distribution techniques:

(i) k-means, (ii) data splitting and (iii) divisive hierarchical clustering

Data set
Multiple Path Classification Time

K-means&CARM DS&CARM HC&CARM

Waveform 0.272 0.234 0.275
Wine 0.008 0.009 0.009

Nursery 0.577 0.599 0.725
Heart 0.017 0.019 0.023

PageBlocks 0.259 0.255 0.247
Dermatology 0.025 0.017 0.022

Glass 0.017 0.015 0.010
Zoo 0.011 0.006 0.005
Ecoli 0.019 0.024 0.017
Led 0.161 0.173 0.163

PenDigits 0.678 0.505 0.734
Soybean 0.048 0.037 0.038

ChessKRvK 1.343 1.254 1.404
LetterRecog 2.201 0.898 2.412

Mean 0.403 0.289 0.435

Recall that the objective of the comparison was to determine the most effective

classifier to be utilised with respect to the proposed Multiple Path strategy.

Table 4.12 present the results obtained with respect to the three considered data

distribution techniques: (i) k-means, (ii) divisive hierarchical clustering and (iii) data

splitting (the best AUC results with respect to each data distribution technique are

highlighted in bold font). Note here that the presented results were obtained using

the Multiple Path strategy coupled with NAP, because the forgoing sections established

that NAP produces more accurate results than BIP or Voting class label selection with

respect to Naive Bayes classification, and that there was no observed difference between

the NAC, BIC and Voting class label selection with respect to CARM. From Table 4.12

it can be clearly observed that utilising Naive Bayesian probability values outperforms

utilising CARM confidence values regardless the adopted data segmentation technique.

Again, as the case of the Single Path strategy, Naive Bayes classifiers are the best

choice for generating the Binary Tree hierarchical classification model, compared to the

usage of CARM classifiers.

4.4.3 Comparison Between Single Path and Multiple Path Strategies

The objective of the comparison between the Single Path and Multiple Path strategies

was to determine whether following more than one path within the proposed Binary Tree

hierarchical classification model could address the successive miss-classification issue

noted earlier.



Table 4.12: Average Accuracy and AUC values obtained using Naive Bayes and CARM to generate Binary Tree hierarchical classification models
coupled with the Multiple Path strategy, with respect to the three considered data distribution techniques: (i) k-means, (ii) divisive hierarchical

clustering and (iii) data splitting

Data set
k-means Data splitting divisive hierarchical clustering

Naive CARM Naive CARM Naive CARM
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Waveform 68.42 0.69 59.02 0.59 76.44 0.76 57.44 0.58 53.62 0.53 61.58 0.61
Wine 92.54 0.93 78.99 0.81 96.26 0.96 78.59 0.76 56.59 0.58 84.28 0.86

Nursery 91.88 0.57 80.28 0.40 89.09 0.58 86.81 0.43 46.37 0.30 53.06 0.27
Heart 53.01 0.38 53.76 0.24 53.77 0.36 52.39 0.20 24.43 0.22 53.35 0.23

PageBlocks 92.09 0.45 91.17 0.35 91.27 0.48 89.77 0.20 82.38 0.36 73.75 0.26
Dermatology 74.53 0.71 77.34 0.68 84.60 0.84 60.28 0.46 43.28 0.34 71.16 0.66

Glass 57.35 0.39 48.93 0.29 55.28 0.51 61.56 0.31 46.23 0.34 51.71 0.30
Zoo 95.09 0.60 88.00 0.52 92.18 0.58 85.00 0.49 84.18 0.52 85.00 0.49
Ecoli 74.62 0.32 64.85 0.28 64.15 0.27 66.57 0.20 44.59 0.28 52.17 0.21
Led 70.72 0.71 52.13 0.52 61.13 0.61 41.53 0.41 44.16 0.44 37.94 0.38

PenDigits 82.47 0.82 60.86 0.61 81.18 0.81 40.12 0.40 60.80 0.61 50.43 0.50
Soybean 78.82 0.84 79.01 0.76 83.71 0.83 88.43 0.89 64.23 0.71 56.83 0.52

ChessKRvK 42.79 0.39 31.06 0.17 33.88 0.37 27.28 0.13 18.59 0.21 22.20 0.11
LetterRecog 41.20 0.41 27.87 0.28 53.44 0.53 27.39 0.27 30.41 0.30 21.57 0.22

Mean 72.54 0.59 63.81 0.46 72.60 0.61 61.65 0.41 49.99 0.41 55.36 0.40
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Commencing with a comparison of the Single and Multiple path strategies with

respect to Naive Bayes classification. As a result of experiments conducted previously,

and presented above, the Multiple Path strategy coupled with the NAP mechanism was

adopted for this purpose. Table 4.13 presents the results obtained with respect to the

three considered data segmentation techniques (best AUC results with respect to each

data distribution technique are highlighted in bold font). From the table it can be

observed that, with respect to using k-means as the data distribution technique, for six

of the datasets the same AUC value was obtained regardless of which strategy (Single or

Multiple) was adopted. For four of the datasets the multiple path strategy produced the

best AUC value, for another four datasets the Single Path strategy produced the best

AUC results. Thus a no difference, multiple path and single path ratio of 6 : 4 : 4. When

using data splitting as the data distribution technique the ratio was 0 : 11 : 3. When

using hierarchical clustering as the data distribution technique the ratio was 0 : 14 : 0,

thus the Multiple Path strategy produced the best results in all cases. In other words,

from the table, it can be observed that:

1. The Multiple Path strategy clearly outperformed the Single Path strategy in the

context of using data splitting and hierarchical clustering as the data segmentation

techniques; while there was no noticeable improvement with respect to k-means.

The reason for this is that the successive miss-classification issue occurred more

readily with data splitting and hierarchical clustering than in the case of k-means

when using the single path classification strategy (best results were obtained us-

ing k-means). Thus, it was concluded that the Multiple Path strategy could be

successfully used to address the issue of successive miss-classification.

2. The best overall results were obtained when following multiple paths within the hi-

erarchies generated using data splitting. An issue with using clustering algorithms

to distribute class labels between nodes within the hierarchy is that similar classes

were grouped together early on in the process so that entire branches ended up

dealing with very similar classes, ideally we would like individual branches to deal

with very different classes so that highly discriminative classifiers can be built.

Regarding the use of CARM classifiers to generate the proposed Binary Tree model,

Table 4.14 presents the average accuracy and AUC results obtained when adopting either

a Single or a Multiple path strategy within a the Binary Tree hierarchy with respect

to the three considered data segmentation techniques (again, the best obtained AUC

result, with respect to each data distribution technique, is highlighted in bold font).

From the table it can be observed that, with respect to using k-means as the data

distribution technique, for eight datasets the same AUC value was obtained regardless

of which strategy (Single or Multiple) was adopted. For two datasets the Multiple Path

strategy produced the best AUC value, and for four datasets the Single Path strategy

produced the best AUC results. A no difference, multiple path and single path ratio of



Table 4.13: Average Accuracy and AUC values obtained using Naive Bayes to generate Binary Tree hierarchical classification models coupled with
the Single and Multiple Path strategies, with respect to the three considered data distribution techniques: (i) k-means, (ii) divisive hierarchical

clustering and (iii) data splitting

Data set
k-means&Naive Data splitting&Naive Hierarchical clustering&Naive

Single Path Multiple Path Single Path Multiple Path Single Path Multiple Path
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Waveform 68.42 0.69 68.42 0.69 74.30 0.74 76.44 0.76 43.12 0.43 53.62 0.53
Wine 92.54 0.93 92.54 0.93 94.49 0.95 96.26 0.96 28.31 0.34 56.59 0.58

Nursery 91.92 0.56 91.88 0.57 90.12 0.44 89.09 0.58 31.80 0.17 46.37 0.30
Heart 53.76 0.37 53.01 0.38 57.70 0.41 53.77 0.36 19.39 0.20 24.43 0.22

PageBlocks 92.44 0.44 92.09 0.45 91.96 0.34 91.27 0.48 1.68 0.22 82.38 0.36
Dermatology 78.64 0.75 74.53 0.71 79.80 0.79 84.60 0.84 10.60 0.17 43.28 0.34

Glass 62.04 0.41 57.35 0.39 63.94 0.43 55.28 0.51 15.01 0.12 46.23 0.34
Zoo 95.09 0.60 95.09 0.60 93.18 0.59 92.18 0.58 12.00 0.13 84.18 0.52
Ecoli 79.98 0.35 74.62 0.32 82.31 0.36 64.15 0.27 15.17 0.13 44.59 0.28
Led 61.22 0.61 70.72 0.71 60.16 0.60 61.13 0.61 15.16 0.15 44.16 0.44

PenDigits 82.68 0.82 82.47 0.82 68.56 0.68 81.18 0.81 10.69 0.10 60.80 0.61
Soybean 79.00 0.84 78.82 0.84 79.55 0.81 83.71 0.83 7.30 0.07 64.23 0.71

ChessKRvK 46.28 0.42 42.79 0.39 35.18 0.27 33.88 0.37 5.69 0.06 18.59 0.21
LetterRecog 41.40 0.41 41.20 0.41 39.16 0.39 53.44 0.53 4.85 0.05 30.41 0.30

Mean 73.24 0.59 72.54 0.59 72.17 0.56 72.60 0.61 15.77 0.17 49.99 0.41



Table 4.14: Average Accuracy and AUC values obtained using CARM to generate Binary Tree hierarchical classification models coupled with
the Single and Multiple Path strategies, with respect to the three considered data distribution techniques: (i) k-means, (ii) divisive hierarchical

clustering and (iii) data splitting

Data set
k-means&CARM Data splitting&CARM Hierarchical clustering&CARM

Single Path Multiple Path Single Path Multiple Path Single Path Multiple Path
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Waveform 58.92 0.59 59.02 0.59 57.02 0.58 57.44 0.58 61.62 0.61 61.58 0.61
Wine 78.99 0.81 78.99 0.81 78.59 0.76 78.59 0.76 84.28 0.86 84.28 0.86

Nursery 84.41 0.43 80.28 0.40 86.81 0.43 86.81 0.43 53.07 0.27 53.06 0.27
Heart 53.76 0.24 53.76 0.24 52.39 0.20 52.39 0.20 53.35 0.23 53.35 0.23

PageBlocks 90.79 0.24 91.17 0.35 89.77 0.20 89.77 0.20 73.73 0.25 73.75 0.26
Dermatology 74.92 0.64 77.34 0.68 60.28 0.46 60.28 0.46 71.39 0.66 71.16 0.66

Glass 48.46 0.29 48.93 0.29 61.56 0.31 61.56 0.31 52.19 0.30 51.71 0.30
Zoo 88.00 0.52 88.00 0.52 85.00 0.49 85.00 0.49 85.00 0.49 85.00 0.49
Ecoli 65.15 0.28 64.85 0.28 66.57 0.20 66.57 0.20 52.17 0.21 52.17 0.21
Led 54.78 0.55 52.13 0.52 45.53 0.45 41.53 0.41 35.16 0.35 37.94 0.38

PenDigits 61.12 0.61 60.86 0.61 42.68 0.42 40.12 0.40 50.74 0.51 50.43 0.50
Soybean 79.01 0.76 79.01 0.76 88.97 0.89 88.43 0.89 57.36 0.52 56.83 0.52

ChessKRvK 32.99 0.18 31.06 0.17 28.13 0.14 27.28 0.13 22.50 0.11 22.20 0.11
LetterRecog 29.58 0.30 27.87 0.28 33.12 0.33 27.39 0.27 21.54 0.22 21.57 0.22

Mean 64.35 0.46 63.81 0.46 62.60 0.42 61.65 0.41 55.29 0.40 55.36 0.40
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8 : 2 : 4. When using data splitting the ratio was 10 : 0 : 4. Using hierarchical clustering

the ratio was 11 : 2 : 1. The reason for the weakness of the Multiple Path strategy,

in context of CARM classifiers as mentioned in section 4.4.2, is that it was not always

possible to identify both confidence values for both branches emanating from a given

node. Consequently the unknown confidence values affected the results obtained using

the Multiple Path strategy, thus again resulting in it being of less value than initially

anticipated. Regarding run time efficiency, of course the classification time required

when using the Single Path strategy is less than that required when using the multiple

path strategy (see Tables 4.4, 4.9, 4.6 and 4.11).

4.4.4 Comparison Between The Binary Tree Hierarchical Classifica-

tion Model and Conventional models

In this section a comparison between the proposed Binary Tree hierarchical classification

model and conventional classification models is presented. In order to conduct a consis-

tent comparison between the proposed Binary Tree hierarchical ensembles and existing

conventional models the comparison was conducted using the same classifier generator

in each case. Three set of experiments are reported on here: (i) comparison between the

operation of a stand-alone Decision Tree classification, Bagging of decision trees and the

decision tree based Binary Tree hierarchical model, (ii) comparison between the opera-

tion of stand-alone Naive Bayes classification, Bagging of Naive Bayes classifiers and the

Naive Bayes based Binary Tree hierarchical classification model; and (iii) comparison

between the operation of a stand-alone CARM classifier, Bagging of CARM and the

CARM based Binary Tree hierarchical model.

Starting with the comparison between “stand-alone” Decision Tree classification,

Bagging of decision trees, and the proposed Binary Tree hierarchical classification model

with decision tree classifiers at each node. Table 4.15 presents the results obtained in

terms of average accuracy and average AUC (best results highlighted in bold font).

From the table it can be observed that the Binary Tree hierarchies produce an improved

classification accuracy with respect to seven of the fourteen datasets considered. In the

remaining seven cases, the stand-alone Decision Tree classifier produced the best AUC

result (although in one case the AUC result was the same as that produced using our

hierarchical approach and in another case the same as that produced using Bagging).

With respect to the comparison between “stand-alone” Naive Bayes classification,

Bagging of Naive Bayes classifiers and Naive Bayes Binary Tree hierarchies Table 4.16

presents the results obtained in terms of average accuracy and average AUC (as before

best AUC results highlighted in bold font). Note here that the results presented with

respect to the Binary Tree hierarchies are the Multiple Path results. From the table it

can be observed that the proposed Binary Tree hierarchical classification model improves

classification accuracy with respect to five of the fourteen datasets considered, although

for one datasets the same result was produced as when Naive Bayes classification was

used in stand-alone mode.



Table 4.15: Average accuracy and AUC results obtained when using: (i) stand alone decision tree classification, (ii) bagging of decision trees and
(iii) Binary Tree hierarchies with decision trees at nodes (K-means&DT, DS&DT, and HC&DT)

Data set
DT Bagging K-means&DT DS&DT HC&DT

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

WaveForm 53.72 0.54 53.36 0.53 59.68 0.60 58.56 0.59 58.98 0.59
Wine 73.86 0.73 69.91 0.69 68.75 0.67 65.22 0.64 70.54 0.68

Nursery 5.15 0.03 32.71 0.16 35.69 0.19 33.51 0.27 59.70 0.32
Heart 48.80 0.28 51.15 0.28 47.97 0.31 49.89 0.32 47.48 0.26

PageBlocks 92.55 0.49 92.23 0.47 92.56 0.49 92.40 0.48 74.28 0.36
Dermatology 57.53 0.57 43.95 0.39 58.90 0.55 61.37 0.60 60.25 0.54

Glass 64.50 0.40 62.27 0.36 60.44 0.39 60.91 0.38 56.95 0.34
Zoo 89.00 0.53 87.27 0.53 85.00 0.50 85.00 0.50 82.09 0.51
Ecoli 78.07 0.34 73.61 0.31 76.90 0.33 78.72 0.35 56.29 0.28
Led 74.72 0.74 74.06 0.74 75.00 0.75 75.00 0.75 59.94 0.59

PenDigits 76.84 0.77 72.64 0.72 67.30 0.67 66.78 0.67 66.30 0.66
Soybean 52.12 0.52 37.18 0.30 64.62 0.65 63.02 0.56 52.67 0.47

ChessKRVK 40.46 0.29 30.07 0.16 25.97 0.21 27.41 0.25 24.67 0.18
LetRecog 56.05 0.56 41.82 0.42 42.99 0.43 42.76 0.43 38.59 0.39

Mean 61.67 0.49 58.73 0.43 61.56 0.48 61.47 0.49 57.77 0.44



Table 4.16: Average accuracy and AUC results obtained when using: (i) stand alone Naive Bayes classification, (ii) bagging of Naive Bayes and
(iii) Binary Tree hierarchies with Naive Bayes classifiers at nodes (K-means&N, DS&N, and HC&N)

Data set
Naive Bayes Bagging K-means&N DS&N HC&N

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Waveform 77.04 0.77 77.06 0.77 68.42 0.69 76.44 0.76 53.62 0.53
Wine 95.67 0.96 93.72 0.94 92.54 0.93 96.26 0.96 56.59 0.58

Nursery 90.22 0.45 89.96 0.46 91.88 0.57 89.09 0.58 46.37 0.30
Heart 54.60 0.34 51.28 0.30 53.01 0.38 53.77 0.36 24.43 0.22

PageBlocks 92.69 0.52 92.62 0.52 92.09 0.45 91.27 0.48 82.38 0.36
Dermatology 86.66 0.85 81.00 0.81 74.53 0.71 84.60 0.84 43.28 0.34

Glass 67.83 0.49 55.28 0.46 57.35 0.39 55.28 0.51 46.23 0.34
Zoo 92.27 0.59 94.27 0.62 95.09 0.60 92.18 0.58 84.18 0.52
Ecoli 81.70 0.38 82.56 0.39 74.62 0.32 64.15 0.27 44.59 0.28
Led 75.59 0.76 75.50 0.76 70.72 0.71 61.13 0.61 44.16 0.44

PenDigits 84.94 0.85 84.57 0.85 82.47 0.82 81.18 0.81 60.80 0.61
Soybean 91.11 0.93 86.83 0.89 78.82 0.84 83.71 0.83 64.23 0.71

ChessKRvK 36.32 0.33 35.66 0.34 42.79 0.39 33.88 0.37 18.59 0.21
LetterRecog 57.37 0.57 56.93 0.57 41.20 0.41 53.44 0.53 30.41 0.30

Mean 77.43 0.63 75.52 0.62 72.54 0.59 72.60 0.61 49.99 0.41
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For another seven datasets the stand-alone Naive Bayes classifier produced the best

result although for five datasets the same result was produced when Bagging was used.

For two datasets Bagging produced the best results.

Regarding the comparison between “stand-alone” CARM, Bagging of CARM, and

the CARM based Binary Tree hierarchies, Table 4.17 presents the results obtained in

terms of average accuracy and average AUC (best AUC results highlighted in bold font).

From the table it can be observed that the Binary Tree hierarchies produced the best

results with respect to ten of the fourteen datasets considered although for one dataset

the same result was produced as when CARM classification was used in stand-alone mode

and for two datasets the same result was produced as when using Bagging classification.

For another three datasets stand-alone CARM produced the best result, although for

one dataset the same result was produced as in the case of bagging. For two dataset

Bagging classification produced the best result.

The results obtained with respect to the associated run-time experiments are pre-

sented in Tables 4.18, 4.19 and 4.20. The tables list both the generation and classification

times. From the tables it can be observed, as expected, that the lowest generation and

classification times were obtained when using stand-alone classification.

4.5 Comparison with Previous Work on Binary Tree Based

Hierarchical Ensemble Methods

From Chapter 2 it was note that previously proposed binary tree based hierarchical

ensemble classification methods can be categorised into two main categories with respect

to the adopted technique to distribute class labels between nodes within the binary

tree: (i) overlapping between classes at nodes and (ii) no-overlapping between classes

at nodes. Note here that only one reference was found by the author that considered

overlapping between classes [4]. The work presented in this thesis considered both

categories. From the evaluation presented in this chapter, overlapping was not always

found to be effective, the reason for this is that the overlapping is not “well-defined”.

In addition the overlapping was affected by the adopted clustering algorithm, more

specifically, the k-means results were much better than divisive hierarchical clustering

results. In the next chapter a combination technique is proposed to generate “well-

defined” overlapping between classes. In addition, with respect to the previous work,

the adopted techniques to group class labels was focused on grouping similar classes

together early on in the process so that entire branches ended up dealing with very

similar classes (as in the case of the proposed clustering techniques presented in this

thesis). Ideally we would like individual branches to deal with very different classes

so that highly discriminative classifiers can be built at each leaf node. This issue has

not been reported previously. Because of this issue the simple data splitting technique,

proposed in this thesis, was found to be an effective mechanism for distributing class



Table 4.17: Average accuracy and AUC results obtained when using: (i) stand alone CARM classification, (ii) bagging of CARM and (iii) Binary
Tree hierarchies with CARM classifiers at nodes (K-means&CARM, DS&CARM, and HC&CARM)

Data set
CARM Bagging K-means&CARM DS&CARM HC&CARM

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Waveform 60.04 0.60 60.76 0.61 58.92 0.59 57.02 0.58 61.62 0.61
Wine 71.88 0.74 61.48 0.61 78.99 0.81 78.59 0.76 84.28 0.86

Nursery 73.94 0.36 73.94 0.36 84.41 0.43 86.81 0.43 53.07 0.27
Heart 51.70 0.20 45.49 0.24 53.76 0.24 52.39 0.20 53.35 0.23

PageBlocks 89.99 0.21 89.95 0.21 90.79 0.24 89.77 0.20 73.73 0.25
Dermatology 77.00 0.66 72.12 0.62 74.92 0.64 60.28 0.46 71.39 0.66

Glass 65.05 0.43 53.30 0.31 48.46 0.29 61.56 0.31 52.19 0.30
Zoo 94.00 0.59 83.00 0.46 88.00 0.52 85.00 0.49 85.00 0.49
Ecoli 49.98 0.12 37.90 0.07 65.15 0.28 66.57 0.20 52.17 0.21
Led 67.28 0.67 67.09 0.67 54.78 0.55 45.53 0.45 35.16 0.35

PenDigits 75.99 0.76 77.09 0.77 61.12 0.61 42.68 0.42 50.74 0.51
Soybean 84.01 0.86 73.15 0.77 79.01 0.76 88.97 0.89 57.36 0.52

ChessKRvK 17.64 0.07 17.43 0.06 32.99 0.18 28.13 0.14 22.50 0.11
LetterRecog 30.91 0.31 30.72 0.31 29.58 0.30 33.12 0.33 21.54 0.22

Mean 64.96 0.47 60.24 0.43 64.35 0.46 62.60 0.42 55.29 0.40



Table 4.18: Run time results (in seconds) obtained using (i) stand alone decision tree classification, (ii) bagging of decision trees and (iii) Binary
Tree hierarchies with decision trees at nodes (K-means&DT, DS&DT, and HC&DT)

Data set
Generation Time Classification Time

DT Bagging K-means&DT DS&DT HC&DT DT Bagging K-means&DT DS&DT HC&DT

Waveform 0.926 0.901 2.255 1.213 3.816 0.038 0.039 0.390 0.388 0.064
Wine 0.157 0.182 0.181 0.167 0.193 0.001 0.001 0.002 0.001 0.002

Nursery 1.237 1.200 1.609 1.226 5.312 0.151 0.141 0.093 0.098 1.000
Heart 0.189 0.259 0.264 0.204 0.264 0.003 0.006 0.006 0.010 0.003

PageBlocks 0.620 0.736 0.873 0.769 2.870 0.004 0.005 0.009 0.009 0.012
Dermatology 0.210 0.278 0.266 0.228 0.293 0.004 0.011 0.007 0.006 0.004

Glass 0.160 0.217 0.200 0.178 0.228 0.001 0.001 0.003 0.002 0.002
Zoo 0.109 0.128 0.128 0.123 0.134 0.000 0.000 0.001 0.001 0.001
Ecoli 0.179 0.215 0.237 0.201 0.229 0.001 0.001 0.002 0.001 0.002
Led 0.440 0.523 0.568 0.532 0.722 0.007 0.017 0.013 0.012 0.015

PenDigits 1.207 1.308 4.652 2.289 9.253 0.062 0.059 0.091 0.090 0.099
Soybean 0.391 0.457 0.533 0.485 0.614 0.012 0.006 0.006 0.006 0.008

ChessKRvK 2.298 2.123 24.583 2.946 40.116 0.452 0.511 0.365 0.385 0.422
LetterRecog 2.227 1.958 15.037 6.004 34.139 0.185 0.195 0.282 0.242 0.315

Mean 0.739 0.749 3.670 1.183 7.013 0.066 0.071 0.091 0.089 0.139



Table 4.19: Run time results (in seconds) obtained using (i) stand alone Naive Bayes classification, (ii) bagging of Naive Bayes and (iii) Binary
Tree hierarchies with Naive Bayes classifier at nodes (K-means&N, DS&N, and HC&N)

Data set
Generation Time Classification Time

Naive Bagging K-means&N DS&N HC&N Naive Bagging K-means&N DS&N HC&N

Waveform 0.737 0.774 0.839 0.730 1.880 0.002 0.005 0.285 0.226 0.247
Wine 0.202 0.177 0.213 0.167 0.180 0.001 0.001 0.009 0.009 0.009

Nursery 0.974 1.180 1.197 1.048 4.452 0.003 0.011 0.659 0.576 0.609
Heart 0.202 0.216 0.295 0.229 0.226 0.000 0.001 0.045 0.020 0.029

PageBlocks 0.676 0.775 0.763 0.741 2.598 0.001 0.005 0.254 0.266 0.281
Dermatology 0.242 0.296 0.241 0.218 0.248 0.000 0.000 0.028 0.021 0.026

Glass 0.178 0.182 0.209 0.197 0.192 0.000 0.000 0.015 0.011 0.015
Zoo 0.163 0.136 0.146 0.127 0.131 0.000 0.001 0.018 0.017 0.018
Ecoli 0.206 0.208 0.215 0.197 0.211 0.000 0.000 0.031 0.024 0.027
Led 0.529 0.547 0.558 0.530 0.692 0.002 0.004 0.171 0.153 0.189

PenDigits 1.100 1.121 1.359 1.138 5.138 0.006 0.010 0.732 0.507 0.554
Soybean 0.353 0.329 0.458 0.362 0.460 0.001 0.003 0.038 0.047 0.033

ChessKRvK 1.470 1.674 2.021 1.555 17.740 0.006 0.008 1.981 1.254 2.338
LetterRecog 1.398 1.580 1.998 1.481 16.636 0.007 0.011 1.176 0.909 1.126

Mean 0.602 0.657 0.751 0.623 3.627 0.002 0.004 0.389 0.289 0.393



Table 4.20: Run time results (in seconds) obtained using: (i) stand alone CARM classification, (ii) bagging of CARM and (iii) Binary Tree
hierarchies with CARM classifiers at nodes (K-means&CARM, DS&CARM, and HC&CARM)

Data set
Generation Time Classification Time

CARM Bagging K-means&CARM DS&CARM HC&CARM CARM Bagging K-means&CARM DS&CARM HC&CARM

Waveform 1.254 1.418 12.296 1.420 12.647 0.002 0.004 0.009 0.009 0.009
Wine 0.389 0.559 0.473 0.460 0.996 0.000 0.000 0.001 0.001 0.001

Nursery 1.142 1.222 1.513 1.186 5.233 0.003 0.004 0.011 0.006 0.011
Heart 0.383 0.624 5.115 0.724 3.982 0.000 0.002 0.002 0.001 0.001

PageBlocks 0.796 0.890 0.978 0.912 2.964 0.001 0.001 0.003 0.002 0.006
Dermatology 0.451 0.660 2.120 0.801 2.918 0.000 0.001 0.001 0.001 0.001

Glass 0.279 0.316 0.406 0.298 0.456 0.001 0.001 0.001 0.001 0.001
Zoo 0.312 0.549 1.270 0.925 1.468 0.000 0.000 0.000 0.001 0.000
Ecoli 0.238 0.276 0.404 0.332 0.393 0.000 0.000 0.001 0.001 0.000
Led 0.581 0.647 0.665 0.593 0.829 0.001 0.015 0.002 0.002 0.008

PenDigits 2.199 2.578 37.004 4.913 57.562 0.008 0.010 0.015 0.013 0.017
Soybean 1.383 2.254 6.182 4.804 11.658 0.005 0.005 0.004 0.002 0.003

ChessKRvK 1.518 1.671 4.068 1.510 19.765 0.004 0.028 0.049 0.026 0.045
LetterRecog 3.510 3.793 203.600 11.160 340.029 0.009 0.017 0.024 0.025 0.061

Mean 1.031 1.247 19.721 2.146 32.921 0.002 0.006 0.009 0.007 0.012
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labels between nodes within the hierarchy, compared to the clustering techniques that

group similar classes together. Moreover, the previous work only considered following

single paths within the binary tree hierarchy; however, a significant improvement was

obtained when multiple paths followed within the binary tree as proposed in this thesis.

4.6 Summary

A hierarchical ensemble classification model for multi-class classification based on a

Binary Tree (BT) structure has been presented in this chapter. Recall that the idea

behind the proposed hierarchical classification was to conduct the classification starting

in a coarse-grain manner, where records are allocated to groups of classes, proceeding to

a fine-grain manner until class labels can be assigned. To generate such a hierarchical

classifier three different grouping techniques were considered: (i) k-means, (ii) divisive

hierarchical clustering and (iii) data splitting. Three different classification algorithms

were used to generate node classifiers: (i) Decision Tree, (ii) Naive Bayes and (iii) CARM.

In addition, the use of two different styles of classifier at each node was considered:

(i) “stand-alone” and (ii) Bagging ensemble classifier. Two alternative classification

strategies: Single Path and Multiple Path were considered. The latter was proposed

to address the hierarchical drawback that if a record is miss-classified early on in the

process (near the root of the hierarchy) there is no opportunity for recovery. The Multiple

Path strategy was realised by utilising Naive Bayes and CARM classifiers, which feature

respectively probability and confidence values that can be used to determine where

single or multiple paths should be followed (a threshold σ was used to decide whether

to follow a single path or not). Three alternative mechanisms to determining the final

classification in the case of the Multiple Path strategy were also considered: (i) BIP or

BIC class label selection, (ii) NAP or NAC class label selection and (iii) Voting class

label selection.

The operation of the proposed Binary Tree hierarchical classification model was

compared with two well-established more conventional classification models: (i) stand-

alone classification and (ii) Bagging ensemble classification.

More specifically, the performance of each type Binary Tree hierarchy considered

(Decision Tree, Naive Bayes and CARM) was compared with the same stand alone

classifier and also with Bagging ensemble classification using the same classification

algorithms so that a “consistent comparison” was obtained.

From the reported evaluation, and with reference to the evaluation objectives listed

at the beginning of Section 4.4. it was demonstrated that:

1. The performance of the binary tree hierarchical ensemble model, was significantly

influenced by the adopted class partitioning technique; inappropriate choices were

found to result in poor performance. The most effective and efficient technique

to distribute class labels between nodes within the hierarchy, was found to be the

data splitting technique.
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2. The choice of the base classifiers, to generate the Binary Tree hierarchical ensemble

classification model, was also found to significantly affect the classification accuracy

of the resulting ensemble model. The most effective and efficient classifier, with

which to generate a Binary Tree hierarchical ensemble classification model, was

found to be the Naive Bayes classifier.

3. With respect to the comparison between the operation of the two considered classi-

fication styles: (i) Stand-alone and (ii) Bagging; using single (stand-alone) classifier

at each tree node outperformed using Bagging. The reason behind the weakness of

using Bagging was the insufficient information available for training the classifiers

as the process moved down in the tree (recall that a disjoint partition sampling

method was used to assign data to the base classifiers to limit the complexity of

the proposed model).

4. Following multiple paths within the Binary Tree hierarchy tended to produce a

better classification effectiveness, than when following only a single path.

5. Regarding the comparison between the three considered class label selection mech-

anisms, the NAP mechanism outperformed the BIP and Voting class label selection

mechanisms. The suggested reasons are: (i) the BIP mechanism depended only on

the classification result from only single classifier (the last classifier in the path)

while the NAP mechanism considers all the classifiers along the followed path and

(ii) the Voting mechanism can be significantly affected by votes associated with

inaccurate paths whereas the NAP mechanism assigning a specific weights to each

candidate class this avoiding the problem of counting votes from inaccurate paths.

6. An issue with using confidence values, generated by CARM, to determine whether

one or two branches emanating from a node will be followed is that it was not

always possible to identify both confidence values for a given node’s branches.

Consequently the unknown confidence values affected the outcome when using

a Multiple Path strategy, causing the strategy to be of less value than initially

anticipated.

7. A drawback of using clustering techniques to group class labels was identified in

that similar classes tended to be grouped together early on in the process so that

entire branches ended up dealing with very similar classes. Ideally we would like

individual branches to deal with very different classes so that highly discriminative

classifiers can be built at each leaf node.

8. The best overall results were produced when using the Naive Bayes algorithm to

generate the classifiers at the nodes within the Binary Tree hierarchy, and data

splitting to distribute class labels between nodes within the hierarchy, coupled

with the Multiple Path strategy.
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9. Overall it can be argued that the Binary Tree hierarchical classification model

could be successfully used to classify data in a more effective manner than when

alternative conventional methods were used, such as stand-alone classification and

Bagging ensemble classification, with respect to some of the considered datasets.

It is interesting to note here that, with respect to the threshold value σ an embedded

procedure within a grid-search that selects the best values for the threshold can be

adopted, alternatively the value for σ can be user-specified.

The issues with the Binary Tree hierarchical classification model are:

1. The Multiple Path strategy only partially resolves the successive miss-classification

problem.

2. The used class grouping techniques was not effective in addressing: (i) the suc-

cessive miss-classification issue and (ii) generating a high performance hierarchical

ensemble model (in comparison with the conventional existing models). Cluster-

ing algorithms, even if they work well in grouping class labels, result in grouping

similar classes together so that entire branches end up dealing with very similar

classes (see point 7 in the above summarisation). While the data splitting tech-

nique was found to be a very naive but effective mechanism for distributing class

labels between nodes within the hierarchy.

Fundamentally, from the above evaluation, it can be concluded that the Binary Tree

structure is not sufficiently expressive to capture the nature of multi-class classifica-

tion. In order to improve the performance of the Binary Tree hierarchical classification

model, a much more sophisticated structure based on Directed Acyclic Graph (DAG)

was considered next to generate the desired hierarchical classification model. The DAG

structure sought to address the issues associated with: (i) the grouping of classes at

the root and non-leaf nodes and (ii) the resolution of the successive miss-classification

problem. This DAG model is therefore considered in the next chapter.



Chapter 5

Rooted Directed Acyclic Graph

(rooted DAG) for Generating the

Hierarchical Classification Model

5.1 Introduction

In this and the following two chapters DAG based hierarchical ensemble classification is

considered. The nature of the proposed rooted DAG hierarchical classification model is

presented in this chapter. As already noted earlier in this thesis, the rooted DAG model

is founded on the idea of arranging the classifiers into a hierarchical form by utilising a

rooted DAG structure where each node in the rooted DAG holds a classifier. Classifiers

at leaves act as binary classifiers while the remaining classifiers (at the root and interme-

diate nodes) are directed at groupings of class labels. An example rooted DAG classifier

for four class labels C = {a, b, c, d} is presented in Figure 5.1. At the root we classify

into four class groups (comprising all possible combinations of C of size |C|− 1). At the

next level we classify into three class groups (comprising all possible combinations of

node classes of size |nodeclasses|−1). Classifiers at the leaves discriminate between two

class labels. The main research challenges are then: (i) how best to distribute (organise)

the class labels between nodes so as to produce a DAG classifier that generates the most

effective classifications and (ii) how to address the successive mis-classification issue im-

posed by the hierarchical structure. The first issue is discussed further in Section 5.2

where the generation of the rooted DAG ensemble model is presented in detail. While

the second issue is addressed in Section 5.3 where the operation of the proposed model

is presented. Section 5.4 presents an overview of the conducted experiments and the

obtained results. Finally, a summary of the chapter is presented in Section 5.5.

93
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Classifier	  
(abc)	  (abd)	  (acd)	  (bcd)	  

Classifier	  
(ab)	  (ac)	  (bc)	  

Classifier	  
(a)	  (b)	  

Classifier	  
(a)	  (c)	  

Classifier	  
(b)	  (c)	  

Classifier	  
(a)	  (d)	  

Classifier	  
(b)	  (d)	  

Classifier	  
(c)	  (d)	  

Classifier	  
(ab)	  (ad)	  (bd)	  

Classifier	  
(ac)	  (ad)	  (cd)	  

Classifier	  
(bc)	  (bd)	  (cd)	  

a	   b	   c	   d	  

Figure 5.1: Rooted DAG example

5.2 Rooted DAG Generation

In this section the generation of the rooted DAG hierarchical ensemble classification

model is explained. To create the hierarchical ensemble classification model using the

rootedDAG structure, a classifier needs to be generated for each node in the rooted DAG

using an appropriate training set. Again, as in the case of the binary tree structure,

three different types of classifier were used: (i) Decision tree, (ii) Naive Bayes and

(iii) Classification Association Rule Mining (CARM). At start-up the training set D

comprises a set of n records D = {r1, r2, . . . .rn} such that each record has a class label

associated with it taken from the set C.

The process requires a class label grouping mechanism. One way of doing this was

to apply a clustering mechanism such as k-means (k-means is particularly well suited

because the value of k can be pre-specified). But, in the context of binary hierarchies

(see Chapter 4), it was found that this clustering approach did not work well because

similar classes were grouped together early on in the process so that entire branches

ended up dealing with very similar classes, ideally we would like individual branches to

deal with very different classes so that highly discriminative classifiers can be built at

each leaf node. However, identifying such groups is also not straight-forward. Instead

a combination mechanism was used that covers all potential groupings. Starting with

the complete class set C at the root of the hierarchy (level i = 0), the class groupings
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(sub sets) at each level were determined by finding all possible classes combinations of

size |C| − i (where i is the level number). As the process proceeded i was increased

by one and consequently the “combination size” was decreased by one. The process

was continued until the combination size reached two. The process was used to generate

Figure5.1. The number of classifiers needed to be learned in order to generate the rooted

DAG classification model can be calculated using (5.1) where N is the number of class

labels in a given dataset. For example, given a dataset with five class labels 26 classifiers

will be required, while if we have four or three classes the number of classifiers to be

trained will be 11 and 4 respectively.

NumberOfClassifiers = 2N −N − 1 (5.1)

Algorithm 7 presents the generation process in more detail. The input to the al-

gorithm is the training data set D and the set of class labels C. The rooted DAG is

created in a recursive top down manner starting with k = |C| − 1 (where k is the com-

bination size) to k = 2 using the function dagGen. For each call to dagGen the set

of size k class combinations, the set Ck, is calculated (line 14). We then loop through

this set (line 16) and on each iteration: (i) find the set of training set records Ti that

feature the combination Ci ∈ Ck (line 17), (ii) generate a classifier Gi using Ti (line

18); (iii) create a new DAG node, node (line 19); and (iv) add the new node to the set

of accumulated level k nodes so far, NodeSet (line20). We then loop through the set

of current nodes (from the previous iteration) and add a link from each current node

CurrentNodej to the new node node whenever the set of class labels associated with

the new node (Ci) is included in the set of class labels associated with a current node

(Ci ⊂ CurrentNodesj .C). Finally, if k has not yet reached 2 we repeat (line 27).

5.3 Rooted DAG Operation

Section 5.2 above described the process for generating the hierarchical ensemble classifi-

cation model using the rooted DAG structure. After the model has been generated it is

ready for usage. In this section the operation of the suggested model is explained. As in

the case of the binary tree hierarchies presented in the previous chapter two strategies

were considered for classifying individual records: single path and multiple path. The

Single Path strategy is the most straight-forward, and involves following a single path

through the rooted DAG, as directed by the individual node classifications, until a leaf

node is arrived at. Leaf nodes, as already noted, hold binary classifiers; thus when a

leaf node is reached a binary classification can be conducted and a single class label

can be assigned to the record. However, as also already noted, the issue with the single

path strategy is that if a mis-classification occurs early on in the process there is no

opportunity for addressing this situation later on in the process. The Multiple Path

strategy was designed to address this problem by allowing more than one path to be

followed within the rooted DAG. The Multiple Path strategy was realised by utilising



Chapter 5. Rooted Directed Acyclic Graph (rooted DAG) 96

Algorithm 7 Rooted DAG Generation

1: INPUT
2: D = The input training dataset
3: C = The set of Classes featured in D
4: OUTPUT
5: The generated DAG
6:

7: Start
8: k = |C| − 1
9: root = the root node for the DAG

10: dagGen(k, root)
11: End
12:

13: function dagGen(k,CurrentNodes)
14: Ck = Set of size k combinations in C
15: NodeSet = {}
16: for i = 1 to i = |Ck| do
17: Ti = Set of training records in D that feature Ci (Ti ⊂ D)
18: Gi = Classifier for Ci built using training set Ti
19: node = new Node(Gi, Ci)
20: NodeSet = NodeSet ∪ new node
21: for j = 1 to j = |CurrentNodes| do
22: if Ci ⊂ CurrentNodesj .C then
23: CurrentNodesj .childNodes = CurrentNodesj .childNodes ∪ node
24: end if
25: end for
26: end for
27: if k > 2 then
28: dagGen(k − 1, NodeSet)
29: end if
30: end function

Naive Bayes classifiers and Classification Association Rule Miners (CARM), which fea-

ture respectively probability and confidence values that can be used to determine where

single or multiple paths should be followed. More specifically, more than one path was

followed within the rooted DAG according to a predefined threshold σ, in the case of

Naive Bayes classifiers (0 ≤ σ < 1), while in the case of Classification Association Rule

Miners (CARM) (0 ≤ σ ≤ 100).

In cases where more than one path was followed we may end up with a number of

alternative class labels at the leaf nodes of the DAG, thus we have a set of “candidate

class labels”. As noted previously, in order to determine a final classification several

mechanisms can be adopted, such as: (i) simply selecting the candidate class associated

with the highest “individual” probability (or confidence) value or (ii) generating an

accumulated weight for each candidate class and selecting the class associated with the

highest accumulated weight, or (iii) applying some Voting scheme and selecting the

candidate class associated with the highest vote.

The rest of this section is organised as follows: Sub-section 5.3.1 explains the Single

Path strategy, while Sub-section 5.3.2 considers the Multiple Path strategy.
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5.3.1 Single Path Strategy

As the name suggests, in the Single Path strategy only a “single path” will be followed

according to the classification at each DAG node. Algorithm 8 summarises the pro-

cedure. The input is a new unseen record, r, to be classified and a pointer (Root) to

the start of the DAG. The dagClassify procedure is recursive. On each recursion the

algorithm is called with two arguments: r, the record to be classified, and a pointer to

the current node location in the DAG. The classifier at the current DAG node, Node.Gi,

is used to classify r (line 12). The resulting classification may be a single class label (in

which case we are at a leaf node) or a group of class labels. If the result is a single class

then we return this class (line 14). If we have a group of classes dagClassify is called

again (line 17) with r and a pointer (ChildNode) to the child node associated with the

identified class group.

If only a single path is followed within the rooted DAG then N − 1 classifiers will be

evaluated in order to classify a given record, one classifier at each level (where N is the

number of class labels in a given dataset).

Algorithm 8 Rooted DAG Single Path Classification

1: INPUT
2: r = A new unseen record
3: Root = Start node for the DAG
4: OUTPUT
5: The predicted class label c for the input record r
6:

7: Start
8: c = dagClassify(r,Root)
9: End

10:

11: function dagClassify(r,Node)
12: C = Classification result for r using classifier Node.Gi

13: if |C| == 1 then
14: return c (c ∈ C)
15: else
16: ChildNode = child node representing class group C
17: return (dagclassify(r, ChildNode))
18: end if
19: end function

5.3.2 Multiple Path Strategy

Using the Multiple Path strategy more than one path may be followed as a result of

the classification conducted at each current DAG node. With respect to a binary tree

structure, where only two branches emanate from each root and body node, using the

multiple path strategy all paths grater than a predefined threshold value (σ) were fol-

lowed. However, when using a DAG structure each node has many branches, if all

branches greater than σ are followed this will require the evaluation of a large number

of classifiers. More specifically, if all branches feature a probability (or confidence) value
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greater than σ will be followed, then the number of classifiers to be evaluated in order

to classify a record in the worst case (in which all possible paths are explored) is given

by:

NumberOfClassifiers = eΓ(N + 1, 1)− 2N !12 (5.2)

where N is the number of class labels in a given dataset.

According to Equation 5.2 if N is large the number of the classifier that need to be

evaluated will be very large; this means high classification time. Theoretically it is thus

not efficient to follow all possible paths within the rooted DAG, and this is evidenced

experimentally by the classification times reported later in Section 5.4.

Alternatively, a mechanism for restricting the number of branches to be explored

was proposed whereby the maximum number of branches to be explored at each DAG

node, whose associated branch value (probability or confidence value as appropriate) was

grater than σ, was restricted to some predefined number. Experiments (reported on later

in this chapter) were conducted with respect to a maximum of two and three branches,

and using all branches. We refer to these three strategies as the two, three and all branch

strategies. Intuitively the two branch strategy seemed to be the most appropriate. There

were two reasons for this: (i) it allowed the comparison of the operation of DAG based

hierarchically ensemble classifiers with the operation of binary tree based hierarchically

ensemble classifiers where no more than two paths could be selected at each node and

(ii) it limited the required classification time. Equations 5.3 and 5.4 clarify the second

reason. In the worst case the number of classifiers to be evaluated, when using the two

branches strategy is given by:

NumberOfClassifiers = 2(N−1) − 1 (5.3)

where N is the number of class labels in a given dataset.

While the number of classifiers to be evaluated in the worst case, when using the three

branches strategy is given by:

NumberOfClassifiers = 1/6
(

3(N) − 3
)

(5.4)

where N is the number of class labels in a given dataset.

From the above it is clear that following three branches at each DAG node will be

computationally more expensive (result in higher classification time) than when following

two branches at each DAG node. More specifically, given a dataset with four class labels,

the number of classifiers to be trained will be 11 according to Equation 5.1. In this case,

following a single path within the rooted DAG to classify a record, requires the evaluation

of 3 classifiers (N − 1); while when following two (or three branches) as a maximum at

each DAG node, will require the evaluation of 7 (or 13) classifiers in the worst case.

1 Γ (a,x) is the incomplete gamma function.
2NumberOfClassifiers = 1 +

∑N−2
i=1

N !
(N−i)!
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Following all possible paths requires the evaluation of 17 classifiers in the worst case

(according to Equation 5.2). The effect on run time is evidenced by the classification

times reported later in Section 5.4.

Given the above discussion, following two branches as maximum, at each DAG node,

will be discussed and analysed in further detail here. As mentioned earlier, Naive Bayes

classifiers and Classification Association Rule Miners (CARM) were used, so that the

Bayesian probability p (or confidence value) associated with the individual class groups,

at each DAG node, could be used to dictate whether one or two branches should be

followed according to the nature of the σ threshold. Where, at each DAG node, the two

class groups associated with the highest probabilities (highest confidence) are identified,

then if their probabilities (confidence values) are grater than σ both branches will be

explored, otherwise the branch with the highest associated probability (or confidence)

value will be selected.

As mentioned earlier three mechanisms were used to determine a final classifica-

tion from the set of “candidate class labels” that will result: (i) normalised accu-

mulated weight (NAP/NAC), (ii) Best individual Probability (confidence) (BIP/BIC)

and (iii) Voting. Using the accumulated weight mechanism all probability (or confi-

dence) values in a followed path are taken into consideration to produce an accumulated

value. More specifically, the probability (or confidence) values for a followed path are

added and then divided by the number of classifiers used in the path to produce a

NormalisedAccumulated Probability (or NormalisedAccumulatedConfidence) value,

(0 <NormalisedAccumulatedProbability < 1, while 0 < NormalisedAccumulatedCon-

fidence ≤ 100). The normalised accumulated probability (or confidence) value is calcu-

lated for each candidate class, the candidate class associated with the highest value will

be retrieved as the class label for the given record. Using the Voting mechanism, the

number of votes for each candidate class is calculated and the candidate class associated

with the highest vote will be assigned as the class label for the given record.

Algorithm 9 presents the Multiple Path strategy coupled with the normalised accu-

mulated weight mechanism. Note that the algorithm assumes usage of Naive classifiers

at each DAG node, the procedure is the same when using CARM but instead of using

probability values the associated confidence values are used. The main differences be-

tween the Single Path (Algorithm 8) and Multiple Path (Algorithm 9) are: (i) the use

of the σ path selection threshold (as part of the input) to decide whether to follow a

single branch or two branches among the branches emanating from a node; and (ii) the

use of a storage structure Path which, on completion, will contain one or more tuples

of the form 〈c, normProb〉, where c is a class label and normProb is a normalised ac-

cumulated Bayesian probability. The algorithm proceeds in a depth first manner and

maintains a accumulated Bayesian probability (accumProb) and a counter of the num-

ber of classifiers that have been invoked (counter) as it proceeds (both are set to zero

at the start). Once the search is complete the possible classifications arrived at will be
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contained in Path. We select the classification (line 16) with the highest normalised ac-

cumulated probability. On each iteration, as the algorithm proceeds, the Bayes classifier

at the current node, Node.Gi is applied to r to produce a set of classes C and a set of

associated probabilities P . At each node there are four possible outcomes as follows:

1. |C1| == 1 and p2 < σ in which case add c ∈ C1, and the associated normalised

probability value, to Path and return.

2. |C1| == 1 and p2 ≥ σ in which case add both c ∈ C1 and c ∈ C2, and the

associated normalised probability values, to Path and return.

3. |C1| 6= 1 and p2 < σ in which case increment the associated accumulated probabil-

ity value and the counter for C1, and continue down the DAG following the path

indicated by C1.

4. |C1| 6= 1 and p2 ≥ σ in which case increment the associated accumulated probabil-

ity values and the counters for both class groups (C1 and C2), and continue down

the DAG following the paths indicated by C1 by C2.

Where: (i) C1 is the class group in C associated with the highest probability, (ii) p1 is

the Bayesian probability associated with C1, (iii) C2 is the class group in C associated

with the second highest probability and (iv) p2 = is the Bayesian probability associated

with C2. Note that, where appropriate, the normalised probability is calculated (lines

27 and 35) by dividing the accumulated probability so far by the number of classifiers

that have been invoked.

It is interesting to note that in the case of using confidence values to follow multiple

paths within the rooted DAG, two or more class groups might have the same confidence

value, in this case the solution is simply to choose the class group classified by the rule

that appears first in the rule list. Note that with respect to CARM the rules are ordered

according to confidence value so that rules with the highest confidence are listed first.

If two rules have the same confidence the more general rule, that with the smallest

antecedent, will appear first, with more specific rules appearing later. While in the

case of using Naive classifiers, the situation where two paths have the same associated

probability value is rare, especially when using real datasets, because that means that:

(i) the dataset feature the same number of instances for each class (thus a perfectly

balanced dataset) and (ii) given a set of attributes in a record to be classified, the

probability of each attribute associated with each class is identical. Both situations

seem unlikely with respect to real datasets. In the context of the datasets used for

evaluation purposes with respect to the work presented in this thesis this situation did

not arise. Even if this situation did arise an exception can be set so that all branches that

feature the same probability are followed (provided these probabilities are the highest).

The procedure for following a maximum of three branches, at each DAG node, is

the same as the procedure included in algorithm 9, except that the three class groups

associated with the highest probabilities (highest confidence) are identified instead of
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Algorithm 9 Rooted DAG Multiple Path Classification Coupled with Normalised Ac-
cumulated Probability

1: INPUT
2: r = A new unseen record
3: Root = Start node for the DAG
4: σ = Path selection threshold
5: OUTPUT
6: The predicted class label c for the input record r
7:

8: GLOBAL VARIABLES
9: Path = {} (Set of identified paths each comprised of: (i) a class label and

10: (ii) an associated normalised Bayesian probability value)
11:

12: Start
13: accumProb = 0.0 (Accumulated Bayesian probability start value)
14: counter = 0 (Counter for number of probability values in a followed path)
15: dagMultiPathClassify(r,Root, accumProb, counter)
16: c = Class label with highest probability value in Path
17: End
18:

19: function dagMultiPathClassify(r,Node, accumProb, counter)
20: C = Classification result for r using classifier Node.Gi

21: P = Bayesian probability values associated with each class group in C
22: C1 = Class group in C associated with highest probability value
23: p1 = Bayesian probability associated with C1

24: C2 = Class group in C associated with second highest probability value
25: p2 = Bayesian probability associated with C2

26: if |C1| == 1 then
27: normProb = (AccumProb+ p1)/(counter + 1)
28: Path = Path ∪ 〈c, normProb〉 (c ∈ C1)
29: else
30: ChildNode = child node representing class group C1

31: dagMultiPathClassify(r, ChildNode, accumProb+ p1, counter + 1)
32: end if
33: if p2 ≥ σ then
34: if |C2| == 1 then
35: normProb = (AccumProb+ p2)/(countert+ 1)
36: Path = Path ∪ 〈c, normProb〉 (c ∈ C2)
37: else
38: ChildNode = child node representing class group C2

39: dagMultiPathClassify(r, ChildNode, accumProb+ p2, counter + 1)
40: end if
41: end if
42: end function

only two class groups. The algorithm for following all possible paths within the rooted

DAG, which feature a value greater than σ, is presented in Appendix C.

Algorithm 10 presents the Multiple Path strategy coupled with the Voting mecha-

nism. The algorithm is very similar to algorithm 9, but much simpler as there is no

need to store probability or confidence values during the classification process. Only

the individual class labels obtained during traversal of the rooted DAG will be added

to the Path storage structure (lines 23 and 30). On completion Path will contain a set
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Algorithm 10 Rooted DAG Multiple Path Classification Coupled with Voting Scheme

1: INPUT
2: r = A new unseen record
3: Root = Start node for the DAG
4: σ = Path selection threshold
5: OUTPUT
6: The predicted class label c for the input record r
7:

8: GLOBAL VARIABLES
9: Path = {} Set of candidate class labels resulting from following multiple paths

10: Start
11: dagMultiPathClassify(r,Root)
12: c = Class label with highest occurrences in Path
13: End
14:

15: function dagMultiPathClassify(r,Node, accumProb, counter)
16: C = Classification result for r using classifier Node.Gi

17: P = Bayesian probability values associated with each class group in C
18: C1 = Class group in C associated with highest probability value
19: p1 = Bayesian probability associated with C1

20: C2 = Class group in C associated with second highest probability value
21: p2 = Bayesian probability associated with C2

22: if |C1| == 1 then
23: Path = Path ∪ c
24: else
25: ChildNode = child node representing class group C1

26: dagMultiPathClassify(r, ChildNode)
27: end if
28: if p2 ≥ σ then
29: if |C2| == 1 then
30: Path = Path ∪ c
31: else
32: ChildNode = child node representing class group C2

33: dagMultiPathClassify(r, ChildNode)
34: end if
35: end if
36: end function

of candidate class labels, the class label with highest occurrences count in Path will be

assigned to the record.

With respect to Multiple Path strategy coupled with BIP/BIC the algorithm is very

similar to Algorithm 9, however only the probability value produced by the last classifier

in a followed path will be added to the Path storage structure. On completion Path

will contain a set of candidate class labels, each associated with individual probability

value, the class label associated with the highest probability in Path will be assigned to

the record.

5.4 Experiments and results

In this section we present an overview of the adopted experimental set up and the eval-

uation results obtained. The effectiveness of the suggested rooted DAG classification
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model was evaluated using twelve different data sets (with various numbers of class

labels) taken from the UCI machine learning repository (see Chapter 3). Recall that

these were pre-processed using the LUCS-KDD-DN software [22]. Ten-fold Cross Valida-

tion (TCV) was used throughout. The evaluation measures used were average accuracy

and average AUC (Area Under the receiver operating Curve). Although the results in

terms of average accuracy and average AUC are both included in this section, we will

discuss the results in terms of average AUC because of the theoretical and empirical ev-

idences that AUC is a better measure than accuracy for evaluating learning algorithms

[50] (accuracy does not take class priors into consideration). For comparison purposes

alternative forms of classification were also applied to the data sets as follows:

1. A number of “stand alone” classifiers, namely: Naive Bayes, Decision tree,

and CARM. The objective being to compare the operation of the proposed rooted

DAG model with the operation of single conventional models. Other forms of single

classification model could have been selected but Naive Bayes, Decision tree and

CARM were chosen because these were also used in the context of the evaluation of

the binary tree based hierarchical ensemble classification as described in Chapter

4.

2. A Bagging ensemble using a combination of three classifiers, again Naive Bayes,

Decision tree and CARM were used as the base classifiers. The objective being to

compare the operation of the proposed rooted DAG model with alternative forms

of ensembles.

3. A One-Versus-One (OVO) classification mechanism using support vector ma-

chines as the base classifiers. The objective being to compare the proposed rooted

DAG model with a classification mechanism founded on the use of a set of bi-

nary classifiers for solving the multi-class classification problems. The well known

LibSVM [18] implementation was used, with the Gaussian Radial Basis Function

(RBF) kernel. In order to obtain the best performance the optimal values for the

parameters (C and γ) were selected based on a grid search with cross validation,

as recommended in [18]. Table 5.1 presents the optimal values of C and γ for each

of the considered evaluation datasets.

The results obtained are presented in the following sections as follows: Section 5.4.1

presents the results obtained using the Single Path strategy with respect to the three

alternative classification algorithms. Section 5.4.2 presents the results obtained using

the rooted DAG ensemble classification model coupled with the Multiple Path strategy.

Section 5.4.3 provides a comparison between the rooted DAG Single Path and Multiple

Path strategies. Section 5.4.4 considers the results of using conventional methods, stand-

alone, Bagging, and OVO classification, compared with the results obtained from the

rooted DAG model.
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Table 5.1: The optimal values for C and γ with respect to the fourteen considered
evaluation datasets

DataSet Classes C γ

Waveform 3 8 0.0039
Wine 3 2 0.0039

Nursery 5 2 1.0000
Heart 5 1 0.5000

PageBlocks 5 16 1.0000
Dermatology 6 256 0.0078

Glass 7 8 0.2500
Zoo 7 32 0.2500
Ecoli 8 1 0.5000
Led 10 1 0.0625

PenDigits 10 1 0.5000
Soybean 15 4 0.0310

ChessKRvK 18 8 8.0000
LetterRecog 26 1 2.0000

5.4.1 Single Path Strategy Experiments and Results

This section presents the results obtained using the Single Path strategy coupled with the

three alternative classification algorithms for generating the node classifiers in the rooted

DAG: Decision Tree, Naive Bayes and CARM. Table 5.2 presents the obtained results in

terms of average accuracy, and average AUC. Note here that the results presented in the

table reference only eleven datasets, the reason for this is that when using either Decision

Tree or CARM classifiers as the base classifiers the computational resource required is

greater than when using Naive Bayes classifiers3. When Naive Bayes classifiers are used

the rooted DAG model can be applied to datasets featuring up to fifteen class labels

because Bayes classification requires less computational resource than when Decision

Tree or CARM classification is used. From the table it can be observed that best

results are obtained for the majority of the datasets considered when using Naive Bayes

classifiers for generating the DAG node classifiers. More specifically, the Naive Bayes

DAG produced the best results with respect to nine of the eleven data sets considered

(Wave Form, Wine, Nursery, Heart, Dermatology, Glass, Zoo, Ecoli, and Pen Digits).

While the Decision tree DAG produced the best results for two of the datasets considered

(Page Blocks, and Led).

With respect to using CARM as a base classifiers to generate the desired model, it

was necessary to use a very low value for the confidence threshold (τ) so as to generate

the required internal classifiers (τ = 16). The confidence threshold value of τ = 40,

that was used previously with respect to the binary tree hierarchies discussed earlier

in chapter 4 to generate the internal classifiers, was found not to be the best threshold

3All experiments were conducted using a 2.7 GHz Intel Core i5 with 16 GB 1333 MHz DDR3 memory,
running OS X 10.9.2 (13C64).
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Table 5.2: Average Accuracy and AUC values obtained using Decision Tree, Naive
Bayes and CARM to generate a rooted DAG classification model

Data set Classes
Decision Tree Naive Bayes CARM

(DAG) DAG DAG
Acc. AUC Acc. AUC Acc. AUC

Waveform 3 48.42 0.49 77.00 0.77 68.54 0.69
Wine 3 56.78 0.51 95.08 0.95 86.26 0.86

Nursery 5 33.35 0.20 90.26 0.45 86.81 0.43
Heart 5 59.29 0.34 55.91 0.35 53.76 0.20

PageBlocks 5 93.20 0.54 92.69 0.52 89.77 0.20
Dermatology 6 44.78 0.39 87.23 0.85 79.62 0.71

Glass 7 48.06 0.24 69.81 0.46 61.71 0.36
Zoo 7 74.09 0.42 92.18 0.58 88.00 0.52
Ecoli 8 78.93 0.33 84.43 0.41 32.12 0.24
Led 10 85.47 0.85 75.66 0.76 40.06 0.40

PenDigits 10 37.93 0.38 83.58 0.83 46.76 0.47

Mean 60.03 0.43 82.17 0.63 66.67 0.46

with respect to the rooted DAG model. More specifically, using τ = 40 results in no

classification rules being generated for many internal classifiers within the rooted DAG,

and consequently low classification accuracies were recorded. Therefore the confidence

threshold value was reduced to τ = 16 (see Appendix D).

The reasons behind the low confidence values generated by the internal classifiers

are:

1. That the internal classifiers within the rooted DAG distinguish between large num-

bers of classes combination, compared to the binary tree structure where the in-

ternal classifiers distinguish between only two groups of class labels.

2. The support (frequency) of a rule is given by the number of instances in the training

data for which the rule is found to apply [23] and the confidence of the rule is

the ratio of its support to the support for its antecedent [23]. The combination

procedure results in a high support value for the antecedents of rules, consequently

the resulting confidence values tend be low.

The results obtained for the run-time experiments with respect to the three node

classifier generators considered with respect to the rooted DAG model are presented in

Table 5.3. The table presents the generation and classification times for each. From

the table it can be observed that the lowest generation and classification times were

obtained when using Naive Bayes to generate the rooted DAG ensemble classification

model.

From the above discussion, we can conclude that the choice of the base classifiers,

to generate the rooted DAG ensemble classification model, can significantly affect the

classification accuracy of the resulting ensemble model. The most effective and efficient
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Table 5.3: Run time results (in seconds) obtained using Decision Tree, Naive Bayes,
and CARM to generate a rooted DAG classification model

Data set
Generation Time Classification Time

Decision Naive CARM Decision Naive CARM
Tree Bayes Tree Bayes

WaveForm 2.726 0.199 2.494 0.071 0.000 0.005
Wine 0.238 0.189 0.682 0.002 0.000 0.000

Nursery 15.222 5.982 5.547 0.266 0.012 0.009
Heart 0.525 0.333 3.788 0.006 0.001 0.000

PageBlocks 3.743 2.510 3.404 0.017 0.008 0.003
Dermatology 0.868 0.445 8.542 0.008 0.001 0.001

Glass 1.006 0.539 2.281 0.005 0.001 0.000
Zoo 0.691 0.491 14.938 0.002 0.001 0.000
Ecoli 2.723 1.032 0.992 0.005 0.001 0.001
Led 505.184 33.701 25.451 0.030 0.011 0.022

PenDigits 4256.904 264.369 2402.572 0.569 0.039 0.055

Mean 435.439 28.163 224.608 0.089 0.007 0.009

classifier, to generate the rooted DAG ensemble classification model, was found to be a

Naive Bayes classifier. A statistical comparison of these results, together with results

from future experiments to identify most appropriate classification models presented in

Chapters 6 and 7, is presented in Chapter 8.

5.4.2 Multiple Path Strategy Experiments and Results

This section presents the results obtained using the rooted DAG ensemble classification

model coupled with the proposed Multiple Path strategy. As noted earlier, the Multiple

Path strategy was realised using Naive Bayes and CARM classifier generators for the

node classifiers, because these featured probability or confidence values that could be

used to determine whether single or multiple paths should be followed. Consequently,

this section is divided into three parts as follows: (i) Part 1 which presents the conducted

experiments and the obtained results when following multiple paths using Naive Bayes

classifiers, (ii) Part 2 which presents the conducted experiments and the obtained results

when following multiple paths using CARM as the base classifier and (iii) Part 3 which

presents a comparison between the two. The objectives of the experiments were: (i)

to observe the effectiveness of following multiple paths within the rooted DAG, (ii) to

determine the effect that the number of branches explored had on the classification time

(thus efficiency), (iii) to identify the most effective mechanism for selecting the final

class label for a given, previously unseen, record and (iv) to determine the most effective

classifier to be utilised with respect to the proposed Multiple Path strategy.

Part1: Using Naive Bayesian Probability Values for Following Multiple Paths

Within the Rooted DAG. The conducted experiments and the obtained results when

following multiple paths and utilising Naive Bayes probability values are presented here.
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As noted earlier, for reasons of both efficiency and effectiveness it is preferable to follow

a maximum of up to two branches at each DAG node (the two branch strategy). In this

section the obtained results when following a maximum of two, three and all branches

(as indicated by the value for σ) are presented. The objectives of the experiments were:

(i) to observe the effectiveness of following multiple paths within the rooted DAG and

(ii) to determine the effect that the number of branches explored had on the classifica-

tion time (thus efficiency). This section also presents a comparison between the three

different proposed mechanisms for arriving at a final classification result: (i) Normalised

Accumulated Probability NAP, (ii) Best Individual Probability BIP and (iii) Voting.

The objective here is to identify the most effective mechanism for selecting the final

class label for a given, previously unseen, record.

Following two branches, as maximum, at each DAG node. The results

obtained when following up to two branches, at each DAG node, where the branch values

are greater than σ are presented here. Experiments were conducted using NAP, Voting

and BIP to identify the most appropriate value of σ in each case. Some detail concerning

these experiments are presented in Appendix D. Using the NAP class label selection

mechanism it was found that σ = 0.7 × 10−4 produced the best performance. Using

the Voting class label mechanism it was found that σ = 0.1 × 10−5 produced the best

performance and using the BIP class label mechanism it was found that σ = 0.5× 10−4

produced the best performance.

A comparison between the NAP, BIP and Voting mechanisms is presented in Ta-

ble 5.4 (best results highlighted in bold font). From the table it can be observed

that the results of the three mechanisms are very similar. More specifically, for seven

datasets (WaveForm, Wine, Nursery, Dermatology, PageBlocks, PenDigits, and Soy-

bean) the same AUC value was obtained regardless of which class selection mechanism

was adopted. For three datasets (Heart, Ecoli, and Led) the Voting mechanism produced

the best AUC value, although for one data set (Led) the same result was produced by

NAP. For one dataset (Glass) the NAP mechanism produce the best AUC results. For

another one dataset (Glass) the BIP mechanism produce the best AUC results. The best

average (mean) AUC, with respect to the twelve datasets considered, was obtained when

using the NAP mechanism. More specifically, the average (mean) AUC obtained when

using the NAP mechanism on the twelve datasets was 0.656, while using the Voting or

BIP mechanisms produced average AUC results of 0.652 and 0.655 respectively.

Three Branch Strategy. The results obtained when following up to three branches

at each DAG node (where each branch has a value grater than σ) are presented here.

Again, as in the case of following a maximum two branches at each DAG node, a

range of alternative values for σ were considered. As a result it was found that σ =

0.1× 10−4 produced the best average AUC value for the considered evaluation datasets.

For completeness these results are included in Appendix D.

All Branch Strategy. The results obtained when following all possible branches

with a value greater than σ at each DAG node are presented here. Again, as in the
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Table 5.4: Comparison between: (i) NAP, (ii) BIP and (iii) Voting mechanisms for
determining the final resulting class label with respect to rooted DAG

Data set Classes
NAP Voting BIP

(σ = 0.7× 10−4 ) (σ = 0.1× 10−5 ) (σ = 0.5× 10−4)
Acc. AUC Acc. AUC Acc. AUC

Waveform 3 77.00 0.77 77.00 0.77 77.00 0.77
Wine 3 95.08 0.95 95.08 0.95 95.08 0.95

Nursery 5 90.28 0.45 90.26 0.45 90.28 0.45
Heart 5 55.37 0.35 57.98 0.36 56.19 0.35

PageBlocks 5 92.65 0.52 92.65 0.52 92.65 0.52
Dermatology 6 87.23 0.85 87.18 0.85 86.94 0.85

Glass 7 72.99 0.51 70.29 0.45 72.11 0.50
Zoo 7 92.18 0.58 91.18 0.57 93.18 0.59
Ecoli 8 82.56 0.38 84.38 0.39 82.56 0.38
Led 10 75.56 0.76 75.47 0.76 75.41 0.75

PenDigits 10 83.58 0.83 83.58 0.83 83.58 0.83
Soybean 15 90.75 0.92 90.75 0.92 90.75 0.92

Mean 82.936 0.656 82.983 0.652 82.978 0.655

case of following up to two and three branches at each DAG node, a range of alternative

threshold values for σ were considered (see Appendix D) and it was found that σ =

0.1× 10−4 produced the best average AUC value for the considered evaluation datasets.

Effectiveness and efficiency comparison between the maximum number

of branches to be followed at each DAG node. A comparison between the two,

three and all branch strategies is presented here. The best results, are presented in

Table 5.5 (best AUC results highlighted in bold font). From the table, and according

to the provided average AUC values, it can be observed that the three and all branches

strategies produced better AUC values than when up to two branches were followed. In

addition it can be observed that there is no significant difference between the AUC values

obtained when using either the three or all branches strategies. Although we can notice

an improvement in terms of the obtained AUC values when comparing the two and

three (or all branches) strategies. The efficiency associated with the three or all branch

strategies is however an important consideration. Table 5.6 presents the run times with

respect to the two, three and all branch strategies (grater than a predefined threshold

value) within the rooted DAG. From the table it can be clearly observed, as expected,

that the classification time increases dramatically when the number of branches to be

explored increases.

As noted earlier in Section 5.3.2 it is preferable to restrict the number of branches

to be followed to a maximum of two so as to maintain the required run time within

reasonable limits. To be more confident about this decision, a Friedman non-parametric

test was applied to examine if the AUC results produced when adopting either the

three or all branch strategies were statistically different than those obtained when using
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Table 5.5: Average accuracy and average AUC results obtained using the two, three
and all branches strategies when generating a rooted DAG (Naive Bayes)

Data set Classes
Two branches Three branches All branches
Acc. AUC Acc. AUC Acc. AUC

Waveform 3 77.00 0.77 77.00 0.77 77.00 0.77
Wine 3 95.08 0.95 95.08 0.95 95.08 0.95

Nursery 5 90.28 0.45 88.94 0.58 89.48 0.58
Heart 5 55.37 0.35 54.73 0.37 54.94 0.37

PageBlocks 5 92.65 0.52 91.69 0.53 91.85 0.53
Dermatology 6 87.23 0.85 86.37 0.84 87.23 0.85

Glass 7 72.99 0.51 59.09 0.51 61.87 0.51
Zoo 7 92.18 0.58 93.18 0.59 93.18 0.59
Ecoli 8 82.56 0.38 68.55 0.33 72.45 0.34
Led 10 75.56 0.76 75.41 0.76 75.41 0.76

PenDigits 10 83.58 0.83 83.58 0.83 83.58 0.83
Soybean 15 90.75 0.92 90.75 0.92 90.75 0.92

Mean 82.94 0.66 80.36 0.67 81.07 0.67

Table 5.6: Run time results (in seconds) obtained when using the two, three and all
branch strategies when generating a rooted DAG (Naive Bayes)

Data set Classes Two branches Three branches All branches

WaveForm 3 0.008 0.009 0.009
Wine 3 0.007 0.009 0.009

Nursery 5 0.595 0.621 0.622
Heart 5 0.015 0.020 0.021

PageBlocks 5 0.266 0.278 0.299
Dermatology 6 0.020 0.028 0.050

Glass 7 0.016 0.026 0.060
Zoo 7 0.009 0.019 0.039
Ecoli 8 0.031 0.090 1.138
Led 10 0.261 1.318 1407.375

PenDigits 10 0.723 0.751 2235.709
Soybean 15 0.068 0.082 259.477

Mean 0.168 0.271 325.401

the two branch strategy. The results of this Friedman test are presented in Figure

5.2. According to the conducted Friedman test there was no statistically significant

difference between the different strategies (X2(2) = 2.632, p = 0.268). Based on the

above reported effectiveness and efficiency results, it was concluded that the two branch

strategy was the most appropriate. This was the strategy adopted with respect to the

remaining experiments reported on in this chapter.

Part 2: Using CARM Confidence Values for Following Multiple Paths Within

the Rooted DAG The results of following multiple paths within the rooted DAG
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Friedman Test
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Figure 5.2: Friedman Test

structure by utilising the confidence values generated when using CARM are presented

here. Because the foregoing section established that it is not significantly effective nor

efficient to follow more than two branches at each DAG node, the results presented in

this section have all been generated using the two branch strategy. A range of alternative

values for σ were considered (see Appendix D) and it was found that σ = 50 produced

the best performance for the considered evaluation datasets.

Part 3: Comparison Between Using Probability Values and Confidence Val-

ues for Following Multiple Paths Within the Rooted DAG. A comparison be-

tween using Naive Bayesian probability values and CARM confidence values for following

multiple paths within the rooted DAG is presented here. The objective of the compari-

son is to determine the most effective classifier to be utilised with respect to the proposed

Multiple Path strategy. Table 5.7 present the results obtained. From the table it can be

clearly observed that utilising Naive Bayesian probability values outperforms utilising

CARM confidence values in the context of the two path strategy. Again, as the case of

single path strategy, Naive Bayes classifiers are the best choice for generating the rooted

DAG, compared to CARM and decision tree classifiers.

From the above it was concluded that: (i) the most effective mechanism for selecting

the final class label for a given, previously unseen, record, was found to be NAP mecha-

nism and (ii) the most effective classifier to be utilised with respect to the Multiple Path

strategy was found to be Naive Bayes classifier. A statistical evaluation of these results

is presented in Chapter 8.

5.4.3 Comparison Between Single and Multiple Path Strategies

The objective of the comparison between the Single Path and Multiple Path strate-

gies was to determine whether following more than one path within the rooted DAG
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Table 5.7: Average Accuracy and AUC values obtained using Naive Bayes and CARM
to generate rooted DAG classification models coupled with the two branch strategy

Data set Classes
Naive Bayes CARM

DAG DAG
Acc. AUC Acc. AUC

Waveform 3 77.00 0.77 68.54 0.69
Wine 3 95.08 0.95 86.26 0.86

Nursery 5 90.28 0.45 86.81 0.43
Heart 5 55.37 0.35 53.76 0.20

PageBlocks 5 92.65 0.52 89.77 0.20
Dermatology 6 87.23 0.85 79.62 0.71

Glass 7 72.99 0.51 61.71 0.36
Zoo 7 92.18 0.58 88.00 0.52
Ecoli 8 82.56 0.38 32.42 0.25
Led 10 75.56 0.76 40.06 0.43

PenDigits 10 83.58 0.83 46.76 0.47

Mean 82.23 0.63 66.70 0.47

classification model could address the successive mis-classification issue noted earlier.

Commencing with a comparison of the Single and Multiple Path strategies with

respect to the Naive Bayes classification. From experiments conducted previously, and

presented above, the two path strategy was adopted for thus purpose. Although, again

from the above presented experiments, as a general rule σ = 0.7× 10−4 had been found

to produce the best performance for most of the datasets considered, a specific best

value for σ can be identified for each dataset. Table 5.8 presents the average accuracy

and AUC results obtained using the two branch strategy, in comparison with using a

single path (best AUC values highlighted in bold). From the table it can be observed

that by using the Multiple Path strategy the operation of the proposed rooted DAG

classification model is such that the classification accuracy with respect to one of the

twelve data sets considered (Glass) is improved. For one dataset (Ecoli) using the Single

Path strategy produced the best result. For the remaining ten datasets the same AUC

results were obtained regardless of whether a Single Path or Multiple Path strategy was

adopted.

Regarding the use of CARM classifiers to generate the proposed rooted DAG model,

Table 5.9 presents the average accuracy and AUC results obtained when adopting either

a single or a multiple path strategy within a rooted DAG (best AUC values highlighted

in bold). From the table it can be observed that by using the multiple path strategy the

operation of the proposed rooted DAG classification model is such that the classification

accuracy with respect to two of the eleven data sets considered (Ecoli, and Led) is im-

proved. For the remaining nine datasets the same AUC results were obtained regardless

of which strategy was adopted.
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Table 5.8: Average Accuracy and AUC results obtained using Naive Bayes coupled
with either a Single or a Multiple Path strategy

Data set Classes

Naive Bayes
Single Path Multiple Path

(σ = 0.7× 10−4)
Acc. AUC Acc. AUC

Waveform 3 77.00 0.77 77.00 0.77
Wine 3 95.08 0.95 95.08 0.95

Nursery 5 90.26 0.45 90.28 0.45
Heart 5 55.91 0.35 55.57 0.35

PageBlocks 5 92.69 0.52 92.69 0.52
Dermatology 6 87.23 0.85 87.23 0.85

Glass 7 69.81 0.46 72.99 0.51
Zoo 7 92.18 0.58 92.18 0.58
Ecoli 8 84.43 0.41 82.56 0.38
Led 10 75.66 0.76 75.56 0.76

PenDigits 10 83.58 0.83 83.58 0.83
Soybean 15 90.75 0.92 90.75 0.92

Mean 82.88 0.65 82.94 0.66

Table 5.9: Average Accuracy and AUC results obtained using CARM coupled with
either a single or a multiple path strategy

Data set Classes

CARM
Single Path Multiple Path

(σ = 50)
Acc. AUC Acc. AUC

Waveform 3 68.54 0.69 68.54 0.69
Wine 3 86.26 0.86 86.26 0.86

Nursery 5 86.81 0.43 86.81 0.43
Heart 5 53.76 0.20 53.76 0.20

PageBlocks 5 89.77 0.20 89.77 0.20
Dermatology 6 79.62 0.71 79.62 0.71

Glass 7 61.71 0.36 61.71 0.36
Zoo 7 88.00 0.52 88.00 0.52
Ecoli 8 32.12 0.24 39.51 0.25
Led 10 40.06 0.40 40.06 0.43

PenDigits 10 46.76 0.47 46.76 0.47

Mean 66.67 0.46 66.70 0.47

It was thus concluded that following more than one path within the rooted DAG

classification model produced a better classification effectiveness with respect to some of

the considered data sets. A statistical evaluation of these results is presented in Chapter

8.
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5.4.4 Comparison Between the Rooted DAG Ensemble Classification

Model and Conventional models

In this section a comparison between the proposed rooted DAG classification model

and conventional classification models is presented. In order to conduct a consistent

comparison between the rooted DAG and existing conventional models a comparison

was conducted using the same classifier generator in each case, Three set of experiments

are reported on here: (i) comparison between the operation of a stand alone decision

tree classifier, bagging of decision trees and a decision trees DAG model; (ii) comparison

between the operation of a stand alone CARM classifier, bagging of CARM and CARM

DAG model; and (iii) comparison between the operation of a stand alone Naive Bayes

classification, Bagging of Naive Bayes classifiers and Naive Bayes DAG classification.

In addition, a “non-consistent” comparison between Naive Bayes DAG, because the

foregoing sections has already established that the Naive Bayes DAG produced the best

performance, and OVO SVM was conducted. The objective of this last comparison was

to compare the suggested model with one of the state of the art methods for multi-class

classification. For the comparison the two branch strategy was used through out (see

previous discussion).

Starting with the comparison between “stand-alone” decision tree classification, bag-

ging of decision trees, and the proposed rooted DAG with decision tree classifiers at each

node. Table 5.10 presents the results obtained in terms of average accuracy and average

AUC (best results highlighted in bold font). From the table it can be observed that the

proposed rooted DAG classification model produces an improved classification accuracy

with respect to four of the eleven datasets considered (Nursery, Heart, PageBlocks, and

Led). In the remaining seven cases, the stand-alone decision tree classifier produced the

best result, although for one dataset (Zoo) the same result was produced as in the case

of the bagging ensemble classification. The results obtained for a series of run-time ex-

periments that were also conducted are presented in Table 5.11. The table includes both

the generation and classification times. From the table it can be observed, as expected,

that the lowest generation and classification times were obtained when using stand-alone

decision tree classification.

With respect to the comparison between “stand-alone” Naive Bayes classification,

bagging of Naive Bayes classifiers and the Naive Bayes DAG models Table 5.12 presents

the results obtained in terms of average accuracy and average AUC (best results high-

lighted in bold font). Recall that the results presented with respect to the DAG are

the multiple path results when the two branch strategy is adopted. From the table it

can be observed that the proposed rooted DAG classification model improves classi-

fication accuracy with respect to seven of the twelve datasets considered (WaveForm,

Heart, PageBlocks, Dermatology, Glass, Ecoli, and Led), although for three datasets

(WaveForm, PageBlocks, and Led) the same result was produced as when Naive Bayes

classification was used in stand-alone mode and with respect to bagging. For one dataset

(Dermatology) the same result as that obtained with respect to stand alone Naive Bayes
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Table 5.10: Average accuracy and AUC results obtained when using: (i) stand alone
decision tree classification, (ii) bagging of decision trees and (iii) DAG classification

with decision trees at nodes

Data set Classes
Decision Tree Bagging DAG
Acc. AUC Acc. AUC Acc. AUC

Waveform 3 53.72 0.54 53.36 0.53 48.42 0.49
Wine 3 73.86 0.73 69.91 0.69 56.78 0.51

Nursery 5 5.15 0.03 32.71 0.16 33.35 0.20
Heart 5 48.80 0.28 51.15 0.28 59.29 0.34

PageBlocks 5 92.55 0.49 92.23 0.47 93.2 0.54
Dermatology 6 57.53 0.57 43.95 0.39 44.78 0.39

Glass 7 64.50 0.40 62.27 0.36 48.06 0.24
Zoo 7 89.00 0.53 87.27 0.53 74.09 0.42
Ecoli 8 78.07 0.34 73.61 0.31 78.93 0.33
Led 10 74.72 0.74 74.06 0.74 85.47 0.85

PenDigits 10 76.84 0.77 72.64 0.72 37.93 0.38

Mean 64.98 0.49 64.83 0.47 60.03 0.43

Table 5.11: Run time results (in seconds) obtained using (i) stand alone decision tree
classification, (ii) bagging of decision trees and (iii) DAG classification with decision

trees at nodes

Data set
Generation Time Classification Time

Decision Bagging of DAG Decision Bagging of DAG
Tree Trees Tree Trees

WaveForm 0.926 0.901 2.726 0.038 0.039 0.071
Wine 0.157 0.182 0.238 0.001 0.001 0.002

Nursery 1.237 1.200 15.222 0.151 0.141 0.266
Heart 0.189 0.259 0.525 0.003 0.006 0.006

PageBlocks 0.620 0.736 3.743 0.004 0.005 0.017
Dermatology 0.210 0.278 0.868 0.004 0.011 0.008

Glass 0.160 0.217 1.006 0.001 0.001 0.005
Zoo 0.109 0.128 0.691 0.000 0.000 0.002
Ecoli 0.179 0.215 2.723 0.001 0.001 0.005
Led 0.440 0.523 505.184 0.007 0.017 0.030

PenDigits 1.207 1.308 4256.904 0.062 0.059 0.569

Mean 0.494 0.541 435.439 0.025 0.026 0.089

classification was obtained. For another three datasets (Wine, PenDigits, Soybean) the

stand-alone Naive Bayes classifier produced the best result although for one dataset

(PenDigits) the same result was produced when bagging was used. For two datasets

(Nursery, and Zoo) bagging produced the best results. The results obtained with re-

spect to the associated run-time experiments are presented in Table 5.13. The table lists

both the generation and classification times. From the table it can be observed, again as
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expected, that the lowest generation and classification times were obtained when using

stand-alone classification.

Table 5.12: Average accuracy and AUC obtained when using: (i) stand alone Naive
Bayes classification, (ii) bagging of Naive Bayes classifiers and (iii) DAG classification

with Naive Bayes classifiers at nodes

Data set Classes
Naive Bayes Bagging of Naive bayes

Naive Bayes DAG
Acc. AUC Acc. AUC Acc. AUC

Waveform 3 77.04 0.77 77.06 0.77 77.00 0.77
Wine 3 95.67 0.96 93.72 0.94 95.08 0.95

Nursery 5 90.22 0.45 89.96 0.46 90.28 0.45
Heart 5 54.60 0.34 51.28 0.30 55.57 0.35

PageBlocks 5 92.69 0.52 92.62 0.52 92.69 0.52
Dermatology 6 86.66 0.85 81.00 0.81 87.23 0.85

Glass 7 67.83 0.49 55.28 0.46 72.99 0.51
Zoo 7 92.27 0.59 94.27 0.62 93.18 0.59
Ecoli 8 81.70 0.38 82.56 0.39 84.43 0.41
Led 10 75.59 0.76 75.50 0.76 75.56 0.76

PenDigits 10 84.94 0.85 84.57 0.85 83.58 0.83
Soybean 15 91.11 0.93 86.83 0.89 90.75 0.92

Mean 82.53 0.66 80.39 0.65 83.20 0.66

Table 5.13: Run time results (in seconds) obtained using: (i) stand alone Naive Bayes
classification, (ii) bagging of Naive Bayes classifiers and (iii) DAG classification with

Naive Bayes classifiers at nodes

Data set
Generation Time Classification Time

Naive Bagging DAG Naive Bagging DAG
Bayes Bayes

Waveform 0.737 0.774 0.199 0.002 0.005 0.009
Wine 0.202 0.177 0.189 0.001 0.001 0.009

Nursery 0.974 1.180 5.982 0.003 0.011 0.595
Heart 0.202 0.216 0.333 0.000 0.001 0.015

PageBlocks 0.676 0.775 2.510 0.001 0.005 0.266
Dermatology 0.242 0.296 0.445 0.000 0.000 0.020

Glass 0.178 0.182 0.539 0.000 0.000 0.016
Zoo 0.163 0.136 0.491 0.000 0.001 0.009
Ecoli 0.206 0.208 1.032 0.000 0.000 0.031
Led 0.529 0.547 33.701 0.002 0.004 0.261

PenDigits 1.100 1.121 264.369 0.006 0.010 0.723
Soybean 0.353 0.329 1520.706 0.001 0.003 0.068

Mean 0.464 0.495 152.541 0.001 0.003 0.169

Because of the effectiveness and efficiency of the Naive Bayes DAG model, compared

to decision trees and CARM DAGs, a comparison between the operation of the Naive
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Bayes DAG and OVO SVM, was also conducted. Table 5.14 presents the results obtained

in terms of average accuracy and average AUC (best results highlighted in bold font).

Again, recall that the results presented with respect to the DAG are the multiple path

results obtained when using the two branches strategy. From the table it can be observed

that the Naive Bayes DAG produced the best classification accuracy with respect to eight

of the twelve datasets considered (Wine, Heart, PageBlocks, Dermatology, Glass, Zoo,

Ecoli, Led, Soybean), although for one dataset (Led) the same result was produced using

OVO SVM. In the remaining four cases, the OVO SVM produced the best result. The

results obtained for the associated run-time experiments are presented in Table 5.15.

Again the table presents both the generation and classification times. From the table

it can be observed, that the lowest generation time was recorded when using the OVO

SVM classification model. While the lowest classification time was recorded when using

the Naive DAG classification model. However, although the presented generation times

show that OVO SVM requires less time to be generated, the presented generation times

for OVO SVM do not consider the time required for searching for the optimal values for

the SVM parameters C and γ.

Table 5.14: Average Accuracy and AUC values obtained using Naive Bayes DAG
coupled with the Multiple Path strategy, and One-versus-One using SVM as the base

classifier

Data set Classes
Naive Bayes DAG OVO SVM
Acc. AUC Acc. AUC

WaveForm 3 77.00 0.77 80.72 0.81
Wine 3 95.08 0.95 93.13 0.93

Nursery 5 90.28 0.45 99.69 0.64
heart 5 55.57 0.35 53.01 0.22

PageBlocks 5 92.69 0.52 92.58 0.50
Dermatology 6 87.23 0.85 88.73 0.86

glass 7 72.99 0.51 72.04 0.47
Zoo 7 93.18 0.59 94.00 0.58
ecoli 8 84.43 0.41 82.95 0.36
led 10 75.56 0.76 75.62 0.76

PenDigits 10 83.58 0.83 98.60 0.99
soybean 15 90.75 0.92 92.54 0.91

Mean 83.20 0.66 85.30 0.67

Regarding the comparison between stand-alone CARM, Bagging of CARM, and the

CARM based DAG model the results are presented in Table 5.16 in terms of average

accuracy and average AUC (best results highlighted in bold font). From the table it can

be observed that the rooted DAG classification model improves classification accuracy

with respect to six of the eleven datasets considered (WaveForm, Wine, Nursery, Heart,

Dermatology, and Ecoli). For another four datasets (PageBlocks, Glass, Zoo, and Led)

the stand-alone CARM produced the best result although for one dataset (Led) the
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Table 5.15: Run time results (in seconds) obtained using Naive Bayes DAG coupled
with the Multiple Path strategy, and One-versus-One using SVM as the base classifier

Data set
Generation Time Classification Time

DAG OVO DAG OVO

WaveForm 0.199 1.183 0.009 0.385
Wine 0.189 0.066 0.009 0.029

Nursery 5.982 10.974 0.595 0.778
heart 0.333 0.139 0.015 0.067

PageBlocks 2.510 0.657 0.266 0.135
Dermatology 0.445 0.201 0.020 0.054

glass 0.539 0.120 0.016 0.044
Zoo 0.491 0.066 0.009 0.028
ecoli 1.032 0.101 0.031 0.038
led 33.701 0.582 0.261 0.182

PenDigits 264.369 4.153 0.723 0.529
soybean 1520.706 0.386 0.068 0.151

Mean 152.541 1.552 0.169 0.202

same result was produced as in the case of bagging. For one dataset (PenDigits) bagging

classification produced the best result. The results obtained for the run-time experiments

are presented in Table 5.17. As before the table presents both the generation and

classification times. From the table it can be observed, and again as expected, that the

lowest generation and classification times were obtained when using stand-alone CARM.

Table 5.16: Average accuracy and AUC results obtained when using: (i) stand alone
CARM classification, (ii) bagging of CARM classifiers and (iii) DAG classification with

CARM classifiers at nodes

Data set Classes
CARM Bagging DAG

Acc. AUC Acc. AUC Acc. AUC

Waveform 3 60.04 0.60 60.76 0.61 68.54 0.69
Wine 3 71.88 0.74 61.48 0.61 86.26 0.86

Nursery 5 73.94 0.36 73.94 0.36 86.81 0.43
Heart 5 51.70 0.20 45.49 0.24 53.76 0.20

PageBlocks 5 89.99 0.21 89.95 0.21 89.77 0.20
Dermatology 6 77.00 0.66 72.12 0.62 80.82 0.77

Glass 7 65.05 0.43 53.30 0.31 61.71 0.39
Zoo 7 94.00 0.59 83.00 0.46 88.00 0.52
Ecoli 8 49.98 0.12 37.90 0.07 39.51 0.28
Led 10 67.28 0.67 67.09 0.67 40.06 0.43

PenDigits 10 75.99 0.76 77.09 0.77 46.76 0.47

Mean 70.62 0.49 65.65 0.45 67.45 0.48

In conclusion, given the above results, it can be argued that rooted DAG classification

model could be successfully used to classify data in a more effective manner than when
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Table 5.17: Run time results (in seconds) obtained when using: (i) stand alone CARM
classification, (ii) bagging of CARM classifiers and (iii) DAG classification with CARM

classifiers at nodes

Data set Classes
Generation Time Classification Time

CARM Bagging DAG CARM Bagging DAG

Waveform 3 1.254 1.418 2.494 0.002 0.004 0.234
Wine 3 0.389 0.559 0.682 0.000 0.000 0.014

Nursery 5 1.142 1.222 5.547 0.003 0.004 0.594
Heart 5 0.383 0.624 3.788 0.000 0.002 0.015

PageBlocks 5 0.796 0.890 3.404 0.001 0.001 0.257
Dermatology 6 0.451 0.660 8.542 0.000 0.001 0.023

Glass 7 0.279 0.316 2.281 0.001 0.001 0.015
Zoo 7 0.312 0.549 14.938 0.000 0.000 0.006
Ecoli 8 0.238 0.276 0.992 0.000 0.000 0.023
Led 10 0.581 0.647 25.451 0.001 0.015 0.263

PenDigits 10 2.199 2.578 2402.572 0.008 0.010 1.195

Mean 0.729 0.885 224.608 0.001 0.003 0.240

alternative conventional methods were used, with respect to at least some of the datasets

considered in the evaluation.

5.5 Summary

A hierarchical ensemble classification model for multi-class classification based on a

rooted Directed Acyclic Graph (DAG) structure has been presented in this chapter.

Three different classification algorithms were used to generate node classifiers: (i) deci-

sion tree, (ii) Naive Bayes and (iii) CARM. The rooted DAG structure facilitated the use

of two mechanisms to address the successive mis-classification problem associated with

hierarchical classifiers where a miss-classification near the root of the hierarchy is passed

on down the hierarchy. The first proposed mechanism was the combination technique

for grouping classes across nodes at individual levels in the DAG so that an overlap

existed between the class groups; unlike in the case of binary tree based hierarchical

classifiers where this option is not available. The second mechanism was the option to

follow multiple paths down the hierarchy by utilising the probability or confidence values

generated by Naive Bayes and CARM classifiers respectively.

The operation of the proposed rooted DAG model was compared with three well-

established more conventional classification models: (i) stand-alone classification, (ii)

Bagging ensemble classification, and (iii) OVO classification. More specifically, the per-

formance of each type of rooted DAG model considered (decision tree, Naive Bayes and

CARM) was compared with the same stand alone classifier that was used in the context

of DAG and also with bagging ensemble classification using same classification algo-

rithms (so that a “consistent comparison” was obtained). In addition, a “non-consistent”
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comparison between Naive Bayes DAG, because the Naive Bayes DAG produces the best

performance, and OVO SVM was conducted. The objective of this last comparison was

to compare the operation of the proposed rooted DAG model with one of the state of

the art methods for multi-class classification.

The reported evaluation demonstrated that best results were produced when using

the Naive Bayes algorithm to generate the classifiers at the nodes within the rooted DAG

compared to the decision tree and CARM based DAG models. With respect to following

multiple paths within the rooted DAG it was demonstrated that following more than one

path in the rooted DAG tended to produce a better classification effectiveness. Although

any number of branches may be explored at each DAG node, it was suggested that it

is preferable to explore a maximum of two branches at each node because of efficiency

issues. The maximum number of branches to be explored can of course be considered

as a user specified value. In addition, it was demonstrated that the proposed rooted

DAG classification model could be successfully used to classify data in a more effective

manner than when alternative conventional methods were used, such as decision tree,

Naive Bayes classification, CARM, Bagging of decision trees, Bagging of Naive Bayes

classifiers, Bagging of CARM and OVO SVM; with respect to at least some of the

datasets considered in the evaluation.

The issues with the rooted DAG classification model are: (i) as the number of class

labels featured in the dataset increases the number of classifiers that need to be generated

increases correspondingly, as a result more storage and run time are required to generate

the model (thus there are scalability and efficiency issues); and (ii) the combination

mechanism and the Multiple Path strategy only partly mitigates against the early mis-

classification issue (effectiveness issue).

In order to improve the performance (scalability, effectiveness and efficiency) of the

rooted DAG model, a non-rooted DAG structure, rather than a rooted DAG structure,

was considered. The advantageous features provided by the non-rooted DAG structure

are:

1. It enables the elimination of the root node where the largest number of class

combinations are considered.

2. As a result of (1) it has the effect of reducing the overall number of levels in the

desired model (depth pruning).

3. It enables the application of breadth pruning, thus allowing for the elimination

of “weak” classifiers at each DAG level, so as to reducing the overall size of the

DAG further. Note that breadth pruning cannot be applied in the case of the

rooted DAG structure because the rooted DAG requires inclusion of all classes

combinations.

The non-rooted DAG is considered in the next chapter.



Chapter 6

Directed Acyclic Graph (DAG)

Structure Based Hierarchical

Classification Model

6.1 Introduction

This chapter considers using a non-rooted Directed Acyclic Graph1 (DAG) structure,

rather than a rooted DAG structure, to generate a hierarchical classification model. Re-

call from the previous chapter that a rooted DAG2, although straightforward to generate,

entails a number of disadvantages in the context of: (i) scalability, (ii) effectiveness and

(iii) efficiency. The proposed non-rooted structure seeks to address the disadvantages of

the rooted DAG. The advantages offered by the non-rooted DAG structure are:

1. It enables the elimination of the root node where the largest number of class

combinations are considered, as well as reducing the overall number of levels in

the desired model (depth pruning).

2. It enables the application of breadth pruning, reducing the number of classifiers

that need to be generated at each DAG level so as to reduce the overall size of the

DAG further.

Note that breadth pruning is not applicable to the rooted DAG model because the

rooted DAG requires inclusion of all classes combinations. For ease of understanding,

this chapter considers the non-rooted DAG without breadth pruning, while chapter 7

considers the non-rooted DAG with breadth pruning.

1A Directed Acyclic Graph (DAG) is a graph that is comprised a set of nodes (vertices) and directed
edges (arcs), where every node has at least one inward or outward edge connecting it to another node
in such a way that there are no cycles, in other words there is no sequence of edges starting from a node
N that eventually loops back to N [21, 94].

2A rooted DAG is a DAG that has exactly one node designated as a root node, a node that has no
edges pointing in to it, in other words there is only one node that has no predecessor nodes) [79].
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Classifier	  
{a,	  b,	  c}	  

(ab)	  (ac)	  (bc)	  

Classifier	  
{a,	  b}	  
(a)	  (b)	  

Classifier	  
{a,	  c}	  
(a)	  (c)	  

Classifier	  
{b,	  c}	  
(b)	  (c)	  

Classifier	  
{a,	  d}	  
(a)	  (d)	  

Classifier	  
{b,	  d}	  
(b)	  (d)	  

Classifier	  
{c,	  d}	  
(c)	  (d)	  

Classifier	  
{a,	  b,	  d}	  

(ab)	  (ad)	  (bd)	  

Classifier	  
{a,	  c,	  d}	  

(ac)	  (ad)	  (cd)	  

Classifier	  
{b,	  c,	  d}	  

(bc)	  (bd)	  (cd)	  

a	   b	   c	   d	  

Figure 6.1: DAG example.

The non-rooted DAG hierarchical classification model is another form of ensemble

classifier of the form promoted in this thesis. Each node in the DAG holds a classifier.

The classifiers at the leaves conduct fine-grained classifications while the classifiers at

non-leaf nodes conduct coarse-grained classification directed at classifying records using

groups of labels (as in the previous cases considered). In order to group (partition)

the input data D during the hierarchy generation process the combinations techniques

proposed in Chapter 5 will again used. A simple example DAG classifier for four class

labels, C = {a, b, c, d}, is presented in Figure 6.1. The first level nodes are assigned class

combinations of size three (|C| − 1), while the second level nodes are assigned classes

combinations of size two (|C| − 2). The distinction between this DAG structure and the

rooted DAG structure can clearly be seen by comparison with Figure 5.1.

An issue with respect to the non-rooted DAG structure, as the name implies, is the

need to determine the “starting node” (a root) from which the classification process is

to commence. To this end classifier generators, such as Naive Bayesian Classification or

Classification Association Rule Miners (CARM) were again used to produce probability

or confidence values that can be utilised to determine the starting node. As mentioned

earlier, successive miss-classification is the overriding general drawback of hierarchical

classification, whereby if a record is miss-classified early on in the process (near the

root of the DAG) it will continue to be miss-classified at deeper levels, regardless of the

classifications proposed at lower level nodes and the final leaf nodes. Again, to address
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this problem a Multiple Path strategy is proposed (facilitated by the probability or

confidence values generated by Naive Bayes classifiers or CARM hosted at the DAG

nodes).

The rest of this chapter is organised as follows: Section 6.2 explains the generation of

the DAG hierarchical ensemble classification model in detail. While Section 6.3 considers

the operation of the proposed model. Section 6.4 presents the conducted experiments

and the obtained results. Finally, a summary of the chapter is presented in Section 6.5.

6.2 Non-Rooted DAG Generation

In this section the generation of the non-rooted DAG hierarchical ensemble classification

model is described. The process requires that a classifier is generated for each DAG

node using an appropriate training set, which ideally includes well-defined class label

groupings (individual classes at leaf nodes). As noted earlier groupings are identified

using a combination mechanism. At each level in the DAG the class groupings are

determined by finding all possible classes combinations of size |C| − i (where i is the

level counter, at start up i = 1). As the process proceeds i is increased by one, as a

result the combination (group) size is decreased by one. The process terminates when

the combination size becomes two.

Algorithm 11 presents the generation process in more detail. The input to the

algorithm is the training data set D and the set of class labels C. The DAG is created

in a recursive manner using the function dagGen. On each recursion the dagGen function

is invoked with two parameters: k, the combination size (starting with k = |C| − 1 and

ending with k = 2); and CurrentNodes, a reference to the current level nodes (resulting

from the previous iteration, initially CurrentNodes = null). The recursive process

starts by finding the set of size k class combinations, the set Ck (line 13). After that we

go through the set Ck (line 15) and on each iteration: (i) the set of training set records

Ti that feature the combination Ci ∈ Ck is identified (line 16), (ii) a classifier Gi using

Ti is trained (line 17); (iii) a new DAG node, node, is created (line 18); and (iv) the new

node is added to the set of accumulated level k nodes so far, NodeSet (line 19). Then,

if the current level is not the first level in the DAG (Line 20), we loop through the set

of current nodes and add a link from each current node CurrentNodej to the new node

node whenever the set of class labels associated with the new node (Ci) is included in

the set of class labels associated with a current node (Ci ⊂ CurrentNodesj .C). The

recursive process terminates if k reaches 2 (line 28).

The conjectured advantage of using a non-rooted DAG structure to generate the

desired DAG classification model is that it could result in better classification accuracy

because of: (i) the elimination of the root node that distinguishes between a large number

of class combinations, and (ii) the flexibility of the non-rooted DAG structure, and the

combination mechanism, that enables the reduction of the overall number of levels in the

desired model. More specifically, this flexibility allows the generation of DAG according
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Algorithm 11 DAG Generation

1: INPUT
2: D = The input training dataset
3: C = The set of Classes featured in D
4: OUTPUT
5: The generated DAG
6:

7: Start
8: k = |C| − 1
9: dagGen(k, null)

10: End
11:

12: function dagGen(k,CurrentNodes)
13: Ck = Set of size k combinations in C
14: NodeSet = {}
15: for i = 1 to i = |Ck| do
16: Ti = Set of training records in D that feature Ci (Ti ⊂ D)
17: Gi = Classifier for Ci built using training set Ti
18: node = new Node(Gi, Ci)
19: NodeSet = NodeSet ∪ node
20: if CurrentNodes != Null then
21: for j = 1 to j = |CurrentNodes| do
22: if Ci ⊂ CurrentNodesj .C then
23: CurrentNodesj .childNodes = CurrentNodesj .childNodes∪node
24: end if
25: end for
26: end if
27: end for
28: if k > 2 then
29: dagGen(k − 1, NodeSet)
30: end if
31: end function

to any predefined number of levels. In the conducted experiments generating the DAG

with various numbers of levels was considered, the objective was to gradually observe the

effect of reducing the number of levels on the classification performance. For example

for generating all levels in the DAG, the DAG model is created exactly as described in

algorithm 11 (the combination sizes range from |C|−1 to 2) and the number of classifiers

required to be trained in order to generate all levels in the DAG classification model can

be determined using Equation 6.1:

NumberOfClassifiers = 2N −N − 2 (6.1)

where N is the number of class labels in a given dataset.

While if only two levels needed to be generated, for example, the permitted combi-

nation sizes range from 3 to 2, the number of classifiers that need to be generated in

this case can be calculated as follows (Equation 6.2):
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NumberOfClassifiers = (1/6) (N)
(
N2 − 1

)
(6.2)

where N is the number of class labels in a given dataset.

The conjecture here is that by reducing the number levels in the DAG the classifica-

tion performance (with respect to efficiency, effectiveness, and scalability) of the DAG

classification model might be enhanced because: (i) the number of classifiers that need

to be generated will be reduced and as a result the proposed model can be generated

for datasets that feature larger number of class labels than in the case of rooted DAG,

(ii) the internal classifiers are not required to discriminate between large numbers of

class combinations and (iii) the number of classifiers that need to be evaluated during

the classification stage will be decreased, as a result the probability of miss-classification

will also be decreased.

6.3 Non-Rooted DAG Operation

In this section the operation of the non-rooted DAG hierarchical ensemble classification

model is explained. Two methods of operation were considered: (i) the Single Path

strategy and (ii) the Multiple Path strategy. A challenging issue associated with both

strategies is how to identify the best starting node among the set of nodes at the first level

in a given DAG. In both cases this is addressed by using the probability values associated

with the Naive Bayes classifiers generated for each DAG node, or the confidence values

generated by CARM. A disadvantage of the Single Path strategy is that it is susceptible

to the successive miss-classification issue discussed earlier. The Multiple Path strategy

seeks to address this issue by again using the probability values associated with the

Naive Bayes classifiers (or confidence values associated with CARM) to decide, at each

node, whether to follow single or multiple paths. The two strategies are discussed in the

following two subsections.

6.3.1 Single Path Strategy

As the name suggests, in the Single Path strategy only a “Single path” will be followed

according to the classification at each DAG node. The Single Path classification strategy

can be viewed as a two-step process: (i) determine a best start node amongst the set of

nodes available at the first level in the DAG by evaluating all the classifiers that exist

at the first level and selecting the node with the classifier that generates the highest

probability value (or confidence value if using CARM) and then (ii) drilling down as

dictated by subsequent internal node classifications until a classifier that can assign a

single class label to the given record is arrived at.

Algorithm 12 presents the Single Path procedure. Note that the algorithm assumes

the use of Naive Bayes classifiers at each DAG node; the procedure is the same when

using CARM, but instead of using probability values the associated confidence values

are used. The input to the algorithm are: (i) r, a new unseen record; and (ii) a reference
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to the nodes at the first level in the given DAG FirstLevelNodes (from which all the

DAG child nodes can be identified). The output is a predicted class label for r. The

process commences by identifying the best starting node among nodes at the first level

in the DAG (line 8-15) by looping through the nodes at the first level (line 9) and for

each node: classifying r using the respective node classifier (line 10), and adding the

resulting class group with the associated probability to S, the set of class groups and

associated probabilities resulting from evaluating first level nodes (line 12). The best

start node is then the node with the highest associated probability value (line 14). The

next node will be the child node of the identified startNode representing class group

Ci associated with max(Pi) (Line 15). The next step is a recursive process using the

dagclassify function described on lines 19 to 27. The dagclassify function is called

with two parameters: r, the record to be classified, and Node a pointer to the current

node location in the DAG. On each recursion the record r is classified using the classifier

at the current DAG node, Node : Gi (line 20). The process proceeds depending on the

nature of the returned class label. If it is a single class label then we return this class

(line 22). If we have a group of class labels, dagClassify is called again (line 25) with r

and a pointer (ChildNode) to the child node associated with the identified class group.

Algorithm 12 DAG Single Path Classification

1: INPUT
2: r = A new unseen record
3: FirstLevelNodes = nodes at the first level in the DAG
4: OUTPUT
5: The predicted class label c for the input record r
6:

7: Start
8: S = Classification results for r using the classifiers at the first level in the DAG comprised

of: (i) class groups and (ii) the associated Bayesian probability values (initially S = {})
9: for j = 1 to j = |FirstLevelNodes| do

10: Ci =Classification result for r using classifier Node.Gi
11: Pi = Bayesian probability value associated with class group Ci
12: S = S ∪ Ci associated with Pi
13: end for
14: startNode = node associated with max(Pi) in S
15: ChildNode = child node for startNode representing class group Ci associated with max(Pi)
16: c = dagclassify(r, ChildNode)
17: End
18:

19: function dagClassify(r,Node)
20: C = Classification result for r using classifier Node.Gi

21: if |C| == 1 then
22: return c (c ∈ C)
23: else
24: ChildNode = child node representing class group C
25: return (dagclassify(r, ChildNode))
26: end if
27: end function

It is interesting to note that it might be the case that several classifiers at the first

level generate exactly the same probability or confidence value (this phenomena often
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occurs when using CARM because of the generality of the rules produced), the problem

here is if these nodes refer to different nodes in the next level. To handle this situation

a mechanism whereby an exception was evaluated causing the system to proceed to the

next level node, which has had the highest number of links from previous level nodes

(majority voting). If there are more than one such node, then the next node is chosen

at random.

The number of classifiers that need to be used to classify a record using the Single

Path strategy, is all the classifiers at the first level and a classifier at each subsequent

DAG level. Equation 6.3 can be used to determine the number of classifiers needed to

classify a record using the Single Path strategy when considering DAG with all levels,

where N is the number of class labels in a given dataset. If we have only a two level

DAG then the number of classifiers to be evaluated is determined using Equation 6.4.

NumberOfClassifiers = 2N − 3 (6.3)

NumberOfClassifiers = (1/6) (N − 2) (N − 1) (N) + 1 (6.4)

6.3.2 Multiple Path Strategy

As before, the Multiple Path strategy is designed to address the successive miss-classification

issue, discussed earlier, associated with hierarchical classification. In the Multiple Path

strategy more than one path can be followed within the DAG classification model. Al-

though many branches can be followed at each DAG node, only two branches are sug-

gested as a maximum because of the efficiency issue discussed earlier in Chapter 5. A

second reason is that for evaluation purposes comparisons can be made with the binary

tree hierarchical ensemble model (where only a maximum of two paths can be followed

at each tree node). As mentioned earlier, Naive Bayes classifiers and Classification As-

sociation Rule Miners (CARM) were used, so the Bayesian probability p (or confidence

value) associated with the individual class groups, at each DAG node, will be used

to dictate whether one or two branches will be followed according to the predefined

threshold σ. Where at each DAG node the two class groups associated with the highest

probabilities (highest confidence) are identified, then if their probabilities (confidence

values) are grater than σ both branches will be explored, otherwise the branch with the

highest associated probability (confidence) value will be selected.

In order to decide the final class label from the collection of “candidate classes”

resulting from following multiple paths, the accumulated weight scheme was adopted

because the previous chapters concluded that this scheme produced the best classifi-

cation performance. Using the accumulated weight scheme we take into consideration

all probability (or confidence) values in a followed path to produce an accumulated

value. More specifically, the probability (or confidence) values for a followed path are

added and then divided by the number of classifiers used in the path to produce a

NormalisedAccumulated Probability (or NormalisedAccumulatedConfidence) value,
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(0 <NormalisedAccumulatedProbability < 1, while 0 < NormalisedAccumulatedCon-

fidence ≤ 100). The normalised accumulated probability (or confidence) value is calcu-

lated for each candidate class, the candidate class associated with the highest value will

be retrieved as the class label for a given record.

The Multiple Path classification strategy can be viewed as a three-step process: (i)

determining the start node(s) from the set of nodes available at the first level in the

DAG by evaluating all the classifiers that exist at this first level and selecting one or

two nodes as start nodes based on the probability threshold σ (confidence threshold in

case of using CARM), (ii) for each identified node drill down following one or two paths

as indicated and repeat until a classifier that can assign a single class label to the given

record is arrived at and finally (iii) identify the class label associated with the highest

generated accumulated weight value.

Algorithm 13 (a and b) summarises the multiple path procedure. Note here that the

algorithm assumes usage of Naive Bayes classifiers at each DAG node, the procedure

is the same when using CARM, but instead of using probability values the associated

confidence values are used. The inputs to the algorithm are: (i) the new unseen record

r; (ii) a reference, FirstLevelNodes, to the first level DAG; and (iii) the path selec-

tion threshold σ. For simplicity the algorithm is decomposed into two main functions:

dagF irstLevelMulti, and dagMultiPathClassify.

Starting with dagF irstLevelMultiPathClassify (Algorithm 13 (a)), which is re-

sponsible for determining the start node (or nodes) amongst the set of nodes available

at the first level. The process commences by evaluating all the classifiers that exist at

the first level (lines 20-24), and selecting the two nodes that generate the highest prob-

ability values (lines 25-28). If the second highest probability value is grater than σ then

both nodes will be considered as start nodes, otherwise only the node that generated

the highest probability value will be considered as the start node (lines 29-32).

After determining the start node(s) the recursive function dagMultiPathClassify

is called (Algorithm 13 (b)). The dagMultiPathClassify function operates in a similar

manner to the dagClassify function presented in Algorithm 12 except that it: (i) uses

the σ threshold to decide whether one or two branches will be followed, (ii) uses the

variable accumProb to store the accumulated Bayesian probability values in a followed

path, (iii) maintains a counter to count the number of probability values in a followed

path, and (iv) uses a data structure Path, in which to hold candidate class labels

with their associated normalised Bayesian probability values. On each recursion of

the dagMultiPathClassify function the Bayesian classifier held at the current node

is used to produce a probability value with respect to r for each class group. Only

the class groups associated with the two highest probability values are considered (two

branches will be followed at maximum) (lines 35-40). Whenever the size of a class

group considered at a node is equal to one (Lines 41 and 49), indicating that the group

comprises a single class label, the class label and associated normalised probability value

are added to Path (lines 43 and 51). Note that the normalised probability is calculated
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by dividing the accumulated probability generated so far accumProb, by the number

of classifiers used in the current path counter (lines 42 and 50). Whether one or two

branches are followed, at each DAG node, depends on the probability values returned

using the Bayesian classifier at the current node and the σ threshold. If the second

highest probability value is grater than σ (line 48) then two branches will be followed,

otherwise only a single branch will be followed. At the end of the process the Path data

structure is processed to identify the class label with the highest associated normalised

probability value (line 14).

Algorithm 13 (a) DAG Multiple Path Classification

1: INPUT
2: r = A new unseen record
3: FirstLevelNodes = nodes at the first level in the DAG
4: σ = Path selection threshold
5: OUTPUT
6: The predicted class label c for the input record r
7:

8: GLOBAL VARIABLES
9: Path = {} (Set of identified paths each comprised of: (i) a class label and

10: (ii) an associated normalised Bayesian probability value)
11:

12: Start
13: dagF irstLevelMultiPathClassify(r, F irstLevelNodes)
14: c = Class label with highest probability value in Path
15: End
16:

17: function dagF irstLevelMultiPathClassify(r, F irstLevelNodes)
18: S = Classification results for r using the classifiers at the first level in the DAG comprised
19: of: (i) class groups and (ii) the associated Bayesian probability values (initially S = {})
20: for j = 1 to j = |FirstLevelNodes| do
21: Ci =Classification result for r using classifier Node.Gi
22: Pi = Bayesian probability value associated with class group Ci
23: S = C ∪ Ci with associated probability Pi
24: end for
25: p1 = the highest probability in S (max(Pi) in S)
26: p2= the second highest probability in S
27: startNode1 = node associated with p1
28: startNode2 = node associated with p2
29: dagMultiPathClassify(r, startNode1, 0, 0)
30: if p2 ≥ σ then
31: dagMultiPathClassify(r, startNode2, 0, 0)
32: end if
33: end function

In the worst case the number of classifiers needed to classify a record using the

Multiple Path strategy (considering all levels in the DAG) is given by Equation 6.5. If

we have only two levels DAG then the number of classifiers to be evaluated (in the worst

case) is as given by Equation 6.6.

NumberOfClassifiers = N + 2N−1 − 4 (6.5)



Chapter 6. Directed Acyclic Graph (DAG) 129

Algorithm 13 (b) DAG Multiple Path Classification

34: function dagMultiPathClassify(r,Node, accumProb, counter)
35: C = Classification result for r using classifier Node.Gi
36: P = Bayesian probability values associated with each class group in C
37: C1 = Class group in C associated with highest probability value
38: p1 = Bayesian probability associated with C1

39: C2 = Class group in C associated with second highest probability value
40: p2 = Bayesian probability associated with C2

41: if |C1| == 1 then
42: normProb = (AccumProb+ p1)/(counter + 1)
43: Path = Path ∪ 〈c, normProb〉 (c ∈ C1)
44: else
45: ChildNode = child node representing class group C1

46: dagMultiPathClassify(r, ChildNode, accumProb+ p1, counter + 1)
47: end if
48: if p2 ≥ σ then
49: if |C2| == 1 then
50: normProb = (AccumProb+ p2)/(countert+ 1)
51: Path = Path ∪ 〈c, normProb〉 (c ∈ C2)
52: else
53: ChildNode = child node representing class group C2

54: dagMultiPathClassify(r, ChildNode, accumProb+ p2, counter + 1)
55: end if
56: end if
57: end function

NumberOfClassifiers = (1/6) (N − 2) (N − 1) (N) + 4 (6.6)

where N is the number of class labels in a given dataset.

6.4 Experiments and Results

This section presents an overview of the adopted experimental set up and the evalua-

tion results obtained. The effectiveness of the DAG classification model was evaluated

using twelve different data sets (with various numbers of class labels) taken from the

UCI machine learning repository [61], and pre-processed using the LUCS-KDD-DN soft-

ware [22] as described in Chapter 3. Note here that the WaveForm and Wine datasets

were not considered in the evaluation, because these datasets feature three class la-

bels and consequently the minimum required two DAG levels can not be generated for

these datasets. Ten-fold Cross Validation (TCV) was used throughout. The evaluation

measures used were again average accuracy and average AUC (Area Under the receiver

operating Curve). As in the case of the evaluation sections presented in Chapters 4 and

5, although the results in terms of average accuracy and average AUC are both included

in this section, we will discuss the results only in terms of average AUC (because of

the theoretical and empirical evidences that AUC is a better measure than accuracy in
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evaluating learning algorithms [50]). The results obtained are presented in the following

sections as follows: Section 6.4.1 presents the results obtained using the Single Path

strategy. Section 6.4.2 presents the results obtained using the Multiple Path strategy.

Section 6.4.3 provides a comparison between the DAG Single Path and Multiple Path

strategies. Section 6.4.4 presents a comparison between rooted and non-rooted DAGs

for hierarchical classification.

6.4.1 Single Path Experiments and Results

This section presents the results obtained using the Single Path strategy with respect

to the two alternative classification algorithms, Naive Bayes and CARM, considered to

generate the DAG ensemble classification model. The objective was to identify the most

effective and efficient classifier to generate a DAG ensemble classification model.

Starting with the results obtained when using Naive Bayesian DAG. As mentioned

earlier, because of the flexibility of the DAG structure, we can generate the DAG with

any predefined number of levels. For each dataset experiments were conducted using

different numbers of levels in the DAG, starting from the maximum number ofN−2 levels

(where N is the number of class labels in the dataset) to two levels. Table 6.1 presents

the results obtained. In the table best results are highlighted in bold font, results with a

gray background indicate that the DAG with the specified number of levels does not exist

and thus the presented result in that cell is the result when using the maximum number

of levels for that dataset. From the table it can be observed that there is little difference

between the obtained results, although the Two-level DAG (the minimum number of

DAG levels) generated the best overall results in terms of average AUC. An additional

advantage of the Two-level DAG is that it can be applied to datasets that feature larger

numbers of class labels, such as Chess KRvK and Letter Recognition, that was not

possible using rooted DAG structure. The reader might think about generating only

one level, however this would not be a DAG, it will be more of a kind of OVO strategy

whereby classifiers are generated for each of the possible combinations of size two and a

voting scheme is used in the classification stage. However, additional experiments were

conducted whereby a OVO strategy (using Naive Bayes) was applied to the datasets;

the obtained results were exactly the same as when using a stand-alone Naive Bayes

classifier (Naive Bayes is a multi-class classifier).

With respect to using CARM to generate the classifiers at DAG nodes, two variations

of the DAG were considered: generating the maximum number of levels (thus N − 2

levels) and generating the minimum number of levels (two levels) with respect to each

dataset. Table 6.2 presents the obtained results for the CARM DAGs coupled with the

Single Path strategy. From the table it is interesting to note that as the number of DAG

levels is reduced the recorded classification accuracy is also reduced. More specifically,

the N−2 levels DAG produced a better classification accuracy than the two levels DAG.



Table 6.1: Average Accuracy and AUC values obtained using the Naive Bayes DAG model coupled with the Single Path strategy when using
different numbers of levels in the DAG

Data set Classes
Two levels Three levels Four levels Five levels Six levels All levels

ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Nursery 5 58.03 0.30 56.93 0.29 56.93 0.29 56.93 0.29 56.93 0.29 56.93 0.29
Heart 5 54.19 0.35 55.22 0.35 55.22 0.35 55.22 0.35 55.22 0.35 55.22 0.35

PageBlocks 5 91.83 0.53 91.83 0.53 91.83 0.53 91.83 0.53 91.83 0.53 91.83 0.53
Dermatology 6 86.66 0.85 87.23 0.85 87.23 0.85 87.23 0.85 87.23 0.85 87.23 0.85

Glass 7 59.49 0.49 63.70 0.44 67.90 0.45 69.81 0.46 69.81 0.46 69.81 0.46
Zoo 7 94.18 0.61 93.18 0.59 92.18 0.58 92.18 0.58 92.18 0.58 92.18 0.58
Ecoli 8 80.23 0.37 83.26 0.41 83.22 0.40 84.43 0.41 84.43 0.41 84.43 0.41
Led 10 75.56 0.75 75.66 0.76 75.66 0.76 75.66 0.76 75.66 0.76 75.66 0.76

PenDigits 10 83.62 0.84 83.44 0.83 83.57 0.83 83.58 0.83 83.58 0.83 83.58 0.83
Soybean 15 90.39 0.92 90.57 0.92 90.57 0.92 90.75 0.92 90.75 0.92 90.75 0.92

Mean 77.418 0.601 78.102 0.597 78.431 0.596 78.762 0.598 78.762 0.598 78.762 0.598
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Table 6.2: Average Accuracy and AUC values obtained using the CARM DAG model
coupled with the Single Path strategy when using different numbers of levels in the DAG

Data set Classes
All-Level DAG Two-level DAG
Acc. AUC Acc. AUC

Nursery 5 86.81 0.43 86.81 0.43
Heart 5 53.07 0.20 51.70 0.20

PageBlocks 5 91.27 0.40 91.47 0.45
Dermatology 6 79.62 0.71 65.83 0.55

Glass 7 61.71 0.36 59.81 0.34
Zoo 7 88.00 0.52 86.00 0.50
Ecoli 8 32.42 0.25 62.94 0.23
Led 10 42.06 0.43 19.28 0.18

PenDigits 10 41.62 0.42 18.95 0.19

Mean 64.06 0.41 60.31 0.34

The reason for this is related to the issue, discussed earlier, whereby several classifiers

at the first level generate exactly the same confidence value, because of the generality

of the rules, but the nodes where these classifiers are held link to different nodes at

the next level. This issue is of greater significance with respect to the two levels DAG

because the number of nodes that exist at the first level in this case is grater than the

number of nodes at the first level in case of the N − 2 level DAG (All-level DAG).

Table 6.3 presents a comparison between the operation of the Naive Bayes DAG and

CARM DAG when coupled with the Single Path strategy, in terms of average accuracy

and average AUC. From the table it can be clearly observed that when using a Naive

Bayes classifier to generate the DAG, regardless of the number of levels in the DAG,

produced the best results with respect to the the majority of the considered datasets.

Table 6.3: Comparison of average Accuracy and AUC values obtained using Naive
Bayes DAGs and CARM DAGs coupled with the Single Path strategy

Data set
Naive DAGs CARM DAGs

All-level Two-level All-level Two-level
Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Nursery 56.93 0.29 58.03 0.30 86.81 0.43 86.81 0.43
Heart 55.22 0.35 54.19 0.35 53.07 0.20 51.70 0.20

PageBlocks 91.83 0.53 91.83 0.53 91.27 0.22 91.47 0.45
Dermatology 87.23 0.85 86.66 0.85 79.62 0.71 65.83 0.55

Glass 69.81 0.46 59.49 0.49 61.71 0.36 59.81 0.34
Zoo 92.18 0.58 94.18 0.61 88.00 0.52 86.00 0.50
Ecoli 84.43 0.41 80.23 0.37 32.42 0.25 62.94 0.23
Led 75.66 0.76 75.56 0.75 42.06 0.43 19.28 0.18

PenDigits 83.58 0.83 83.62 0.84 41.62 0.42 18.95 0.19

Mean 77.43 0.56 75.98 0.57 64.06 0.39 60.31 0.34
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The results obtained for the run-time experiments, with respect to both the Naive

Bayes DAG and CARM DAG, when using the Single Path strategy are presented in

Table 6.4. The table presents the generation and classification times in each case. From

the table it can be observed that the lowest generation and classification times were

obtained when using Naive Bayes to generate the DAG ensemble classification model.

Table 6.4: Run time results (in seconds) obtained using Naive Bayes DAGs and
CARM DAGs and the Single Path strategy

Data set

Generation Time Classification Time
Naive CARM Naive CARM

All- Two- All- Two- All- Two- All- Two-
level level level level level level level level

Nursery 5.011 3.275 5.607 3.484 0.017 0.021 0.040 0.028
Heart 0.261 0.262 3.243 2.385 0.001 0.001 0.001 0.001

PageBlocks 2.131 1.554 3.736 2.568 0.014 0.013 0.010 0.018
Dermatology 0.391 0.310 7.010 4.048 0.001 0.003 0.002 0.004

Glass 0.490 0.290 2.650 1.341 0.001 0.003 0.001 0.004
Zoo 0.437 0.262 12.259 5.103 0.000 0.225 0.000 0.003
Ecoli 0.944 0.373 1.746 0.592 0.002 0.006 0.001 0.009
Led 31.803 1.095 42.367 1.503 0.013 0.034 0.029 0.057

PenDigits 244.986 4.663 2593.424 88.918 0.051 0.069 0.091 0.183

Mean 31.828 1.343 296.894 12.216 0.011 0.042 0.019 0.034

In conclusion, the results presented in this section corroborates the results obtained

when using rooted DAG as presented in the previous chapter (Chapter 5) where Naive

Bayes classification was also found to be the most effective and efficient classifier with

which to generate a DAG ensemble classification model.

6.4.2 Multiple Path Experiments and Results

This section presents the results obtained using the DAG ensemble classification model

coupled with the Multiple Path strategy. Recall that, the Multiple Path strategy was

realised by utilising the probability or confidence values generated by classifier generators

such as Naive Bayes and CARM, to determine whether single or multiple paths should be

followed. The results obtained when using the probability values generated during Naive

Bayes classification will be considered first and then the results obtained when using the

confidence values generated during CARM. Sequence of experiments was conducted

included in Appendix E to identify the most appropriate threshold value σ when using

Naive Bayes classification and following multiple paths in either an All-level DAG or a

Two-level DAG. The outcomes from these experiments indicated that a value of σ =

0.1 × 10−4 was most appropriate in the case of an All-level DAG, while a value of

σ = 0.5× 10−4 was most appropriate in the context of the Two-level DAG.

A similar set of experiments was conducted with respect to CARM classification.

These are also included in E. The outcomes from these experiments indicated that when
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using CARM a threshold value of σ = 50 produced the same results as when using Single

Path strategy (see Table 6.2). Further experiments (not reported in this thesis) using

σ values of greater than 50 were also conducted; however, this produced no change

in the overall classification results compared to when using the Single Path strategy.

These results indicate that the CARM classifiers forming the DAG are relatively low

confidence classifiers and consequently following multiple paths may mean following

very low confidence paths which in turn can be expected to result in a degradation in

the overall classification accuracy, instead of improving it. Overall, from the results

presented in Appendix E a value of σ = 45 was most appropriate in the case of an All-

level DAG, while a value of σ = 40 was most appropriate in the context of the Two-level

DAG. These results corroborate the results obtained when using rooted DAGs. It should

also be noted here that although a best overall value for σ was identified, in the context

of the Multiple Path strategy, specific best σ values can be identified for each dataset.

A comparison of the results obtained when using the DAG Multiple Path strategy

with respect to both Naive Bayes classification and CARM and All-level and Two-

level DAGs is presented in Table 6.5. Based on this table comparisons can be made

between: (i) the usage of All-level and Two-level DAGs in the context of Naive Bayesian

classification, (ii) the usage of All-level and Two-level DAGs in the context of CARM

and (iii) the usage of Naive Bayes probability values and CARM confidence values for

directing the Multiple Path strategy.

Table 6.5: Average Accuracy and AUC values obtained using Naive Bayes and CARM
classifier generation with respect to Multiple Path DAGs

Data set
Naive DAGs CARM DAGs

All-level Two-level All-level Two-level
σ = 0.1× 10−4 σ = 0.5× 10−4 σ = 45 σ = 40
Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Nursery 61.50 0.32 59.14 0.33 86.81 0.43 62.44 0.45
Heart 54.88 0.35 54.19 0.35 42.51 0.18 34.71 0.15

PageBlocks 91.87 0.54 91.87 0.54 91.21 0.22 90.75 0.32
Dermatology 87.23 0.85 86.66 0.85 79.91 0.74 68.48 0.57

Glass 71.16 0.50 57.58 0.48 62.11 0.39 39.24 0.34
Zoo 93.18 0.59 93.18 0.59 88.00 0.52 88.00 0.52
Ecoli 82.26 0.38 79.93 0.37 39.51 0.28 23.22 0.13
Led 75.56 0.76 75.56 0.75 39.56 0.41 20.13 0.19

PenDigits 83.58 0.83 83.62 0.84 32.71 0.33 16.81 0.16

Mean 77.91 0.57 75.75 0.57 62.48 0.39 49.31 0.31

Starting with the Naive Bayes comparison, from the Table 6.5 it can be seen, as

in the case of the Single Path strategy, that similar results are recorded regardless of

whether an All-level DAG or a Two-level DAG is used. The overall performances in

both cases are approximately the same in terms of average AUC.
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Regarding the CARM comparison, from Table 6.5 it can be seen, again as in the

case of the Single Path strategy, that usage of the All-level DAG structure outperforms

usage of the Two-level DAG structure. Recall that the number of nodes that are created

for the first level in the Two-level DAG is greater than the number of nodes created for

the first level in the All-level DAG. As a result the number of classifiers at the first

level when using the Two-level DAG typically generate exactly the same confidence

values, because of the generality of the rules, while referencing different second level

nodes. Consequently when using the Two-level DAG structure there is a greater chance

of following incorrect paths.

In the context of the comparison between using Naive Bayesian probability values

and CARM confidence values, in the context of the Multiple Path DAG strategy the

objective of the comparison was to determine the most effective classifier to be utilised

with respect to Multiple Path strategy. From Table 6.5 it can clearly be observed that the

usage of Naive Bayesian probability values outperformed the usage of CARM confidence

values when adopting the Multiple Path DAG strategy.

In addition to the classification effectiveness of the proposed Multiple Path DAG

model considered above, a comparison of the efficiency of the model is presented in

Table 6.6 where the results obtained for the run-time experiments with respect to Naive

Bayes DAGs and CARM DAGs, coupled with the Multiple Path strategy, are reported.

From the table it can be observed that the lowest classification times were obtained

when using Naive Bayes and Two-level DAGs.

Table 6.6: Run time results (in seconds) obtained using Naive Bayes DAGs and
CARM DAGs coupled with the Multiple Path strategy

Data set

Classification Time
Naive CARM

All- Two- All- Two-
level level level level

Nursery 0.625 0.626 0.601 0.611
heart 0.017 0.017 0.022 0.023

PageBlocks 0.274 0.277 0.264 0.295
Dermatology 0.024 0.021 0.023 0.025

glass 0.018 0.016 0.012 0.015
Zoo 0.010 0.008 0.015 0.015
ecoli 0.033 0.022 0.016 0.025
led 0.277 0.179 0.218 0.173

PenDigits 0.798 0.585 1.449 0.656

Mean 0.231 0.195 0.291 0.204

In conclusion, as in the case of the Single Path strategy, the above results indicate

that Naive Bayes classifiers are the best choice for generating Multiple Path DAGs

compared to CARM classification.
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6.4.3 Comparison Between Single Path and Multiple Path Strategies

The objective of the comparison between the usage of the Single Path and Multiple

Path strategies was to determine whether following more than one path within the DAG

classification model could address the successive miss-classification issue noted earlier.

Starting with a comparison of the Single and Multiple Path strategies with respect

to Naive Bayes DAGs Table 6.7 presents the results obtained using the All-level DAG,

while Table 6.8 presents the results obtained using the Two-level DAGs. The tables

were not combined because the nature of the Two-level DAGs means that datasets with

much greater numbers of classes could be processed than in the case of the All-level

DAGs (more specifically the Chess KRvK and Letter Recognition datasets with respect

to the results presented n the tables). Note that the results presented in the tables

were produced using the most appropriate σ value for all of the considered datasets (as

discussed in section 6.4.2).

From Table 6.7 it can be observed that by using the Multiple Path strategy a better

classification accuracy can be obtained with respect to the All-level DAG than when the

Single Path strategy is adopted. More specifically, adopting the Multiple Path strategy

improves the classification accuracy with respect to four of the ten datasets considered

(Nursery, PageBlocks, Glass and Zoo). For one dataset (Ecoli) the Single Path strategy

produced the best result. For the remaining five datasets (Heart, Dermatology, Led,

PenDigits and Soybean) the same AUC results was obtained regardless of which strat-

egy was adopted (multiple path or single path). From Table 6.8 it can also be observed

that by using the Multiple Path strategy a better classification accuracy can be obtained

when using Two-level DAGs with respect to some of the datasets considered in the evalu-

ation. More specifically, adopting the Multiple Path strategy improves the classification

accuracy (over that obtained when using the Single Path strategy) with respect to two

of the twelve datasets considered (Nursery and PageBlock). For another two of the

datasets (Glass and Zoo) the Single Path strategy produced the best result. For the

remaining eight datasets (Heart, Dermatology, Ecoli, Led, PenDigits and Soybean) the

same AUC results were obtained with respect to both strategies.

Regarding CARM DAGs, Table 6.9 presents the obtained results, using both the

Single and Multiple Path strategies and both All-level and Two-level DAG models.

From the table it can be observed that adopting the Multiple Path strategy can improve

the classification accuracy with respect to some of the datasets considered. However,

the overall result (average AUC) indicated that the Single Path strategy outperformed

the Multiple Path strategy. Recall from above that low confidence σ values were used

with respect to the Multiple Path strategy, which means following low confidence paths

resulting in a corresponding degradation of overall classification accuracy.

Regarding run time efficiency, of coarse the classification time required when using

the Single Path strategy is less than that required when using the Multiple Path strategy

(see Tables 6.4 and 6.6).
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Table 6.7: Average Accuracy and AUC values obtained using Naive Bayes All-level
DAGs coupled with either the Single Path or Multiple Path strategy (σ = 0.1× 10−4)

Data set
All-level DAG

Single Path Multiple Path
Acc. AUC Acc. AUC

Nursery 56.93 0.29 61.50 0.32
Heart 55.22 0.35 54.88 0.35

PageBlocks 91.83 0.53 91.87 0.54
Dermatology 87.23 0.85 87.23 0.85

Glass 69.81 0.46 71.16 0.50
Zoo 92.18 0.58 93.18 0.59
Ecoli 84.43 0.41 82.26 0.38
Led 75.66 0.76 75.56 0.76

PenDigits 83.58 0.83 83.58 0.83
Soybean 90.75 0.92 90.75 0.92

Mean 78.762 0.598 79.197 0.604

Table 6.8: Average Accuracy and AUC values obtained using Naive Bayes Two-level
DAG coupled with either the Single Path or Multiple Path strategy (σ = 0.5× 10−4)

Data set
Two-level DAG

Single Path Multiple Path
Acc. AUC Acc. AUC

Nursery 58.03 0.30 59.14 0.33
Heart 54.19 0.35 54.19 0.35

PageBlocks 91.83 0.53 91.87 0.54
Dermatology 86.66 0.85 86.66 0.85

Glass 59.49 0.49 57.58 0.48
Zoo 94.18 0.61 93.18 0.59
Ecoli 80.23 0.37 79.93 0.37
Led 75.56 0.75 75.56 0.75

PenDigits 83.62 0.84 83.62 0.84
Soybean 90.39 0.92 90.39 0.92

ChessKRvK 18.62 0.32 18.79 0.32
LetterRecog 55.71 0.56 55.70 0.56

Mean 70.71 0.57 70.55 0.58

6.4.4 Comparison Between Rooted and Non-rooted DAGs

This section presents a comparison between the operation of rooted and non-rooted

DAGs in the context of multi-class classification. The objective of the comparison is to

determine whether the usage of non-rooted DAGs could result in a better performance

than the usage of non-rooted DAG as presented in the foregoing chapter (Chapter 5).

Starting with comparing the effectiveness of Naive Bayes rooted and non-rooted DAGs.

Table 6.10 presents the results obtained using rooted and non rooted Naive Bayes DAGs
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Table 6.9: Average Accuracy and AUC values obtained using CARM DAGs coupled
with both the Single Path and Multiple Path strategies (σ = 45 and σ = 40 were used
when following multiple paths with respect to the All-level and the Two-level DAGs

respectively)

Data set
All-level DAG Two-level DAG

Single Path Multiple Path Single Path Multiple Path
Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Nursery 86.81 0.43 86.81 0.43 86.81 0.43 62.44 0.45
heart 53.07 0.20 42.51 0.18 51.70 0.20 34.71 0.15

PageBlocks 91.27 0.22 91.21 0.22 91.47 0.45 90.75 0.32
Dermatology 79.62 0.71 79.91 0.74 65.83 0.55 68.48 0.57

glass 61.71 0.36 62.11 0.39 59.81 0.34 39.24 0.34
Zoo 88.00 0.52 88.00 0.52 86.00 0.50 88.00 0.52
ecoli 32.42 0.25 39.51 0.28 62.94 0.23 23.22 0.13
led 42.06 0.43 39.56 0.41 19.28 0.18 20.13 0.19

PenDigits 41.62 0.42 32.71 0.33 18.95 0.19 16.81 0.16

Mean 64.06 0.39 62.48 0.39 60.31 0.34 49.31 0.31

coupled with both the Single and Multiple Path strategies. From the table it can be

observed that the results obtained for the various DAG models are similar (in some cases

equal) for most of the datasets considered in the evaluation. However, the best overall

results were obtained using the rooted DAG. The reason behind the lower classification

accuracy obtained when using non-rooted DAGs, compared to the usage of rooted DAGs,

is the existence of weak classifiers at the first level in the DAG that in turn affects the

overall classification result. More specifically, and as noted previously, in order to classify

a record using the DAG ensemble classification model all the classifiers at the first level

are evaluated and a start node selected, this will be the first level node with the classifier

that generates the highest probability (confidence) value with respect to the given record.

It was concluded that this procedure is not sufficient to determine the best starting node

among the nodes available at the first level and a technique was needed to eliminate the

weak classifiers, so as to enforce the records to be handled by only a “strong” classifiers.

In other words some form of breadth pruning was required (this is discussed further in

the next chapter, Chapter 7).

In addition to classification effectiveness, a comparison of the efficiency of Naive

Bayes rooted and non-rooted DAGs was also conducted. The outcomes are presented

in Table 6.11. From the table it can be observed that the lowest generation run times

were obtained using Two-level DAG, where the number of nodes to be generated are the

minimum number.



Table 6.10: Average Accuracy and AUC values obtained using Naive Bayes rooted and non-rooted DAGs coupled with Single Path and Multiple
Path strategies

Data set
Rooted DAG All-level DAG Two-level DAG

Single Path Multiple Path Single Path Multiple Path Single Path Multiple Path
σ = 0.7× 10−4 σ = 0.1× 10−4 σ = 0.5× 10−4

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Nursery 90.26 0.45 90.28 0.45 56.93 0.29 61.50 0.32 58.03 0.30 59.14 0.33
Heart 55.91 0.35 55.37 0.35 55.22 0.35 54.88 0.35 54.19 0.35 54.19 0.35

PageBlocks 92.69 0.52 92.65 0.52 91.83 0.53 91.87 0.54 91.83 0.53 91.87 0.54
Dermatology 87.23 0.85 87.23 0.85 87.23 0.85 87.23 0.85 86.66 0.85 86.66 0.85

Glass 69.81 0.46 72.99 0.51 69.81 0.46 71.16 0.50 59.49 0.49 57.58 0.48
Zoo 92.18 0.58 92.18 0.58 92.18 0.58 93.18 0.59 94.18 0.61 93.18 0.59
Ecoli 84.43 0.41 82.56 0.38 84.43 0.41 82.26 0.38 80.23 0.37 79.93 0.37
Led 75.66 0.76 75.56 0.76 75.66 0.76 75.56 0.76 75.56 0.75 75.56 0.75

PenDigits 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.62 0.84 83.62 0.84
Soybean 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.39 0.92 90.39 0.92

Mean 82.25 0.61 82.32 0.62 78.76 0.60 79.20 0.60 77.42 0.60 77.21 0.60



Table 6.11: Run time results (in seconds) obtained using Naive Bayes rooted and non rooted DAGs coupled with Single and Multiple Path strategies

Data set
Generation Time Single Path Classification Time Multiple Path Classification Time

Rooted All-level Two-level Rooted All-level Two-level Rooted All-level Two-level

Nursery 5.982 5.011 3.275 0.012 0.017 0.021 0.595 0.625 0.626
heart 0.333 0.261 0.262 0.001 0.001 0.001 0.015 0.017 0.017

PageBlocks 2.510 2.131 1.554 0.008 0.014 0.013 0.266 0.274 0.277
Dermatology 0.445 0.391 0.310 0.001 0.001 0.003 0.020 0.024 0.021

glass 0.539 0.490 0.290 0.001 0.001 0.003 0.016 0.018 0.016
Zoo 0.491 0.437 0.262 0.001 0.000 0.225 0.009 0.010 0.008
ecoli 1.032 0.944 0.373 0.001 0.002 0.006 0.031 0.033 0.022
led 33.701 31.803 1.095 0.011 0.013 0.034 0.261 0.277 0.179

PenDigits 264.369 244.986 4.663 0.039 0.051 0.069 0.723 0.798 0.585
soybean 1520.706 1430.897 1.505 0.009 0.012 0.037 0.068 0.078 0.060

Mean 183.011 171.735 1.359 0.008 0.011 0.041 0.200 0.215 0.181
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With respect to the Single Path classification strategy, the rooted DAG generated

the lowest times, the reason for this is that both All-level and Two-level DAGs required

all the classifiers at the first level to be invoked, during the classification stage, to select

the best starting node among the set of nodes that exist at the first level. Regarding

the Multiple Path classification strategy, the lowest run times were recorded when using

the Two-level DAG.

With respect to the comparison between CARM DAGs, Table 6.12 presents the

results obtained using both rooted and non rooted CARM DAGs coupled with Single

and Multiple Path strategies. From the table it can be observed, as in the case of the

Naive Bayes DAGs, that the best overall results were obtained using the rooted DAG

structure. The reasons behind the weakness of the non-rooted DAG structures (All-level

and Two-level) are: (i) the existence of weak classifiers at the first level in the DAG that

affects the final classification result (the same as in the case of Naive Bayes DAGs) and

(ii) the issue, discussed earlier, of several classifiers at the first level generating exactly

the same confidence values, because of the generality of the rules used, but referencing

different nodes at the next level. It is therefore concluded that usage of rooted DAGs

provides a better framework for deciding the path (or paths) to be followed.

A comparison of the efficiency of the CARM rooted and non-rooted DAG models is

presented in Table 6.13 where the results obtained for the run-time experiments with

respect to CARM DAGs coupled with Single and Multiple Path strategies are reported.

Again, as in the case Naive Bayes DAGs, the lowest generation times were obtained using

Two-level DAG for reasons already noted. With respect to the Single Path classification

strategy, the rooted DAG generated the lowest runtimes. While the lowest classification

run times were recorded when using Two-level DAGs with respect to the Multiple Path

strategy.

6.5 Summary

A hierarchical ensemble classification model for multi-class classification utilising a non-

rooted Directed Acyclic Graph (DAG) structure has been presented in this chapter.

The non-rooted DAG structure seeks to address the disadvantages of the rooted DAG

structure (in terms of effectiveness, efficiency and scalability). An issue with respect to

the non-rooted DAG structure is the need to determine the “starting node” (a root) from

which the classification process is to commence. To this end the use of Naive Bayesian

Classification or Classification Association Rule Mining (CARM) was advocated because

they produce (respectively) probability and confidence values that can be utilised to

determine the starting node. Two alternative classification strategies: Single Path and

Multiple Path were considered. The latter was proposed to address the hierarchical

drawback that if a record is miss-classified early on in the process (near the root of the

hierarchy) there is no opportunity for recovery.



Table 6.12: Average Accuracy and AUC values obtained using CARM rooted and non-rooted DAGs coupled with Single Path and Multiple Path
strategies

Data set
Rooted DAG All-level DAG Two-level DAG

Single Path Multiple Path Single Path Multiple Path Single Path Multiple Path
σ = 50 σ = 45 σ = 40

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Nursery 86.81 0.43 86.81 0.43 86.81 0.43 86.81 0.43 86.81 0.43 62.44 0.45
Heart 53.76 0.20 53.76 0.20 53.07 0.20 42.51 0.18 51.70 0.20 34.71 0.15

PageBlocks 89.77 0.20 89.77 0.20 91.27 0.22 91.21 0.22 91.47 0.45 90.75 0.32
Dermatology 79.62 0.71 79.62 0.71 79.62 0.71 79.91 0.74 65.83 0.55 68.48 0.57

Glass 61.71 0.36 61.71 0.36 61.71 0.36 62.11 0.39 59.81 0.34 39.24 0.34
Zoo 88.00 0.52 88.00 0.52 88.00 0.52 88.00 0.52 86.00 0.50 88.00 0.52
Ecoli 32.12 0.24 32.42 0.25 32.42 0.25 39.51 0.28 62.94 0.23 23.22 0.13
Led 40.06 0.40 40.06 0.43 42.06 0.43 39.56 0.41 19.28 0.18 20.13 0.19

PenDigits 46.76 0.47 46.76 0.47 41.62 0.42 32.71 0.33 18.95 0.19 16.81 0.16

Mean 64.29 0.39 64.32 0.40 64.06 0.39 62.48 0.39 60.31 0.34 49.31 0.31



Table 6.13: Run time results (in seconds) obtained using CARM rooted and non rooted DAGs coupled with Single and Multiple Path strategies

Data set
Generation Time Single Path Classification Time Multiple Path Classification Time

Rooted All-level Two-level Rooted All-level Two-level Rooted All-level Two-level

Nursery 5.547 5.607 3.484 0.009 0.040 0.028 0.594 0.601 0.611
Heart 3.788 3.243 2.385 0.000 0.001 0.001 0.015 0.022 0.023

PageBlocks 3.404 3.736 2.568 0.003 0.010 0.018 0.257 0.264 0.295
Dermatology 8.542 7.010 4.048 0.001 0.002 0.004 0.023 0.023 0.025

Glass 2.281 2.650 1.341 0.000 0.001 0.004 0.015 0.012 0.015
Zoo 14.938 12.259 5.103 0.000 0.000 0.003 0.006 0.015 0.015
Ecoli 0.992 1.746 0.592 0.001 0.001 0.009 0.023 0.016 0.025
Led 25.451 42.367 1.503 0.022 0.029 0.057 0.263 0.218 0.173

PenDigits 2402.572 2593.424 88.918 0.055 0.091 0.183 1.195 1.449 0.656

Mean 274.168 296.894 12.216 0.010 0.019 0.034 0.266 0.291 0.204
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The operation of the non-rooted DAG ensemble classification model was compared

with the rooted DAG ensemble classification model. The overall objective of the compar-

isons reported in this chapter was to determine whether non-rooted DAGs could produce

a better performance than the rooted DAGs.

From the reported evaluation it was demonstrated that using Naive Bayes classifiers

at the DAG nodes result in the most effective and efficient non-rooted DAG classification

model compared to CARM non-rooted DAG. With respect to Naive Bayes non-rooted

DAGs it was demonstrated that: (i) following multiple paths within the DAGs tended

to produce a better classification effectiveness and (ii) reducing the number of levels in

the DAG enhanced the efficiency and hence the scalability. With respect to the usage

of different numbers of levels in the non-rooted DAGs (Two-level or All-level) there was

very little difference in terms of effectiveness; only a small amount improvement was

evidenced when using Two-level DAGs.

It was discovered that an issue with the use of CARM non-rooted DAGs is that

during the classification stage several classifiers held at the first level nodes generate

exactly the same (often low) confidence value, although the nodes link to different nodes

in the next level. To handle this case we tried to proceed to the next level node, which

has had the highest number of links from previous level nodes (majority voting scheme).

Unfortunately this did nor produce any better results, especially when the number of

nodes at the first level was large such as in the case of Two-level non-rooted DAGs. With

respect to the Multiple Path CARM DAGs, the result was that very low confidence paths

were often followed resulting in a degradation of overall classification effectiveness.

Regarding the comparison between rooted and non-rooted DAGs, although the results

were similar, usage of the rooted DAG was generally found to outperform usage of the

non-rooted DAG. The main reason for this was considered to be the existence of weak

classifiers at the first level in the non-rooted DAG that affected the overall classification

results. Recall that in order to classify a record using the non-rooted DAG ensemble

classification model, all the classifiers at the first level needed to be evaluated so that

a “start node” from amongst the set of nodes available at the first level in the DAG

could be identified. This node was selected according to the highest probability value

for the record to be classified associated with each node. However, it was found that

this procedure was not sufficient to determine the best starting node among the nodes

available at the first level. A technique is needed to eliminate (prune) the weak classifiers,

so that only a “strong” classifiers are left, in other words breadth pruning. The concept

of breadth pruning is discussed in the next chapter.



Chapter 7

The Directed Acyclic Graph

(DAG) Hierarchical Classification

Model with Breadth Pruning

7.1 Introduction

This chapter considers using a non-rooted Directed Acyclic Graph (DAG) structure to

generate the desired hierarchical classification model that incorporates the concept of

breadth pruning. As noted earlier in Chapter 5, breadth pruning can not be applied

with respect to the rooted DAG approach. This is because the rooted DAG requires the

inclusion of all class combinations. More specifically we cannot create a structure that

commences with a root node but has nodes eliminated from the next level as this will

result in “null” links from the root node. The aim of the breadth pruning is to eliminate

weak classifiers that may exist at each DAG level in a non-rooted DAG structure, so

that only strong classifiers are maintained as part of the proposed ensemble classification

model. The potential advantages are: (i) improving the classification effectiveness by

eliminating weak classifiers that can adversely affect classification accuracy, and (ii)

reducing the complexity of the proposed model by reducing the number of nodes in the

DAG model. The breadth pruning scheme was realised by utilising the AUC values

generated when evaluating the internal classifiers, weak classifiers are thus identified

by their low associated AUC value. Because of the effectiveness and efficiency issues

associated with CARM classification, discussed in Chapters 5 and 6, only Naive Bayes

classification was considered with respect to the work presented in this chapter. As in

the case of the previous structures considered two alternative classification strategies

were again considered: Single Path and Multiple Path. As before, the Multiple Path

strategy was facilitated by the probability values generated by the Naive Bayes classifiers

at the DAG nodes.

With respect to the work presented in this chapter it should be noted that two

thresholds are used:

145
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α The breadth pruning (AUC) threshold.

σ The Bayesian probability threshold for deciding whether two follow a single path or

multiple paths through a generated DAG.

The rest of this chapter is organised as follow: Section 7.2 explains the generation of

the DAG ensemble approach with the application of breadth pruning. While Section 7.3

considers the operation of the proposed approach. Section 7.4 presents the conducted

experiments and the obtained results. Finally, a summary of the chapter is presented

in Section 7.5. Note that for brevity, in the following sections the phrase DAG model is

used to indicate a non-rooted DAG model that features breadth pruning. This should

not be confused with the usage of the phrase in the foregoing two chapters.

7.2 DAG Generation with the Application of Breadth Prun-

ing

In this section the generation of the proposed non-rooted DAG classification model,

including the application of breadth pruning, is explained. As noted earlier, the DAG

hierarchical classification model is a form of ensemble classifier. Each node in the DAG

holds a classifier. Classifiers at the leaves conduct fine-grained classifications while the

classifiers at non-leaf nodes conduct coarse-grained classification directed at classifying

records using groups of labels. In order to group (partition) the input data D during the

hierarchy generation process, combinations techniques were used. The class groupings

(sub sets) at each level are determined by finding all possible class combinations of

size |C| − i (where i is the level number, initially i = 1). As the process proceeds i

is increased by one and consequently the “combination size” is decreased by one. The

process continues until the combination size reaches two. The number of classifiers that

need to be learned in order to generate the DAG classification model can be calculated

using (7.1).

NumberOfClassifiers = 2N −N − 2 (7.1)

where N is the number of class labels in a given dataset.

Note that when N is large the number of classifiers that need to be generated will

be substantial. Breadth pruning is proposed to reduce the number of classifiers, as well

as a means of improving the performance of the suggested model be eliminating weak

classifiers. Using the proposed breadth pruning weak classifiers, that may be included

at each DAG level, are eliminated. The weak classifiers are identified by evaluating the

classifiers at the first level and pruning the classifiers associated with an AUC value

of less than a predefined threshold (α). The pruning process for the remaining levels

involves the generation of nodes that only refer to previous level nodes (thus those

associated with strong classifiers).
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Algorithm 14 (a and b) presents the proposed DAG generation process with breadth

pruning. The input to the algorithm is the training data set D, the set of class labels

C, and the breadth pruning threshold α. The DAG is created in a top down manner

starting with k = |C| − 1 (where k is the combination size) to k = 2. Because of

the nature of the breadth pruning mechanism the algorithm comprises two procedures:

dagF irstLevelGen, and dagNlevelGen. Starting with dagF irstLevelGen procedure

(Algorithm 14 (a)), which is responsible for generating and pruning the first level in the

DAG model. The process commences by finding the set of size k class combinations, the

set Ck (line 10). We then loop through this set (line 12) and on each iteration: (i) find

the set of records Di that feature the combination Ci ∈ Ck (line 13); (ii) identify the

training and evaluation records, Ti and Ei (lines 14, and 15); (iii) generate a classifier Gi

using Ti (line 16); (iv) evaluate the classifier Gi using Ei to produce an AUC value (line

17); (v) create a new DAG node, node, and add the new node to the set of accumulated

level k nodes so far, NodeSet (line 18). The next stage is the pruning stage, where

the nodes in the NodeSet are arranged according to their associated AUC values (Line

20). Then we loop through this set of ordered nodes (line 21): if the node associated

with a particular AUC value is less than α (line 22), and its classes are included in the

remaining nodes in NodeSet (line 23); then the node will be pruned (line 24).

After generating and pruning the first level in the DAG model, the next step is

to generate the remaining levels. The remaining levels in the DAG are created in a

recursive manner using the dagNlevelGen procedure (Algorithm 14 (b)). The procedure

is invoked with two parameters: (i) the combination size, k, and a reference to the nodes

in the current level of the DAG, CurrentNodes. For each call to dagNlevelGen the set

of size k class combinations, the set Ck, is calculated (line 30), then pruning is applied

to this set (lines 31-40), where the class combination is only considered if it is a subset

of one or more of the previous levels nodes’ class sets. We then loop through the pruned

combination set (line 42) and on each iteration: (i) find the set of training set records

Ti that feature the combination Ci ∈ Ck (line 43), (ii) generate a classifier Gi using Ti

(line 44); (iii) create a new DAG node, node (line 45); and (iv) add the new node to

the set of accumulated level k nodes so far, NodeSet (line 46). We then loop through

the set of current nodes (from the previous iteration) and add a link from each current

node CurrentNodej to the new node node whenever the set of class labels associated

with the new node (Ci) is included in the set of class labels associated with a current

node (Ci ⊂ CurrentNodesj .C). Finally, if k has not yet reached 2, we repeat (line 53).

Again, because of the flexibility of: (i) the DAG structure and (ii) the combination

technique used, the generation of the proposed DAG structure for any predefined number

of levels can be obtained easily (using depth pruning). In this chapter we considered

the generation of the all levels of the DAG model (the maximum number of levels)

and generation of only two levels of the DAG (the minimum number of levels). The

reason for this is that the experiments in the forgoing chapter (Chapter 6) reported

that reducing the number of levels in the DAG enhanced the efficiency and scalability
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Algorithm 14 (a) DAG Generation

1: INPUT: D = The input training data set, C = The set of Classes featured in D,
2: α = Breadth pruning threshold value
3: OUTPUT: The generated DAG
4: Start
5: k = |C| − 1
6: dagF irstLevelGeneration(k)
7: dagNlevelGen(k − 1, NodeSet)
8: End
9: procedure dagF irstLevelGen(k)

10: Ck = Set of size k combinations in C
11: NodeSet = {}
12: for i = 1 to i = |Ck| do
13: Di = Set of records in D that feature Ci (Di ⊂ D)
14: Ti= Set of records in Di for training Gi

15: Ei = Set of records in Di for evaluating Gi

16: Gi = Classifier for Ci built using training set Ti
17: AUCi = Evaluation of Gi using Ei

18: NodeSet = NodeSet ∪ new Node(Gi, Ci, AUCi)
19: end for
20: Arrange nodes in NodeSet in ascending order of associated AUC value
21: for i = 1 to i = |NodeSet| do
22: if (nodei.AUC < α) then
23: if (classesCovered (node.Ci, NodeSet)) then
24: Delete nodei
25: end if
26: end if
27: end for
28: end procedure

(in terms of the number of classes considered) of the model; a small improvement in

classification accuracy was also evidenced when using Two-level DAGs. For simplicity

and to distinguish between these two variations and the two variations in the previous

chapter, where breadth pruning was not applied, we will refer to these variations as the

Max-level DAG and Min-level DAG models respectively.

Note that when using breadth pruning the eventual number of classifiers that will

be generated can not be calculated in advance; however, it will clearly be less than the

number of classifiers generated when breadth pruning is not used (as calculated using

equation 7.1). This is evidenced by the generation and classification times reported in

Section 7.4.

7.3 DAG Operation

After the model has been generated it is ready for use. As noted earlier in Chapter

6, two main challenges are associated with the operation of the proposed non-rooted

DAG model: (i) how to determine the starting node among the set of nodes available at

the first level, and (ii) how to address the general drawback associated with hierarchical

forms of ensemble classification, the “successive miss-classification” problem. To address

these issues Naive Bayesian probabilities were utilised to determine the best starting
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Algorithm 14 (b) DAG Generation

29: procedure dagNlevelGen(k,CurrentNodes)
30: Ck = Set of size k combinations in C
31: for i = 1 to i = |Ck| do
32: for j = 1 to j = |CurrentNodes| do
33: if Ci ⊂ CurrentNodesj .C then
34: flag=true, break
35: end if
36: end for
37: if flag == false then
38: Delete Ci
39: end if
40: end for
41: NodeSet = {}
42: for i = 1 to i = |Ck| do
43: Ti = Set of training records in D that feature Ci (Ti ⊂ D)
44: Gi = Classifier for Ci built using training set Ti
45: node = new Node(Gi, Ci)
46: NodeSet = NodeSet ∪ node
47: for j = 1 to j = |CurrentNodes| do
48: if Ci ⊂ CurrentNodesj .C then
49: CurrentNodesj .childNodes = CurrentNodesj .childNodes ∪ node
50: end if
51: end for
52: end for
53: if k > 2 then
54: dagNlevelGen(k − 1, NodeSet)
55: end if
56: end procedure

node for the DAG model, and also to decide whether a single or a multiple path should

be followed at each node; consequently, two strategies are considered for classifying

individual records: Single Path and Multiple Path. The operation of Single and Multiple

Path strategies are exactly the same as in the case of non-rooted DAG without the

application of breadth pruning explained previously in Chapter 6. More specifically, the

detailed procedure with respect to the Single Path classification strategy was presented in

Algorithm 12 in the previous chapter (Chapter 6). While the Multiple Path classification

procedure was presented in Algorithm 13 in the previous chapter (Chapter 6).

7.4 Experiments and Results

This section presents an overview of the adopted experimental set up and the evalua-

tion results obtained. As before the effectiveness of the DAG classification model was

evaluated using twelve different data sets taken from the UCI machine learning repos-

itory [61], and pre-processed using the LUCS-KDD-DN software [22]. As in the case

of the experiments presented in Chapter 6 the WaveForm and Wine datasets were not
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considered in the evaluation, because these datasets feature three class labels and conse-

quently the minimum required number of DAG levels can not be generated using these

datasets. Ten-fold Cross Validation (TCV) was used throughout and the evaluation

measures used were average accuracy and average AUC. As before, although the results

in terms of average accuracy and average AUC are both included in this section, we will

discuss the results in terms of average AUC (because of the theoretical and empirical

evidences that AUC is a better measure than accuracy in evaluating learning algorithms

[50].

The results obtained are presented in the following sections as follows: Section 7.4.1

considers the results obtained using the Single-Path strategy and Section 7.4.2 considers

the results obtained using the Multiple Path strategy. Section 7.4.3 provides a com-

parison between the DAG Single Path and Multiple Path strategies, while Section 7.4.4

presents a comparison between the different DAG approaches (rooted and non-rooted

DAGs). Section 7.4.5 provides a comparison between the proposed DAG ensemble clas-

sification model and a number of well-established more conventional models.

7.4.1 Single Path Experiments and Results

This section presents the results obtained using the Single Path strategy with respect

to the two alternative proposed DAG models, Max-level DAG and Min-level DAG. As

noted in Section 7.2, a threshold α was used with respect to the breadth pruning to

determine the weak classifiers that should be eliminated (if any). Experiments using a

range of alternative α thresholds were conducted with respect to both the Max-level and

Min-level DAGs. Details concerning these experiments are presented in Appendix F. As

can be seen with reference to Appendix F the best value for α was found to be α = 0.40.

However, a specific best threshold value can be identified for each dataset. Table 7.1

presents the best results obtained for each dataset using the most appropriate α value

in each case with respect to Max-level and Min-level DAGs. From the table it can be

observed that the Min-level DAG generated the best overall results in terms of average

AUC. More specifically, the Min-level DAG produced the best classification accuracy

with respect to seven of the ten datasets considered (Nursery, Heart, Glass, Zoo, Led,

PenDigits, and Soybean), although for three dataset (Led, PenDigits, and Soybean)

the same result was produced using the Max-level DAG. In the remaining three cases

(PageBlocks, Dermatology, and Ecoli), the Max-level DAG produced the best result.

7.4.2 Multiple Path Experiments and Results

This section presents the results obtained using the DAG ensemble classification model

coupled with the Multiple Path strategy. According to the experiments presented in

Section 7.4.1 above α = 0.40 was found to be the most suitable for most of the considered

datasets, with respect to both the Max-level DAG and the Min-level DAG. However, as

noted above, a specific α threshold value can be identified for each dataset (See Table

7.1). Consequently, two categories of Multiple Path experiments were conducted: (i)
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Table 7.1: The best accuracy and AUC results obtained for each dataset using dif-
ferent α values with respect to Max-level and Min-level DAGs

Data set
Max-level DAG Min-level DAG

ACC AUC α ACC AUC α

Nursery 79.83 0.40 0.40 91.44 0.54 0.70
Heart 57.01 0.39 0.20 59.91 0.40 0.40

PageBlocks 91.83 0.53 0.20 92.02 0.49 0.40
Dermatology 87.23 0.85 0.20 86.09 0.84 0.30

Glass 69.81 0.46 0.10 57.58 0.48 0.30
Zoo 92.18 0.58 0.10 93.18 0.59 0.40
Ecoli 84.43 0.41 0.10 82.40 0.40 0.40
Led 75.66 0.76 0.40 75.75 0.76 0.30

PenDigits 83.59 0.84 0.10 83.84 0.84 0.45
Soybean 90.57 0.92 0.40 90.04 0.92 0.50

Mean 81.21 0.61 81.23 0.63

following multiple paths using α = 0.40 with respect to the breadth pruning and (ii)

following multiple paths within the DAG using the best α threshold for the data set in

question (see Section 7.4.1). Details of these experiments are presented in Appendix F.

From these experiments it was found that σ = 0.1× 10−4 and σ = 0.1× 10−6 produced

the best performance with respect to Max-level and Min-level DAGs respectively, when

using α = 40. While when the most appropriate value for α was used, σ = 0.1 × 10−4

produced the best performance for both Max-level and Min-level DAGs.

Table 7.2 present a comparison between following multiple paths within the Min-

level and Max-level DAGs, using a fixed breadth pruning α threshold value (α = 0.40)

and using the most appropriate α value with respect to each of the considered datasets.

From the table it can be noted that, as expected, following multiple paths based on the

best α value for each dataset produced a better classification performance than when

using a generic α value regardless of the DAG model used. It is also note worthy that the

results obtained using both the Max-level and Min-level DAGs are very similar; however,

the best overall performance was obtained using the Min-level DAGs. More specifically,

the Max-level DAG produced the best AUC results for three of the considered datasets

(PageBlocks, Dermatology, Glass), whilst the Min-level DAG produced the best AUC

results for another three datasets (Nursery, Heart, Ecoli). In the remaining four cases

the same AUC result was produced by both DAG models.

From the above, we can conclude that by identifying a different α threshold value

for each dataset (the most suitable value for the dataset), with respect to the breadth

pruning during DAG generation, is better than when using a single generic breadth

pruning α threshold value for all datasets, because this value will affect the Multiple

Path results if it is not the most appropriate value for the specific dataset.
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Table 7.2: Accuracy and AUC values obtained from following multiple paths within
the DAGs (Min-level and Max-level) using a fixed α value (α = 0.40) and the best α

value with respect to each dataset

Data set
α=0.40 Best α

Max-level Min-level Max-level Min-level
Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Nursery 82.32 0.41 66.28 0.39 82.32 0.41 90.02 0.58
Heart 56.32 0.36 59.29 0.40 56.25 0.37 59.64 0.40

PageBlocks 92.65 0.52 92.07 0.48 91.87 0.54 92.05 0.47
Dermatology 87.23 0.85 86.37 0.85 87.23 0.85 85.51 0.84

Glass 68.38 0.50 56.23 0.49 71.16 0.50 57.18 0.49
Zoo 92.18 0.58 93.18 0.59 92.18 0.59 93.18 0.59
Ecoli 82.26 0.39 80.89 0.39 82.56 0.38 80.89 0.39
Led 75.53 0.76 75.56 0.76 75.53 0.76 75.66 0.76

PenDigits 83.02 0.83 83.68 0.84 83.59 0.84 83.84 0.84
Soybean 90.57 0.92 89.86 0.92 90.57 0.92 90.04 0.92

Mean 81.05 0.61 78.34 0.61 81.30 0.62 80.80 0.63

7.4.3 Comparison Between Single Path and Multiple Path Strategies

As noted earlier in this thesis, the objective of the comparison between the Single Path

and Multiple Path strategies was to determine whether following more than one path

within the DAG classification model could address the successive miss-classification issue

noted earlier. From experiments conducted previously, and presented above, following

multiple paths based on the best α threshold, was adopted for thus purpose.

Commencing with a comparison of the Single and Multiple path strategies with

respect to the Max-level DAG. Although, again from the above presented experiments,

as a general rule σ = 0.1 × 10−4 had been found to produce the best performance

for most of the datasets considered, a specific best value for σ can also be identified

for each dataset. Table 7.3 presents the average accuracy and AUC results obtained

using the Multiple Path strategy, in comparison with using a Single Path strategy (best

AUC values highlighted in bold). From the table it can be observed that by using

the Multiple Path strategy the operation of the proposed Max-level DAG classification

model is such that the classification accuracy with respect to four of the ten datasets

considered (Nursery, PageBlocks, glass, and Zoo) is improved. For two dataset (Heart,

and Ecoli) the Single Path strategy produced the best AUC result. For the remaining

four datasets the same AUC results were obtained regardless of whether a Single or

Multiple Path strategy was adopted.

With respect to the comparison of the Single and Multiple Path strategies using the

Min-level DAG. Although, again from the above presented experiments, as a general

rule σ = 0.1 × 10−4 had been found to produce the best performance for most of the

datasets considered, a specific best value for σ can be identified for each dataset. Table

7.4 presents the average accuracy and AUC results obtained using the Multiple Path
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Table 7.3: Average Accuracy and AUC results obtained using the Max-level DAG
coupled with either a Single or a Multiple Path strategy (σ = 0.1× 10−4)

Data set
Max-level DAG

Single Path Multiple Path
Acc. AUC Acc. AUC

Nursery 79.83 0.40 82.32 0.41
Heart 57.01 0.39 56.25 0.37

PageBlocks 91.83 0.53 91.87 0.54
Dermatology 87.23 0.85 87.23 0.85

Glass 69.81 0.46 71.16 0.50
Zoo 92.18 0.58 92.18 0.59
Ecoli 84.43 0.41 82.56 0.38
Led 75.66 0.76 75.53 0.76

PenDigits 83.59 0.84 83.59 0.84
Soybean 90.57 0.92 90.57 0.92

Mean 81.21 0.61 81.30 0.62

strategy, in comparison with using a Single Path strategy (best AUC values highlighted

in bold). From the table it can be observed that by using the Multiple Path strat-

egy the operation of the proposed Min-level DAG classification model is such that the

classification accuracy with respect to three of the twelve datasets considered (Nursery,

Glass, and Chess KRvK) is improved. For two dataset (PageBlocks, and Ecoli) the

Single Path strategy produced the best AUC result. For the remaining seven datasets

the same AUC results were obtained regardless of whether a Single or Multiple Path

strategy was adopted.

The results obtained for the run-time experiments with respect to the different DAG

models are presented in Table 7.5. The table presents the generation and classification

time for each DAG approach. From the table it can be observed that the Min-level DAG,

where depth and breadth pruning were applied, requires the least generation time. It

is also clear that the Multiple Path strategy consumes more time than the Single Path

strategy for both Max-level and Min-level DAGs. With respect to the Single Path

strategy it can be observed that the minimum classification time was recorded when

using the Max-level DAG, compared to the Min-level DAG, although both the Max-

level and Min-level DAGs required that all the classifiers at the first level are invoked

during the classification stage to select the best starting node among the set of nodes

that exist at the first level, the number of nodes at the first level using the Max-level

DAG structure is less than that featured in the Min-level DAG structure. Regarding

the Multiple Path strategy the Min-level DAG required the least run time.

7.4.4 Comparison Between Different DAG Models

This section presents a comparison between the different DAG models considered in

this thesis: (i) Rooted DAG, (ii) All-level DAG, (iii) Two-level DAG, (iv) Max-level
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Table 7.4: Average Accuracy and AUC results obtained using Min-level DAG coupled
with either a Single or a Multiple Path strategy (σ = 0.1× 10−4)

Data set
Min-level DAG

Single Path Multiple Path
Acc. AUC Acc. AUC

Nursery 91.44 0.54 90.02 0.58
Heart 59.91 0.40 59.64 0.40

PageBlocks 92.02 0.49 92.05 0.47
Dermatology 86.09 0.84 85.51 0.84

Glass 57.58 0.48 57.18 0.49
Zoo 93.18 0.59 93.18 0.59
Ecoli 82.40 0.40 80.89 0.39
Led 75.75 0.76 75.66 0.76

PenDigits 83.84 0.84 83.84 0.84
Soybean 90.04 0.92 90.04 0.92

ChessKRvK 34.58 0.33 35.36 0.36
LetterRecog 55.85 0.56 55.84 0.56

Mean 75.223 0.596 74.934 0.600

Table 7.5: Classification run time results (in seconds) obtained using the DAG model
(Max-level and Min-level)

Data set Classes
Generation Single Path Strategy Multiple Path Strategy

Time Classification Time Classification Time
Max Min Max Min Max Min
level level level level level level

Nursery 5 4.380 3.142 0.007 0.010 0.601 0.625
Heart 5 0.299 0.245 0.001 0.001 0.017 0.016

PageBlocks 5 2.043 1.408 0.004 0.003 0.274 0.261
Dermatology 6 0.377 0.288 0.001 0.001 0.021 0.019

Glass 7 0.415 0.261 0.000 0.001 0.017 0.013
Zoo 7 0.360 0.221 0.000 0.001 0.009 0.007
Ecoli 8 0.801 0.342 0.000 0.001 0.034 0.019
Led 10 22.142 1.097 0.005 0.022 0.266 0.163

PenDigits 10 150.180 4.508 0.033 0.047 0.658 0.526
Soybean 15 639.260 1.467 0.003 0.025 0.063 0.057

Mean 82.026 1.298 0.005 0.011 0.196 0.171

DAG and (v) Min-level DAG. The objectives of the comparison are to: (i) determine

if the breadth pruning, explained in this chapter, addressed the main issue associated

with non-rooted DAG structure, discussed earlier in the previous chapter (Chapter 6),

that the existence of weak classifiers at the first level affects classification accuracy, and

(ii) determine the most effective and efficient DAG structure. Because the foregoing

sections and chapters established that the Multiple Path strategy results in a better

classification accuracy than the Single Path strategy, the results presented in this section

have all been generated using the Multiple Path strategy. Table 7.6 presents the results
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obtained using: (i) Rooted DAG, (ii) All-level DAG, (iii) Two-level DAG, (iv) Max-level

DAG and (v) Min-level DAG; coupled with the Multiple Path strategy. From the table

it can be observed that:

1. Using the Max-level DAG model, with the application of breadth pruning, out-

performs the All-level DAG model that featured the same number of levels but

without the application of breadth pruning. More specifically, the Max-level DAG

produced the best classification accuracy with respect to all of the considered

datasets, in comparison with using the All-level DAG, although for seven of the

datasets considered the same result was produced using both models.

2. Similar to (1) the Min-level DAG model, with the application of breadth pruning,

outperforms the Two-level DAG model that featured the same number of levels

but without the application of breadth pruning. More specifically, the Min-level

DAG produced the best classification accuracy with respect to eight of the datasets

considered, in comparison with using the Two-level DAG model, although for three

of the dataset considered the same result was produced using both models. For

two datasets the Two-level DAG produced the best results.

3. From (1) and (2) it can be concluded that the application of Breadth Pruning,

eliminating weak classifiers from the DAG, did address the issue associated with

the non-rooted DAG structure of the existence of weak classifiers at the first level

which affected classification accuracy. The usage of breadth pruning thus enhances

classification effectiveness.

4. According to both the average recorded AUC and the improved results obtained

compared to the considered DAG models, the Min-level DAG (where depth and

breadth pruning were adopted) produced the best results.

In addition to the comparison of effectiveness, a comparison of the efficiency of the

different DAG models was conducted. The results are presented in Table 7.7. The table

presents the generation and classification time for each DAG model. From the table it

can be observed that the Min-level DAG, where depth and breadth pruning were applied,

requires the least generation time. With respect to the Single Path strategy it can be

observed that the minimum classification time was recorded when using the Max-level

DAG; the reasons for this were that: (i) compared to the rooted DAG structure, the

non-rooted DAG does not include a root node that needs to be evaluated; (ii) breadth

pruning was applied to the first level in the Max-level DAG thus reducing the number

of nodes at the first level; and (iii) compared to the Min-level DAG, although both Min-

level and Max-level DAGs are required to run all the classifiers at the first level, during

the classification stage to select the best starting node among the set of nodes that exist

at the first level, the number of nodes at the first level using the Max-level DAG is

less than that featured in the Min-level DAG. Regarding the Multiple Path strategy the

Min-level DAG required the least run time.



Table 7.6: Accuracy and AUC results obtained using: (i) Rooted DAG, (ii) All-level DAG, (iii) Two-level DAG, (iv) Max-level DAG, and (v)
Min-level DAG coupled with Multiple Path strategy

Data set
DAG Models

Rooted All-level Two-level Max-level Min-level
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Nursery 90.28 0.45 61.50 0.32 59.14 0.33 82.32 0.41 90.02 0.58
Heart 55.37 0.35 54.88 0.35 54.19 0.35 56.25 0.37 59.64 0.40

PageBlocks 92.65 0.52 91.87 0.54 91.87 0.54 91.87 0.54 92.05 0.47
Dermatology 87.23 0.85 87.23 0.85 86.66 0.85 87.23 0.85 85.51 0.84

Glass 72.99 0.51 71.16 0.50 57.58 0.48 71.16 0.50 57.18 0.49
Zoo 92.18 0.58 93.18 0.59 93.18 0.59 92.18 0.59 93.18 0.59
Ecoli 82.56 0.38 82.26 0.38 79.93 0.37 82.26 0.38 80.89 0.39
Led 75.56 0.76 75.56 0.76 75.56 0.75 75.53 0.76 75.66 0.76

PenDigits 83.58 0.83 83.58 0.83 83.62 0.84 83.59 0.84 83.84 0.84
Soybean 90.75 0.92 90.75 0.92 90.39 0.92 90.57 0.92 90.04 0.92

Mean 82.32 0.62 79.20 0.60 77.21 0.60 81.30 0.62 80.80 0.63



Table 7.7: Run time results (in seconds) obtained using DAGs based classification approaches: (i) Rooted DAG, (ii) All-level DAG, (iii) Two-level
DAG, (iv) Max-level DAG, and (v) Min-level DAG coupled with either Single Path or Multiple Path strategies

Data set
Generation Single Path Strategy Multiple Path Strategy

Time Classification Time Classification Time
Rooted All Two Max Min Rooted All Two Max Min Rooted All Two Max Min

level level level level level level level level level level level level level level level

Nursery 5.982 5.011 3.275 4.380 3.142 0.012 0.017 0.021 0.007 0.010 0.595 0.625 0.626 0.601 0.625
Heart 0.333 0.261 0.262 0.299 0.245 0.001 0.001 0.001 0.001 0.001 0.015 0.017 0.017 0.017 0.016

PageBlocks 2.510 2.131 1.554 2.043 1.408 0.008 0.014 0.013 0.004 0.003 0.266 0.274 0.277 0.274 0.261
Dermatology 0.445 0.391 0.310 0.377 0.288 0.001 0.001 0.003 0.001 0.001 0.020 0.024 0.021 0.021 0.019

Glass 0.539 0.490 0.290 0.415 0.261 0.001 0.001 0.003 0.000 0.001 0.016 0.018 0.016 0.017 0.013
Zoo 0.491 0.437 0.262 0.360 0.221 0.001 0.000 0.225 0.000 0.001 0.009 0.010 0.008 0.009 0.007
Ecoli 1.032 0.944 0.373 0.801 0.342 0.001 0.002 0.006 0.000 0.001 0.031 0.033 0.022 0.034 0.019
Led 33.701 31.803 1.095 22.142 1.097 0.011 0.013 0.034 0.005 0.022 0.261 0.277 0.179 0.266 0.163

PenDigits 264.369 244.986 4.663 150.180 4.508 0.039 0.051 0.069 0.033 0.047 0.723 0.798 0.585 0.658 0.526
Soybean 1520.706 1430.897 1.505 639.260 1.467 0.009 0.012 0.037 0.003 0.025 0.068 0.078 0.060 0.063 0.057

Mean 183.011 171.735 1.359 82.026 1.298 0.008 0.011 0.041 0.005 0.011 0.200 0.215 0.181 0.196 0.171
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From the above discussion we can conclude that the Min-level DAG structure with

depth and breadth pruning, when used to generate the DAG ensemble classification

model, is the most effective and efficient in comparison with: (i) Rooted DAG, (ii) All-

level DAG, (iii) Two-level DAG and (iv) Max-level DAG. Of course, scalability is another

advantage of the Min-level DAG where the DAG classification model can be generated

for datasets that feature larger numbers of class labels, such as the Chess KRvK and

Letter Recognition datasets used in the reported evaluation.

7.4.5 Comparison Between The DAG Ensemble Classification Model

and Conventional models

In this section a comparison between the proposed DAG classification model with depth

and breadth pruning, and conventional classification models is presented. In order to

conduct a “consistent” comparison between the proposed DAG models and existing

conventional models, the comparison was conducted using the same classifier genera-

tor. Consequently, a comparison between the operation of a “stand-alone” Naive Bayes

classifier, Bagging of Naive Bayes classifiers and Naive Bayes DAG classification was

conducted. In addition, a “non-consistent” comparison between Naive Bayes DAG and

OVO SVM was conducted. The objective of this last comparison was to compare the

suggested model with one of the state of the art methods for multi-class classification.

For the comparison the Min-level DAG model coupled with the Multiple Path strategy

was used throughout (see previous discussion about effectiveness, efficiency and scala-

bility of this approach).

Commencing with the “consistent” comparison conducted between “stand alone”

Naive Bayes classification, Bagging of Naive Bayes classifiers and Naive Bayes DAG.

The results are presented in Table 7.8. From the table it can be observed that the DAG

classification model improves classification accuracy with respect to six of the twelve

datasets considered (Nursery, Heart, Glass, Ecoli, Led, and Chess KRvK), although

for one datasets (Led) the same result was produced when Naive Bayes classification

was used in stand-alone mode and with respect to bagging. For one dataset (Glass)

the same result as that obtained with respect to stand alone Naive Bayes classification

was obtained. For another five datasets (PageBlocks, Dermatology, PenDigits, Soybean,

and LetterRecognition) the stand-alone Naive Bayes classifier produced the best result

although for three dataset (PageBlocks, PenDigits, and Soybean) the same result was

produced when bagging was used. For one datasets (Zoo) bagging produced the best

results.

The best average AUC value, with respect to the twelve datasets considered, was

obtained when using the Min-level DAG model. More specifically, the average (mean)

AUC obtained when using the Min-level DAG model on the twelve datasets was 0.60,

while that obtained using a single Naive Bayes classifier or a Bagging approach produced

average AUC results of 0.59 and 0.58 respectively. It is interesting to note that the

proposed Min-levels DAG model tends to improve the classification effectiveness with
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respect to unbalanced datasets such as: Nursery, Heart, PageBlocks, Glass, Ecoli, and

ChessKRvK. It is conjectured that the combination techniques, used to distribute class

labels between nodes within the DAG, helps in the handling of unbalanced datasets.

More specifically, instead of letting a single classifier handle an unbalanced dataset,

the combination mechanism distributes classes between DAG nodes, some nodes will

handle unbalanced subsets while other nodes will handle balanced subsets. During the

classification stage only a few good quality classifiers will then be used to predict the class

label for a given previously unseen record, there is thus opportunity for the classifiers

used to operate using balanced subsets. Consequently it is conjectured that good results

are likely to be obtained.

Table 7.8: Average Accuracy and AUC values obtained using “Stand-alone” Naive
Bayes classification, “Bagging” and the proposed Min-level DAG classification model

Data set Classes
Naive Bayes Bagging Min-level DAG

(Single Model) Ensemble Model

Nursery 5 90.22 0.45 89.96 0.46 90.02 0.58
Heart 5 54.60 0.34 51.28 0.30 59.91 0.40

PageBlocks 5 92.69 0.52 92.62 0.52 92.02 0.49
Dermatology 6 86.66 0.85 81.00 0.81 86.09 0.84

Glass 7 67.83 0.49 55.28 0.46 57.18 0.49
Zoo 7 92.27 0.59 94.27 0.62 93.18 0.59
Ecoli 8 81.70 0.38 82.56 0.39 82.40 0.40
Led 10 75.59 0.76 75.50 0.76 75.75 0.76

PenDigits 10 84.94 0.85 84.57 0.85 83.84 0.84
Soybean 15 91.11 0.93 86.83 0.89 90.04 0.92

ChessKRvK 18 36.32 0.33 35.66 0.34 35.36 0.36
LetterRecog 26 57.37 0.57 56.93 0.57 55.85 0.56

Mean 75.94 0.59 73.87 0.58 75.14 0.60

The results obtained for the run-time experiments with respect to the conventional

Naive Bayes classification, Bagging ensemble and the Min-level DAG are presented in

Table 7.9. From the table it can be observed that the lowest generation and classification

time was recorded when using the single Naive Bayes classifier. However, although the

Min-level DAG model takes longer to generate, the model needs only to be generated

once after which it can be used to classify data.

With respect to the “non-consistent” comparison between the operation of the Naive

Bayes DAG and OVO SVM, Table 7.10 presents the results obtained in terms of average

accuracy and average AUC (best results highlighted in bold font). Again, recall that

the results presented with respect to the Naive Bayes DAG are the results obtained

when using the Min-level DAG coupled with the Multiple Path strategy and breadth

pruning. From the table it can be observed that the Naive Bayes DAG produced the

best classification accuracy with respect to six of the twelve datasets considered (Heart,

Glass, Ecoli, Zoo, Led, and Soybean), although for one dataset (Led) the same result

was produced using OVO SVM. In the remaining six cases, the OVO SVM produced
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Table 7.9: Run time results (in seconds) obtained using “stand-alone” Naive Bayes
classification, Bagging and the proposed Min-level DAG classification model

Data set
Naive Bayes Bagging Ensemble Min-level DAG

Gen. Class. Gen. Class. Gen. Class.

Nursery 0.974 0.003 1.180 0.011 3.142 0.625
Heart 0.202 0.000 0.216 0.001 0.245 0.016

PageBlocks 0.676 0.001 0.775 0.005 1.408 0.261
Dermatology 0.242 0.000 0.296 0.000 0.288 0.019

Glass 0.178 0.000 0.182 0.000 0.261 0.013
Zoo 0.163 0.000 0.136 0.001 0.221 0.007
Ecoli 0.206 0.000 0.208 0.000 0.342 0.019
Led 0.529 0.002 0.547 0.004 1.097 0.163

PenDigits 1.100 0.006 1.121 0.010 4.508 0.526
Soybean 0.353 0.001 0.329 0.003 1.467 0.057

chessKRvK 1.470 0.006 1.674 0.008 70.401 1.881
LetterRecog 1.398 0.007 1.580 0.011 76.011 4.321

Mean 0.624 0.002 0.687 0.005 13.283 0.659

the best result. The best overall results, according to the average AUC values obtained,

was from using OVO SVM.

Table 7.10: Average Accuracy and AUC values obtained using Naive Bayes DAG
(Min-level DAG) coupled with the Multiple Path strategy, and One-versus-One using

SVM as the base classifier

Data set
Naive Bayes DAG OVO SVM
Acc. AUC Acc. AUC

Nursery 90.02 0.58 99.69 0.64
Heart 59.91 0.40 53.01 0.22

PageBlocks 92.02 0.49 92.58 0.50
Dermatology 86.09 0.84 88.73 0.86

Glass 57.18 0.49 72.04 0.47
Zoo 93.18 0.59 94.00 0.58
Ecoli 82.40 0.40 82.95 0.36
Led 75.75 0.76 75.62 0.76

PenDigits 83.84 0.84 98.60 0.99
Soybean 90.04 0.92 92.54 0.91

ChessKRvK 35.36 0.36 86.40 0.81
LetterRecog 55.85 0.56 82.92 0.83

Mean 75.14 0.60 84.92 0.66

The results obtained for the associated run-time experiments are presented in Table

7.11. Again the table presents both the generation and classification times. From the

table it can be observed, that the lowest generation and classification times were recorded

when using the Min-level DAG classification model (with breadth pruning).
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Table 7.11: Run time results (in seconds) obtained using Naive Bayes DAG (Min-level
DAG) coupled with the Multiple Path strategy, and One-versus-One using SVM as the

base classifier

Data set
Generation Time Classification Time
DAG OVO DAG OVO

Nursery 3.142 10.974 0.625 0.778
Heart 0.245 0.139 0.016 0.067

PageBlocks 1.408 0.657 0.261 0.135
Dermatology 0.288 0.201 0.019 0.054

Glass 0.261 0.120 0.013 0.044
Zoo 0.221 0.066 0.007 0.028
Ecoli 0.342 0.101 0.019 0.038
Led 1.097 0.582 0.163 0.182

PenDigits 4.508 4.153 0.526 0.529
Soybean 1.467 0.386 0.057 0.151

ChessKRvK 70.401 184.841 1.881 5.293
LetterRecog 76.011 45.184 4.321 3.657

Mean 13.283 20.617 0.659 0.913

From the above it can be argued that OVO SVM is more effective than the DAG

classification model, especially with respect to datasets that feature large numbers of

class labels such as Chess KRvK and Letter Recognition. However, the DAG classifica-

tion model is more efficient than OVO SVM according to the presented generation and

classification run times.

7.5 Summary

A hierarchical ensemble classification model for multi-class classification based on a non-

rooted Directed Acyclic Graph (DAG) structure, with the application of breadth pruning,

has been presented in this chapter. The aim of the breadth pruning was to eliminate

weak classifiers that may exist at each DAG level, so that only strong classifiers are

maintained as part of the proposed ensemble classification model. The breadth pruning

scheme was realised by utilising the AUC values generated when evaluating the internal

classifiers, weak classifiers were then identified by their low associated AUC value (a

threshold α was used for this purpose). Two DAG variations were considered: (i) Max-

level DAG (maximum number of levels), and (ii) Min-level DAG (minimum number of

levels). Two alternative classification strategies: Single Path and Multiple Path were

considered. Again, the latter was facilitated by the probability values generated by

Naive Bayes classifiers at the DAG nodes (a threshold σ was used to decide whether to

follow a single path or not).
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The operation of the proposed DAG model was compared with three well-established

more conventional classification models: (i) stand-alone classification, (ii) Bagging en-

semble classification, and (iii) OVO classification with SVM as the base classifiers (“non-

consistent” comparison). The objective of this last comparison was to compare the oper-

ation of the proposed DAG model with one of the state of the art methods for multi-class

classification.

From the reported evaluation it was demonstrated that:

1. With respect to breadth pruning, a more effective classification was obtained when

a specific α threshold value was used with respect to each of the considered datasets

than when a general α value was used, regardless the classification strategy (Single

or Multiple Path).

2. Again, following multiple paths within the DAG tended to produce a better clas-

sification effectiveness, than when following only single paths.

3. Regarding the comparison between the Max-level DAG and the Min-level DAG,

there was a little difference in terms of effectiveness, only a small amount improve-

ment was evidenced when using the Min-level DAG.

4. Breadth Pruning, could be successfully used to addressed the issue associated with

the non-rooted DAG structure whereby weak classifiers at the first level affect

classification accuracy.

5. The DAG classification model could be successfully used to classify data in a more

effective manner than when alternative conventional methods were used, such as

Naive Bayesian classification and Bagging of Naive Bayes classifiers, with respect

to some of the considered datasets.

6. Regarding the comparison between the DAG classification model and OVO SVM,

the DAG classification model outperformed OVO SVM with respect to some of

the datasets considered in the evaluation, however it seems that OVO SVM is

more effective than the DAG classification model in some cases, especially for

datasets that feature large number of class labels such as Chess KRvK and Letter

Recognition. Regarding efficiency, the DAG classification model was found to

be more efficient than OVO SVM with respect to the reported generation and

classification run times.

It is interesting to note here that, with respect to the threshold values (α and σ) an

embedded procedure with a grid-search that selects the best values for the thresholds

can be adopted, alternatively values for α and σ can be a user-specified.

Although effectiveness comparisons of the different considered strategies and struc-

tures have been presented in the foregoing sections and chapters, a more precise statis-

tical comparison is desirable. This is thus considered in the next chapter.



Chapter 8

Final Evaluation and Statistical

Comparisons

8.1 Introduction

This chapter presents a statistical comparison of the operation of the different structures,

strategies, techniques and mechanisms that have been considered in this thesis with

respect to the evaluation results presented earlier in Chapters 4, 5, 6 and 7. The broad

aim is to determine firstly wether the results presented in these earlier chapters were

indeed statistically significant and not purely a matter of chance and secondly to conduct

a comparison between the different approaches proposed. To remind the reader of the

different elements of the proposed techniques presented in this thesis Figure 1.1 from

Chapter 1 is given again in Figure 8.1.

Several statistical tests are available for the purpose of comparing the operation of

classifiers; the question is which one to adopt? A comprehensive theoretical and prac-

tical study of the available statistical tests for comparing machine learning algorithms

was conducted by Janez Demsar [24]. According to this study, non-parametric statistical

tests are recommended for classification algorithm comparison purpose. More specifi-

cally, the Wilcoxon signed rank test was recommended for comparing two classifiers,

while the Friedman test with a corresponding post-hoc test was recommended for com-

paring several classifiers, more than two, over multiple datasets. Consequently these

tests were adopted in order to conduct the desired comparison.

The rest of this chapter is organised as follows: Section 8.2 provides a generic

overview of the Friedman and Wilcoxon tests. While Sections 8.3 and 8.4 present the

comparisons with respect to the Binary Tree and DAG hierarchical classification models

respectively. Section 8.5 presents a comparison between DAG based hierarchical clas-

sification and Binary Tree based hierarchical classification. Section 8.6 then provides a

comparisons between the suggested hierarchical classification model and alternative con-

ventional ensemble classification models. Finally, a summary of the chapter is presented

in Section 8.7.
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Figure 8.1: Hierarchical classification structures, strategies, techniques, and mecha-
nisms

8.2 Overview of Friedman and Wilcoxon Signed Rank Tests

As noted in the introduction to this chapter, Demzar recommended the use of non-

parametric tests for comparing the operation of classification algorithms over multiple

datasets, the reasons behind this recommendation were that these tests do not assume:

(i) normal distributions of the samples across a set of problems, and (ii) homogeneity of

the variance (random variables have equal variance).

The Wilcoxon signed ranks test is a non-parametric test to compare two classification

algorithms over multiple datasets [102]. Using this test: (i) the differences in effectiveness

of the two considered classifiers are calculated, (ii) a ranking is applied according to the

calculated differences, and (iii) a comparison of the positive and negative ranks is applied.

The Friedman test is a non-parametric test to compare multiple classifiers over mul-

tiple datasets [36]. As in the case of the Wilcoxion test, this test is based on a ranking

process. More specifically, each classifier is given a rank for each dataset, the average

rank is calculated for each classifier, a comparison of the calculated ranks is applied. If,

as a result of applying the Friedman test, a significant difference is detected between

the considered classifiers1, a post-hoc test is applied to determine which classifier(s) is

(are) significantly different than the others. According to Demsar [24], the usefulness

1Thus allowing us to reject the null hypothesis that assumes that the performance of all the considered
classifiers is the same and any differences in their performance is random.
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of any post-hoc test will be better if the classifiers are compared to a control classifier

instead of applying pairwise comparisons; several alternative procedures have ben pro-

posed to conduct this kind post-hoc test, such as the Bonferroni test [31]. However, in

our case a comparison is required to be conducted between several proposed techniques,

strategies, and mechanisms. There are also several post-hoc tests that can be adopted

for this purpose, however the Nemenyi test was adopted [73]. According to the Nemenyi

post-hoc test, two classifiers are significantly different if the difference of their average

rank is greater than or equal to some critical difference calculated using Equation 8.1

[24]:

CD = qα

√
k (k + 1)

6N
(8.1)

where qα is the critical value (which can be obtained from any text book on statistics),

k is the number of the classifiers, and N is the number of samples (datasets) considered

in the comparison. It is interesting to note that the Friedman test might predict a

significant difference between several classifiers, however the post-hoc test might fail to

identify it. According to Demsar, this is because of the “recognised weaknesses” of the

post-hoc tests.

To summarise the above discussion, the results reported in this chapter are generated

using the Wilcoxon signed rank test in cases where two classification models are to be

compared, and the Friedman test with the Nemenyi post-hoc test in the case of multiple

classifier comparison. Both the Wilcoxon and Friedman tests are available in SPSS,

however no corresponding post-hoc test for the Friedman test is available in SPSS.

Consequently this was calculated manually using Equation 8.1.

8.3 Binary Tree Hierarchical Classification Model Statis-

tical Evaluation

This section reports on the statistical comparisons of the different classifiers, techniques,

strategies, and mechanisms that were used with respect to the Binary Tree hierarchical

classification model presented in Chapter 4. More specifically, the reported comparisons

were directed at:

1. The different classifier generators (Decision tree, Naive Bayes, and CARM).

2. The different data grouping techniques (k-means clustering, divisive hierarchical

clustering, and data splitting technique).

3. The two classification strategies (Single and Multiple Path).

4. The three alternative mechanisms for arriving at a final classification decision in

context of the Multiple Path strategy (Voting, Best Individual Probability BIP (or

Confidence BIC) and Normalised Accumulated Probability NAP (or Confidence

NAC)).
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Thus a similar set of objectives to those reported on in Chapter 4 with respect to

the binary tree hierarchical classification model. In the context of the above, the rest of

this section is organised as follows:

1. Sub-section 8.3.1 presents a comparison between the different classifiers considered,

as well as a comparison of the different grouping techniques with respect to the

binary tree hierarchical classification model when a Single Path strategy is adopted.

2. Sub-section 8.3.2 presents a comparison between the different classifiers considered,

as well as a comparison of the different grouping techniques and the two alternative

mechanisms for arriving at a final classification decision (BIP/BIC and NAP/NAC)

with respect to the binary tree hierarchical classification model when a Multiple

Path strategy is adopted.

3. Sub-section 8.3.3 presents a comparison between the Single and Multiple Path

strategies.

8.3.1 Comparative Evaluation using the Binary Tree Hierarchical Clas-

sification Model with the Single Path Strategy

As reported earlier in Chapter 4, the choice of: (i) the base classifiers and (ii) the data

segmentation technique, to be used to generate the Binary Tree hierarchical classifica-

tion model, can affect the classification accuracy of the resulting ensemble model. From

the evaluation presented in Chapter 4 it was found that the most effective classifier, to

generate the binary tree hierarchical classification model with respect to the Single Path

strategy, was found to be the Naive Bayes classifier. Regarding the data segmentation

technique, it was found that k-means and data splitting outperformed hierarchical clus-

tering. The aim of this section is to determine whether this result was indeed statistically

significant.

Commencing with the different data segmentation techniques three statistical com-

parisons were performed; one with respect to each of the three considered classifiers.

Regarding the comparison of the three considered data segmentation techniques with

respect to Naive Bayes classification, because this was a three-way comparison, the

Friedman test was applied. Figure 8.2 presents the results obtained. The results in-

dicated that there was a significant difference between the three considered data seg-

mentation techniques (X2(2) = 21.143, p = 0.0002). Since the Friedman test demon-

strated a significant difference in performance between the considered segmentation tech-

niques, a post hoc test was applied to determine which classifier(s) performed signifi-

cantly better than the others. As noted above, for this purpose the Nemenyi post-hoc

test was used. First the critical difference was calculated according to Equation 8.1.

2The p-value is the estimated probability of rejecting the null hypothesis. If the p-value is less than
or equal to the significance level (α) the null hypothesis can be rejected. α is the significance level of
the statistical test, conventionally 5% or 1% [74].
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CD = 2.344

√
3(3+1)
6∗14 = 0.886. Then the difference between the average ranks was calcu-

lated for each pair of techniques and compared with the value of the critical difference.

The results indicated that k-means and data splitting performed statistically better than

hierarchical clustering (2.57 - 1.00 = 1.57 > 0.886, and 2.43 -1.00 = 1.43 > 0.886). While

the performance of k-mean and data splitting was not statistically different (2.57 - 2.43=

0.14 < 0.886).

Friedman	  Test	  

Mean Rank
NaiveandKmeanSinglePath 2.57
NaiveandDSSinglePath 2.43
NaiveandHCSinglePath 1.00

Ranks

N 14
Chi-Square 21.143
df 2
Asymp. Sig. .000

Test Statisticsa

a. Friedman Test

Figure 8.2: Results of Friedman test used to compare the different considered data
segmentation techniques with respect to Naive Bayes classification and the Single Path

strategy

Figure 8.3 presents the results of the Friedman test used to compare the operation of

the three considered data segmentation techniques with respect to Decision tree classifi-

cation. The results indicated that there was a statistically significant difference between

the three considered techniques (X2(2) = 6.627, p = 0.036), hence the Nemenyi post-hoc

test was applied. However, the Nemenyi test failed to detect any significant differences

between the considered models (2.29 - 2.25 = 0.04 < 0.886, 2.29 - 1.46 = 0.83 < 0.886,

and 2.25 - 1.46 = 0.79 < 0.886). Recall from the above, and according to Demsar, that

this is because of a recognised weakness of the post-hoc test.

Figure 8.4 presents the results of the Friedman test used to compare the three con-

sidered data segmentation techniques with respect to CARM classification. The results

indicated that there was no statistically significant difference between the three consid-

ered data segmentation techniques (X2(2) = 3.593, p = 0.166).

Based on the above reported tests, and following on from the results presented in

Chapter 4, it was thus concluded that there is a statistically significant difference in

operation between the three considered data segmentation techniques, and that the k-

means and the data splitting technique are more effective than hierarchical clustering.

Consequently, a comparison of the different classifiers, considered to generate the Binary

Tree hierarchical classification model, was conducted with respect to only the k-means
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Friedman	  Test	  

Mean Rank
DTandKmean 2.29
DTandDS 2.25
DTandHC 1.46

Ranks

N 14
Chi-Square 6.627
df 2
Asymp. Sig. .036

Test Statisticsa

a. Friedman Test

Figure 8.3: Results of Friedman test used to compare the different considered data
segmentation techniques with respect to Decision tree classification and Single Path

strategy

Friedman	  Test	  

Mean Rank
CARMandKmean 2.39
CARMandDS 1.71
CARMandHC 1.89

Ranks

N 14
Chi-Square 3.593
df 2
Asymp. Sig. .166

Test Statisticsa

a. Friedman Test

Figure 8.4: Results of Friedman test used to compare the different considered data
segmentation techniques with respect to CARM classifier and Single Path strategy

and data splitting technique. Because we have three classifiers (Decision tree, Naive

Bayes, and CARM) the Friedman test was again used.

Figure 8.5 presents the results of the Friedman test used to compare the operation of

the three considered classifiers with respect to k-means data segmentation. According to

the conducted Friedman test there was a statistically significant difference between the

three considered classifiers (X2(2) = 14.714, p = 0.001), hence the Nemenyi post-hoc

test was applied. The result of the post-hoc test indicated that the operation of Naive

Bayes was significantly better than when using either CARM (2.79 - 1.36 = 1.43 > 0.886)

or Decision tree classification (2.79 -1.86 = 0.93 > 0.886). While the performances of

Decision tree and CARM was not found to be significantly different (1.86 - 1.36 = 0.50
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< 0.886).

Friedman	  Test	  

Mean Rank
DTandKmean 1.86
NaiveandKmean 2.79
CARMandKmean 1.36

Ranks

N 14
Chi-Square 14.714
df 2
Asymp. Sig. .001

Test Statisticsa

a. Friedman Test

Figure 8.5: Results of Friedman test used to compare the different classifiers (Decision
tree, Naive Bayes, and CARM) utilised to generate the Binary Tree classification model

with respect to k-means data segmentation technique and Single Path strategy

Figure 8.6 presents the results of Friedman test used to compare the three considered

classifiers with respect to the data splitting segmentation technique. From the figure it

can be seen that there was a statistically significant difference in the operation of the

three considered classifiers (X2(2) = 14.286, p = 0.001) and hence a Nemenyi post-hoc

test was conducted. According to the Nemenyi test, Naive Bayes classification is again

significantly more effective than CARM (2.71 - 1.29 = 1.42> 0.886), while no statistically

significant difference was observed between Naive Bayes and Decision tree classification

(2.71 - 2.00 = 0.71 < 0.886) or between Decision tree and CARM classification (2.00 -

1.29 = 0.71 < 0.886).

From the foregoing, it was thus concludes that the most effective classifier with which

to generate Binary Tree hierarchies was found to be Naive Bayes. Regarding the data

segmentation technique, k-means and data splitting were found to be more effective than

hierarchical clustering (with respect to the Single Path Strategy).

8.3.2 Comparative Evaluation using the Binary Tree Hierarchical Clas-

sification Model with the Multiple Path Strategy

Recall from Chapter 4 that the evaluation included in this chapter indicated that the

most effective classifier, to generate the binary tree hierarchical classification model

with respect to the Multiple Path strategy, was found to be the Naive Bayes classifier.

Regarding the data segmentation technique, it was found that k-means and data splitting

outperformed hierarchical clustering. The aim of the evaluation presented in this sub-

section is to determine whether this result was statistically significant or not. This

section also reports on the comparison undertaken with respect to the three alternative
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Friedman	  Test	  

Mean Rank
DTandDS 2.00
NaiveandDS 2.71
CARMandDS 1.29

Ranks

N 14
Chi-Square 14.286
df 2
Asymp. Sig. .001

Test Statisticsa

a. Friedman Test

Figure 8.6: Results of Friedman test used to compare the different classifiers (Decision
tree, Naive Bayes, and CARM) utilised to generate the Binary Tree classification model

with respect to data splitting technique and Single Path strategy

mechanisms that were considered to arrive at a final classification decision (Voting,

BIP/BIC, and NAP/NAC).

Commencing with the statistical evaluation of the results obtained to determine the

effectiveness of the different data segmentation techniques two sets of experiments were

conducted; one with respect to Naive Bayes and one with respect to CARM (recall

that decision tree classification is not appropriate in the context of the Multiple Path

Strategy). Figure 8.7 presents the results of the Friedman test used for the first set of

experiments. The presented results indicated that there was a statistically significant

difference in operation using the three considered data segmentation techniques (X2(2) =

18.143, p = 0.000). A consequent Nemenyi post-hoc test was thus applied from which

it was observed that k-means and data splitting performed statistically better than

hierarchical clustering (2.50 - 1.07 = 1.43 > 0.886, and 2.43 -1.07 = 1.36 > 0.886).

While the performance of k-means and data splitting was not statistically different (2.50

- 2.43= 0.07 < 0.886).

Regarding the comparison of the different data segmentation techniques with re-

spect to CARM classification when coupled with the Multiple Path strategy Figure 8.8

presents the Friedman test results obtained. From the figure it can be seen that there

was a statistically significant difference between the three considered data segmentation

techniques (X2(2) = 7.018, p = 0.030). The consequent Nemenyi test indicated that k-

means segmentation was more effective than data splitting (2.57 - 1.68 = 0.89 > 0.886).

While the performance difference between k-means and hierarchical clustering was found

to not be statistically different (2.57 - 1.75= 0.82 < 0.886). Similarly no statistically

significant performance difference was found between the data splitting and hierarchical

clustering segmentation techniques (1.75 - 1.68 = 0.07 < 0.886). Again, recall that an

issue with using confidence values, generated when using CARM, to determine whether
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Friedman	  Test	  

Mean Rank
NaiveandKmeanMultiplePath 2.50
NaiveandDSMultiplePath 2.43
NaiveandHCMultiplePath 1.07

Ranks

N 14
Chi-Square 18.143
df 2
Asymp. Sig. .000

Test Statisticsa

a. Friedman Test

Figure 8.7: Results of Friedman test used to compare the different data segmentation
techniques with respect to Naive Bayes classification and the Multiple Path strategy

one or two branches emanating from a node should be followed, as reported in Chapter

4, was that it was not always possible to identify both branch confidence values for a

given node. Consequently the unknown confidence values affected the results of Multiple

Path strategy. This issue would affect the outcome of any comparison of the different

data segmentation techniques coupled with CARM classification and the Multiple Path

strategy.

Friedman	  Test	  

Mean Rank
CARMandKmeansMultiplePath 2.57
CARMandDSMultiplePath 1.68
CARMandHCMultiplePath 1.75

Ranks

N 14
Chi-Square 7.018
df 2
Asymp. Sig. .030

Test Statisticsa

a. Friedman Test

Figure 8.8: Results of Friedman test used to compare the different data segmentation
techniques with respect to CARM classification and the Multiple Path strategy

Although, from the foregoing, it is clear that Naive Bayes classification is more sta-

tistically effective than CARM classification, with respect to the Multiple Path strategy,

a comparison is presented in Figure 8.9 with respect to the k-mean and data splitting

technique. Because the goal here is to statistically compare two classification models,

the Wilcoxon test was applied. According to the outcome of the Wilcoxon signed rank
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test, there was a significant difference in performance between the two models; Naive

Bayes classification was found to be statistically more effective than CARM classifica-

tion, regardless of the adopted data segmentation technique. With respect to k-means

z = -3.300 and p < 0.05, and regarding data splitting z = -3.236 and p < 0.05.

Wilcoxon	  Signed	  Ranks	  Test	  
	  	  	  

N
Mean 
Rank

Sum of 
Ranks

Negative Ranks 14a 7.50 105.00
Positive Ranks 0b 0.00 0.00
Ties 0c

Total 14
Negative Ranks 13d 8.00 104.00
Positive Ranks 1e 1.00 1.00
Ties 0f

Total 14

c. CARMandKmeanMultiplePath = NaiveandKmeanMultiplePath
d. CARMandDSMultiplePath < NaiveandDSMultiplePath
e. CARMandDSMultiplePath > NaiveandDSMultiplePath
f. CARMandDSMultiplePath = NaiveandDSMultiplePath

Ranks

CARMandKmeanMultiplePath - 
NaiveandKmeanMultiplePath

CARMandDSMultiplePath - 
NaiveandDSMultiplePath

a. CARMandKmeanMultiplePath < NaiveandKmeanMultiplePath
b. CARMandKmeanMultiplePath > NaiveandKmeanMultiplePath

CARMandKmeanMultiplePath - 
NaiveandKmeanMultiplePath

CARMandDSMultiplePath - 
NaiveandDSMultiplePath

Z -3.300b -3.236b

Asymp. Sig. (2-tailed) .001 .001

Test Statisticsa

a. Wilcoxon Signed Ranks Test
b. Based on positive ranks.

Figure 8.9: Results of Wilcoxon test used to compare Naive Bayes and CARM clas-
sification with respect to the different data segmentation techniques and the Multiple

Path strategy

Regarding the comparison between the different mechanisms (Voting, BIP, and NAP)

for arriving at a final classification decision the Fridman test was applied (because the

goal here was to compare three models). Commencing with the comparison of Voting,

BIP, and NAP with respect to data splitting technique. Figure 8.10 presents the obtained

results. From the figure it can be seen that there was a statistical difference between the

three considered mechanisms (X2(2) = 6.151, p = 0.046). The consequent Nemenyi test

indicated that the NAP mechanism was more effective than Voting (2.39 - 1.50 = 0.89

> 0.886). While the performance difference between NAP and BIP was found to not be

significantly different (2.39 - 2.11= 0.28 < 0.886). Similarly no significant performance

difference was found between the BIP and Voting segmentation techniques (2.11 - 1.50

= 0.61 < 0.886).

Figure 8.11 presents the obtained results of applying Friedman test to compare the

three alternative mechanisms (Voting, BIP, and NAP) with respect to k-means. Anal-

ysis of the test results indicated that no statistically significant difference was found in

performance between the three considered mechanisms (X2(2) = 1.267, p = 0.531).
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Friedman	  Test	  

Mean Rank
NaiveandDSMultiPathWithNAP 2.39
NaiveandDSMultipathWithBIP 2.11
NaiveandDSMultiPathWithVoting 1.50

Ranks

N 14
Chi-Square 6.151
df 2
Asymp. Sig. .046

Test Statisticsa

a. Friedman Test

Figure 8.10: Results of Friedman test used to compare the three alternative mech-
anisms to arrive at a final classification decision with respect to the Multiple Path
strategy: (i) Voting, (ii) BIP, and (iii) NAP with respect to data splitting mechanism

Friedman	  Test	  

Mean Rank
NaiveandKmeansMultiPathWithNAP 2.11
NaiveandKmeansMultiPathWithBIP 2.07
NaiveandKmeansMultiPathWithVoting 1.82

Ranks

N 14
Chi-Square 1.267
df 2
Asymp. Sig. .531

Test Statisticsa

a. Friedman Test

Figure 8.11: Results of Friedman test used to compare the three alternative mech-
anisms to arrive at a final classification decision with respect to the Multiple Path
strategy: (i) Voting, (ii) BIP, and (iii) NAP with respect to K-means data segmenta-

tion technique

From the foregoing we can conclude: (i) as in the case of the Single Path strategy,

that Naive Bayes classification was more effective than CARM classification when used

to generate a Binary Tree hierarchical classification model with respect to the Multiple

Path strategy, (ii) the k-means and data splitting techniques are more effective than

hierarchical clustering (again as also noted in the case of Single Path strategy), and (iii)

the NAP mechanism statistically outperformed the Voting mechanism for arriving at

a final classification decision with respect to the Multiple Path strategy. In addition,

no statistically significant difference was detected in the operation of the BIP and NAP

mechanisem.
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8.3.3 Comparison between Single and Multiple Path Strategies when

using The Binary Tree Hierarchical Classification Model

Because of (i) earlier experiments reported in Chapter 4 (and confirmed in the foregoing

section) had indicated that Naive Bayes classification was the most effective classifier

with which to generate the desired Binary Tree hierarchical classification model, and

(ii) the issues that were reported in Chapter 4 regarding following multiple paths with

respect to CARM classifiers, this section presents the statistical comparison between the

Single and Multiple path strategies with respect to Naive Bayes classification only and

the three considered data segmentation techniques (k-mean, data splitting, and divisive

hierarchical clustering).

The Wilcoxon test was applied because the goal here was to compare the two strate-

gies, Single and Multiple Path. Figure 8.12 presents the results obtained. From the

figure it can be seen that there was a statistical performance difference between the two

strategies with respect to data splitting and hierarchical clustering, z = -2.203 and p

= 0.028, and z = -3.297 and p = 0.001 (p < 0.05) respectively. While there was no

significant difference between the two strategies with respect to k-means, z = -0.564 and

p = 0.573. These results support what was argued earlier in chapter 4, that the Multiple

Path strategy avoids many of the miss-classifications that occur when using the Single

Path strategy.

Wilcoxon	  Signed	  Ranks	  Test	  
	  	  	  

N
Mean 
Rank

Sum of 
Ranks

Negative 4a 5.50 22.00
Positive 4b 3.50 14.00
Ties 6c

Total 14
Negative 3d 5.83 17.50
Positive 11e 7.95 87.50
Ties 0f

Total 14
Negative 0g 0.00 0.00
Positive 14h 7.50 105.00
Ties 0i

Total 14

Ranks

NaiveandKmeanMultiplePath - 
NaiveandKmeanSinglePath

NaiveandDSMultiplePath - 
NaiveandDSSinglePath

NaiveandHCMultiplePath - 
NaiveandHCSinglePath

a. NaiveandKmeanMultiplePath < NaiveandKmeanSinglePath

h. NaiveandHCMultiplePath > NaiveandHCSinglePath
i. NaiveandHCMultiplePath = NaiveandHCSinglePath

b. NaiveandKmeanMultiplePath > NaiveandKmeanSinglePath
c. NaiveandKmeanMultiplePath = NaiveandKmeanSinglePath
d. NaiveandDSMultiplePath < NaiveandDSSinglePath
e. NaiveandDSMultiplePath > NaiveandDSSinglePath
f. NaiveandDSMultiplePath = NaiveandDSSinglePath
g. NaiveandHCMultiplePath < NaiveandHCSinglePath

NaiveandKmeanMultiplePath - 
NaiveandKmeanSinglePath

NaiveandDSMultiplePath - 
NaiveandDSSinglePath

NaiveandHCMultiplePath - 
NaiveandHCSinglePath

Z -.564b -2.203c -3.297c

Asymp. Sig. (2-tailed) .573 .028 .001

Test Statisticsa

a. Wilcoxon Signed Ranks Test
b. Based on positive ranks.
c. Based on negative ranks.

Figure 8.12: Results of Wilcoxon test used to compare the Single and Multiple Path
strategies with respect to Naive Bayes classification and the three considered data

segmentation techniques
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8.4 DAG Classification Models Evaluation

In this section a statistical comparisons of the different approaches, strategies, and mech-

anisms with respect to the proposed DAG classification models are presented. Recall

that the aim is to determine whether the results from earlier experiments, reported in

Chapters 5, 6, and 7, were indeed statistically significant and to compare the results

obtained. The section is organised as follows. Sub-section 8.4.1 presents the statistical

analysis of the outcomes from the set of experiments designed to evaluate the DAG

classification model when a Single Path strategy was adopted; while Sub-section 8.4.2

presents the statistical analysis of the results from a similar set of experiments designed

to evaluate the DAG classification model when a Multiple Path strategy was adopted.

Sub-section 8.4.3 then presents a comparison between the two strategies (Single and

Multiple Path), and Sub-section 8.4.4 presents a comparison between the different DAG

models considered in this thesis.

8.4.1 Comparative Evaluation using the DAG Classification Models

with the Single Path Strategy

In this sub-section the statistical comparison between the operation of the different

classifiers (Decision tree, Naive Bayes, and CARM) utilised to generate the different

DAG models (Rooted, All-level, and Two-level), with respect to the Single Path strategy,

is presented. Note here that with respect to the DAG classification model coupled with

breadth pruning (Max-level and Min-level DAGs), only Naive Bayes classification was

considered because of the issues reported in Chapter 6 with respect to CARM classifiers.

In Chapters 5 and 6 it was established, based on experimentation that, the most effective

classifier to generate the DAG classification model was found to be Naive Bayes classifier.

The aim of this sub-section is to conduct a statistical evaluation of these results to

determine if these results are indeed statistically significant and to conduct a general

comparison to identify the best classifier.

Commencing with the rooted DAG classification model, Figure 8.13 presents the

results of Friedman test used to compare the three considered classifiers with respect

to the rooted DAG classification model and the Single Path strategy. According to

the conducted Friedman test there was a statistically significant difference in operation

between the three considered classifiers (X2(2) = 11.091, p = 0.004). The consequent

Nemenyi post-hoc test, using CD = 2.344

√
3(3+1)
6∗11 = 0.999 demonstrated that Naive

Bayes performed statistically better than both Decision tree and CARM classification

(2.82 - 1.55 = 1.27 > 0.999, and 2.82 - 1.64 = 1.18 > 0.999); while no statistically

significant difference was observed between Decision tree and CARM classification (1.64

- 1.55 = 0.09 < 0.999).

With respect to the non-rooted DAG classification models, only two classifiers were

considered, Naive Bayes and CARM, for All-level and Two-level DAGs. Because the
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Friedman	  Test	  

Mean Rank
DTrootedDAG 1.55
NaiverootedDAG 2.82
CARMrootedDAG 1.64

Ranks

N 11
Chi-Square 11.091
df 2
Asymp. Sig. .004

Test Statisticsa

a. Friedman Test

Figure 8.13: Results of Friedman test used to compare the different classifiers (De-
cision tree, Naive Bayes, and CARM) with respect to the rooted DAG classification

model and the Single Path strategy

goal here was to compare the operation of the two classifiers with respect to the All-

level and Two-level DAGs the Wilcoxon test was again applied. Figure 8.14 presents the

obtained results from the Wilcoxon tests. From the figure it can be seen that there is

a statistically significant difference in operation between the two classifiers with respect

to both the All-level and Two-level DAGs. Regarding the All-level DAG z = -2.253, p =

0.024 (p < 0.05); with respect to the Two-level DAG z = -2.312, p = 0.021 (p < 0.05).

Again the results demonstrated that Naive Bayes classification was the most effective

confirming the results from earlier experiments reported in Chapters 5 and 6.

8.4.2 Comparative Evaluation using the DAG Classification Models

with the Multiple Path Strategy

This section describes the outcomes from the statistical evaluation conducted to compare

the operation of the multiple path DAGs (rooted and non-rooted) with respect to: (i)

the nature of the classifiers used at the nodes, and (ii) the effect of using Voting, BIP,

and NAP to arrive at a final classification. From the evaluation presented in Chapters 5

and 6 it was found that the most effective classifier, to generate the DAG classification

models with respect to the Multiple Path strategy, was found to be the Naive Bayes

classifier. With respect to class label selection mechanism, it was found that the results

of the three mechanisms are very similar. The aim of this section is to determine whether

the obtained results were indeed statistically significant.

Commencing with the rooted DAG classification model. Because only two classifiers

(Naive Bayes and CARM) were utilised a Wilcoxon test was applied. Figure 8.15 presents

the results obtained. From the figure it can be seen that a statistically significant

difference between the two classifiers was identified, z = -2.936 and p = 0.003 (p < 0.05).

Again Naive Bayes classification was found to be more effective than CARM classification
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Wilcoxon	  Signed	  Ranks	  Test	  
	  	  	  

CARMAlllevelDAGSinglePath - 
NaivealllevelDAGSinglePath

CARMTwolevelDAGSinglePath - 
NaiveTwolevelDAGSinglePath

Z -2.253b -2.312b

Asymp. Sig. (2-tailed) .024 .021

Test Statisticsa

a. Wilcoxon Signed Ranks Test
b. Based on positive ranks.

N
Mean 
Rank

Sum of 
Ranks

Negative 8a 5.19 41.50
Positive 1b 3.50 3.50
Ties 0c

Total 9
Negative 8d 5.25 42.00
Positive 1e 3.00 3.00
Ties 0f

Total 9

c. CARMAlllevelDAGSinglePath = NaivealllevelDAGSinglePath
d. CARMTwolevelDAGSinglePath < NaiveTwolevelDAGSinglePath
e. CARMTwolevelDAGSinglePath > NaiveTwolevelDAGSinglePath
f. CARMTwolevelDAGSinglePath = NaiveTwolevelDAGSinglePath

Ranks

CARMAlllevelDAGSinglePath - 
NaivealllevelDAGSinglePath

CARMTwolevelDAGSinglePath - 
NaiveTwolevelDAGSinglePath

a. CARMAlllevelDAGSinglePath < NaivealllevelDAGSinglePath
b. CARMAlllevelDAGSinglePath > NaivealllevelDAGSinglePath

Figure 8.14: Results of Wilcoxon test used to compare the two considered classifiers
with respect to: (i) All-level and (ii) Two-level DAGs, and the Single Path strategy

with respect to the rooted DAG multiple path model (confirming the results from earlier

experiments reported on in Chapter 5).

With respect to the non-rooted DAG multiple path models (All-level and Two-level),

as in the above case, only two classifiers were considered, Naive Bayes and CARM,

for each variation; and consequently Wilcoxon tests were again applied. The results

are presented in Figure 8.16 from which it can be seen that there was a statistically

significant difference in operation between the two classifiers with respect to both DAG

variations (All-level and Two-level). Regarding the All-level variation z = -2.199 and p

= 0.028 (p < 0.05). With respect to the Two-level variation z = -2.429, and p = 0.015

(p < 0.05). Again Naive Bayes classification was identified as being the most effective

in the case non-rooted DAG multiple path model (confirming the results from earlier

experiments reported on in Chapter 6).

Regarding the comparison between the three final class allocation mechanisms, Vot-

ing, BIP, and NAP, for arriving at a final classification decision the Friedman test results

are presented in Figure 8.17. Inspection of the figure indicates that there was no signifi-

cant difference in operation performance between the three mechanisms (X2(2) = 0.353,

p = 0.838), confirming earlier results.
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Wilcoxon	  Signed	  Ranks	  Test	  
	  	  	  

N
Mean 
Rank

Sum of 
Ranks

Negative 11a 6.00 66.00
Positive 0b 0.00 0.00
Ties 0c

Total 11

Ranks

CARMrootedDAGMultiplePath - 
NaiverootedDAGMultiplePath

a. CARMrootedDAGMultiplePath < NaiverootedDAGMultiplePath
b. CARMrootedDAGMultiplePath > NaiverootedDAGMultiplePath
c. CARMrootedDAGMultiplePath = NaiverootedDAGMultiplePath

CARMrootedDAGMultiplePath - 
NaiverootedDAGMultiplePath

Z -2.936b

Asymp. Sig. (2-tailed) .003

Test Statisticsa

a. Wilcoxon Signed Ranks Test
b. Based on positive ranks.

Figure 8.15: Results of Wilcoxon test used to compare Naive Bayes and CARM
classification with respect to the rooted DAG multiple path model

Wilcoxon	  Signed	  Ranks	  Test	  
	  	  	  

N
Mean 
Rank

Sum of 
Ranks

Negative 8a 5.13 41.00
Positive 1b 4.00 4.00
Ties 0c

Total 9
Negative 8d 5.38 43.00
Positive 1e 2.00 2.00
Ties 0f

Total 9

c. CARMAlllevelDAGMultiplePath = NaiveAlllevelDAGMultiplePath
d. CARMTwolevelDAGMultiplePath < NaiveTwolevelDAGMultiplePath
e. CARMTwolevelDAGMultiplePath > NaiveTwolevelDAGMultiplePath
f. CARMTwolevelDAGMultiplePath = NaiveTwolevelDAGMultiplePath

Ranks

CARMAlllevelDAGMultiplePath - 
NaiveAlllevelDAGMultiplePath

CARMTwolevelDAGMultiplePath - 
NaiveTwolevelDAGMultiplePath

a. CARMAlllevelDAGMultiplePath < NaiveAlllevelDAGMultiplePath
b. CARMAlllevelDAGMultiplePath > NaiveAlllevelDAGMultiplePath

CARMAlllevelDAGMultiplePath - 
NaiveAlllevelDAGMultiplePath

CARMTwolevelDAGMultiplePath - 
NaiveTwolevelDAGMultiplePath

Z -2.199b -2.429b

Asymp. Sig. (2-tailed) .028 .015

Test Statisticsa

a. Wilcoxon Signed Ranks Test
b. Based on positive ranks.

Figure 8.16: Results of Wilcoxon test used to compare Naive Bayes and CARM
classification with respect to: (i) All-level, and (ii) Two-level DAG multiple path model



Chapter 8. Final Evaluation 179

Friedman	  Test	  

Mean Rank
RootedDAGMultiPathWithNAP 2.04
RootedDAGMultiPathWithBIP 1.92
RootedDAGMultiPathWithVoting 2.04

Ranks

N 12
Chi-Square .353
df 2
Asymp. Sig. .838

Test Statisticsa

a. Friedman Test

Figure 8.17: Results of Fridman test used to compare the operation of the three
alternative mechanisms used to arrive at a final classification when using the proposed
Multiple Path strategies: (i) Voting, (ii) BIP, and (iii) NAP with respect to Naive Bayes

classification and the rooted DAG approach

8.4.3 Comparison between Single and Multiple Path Strategies using

the DAG Classification Models

Recall from Chapters 5 and 6 (and from the foregoing sections) that Naive Bayes classifi-

cation is the most effective classification to be employed when generating the DAGs, this

section presents a statistical comparison between the Single and Multiple Path strategies

with respect to Naive Bayes classification only.

Commencing with a comparison of the Single and Multiple Path strategies with

respect to the rooted DAG model, Section 5.4.3 demonstrated that following more than

one path within the rooted DAG classification model produced a better classification

effectiveness with respect to some of the considered data sets. Figure 8.18 presents the

results obtained from a Wilcoxon test. The reported results show that there was no

statistically significant difference in operation between the two strategies with respect

to rooted DAG model, z = -0.447, and p = 0.655.

Regarding the comparison of the Single and Multiple Path strategies with respect

the All-level DAG model, Section 6.4.3 reported that using the Multiple Path strategy

a better classification accuracy could be obtained than when the Single Path strategy

was adopted. Figure 8.19 presents the results of the Wilcoxon test. According to this

test there was again no statistically significant difference in operation between the two

strategies with respect to the All-level DAG model, z = -1.089, and p = 0.276.

With respect to the statistical comparison between the Single and Multiple Path

strategies in context of the Two-level DAG, Section 6.4.3 demonstrated that using the

Multiple Path strategy a better classification accuracy could be obtained with respect to

at least some of the considered data sets. Figure 8.20 presents the Wilcoxon test results.

According to the figure there was also no statistically significant difference in operation
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Wilcoxon	  Signed	  Ranks	  Test	  
	  	  	  

N
Mean 
Rank

Sum of 
Ranks

Negative 1a 1.00 1.00
Positive 1b 2.00 2.00
Ties 10c

Total 12

Ranks

rootedDAGMultiplePathStrategy - 
rootedDAGSinglePathStrategy

a. rootedDAGMultiplePathStrategy < rootedDAGSinglePathStrategy
b. rootedDAGMultiplePathStrategy > rootedDAGSinglePathStrategy
c. rootedDAGMultiplePathStrategy = rootedDAGSinglePathStrategy

rootedDAGMultiplePathStrategy - 
rootedDAGSinglePathStrategy

Z -.447b

Asymp. Sig. (2-tailed) .655

Test Statisticsa

a. Wilcoxon Signed Ranks Test
b. Based on negative ranks.

Figure 8.18: Results of Wilcoxon test used to compare the Single and Multiple Path
strategies with respect to Naive Bayes classification and the rooted DAG model

Wilcoxon	  Signed	  Ranks	  Test	  
	  	  	  

AlllevelDAGMultiplePath - 
AlllevelDAGSinglePath

Z -1.089b

Asymp. Sig. (2-tailed) .276

Test Statisticsa

a. Wilcoxon Signed Ranks Test
b. Based on negative ranks.

N
Mean 
Rank

Sum of 
Ranks

Negative 1a 3.50 3.50
Positive 4b 2.88 11.50
Ties 5c

Total 10

Ranks

AlllevelDAGMultiplePath - 
AlllevelDAGSinglePath

a. AlllevelDAGMultiplePath < AlllevelDAGSinglePath
b. AlllevelDAGMultiplePath > AlllevelDAGSinglePath
c. AlllevelDAGMultiplePath = AlllevelDAGSinglePath

Figure 8.19: Results of Wilcoxon test used to compare the Single and Multiple Path
strategies with respect to Naive Bayes classification and the All-level DAG model
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between the two strategies with respect to the Two-level DAG model, z = -0.184, and

p = 0.854.

Wilcoxon	  Signed	  Ranks	  Test	  
	  	  	  

TwolevelDAGMultiplePath - 
TwolevelDAGSinglePath

Z -.184b

Asymp. Sig. (2-tailed) .854

Test Statisticsa

a. Wilcoxon Signed Ranks Test
b. Based on negative ranks.

N
Mean 
Rank

Sum of 
Ranks

Negative 2a 2.25 4.50
Positive 2b 2.75 5.50
Ties 8c

Total 12

Ranks

TwolevelDAGMultiplePath - 
TwolevelDAGSinglePath

a. TwolevelDAGMultiplePath < TwolevelDAGSinglePath
b. TwolevelDAGMultiplePath > TwolevelDAGSinglePath
c. TwolevelDAGMultiplePath = TwolevelDAGSinglePath

Figure 8.20: Results of Wilcoxon test used to compare the Single and Multiple Path
strategies with respect to Naive Bayes classification and the Two-level DAG model

In the case of the comparison between the Single and Multiple Path strategies in

context of Max-level DAG, Section 7.4.3 concluded that following multiple paths within

the Max-level DAG tended to produce a better classification effectiveness, than when

following only single paths. Figure 8.21 presents the obtained Wilcoxon test results.

According to results there was also no statistically significant operational difference

between the two strategies with respect to the Max-level DAG model, z = -0.318, and

p = 0.750.

Finally, when comparing the Single and Multiple Path strategies in context of Min-

level DAG the Wilcoxon test results shown in Figure 8.22 were obtained. From the

figure it can be seen that again there was no statistically significant difference between

the two strategies, z = -0.813, and p = 0.416. Recall that Section 7.4.3 demonstrated

that following multiple paths within the Min-level DAG produced a better classification

effectiveness with respect to some of the considered data sets.

From the foregoing we can confirm that, unlike in the case of the Binary Tree hierar-

chical classification model, following multiple paths within the DAG classification model

did not produce a statistically significant difference in classification effectiveness than

when following only a single path. The reason for this is that the combination technique

used to distribute classes between nodes in the DAG resulted in well-defined class la-

bels at each DAG node, unlike in the case where clustering algorithms were used with
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Wilcoxon	  Signed	  Ranks	  Test	  
	  	  	  

N
Mean 
Rank

Sum of 
Ranks

Negative 2a 4.50 9.00
Positive 4b 3.00 12.00
Ties 4c

Total 10

Ranks

MaxlevelDAGMultiplePath - 
MaxlevelDAGSinglePath

a. MaxlevelDAGMultiplePath < MaxlevelDAGSinglePath
b. MaxlevelDAGMultiplePath > MaxlevelDAGSinglePath
c. MaxlevelDAGMultiplePath = MaxlevelDAGSinglePath

MaxlevelDAGMultiplePath - 
MaxlevelDAGSinglePath

Z -.318b

Asymp. Sig. (2-tailed) .750

Test Statisticsa

a. Wilcoxon Signed Ranks Test
b. Based on negative ranks.

Figure 8.21: Results of Wilcoxon test used to compare the Single and Multiple Path
strategies with respect to Naive Bayes classification and the Max-level DAG model

Wilcoxon	  Signed	  Ranks	  Test	  
	  	  	  

N
Mean 
Rank

Sum of 
Ranks

Negative 2a 2.25 4.50
Positive 3b 3.50 10.50
Ties 7c

Total 12

Ranks

MinlevelDAGMultiplePath - 
MinlevelDAGSinglePath

a. MinlevelDAGMultiplePath < MinlevelDAGSinglePath
b. MinlevelDAGMultiplePath > MinlevelDAGSinglePath
c. MinlevelDAGMultiplePath = MinlevelDAGSinglePath

MinlevelDAGMultiplePath - 
MinlevelDAGSinglePath

Z -.813b

Asymp. Sig. (2-tailed) .416

Test Statisticsa

a. Wilcoxon Signed Ranks Test
b. Based on negative ranks.

Figure 8.22: Results of Wilcoxon test used to compare the Single and Multiple Path
strategies with respect to Naive Bayes classification and the Min-level DAG model
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respect to the Binary Tree hierarchical classification model; consequently the number of

miss-classifications is less and the effect of following multiple paths within the DAG is

not highly significant.

8.4.4 Comparison Between the Different DAG Models

This section presents a comparison between the different DAG models considered in this

thesis: (i) Rooted DAG, (ii) All-level DAG, (iii) Two-level DAG, (iv) Max-level DAG,

and (v) Min-level DAG (recall that the last four can be grouped under the heading

“non-rooted” DAG). The objective of the comparison reported on in this section was to

determine the most effective DAG structure. Again only Naive Bayes classification was

considered with respect to the classifiers held at the DAG nodes for reasons given earlier

in this chapter.

Commencing with the statistical comparing for all the different DAG models when

using the Single Path strategy the Friedman test results are presented in Figure 8.23.

From the figure it can be seen that there was no statistically significant operational

difference between the different models (X2(2) = 2.015, p = 0.733) in terms of classifica-

tion effectiveness. Similarly, with respect to the statistical comparison of the considered

DAG models with respect to the Multiple Path strategy the Friedman test results are

given in Figure 8.24. From the figure it can again be seen that there was no statistically

significant difference between the different considered models (X2(2) = 3.848, p = 0.427)

in terms of classification effectiveness.

Friedman	  Test	  

Mean Rank
RootedDAGSinglePath 2.75
AllLevelDAGSinglePath 2.65
TwoLevelDAGSinglePath 3.05
MaxLevelDAGSinglePath 3.30
MinLevelDAGSinglePath 3.25

Ranks

N 10
Chi-Square 2.015
df 4
Asymp. Sig. .733

Test Statisticsa

a. Friedman Test

Figure 8.23: Results of Friedman test used to compare the different DAG models
with respect to the Single Path strategy

Thus we can conclude that the operation of the considered DAG models are not

statistically different, regardless of the adopted strategy (Single or Multiple Path). Al-

though it should be recalled that the Min-level DAG is the most efficient.
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Friedman	  Test	  

Mean Rank
RootedDAGMultiplePath 2.85
AllLevelDAGMultiplePath 2.85
TwoLevelDAGMultiplePath 2.50
MaxLevelDAGMultiplePath 3.50
MinLevelDAGMultiplePath 3.30

Ranks

N 10
Chi-Square 3.848
df 4
Asymp. Sig. .427

Test Statisticsa

a. Friedman Test

Figure 8.24: Results of Friedman test used to compare the different DAG models
with respect to the Multiple Path strategy

8.5 Comparison Between DAG Based Hierarchical Classi-

fication and Binary Tree Based Hierarchical Classifi-

cation

This section presents a comparison between the two main models of hierarchical classi-

fication proposed in this thesis, the Binary Tree and DAG models, with respect to both

the Single and Multiple Path strategies. With respect to the Binary Tree model Naive

Bayes classification and data splitting was adopted for this purpose. While regarding the

DAG classification model a Min-level DAG generated using Naive Bayes classifiers was

adopted. The reason behind selecting these variations was that it had been previously

established (Sections 4.4.2 and 7.4.4) that they generated the best results with respect

to each structure (even if the improvement was not considered statistically significant

when compared to other variations). In addition these variations were the most efficient

with respect to each structure.

This section commences by presenting a general comparison between the two models

with respect to the Single and Multiple Path strategies; note that such a comparison has

not been presented in the previous chapters. This is then followed by a more in depth

comparison using the statistical tests adopted with respect to the statistical evaluations

presented earlier in this chapter.

Table 8.1 presents the results obtained in terms of average accuracy and average AUC

(best results highlighted in bold font). From the table it can be clearly observed that

the DAG classification model (using either the Single or the Multiple Path strategies)

outperformed the Binary Tree hierarchical classification model for most of the datasets
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considered in the evaluation, especially datasets that featured large numbers of class

labels such as: Led, Pen Digits, Soybean, and Letter Recognition.

Table 8.1: Average Accuracy and AUC values obtained using the Binary Tree classi-
fication model and the Min-level DAG classification model

Data set
Single Path Multiple Path

Binary Tree DAG Binary Tree DAG
(σ = 0.1× 10−6) (σ = 0.1× 10−4)

Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Nursery 90.12 0.44 91.44 0.54 89.09 0.58 90.02 0.58
Heart 57.70 0.41 59.91 0.40 53.77 0.36 59.64 0.40

PageBlocks 91.96 0.34 92.02 0.49 91.27 0.48 92.05 0.47
Dermatology 79.80 0.79 86.09 0.84 84.60 0.84 85.51 0.84

Glass 63.94 0.43 57.58 0.48 55.28 0.51 57.18 0.49
Zoo 93.18 0.59 93.18 0.59 92.18 0.58 93.18 0.59
Ecoli 82.31 0.36 82.40 0.40 64.15 0.27 80.89 0.39
Led 60.16 0.60 75.75 0.76 61.13 0.61 75.66 0.76

PenDigits 68.56 0.68 83.84 0.84 81.18 0.81 83.84 0.84
Soybean 79.55 0.81 90.04 0.92 83.71 0.83 90.04 0.92

ChessKRVK 35.18 0.27 34.58 0.33 33.88 0.37 35.36 0.36
LetRecog 39.16 0.39 55.85 0.56 53.44 0.53 55.84 0.56

Mean 70.14 0.51 75.22 0.60 70.31 0.56 74.93 0.60

The results obtained with respect to an associated set of run-time experiments are

presented in Table 8.2. From the table it can be observed that the lowest generation

and classification times were obtained when using the binary tree model; this is to be

expected as it is a much less complex structure than the DAG structure. Note that the

data splitting segmentation technique was used here; using either k-means clustering or

divisive hierarchical clustering would result in higher generation times as demonstrated

by the experiments reported on in Chapter 4.

With respect to the statistical significance comparison between the two models, Bi-

nary Tree and DAG, to conduct a fair comparison we first compared the two models

with respect to the Single Path Strategy and then with respect to the Multiple Path

strategy. Regarding the comparison of the two models with respect to the Single Path

strategy the Wilcoxon test results are presented in Figure 8.25. From the figure it can

be seen that, there was a statistically significant performance difference between the two

classification models, the DAG classification model was significantly more effective than

the Binary Tree hierarchical classification model; z = -2.848 and p = 0.004 (p < 0.05).

In context of comparing the two models with respect to the Multiple Path strategy

Figure 8.26 presents the results obtained from a Wilcoxon test. From the figure it can

be seen that, as before, there was a significant difference in performance between the

two models, the DAG model was again found to be significantly more effective than the

Binary Tree model; z = -1.994 and p = 0.046 (p < 0.05).

From the above it can be thus concluded that the DAG model is a better hierarchical

classification model when compared to the Binary Tree model, regardless of whether the
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Table 8.2: Run time results (in seconds) obtained using the Binary Tree hierarchical
model and the Min-level DAG classification model

Data set
Generation Single Path Strategy Multiple Path Strategy

Time Classification Time Classification Time
BinaryTree DAG BinaryTree DAG BinaryTree DAG

Nursery 1.048 3.142 0.008 0.010 0.576 0.625
Heart 0.229 0.245 0.001 0.001 0.020 0.016

PageBlocks 0.741 1.408 0.005 0.003 0.266 0.261
Dermatology 0.218 0.288 0.000 0.001 0.021 0.019

Glass 0.197 0.261 0.001 0.001 0.011 0.013
Zoo 0.127 0.221 0.001 0.001 0.017 0.007
Ecoli 0.197 0.342 0.001 0.001 0.024 0.019
Led 0.530 1.097 0.003 0.022 0.153 0.163

PenDigits 1.138 4.508 0.014 0.047 0.507 0.526
Soybean 0.362 1.467 0.001 0.025 0.047 0.057

ChessKRvK 1.555 70.401 0.022 0.469 1.254 1.881
LetterRecog 1.481 76.011 0.018 3.400 0.909 4.321

Mean 0.652 13.283 0.006 0.332 0.317 0.659

Wilcoxon	  Signed	  Ranks	  Test	  
	  	  	  

DAGSinglePath - 
BinaryTreeSinglePath

Z -2.848b

Asymp. Sig. (2-tailed) .004

Test Statisticsa

a. Wilcoxon Signed Ranks Test
b. Based on negative ranks.

N
Mean 
Rank

Sum of 
Ranks

Negative 1a 1.00 1.00
Positive 10b 6.50 65.00
Ties 1c

Total 12

Ranks

DAGSinglePath - 
BinaryTreeSinglePath

a. DAGSinglePath < BinaryTreeSinglePath
b. DAGSinglePath > BinaryTreeSinglePath
c. DAGSinglePath = BinaryTreeSinglePath

Figure 8.25: Results of the Wilcoxon test used to compare the Binary Tree hierar-
chical classification Model and the DAG classification model with respect to the Single

Path strategy

Single or Multiple Path strategy is adopted. The suggested reason for this is that the

DAG model provides for greater flexibility than in the case of the binary tree model,

because of the overlap between class groups represented by nodes at the same level in the

hierarchy. The consequence of this is that the overlap partly mitigates against the early
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Wilcoxon	  Signed	  Ranks	  Test	  
	  	  	  

N
Mean 
Rank

Sum of 
Ranks

Negative 3a 2.67 8.00
Positive 7b 6.71 47.00
Ties 2c

Total 12

Ranks

DAGMultiplePath - 
BinaryTreeMultiplePath

a. DAGMultiplePath < BinaryTreeMultiplePath
b. DAGMultiplePath > BinaryTreeMultiplePath
c. DAGMultiplePath = BinaryTreeMultiplePath

DAGMultiplePath - 
BinaryTreeMultiplePath

Z -1.994b

Asymp. Sig. (2-tailed) .046

Test Statisticsa

a. Wilcoxon Signed Ranks Test
b. Based on negative ranks.

Figure 8.26: Results of the Wilcoxon test used to compare the Binary Tree hierarchi-
cal classification Model and the DAG classification model with respect to the Multiple

Path strategy

miss-classification issue. In addition, pruning the weak classifiers from the DAG model

results in a better classification accuracy than in the case of the binary tree structure

where all the classifiers were used.

8.6 Comparison Between the Hierarchical Classification

Model and Conventional Ensemble Classification Mod-

els

In this section a comparison between the Min-level DAG classification model, shown

in the foregoing to be more effective than the Binary Tree model, and a number of

conventional classification models is presented. As before Naive Bayes classification

was used for the comparison. Consequently stand alone Naive Bayes classification and

Bagging of Naive Bayes classifiers were the conventional classification models adopted.

In addition, a “non-consistent” comparison between the Naive Bayes based Min-level

DAG model and OVO SVM was conducted. The objective of this last comparison was

to compare the suggested model with one of the state of the art methods for multi-class

classification. For the comparison the Multiple Path strategy was used through out (see

previous discussion presented in Section 8.4.3).
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Commencing with the comparison between the Naive Bayes based DAG, stand-alone

Naive Bayes classification, and Bagging of Naive Bayes classifiers the Friedman test re-

sults are presented in Figure 8.27. The results demonstrate that there was no statistically

significant difference between the three considered classifiers (X2(2) = 0.359, p = 0.836);

although the DAG classification model improved the classification effectiveness for some

of the considered datasets.

Friedman	  Test	  

Mean Rank
NaiveBayes 2.04
Bagging 1.88
DAG 2.08

Ranks

N 12
Chi-Square .359
df 2
Asymp. Sig. .836

Test Statisticsa

a. Friedman Test

Figure 8.27: Results of Friedman test used to compare the DAG classification model,
stand-alone Naive Bayes classification and Bagging classification

Regarding the comparison between the DAG classification model and the OVO SVM

Figure 8.28 presents the Wilcoxon test results. According to Wilcoxon signed rank test,

there was again no statistically significant difference in performance between the two

classifiers; z = -0.847 and p = 0.397.

From the above we can conclude that the DAG classification model does not sta-

tistically outperform the conventional methods for multi-class classification. However,

it has a comparable classification effectiveness compared to Naive Bayes, Bagging, and

OVO SVM.

8.7 Summary

A precise and comprehensive statistical comparison between the different hierarchical

ensemble classification structures, strategies, techniques, and mechanisms considered in

this thesis has been presented in this chapter. The Wilcoxon signed ranks test was used

for comparing two classifiers; while the Friedman test, with a Nemenyi post-hoc test,

was used for comparing several classifiers (more than two). The conducted statistical

comparisons were organised as follows:

Binary Tree hierarchical classification model comparisons. The comparisons in-

cluded comparing: (i) the usage of different classifier (Decision tree, Naive Bayes,



Chapter 8. Final Evaluation 189

Wilcoxon	  Signed	  Ranks	  Test	  
	  	  	  

N
Mean 
Rank

Sum of 
Ranks

Negative 5a 4.70 23.50
Positive 6b 7.08 42.50
Ties 1c

Total 12

Ranks

OVOSVM - 
NaiveBayesDAG

a. OVOSVM < NaiveBayesDAG
b. OVOSVM > NaiveBayesDAG
c. OVOSVM = NaiveBayesDAG

OVOSVM - 
NaiveBayesDAG

Z -.847b

Asymp. Sig. (2-tailed) .397

Test Statisticsa

a. Wilcoxon Signed Ranks Test
b. Based on negative ranks.

Figure 8.28: Results of Wilcoxon test used to compare the DAG classification Model
and OVO SVM

and CARM) at the tree nodes, (ii) the different data grouping techniques (k-means

clustering, divisive hierarchical clustering and data splitting), (iii) the two classi-

fication strategies (Single and Multiple Path), and (iv) the two alternative mech-

anisms for arriving at a final classification decision with respect to the Multiple

Path strategy (BIP and NAP).

DAG classification model comparisons. The comparisons included comparing: (i)

the usage of different classifiers (Decision tree, Naive Bayes, and CARM) at the

DAG nodes, (ii) the different DAG approaches (Rooted DAG, All-level DAG, Two-

level DAG, Max-level DAG, and Min-level DAG), (iii) the two classification strate-

gies (Single and Multiple Path) and (iv) the two alternative mechanisms for ar-

riving at a final classification decision with respect to the Multiple Path strategy

(Voting and NAP).

DAG based hierarchical classification versus Binary Tree based hierarchical

classification. Statistical comparison of the two models with respect to both the

Single and Multiple Path strategies.

Comparison with more conventional models. Comparison of the proposed DAG

Hierarchical classification model with more conventional ensemble classification

models and stand alone classification.
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As a consequence of the evaluation, and according to the reported statistical test

results, it was demonstrated that:

1. The most effective classifier with which to generate the classifiers held at the nodes

in the case of the Binary Tree hierarchical classification model was found to be

Naive Bayes classification (regardless of whether a Single or Multiple Path strategy

was adopted).

2. Regarding the comparison between the data grouping techniques to generate the

Binary Tree hierarchical classification model, it was found that data splitting and

k-means were more effective than hierarchical clustering regardless of the classifi-

cation strategy adopted (Single or Multiple Path).

3. With respect to the three considered mechanisms for arriving at a final classifi-

cation decision in context of the Multiple Path strategies and the Binary Tree

hierarchical classification model it was demonstrated that the NAP mechanism

significantly outperformed the Voting mechanism. No significant difference was

detected between the BIP and the NAP mechanisms. Thus, assigning weight to

the “candidate classes” tends to be more effective than voting.

4. Following multiple paths within the Binary Tree classification model was sig-

nificantly more effective than following only a single path. In addition it was

demonstrated that the Multiple Path strategy could successfully address the miss-

classification issue (the number of miss-classification was clearly higher when using

a Single Path strategy).

5. The most effective classifier, to generate the DAG classification model, was found

to be Naive Bayes classification regardless of the adopted classification strategy

(Single or Multiple Path) or even the adopted DAG approach.

6. Regarding the comparison between the different mechanisms for arriving at a final

classification decision (Voting, BIP and NAP) when following multiple paths within

the DAG, it was found that there was no significant difference in performance

between the three mechanisms.

7. Unlike in the case of the Binary Tree hierarchical classification model, following

multiple paths within the DAG classification model was found to be not signifi-

cantly more effective than when following only a single path. The reason for this

was argued to be that the combination techniques used to distribute classes be-

tween nodes resulted in well-defined class labels at each DAG node, unlike the

clustering algorithms that were used with respect to the Binary Tree model; con-

sequently the miss-classification was less and the effect of following multiple paths

within the DAG was not highly significant.
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8. Although there was a differences in the effectiveness among the considered DAG

approaches, these differences were not found to be statistically significant, regard-

less of the adopted classification strategy (Single or Multiple Path) according to

the Friedman statistical tests conducted.

9. According to the conducted statistical tests, usage of the DAG structure was found

to be more effective with respect to the generation of the hierarchical classification

model than the Binary Tree structure, regardless of the adopted classification

strategy (Single or Multiple Path).

10. With respect to the comparison between Stand-alone classification, Bagging and

DAG classification, although the DAG classification model improved the classifi-

cation effectiveness for some of the considered datasets, the obtained improvement

with respect to all of the considered datasets was not found to be statistically

significant according to the Friedman tests conducted.

11. Regarding the comparison between the DAG classification model and OVO SVM,

the reported results from statistical test demonstrated that there was no statisti-

cally significant difference between them. However, and as reported in Chapter 7,

it seems that OVO SVM is more effective than the DAG classification model for

some datasets that feature large numbers of class labels such as Chess KRvK and

Letter Recognition.

12. Finally, we can conclude that the DAG classification model does not significantly

outperform the conventional methods for multi-class classification. However, it

has a comparable classification effectiveness with respect to these well-established

conventional methods such as stand alone Naive Bayes classification, Bagging and

OVO SVM.

The statistical tests reported on in this chapter demonstrated that there was no

statistically significant difference in operation between the DAG classification model

and OVO SVM (as noted above OVO SVM outperformed the DAG model with respect

to the Chess KRvK and Letter Recognition data sets). It was therefore suggested

that a combination of both models (OVO SVM and DAG) might be appropriate. The

expectation is that such a model will improve the classification effectiveness. However,

because of the processing power required, this OVO SVM based DAG model can only

be realised if it is implemented using some form of distributed or parallel computing.

This possibility is thus considered in further detail in the next chapter.



Chapter 9

Utilising Parallel Computing to

Generate the Directed Acyclic

Graph Classification Model

9.1 Introduction

One of the limiting factors of the hierarchical ensemble classification methods considered

in the forgoing chapters is the computing resource required to generate the hierarchies.

One potential solution is to adopt some form of multi-core or parallel computing solution.

It is conjectured that this solution will:

1. Improving the efficiency of the DAG generation process, thus allowing it to be

applied to datasets that feature larger numbers of class labels than have been

considered so far (scalability).

2. Improve the effectiveness of the DAG classification model.

It is suggested that the latter can be realised if a more effective classifiers, in comparison

with those used in the work to date, such as SVM classifiers, are used at each DAG

node. At present “stand-alone” SVM classifiers can not be used in the context of the

DAG model because they are essentially binary classifier. To address this issue OVO

SVM can be used at each DAG node. Consequently, the resulting model will be a form

of ensemble of ensembles which might improve the classification effectiveness [100], but

will require a great deal of processing power. This idea is motivated by the experimental

evidenced presented earlier in this thesis, which indicates that the effectiveness of the

base classifiers significantly affects the overall effectiveness of the proposed hierarchical

ensemble classifiers. Note that using OVO SVM will entail following only a single path

through the hierarchy.

The idea of parallelising the DAG classification model, in the context of future work,

is considered in this chapter. In the earlier chapters a number of alternative DAG

models were considered, the model at which the discussion presented in this chapter

192
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is directed at is the rooted DAG model from Chapter 5. Recall that the rooted DAG

classification model is founded on the idea of arranging the classifiers into a hierarchical

form by utilising a rooted DAG structure where each node in the rooted DAG holds a

classifier. Classifiers at leaves act as binary classifiers while the remaining classifiers (at

the root and intermediate nodes) are directed at groupings of class labels. The rest of

this chapter is organised as follows. Section 9.2 provides a generic overview on parallel

processing and the issues to be considered. While Section 9.3 proposes three approaches

for utilising parallel processing to generate and operate the suggested DAG classification

model: (i) assigning each DAG node to a process, (ii) assigning each DAG level to a

process, and (iii) assigning each DAG level to a group of processes. Finally, a summary

of the chapter is presented in Section 9.4.

9.2 Overview of Parallel Computing

This section provides a generic overview of the parallel processing so as to provide some

background. The section is organised as follows: (i) sub-Section 9.2.1 defines parallel

processing, (ii) sub-Section 9.2.2 presents the most popular categorisation of parallel

architectures, (iii) sub-Section 9.2.3 presents a summarisation of the available parallel

programming paradigms and (iv) sub-Section 9.2.4 briefly considers the most commonly

used parallel programming language.

9.2.1 Definition

Parallel processing or parallel computing refers to the usage of multiple processing el-

ements to work together on some common computational problem [98]. The idea is to

divide a complex problem into a set of sub-problems that can be solved concurrently.

Each sub-problem is assigned to a processing element. Consequently the sub-problem

processes can be executed simultaneously. Not all computational problems are suited

to parallel processing; for parallel processing to be an option the problem under con-

sideration should be: (i) able to be divided into independent parts that can be solved

concurrently, and (ii) solved in less time using multiple processors than when using a

single processor [6]. The processors are commonly hosted in the same computer, alter-

natively a network of several computers, clusters can also be used.

9.2.2 Categorisation of Parallel Architecture

From the literature a number of categorisations have been proposed to differentiate

parallel architectures. The most widely referenced classification is Flynn’s Taxonomy

[33]. Flynn’s categorisation is founded on two factors: (i) the nature of the instruction

stream, and (ii) the nature of the data stream. According to Flynn, four categories of

parallel architectures can be identified:
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1. Single Instruction, Single Data (SISD). This category refers to conventional

non-parallel “sequential” computers.

2. Single Instruction, Multiple Data (SIMD). All the processing units execute

the same instruction set, but on different portions of the data simultaneously. This

kind of parallel architecture is suitable for problems that feature a high degree of

regularity, such as image processing [6].

3. Multiple Instruction, Single Data (MISD). Each processing unit performs

a different instruction set, but on the same data. This kind of parallel computer

is uncommon. Although some researchers claimed that this kind of parallel archi-

tecture does not exist [85]; a suggestion example of this kind of architecture is the

space shuttle flight control computer [101].

4. Multiple Instruction, Multiple Data (MIMD). Each processing unit per-

forms a different instruction set on a different portion of the data. This kind of

parallel computer is the most widely used.

Another well-known categorisation for parallel computers is based on the memory

structure [6, 85]. According to this classification three main categories can be identified:

1. Shared Memory. All processing units can access a shared memory location

(“global memory”), and apply changes to the data, these changes will be visible

to the remaining processing units.

2. Distributed Memory. Each processing unit has its own memory. In this context

two forms of distributed memory architecture can be identified: (i) master-slave, in

which one process, the master process, is responsible for task distribution while the

remaining processes, the slave processes (workers), work in parallel to accomplish

the assigned tasks: and (ii) peer-to-peer, in which all processes have the same

capabilities.

3. Hybrid “Distributed-Shared” Memory. This form of parallel architecture

seeks to gain the advantages of both shared and distributed memory.

9.2.3 Parallel Programming Paradigms

The first step in parallel programming is to understand the problem to be solved using a

parallel approach. After the problem has been well understood the next step is the de-

composition/partitioning step, where the problem is split into parts that can be processed

concurrently. Two main methods to obtain the desired partitions have been proposed:

(i) domain (data) partitioning, and (ii) functional partitioning. Another important is-

sue to be considered is the communication requirement, namely: (i) which tasks need

to communicate with which other tasks, (ii) the type of communication (Synchronous1

1Synchronous (blocking) communication “other work can be done while communication is taking
place” [6].
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versus Asynchronous2) and (iii) the scope of the communication (point-to-point versus

collective3). In addition to the previous issues, data dependencies, data balancing and

granularity (computation/communication ratio) should be taken into consideration.

Many parallel programming paradigms are available to support the realisation of

parallel programming solutions. The most commonly used paradigms are summarised

are as follows [15]:

1. Master/Slave (task farming). In this paradigm the master process decom-

poses the problem into small parts and distributes them to the remaining slave

processes (workers). Assigning tasks to the slave processes can be performed once

or in acyclic manner. Additionally, the master process is responsible for gather-

ing results from slave processes. Note here that after the master process sends

the tasks to slave processes, it can temporarily go on to behave as an additional

worker process. The communication always occurs between master and slaves (not

between slaves).

2. Single Program Multiple Data (SPMD). This paradigm is also referred to

as: geometric parallelism, domain decomposition and data parallelism. In this

paradigm each process performs the same instruction set (code) on different por-

tions of the data. The data can be either: (i) generated by each process, or (ii)

read from disk during the initialisation stage [15]. Communication occurs between

processes.

3. Data Pipelining (data flow). This paradigm is fundamentally based on func-

tional decomposition concept in which the program is split into parts that can be

processed simultaneously. Each part (task) is assigned to a process. Because the

processes are organised in a pipeline, the communication can be viewed as a data

flow between the processes.

4. Divide and Conquer. This paradigm involves three main elements: (i) divide,

(ii) calculate and (iii) join. This paradigm can be viewed as a tree, where the

root of the tree is main problem that is divided into a number of independent

sub-problems that can be handled simultaneously (the first level in the tree), each

of these sub-problems is split further into sub-problems (the next level in the tree),

and so on. It is interesting to note here that the difference between this paradigm

and the master/slave paradigm is that in the master/slave relationship only the

master process is responsible for dividing and distributing the tasks, while in the

divide and conquer paradigm any process can generate sub-problems, assign them

to a set of processes and collect their results (dynamic operation).

2Asynchronous (non-blocking) communication “other work must wait until the communications have
completed” [6].

3In point-to-point communication only two tasks communicating together, one as sender and the an-
other as receiver. While in collective communication the communication occurs among a set of processes.
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5. Speculative Parallelism. For complex programs that feature a high degree of

data dependency, it is difficult to identify how to decompose the problem into

sub-problems in an effective manner. In this case one suggested solution is to try

what is called “speculative execution of the problem”. More specifically, different

solutions of the same problem can be tried concurrently, and the one that generate

the best performance selected (in general this will be the one that features the

shortest execution time).

6. Hybrid Models. This paradigm, as the name suggests, combines features from

different paradigms. An example of this paradigm is to use domain (data) and

functional decomposition to construct tasks.

It is interesting to mention here that:

1. “There is no best model” [6], choosing a parallel programming model depends on

the problem, application domain and programmer preference.

2. The above programming models can be applied on any parallel architecture [6].

However, it has been suggested by some practitioners that the availability of re-

sources is one of the factors that affects the choice of the parallel programming

paradigm [15].

9.2.4 Parallel Programming Languages

Regarding the programming languages typically used for parallel programming, there

are several available options. There are some dedicated languages but these tend to be

unpopular, the reason being that programmers typically resist learning a completely new

language so as to achiever parallel programming [15]. The much more popular option

is to use an extension to an existing programming languages. Message passing libraries

are the most commonly used mechanism for parallel programs. MPI (Message Passing

Interface) is arguably the most well-known and highly used message passing library

[40, 89]. MPI is essentially a standard for message passing, implementations exist in a

wide variety of popular programming languages such as C, C++, Fortran, and Java.

9.3 Utalising Parallel Processing to Generate and Operate

the DAG Classification Model

Having established some appropriate background in the foregoing section this section

discuss the parallelisation of the proposed DAG classification model. Three solutions

are suggested: (i) assigning each DAG node to a process, (ii) assigning each DAG level

to a process, and (iii) assigning each DAG level to a group of processes. Note that the

master/slave paradigm, with message passing, was adopted. The reasons behind the

selection of this model were as follows:
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1. The similarity between this model and rooted DAG topology.

2. The parallelism is very clear and explicit using the master/slave paradigm and the

message passing model.

3. The combination calculation can be simply performed by the master process and

then the tasks can be assigned to all other processes.

4. The necessity of a single master process to coordinate the classification stage.

5. The existence of a master process which coordinates the overall process is desirable;

no processes will be lost as in in the case of SPMD for example.

Each of the parallelisations is considered in the following three sub-sections. In each

case the weakness associated with the parallelisation is discussed.

9.3.1 Assigning Each DAG Node to a Process

In the first suggested approach to parallelising the DAG classification problem each

DAG node is assigned to a process. All class label combinations and all data portions

are calculated by the master process and then distributed to the worker processes. Each

worker process is responsible for creating a DAG node and generating its corresponding

classifier. The master process is also responsible for the coordination of the classification

process.

Algorithm 15 summarises the generation process. The input to the algorithm is a

training data set D and a set of class labels C. The algorithm is divided into two main

parts: a master process part and a worker process part. The master process is responsible

for calculating the class combinations and data portions and sending these portions to

each worker (line 12-18). The master process is also responsible for creating the root

node and generating the corresponding classifier for this node (line 11). Although we

present the preparation of the classes and the data in a sequential way in the algorithm,

the combinations can be prepared and then distributed to all the workers simultaneously.

Each worker process: (i) receives its classes and data portion from the master process

and (ii) creates a DAG node and generates the corresponding classifier.

Algorithm 16 presents the classification process in detail. The input to the algorithm

is a new unseen record, r, to be classified. As noted earlier the master process is

responsible for the coordination of the overall classification process. More specifically, the

classification process commences in the master process where the root DAG node exists.

The root classifier classifies the record r and then broadcasts the initial classification

result (group class) and the record r to all the worker processes once (line 10 and 11).

Then only one of the worker processes will respond to the master and use its node

classifier to classify the record and then send the result to the master (line 19 and 20).

The worker process that will respond to the master is the one that feature the same

classes as the classes sent by the root node (line 18). This process is repeated until the
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Algorithm 15 Rooted DAG Generation Adopting Parallel Processing, First Approach

1: INPUT
2: D = The input training dataset
3: C = The set of Classes featured in D
4: OUTPUT
5: The generated DAG
6:

7: Find out if I am MASTER or WORKER
8: if I am MASTER then
9: k = |C| − 1

10: Ck = Set of size k combinations in C
11: create root node and generate its classifier
12: for i = k to i = 2 do
13: Ck = Set of size k combinations in C
14: for i = 1 to |Ck| do
15: Ti = Set of training records in D that feature Ci (Ti ⊂ D)
16: send Ci (portion of classes), and Ti (portion of dataset) to a WORKER
17: end for
18: end for
19: else (I am WORKER)
20: receive from MASTER my classes Ci

21: receive from MASTER my data portion Ti
22: create node and generate classifier
23: end if

last level in the DAG is arrived at (this on |C| − 2 occasions; the number of levels in the

DAG excluding the root level) where a binary classifier exists, that can then be used to

assign a single class label to the record.

The issues with this approach are: (i) it is not applicable for datasets with large

numbers of class labels, because of the corresponding large number of processors that

will be required, and (ii) during the classification stage messages are sent to all the

processors, not to only a subset of processors that handle a specific level.

9.3.2 Assigning Each DAG Level to a Process

With respect to the second suggested approach, all the DAG nodes at a given level are

assigned to a single process. Thus only |C| − 1 processes will be required. In addition,

during the classification, instead of sending the results to all processes; a message will

be sent to only one process each time (the process responsible for a specific level).

Algorithm 17 summarises the DAG generation process. The algorithm is similar to

algorithm 15. However, instead of sending a single class combination to each process,

the complete set of class combinations that represent a specific DAG level is sent to a

single worker process, as well as the dataset D (line 13-15). The worker process is then

responsible for: (i) receiving the classes combinations, (ii) receiving the dataset D and

(iii) creating a set of DAG nodes (with the corresponding classifiers) that represent the

current level (line 18-22).

Algorithm 20 presents the classification process. As before the input to the algorithm

is a new unseen record, r, to be classified. Again, the master process is responsible for the
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Algorithm 16 Rooted DAG Classification Adopting Parallel Processing, First Ap-
proach

1: INPUT
2: r = A new unseen record
3: OUTPUT
4: The predicted class label c for the input record r
5:

6: Find out if I am MASTER or WORKER
7: if I am MASTER then
8: result = use my classifier to classify r
9: for i = 2 to NumOfLevels do (Note that Number of levels = |C| − 1)

10: send r as collective message to all WORKERS
11: send result as collective message to all WORKERS
12: result = receive a message from a single responded WORKER (node in our DAG)
13: end for
14: c = result
15: else (I am WORKER)
16: receive from MASTER the set of classes (result)
17: receive from MASTER the record r
18: if my classes == result then
19: use my node classifier to classify the record r
20: send result to MASTER
21: end if
22: end if

Algorithm 17 Rooted DAG Generation Adopting Parallel Processing, Second Ap-
proach

1: INPUT
2: D = The input training dataset
3: C = The set of Classes featured in D
4: OUTPUT
5: The generated DAG
6:

7: Find out if I am MASTER or WORKER
8: if I am MASTER then
9: k = |C| − 1

10: Ck = Set of size k combinations in C
11: create root node and generate its classifier
12: for i = k to i = 2 do
13: Ck = Set of size k combinations in C
14: send Ck a WORKER
15: send the dataset to a WORKER
16: end for
17: else (I am WORKER)
18: receive from MASTER set of classes combinations classes Ck

19: for i = 1 to i = |Ck| do
20: Ti = Set of training records in D that feature Ci (Ti ⊂ D)
21: Gi = Classifier for Ci built using training set Ti
22: create node and assign the classifier
23: end for
24: end if
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coordination of the overall classification process. The classification process commences

in the master process where the root DAG node exists. The root classifier, within the

master process, classifies the record r. The master process will then send the initial

classification result (group class), and the record r, to the worker process that handles

the next level in the DAG. The levels in the DAG are assigned to an ordered set of

processes (line 10 and 11). Worker process responsible for the nodes at a specific DAG

level then: (i) receives the initial result (class group) from the master process and the

record r (line 15 and 16), (ii) loops through its nodes (line 17) to find the node that

matches the class group, (iii) uses the classifier at the identified node to classify the

record and (iv) returns the result to the master process (lines 18-20). The process is

repeated until the last level of the DAG is arrived at where a single class label can be

assigned to the record.

Algorithm 18 Rooted DAG Classification Adopting Parallel Processing, Second Ap-
proach

1: INPUT
2: r = A new unseen record
3: OUTPUT
4: The predicted class label c for the input record r
5:

6: Find out if I am MASTER or WORKER
7: if I am MASTER then
8: result = use my classifier to classify r
9: for i = 1 to NumOfWorkers do

10: send r, and result to WORKER associated with rank i
11: result = receive a message from WORKER
12: end for
13: c = result
14: else (I am WORKER)
15: receive from MASTER the set of classes (result)
16: receive from MASTER r
17: for i=1 to numOfNodes do
18: if my classes == result then
19: use my classifier to classify the r
20: send result to MASTER
21: break
22: end if
23: end for
24: end if

Although this second approach dose not require a significant number of processes,

for datasets that feature a very large number of class labels the storage associated with

each processor will not be sufficient to store all DAG nodes corresponding to that level.

A potential solution is presented in the following sub-section.

9.3.3 Assigning Each DAG Level to a Group of Processes

In order to address the issues associated with the first and the second approaches, namely

that dealing with large numbers of classes will still be challenging, an advanced feature of
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MPI, the groups/communicators concept, can be utilised for thus purpose. A group is

an ordered set of processes. Each process in the group is assigned a rank, ranks start at

zero and continue to N−1, where N is the number of processes in the group. A commu-

nicator is a “handler” of a group of processors. Communicators are categorised into two

kinds: (i) inter-communicators, which allow the communication between two or more

groups of processors; and (ii) intra-communicators, which enable communication within

a single group. It is interesting to note here that in MPI1 only Point-to-Point commu-

nication can be established between two groups of processes using inter-communicator.

While in MPI2 the inter-communicators enable a collective communication within two

or more groups of processes [39].

Using the MPI group management and communicator feature the idea is to assign

a subset of level nodes to each process and that these processes will be kept in a single

group. Figure 9.1 presents an example of the group idea. Each level in the DAG model

is represented by a group of processes, each process handles a subset of level nodes.

The advantages offered are: (i) the storage problem (raised with respect to the second

proposed solution) will be resolved because the nodes of each DAG level will be divided

among a set of processes and these processes are identified by a specific group, and

(ii) during the classification stage the message will be passed only to the processes in

a specific level (a processes that belongs to a specific group) not the complete set of

processes.

Classifier	  
(abc)	  (abd)	  (acd)	  (bcd)	  

Classifier	  
(ab)	  (ac)	  (bc)	  

Classifier	  
(a)	  (b)	  

Classifier	  
(a)	  (c)	  

Classifier	  
(b)	  (c)	  

Classifier	  
(a)	  (d)	  

Classifier	  
(b)	  (d)	  

Classifier	  
(c)	  (d)	  

Classifier	  
(ab)	  (ad)	  (bd)	  

Classifier	  
(ac)	  (ad)	  (cd)	  

Classifier	  
(bc)	  (bd)	  (cd)	  

a	   b	   c	   d	  
Group	  
	  
Process	  

Figure 9.1: DAG example with parallel processing application
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Algorithm 19 summarises the generation process. Again the input to the algorithm

is the training data set D and the set of class labels C. The algorithm is divided into two

main parts: a master process and a worker processes. The master process is responsible

for: (i) determining the number of processes to be assigned to each group and (ii)

identifying the combinations of class labels to be represented each level and assigning

these to the process within a specific group. In more detail, the generation process starts

with the creation of the first group, assigning the master process to it and creating the

DAG root node with the associated classifier (lines 10 and 11). The next step is to

calculate how many processes to be assigned to each level Pi (line 12-14). A group is

then created for each level and assigned a specific number of processes Pi (where Pi was

calculated previously (line 14)). After that the master process loops through the groups

and for each group: (i) calculates the class label combinations that should exist in that

group (at that level); (ii) calculates x, the number of combinations to be assigned to

each process in groupi, by dividing the total number of combinations in that level (|Ck|)
by the number of processes in that level (Pi); and (iii) sends x to each process in the

group. Note that, although this process is described in a sequential manner, x can be

sent to all processes in the group at the same time using a rooted collective operation.

The second part of Algorithm 19 describes the process in a group. More specifically,

a process in a group: (i) receives the class combinations and (ii) creates a set of DAG

nodes with the corresponding classifiers (lines 28-32).

It is interesting to note here that the number of processes (Pi) to be assigned to

each group can be calculated simply by dividing the number of available processes by

the number of groups (number of levels). However, it is more efficient to assign more

processes to the intermediate levels, where more DAG nodes exist.

Algorithm 20 presents the associated classification process. The input to the algo-

rithm is a new unseen record, r, to be classified. The classification process commences

with the master process; the root group where the root DAG node exists. The root

classifier classifies the record r (line 8. Then we go through the remaining groups: (i)

send the record r and the class group resulting from previous level (previous group)

result to each process in the current group (line 10) and (ii) receive a result from the

appropriate process in the group (line 11). The process continues until the last group

(level of the DAG) is arrived at where a single class label can then be assigned to the

record.

The next part of Algorithm 20 then describes the responsibility for a process in a

group. A process in a group: (i) receives the initial result (class group) from the master

process and the record r (line 15), (ii) loops through its nodes (line 16) to find a match

for the class, (iii) use the identified classifier to classify the record (lines 17 and 18) and

(iv) return the result to the master (line19).

Note here that alternatively we can send the message, the record to be classified

and initial classification result (class group), from one process in a level to another
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Algorithm 19 Rooted DAG Generation Adopting Parallel Processing, Third Approach

1: INPUT
2: D = The input training dataset
3: C = The set of Classes featured in D
4: OUTPUT
5: The generated DAG
6:

7: IN THE MASTER PROCESS
8: k = |C| − 1
9: Ck = Set of size k combinations in C

10: create group1 and assign the master process to it
11: create the root node with the associated classifier
12: processes = find out the number of processes (number of tasks)
13: find out the number of combinations at each level
14: Pi = number of processes that will be assigned to level i (group i)
15: for i = 2 to |C| − 1 do
16: create groupi
17: assign Pi processes to groupi
18: end for
19: for i = 2 to numOfGroups do
20: Ck = Set of size k combinations in C
21: x = |Ck| / Pi

22: for i = 1 to Pi do
23: send x of Ck to a processi in the groupi
24: end for
25: k −−
26: end for
27: A PROCESS IN A GROUP
28: receive from MASTER set of classes combinations Ck

29: for i = 1 to i = |Ck| do
30: Ti = Set of training records in D that feature Ci (Ti ⊂ D)
31: Gi = Classifier for Ci built using training set Ti
32: create node and assign the classifier
33: end for

process in the next level (point-to-point communication), the destination process can

then broadcast it to all processes within the same group (same level).

9.4 Summary

This chapter, in the context of future work, has consider how parallel computing can

be used to generate the rooted DAG hierarchical classification model that has been

presented in Chapter 5. The advantages that are expected to be obtained from adopting

parallel processing for the DAG classification model are: (i) improving the efficiency of

the DAG model so that the model can be applied to datasets that feature large number

of class labels (scalability) than have been considered so far; and (ii) improving the

effectiveness of the DAG classification model so that a high performance classifier, such

as OVO SVM, can be used at each DAG node. The master/slave paradigm with

message passing was suggested, together with three different approaches for utilising

parallel processing to obtain the DAG classification model:
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Algorithm 20 Rooted DAG Classification Adopting Parallel Processing, Third Ap-
proach

1: INPUT
2: r = A new unseen record
3: OUTPUT
4: The predicted class label c for the input record r
5:

6: IN THE MASTER PROCESS (assigned to the root group)
7: i = 1, i is the group number
8: result = use groupi process classifier to classify r
9: for i = 2 to NumOfGroups do

10: send the record r, and result to all processes in group i
11: result = receive result from a process
12: end for
13: c = result
14: A PROCESS IN A GROUP
15: receive r and result
16: for i=1 to numOFDAGnodes do
17: if classes == result then
18: result= classify r
19: send result to root
20: break
21: end if
22: end for

1. Assigning each DAG node to a process. In the first approach each DAG node

is assigned to a process, whilst the class label combinations and data portions are

calculated by the master process and then distributed to the worker processes.

Each worker process is responsible for creating a DAG node and generating its

corresponding classifier. The master process is also responsible for the coordination

of the classification process.

2. Assigning each DAG level to a process. In the second approach the nodes

in a single DAG level are assigned to a single process which will be responsible

for an entire DAG level. During the classification, instead of sending the messages

(results) to all processes intended to handle a classification problem; a message will

be sent to only one process each time (thus the process associated with a specific

level).

3. Assigning each DAG level to a group of processes. In the third approach

each level in the DAG model is represented by a group of processes, each process

handles a subset of the nodes at the given DAG level. During the classification

stage the message (the classification result plus the record to be classified) will

be passed only to the processes in a specific level (a processes that belongs to a

specific group) not to all processes that handle the proposed DAG model.

Considering the: (i) number of processes that will be required, (ii) the communication

between processes, and (iii) the storage associated with each processor, the last approach

seems the most applicable one. The adoption of parallel processing with respect to the
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DAG classification model will be considered in further in the future work section in the

following chapter.



Chapter 10

Conclusion and Future Work

This chapter provides a summary of the research work described in this thesis, the

main findings together with the contributions, and some potential directions for future

work. The rest of this section is organised as follows: Section 10.1 provides a summary

of the work presented while Section 10.2 presents the main findings in the context of

the research question and research issues identified in Chapter 1. Finally, Section 10.3

suggests some possible directions for future work.

10.1 Summary

In this thesis a number of hierarchical ensemble classification models have been proposed

as a solution to the multi-class classification problem. Such model comprises a set base

classifiers held within the nodes of the hierarchy (one classifier per node). Nodes near

the root hold classifiers designed to discriminate between groups of class labels while the

leaves hold classifiers designed to distinguish between individual class labels. Two types

of hierarchy (structures) were considered, Binary Tree (BT) hierarchies and Directed

Acyclic Graph (DAG) hierarchies.

The first structure investigated was the Binary Tree structure. In this context three

different grouping techniques were considered in order to divide data between nodes

during the hierarchy generation process. The grouping techniques were founded on

ideas concerned with clustering and splitting techniques, namely: (i) k-means, (ii) data

splitting and (iii) divisive hierarchical clustering. The use of two different styles of

classifier at each hierarchy node was also considered: (i) single “stand-alone” classi-

fiers and (ii) “bagging” ensemble classifiers. Three alternative classification algorithms

were considered: (i) Decision tree, (ii) Naive Bayes and (iii) Classification Association

Rule Mining (CARM). Two classification strategies were investigated: (i) “Single-Path”

and (ii) “Multiple-Path”. The second strategy was proposed to address the “successive

miss-classification” issue associated with hierarchical classification, that if a record is

miss-classified early on in the classification process (near the root of the hierarchy) it

will continue to be miss-classified at deeper levels. In the case where more than one path

is followed, a number of alternative class labels would result “candidate classes”, three

206
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alternatives for arriving at a final decision were investigated: (i) a voting mechanism; (ii)

selecting the class label associated with the leaf node that features the highest probabil-

ity (confidence), a process referred to as the Best Individual Probability or Confidence

(BIP/BIC) process; and (iii) taking into consideration the probability (confidence) values

identified along the path back to the root node to produce an accumulated value, a pro-

cess referred to as the Normalised Accumulated Probability or Confidence (NAP/NAC)

process.

The second structure investigated was the use of DAGs to generate the desired hier-

archical classification model. Two alternative DAG hierarchical classification structures

were proposed: (i) rooted DAG, and (ii) non-rooted DAG. To generate the DAG classi-

fication model “combination techniques” were utilised to distribute (organise) the class

labels between nodes within the DAG. Again, as in the case of the Binary Tree hier-

archies, three alternative classification algorithms were considered: (i) Decision tree,

(ii) Naive Bayes and (iii) Classification Association Rule Mining (CARM). Two clas-

sification strategies were again considered: (i) “Single-Path” and (ii) “Multiple-Path”

together with, in the later case, the three alternatives for arriving at a final classifica-

tion decision as used with respect to the binary tree structure investigated: (i) Voting,

(ii) BIP/BIC and (iii) NAP/NAC. To enhance the performance (effectiveness, efficiency

and scalability) of the non-rooted DAG models two forms of pruning were considered,

depth and breadth pruning. Consequently, four variations with respect to the non-rooted

DAG were considered in this thesis: (i) All-level, (ii) Two-level, (ii) Max-level and (iv)

Min-level.

In the context of the evaluation, fourteen different data sets (with different numbers

of class labels) were used taken from the UCI machine learning repository [61]. These

were processed using the LUCS-KDD-DN data pre-processing software system [22]. Ten-

fold Cross Validation (TCV) was used throughout. The evaluation measures used were

average accuracy, average AUC (Area Under the receiver operating Curve) [44, 50] and

run time.

The different structures, techniques, mechanisms and approaches presented in this

thesis were compared with each other. The objective was to determine the best mecha-

nisms to generate the desired hierarchical classification model. Moreover, the effective-

ness of the hierarchical ensemble classification model was evaluated by comparing with

more conventional existing models including:

1. A number of “stand alone” classifiers, namely: Naive Bayes, Decision tree and

CARM. The objective was to compare the operation of the proposed model with

the operation of single conventional models. Other forms of single classification

model could have been selected but Naive Bayes, Decision tree and CARM were

chosen because these were also used in the context of the hierarchical models

considered.
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2. A Bagging ensemble, again Naive Bayes, Decision tree, and CARM were used as

the base classifiers. The objective was to compare the operation of the proposed

hierarchical ensemble models with alternative forms of ensembles.

3. A One-Versus-One (OVO) classification mechanism using support vector ma-

chines as the base classifiers. The objectives here were: (i) to compare the pro-

posed model with a classification mechanism founded on the use of a set of binary

classifiers for solving the multi-class classification problems, and (ii) to compare

the suggested model with one of the state of the art methods for multi-class clas-

sification.

To determine whether the results obtained were statistically significant a precise and

comprehensive statistical analysis of the results was conducted using the Wilcoxon signed

ranks test for comparing two classification models, and the Friedman test (coupled with

a Nemenyi post-hoc test where appropriate) for comparing several classification models

(more than two). Interesting results were obtained and these are discussed further in

the next section.

10.2 Main Findings and Contributions

This section presents the main findings from the research work presented in this thesis.

As initially stated in Chapter 1, the main research question to be addressed was:

“What are the most appropriate mechanisms that can be employed to generate effective

hierarchical classification models?”

In order to answer this research question, the resolution of a number of subsidiary

research questions was required. The work described in the thesis addresses each of

these research questions as follows:

1. Is a hierarchical classifier best arranged using a Binary Tree structure,

or is it better to adopt a Directed Acyclic Graph (DAG), to effectively

classify data collections that feature a large number of class labels?

According to the conducted evaluation, presented in Chapter 8, usage of the DAG

structure was found to be significantly more effective with respect to the generation

of the hierarchical classification model than the Binary Tree structure, regardless

of the adopted classification strategy (Single or Multiple Path). The suggested

reason for this is that the DAG model provides for greater flexibility than in the

case of the binary tree model, because of the “well-defined” overlap between class

groups represented by nodes at the same level in the hierarchy. The consequence of

this is that the overlap partly mitigates against the early miss-classification issue.

In addition, pruning the weak classifiers from the DAG model results in a better
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classification accuracy than in the case of the binary tree structure where all the

classifiers were used.

2. How can the nodes in a hierarchical classifier best be connected to

achieve an effective classification? With respect to the structures considered

in this thesis the nodes are connected based on their class labels. More specifically,

with respect to DAG structure, a node is connected to a previous node if its set of

class labels is included in the set of class labels associated with that previous node.

Regarding the BT structure, once one of the adopted data grouping techniques

had divided the classes into two sub-groups, each sub-group was assigned to a new

node. The two new nodes formed a new left and right branchs emanating from

the previous node. Consequently, during the classification stage a path can be

followed according to the classification dictated by the internal nodes (regardless

of whether a BT or DAG structure is adopted).

3. Can a better classification accuracy be achieved by following more than

one path within the hierarchy? And if so how do we decide which paths

to follow? The Multiple Path strategy was realised by utilising either Naive Bayes

classification or Classification Association Rule Mining (CARM), which feature

respectively probability and confidence values that can be used to determine where

single or multiple paths should be followed. More specifically, more than one

path was followed within the hierarchy according to a predefined threshold σ.

In the case of Naive Bayes classification it was found that 0 ≤ σ < 1, while in

the case of Classification Association Rule Mining (CARM) it was found that

0 ≤ σ ≤ 100. Whatever the case the experimental evaluation (reported in the

thesis) indicated that following multiple paths within a hierarchical classification

model improved the classification effectiveness. However, the statistical evaluation

of the performance reported in Chapter 8 indicated that:

(a) Following multiple paths within the Binary Tree classification model was sig-

nificantly more effective than following only a single path.

(b) Unlike in the case of the Binary Tree hierarchical classification model, follow-

ing multiple paths within the DAG classification model was not significantly

more effective than following only a single path. The reason for this, it was

argued, was that the combination techniques used to distribute classes be-

tween nodes resulted in well-defined class labels at each DAG node, unlike

the clustering algorithms that were used with respect to the Binary Tree

model, consequently miss-classification was less likely and consequently the

remedial strategy of following multiple paths within the DAG was not highly

significant.

4. Following on from (3) above, when adopting a multiple path strategy,

how do we combine a number of possibly contradictory final classifica-

tions to provide a single end classification? Three different mechanisms were
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investigated, with respect to both the BT and DAG hierarchies, for arriving at a

final classification decision: (i) a voting mechanism, (ii) the BIP/BIC measure and

(iii) the NAP/NAC measure. From the reported evaluation presented in Chap-

ters 4, 5, and 8, NAP tended to produce a better classification effectiveness. The

suggested reasons are: (i) the BIP mechanism depended only on the classification

result from only a single classifier (the last classifier in the path) while the NAP

mechanism considered all the classifiers along the followed path, and (ii) the voting

mechanism can be significantly affected by votes associated with inaccurate paths

whereas the NAP mechanism assigning a specific weight to each candidate class

this avoids the problem of counting votes from an inaccurate path.

5. Following on from (3) and (4) above, will using a multiple path serve to

address the “successive miss-classification” issue associated with hierar-

chical ensemble classification models? The Multiple Path strategy, as already

noted above, was found to be able to partially address the miss-classification issue.

However, in order to address the successive miss-classification issue, it has been

argued in this thesis that a combination of mechanisms is best adopted in addition

to simply adopting a multiple path strategy. These include: (i) the use of effec-

tive classification algorithms, (ii) using a data grouping technique that can help

solve the successive miss-classification problem such as the combination technique

that was considered with respect to DAG hierarchies, and (iii) adopting a pruning

procedure to eliminate the weak classifiers within the hierarchy.

6. What is the best way of dividing up a given set of class labels between

nodes (in a Binary Tree hierarchy or DAG)? The work presented in this

thesis provided a comparative study of different techniques to distribute class labels

between nodes within the suggested hierarchies. Techniques founded on ideas

concerned with clustering, splitting, and combinations were investigated. An issue

with using clustering algorithms to distribute class labels between nodes within the

hierarchy, reported in chapter 4, is that similar classes were grouped together early

on in the process so that entire branches ended up dealing with very similar classes;

ideally we would like individual branches to deal with very different classes so that

highly discriminative classifiers can be built. Consequently, techniques based on

splitting and combinations are preferred.

7. What is the most appropriate classification algorithm to be held at in-

dividual nodes? In addition to the efficiency and effectiveness considerations

usually used to evaluate classification algorithms, a further consideration is the

support that individual classification algorithms provide with respect to any mul-

tiple path strategy that might be adopted. The most effective and efficient classifier

with which to generate the classifiers held at the hierarchy nodes was found to be

Naive Bayes classification, regardless of the adopted structure (BT or DAG). In
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addition, Naive Bayes classifiers produced probability values with which to support

the proposed Multiple Path strategies.

8. Is it indeed the case that Binary Tree hierarchical classifiers and/or

DAG classifiers can be more effectively used (than when using alterna-

tive techniques) to classify data collections that feature a large number

of class labels? As noted in Section 10.1 above, the proposed hierarchical clas-

sification models were compared with three categories of conventional model: (i)

Stand-alone classification, (ii) Bagging classification, and (iii) OVO SVM. From the

reported evaluation, the hierarchical classification model does not significantly

outperform the conventional methods for multi-class classification in all cases.

However, it has a comparable classification effectiveness with respect to the con-

sidered conventional methods.

The main contributions of the research presented in this thesis were presented in

Chapter 1. These are restated here, for completeness, as follows:

1. A set of alternative techniques to distribute class labels between nodes within a

Binary Tree hierarchy. With respect to the existing work on Binary Tree hierar-

chies, it should be noted that the most frequently used methods for dividing classes

between nodes do not allow overlapping between the class groups. In this work

both overlapping and non-overlapping were considered. The conjecture of allowing

overlapping was that this would mitigate against the early miss-classification issue.

2. An evaluation of the use of a number of alternative classification algorithms, to

generate node classifiers within a Binary Tree hierarchy. Note that existing work

on Binary Tree hierarchies has mainly utilised binary classification algorithms such

as SVM.

3. An “ensemble of ensembles” approach with respect to Binary Tree hierarchies.

More specifically, using Bagging ensemble at each node within a binary tree hier-

archy.

4. A Multiple Path strategy, which allows for more than one path to be followed

within a hierarchy during the classification stage. This strategy is completely novel

and it was proposed to address the “successive miss-classification” issue associated

with hierarchical classification. Note here that this strategy was considered with

respect to both the proposed Binary Tree and DAG hierarchies.

5. Three alternative mechanisms (Voting, BIP/BIC and NAP/NAC ) for arriving at

a final classification decision with respect to the Multiple Path strategy. The aim

was to address the issue in the case where more than one path is followed where

we end up with a number of alternative candidate class labels.

6. A unique rooted DAG structure for hierarchical multi-class classification.
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7. A novel non-rooted DAG structure for hierarchical multi-class classification.

8. A novel mechanism for applying breadth pruning to the non-rooted DAG structure.

The conjecture here was that this would improve the effectiveness and efficiency

of the DAG classification model, because “weak” classifiers would be pruned.

9. A comprehensive study and statistical analysis of the proposed hierarchical ensem-

ble classification models to identify the “best” structure, classification algorithm,

data segmentation technique and classification strategy to be adopted in order to

obtain an effective and efficient hierarchical classification model.

10. A suggested framework for utilising parallel computing to generate and operate the

proposed rooted DAG hierarchical classification model. The conjecture here was

that this would generate a more efficient and effective DAG classification model

that could be directed at even larger numbers of class labels.

10.3 Future Directions

The research presented in this thesis has indicated a number of promising directions for

future work. Potential future directions can be itemised as follows:

1. Utilising parallel computing to generate and operate the DAG classifi-

cation model. As noted in Chapter 9, it is conjectured that a parallel solution

will: (i) improve the efficiency of the DAG generation process, thus allowing it

to be applied to datasets that feature larger numbers of class labels than have

been considered so far (scalability), and (ii) improve the effectiveness of the DAG

classification model. It is suggested that the latter can be realised if a more effec-

tive classifiers, in comparison with those used in the work to date, such as SVM

classifiers, are used at each DAG node. At present “stand-alone” SVM classifiers

cannot be used in the context of DAG because they are essentially binary classifier.

To address this issue OVO SVM can be used at each DAG node. Consequently,

the resulting model will be a form of ensemble of ensembles which might improve

the classification effectiveness [100]. However, this OVO SVM based DAG model

can only be realised if it is implemented using some form of distributed or parallel

computing due to: (i) the well-known fact that SVM is extremely slow classifier

[42], and (ii) the complexity of the resulting model (ensemble of ensembles). This

idea is motivated by the experimental evidenced presented earlier in this thesis in

Chapters 4, 5, 6, and 8, which indicated that the effectiveness of the base classifiers

significantly affects the overall effectiveness of the proposed hierarchical ensemble

classifiers.

2. Investigating more effective pruning techniques with respect to DAG.

One way of applying pruning is to utilise clustering algorithms. More specifically,

with respect to the DAG hierarchical ensemble classification models, clustering
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algorithms can be used to determine similar classes. Once the similar classes

have been identified the class combinations that comprised similar classes can be

pruned. Of course checking that all class labels appear in the final pruned class

combinations set should be taken into account so as not to miss any class label.

3. Using alternative data sets especially more unbalanced data sets. As

reported in Chapter 7 that DAG classification model tended to improve the classi-

fication effectiveness with respect to unbalanced datasets such as: Nursery, Heart,

PageBlocks, Glass, Ecoli, and ChessKRvK. It was conjectured that the combina-

tion techniques, used to distribute class labels between nodes within the DAG,

helped in the handling of unbalanced datasets. In other words, instead of letting

a single classifier handle an unbalanced dataset, the combination mechanism dis-

tributes classes between DAG nodes, some nodes will handle unbalanced subsets

while other nodes will handle balanced subsets. During the classification stage

only a few good quality classifiers will then be used to predict the class label for a

given previously unseen record, the proposed DAG models therefore seem to oper-

ate well using balanced subsets. It is therefore suggested that this merits further

investigation.

4. Finding more effective and efficient techniques to distribute class la-

bels between nodes within hierarchies. Several techniques were considered

in this thesis founded on ideas concerned with clustering, splitting, and combi-

nations techniques. It was noted earlier in this thesis that the performance of

the hierarchical ensemble models was significantly influenced by the adopted class

partitioning technique; finding and investigating more appropriate techniques is

thus considered to be a further fruitful avenue for future research.

Overall, the work presented in this thesis has produced a significant improvement

with respect to a recent form of classification, namely “Hierarchical Ensemble Classifi-

cation”. In addition a sound foundation for future work has been provided.



Bibliography

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association

rules. In Proceedings of the Twentieth International Conference on Very Large

Data Bases (VLDB’94), pages 487–499. Morgan Kaufmann, 1994.

[2] Fevzi Alimoglu. Combining multiple classifiers for pen-based handwritten digit

recognition. Master’s thesis, Computer Engineering, Boǧazici University, 1996.
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Appendix A

AUC Computation

This appendix presents an explanation of the Area Under the receiver operating Curve

(AUC) computation together with two detailed examples. According to Hand and Till

[44], the AUC for a multi-class classifier can be estimated, as follows:

AUC =
2

c(c− 1)

∑
i<j

A(i, j) (A.1)

Where c is the number of class labels, i and j are classes numbers, and A is calculated

as follows:

A(i, j) =
MWW (i|j) +MWW (j, i)

2
(A.2)

Where MWW is the Man-Whitney-Wilcoxon statistic (or rank sum). This is calculated

by first drawing up a MWW ranked table comprising two columns. The first column is

the response (R) column and the second is the signal (S) column. The table comprises

N rows, where N is the number of records to be considered with respect to MWW

calculation. Based on the signal and response values, each row in the table is given a

rank. The ranking procedure is as follows (in descending order): true positives (Ri =

1, Si = 1), false negatives (Ri = 1, Si = 0), true negatives (Ri = 0, Si = 0), and false

positives (Ri = 0, Si = 1). MWW is calculated as follows:

A(i, j) =
s− n1(n1+1)

2

n1n2
(A.3)

Where s is the sum of the rankings of (1s) in the signal column (sum of the rankings of

positives) and n1 and n2 are the numbers of 1s (number of positives) and 0s (number of

negatives) in the signal column.

The rest of this appendix presents two examples of AUC calculation.
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A.1 Example One (100% Accurate Classifier)

This example presents the AUC calculation for a data set that feature three classes. The

test data set (Truth Values) is presented in Table A.1, while the prediction values are

presented in Table A.2. Note that the accuracy in this case is 100%, thus the classifier

has correctly classified all the instances.

Record Num. c1 c2 c3

1 1 0 0

2 1 0 0

3 1 0 0

4 0 1 0

5 0 1 0

6 0 0 1

7 0 0 1

8 0 0 1

Table A.1: Truth values

Record Num. c1 c2 c3

1 1 0 0

2 1 0 0

3 1 0 0

4 0 1 0

5 0 1 0

6 0 0 1

7 0 0 1

8 0 0 1

Table A.2: Prediction values

In order to calculate the AUC for this classifier, MWW tables should be generated

first for all possible pair-wise permutations of the classes: MWW(1|2), MWW(2|1),

MWW(1|3), MWW(3|1), MWW(2|3) and MWW(3|2). Considering MWW(1|2), Table

A.3 presents the corresponding MWW table. The table only considers the records that

should be classified as c1 or c2. Three records were classified as c1 and two records as not

c1. The signal and response vectors are the same {0, 0, 1, 1, 1} because the classifier was

100% accurate. With respect to MWW(1|2), n1 = 3, n2 = 2, s = 3 + 4 + 5 = 12. Thus:

MWW(1|2)=
12− 3(3+1)

2
3∗2 =1. With respect to MWW(2|1), the MWW table is presented in

Table A.4. In this case n1 = 2, n2 = 3, and s = 4 + 5 = 9. Thus: MWW(2|1)=
9− 2(2+1)

2
2∗3

=1. A(1,2) is then: A(1,2)=1+1
2 =1.

Rank Response Signal

1 0 0

2 0 0

3 1 1

4 1 1

5 1 1

Table A.3: MWW(1|2)

Rank Response Signal

1 0 0

2 0 0

3 0 0

4 1 1

5 1 1

Table A.4: MWW(2|1)

Calculating MWW(1|3) as per Table A.5: MWW(1|3)=
15− 3(3+1)

2
3∗3 =1. MWW(3|1)=

15− 3(3+1)
2

3∗3 =1 (Table A.6). A(1,3) is then 1. Doing the same for MWW(2|3) and

MWW(3|2) (Tables A.7 and A.8): MWW(2|3)=1 and MWW(3|2)=1. Thus A(2,3)=1.

The AUC in this case: AUC = 2
3(3−1)(1 + 1 + 1) = 1
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Rank Response Signal

1 0 0

2 0 0

3 0 0

4 1 1

5 1 1

6 1 1

Table A.5: MWW(1|3)

Rank Response Signal

1 0 0

2 0 0

3 0 0

4 1 1

5 1 1

6 1 1

Table A.6: MWW(3|1)

Rank Response Signal

1 0 0

2 0 0

3 0 0

4 1 1

5 1 1

Table A.7: MWW(2|3)

Rank Response Signal

1 0 0

2 0 0

3 1 1

4 1 1

5 1 1

Table A.8: MWW(3|2)

A.2 Example Two (Highly Unbalanced Data Set and One

Class Does not Appear in the Test set)

The example presented in this section explains the issue mentioned earlier in Chapter

3 where a low AUC values is produced using TCV with respect to a highly unbalanced

data sets. More specifically, assuming a highly unbalanced data set that feature less than

ten instances (records) of a specific class, dividing the data set into ten folds results in

some folds without any instance from that class. During the testing stage, the classifier

will not be actually evaluated against that class for some test folds (the folds that do not

include any instance of that class). However the AUC calculations assume the complete

number of class labels. The example presented in this section considers a data set that

features three classes; however one class (c3) does not appear in the considered test

fold. The test data set (in terms of Truth Values) is presented in Table A.9, while the

prediction values are presented in Table A.10. Note that the accuracy in this case is

100%; the classifier correctly classified all instances.
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Record Num. c1 c2 c3

1 1 0 0

2 1 0 0

3 1 0 0

4 1 0 0

5 0 1 0

6 0 1 0

7 0 1 0

8 0 1 0

Table A.9: Truth values

Record Num. c1 c2 c3

1 1 0 0

2 1 0 0

3 1 0 0

4 1 0 0

5 0 1 0

6 0 1 0

7 0 1 0

8 0 1 0

Table A.10: Prediction values

The MWW tables for all possible pair-wise permutations of the classes: MWW(1|2),

MWW(2|1), MWW(1|3), MWW(3|1), MWW(2|3) and MWW(3|2) are presented in Ta-

bles A.11, A.12, A.13, A.14, A.15 and A.16.

Calculating MWW(1|2) as per Table A.11, MWW(1|2) =
26− 4(4+1)

2
4∗4 =1. And MWW(2|1)

as per Table A.12, MWW(2|1)=
26− 4(4+1)

2
4∗4 =1. A(1,2) is then 1. MWW(1|3) = 0

because n2=0, and MWW(3|1)= 0 because n1=0 (see Tables A.13 and A.14). Then

A(1,3)=0. A(2,3) is also 0 see Tables A.15, and A.16. The AUC in this case: AUC =
2

3(3−1)(1 + 0 + 0) = 0.33

Rank Response Signal

1 0 0

2 0 0

3 0 0

4 0 0

5 1 1

6 1 1

7 1 1

8 1 1

Table A.11: MWW(1|2)

Rank Response Signal

1 0 0

2 0 0

3 0 0

4 0 0

5 1 1

6 1 1

7 1 1

8 1 1

Table A.12: MWW(2|1)

Rank Response Signal

1 1 1

2 1 1

3 1 1

4 1 1

Table A.13: MWW(1|3)

Rank Response Signal

1 0 0

2 0 0

3 0 0

4 0 0

Table A.14: MWW(3|1)
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Rank Response Signal

1 1 1

2 1 1

3 1 1

4 1 1

Table A.15: MWW(2|3)

Rank Response Signal

1 0 0

2 0 0

3 0 0

4 0 0

Table A.16: MWW(3|2)



Appendix B

Determining the Best Threshold

Value (σ) for Following Multiple

Paths within the Binary Tree

Hierarchical Classification Model

In this appendix the results produced when using the Multiple Path strategy, in con-

text of Binary Tree hierarchies, with respect to the three considered class label selection

mechanisms: (i) BIP (BIC), (ii) NAP (NAC), and (iii) Voting, and the three consid-

ered data distribution techniques: (i) k-means, (ii) data splitting, and (iii) divisive

hierarchical clustering, using a range of values for σ are presented.
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Table B.1: Accuracy and AUC values produced when using the Multiple Path strategy and the best individual probability class label mechanism
with respect to k-mean data distribution technique, using a range of values for σ

Data set
σ

0.1× 10−1 0.1× 10−2 0.1× 10−3 0.1× 10−4 0.1× 10−5 0.0
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 68.42 0.69 68.42 0.69 68.38 0.68 67.80 0.68 66.80 0.67 44.3 0.45
Wine 92.54 0.93 92.54 0.93 92.54 0.93 92.54 0.93 91.36 0.92 89.10 0.89

Nursery 91.9 0.56 91.86 0.56 91.07 0.57 89.71 0.57 88.21 0.56 48.01 0.35
Heart 53.42 0.37 53.01 0.38 45.70 0.34 41.97 0.32 35.21 0.29 33.62 0.25

PageBlocks 92.34 0.44 92.02 0.44 89.75 0.42 89.75 0.42 89.71 0.44 89.38 0.45
Dermatology 77.50 0.76 72.92 0.71 67.60 0.65 63.65 0.61 55.87 0.56 28.66 0.26

Glass 59.73 0.40 55.52 0.38 50.91 0.36 42.02 0.31 43.30 0.31 39.09 0.27
Zoo 95.09 0.60 95.09 0.60 95.09 0.60 96.09 0.61 95.09 0.60 90.27 0.58
Ecoli 76.75 0.32 72.14 0.30 72.05 0.30 72.45 0.30 73.66 0.33 73.66 0.33
Led 52.69 0.53 59.66 0.59 49.06 0.49 46.31 0.47 45.59 0.46 45.25 0.46

PenDigits 82.66 0.82 82.46 0.82 81.67 0.81 79.34 0.79 75.19 0.75 48.67 0.49
Soybean 79.00 0.84 78.82 0.84 77.03 0.83 75.44 0.83 74.36 0.82 49.1 0.51

ChessKRvK 45.26 0.42 41.72 0.38 33.56 0.31 25.77 0.23 23.47 0.20 21.74 0.17
LetterRecog 41.32 0.41 41.06 0.41 40.37 0.40 39.35 0.39 37.59 0.38 20.26 0.20

Mean 72.04 0.58 71.23 0.57 68.20 0.55 65.87 0.53 63.96 0.52 51.51 0.40



Table B.2: Accuracy and AUC values produced when using the Multiple Path strategy and the best individual probability class label mechanism
with respect to data splitting technique, using a range of values for σ

Data set
σ

0.1× 100 0.1× 10−1 0.1× 10−2 0.1× 10−3 0.1× 10−4 0.1× 10−5 0.1× 10−6 0.1× 10−7 0.0
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 74.30 0.74 74.30 0.74 74.30 0.74 74.30 0.74 74.30 0.74 74.30 0.74 74.98 0.75 74.98 0.75 74.98 0.75
Wine 94.49 0.95 94.49 0.95 94.49 0.95 94.49 0.95 94.49 0.95 94.49 0.95 95.67 0.96 95.67 0.96 95.67 0.96

Nursery 90.12 0.44 90.12 0.44 90.12 0.44 90.12 0.44 90.12 0.44 87.41 0.58 87.41 0.58 87.41 0.58 87.41 0.58
Heart 57.70 0.41 57.70 0.41 53.08 0.38 53.08 0.38 53.08 0.38 53.08 0.38 53.08 0.38 51.19 0.37 51.14 0.36

PageBlocks 91.96 0.34 91.96 0.34 91.96 0.34 91.30 0.47 90.10 0.45 90.10 0.45 90.10 0.45 89.50 0.43 89.50 0.43
Dermatology 79.80 0.79 79.80 0.79 79.80 0.79 79.80 0.79 82.94 0.82 82.94 0.82 82.94 0.82 83.46 0.83 84.26 0.84

Glass 63.94 0.43 63.94 0.43 59.73 0.47 57.90 0.48 57.90 0.48 50.99 0.49 50.99 0.49 50.99 0.49 50.99 0.49
Zoo 93.18 0.59 93.18 0.59 93.18 0.59 92.18 0.58 92.18 0.58 92.18 0.58 91.27 0.58 90.32 0.57 90.32 0.57
Ecoli 82.31 0.36 82.31 0.36 80.55 0.35 80.55 0.35 68.65 0.34 68.65 0.34 68.65 0.34 64.15 0.27 60.38 0.20
Led 60.16 0.60 60.16 0.60 60.41 0.60 60.41 0.60 60.41 0.60 60.41 0.60 60.41 0.60 60.41 0.60 60.41 0.60

PenDigits 68.56 0.68 68.56 0.68 68.56 0.68 68.56 0.68 68.56 0.68 68.56 0.68 83.30 0.83 83.41 0.83 83.41 0.83
Soybean 79.55 0.81 79.55 0.81 79.55 0.81 79.55 0.81 75.45 0.73 75.45 0.73 75.45 0.73 75.45 0.73 75.45 0.73

chessKRvK 35.18 0.27 35.18 0.27 35.18 0.27 35.18 0.27 28.58 0.35 28.58 0.35 28.58 0.35 30.18 0.35 30.18 0.35
LetterRecog 39.16 0.39 39.16 0.39 39.16 0.39 39.16 0.39 39.16 0.39 43.59 0.43 54.59 0.54 54.59 0.54 54.59 0.54

Mean 72.17 0.56 72.17 0.56 71.43 0.56 71.18 0.57 69.71 0.57 69.34 0.58 71.24 0.60 70.84 0.59 70.62 0.59



Table B.3: Accuracy and AUC values produced when using the Multiple Path strategy and the best individual probability class label mechanism
with respect to divisive hierarchical clustering technique, using a range of values for σ

Data set
σ

0.1× 10−1 0.1× 10−3 0.1× 10−4 0.1× 10−6 0.1× 10−8 0.1× 10−10 0.1× 10−15 0.0
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 43.12 0.43 43.12 0.43 43.12 0.43 43.12 0.43 43.12 0.43 43.12 0.43 43.12 0.43 53.36 0.53
Wine 28.31 0.34 28.31 0.34 28.31 0.34 28.31 0.34 28.31 0.34 28.31 0.34 30.31 0.36 54.82 0.57

Nursery 31.80 0.17 31.80 0.17 31.80 0.17 31.80 0.17 31.80 0.17 36.40 0.19 36.29 0.19 46.49 0.30
Heart 19.39 0.20 19.39 0.20 18.70 0.21 19.39 0.21 21.46 0.24 21.46 0.24 21.46 0.23 23.39 0.22

PageBlocks 1.68 0.22 1.68 0.22 1.68 0.22 1.68 0.22 1.68 0.22 1.96 0.24 2.03 0.28 82.38 0.34
Dermatology 10.60 0.17 10.60 0.17 10.60 0.17 10.60 0.17 10.60 0.17 10.60 0.17 10.60 0.17 41.95 0.33

Glass 15.01 0.12 15.01 0.12 15.01 0.12 18.34 0.14 18.34 0.14 34.48 0.19 38.29 0.22 48.06 0.34
Zoo 12.00 0.13 12.00 0.13 12.00 0.13 12.00 0.13 12.00 0.13 12.00 0.13 12.00 0.13 80.36 0.51
Ecoli 15.17 0.13 15.17 0.13 15.17 0.13 15.17 0.13 15.17 0.13 19.11 0.18 19.98 0.20 43.68 0.27
Led 15.16 0.15 15.16 0.15 15.16 0.15 15.16 0.15 15.16 0.15 15.16 0.15 17.41 0.18 44.72 0.44

PenDigits 10.69 0.10 10.69 0.10 10.69 0.10 10.69 0.10 11.95 0.12 11.95 0.12 11.95 0.12 59.58 0.60
Soybean 7.30 0.07 7.30 0.07 7.30 0.07 7.30 0.07 7.30 0.07 7.30 0.07 7.30 0.07 60.67 0.69

ChessKRvK 5.69 0.06 5.69 0.06 5.69 0.06 5.69 0.06 5.69 0.06 4.03 0.06 2.87 0.08 19.92 0.22
LetterRecog 4.85 0.05 4.85 0.05 4.85 0.05 4.85 0.05 4.85 0.05 4.85 0.05 4.85 0.05 28.89 0.29

Mean 15.77 0.17 15.77 0.17 15.72 0.17 16.01 0.17 16.25 0.17 17.91 0.18 18.46 0.19 49.16 0.40



Table B.4: Accuracy and AUC values produced when using the Multiple Path strategy and the best normalised accumulated probability class
label mechanism with respect to k-mean data distribution technique, using a range of values for σ

Data set
σ

0.1× 10−1 0.1× 10−2 0.1× 10−3 0.1× 10−4 0.1× 10−5 0.0
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 68.42 0.69 68.42 0.69 68.40 0.68 67.92 0.68 66.92 0.67 44.14 0.44
Wine 92.54 0.93 92.54 0.93 92.54 0.93 92.54 0.93 91.36 0.92 89.01 0.89

Nursery 91.90 0.56 91.88 0.57 91.10 0.57 90.16 0.57 89.28 0.56 63.39 0.42
Heart 53.07 0.37 53.01 0.38 47.42 0.35 44.39 0.34 37.56 0.30 36.03 0.26

PageBlocks 92.34 0.44 92.09 0.45 89.86 0.43 89.86 0.43 89.82 0.44 89.84 0.46
Dermatology 77.73 0.75 74.53 0.71 69.73 0.66 65.78 0.63 57.42 0.57 33.31 0.31

Glass 59.73 0.40 57.35 0.39 54.10 0.38 46.23 0.33 46.55 0.33 43.30 0.29
Zoo 95.09 0.60 95.09 0.60 95.09 0.60 96.09 0.61 95.09 0.61 90.27 0.58
Ecoli 76.99 0.32 74.62 0.32 75.43 0.32 74.57 0.32 75.17 0.34 75.17 0.34
Led 60.22 0.60 70.72 0.71 69.44 0.69 67.34 0.67 67.19 0.67 66.81 0.67

PenDigits 82.66 0.82 82.47 0.82 81.85 0.82 79.97 0.80 76.78 0.77 52.97 0.53
Soybean 79.00 0.84 78.82 0.84 76.67 0.83 75.08 0.82 74.36 0.82 53.00 0.55

chessKRvK 45.57 0.42 42.79 0.39 36.23 0.34 28.89 0.27 25.45 0.25 22.99 0.23
LetterRecog 41.40 0.41 41.20 0.41 40.76 0.41 40.14 0.40 39.58 0.40 24.84 0.25

Mean 72.62 0.58 72.54 0.59 70.62 0.57 68.50 0.56 66.61 0.55 56.08 0.44



Table B.5: Accuracy and AUC values produced when using the Multiple Path strategy and the best normalised accumulated probability class
label mechanism with respect to data splitting technique, using a range of values for σ

Data set
σ

0.1× 100 0.1× 10−1 0.1× 10−2 0.1× 10−3 0.1× 10−4 0.1× 10−5 0.1× 10−6 0.1× 10−7 0.0
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 74.30 0.74 74.30 0.74 74.30 0.74 74.30 0.74 74.30 0.74 74.30 0.74 76.44 0.76 76.44 0.76 76.44 0.76
Wine 94.49 0.95 94.49 0.95 94.49 0.95 94.49 0.95 94.49 0.95 95.08 0.95 96.26 0.96 96.26 0.96 96.26 0.96

Nursery 90.12 0.44 90.12 0.44 90.12 0.44 90.12 0.44 89.09 0.58 89.09 0.58 89.09 0.58 89.09 0.58 89.09 0.58
Heart 57.70 0.41 57.70 0.41 55.57 0.38 55.50 0.38 54.12 0.37 54.12 0.37 53.77 0.36 50.12 0.30 49.87 0.30

PageBlocks 91.96 0.34 91.96 0.34 92.53 0.45 91.76 0.46 91.43 0.45 91.30 0.47 91.27 0.48 91.76 0.45 91.76 0.45
Dermatology 79.80 0.79 79.80 0.79 79.80 0.79 83.46 0.83 85.18 0.85 84.60 0.84 84.60 0.84 84.60 0.84 84.60 0.84

Glass 63.94 0.43 63.94 0.43 62.11 0.45 59.73 0.47 57.90 0.48 57.10 0.50 55.28 0.51 55.28 0.51 55.28 0.51
Zoo 93.18 0.59 93.18 0.59 93.18 0.59 92.18 0.58 92.18 0.58 92.18 0.58 92.18 0.58 92.18 0.58 90.14 0.56
Ecoli 82.31 0.36 82.00 0.36 78.76 0.36 76.39 0.35 67.23 0.29 64.15 0.27 64.15 0.27 60.38 0.20 58.38 0.20
Led 60.16 0.60 60.16 0.60 61.28 0.61 61.13 0.61 61.13 0.61 61.13 0.61 61.13 0.61 73.13 0.73 73.13 0.73

PenDigits 68.56 0.68 68.56 0.68 68.56 0.68 68.56 0.68 68.56 0.68 68.56 0.68 81.18 0.81 81.18 0.81 81.18 0.81
Soybean 79.55 0.81 79.55 0.81 79.55 0.81 79.55 0.81 83.44 0.82 83.44 0.82 83.71 0.83 83.71 0.83 85.62 0.84

ChessKRvK 35.18 0.27 35.18 0.27 35.18 0.27 35.16 0.27 36.68 0.35 33.93 0.37 33.88 0.37 33.88 0.37 33.88 0.37
LetterRecog 39.16 0.39 39.16 0.39 39.16 0.39 39.18 0.39 39.44 0.39 41.61 0.42 53.44 0.53 53.44 0.53 53.44 0.53

Mean 72.17 0.56 72.15 0.56 71.76 0.57 71.54 0.57 71.08 0.58 70.76 0.59 72.60 0.61 72.96 0.60 72.79 0.60



Table B.6: Accuracy and AUC values produced when using the Multiple Path strategy and the best normalised accumulated probability class
label mechanism with respect to divisive hierarchical clustering technique, using a range of values for σ

Data set
σ

0.1× 10−1 0.1× 10−3 0.1× 10−4 0.1× 10−6 0.1× 10−8 0.1× 10−10 0.1× 10−15 0.0
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 43.12 0.43 43.12 0.43 43.12 0.43 43.12 0.43 43.12 0.43 43.12 0.43 43.12 0.43 53.62 0.53
Wine 28.31 0.34 28.31 0.34 28.31 0.34 28.31 0.34 28.31 0.34 28.31 0.34 30.31 0.36 56.59 0.58

Nursery 31.80 0.17 31.80 0.17 31.80 0.17 31.80 0.17 31.80 0.17 36.41 0.19 36.29 0.19 46.37 0.30
Heart 19.39 0.20 19.39 0.20 18.70 0.21 20.80 0.22 20.80 0.22 22.10 0.25 22.10 0.25 24.43 0.22

PageBlocks 1.68 0.22 1.68 0.22 1.68 0.22 1.68 0.22 1.68 0.22 1.96 0.24 2.03 0.28 82.38 0.36
Dermatology 10.60 0.17 10.60 0.17 10.60 0.17 10.60 0.17 10.60 0.17 10.60 0.17 10.60 0.17 43.28 0.34

Glass 15.01 0.12 15.01 0.12 15.01 0.12 18.34 0.14 18.34 0.14 34.48 0.19 39.71 0.23 46.23 0.34
Zoo 12.00 0.13 12.00 0.13 12.00 0.13 12.00 0.13 12.00 0.13 12.00 0.13 12.00 0.13 84.18 0.52
Ecoli 15.17 0.13 15.17 0.13 15.17 0.13 15.17 0.13 15.17 0.13 17.90 0.17 21.79 0.22 44.59 0.28
Led 15.16 0.15 15.16 0.15 15.16 0.15 15.16 0.15 15.16 0.15 15.16 0.15 17.59 0.18 44.16 0.44

PenDigits 10.69 0.10 10.69 0.10 10.69 0.10 10.69 0.10 7.30 0.07 12.22 0.12 12.22 0.12 60.80 0.61
Soybean 7.30 0.07 7.30 0.07 7.30 0.07 4.26 0.06 4.26 0.06 7.30 0.07 7.30 0.07 64.23 0.71

chessKRvK 5.69 0.06 5.69 0.06 5.69 0.06 5.69 0.06 5.69 0.06 4.33 0.06 3.09 0.08 18.59 0.21
LetterRecog 4.85 0.05 4.85 0.05 4.85 0.05 4.85 0.05 4.85 0.05 3.09 0.08 4.85 0.05 30.41 0.30

Mean 15.77 0.17 15.77 0.17 15.72 0.17 15.89 0.17 15.65 0.17 17.78 0.19 18.79 0.20 49.99 0.41



Table B.7: Accuracy and AUC values produced when using the Multiple Path strategy and voting class label mechanism with respect to k-mean
data distribution technique, using a range of values for σ

Data set
σ

0.1× 10−2 0.1× 10−3 0.1× 10−4 0.1× 10−5 0.1× 10−6 0.0
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 68.42 0.69 68.42 0.69 68.46 0.69 68.34 0.68 68.12 0.68 46.78 0.47
Wine 92.54 0.93 92.54 0.93 92.54 0.93 92.54 0.93 92.54 0.93 68.96 0.64

Nursery 91.91 0.56 91.57 0.56 89.02 0.55 85.85 0.53 85.52 0.49 33.79 0.21
Heart 53.49 0.36 54.52 0.39 52.45 0.35 45.07 0.32 28.71 0.25 15.53 0.18

PageBlocks 91.56 0.31 73.70 0.24 13.93 0.28 13.71 0.29 13.69 0.23 13.62 0.25
Dermatology 79.62 0.78 75.67 0.73 69.60 0.66 67.89 0.65 64.46 0.64 22.38 0.24

Glass 62.51 0.41 57.83 0.37 48.76 0.28 43.12 0.25 42.97 0.22 42.82 0.15
Zoo 95.09 0.60 95.09 0.60 95.09 0.60 93.09 0.58 85.09 0.49 13.91 0.09
Ecoli 78.07 0.31 71.24 0.28 75.62 0.29 58.34 0.24 58.65 0.23 55.36 0.20
Led 48.13 0.48 49.28 0.49 32.47 0.32 34.63 0.35 30.22 0.31 24.34 0.25

PenDigits 82.66 0.82 82.53 0.82 82.44 0.82 81.38 0.81 79.08 0.79 12.19 0.12
Soybean 79.00 0.84 79.00 0.84 79.34 0.84 79.16 0.84 80.58 0.85 20.14 0.09

chessKRvK 45.11 0.41 40.57 0.36 34.54 0.29 30.14 0.22 27.20 0.15 15.92 0.06
LetterRecog 41.30 0.41 40.84 0.41 39.80 0.40 38.30 0.38 36.36 0.36 6.10 0.06

Mean 72.10 0.57 69.49 0.55 62.43 0.52 59.40 0.51 56.66 0.47 27.99 0.22



Table B.8: Accuracy and AUC values produced when using the Multiple Path strategy and voting class label mechanism with respect to data
splitting technique, using a range of values for σ

Data set
σ

0.1× 10−2 0.1× 10−3 0.1× 10−4 0.1× 10−5 0.1× 10−6 0.1× 10−7 0.0
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 74.30 0.74 74.30 0.74 74.30 0.74 74.30 0.74 74.30 0.74 74.28 0.74 56.80 0.57
Wine 94.49 0.95 94.49 0.95 94.49 0.95 94.49 0.95 94.49 0.95 94.49 0.95 70.92 0.65

Nursery 90.12 0.44 90.12 0.44 90.12 0.44 90.12 0.44 65.85 0.47 63.33 0.35 33.35 0.20
Heart 57.70 0.41 57.36 0.40 56.80 0.39 59.63 0.38 60.25 0.38 58.18 0.34 57.42 0.29

PageBlocks 91.96 0.34 91.96 0.34 91.98 0.32 92.00 0.32 92.05 0.34 91.98 0.32 91.85 0.30
Dermatology 79.80 0.79 79.51 0.79 72.41 0.69 64.90 0.57 55.01 0.47 53.87 0.44 50.54 0.32

Glass 63.94 0.43 63.54 0.42 65.05 0.42 64.57 0.39 60.84 0.31 57.43 0.23 56.48 0.19
Zoo 93.18 0.59 92.18 0.58 88.18 0.54 82.18 0.46 81.09 0.43 81.09 0.43 60.18 0.23
Ecoli 82.31 0.36 72.19 0.31 65.92 0.24 63.85 0.19 64.80 0.19 64.20 0.17 64.20 0.17
Led 47.38 0.48 30.13 0.29 21.25 0.20 20.59 0.19 20.59 0.19 20.59 0.19 20.59 0.19

PenDigits 68.56 0.68 68.56 0.68 68.56 0.68 68.56 0.68 68.56 0.68 68.56 0.68 20.63 0.20
Soybean 79.55 0.81 79.55 0.81 79.55 0.81 79.55 0.81 79.55 0.81 80.25 0.81 7.12 0.13

chessKRvK 35.18 0.27 35.18 0.27 35.14 0.27 24.68 0.17 9.39 0.10 9.94 0.10 9.94 0.10
LetterRecog 39.16 0.39 39.16 0.39 39.18 0.39 38.07 0.38 36.41 0.36 32.87 0.33 7.36 0.07

Mean 71.26 0.55 69.16 0.53 67.35 0.51 65.54 0.48 61.66 0.46 60.79 0.43 43.38 0.26



Table B.9: Accuracy and AUC values produced when using the Multiple Path strategy and voting class label mechanism with respect to divisive
hierarchical clustering technique, using a range of values for σ

Data set
σ

0.1× 10−3 0.1× 10−4 0.1× 10−6 0.1× 10−8 0.1× 10−10 0.1× 10−15 0.0
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 43.12 0.43 43.12 0.43 43.12 0.43 43.12 0.43 43.12 0.43 43.12 0.43 55.90 0.56
Wine 28.31 0.34 28.31 0.34 28.31 0.34 28.31 0.34 28.31 0.34 31.51 0.36 46.80 0.48

Nursery 31.80 0.17 31.80 0.17 31.80 0.17 34.80 0.17 34.81 0.18 39.48 0.22 42.36 0.28
Heart 19.39 0.20 19.39 0.20 19.73 0.20 20.32 0.19 30.35 0.21 30.35 0.21 11.18 0.17

PageBlocks 1.68 0.22 1.68 0.22 1.68 0.22 1.68 0.22 1.68 0.22 1.90 0.24 82.05 0.26
Dermatology 10.60 0.17 10.60 0.17 10.60 0.17 10.60 0.17 10.60 0.17 10.60 0.17 41.22 0.30

Glass 15.01 0.12 15.01 0.12 15.01 0.12 28.44 0.12 28.44 0.12 41.31 0.13 46.48 0.16
Zoo 12.00 0.13 12.00 0.13 12.00 0.13 12.00 0.13 12.00 0.13 12.00 0.13 26.00 0.13
Ecoli 15.17 0.13 15.17 0.13 15.17 0.13 20.02 0.14 20.02 0.14 19.98 0.18 55.92 0.23
Led 15.16 0.15 15.16 0.15 15.16 0.15 15.16 0.15 15.16 0.15 15.63 0.16 25.66 0.26

PenDigits 10.69 0.10 10.69 0.10 10.69 0.10 10.69 0.10 10.69 0.10 10.69 0.10 23.11 0.24
Soybean 7.30 0.07 7.30 0.07 7.30 0.07 7.30 0.07 7.30 0.07 7.03 0.07 24.93 0.14

chessKRvK 5.69 0.06 5.69 0.06 4.74 0.06 4.74 0.06 4.75 0.06 2.97 0.06 14.61 0.06
LetterRecog 4.85 0.05 4.85 0.05 4.85 0.05 4.85 0.05 4.85 0.05 4.85 0.05 9.02 0.09

Mean 15.77 0.17 15.77 0.17 15.73 0.17 17.29 0.17 18.01 0.17 19.39 0.18 36.09 0.24
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Table B.10: Average Accuracy and AUC values produced when using the Multiple
Path strategy coupled with the best individual confidence class label selection mecha-
nism, with respect to a CARM and k-mean generated Binary Tree model, using a range

of values for σ

Data set
Threshold Value (σ)

σ = 90 σ = 80 σ = 70 σ = 60 σ = 50
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 53.60 0.53 59.22 0.59 59.02 0.59 58.92 0.59 58.92 0.59
Wine 78.99 0.81 78.99 0.81 78.99 0.81 78.99 0.81 78.99 0.81

Nursery 80.05 0.43 82.91 0.43 82.53 0.42 84.41 0.43 84.41 0.43
Heart 46.66 0.22 52.80 0.23 53.76 0.24 53.76 0.24 53.76 0.24

PageBlocks 90.79 0.24 90.79 0.24 90.79 0.24 90.79 0.24 90.79 0.24
Dermatology 70.12 0.60 71.96 0.62 75.73 0.65 74.92 0.64 74.92 0.64

Glass 46.23 0.30 48.93 0.29 48.46 0.29 48.46 0.29 48.46 0.29
Zoo 87.00 0.51 88.00 0.52 88.00 0.52 88.00 0.52 88.00 0.52
Ecoli 63.29 0.28 64.55 0.28 64.55 0.28 65.15 0.28 65.15 0.28
Led 24.41 0.23 43.69 0.43 52.16 0.52 54.78 0.55 54.78 0.55

PenDigits 54.95 0.54 60.65 0.61 61.12 0.61 61.12 0.61 61.12 0.61
Soybean 75.29 0.73 78.13 0.75 79.01 0.76 79.01 0.76 79.01 0.76

ChessKRvK 20.82 0.10 28.15 0.15 32.16 0.17 32.99 0.18 32.99 0.18
LetterRecog 15.71 0.16 24.74 0.25 29.17 0.29 29.58 0.30 29.58 0.30

Mean 57.71 0.41 62.39 0.44 63.96 0.46 64.35 0.46 64.35 0.46

Table B.11: Average Accuracy and AUC values produced when using the Multiple
Path strategy coupled with the best individual confidence class label selection mecha-
nism, with respect to a CARM and data splitting generated Binary Tree model, using

a range of values for σ

Data set
Threshold Value (σ)

σ = 90 σ = 80 σ = 70 σ = 60 σ = 50
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 68.84 0.68 63.18 0.64 57.12 0.58 57.02 0.58 57.02 0.58
Wine 77.39 0.74 78.59 0.76 78.59 0.76 78.59 0.76 78.59 0.76

Nursery 86.81 0.43 86.81 0.43 86.81 0.43 86.81 0.43 86.81 0.43
Heart 53.07 0.21 52.39 0.20 52.39 0.20 52.39 0.20 52.39 0.20

PageBlocks 89.77 0.20 89.77 0.20 89.77 0.20 89.77 0.20 89.77 0.20
Dermatology 75.00 0.64 67.55 0.55 60.28 0.46 60.28 0.46 60.28 0.46

Glass 61.96 0.34 61.56 0.31 61.56 0.31 61.56 0.31 61.56 0.31
Zoo 85.00 0.49 85.00 0.49 85.00 0.49 85.00 0.49 85.00 0.49
Ecoli 65.52 0.18 67.86 0.20 66.57 0.20 66.57 0.20 66.57 0.20
Led 23.91 0.23 29.19 0.28 41.38 0.41 45.53 0.45 45.53 0.45

PenDigits 37.37 0.37 42.44 0.42 43.89 0.43 42.68 0.42 42.68 0.42
Soybean 75.10 0.81 84.88 0.87 88.43 0.89 88.97 0.89 88.97 0.89

chessKRvK 10.18 0.06 7.08 0.06 26.58 0.13 28.13 0.14 28.13 0.14
LetterRecog 17.48 0.18 23.43 0.24 29.13 0.29 33.12 0.32 33.12 0.32

Mean 59.10 0.40 59.98 0.40 61.96 0.41 62.60 0.42 62.60 0.42
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Table B.12: Average Accuracy and AUC values produced when using the Multiple
Path strategy coupled with the best individual confidence class label selection mecha-
nism, with respect to a CARM and divisive hierarchical clustering generated Binary

Tree model, using a range of values for σ

Data set
Threshold Value (σ)

σ = 90 σ = 80 σ = 70 σ = 60 σ = 50
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 50.68 0.51 61.04 0.61 61.58 0.61 61.62 0.61 61.62 0.61
Wine 83.29 0.85 84.28 0.86 84.28 0.86 84.28 0.86 84.28 0.86

Nursery 51.97 0.27 53.67 0.27 53.12 0.27 53.07 0.27 53.07 0.27
Heart 51.63 0.22 53.63 0.22 53.35 0.23 53.35 0.23 53.35 0.23

PageBlocks 74.15 0.24 73.88 0.23 73.88 0.23 73.73 0.25 73.73 0.25
Dermatology 57.35 0.49 68.87 0.63 71.16 0.66 71.39 0.66 71.39 0.66

Glass 44.80 0.23 47.18 0.27 51.24 0.30 52.19 0.30 52.19 0.30
Zoo 85.00 0.49 85.00 0.49 85.00 0.49 85.00 0.49 85.00 0.49
Ecoli 58.67 0.23 57.72 0.23 51.86 0.20 52.17 0.21 52.17 0.21
Led 21.69 0.22 29.56 0.29 35.38 0.35 35.16 0.35 35.16 0.35

PenDigits 35.86 0.36 46.76 0.47 50.41 0.50 50.74 0.51 50.74 0.51
Soybean 57.18 0.52 58.60 0.53 56.82 0.52 57.36 0.52 57.36 0.52

chessKRvK 11.22 0.11 22.26 0.13 22.48 0.11 22.50 0.11 22.50 0.11
LetterRecog 18.46 0.18 20.51 0.21 21.67 0.22 21.54 0.22 21.54 0.22

Mean 50.14 0.35 54.50 0.39 55.16 0.40 55.29 0.40 55.29 0.40

Table B.13: Average Accuracy and AUC values produced when using the Multiple
Path strategy coupled with the best normalised accumulated confidence class label
selection mechanism, with respect to a CARM and k-mean generated Binary Tree

model, using a range of values for σ

Data set
Threshold Value (σ)

σ = 90 σ = 80 σ = 70 σ = 60 σ = 50
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 59.74 0.59 59.06 0.59 59.02 0.59 58.92 0.59 58.92 0.59
Wine 78.99 0.81 78.99 0.81 78.99 0.81 78.99 0.81 78.99 0.81

Nursery 80.32 0.43 82.67 0.44 80.28 0.40 82.99 0.42 84.41 0.43
Heart 47.01 0.30 54.11 0.25 53.76 0.24 53.76 0.24 53.76 0.24

PageBlocks 90.29 0.0.24 90.79 0.24 91.17 0.35 90.79 0.24 90.79 0.24
Dermatology 63.08 0.61 77.85 0.69 77.34 0.68 74.92 0.64 74.92 0.64

Glass 43.85 0.27 47.98 0.29 48.93 0.29 48.46 0.29 48.46 0.29
Zoo 87.00 0.51 88.00 0.52 88.00 0.52 88.00 0.52 88.00 0.52
Ecoli 64.24 0.29 64.85 0.28 64.85 0.28 64.55 0.28 65.15 0.28
Led 34.72 0.34 56.69 0.56 52.13 0.52 54.78 0.55 54.78 0.55

PenDigits 58.73 0.59 60.60 0.61 60.86 0.61 60.87 0.61 61.12 0.61
Soybean 76.55 0.75 79.01 0.75 79.01 0.76 79.01 0.76 79.01 0.76

chessKRvK 21.51 0.13 28.16 0.16 31.06 0.17 33.02 0.18 32.99 0.18
LetterRecog 10.08 0.10 18.70 0.19 27.87 0.28 29.43 0.29 29.58 0.30

Mean 58.29 0.44 63.39 0.46 63.81 0.46 64.18 0.46 64.35 0.46
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Table B.14: Average Accuracy and AUC values produced when using the Multiple
Path strategy coupled with the best normalised accumulated confidence class label
selection mechanism, with respect to a CARM and data splitting generated Binary

Tree model, using a range of values for σ

Data set
Threshold Value (σ)

σ = 90 σ = 80 σ = 70 σ = 60 σ = 50
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 57.44 0.58 57.44 0.58 57.44 0.58 57.02 0.58 57.02 0.58
Wine 78.59 0.76 78.59 0.76 78.59 0.76 78.59 0.76 78.59 0.76

Nursery 86.81 0.43 86.81 0.43 86.81 0.43 86.81 0.43 86.81 0.43
Heart 52.39 0.20 52.39 0.20 52.39 0.20 52.39 0.20 52.39 0.20

PageBlocks 89.77 0.20 89.77 0.20 89.77 0.20 89.77 0.20 89.77 0.20
Dermatology 60.28 0.46 60.28 0.46 60.28 0.46 60.28 0.46 60.28 0.46

Glass 60.28 0.46 61.56 0.31 61.56 0.31 61.56 0.31 61.56 0.31
Zoo 85.00 0.49 85.00 0.49 85.00 0.49 85.00 0.49 85.00 0.49
Ecoli 66.57 0.20 66.57 0.20 66.57 0.20 66.57 0.20 66.57 0.20
Led 32.16 0.32 32.16 0.32 41.53 0.41 45.53 0.45 45.53 0.45

PenDigits 32.22 0.33 40.99 0.41 40.12 0.40 42.68 0.42 42.68 0.42
Soybean 88.97 0.89 88.97 0.89 88.43 0.89 88.97 0.89 88.97 0.89

chessKRvK 14.03 0.09 23.61 0.13 27.28 0.13 28.13 0.14 28.13 0.14
LetterRecog 33.12 0.33 33.12 0.33 27.39 0.27 33.12 0.33 33.12 0.33

Mean 59.83 0.41 61.23 0.41 61.65 0.41 62.60 0.42 62.60 0.42

Table B.15: Average Accuracy and AUC values produced when using the Multiple
Path strategy coupled with the best normalised accumulated confidence class label
selection mechanism, with respect to a CARM and divisive hierarchical clustering

generated Binary Tree model, using a range of values for σ

Data set
Threshold Value (σ)

σ = 90 σ = 80 σ = 70 σ = 60 σ = 50
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 46.00 0.46 61.28 0.61 61.58 0.61 61.62 0.61 61.62 0.61
Wine 79.53 0.81 84.28 0.86 84.28 0.86 84.28 0.86 84.28 0.86

Nursery 45.36 0.26 49.54 0.25 53.06 0.27 53.07 0.27 53.07 0.27
Heart 51.35 0.24 53.63 0.23 53.35 0.23 53.35 0.23 53.35 0.23

PageBlocks 74.01 0.26 73.73 0.26 73.75 0.26 73.75 0.26 73.73 0.25
Dermatology 54.33 0.47 68.74 0.64 71.16 0.66 71.39 0.66 71.39 0.66

Glass 44.17 0.22 47.18 0.28 51.71 0.30 52.19 0.30 52.19 0.30
Zoo 74.18 0.42 85.00 0.49 85.00 0.49 85.00 0.49 85.00 0.49
Ecoli 56.20 0.21 54.69 0.20 52.17 0.21 52.17 0.21 52.17 0.21
Led 18.94 0.19 25.59 0.25 37.94 0.38 34.91 0.35 35.16 0.35

PenDigits 32.24 0.33 46.40 0.47 50.43 0.50 50.30 0.51 50.74 0.51
Soybean 43.10 0.45 56.47 0.52 56.83 0.52 57.36 0.52 57.36 0.52

chessKRvK 10.00 0.10 20.48 0.11 22.20 0.11 22.50 0.11 22.50 0.11
LetterRecog 13.04 0.13 18.63 0.19 21.57 0.22 21.54 0.22 21.54 0.22

Mean 45.89 0.33 53.26 0.38 55.36 0.40 55.25 0.40 55.29 0.40
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Table B.16: Average Accuracy and AUC values produced when using the Multiple
Path strategy coupled with the voting class label selection mechanism, with respect to

a CARM and k-mean generated Binary Tree model, using a range of values for σ

Data set
Threshold Value (σ)

σ = 90 σ = 80 σ = 70 σ = 60 σ = 50
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 59.40 0.59 58.94 0.59 58.90 0.59 58.92 0.59 58.92 0.59
Wine 78.59 0.81 78.99 0.81 78.79 0.81 78.99 0.81 78.99 0.81

Nursery 81.30 0.45 82.62 0.43 82.79 0.42 84.41 0.43 84.41 0.43
Heart 53.76 0.24 53.49 0.23 53.76 0.24 53.76 0.24 53.76 0.24

PageBlocks 90.79 0.24 90.79 0.24 90.79 0.24 90.79 0.24 90.79 0.24
Dermatology 66.87 0.56 68.07 0.57 74.64 0.64 74.92 0.64 74.92 0.64

Glass 46.48 0.26 46.48 0.26 46.48 0.26 48.46 0.29 48.46 0.29
Zoo 87.00 0.51 88.00 0.52 88.00 0.52 88.00 0.52 88.00 0.52
Ecoli 71.54 0.28 70.68 0.29 70.37 0.29 65.15 0.28 65.15 0.28
Led 31.47 0.31 35.91 0.36 48.56 0.49 54.78 0.55 54.78 0.55

PenDigits 68.27 0.68 66.68 0.67 66.42 0.66 61.12 0.61 61.12 0.61
Soybean 78.13 0.76 77.59 0.75 79.01 0.76 79.01 0.76 79.01 0.76

chessKRvK 26.91 0.20 31.14 0.23 32.13 0.17 32.99 0.18 32.99 0.18
LetterRecog 21.07 0.21 21.24 0.21 28.35 0.28 29.58 0.30 29.58 0.30

Mean 61.54 0.44 62.19 0.44 64.21 0.46 64.35 0.46 64.35 0.46

Table B.17: Average Accuracy and AUC values produced when using the Multiple
Path strategy coupled with the voting class label selection mechanism, with respect to
a CARM and data splitting generated Binary Tree model, using a range of values for σ

Data set
Threshold Value (σ)

σ = 90 σ = 80 σ = 70 σ = 60 σ = 50
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 57.02 0.58 57.02 0.58 57.02 0.58 57.02 0.58 57.02 0.58
Wine 77.39 0.74 78.59 0.76 78.59 0.76 78.59 0.76 78.59 0.76

Nursery 86.81 0.43 86.81 0.43 86.81 0.43 86.81 0.43 86.81 0.43
Heart 52.39 0.20 52.39 0.20 52.39 0.20 52.39 0.20 52.39 0.20

PageBlocks 89.77 0.20 89.77 0.20 89.77 0.20 89.77 0.20 89.77 0.20
Dermatology 59.76 0.46 60.28 0.46 60.28 0.46 60.28 0.46 60.28 0.46

Glass 58.20 0.20 58.20 0.20 58.20 0.20 61.56 0.31 61.56 0.31
Zoo 85.00 0.49 85.00 0.49 85.00 0.49 85.00 0.49 85.00 0.49
Ecoli 64.20 0.17 66.27 0.19 66.57 0.20 66.57 0.20 66.57 0.20
Led 19.25 0.18 24.47 0.23 37.53 0.37 45.53 0.45 45.53 0.45

PenDigits 21.49 0.21 36.40 0.36 40.45 0.40 42.68 0.42 42.68 0.42
Soybean 75.10 0.81 84.88 0.87 88.43 0.89 88.97 0.89 88.97 0.89

chessKRvK 10.02 0.06 7.32 0.07 24.66 0.13 28.06 0.14 28.13 0.14
LetterRecog 16.61 0.17 23.16 0.23 29.50 0.29 33.12 0.33 33.12 0.33

Mean 55.22 0.35 57.90 0.38 61.09 0.40 62.60 0.42 62.60 0.42
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Table B.18: Average Accuracy and AUC values produced when using the Multiple
Path strategy coupled with the voting class label selection mechanism, with respect
to a CARM and hierarchical clustering generated Binary Tree model, using a range of

values for σ

Data set
Threshold Value (σ)

σ = 90 σ = 80 σ = 70 σ = 60 σ = 50
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 56.54 0.56 61.54 0.61 61.54 0.61 61.62 0.61 61.62 0.61
Wine 85.46 0.86 84.28 0.86 84.28 0.86 84.28 0.86 84.28 0.86

Nursery 53.06 0.27 53.06 0.27 53.06 0.27 53.07 0.27 53.07 0.27
Heart 54.11 0.21 53.98 0.23 53.35 0.23 53.35 0.23 53.35 0.23

PageBlocks 74.15 0.24 73.88 0.23 73.88 0.23 73.73 0.25 73.73 0.25
Dermatology 63.14 0.53 70.41 0.65 71.16 0.66 71.39 0.66 71.39 0.66

Glass 50.11 0.27 50.11 0.27 50.11 0.27 52.19 0.30 52.19 0.30
Zoo 76.18 0.45 85.00 0.49 85.00 0.49 85.00 0.49 85.00 0.49
Ecoli 51.86 0.20 51.86 0.20 51.86 0.20 52.17 0.21 52.17 0.21
Led 29.44 0.29 30.56 0.30 40.41 0.40 35.16 0.35 35.16 0.35

PenDigits 62.54 0.62 52.26 0.52 51.26 0.51 50.74 0.51 50.74 0.51
Soybean 63.02 0.55 59.50 0.53 56.64 0.52 57.36 0.52 57.36 0.52

chessKRvK 29.55 0.19 26.15 0.15 22.80 0.11 22.50 0.11 22.50 0.11
LetterRecog 29.25 0.29 22.78 0.23 21.73 0.22 21.54 0.22 21.54 0.22

Mean 55.60 0.40 55.38 0.40 55.51 0.40 55.29 0.40 55.29 0.40



Appendix C

Following All Possible Paths

Within Rooted DAG

In this appendix the algorithm for following all possible paths, grater than a predefined

threshold, within a rooted DAG is presented (Algorithm 21).
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Algorithm 21 Rooted DAG Multi-Path Classification Following All Possible Paths

1: INPUT
2: r = A new unseen record
3: Root = Start node for the DAG
4: σ = Path selection threshold
5: OUTPUT
6: The predicted class label c for the input record r
7:

8: GLOBAL VARIABLES
9: Path = {} (Set of identified paths each comprised of: (i) a class label and

10: (ii) an associated normalised Bayesian probability value)
11:

12: Start
13: accumProb = 0.0 (Accumulated Bayesian probability start value)
14: counter = 0 (Counter for number of probability values in a followed path)
15: dagMultiPathClassify(r,Root, accumProb, counter)
16: c = Class label with highest probability value in Path
17: End
18:

19: function dagMultiPathClassify(r,Node, accumProb, counter)
20: C = Classification result for r using classifier Node.Gi

21: P = Bayesian probability values associated with each class group in C
22: C1 = Class group in C associated with highest probability value
23: p1 = Bayesian probability associated with C1

24: Ci = Class group in C
25: pi = Bayesian probability associated with Ci

26: if |C1| == 1 then
27: normProb = (AccumProb+ p1)/(counter + 1)
28: Path = Path ∪ 〈c, normProb〉 (c ∈ C1)
29: else
30: ChildNode = child node representing class group C1

31: dagMultiPathClassify(r, ChildNode, accumProb+ p1, counter + 1)
32: end if
33: for i = 2 to |C| do
34: if pi ≥ σ then
35: if |Ci| == 1 then
36: normProb = (AccumProb+ pi)/(countert+ 1)
37: Path = Path ∪ 〈c, normProb〉 (c ∈ Ci)
38: else
39: ChildNode = child node representing class group Ci

40: dagMultiPathClassify(r, ChildNode, accumProb+ pi, counter + 1)
41: end if
42: end if
43: end for
44: end function



Appendix D

Determining the Best Threshold

Value With respect to the Rooted

DAG Classification Model

Table D.1 presents the effect of using different values for τ with respect to CARM

in order to generate a rooted DAG classification model to generate the rooted DAG

classification model.
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Table D.1: Average Accuracy and AUC values obtained using different values for τ with respect to CARM in order to generate a rooted DAG
classification model

Data set Classes
τ = 40 τ = 30 τ = 20 τ = 10 τ = 16

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

Waveform 3 68.50 0.68 68.54 0.69 68.54 0.69 68.54 0.69 68.54 0.69
Wine 3 86.26 0.86 86.26 0.86 86.26 0.86 86.26 0.86 86.26 0.86

Nursery 5 35.86 0.32 66.25 0.32 86.81 0.43 86.81 0.43 86.81 0.43
Heart 5 53.42 0.24 49.63 0.26 52.60 0.20 53.76 0.20 53.76 0.20

PageBlocks 5 89.77 0.20 89.77 0.20 89.77 0.20 89.77 0.20 89.77 0.20
Dermatology 6 60.10 0.41 67.42 0.50 79.62 0.71 79.62 0.71 79.62 0.71

Glass 7 51.71 0.18 51.71 0.18 51.71 0.18 61.71 0.36 61.71 0.36
Zoo 7 63.18 0.26 75.09 0.37 83.09 0.46 88.00 0.52 88.00 0.52
Ecoli 8 39.21 0.17 28.28 0.17 32.12 0.24 32.12 0.24 32.12 0.24
Led 10 26.25 0.25 20.75 0.21 35.25 0.36 40.06 0.40 40.06 0.40

PenDigits 10 28.51 0.27 28.51 0.27 28.51 0.27 46.76 0.47 46.76 0.47

Mean 54.80 0.35 57.47 0.37 63.12 0.42 66.67 0.46 66.67 0.46



Table D.2: Accuracy and AUC values produced when using the two branch strategy and the NAP mechanism with respect to a rooted DAG using
a range of values for σ

Data set
σ

0.1× 100 0.1× 10−1 0.1× 10−2 0.1× 10−3 0.1× 10−4 0.1× 10−5 0.0 0.6× 10−4 0.7× 10−4

ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77
Wine 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95

Nursery 90.26 0.45 90.28 0.45 90.28 0.45 90.28 0.45 90.17 0.45 90.28 0.45 90.28 0.45 90.17 0.45 90.28 0.45
Heart 55.91 0.35 56.60 0.34 56.60 0.34 56.60 0.34 55.57 0.35 56.60 0.34 56.60 0.34 55.57 0.35 55.37 0.35

PageBlocks 92.69 0.52 92.65 0.52 92.65 0.52 92.65 0.52 92.65 0.52 92.65 0.52 92.65 0.52 92.65 0.52 92.65 0.52
Dermatology 87.23 0.85 87.23 0.85 87.23 0.85 87.23 0.85 87.23 0.85 87.23 0.85 87.23 0.85 87.23 0.85 87.23 0.85

Glass 69.81 0.46 70.29 0.46 70.29 0.46 70.29 0.46 71.16 0.50 70.29 0.46 70.29 0.46 71.16 0.50 72.99 0.51
Zoo 92.18 0.58 91.18 0.57 91.18 0.57 91.18 0.57 93.18 0.59 93.18 0.59 93.18 0.59 93.18 0.59 92.18 0.58
Ecoli 84.43 0.41 84.38 0.39 84.38 0.39 84.38 0.39 82.26 0.38 84.38 0.39 84.38 0.39 82.26 0.38 82.56 0.38
Led 75.66 0.76 75.47 0.76 75.47 0.76 75.47 0.76 75.56 0.76 75.47 0.76 75.47 0.76 75.56 0.76 75.56 0.76

PenDigits 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83
Soybean 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92

Mean 82.88 0.65 82.87 0.65 82.87 0.65 82.87 0.65 82.85 0.66 83.04 0.65 83.04 0.65 82.85 0.66 82.94 0.66



Table D.3: Accuracy and AUC values produced when using the two branch strategy and the voting mechanism with respect to a rooted DAG
using a range of values for σ

Data set
Threshold Value (σ)

0.1× 100 0.1× 10−1 0.1× 10−2 0.1× 10−3 0.1× 10−4 0.1× 10−5 0.0 0.5× 10−5 0.5× 10−4

ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77 76.88 0.77 77.00 0.77 77.00 0.77
Wine 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95 93.91 0.95 95.08 0.95 95.08 0.95

Nursery 90.26 0.45 90.26 0.45 90.26 0.45 90.28 0.45 90.26 0.45 90.26 0.45 90.26 0.45 90.26 0.45 90.28 0.45
Heart 55.91 0.35 55.91 0.35 55.63 0.35 56.32 0.34 57.63 0.37 57.98 0.36 58.67 0.37 57.63 0.37 56.94 0.34

PageBlocks 92.69 0.52 92.69 0.52 92.69 0.52 92.65 0.52 92.65 0.52 92.65 0.52 92.65 0.52 92.65 0.52 92.65 0.52
Dermatology 87.23 0.85 87.23 0.85 87.23 0.85 86.94 0.85 87.51 0.85 87.18 0.85 87.46 0.85 86.94 0.85 86.94 0.85

Glass 69.81 0.46 69.81 0.45 69.81 0.45 70.29 0.46 69.81 0.45 70.29 0.45 70.29 0.46 70.76 0.46 69.81 0.45
Zoo 92.18 0.58 92.18 0.58 92.18 0.58 91.18 0.57 91.18 0.57 91.18 0.57 91.18 0.57 91.18 0.57 91.18 0.57
Ecoli 84.43 0.41 84.69 0.41 84.38 0.39 84.38 0.39 84.38 0.39 84.38 0.39 84.38 0.39 84.38 0.39 84.38 0.39
Led 75.66 0.76 75.44 0.76 75.50 0.76 75.47 0.76 75.47 0.76 75.47 0.76 75.47 0.76 75.47 0.76 75.47 0.76

PenDigits 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83
Soybean 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92

Mean 82.88 0.65 82.89 0.65 82.84 0.65 82.83 0.65 82.94 0.65 82.98 0.65 82.96 0.65 82.97 0.65 82.84 0.65



Table D.4: Accuracy and AUC values produced when using the two branch strategy and the BIP mechanism with respect to a rooted DAG using
a range of values for σ

Data set
Threshold Value (σ)

0.1× 10−1 0.1× 10−2 0.1× 10−3 0.1× 10−4 0.1× 10−5 0.0 0.5× 10−5 0.5× 10−4

ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77
Wine 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95 95.67 0.96 95.67 0.96 95.08 0.95

Nursery 90.26 0.45 90.26 0.45 90.25 0.45 90.25 0.45 90.25 0.45 90.25 0.45 90.25 0.45 90.28 0.45
Heart 55.91 0.35 55.91 0.35 56.19 0.35 56.19 0.35 55.84 0.35 55.22 0.35 56.19 0.35 56.19 0.35

PageBlocks 92.69 0.52 92.69 0.52 92.69 0.52 92.65 0.52 92.65 0.52 92.65 0.52 92.65 0.52 92.65 0.52
Dermatology 87.23 0.85 87.51 0.85 87.23 0.85 86.03 0.85 86.03 0.85 85.75 0.85 86.03 0.85 86.94 0.85

Glass 69.81 0.46 70.29 0.46 72.04 0.49 70.69 0.50 70.21 0.50 68.30 0.49 69.43 0.49 72.11 0.50
Zoo 92.18 0.58 92.18 0.58 92.18 0.58 92.27 0.59 92.27 0.59 92.27 0.59 92.27 0.59 93.18 0.59
Ecoli 84.43 0.41 83.78 0.40 82.37 0.38 82.26 0.38 82.26 0.38 82.26 0.38 82.26 0.38 82.56 0.38
Led 75.66 0.76 75.41 0.75 75.41 0.75 75.41 0.75 75.41 0.75 75.41 0.75 75.41 0.75 75.41 0.75

PenDigits 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83
Soybean 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92

Mean 82.88 0.65 82.87 0.65 82.90 0.65 82.68 0.66 82.61 0.66 82.43 0.66 82.62 0.66 82.98 0.66



Table D.5: Accuracy and AUC values produced when using the three branch strategy with and the normalised accumulated weight mechanism
with respect to a rooted DAG using a range of values for σ

Data set
Threshold Value (σ)

0.1× 100 0.1× 10−1 0.1× 10−2 0.1× 10−3 0.1× 10−4 0.1× 10−5 0.0 0.5× 10−4

ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77 77.02 0.77 77.00 0.77
Wine 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95

Nursery 90.26 0.45 90.26 0.45 90.26 0.45 90.65 0.48 88.94 0.58 87.58 0.57 54.54 0.41 91.40 0.53
Heart 55.91 0.35 55.91 0.35 56.60 0.37 56.60 0.38 54.73 0.37 54.39 0.37 53.76 0.38 55.63 0.38

PageBlocks 92.69 0.52 92.69 0.52 91.89 0.53 91.72 0.53 91.69 0.53 91.69 0.53 91.67 0.53 91.69 0.53
Dermatology 87.23 0.85 87.23 0.85 87.23 0.85 86.66 0.85 86.37 0.84 85.51 0.84 84.66 0.84 86.66 0.85

Glass 69.81 0.46 69.81 0.46 67.03 0.46 64.97 0.50 59.09 0.51 54.40 0.49 51.07 0.47 63.22 0.51
Zoo 92.18 0.58 92.18 0.58 92.18 0.58 93.18 0.59 93.18 0.59 93.18 0.59 92.27 0.59 93.18 0.59
Ecoli 84.43 0.41 84.13 0.41 78.46 0.38 71.84 0.33 68.55 0.33 68.55 0.33 68.55 0.33 70.37 0.33
Led 75.66 0.76 75.50 0.76 75.44 0.76 75.41 0.76 75.41 0.76 75.41 0.76 75.41 0.76 75.41 0.76

PenDigits 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 84.33 0.84 83.58 0.83
Soybean 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.22 0.92 90.75 0.92

Mean 82.88 0.65 82.84 0.65 82.13 0.65 81.45 0.66 80.36 0.67 79.76 0.66 76.55 0.65 81.16 0.66



Table D.6: Accuracy and AUC values produced when using the all branch strategy with and the normalised accumulated weight mechanism with
respect to a rooted DAG using a range of values for σ

Data set
Threshold Value (σ)

0.1× 100 0.1× 10−1 0.1× 10−2 0.1× 10−3 0.1× 10−4 0.1× 10−5 0.0 0.5× 10−4

ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77 77.00 0.77 77.02 0.77 77.00 0.77
Wine 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95 95.08 0.95

Nursery 90.26 0.45 90.26 0.45 90.26 0.45 90.65 0.48 89.48 0.58 88.80 0.58 52.76 0.40 91.40 0.53
Heart 55.91 0.35 55.91 0.35 56.25 0.36 55.98 0.37 54.94 0.37 54.25 0.36 52.94 0.35 55.29 0.37

PageBlocks 92.69 0.52 92.69 0.52 91.89 0.53 91.89 0.53 91.85 0.53 91.85 0.53 91.83 0.53 91.85 0.53
Dermatology 87.23 0.85 87.23 0.85 87.23 0.85 87.23 0.85 87.23 0.85 86.37 0.84 85.80 0.84 87.23 0.85

Glass 69.81 0.46 69.81 0.46 67.03 0.45 66.40 0.50 61.87 0.51 58.13 0.49 54.80 0.48 66.00 0.52
Zoo 92.18 0.58 92.18 0.58 92.18 0.58 93.18 0.59 93.18 0.59 93.18 0.59 92.27 0.59 93.18 0.59
Ecoli 84.43 0.41 84.43 0.41 79.93 0.38 74.52 0.34 72.45 0.34 72.45 0.34 72.45 0.34 73.36 0.34
Led 75.66 0.76 75.56 0.76 75.56 0.76 75.56 0.76 75.41 0.76 75.56 0.76 75.56 0.76 75.56 0.76

PenDigits 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 84.26 0.84 83.58 0.83
Soybean 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92

Mean 82.88 0.65 82.87 0.65 82.23 0.65 81.82 0.66 81.07 0.67 80.58 0.66 77.13 0.65 81.69 0.66



Table D.7: AUC values produced when using the two path strategy with respect to a CARM generated DAG model and a range of values for σ

Data set
Threshold Value (σ)

σ = 95 σ = 70 σ = 60 σ = 50 σ = 45 σ = 40
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Waveform 68.54 0.69 68.54 0.69 68.54 0.69 68.54 0.69 58.92 0.59 55.06 0.55
Wine 86.26 0.86 86.26 0.86 86.26 0.86 86.26 0.86 70.73 0.70 70.73 0.70

Nursery 86.81 0.43 86.81 0.43 86.81 0.43 86.81 0.43 86.81 0.43 86.81 0.43
Heart 53.76 0.20 53.76 0.20 53.76 0.20 53.76 0.20 42.16 0.18 18.63 0.18

PageBlocks 89.77 0.20 89.77 0.20 89.77 0.20 89.77 0.20 89.77 0.20 89.77 0.20
Dermatology 79.62 0.71 79.62 0.71 79.62 0.71 79.62 0.71 79.91 0.74 80.82 0.77

Glass 61.71 0.36 61.71 0.36 61.71 0.36 61.71 0.36 61.71 0.39 57.35 0.38
Zoo 88.00 0.52 88.00 0.52 88.00 0.52 88.00 0.52 88.00 0.52 88.00 0.52
Ecoli 32.42 0.25 32.42 0.25 32.42 0.25 32.42 0.25 39.51 0.28 39.77 0.26
Led 42.06 0.43 42.06 0.43 40.06 0.43 40.06 0.43 39.56 0.41 39.56 0.41

PenDigits 41.62 0.41 41.62 0.41 41.62 0.41 46.76 0.47 32.57 0.33 32.57 0.33
Mean 66.42 0.46 66.42 0.46 66.23 0.46 66.70 0.47 62.70 0.43 59.92 0.43
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Table E.1: Results obtained using a range of σ values with respect to Naive Bayes classification, the multiple paths strategy and all-level DAGs

Data set
Threshold Value (σ)

0.1× 100 0.1× 10−1 0.1× 10−2 0.1× 10−3 0.1× 10−4 0.1× 10−5 0.0 0.5× 10−4

ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Nursery 56.93 0.29 56.93 0.29 56.93 0.29 56.94 0.29 61.50 0.32 61.50 0.32 61.50 0.32 56.94 0.29
heart 55.22 0.35 55.22 0.35 55.22 0.35 54.88 0.35 54.88 0.35 54.53 0.34 53.91 0.34 54.88 0.35

PageBlocks 91.83 0.53 91.83 0.53 91.87 0.54 91.87 0.54 91.87 0.54 91.87 0.54 91.87 0.54 91.87 0.54
Dermatology 87.23 0.85 87.23 0.85 87.23 0.85 87.23 0.85 87.23 0.85 86.94 0.85 86.66 0.85 87.23 0.85

glass 69.81 0.46 69.81 0.46 70.29 0.46 72.51 0.50 71.16 0.50 70.69 0.50 68.78 0.50 72.99 0.51
Zoo 92.18 0.58 92.18 0.58 92.18 0.58 92.18 0.58 93.18 0.59 93.18 0.59 93.18 0.59 92.18 0.58
ecoli 84.43 0.41 84.69 0.41 84.08 0.40 82.87 0.38 82.26 0.38 82.26 0.38 82.26 0.38 82.56 0.38
led 75.66 0.76 75.63 0.76 75.56 0.76 75.56 0.76 75.56 0.76 75.56 0.76 75.56 0.76 75.56 0.76

PenDigits 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83 83.58 0.83
soybean 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92 90.75 0.92
Mean 78.76 0.60 78.79 0.60 78.77 0.60 78.84 0.60 79.20 0.60 79.09 0.60 78.81 0.60 78.85 0.60



Table E.2: Results obtained using a range of σ values with respect to Naive Bayes classification, the multiple path strategy and two-level DAGs

Data set
Threshold Value (σ)

0.1× 100 0.1× 10−1 0.1× 10−2 0.1× 10−3 0.1× 10−4 0.1× 10−5 0.0 0.5× 10−4 0.7× 10−4

ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Nursery 58.03 0.30 58.03 0.30 58.03 0.30 59.10 0.32 59.11 0.33 59.11 0.33 58.03 0.30 59.14 0.33 59.11 0.33
Heart 54.19 0.35 54.19 0.35 54.19 0.35 54.19 0.35 54.19 0.35 53.84 0.34 54.19 0.35 54.19 0.35 54.19 0.35

PageBlocks 91.83 0.53 91.83 0.53 91.83 0.53 91.87 0.54 91.87 0.54 91.87 0.54 91.87 0.54 91.87 0.54 91.87 0.54
Dermatology 86.66 0.85 86.66 0.85 86.66 0.85 86.66 0.85 86.37 0.84 86.37 0.84 86.66 0.85 86.66 0.85 86.66 0.85

Glass 59.49 0.49 59.49 0.49 59.49 0.49 57.58 0.48 57.58 0.48 57.58 0.48 58.06 0.49 57.58 0.48 57.58 0.48
Zoo 94.18 0.61 94.18 0.61 94.18 0.61 93.18 0.59 93.18 0.59 93.18 0.59 93.18 0.59 93.18 0.59 93.18 0.59
Ecoli 80.23 0.37 80.23 0.37 80.23 0.37 79.93 0.37 79.93 0.37 79.93 0.37 79.93 0.37 79.93 0.37 79.93 0.37
Led 75.56 0.75 75.56 0.75 75.56 0.75 75.56 0.75 75.56 0.75 75.56 0.75 75.56 0.75 75.56 0.75 75.56 0.75

PenDigits 83.62 0.84 83.62 0.84 83.62 0.84 83.62 0.84 83.62 0.84 83.62 0.84 83.62 0.84 83.62 0.84 83.62 0.84
Soybean 90.39 0.92 90.39 0.92 90.39 0.92 90.39 0.92 90.39 0.92 90.22 0.92 90.39 0.92 90.39 0.92 90.39 0.92

ChessKRvK 18.62 0.32 18.62 0.32 18.62 0.32 18.7 0.32 18.97 0.32 18.97 0.32 18.64 0.32 18.79 0.32 18.83 0.32
LetterRecog 55.71 0.56 55.71 0.56 55.71 0.56 55.70 0.56 55.70 0.56 55.70 0.56 55.70 0.56 55.70 0.56 55.70 0.56

Mean 70.71 0.57 70.71 0.57 70.71 0.57 70.54 0.57 70.54 0.57 70.50 0.57 70.49 0.57 70.55 0.58 70.55 0.58
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Table E.3: Results obtained using a range of σ values with respect to CARM, the
multiple paths strategy and all-level DAGs

Data set
Threshold Value (σ)

σ = 50 σ = 40 σ = 45 σ = 47
ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Nursery 86.81 0.43 86.81 0.43 86.81 0.43 86.81 0.43
Heart 53.07 0.20 17.32 0.16 42.51 0.18 53.07 0.20

PageBlocks 91.27 0.22 90.90 0.28 91.21 0.22 91.23 0.22
Dermatology 79.62 0.71 81.28 0.78 79.91 0.74 79.62 0.71

Glass 61.71 0.36 57.35 0.38 62.11 0.39 61.71 0.36
Zoo 88.00 0.52 88.00 0.52 88.00 0.52 88.00 0.52
Ecoli 32.42 0.25 40.68 0.27 39.51 0.28 34.20 0.26
Led 42.06 0.43 39.56 0.41 39.56 0.41 40.44 0.42

PenDigits 41.62 0.42 29.21 0.30 32.71 0.33 32.71 0.33
Mean 64.06 0.41 59.01 0.39 62.48 0.39 63.09 0.38

Table E.4: Results obtained using a range of σ values with respect to CARM, the
multiple paths strategy and two-level DAGs

Data set
Threshold Value (σ)

σ = 50 σ = 40 σ = 45 σ = 47
ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Nursery 86.81 0.43 62.44 0.45 62.44 0.45 62.44 0.45
heart 51.70 0.20 34.71 0.15 36.09 0.15 33.68 0.16

PageBlocks 91.47 0.45 90.75 0.32 90.75 0.32 90.75 0.32
Dermatology 65.83 0.55 68.48 0.57 68.48 0.57 68.48 0.57

glass 59.81 0.34 39.24 0.34 39.24 0.34 39.24 0.34
Zoo 86.00 0.50 88.00 0.52 88.00 0.52 88.00 0.52
ecoli 62.94 0.23 23.22 0.13 23.22 0.13 23.22 0.13
led 19.28 0.18 20.13 0.19 19.28 0.18 20.13 0.19

PenDigits 18.95 0.19 16.81 0.16 16.81 0.16 16.81 0.16
soybean 90.04 0.92 90.04 0.92 90.04 0.92 90.04 0.92

chessKRvK 63.28 0.40 53.38 0.38 53.44 0.37 53.28 0.38
Mean 63.28 0.40 53.38 0.38 53.44 0.37 53.28 0.38
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Table F.1: Results obtained using a range of α values with respect to Max-levels DAG, using the single-path strategy

Data set
Threshold Value (α)

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.45
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Nursery 56.93 0.29 56.93 0.29 56.93 0.29 79.83 0.40 79.83 0.40 79.83 0.40 79.83 0.40 79.83 0.40 79.83 0.40 79.83 0.40
Heart 56.25 0.36 57.01 0.39 57.01 0.36 57.01 0.36 57.01 0.36 57.01 0.36 57.01 0.36 57.01 0.36 57.01 0.36 57.01 0.36

PageBlocks 91.83 0.53 91.83 0.53 92.69 0.52 92.69 0.52 92.69 0.52 92.69 0.52 92.69 0.52 92.69 0.52 92.69 0.52 92.69 0.52
Dermatology 87.23 0.85 87.23 0.85 86.94 0.85 86.94 0.85 86.94 0.85 86.94 0.85 86.94 0.85 86.94 0.85 86.94 0.85 86.94 0.85

Glass 69.81 0.46 69.26 0.46 69.26 0.46 69.26 0.46 69.26 0.46 69.26 0.46 69.26 0.46 69.26 0.46 69.26 0.46 69.26 0.46
Zoo 92.18 0.58 90.18 0.56 89.18 0.54 89.18 0.54 89.18 0.54 89.18 0.54 89.18 0.54 89.18 0.54 89.18 0.54 89.18 0.54
Ecoli 84.43 0.41 83.52 0.39 83.52 0.39 83.52 0.39 83.52 0.39 83.52 0.39 83.52 0.39 83.52 0.39 83.52 0.39 83.52 0.39
Led 75.66 0.76 75.66 0.76 75.66 0.76 75.66 0.76 75.66 0.76 75.66 0.76 75.66 0.76 75.66 0.76 75.66 0.76 75.66 0.76

PenDigits 83.59 0.84 83.02 0.83 83.02 0.83 83.02 0.83 83.02 0.83 83.02 0.83 83.02 0.83 83.02 0.83 83.02 0.83 83.02 0.83
Soybean 90.57 0.92 90.57 0.92 90.57 0.92 90.57 0.92 90.57 0.92 90.57 0.92 90.57 0.92 90.57 0.92 90.57 0.92 90.57 0.92
Mean 78.85 0.60 78.52 0.60 78.48 0.59 80.77 0.60 80.77 0.60 80.77 0.60 80.77 0.60 80.77 0.60 80.77 0.60 80.77 0.60



Table F.2: Results obtained using a range of α values with respect to Min-levels DAG, using the single-path strategy

Data set
Threshold Value (α)

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.45 0.35
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Nursery 63.36 0.32 63.03 0.32 63.03 0.32 90.12 0.45 71.49 0.47 71.64 0.48 91.44 0.54 91.44 0.54 71.33 0.32 63.03 0.32
Heart 55.98 0.36 55.35 0.36 55.01 0.37 59.91 0.40 59.29 0.39 59.29 0.39 59.29 0.39 59.29 0.39 58.60 0.37 56.73 0.35

PageBlocks 91.87 0.54 91.87 0.54 91.87 0.54 92.02 0.49 92.02 0.49 92.02 0.49 92.02 0.49 92.02 0.49 92.02 0.49 91.87 0.54
Dermatology 86.09 0.84 86.09 0.84 86.09 0.84 85.80 0.84 85.23 0.82 82.55 0.79 82.55 0.79 82.55 0.79 86.43 0.85 85.80 0.84

Glass 57.58 0.48 57.58 0.48 57.58 0.48 57.10 0.48 55.75 0.48 58.61 0.47 56.38 0.46 56.38 0.46 56.15 0.48 57.10 0.48
Zoo 93.18 0.59 93.18 0.59 93.18 0.59 93.18 0.59 93.18 0.59 92.18 0.58 90.18 0.58 90.18 0.58 93.18 0.59 93.18 0.59
Ecoli 79.98 0.37 82.40 0.40 82.40 0.40 82.40 0.40 81.45 0.39 80.54 0.37 80.23 0.38 80.23 0.38 81.79 0.39 82.40 0.40
Led 75.75 0.76 75.75 0.76 75.75 0.76 75.72 0.75 74.16 0.74 64.47 0.65 64.47 0.65 64.47 0.65 75.50 0.75 75.75 0.76

PenDigits 83.62 0.84 83.62 0.84 83.62 0.84 83.68 0.84 82.75 0.83 78.92 0.79 78.92 0.79 78.92 0.79 83.84 0.84 83.60 0.84
Soybean 89.68 0.92 89.68 0.92 89.68 0.92 89.86 0.92 90.04 0.92 87.92 0.87 85.58 0.85 85.58 0.85 89.86 0.92 89.68 0.92

ChessKRvK 17.71 0.33 17.71 0.33 17.71 0.33 18.33 0.33 21.37 0.34 30.40 0.34 34.58 0.33 34.58 0.33 19.27 0.33 17.84 0.33
LetterRecog 55.84 0.56 55.84 0.56 55.84 0.56 55.84 0.56 53.31 0.53 49.44 0.49 49.44 0.49 49.44 0.49 55.83 0.56 55.85 0.56

Mean 70.89 0.58 71.01 0.58 70.98 0.58 73.66 0.59 71.67 0.58 70.67 0.56 72.09 0.56 72.09 0.56 71.98 0.57 71.07 0.58



Table F.3: Results obtained using a range of σ values for following multiple paths using the Max-levels DAG variation and α = 0.40 with respect
to breadth pruning

Data set
Threshold Value (σ)

0.1× 100 0.1× 10−1 0.1× 10−2 0.1× 10−3 0.1× 10−4 0.1× 10−5 0.1× 10−6 0.0 0.5× 10−4 0.5× 10−5

ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC
Nursery 79.83 0.40 79.83 0.40 79.83 0.40 79.85 0.40 82.32 0.41 82.32 0.41 82.32 0.41 82.32 0.41 82.32 0.41 82.32 0.41
Heart 57.01 0.36 57.08 0.36 57.08 0.36 57.08 0.36 56.32 0.36 55.63 0.35 55.63 0.35 55.63 0.35 57.08 0.36 56.67 0.35

PageBlocks 92.69 0.52 92.65 0.52 92.65 0.52 92.65 0.52 92.65 0.52 92.65 0.52 92.65 0.52 92.64 0.52 92.65 0.52 92.69 0.52
Dermatology 86.94 0.85 87.23 0.85 87.23 0.85 87.23 0.85 87.23 0.85 86.94 0.85 86.94 0.85 86.37 0.85 87.23 0.85 86.94 0.85

Glass 69.26 0.46 71.64 0.50 71.64 0.50 71.64 0.50 68.38 0.50 65.12 0.49 63.70 0.48 63.70 0.48 71.24 0.51 69.81 0.47
Zoo 89.18 0.54 89.18 0.54 89.18 0.54 89.18 0.54 92.18 0.58 93.18 0.59 93.18 0.59 93.18 0.59 91.18 0.56 89.18 0.54
Ecoli 83.52 0.39 82.87 0.39 82.87 0.39 82.87 0.39 82.26 0.39 82.26 0.39 82.26 0.39 82.26 0.39 81.96 0.38 82.87 0.39
Led 75.66 0.76 75.53 0.76 75.53 0.76 75.53 0.76 75.53 0.76 75.53 0.76 75.53 0.76 75.53 0.76 75.53 0.76 75.56 0.76

PenDigits 83.02 0.83 83.02 0.83 83.02 0.83 83.02 0.83 83.02 0.83 83.02 0.83 83.11 0.83 84.32 0.84 83.02 0.83 83.02 0.83
Soybean 90.57 0.92 90.57 0.92 90.57 0.92 90.57 0.92 90.57 0.92 90.57 0.92 90.57 0.92 90.39 0.92 90.57 0.92 90.57 0.92

Mean 80.768 0.603 80.960 0.607 80.960 0.607 80.962 0.607 81.046 0.612 80.722 0.611 80.589 0.610 80.634 0.611 81.278 0.610 80.963 0.604



Table F.4: Results obtained using a range of σ values for following multiple paths using the Min-levels DAG variation and α = 0.40 with respect
to breadth pruning

Data set
Threshold Value (σ)

0.1× 100 0.1× 10−1 0.1× 10−2 0.1× 10−3 0.1× 10−4 0.1× 10−5 0.1× 10−6 0.0 0.5× 10−4

ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Nursery 71.33 0.39 71.33 0.39 71.33 0.39 68.79 0.39 66.28 0.39 66.28 0.39 66.28 0.39 66.28 0.39 71.33 0.39
Heart 59.91 0.40 59.91 0.40 59.91 0.40 59.36 0.40 59.64 0.40 59.29 0.40 59.64 0.40 58.95 0.39 59.91 0.40

PageBlocks 92.02 0.49 92.02 0.49 91.87 0.46 92.02 0.47 92.05 0.47 92.07 0.48 92.09 0.48 92.07 0.48 92.02 0.49
Dermatology 85.80 0.84 85.80 0.84 86.09 0.84 86.66 0.85 86.66 0.85 86.37 0.85 86.37 0.85 86.09 0.85 85.80 0.84

Glass 57.10 0.48 57.10 0.48 56.63 0.48 56.70 0.49 56.23 0.49 56.23 0.49 56.23 0.49 56.23 0.49 57.10 0.48
Zoo 93.18 0.59 93.18 0.59 93.18 0.59 93.18 0.59 93.18 0.59 93.18 0.59 93.18 0.59 93.18 0.59 93.18 0.59
Ecoli 82.40 0.40 82.10 0.40 80.89 0.39 80.89 0.39 80.89 0.39 80.89 0.39 80.89 0.39 80.89 0.39 82.40 0.40
Led 75.72 0.75 75.56 0.76 75.56 0.76 75.56 0.76 75.56 0.76 75.56 0.76 75.56 0.76 75.56 0.76 75.72 0.75

PenDigits 83.68 0.84 83.68 0.84 83.68 0.84 83.68 0.84 83.68 0.84 83.68 0.84 83.72 0.84 83.96 0.84 83.68 0.84
Soybean 89.86 0.92 89.86 0.92 89.86 0.92 89.86 0.92 89.86 0.92 89.86 0.92 89.86 0.92 89.86 0.92 89.86 0.92

ChessKRvK 18.33 0.33 18.33 0.33 18.34 0.33 18.34 0.33 19.25 0.34 19.24 0.34 19.24 0.34 19.24 0.34 18.33 0.33
LetterRecog 55.84 0.56 55.84 0.56 55.84 0.56 55.84 0.56 55.84 0.56 55.90 0.56 55.98 0.56 56.03 0.56 55.84 0.56

Mean 72.098 0.583 72.059 0.583 71.932 0.580 71.740 0.583 71.593 0.583 71.546 0.584 71.587 0.584 71.528 0.583 72.098 0.583



Table F.5: Results obtained using a range of σ values for following multiple paths within the DAG using the Max-levels DAG variation and the
best α value for each dataset with respect to breadth pruning

Data set auc
Threshold Value (σ)

0.1× 10−1 0.1× 10−2 0.1× 10−3 0.1× 10−4 0.1× 10−5 0.1× 10−6 0.0
ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC

Nursery 0.40 79.83 0.40 79.83 0.40 79.85 0.40 82.32 0.41 82.32 0.41 82.32 0.41 82.32 0.41
Heart 0.20 57.01 0.39 57.01 0.39 56.32 0.38 56.25 0.37 55.22 0.37 54.94 0.35 54.60 0.34

PageBlocks 0.20 91.83 0.53 91.85 0.53 91.87 0.54 91.87 0.54 91.87 0.54 91.87 0.54 91.87 0.54
Dermatology 0.20 87.23 0.85 87.23 0.85 87.23 0.85 87.23 0.85 86.94 0.85 86.94 0.85 86.66 0.85

Glass 0.10 69.81 0.46 70.29 0.46 72.51 0.50 71.16 0.50 70.21 0.50 68.30 0.50 68.30 0.50
Zoo 0.10 92.18 0.58 92.18 0.58 92.18 0.59 92.18 0.59 92.18 0.59 92.18 0.59 92.18 0.59
Ecoli 0.10 84.43 0.41 84.08 0.40 82.87 0.38 82.26 0.38 82.26 0.38 82.26 0.38 82.26 0.38
Led 0.40 75.53 0.76 75.53 0.76 75.53 0.76 75.53 0.76 75.53 0.76 75.53 0.76 75.53 0.76

PenDigits 0.10 83.59 0.84 83.59 0.84 83.59 0.84 83.59 0.84 83.59 0.84 83.59 0.84 84.34 0.84
Soybean 0.40 90.57 0.92 90.57 0.92 90.57 0.92 90.57 0.92 90.57 0.92 90.57 0.92 90.39 0.92

Mean 81.201 0.614 81.216 0.613 81.252 0.616 81.296 0.616 81.069 0.616 80.850 0.614 80.845 0.613



Table F.6: Results obtained using a range of σ values for following multiple paths using the Min-levels DAG variation and the best α value for
each dataset with respect to breadth pruning

Data set auc
Threshold Value (σ)

0.1× 100 0.1× 10−1 0.1× 10−2 0.1× 10−3 0.1× 10−4 0.1× 10−5 0.1× 10−6 0.0 0.5× 10−4

ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC ACC. AUC
Nursery 0.70 91.44 0.54 91.44 0.54 91.44 0.54 91.44 0.54 90.02 0.58 86.57 0.57 80.46 0.54 78.22 0.53 91.44 0.54
Heart 0.40 59.91 0.40 59.91 0.40 59.91 0.40 59.36 0.40 59.64 0.40 59.29 0.40 59.64 0.40 58.95 0.39 59.36 0.40

PageBlocks 0.40 92.02 0.49 92.02 0.49 91.87 0.46 92.02 0.47 92.05 0.47 92.07 0.48 92.09 0.48 92.07 0.48 92.02 0.47
Dermatology 0.30 86.09 0.84 86.09 0.84 86.09 0.84 85.51 0.84 85.51 0.84 85.23 0.84 85.23 0.84 85.23 0.84 85.51 0.84

Glass 0.30 57.58 0.48 57.58 0.48 57.58 0.48 57.66 0.49 57.18 0.49 57.18 0.49 57.18 0.49 57.18 0.49 57.66 0.49
Zoo 0.40 93.18 0.59 93.18 0.59 93.18 0.59 93.18 0.59 93.18 0.59 93.18 0.59 93.18 0.59 93.18 0.59 93.18 0.59
Ecoli 0.40 82.40 0.40 82.10 0.40 80.89 0.39 80.89 0.39 80.89 0.39 80.89 0.39 80.89 0.39 80.89 0.39 80.89 0.39
Led 0.30 75.75 0.76 75.72 0.76 75.66 0.76 75.66 0.76 75.66 0.76 75.66 0.76 75.66 0.76 75.66 0.76 75.66 0.76

PenDigits 0.45 83.84 0.84 83.84 0.84 83.84 0.84 83.84 0.84 83.84 0.84 83.84 0.84 83.87 0.84 84.05 0.84 83.84 0.84
Soybean 0.50 90.04 0.92 90.04 0.92 90.04 0.92 90.04 0.92 90.04 0.92 90.04 0.92 90.04 0.92 90.22 0.92 90.04 0.92

ChessKRvK 0.70 34.58 0.33 34.58 0.33 34.58 0.33 34.70 0.34 35.36 0.36 35.42 0.36 35.42 0.36 35.42 0.36 34.81 0.34
LetterRecog 0.35 55.85 0.56 55.85 0.56 55.84 0.56 55.84 0.56 55.84 0.56 55.90 0.56 55.90 0.56 56.02 0.56 55.86 0.56

Mean 75.223 0.596 75.196 0.596 75.077 0.593 75.012 0.595 74.934 0.600 74.606 0.600 74.130 0.598 73.924 0.596 75.023 0.595
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