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Abstract

This thesis describes research conducted in the field of image mining especially vol-

umetric image mining. The study investigates volumetric representation techniques

based on hierarchical spatial decomposition to classify three-dimensional (3D) images.

The aim of this study was to investigate the effectiveness of using hierarchical spatial

decomposition coupled with regional homogeneity in the context of volumetric data

representation. The proposed methods involve the following: (i) decomposition, (ii)

representation, (iii) single feature vector generation and (iv) classifier generation. In

the decomposition step, a given image (volume) is recursively decomposed until either

homogeneous regions or a predefined maximum level are reached. For measuring the

regional homogeneity, different critical functions are proposed. These critical functions

are based on histograms of a given region. Once the image is decomposed, two rep-

resentation methods are proposed: (i) to represent the decomposition using regions

identified in the decomposition (region-based) or (ii) to represent the entire decompo-

sition (whole image-based). The first method is based on individual regions, whereby

each decomposed sub-volume (region) is represented in terms of different statistical and

histogram-based techniques. Feature vector generation techniques are used to convert

the set of feature vectors for each sub-volume into a single feature vector. In the whole

image-based representation method, a tree is used to represent each image. Each node

in the tree represents a region (sub-volume) using a single value and each edge describes

the difference between the node and its parent node. A frequent sub-tree mining tech-

nique was adapted to identified a set of frequent sub-graphs. Selected sub-graphs are

then used to build a feature vector for each image. In both cases, a standard classifier

generator is applied, to the generated feature vectors, to model and predict the class

of each image. Evaluation was conducted with respect to retinal optical coherence to-

mography images in terms of identifying Age-related Macular Degeneration (AMD).

Two types of evaluation were used: (i) classification performance evaluation and (ii)

statistical significance testing using ANalysis Of VAriance (ANOVA). The evaluation

revealed that the proposed methods were effective for classifying 3D retinal images. It

is consequently argued that the approaches are generic.
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Chapter 1

Introduction

1.1 Overview

The past decade has seen the rapid development of three-dimensional (3D) imaging

acquisition technologies. This recent innovation has highlighted the need for more

advanced techniques to analyse such 3D image data. The potential for such techniques

is further highlighted by progress in the amount of computational power and storage

that is now available. There are a number of application domains where 3D images

are regularly used. One important domain is the medical domain where many different

types of images are used to support the prediction and management of diseases and

conditions.

Knowledge Discovery in Databases (KDD), or simply Knowledge Discovering in

Data, is a computer science technology directed at turning low-level data into high-

level knowledge [46]. More formally KDD can be described as the non-trivial process of

identifying valid, novel, potentially useful, previously unknown, and ultimately under-

standable patterns and useful information from data. The data mining element of the

KDD process can be argued to be the most significant element of the entire process;

it is where the desired knowledge discovery is actually undertaken. Data mining is

thus concerned with the specific task of extracting hidden patterns and/or other useful

information from the input data. Various techniques, from various disciplines, have

been proposed with which to conduct the data mining [36].

Data mining has traditionally been applied to straightforward tabular (database)

style data. However, there are many applications where we might wish to apply the

concept of data mining but the data is not naturally in a tabular format. One such

application domain is image mining, the extraction of useful information and patterns

from collections of images. Image mining, or Knowledge Discovery in Images (KDI),

encompasses processes outside of the normal scope of KDD. In this context, KDI uses

approaches from image processing, computer vision, image retrieval, and image under-

standing, as well as data mining approaches, in order to discover relevant knowledge

from images.
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One common image mining task is image classification. Classification can be defined

as the process of automatically creating a piece of software, called a classifier, which can

be used to categorise unseen data. Classifiers are typically built using a pre-labelled

training set and their effectiveness is typically established by applying it to a test set

whose labels are known (thus the actual labels can be compared with the derived

labels). In the case of image classification, a classifier might be built for the purpose

of disease/no-disease categorisation of medical images (“normal” versus “abnormal”).

This type of image classification is known as whole-image classification in contrast to

other types of classification where the task is to base the classification on some object

contained within an image.

Image mining is typically directed at two-dimensional (2D) images; however, as

noted above, recent technology exists whereby we can acquire 3D images (volumes).

Volumetric 3D image mining has received much less attention than 2D image mining

[6, 104, 149, 142]. This is largely because 3D image mining is a much more resource

intensive task than 2D image mining. In the context of image classification 3D image

classification is therefore a challenging task. However, 3D image classification provides

a solution to the need for advanced techniques with which to analyse 3D image data

as noted at the start of this section.

The subject matter for this thesis is thus 3D (volumetric) medical image classifi-

cation. The main issue with 3D image classification is not so much the data mining

techniques to be applied, these are frequently well understood, but the preprocessing of

the 3D data so as to enable the application of data mining techniques. The challenge

here is to translate the input data into some appropriate representation compatible with

the data mining techniques to be adapted, while at the same time ensuring that no key

elements are lost, elements that may be significant with respect to effective 3D image

classification. This thesis proposes a number of approaches to deal with the problem

of 3D image classification founded on the idea of hierarchical spatial decomposition.

The justification for this is presented in Section 1.3 below. Note that we can identify

two broad mechanisms for using 3D hierarchical decomposition in the context of 3D

volume classification. We can represent the decomposition using regions identified in

the decomposition (region-based) or we can represent the entire decomposition (whole

image-based).

To act as a focus for the research, the work has been directed at the detection

of retinal diseases such as Age-related Macular Degeneration (AMD) in 3D volumes

produced using Optical Coherence Tomography (OCT). Analogous to ultrasound, OCT

is a relatively new imaging technology that can produce cross-sectional views of a retina

at a high level of resolution and speed. AMD is a condition typically contracted in old

age, which leads to irreversible vision loss at its advanced stages [21, 66].

The rest of this introductory chapter is organised as follows. First additional dis-
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cussion concerning the motivation for the work is presented in Section 1.2. The specific

“research question”, and associated research issues, are presented in Section 1.3. Sec-

tion 1.4 outlines the research methodology adopted to address the research question

and issues, including the adopted evaluation strategy. Section 1.5 then highlights the

research contribution of the work, and Section 1.6 presents some of the published work

resulting from the research presented in this thesis. Section 1.7 reviews the structure

of the rest of this thesis.

1.2 Motivations

The main aim of the investigation presented in this thesis is to find efficient and ac-

curate approaches to represent 3D images using the concept of hierarchical spatial

decomposition, which will enable reliable classification with respect to real-world prob-

lems. Most of the research on volumetric date analysis to date has tended to focus on

feature extraction [32, 129, 139], image segmentation [55, 58, 136] and image alignment

and registration [93] rather than classification. There is very little published work on

the classification of volumetric data [1, 127]. In practice, at least with respect to the

medical image mining domain, this tends to be done by hand; although there are vari-

ous tools in current use to support 3D image analysis and diagnosis, these tend not to

fully automate the process. The automated diagnosis of diseases using 3D data, even

if only coarsely achieved, would clearly ease the time resource required to process such

images. Areas where automated diagnosis would be of particular value are in screen-

ing programmes where large quantities of image data need to be processed in such a

way that patients can receive results during the same consultation in which the data

is acquired (point of care diagnosis). Examples include breast and prostrate cancer

screening, although this is usually done using 2D images. In the case of 3D volumetric

imaging, the problem is more acute as there is much more data to consider; 3D data

sets tend to be an order of magnitude larger than 2D data sets. One type of screening

programme where 3D images are regularly used are retina screening programmes. For

example, screening programmes for the detection of AMD are currently under consid-

eration given the global ageing population. Another example is screening programs for

diabetics who are frequently screened for diabetic retinopathy using 3D retinal images.

In the medical domain there are a number of technologies typically used to generate

3D volumes; these include: Cone Beam Computed Tomography (CBCT), Magnetic

Resonance Imagery (MRI) and Optical Coherence Tomography (OCT). The focus of

the research is thus the detection of AMD in 3D OCT. The motivations for choosing

this application domain as a “driver” for the research described in this thesis are as

follows:

1. Little work has been reported for AMD detection in terms of volumetric data
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mining applied to 3D OCT image data, although there have been a number of

reported studies with respect to macular disease diagnosis using 2D OCT images

[49, 88]. Most reported work on OCT image analysis is directed at retinal layer

segmentation [70, 150], vessel segmentation [71], image enhancement [81] and

noise reduction [110].

2. With the increasing widespread use of 3D OCT techniques many clinicians have

found that they are “overwhelmed” by the quantity of data available for analysis.

They are limited by time and resources. There is also a lack of automated diag-

nosis tools; most existing tools are directed at supporting the analysis, such as

tools for retinal thickness measurement. In practice, subjective assessment is the

mainstay. Although the clinicians do an outstanding job the process is subject

to human error and skill. Therefore, automated diagnosis tools, founded on the

technology proposed in this thesis, are desirable; not only to provide for better

patient management but also to provide for staff training.

3. More generally, Computer-Aided Diagnosis (CAD) is an important element of

many branches of medical care, not just in the case of 3D retinal diagnosis. Gen-

erally applicable approaches to support automate CAD are therefore desirable.

4. Intuitively, for many medical applications (including retinal image diagnosis),

being able to use 3D data sets to support the diagnosis is likely to be much more

effective than when using 2D data sets. It is anticipated that volumetric data is

likely to reveal more information about the scanned objects than 2D data.

1.3 Research Questions and Issues

Given the research motivation presented in Section 1.2 above the work described in

this thesis is targeted at an investigation of techniques to facilitate the diagnosis of

3D medical images. More specifically, the work is directed at the development of

various ways to represent 3D volumes so that efficient and effective 3D classifiers can

be generated using hierarchical spatial decomposition techniques to represent 3D images

for classification. Thus the overarching research question addressed by this thesis is:

Is it possible to devise hierarchical spatial decomposition-based represen-

tation methods, suited to the classification of volumetric data, in such a way

that effective classification performance can be achieved given the significant

size and complexity of volumetric data sets?

The reasons for adapting a decomposition approach are as follows:

• The decomposing of a space into subspaces helps to identify the most significant

localised patterns in the context of the subspace; whereas otherwise, by consider-

ing the space in its entirety, localised patterns may be missed. Note that in the
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context of data mining the patterns we are interested in generally tend to be a

description or a model of a subset of the data [35].

• Hierarchical decomposition allows for a more “complete” analysis in that the

analysis can be directed at different levels of the decomposition.

• There is evidence to suggest that image representation methods that rely on

localised features tend to produce better performance than those that use global

features. Examples of such localised methods include: (i) Scale-Invariant Feature

Transform (SIFT) [90, 91, 92], (ii) Histograms of Oriented Gradients (HOGs)

[25], and (iii) Local Binary Patterns (LBPs) [98] and their extension to 3D [40,

119, 123, 157].

• Hierarchical decomposition analysis allows for the identification of regions with

similar (homogeneous) properties, properties that may be significant with respect

to classification of the volume under consideration.

• Spatial relationships between regions can be maintained. Regions that share the

same parent remain identifiable.

• Once the decomposition has been established it can be used in a variety of different

ways; in other words, decomposition is a versatile technique. Principally we can

choose to represent the decomposition in its entirety (whole image-based) or we

can consider individual regions within the decomposition in isolation (region-

based).

A central issue with respect to representations that are founded on the concept of

hierarchical spatial decomposition is the termination condition for the decomposition

(the so called “critical function”). Critical functions normally operate according to

the “homogeneity” of individual regions. A further issue is the “overlap problem”

where a particular object of interest is held in different parts of the decomposition;

the object of interest overlaps several identified regions. The research presented in this

thesis investigates various techniques to decompose the image by considering different

approaches to ensure the homogeneity of the decomposed regions.

The above research question thus encompasses five subsidiary research questions:

1. What is the most appropriate method to decompose images? A number

of different mechanisms for decomposing volumes can be identified although prior

to the research described in this thesis it was unclear as to which was the most

appropriate.

2. Once a volume has been decomposed, is it better to represent the

volume in terms of the individual decomposed regions (region-based)
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or in terms of the entire decomposition (whole image-based)? This is

the most significant subsidiary research question, whose resolution is central to

the work described in this thesis.

3. With respect to the use of either region-based or whole image-based

representation, what is the most appropriate representation for encap-

sulating the decomposition to support the desired classification? The

issue here is that some image representation techniques result in a more classifi-

cation effective representation than others.

4. Given a particular representation what is the most effective way of gen-

erating a single feature vector for each image? Most classifier generation

mechanisms ultimately operate using a feature vector representation. Thus re-

gardless of what decomposition representation is adapted it needs to be eventually

translatable into a feature vector form. The best process for this is unclear.

5. What is the most appropriate mechanism for conducting volumetric

classification? Different image representations, even when features are trans-

lated into a feature vector representation, will be compatible with different classi-

fication techniques; however, it is unclear what the most appropriate technique for

each representation is with respect to the representation proposed in this thesis.

1.4 Research Methodology

To provide answers to the above central research question posed by this thesis, and the

subsidiary questions, the adapted research methodology was broadly to consider and

evaluate a number of hierarchical spatial decomposition techniques, each operating in

a different manner.

To this end it was first necessary to collect OCT training and test data; this was

obtained from the Royal Liverpool University Hospital (RLUH), which has a well-

established eye unit, St. Paul’s Eye Unit. Specialist staff at St. Paul’s were also able

to comment on the utility of the proposed approaches. The obtained raw image data

required preprocessing, due to some unwanted content, and alignment. These images

were then used to investigate the effectiveness of spatial decomposition as the basis

upon which different ideas concerning decomposition based techniques, to support 3D

volume analysis, were founded. With respect to the decomposition process different

critical functions were used to determine different regional homogeneity. Once the

images had been decomposed, the effect of using two different categories of hierarchical

spatial decomposition representation were investigated and evaluated: (i) region-based

and (ii) whole image-based. Different techniques within each representation method

were also investigated. The various representations ultimately, of course, had to result
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in some form of feature vector representation as this is the standard input format

for most classifier generators (as noted above). Because ultimately a feature vector

representation would need to be derived, feature selection and generation strategies

were considered.

What ever the case the generated feature vectors could then be fed into a classifier

generator, for which purpose a number of different classifier generators were considered

and evaluated. The process of generating a classifier thus comprises different stages and

at each stage there are different techniques that can be used. Therefore the evaluation

of each stage was conducted by considering the proposed techniques for the stage in

question while using a fixed set of techniques for the remaining stages. For each stage

two types of evaluation were conducted: (i) individual performance evaluation, and (ii)

statistical significance testing. Ten-fold Cross Validation (TCV) was used, whereby the

image data set is randomly divided into ten sub-sets (each with the same number of

images for each class). Each technique was then tested ten times, on each occasion with

a different tenth as the test set. TCV is a well-established technique with respect to

determining the effectiveness of classifiers. On each iteration the following was recorded:

(i) accuracy, (ii) sensitivity, (iii) specificity, (iv) Positive Predictive Value (PPV), (v)

Negative Predictive Value (NPV), (vi) Area Under the receiver operator characteristic

Curve (AUC) and (vii) Equal Error Rate (EER). For the second type of evaluation,

the ANalysis Of VAriance (ANOVA) statistical significance test was used.

1.5 Contributions

This thesis makes a number of contributions and these are summarised in this section.

Firstly, the work demonstrates that it is possible to improve the performance of 3D

image classification by adapting hierarchical spatial decomposition based representa-

tion methods. It is argued that by decomposing regions down to homogeneous regions,

it is possible to produce effective solutions to the 3D classification problem (various

ways to extract homogeneous regions are introduced in this thesis). By hierarchical

spatial decomposition, the multi-scale aspects of an image can further be characterised

by considering a representation such as the tree-based representation where tree mining

techniques can be applied. In addition, various approaches are employed to represent

the images by associating the proposed decomposition methods with different represen-

tations. After the decomposition process, it is important to examine the significance of

each decomposed region with respect to the rest of the images. In this thesis, a number

of techniques are proposed to identify the discriminative regions which are significant

with respect to individual class labels.

Given the above, the main technical and practical contributions of the work pre-

sented in this thesis can be summarised as follows:
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1. A novel and effective approach to 3D image classification using spatial decompo-

sition for generating classifiers applicable to 3D volumetric data.

2. Two methods for representing volumetric data within the context of spatial de-

composition: (i) region-based and (ii) whole image-based.

3. A mixed oct and quad decomposition mechanism specifically designed for retinal

OCT data volumes.

4. Four histogram-based critical functions for regional homogeneity, namely:

(a) Euclidean Distance (ED)

(b) Kullback-Leibler divergence (KLD)

(c) Dynamic Time Warping (DTW)

(d) Longest Common Subsequence (LCS).

5. A dictionary learning mechanism based on homogeneous regions.

6. In the context of the whole image-based methods, a novel mechanism for gener-

ating a feature vector representation from a graph (where the graph represents a

hierarchical decomposition) based on the concept of frequent sub-graph mining.

Note that with respect to the work presented in this thesis different critical func-

tions are used while previous authors, such as [59], only used one critical function.

It should also be noted that in [59] only 2D images were considered while in this

thesis 3D images were used.

In addition to the above, the work also makes a number of application-dependent

contributions in the context of 3D OCT retinal image analysis and AMD detection,

namely:

1. A set of techniques to support automated screening for retinal diseases such as

AMD and diabetic retinopathy.

2. With respect to (1), a set of techniques that can be easily extended to encompass

generic Computer-Aided Diagnosis (CAD).

1.6 Published Work

Some of the materials described in this thesis have been published previously. This

section provides a brief summary of these publications:

1. Abdulrahman Albarrak, Frans Coenen and Yalin Zheng (2011). Identifying Age-

related Macular Degeneration In Volumetric Retinal Images. Ophthalmic Image

Analysis Workshop Proceeding. University of Liverpool, pp. 53-58. This paper

investigated some statistical-based representation techniques which are applicable

with respect to the region-based representation presented in Chapter 5.
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2. Abdulrahman Albarrak, Frans Coenen, Yalin Zheng and Wen Yu (2012). Volu-

metric Image Mining Based on Decomposition and Graph Analysis: An Applica-

tion to Retinal Optical Coherence Tomography. 13th IEEE International Sym-

posium on Computational Intelligence and Informatics (CINTI 2012), Budapest,

Hungary, pp. 263-268. This paper studied the effect of using the whole image

representation in terms of a tree structure. The effect of a number of proposed

critical functions was also considered. The work described in this paper was used

as the foundation for the work presented in Chapter 7.

3. Abdulrahman Albarrak, Frans Coenen and Yalin Zheng (2013). Classification of

Volumetric Retinal Images Using Overlapping Decomposition and Tree Analysis.

The 26th IEEE International Symposium on Computer-Based Medical Systems

(CBMS 2013), University of Porto, Porto, Portugal, pp. 11-16. An enhanced

method with respect to the previous paper was illustrated. The effect of the

boundary on the decomposition was considered. The content of this paper was

also used with respect to the work in Chapter 7.

4. Abdulrahman Albarrak, Frans Coenen and Yalin Zheng (2013). Age-related Mac-

ular Degeneration Identification In Volumetric Optical Coherence Tomography

Using Decomposition and Local Feature Extraction. The 17th Annual Confer-

ence in Medical Image Understanding and Analysis (MIUA 2013), University of

Birmingham, pp. 59-64. This paper presented a method for region-based repre-

sentation whereby each region was represented in terms of histograms. The work

described in this paper was used for Chapter 5.

5. Abdulrahman Albarrak, Frans Coenen and Yalin Zheng (2014). Dictionary Learning-

based Volumetric Image Classification for The Diagnosis of Age-related Macular

Degeneration. The 10th International Conference on Machine Learning and Data

Mining (MLDM 2014), St. Petersburg, Russia, pp. 272-284. This paper im-

proved the previous paper by adapting a feature selection mechanism to be used

with region-based representation. The content of this paper was also used in

Chapter 5. Note that this paper was nominated for the best paper award at the

conference.

6. Abdulrahman Albarrak, Frans Coenen and Yalin Zheng (2014). Dictionary Learn-

ing Meets Homogeneous Decomposition for Image Classification: A Study Using

Volumetric Retinal Image Data. (In preparation for submission to Medical Image

Analysis). This paper compares region-based representation methods (Chapters

5 and 6) with the whole image-based representation methods (Chapter 7) with

respect to the use of a number of proposed critical functions.
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1.7 Outline of Thesis

The remainder of this thesis is organised in the following way. Chapter 2 presents

a literature review and some background material to the work. Chapter 3 begins

by describing the application domain with which the proposed decomposition based

techniques were evaluated. The chapter also introduces the image data sets and reviews

the required preprocessing. The different proposed approaches for decomposing the

volumes of interest are presented in Chapter 4. The two categories for representing the

hierarchical spatial decompositions considered in this thesis (region-based and whole

image-based ) are then presented, and individually evaluated, in the following chapters:

region-based representation methods are considered in Chapter 5 and evaluated in

Chapter 6, and whole image-based methods are described and evaluated in Chapter

7. In Chapter 8 some comparative discussion concerning the overall best method is

presented. Finally, Chapter 9 presents some conclusions and the main findings of the

work presented in this thesis, and some possible directions for future work.
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Chapter 2

Literature Review and Previous
Work

2.1 Overview

This chapter presents an overview of previous work relevant to the work presented later

in this thesis. Broadly the work described falls under the “umbrella” of Knowledge

Discovery in Images (KDI). This chapter thus commences with a review of KDI in

Section 2.2. KDI can be viewed as form of Knowledge Discovery in Data but applied to

images. KDI describes a group of techniques used to automatically analyse and discover

useful knowledge and patterns within collections of images (or in some cases single

images) [9, 34]. As such, KDI is a multi-step process aimed at building sophisticated

models of image data. One of these steps is the data mining step which is the part

of the KDI process where the knowledge and patterns of interest are discovered. The

remaining steps are concerned with the preprocessing and post processing of the input

and output data. With respect to the mining step, within the KDI processes, there are a

number of different types of task that this step encompasses such as: clustering, pattern

identification and classification [130]. The work described in this thesis is directed at

image classification.

Although directed at image classification, the central theme of this thesis is image

decomposition to support image classification. Section 2.3 therefore reviews the current

“state-of-the-art” with respect to image decomposition. Once a given image has been

decomposed there are two methods whereby the image can be represented. We can

either represent the image in terms of the sub-images (regions) into which it has been

decomposed, in which case each image is represented as a collection of sub-images,

or we can represent the entire image in terms of its decomposition, in other words

as some form of tree structure. Techniques suitable for representing regions within a

decomposition are thus reviewed in Section 2.4, while techniques for representing the

entire decomposition in the form of some sort of tree structure are reviewed in Section

2.5.
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Regardless of whether a region or a whole image-based representation is used, ulti-

mately we wish to produce a feature vector representation as this is the input format

typically required by most classification systems. Feature vector generation, in the con-

text of existing work, is therefore considered in Section 2.6. Once the desired feature

vector representation has been generated the classification process can be commenced.

A review of popular classifier generation methods, particularly those employed with re-

spect to the work described in this thesis, is thus presented in Section 2.7. To measure

the effectiveness of a generated classifier there are many well established metrics that

can be used. These are therefore described in Section 2.8. Finally, Section 2.9 presents

a summary of the material presented in this chapter.

Table 2.1: Terminology used throughout this thesis

Term Description

Classifier A software system employed to predict the class of an image.
Decomposition The process of dividing an image into a set of regions (sub-

images).
Feature A characteristic of an image that can be used to differentiate

between images (also sometimes referred to as an attribute).
Each feature will have a range of values associated with it,
which may be either discrete or continuous.

Feature Space A n dimensional space where each dimension represents a
feature. A given image or region described in terms of n
feature values will be located somewhere in this space.

Feature Vector A vector comprised of a set feature values describing the
location of an image in a given feature space.

Voxel The atomic element of an image volume whose location may
be indicated in terms of three dimensional coordinates. A
voxel is akin to a pixel in 2D space.

Table 2.2: Basic notation used throughout this thesis

Notation Description

In An image n in the dataset I.
Cn The class label for image n in the dataset I.
X × Y × Z The size of an image, where X, Y and Z are the width,

height, and depth of the image respectively.
In(x, y, z) A voxel within an image of a given x, y, z location, where

x ∈ X, y ∈ Y and z ∈ Z.
AIVi The average intensity value of a region i.
d(i, j) A function to measure the difference or similarity between

two given vectors or values i, j.

Table 2.1 gives some basic definitions of the terminology used in this chapter and

in the rest of this thesis. Table 2.2 presents the notation regularly used throughout the

rest of this chapter and the remainder of this thesis.
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2.2 Knowledge Discovery in Images

As noted in the introduction to this chapter, the field of Knowledge Discovery in Im-

ages (KDI) is a specialised variant of the more general field of Knowledge Discovery in

Databases (KDD). The distinction between KDI and KDD is thus discussed in Subsec-

tion 2.2.1. Subsection 2.2.2 then presents a categorisation of the application-dependent

objectives of KDI and this is followed in Subsection 2.2.3 by a general review of the

KDI process.

2.2.1 Distinction Between KDI and KDD

The fundamental distinction between KDD and KDI is that the latter is intended to

be applied specifically to image data, while KDD has much more general applicability.

KDD is defined as the process of identifying useful knowledge from data, while data

mining is the sub-process within the overall KDD process concerned with the actual

identification of hidden information. The focus of KDI is to support the automated

extraction of information from images (as opposed to data in general). KDI is thus

concerned with methods for mapping low-level features in images to descriptions where

the relationships between them are hidden [64]. KDD is concerned with knowledge

discovery in (relational) databases, while KDI is concerned with knowledge discov-

ery in image data. However, there are some significant differences between relational

databases and image databases which in turn require that some sub-processes within

the overall KDI process need to be different to the corresponding processes found in

KDD. Thus this section reviews the distinctions between image data and tabular data

so as to highlight the differences between the KDI and KDD processes. The differences

between relational databases and image databases data may be summarised as follows

[60, 154]:

1. Absolute versus relative values: Usually, in relational databases values are

meaningful on their own, such as the value for an attribute age. In contrast, the

intensity value of an image pixel/voxel does not reveal much information on its

own unless the neighbouring context is considered. Therefore, individual intensity

values need to be considered with respect to their neighbours.

2. Spatial information (independent versus dependent position): It is very

important to extract image features by considering the positional relationships of

each intensity value with respect to its neighbouring context before mining the

patterns of the images, as the spatial position indicates useful information such

as the connectivity of the object, texture, shape and colour which may indicate

a change in the region. In addition, in 3D images, the depth information should

also be taken into consideration. It is not possible to form precise interpretations
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of an image without considering this spatial information. In relational databases,

there is no need to consider such spatial relationships.

3. Unique versus multiple interpretation: In tabular data, the data has a

unique interpretation. In contrast, in the case of images it may be the case that

the same region can have multiple interpretations. A robust feature extraction

method which can cope with this issue therefore needs to be used.

From the above, the main distinction between KDI and KDD is that image data

tends to be very unstructured while the tabular data to which KDD is normally ap-

plied tends to be highly structured. Thus a variety of processes, from across different

disciplines (such as image processing and computer vision [85]), are needed to realise

KDI. Feature extraction is one of the most dominant problems in KDI [34]. This issue

will therefore be discussed in further detail in Section 2.4.

2.2.2 Objectives of KDI

This subsection considers the distinctions between KDI and KDD further by consid-

ering the objectives of KDI in comparison with KDD. At a high level the application-

dependent objectives of both KDD and KDI can be characterised as being either: (i)

descriptive knowledge discovery or (ii) predictive knowledge discovery [128]. In the case

of KDI the focus of descriptive knowledge discovery is on how to describe or represent

image data in as concise a manner as possible while at the same time ensuring that key

elements of the data are not lost (so that previously hidden knowledge can be readily

identified). In descriptive knowledge discovery the aim is to understand the content,

differences and similarities of the given image data. For instance, an image may be

represented in terms of features, such as texture or shape, so as to form a meaning-

ful description. These descriptions can then be used to compare between images. In

the KDD techniques applied to relational databases, descriptive knowledge discovery is

not a significant issue because each value is meaningful in its own right, while in KDI

descriptive knowledge discovery is a significant issue because individual values are not

meaningful in their own right.

Predictive knowledge discovery, in turn, is concerned with identifying patterns that

can lead to the establishment of prediction models that can be used with respect to

previously unseen image data. For example, the construction of classifiers from medical

image data that can be used to predict the presence or absence of some condition or

disease. Thus the work described in this thesis falls into the second category, although

it can be argued that to produce an effective classifier an effective representation of the

data is first required (thus descriptive knowledge discovery).

14



2.2.3 KDI Process

The KDI process comprises a sequence of steps similar to those found in KDD [75, 80].

The precise sequence and nature of these steps varies across KDI application domains

and KDI methodologies. In the context of the work described in this thesis (which

is directed at 3D image classification), the KDI process is considered to comprise the

following sequence of steps:

1. Preprocessing Phase

(a) Dataset creation: This step is essentially concerned with image acquisi-

tion.

(b) Preparation: Preparation of the 3D image data so as to remove unwanted

structure, such as noise, so as to enhance the image quality.

(c) Image representation: The encapsulation of the key elements (features)

of a given set of images (volumes)

(d) Feature vector generation: Generation of a set of feature vectors describ-

ing the image data. Note that feature vector generation may also require

the application of “reduction methods” so as to reduce the complexity/size

of the feature space. This may only be needed if the quantity of generated

feature vectors cannot be handled within the image mining.

2. Data Mining Phase

(a) Image mining: The step in which the actual knowledge discovery is un-

dertaken (classifier generation with respect to the work described in this

thesis).

3. Post Processing and Usage Phase

(a) Evaluation:: The evaluation of the discovered knowledge (the generated

classifier).

(b) Usage: Application of the discovered knowledge (usage of the generated

classifier to label previously unseen volumes)

Note that the above is divided into three phases: (i) preprocessing, (ii) mining and

(iii) post-processing and usage. Each of these phases is discussed in further detail in

the following three subsections.

2.2.3.1 The KDI Preprocessing Phase

The KDI preprocessing phase is of great significance with respect to the quality of the

data mining conducted in the following phase. The phase commences with image acqui-

sition. Broadly, the 3D image sets of interest can be viewed as digital representations
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of objects acquired by some process. The image acquisition process can be affected by

factors such as: (i) noise, (ii) resolution and (iii) configuration settings. As a result,

the nature of the acquired images is often changeable. Therefore, various preliminary

processes need to be applied to the images such as colour equalisation, noise removal,

and image alignment (registration) [154].

The next step is to represent an image in some way. Image representation in the

specific context of the work described later in this thesis is discussed in Sections 2.4

and 2.5. Whatever the case, the nature of the chosen image representations is critical

to the effectiveness of the nature of the KDI to be applied [5, 8]. The general aim

is to represent image data in terms of a set of features. In the context of the work

described in this thesis, the identified set of features should be compatible with the

concept of a feature vector representation. The challenges are firstly how best to decide

what features are most appropriate to the selected KDI task and secondly how best to

extract the desired features. Typically, depending on the application domain, we wish

to preserve one or more of the following: contextual information, spatial information,

texture and connectivity.

There are a variety of ways that we might represent image data. A growing amount

of research has focused on building “local” based image representations. The term

“local” in the context of representation refers to the building of descriptors for parts

(sub-images) of the whole image (i.e. a local grouping of pixels/voxels). Local based

image representations are thus concerned with features that describe a small region

within an image instead of a whole image. Local invariant features have proven effective

for a range of computer vision problems over the last decade [151]. Local image based

representation requires that the given image is first decomposed into a collection of

sub-images/sub-volumes (called regions). Mechanisms for this are well understood.

The main issue is how to select a representation for the identified regions that allows

them to be used to discriminate between images. For classification purposes each image

should be represented in a way that makes its label distinguishable from other class

labels.

Once we have described our image set in terms of a set of appropriate features the

next step is typically to generate a set of feature vectors. The objective of feature vector

generation is to include only the most relevant features. Thus in this stage irrelevant

or redundant features are removed [12]. In the case of image classification we also wish

to retain features with a high discriminatory power.

2.2.3.2 The KDI Mining Phase

As already noted above, Image Mining (IM) is the core of KDI. Recall that IM is

the sub-process within the overall KDI process concerned with the actual discovery of

knowledge, the remaining steps are all concerned with the preprocessing of image data
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so that IM can be applied and the post-processing of the discovered knowledge so that

it can be used with respect to some application domain context. The challenge of IM is

how to effectively extract the desired knowledge [60]. IM, like data mining in general,

makes use of techniques taken from a number of different domains including: machine

learning, statistics and artificial intelligence [11, 102].

In the context of image classification the goal of the IM is classifier generation. The

input to the classifier generator is a set of training images I = {I1, ...., In}, with the

associated training labels C = {c1, ....cn}. The output is a mapping of the input to the

set of class labels: f : χ→ C.

2.2.3.3 The KDI Post Processing and Usage Phase

On completion of the IM phase the acquired knowledge can be applied. In the case

of image classification this means the application of the generated classifier to real-life

data. Prior to this it is useful to obtain some level of confidence in the generated

classifier. This is typically done by applying the classifier to pre-labelled test data.

There are a number of different evaluation metrics that can be used to measure the

performance of a classifier. Further details concerning these metrics are presented in

Section 2.8.

2.3 Hierarchical Spatial Decomposition

The work described in this thesis is directed at image representations for classification

founded on the idea of hierarchical decomposition. Image decomposition has been used

in various application domains [118]: such as computer graphics [63, 65], volume ren-

dering [42, 120], modelling and animation [17], segmentation [87, 141] and Geographic

Information Systems [10]. In [133] an edge detection algorithm was proposed using

image decomposition.

The basic idea is to decompose a given image In into a set of sub-images (called

regions in this thesis). Image decomposition offers a number of advantages that can be

summarised as follows (see also [13, 137, 144]):

1. General applicability.

2. Provides for a more effective representation (than other methods) because it al-

lows for the capture of regionalised details.

3. Fast computation of image properties due to applying representation methods to

small regions.

4. Supports different forms of image representation at both the local (region) level

and the global level.
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5. Provides for a simplification of the space.

6. In many cases obviates the need for computationally expensive processes such as

segmentation.

7. Reduces problems associated with occlusion because of the use of smaller regions

instead of the whole image

The process of decomposition has to satisfy a number of conditions in order to

ensure that appropriate regions are identified. These are itemised in [137] as follows:

1. Repeatable: The same regions should be identified in different conditions.

2. Robust: The decomposition should be robust against factors such as occlusion,

clutter, noise and blur.

3. Homogeneity: The identified regions should, in some sense, be homogeneous.

4. Invariant: The decomposition should be invariant against transformations and

deformations.

5. Distinctive: Allow for individual regions to be matched to similar regions in

other images.

6. Quantity: Result in a sufficient number of regions with respect to the envisioned

application.

7. Efficient: Operate in an efficient manner.

There are various different spatial decomposition methods that can be found in the

literature. Subsection 2.3.1 below provides an overview of some of the most popular

methods. One of the issues with hierarchical decomposition is deciding when to stop.

One approach is to define a maximum “level” for the decomposition. However, on its

own, this might result in unnecessary decomposition. A more efficient approach is to

cease decomposing a branch whenever a homogeneous region is arrived at. There are

various mechanisms for measuring regional homogeneity, usually expressed in terms of

what is referred to as a critical function, and these are reviewed in Subsection 2.3.2.

2.3.1 Spatial Decomposition Methods

From the literature two approaches to spatial decomposition can be identified: (i)

segmentation-based and (ii) grid-based. In the segmentation-based approach the im-

age is divided into objects (for example, organs in the case of medical applications),

while in the grid-based approach the image is divided into regularly shaped sub-spaces

[13]. Thus in the segmentation-based approach the regions are non-uniform objects
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which, as the name suggests, requires recourse to segmentation algorithms. Popular

segmentation techniques used for this purpose are Watershed [23] and Superpixel [114].

The disadvantages of segmentation-based approaches are:

1. Good-quality images are required. Image blurring can make it difficult to iden-

tify image boundaries and consequently the segmentation process is less accurate

[95]. One potential solution is to use the concept of “region isophotes” to handle

problems associated within boundary blurring [103].

2. Many very small objects may be identified. One idea whereby this issue may be

addressed is to use some threshold, such as the “Maximally Stable” condition

used in [94], but this in turn means that the segmentation does not necessarily

cover the whole image.

The advantage of the segmentation-based approaches is that the “overlap” prob-

lem found in grid-based representations does not occur. This is where an object of

interest is distributed over a number of different regions dispersed across the decom-

position, which in some cases can hinder further analysis. It is the view of the author

that the disadvantages associated with segmentation-based decomposition outweighed

the advantages, and thus the work described in this thesis is directed at grid-based

decomposition techniques.

The principal advantage of grid-based decomposition is that it operates without the

need for segmentation. From the literature we can identify two popular forms of grid-

based decomposition: (i) fixed-sized “window” and (ii) quadtree. In the first method,

a predefined rectangular window is passed over the image and used to extract regions

from the image [149]. In the quadtree-based image decomposition technique the image

is iteratively decomposed into smaller and smaller regions. One popular method is

the Spatial Pyramid (SP) approach [82, 83] where at each level of decomposition each

region is iteratively divided into four sub-regions. Figure 2.1(a) shows how the image is

decomposed. Another example can be found in [88] where the concept of a Multi-Scale

Spatial Pyramid (MSSP) was used. Quadtree decomposition offers the advantage that

the property of being hierarchical can be used with respect to later processing, although

the “overlap” problem remains. The approach adopted in this thesis is the quadtree-

based spatial decomposition approach, although in 3D the phrase octree based spatial

decomposition should be used [115, 121, 131]. One proposed solution to the overlap

problem is the Overlapped Multi-Scale Spatial Pyramid (OMSSP) presented in [146]

and illustrated in Figure 2.1(b), where the image is resized between different levels and

overlapping blocks are used to try to cover the overlapping regions.
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(a) Spatial pyramid representation [83]

(b) Overlapped MSSP representation where the red lines indicate the overlapped
regions [146]

Figure 2.1: Forms of grid decomposition.

2.3.2 Regional Homogeneity

As noted above, homogeneity is an important issue in the context of image decompo-

sition. With respect to image decomposition, homogeneity is measured using what is

referred to as a “critical function”. Most existing critical functions are typically in-

tended for use with segmentation-based methods [135]. These methods are applied to

extract homogeneous regions (segments). In order to determine the homogeneity of a

region, statistical features of the region or edges are taken into consideration [41]. In

the literature, there are two common examples of critical functions based on statistical

features: (i) Average Intensity Values (AIV) (mean) [59] and (ii) Kendall’s Coefficient

Concordance (KCC) [153]. With respect to edge information proposed methods are

prone to failure when the adapted edge detection mechanism fails to identify all edges,

leading to over/under-segmentation [41].

The use of the AIV function is well described in [59] where it was used in the con-
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text of 2D image decomposition. The AIV value of each region is computed before

decomposition. Then the region is decomposed and the AIV for each child sub-region

is computed. Following this, a difference function is constructed to compute the “dis-

tance” d(AIVp, AIVi) = AIVp − AIVi between the parent region AIVp and the AIV

of each child region AIVi. The square root of the sum of the distances between the

parent region and the child regions is then computed. The homogeneity ω of the parent

volume is calculated using Equation 2.1, where s is the number of child regions, AIVp

indicates the parent AIV and AIVi the AIV for each child region. If the value of ω

is less than a predefined threshold the region is considered to be homogeneous and

therefore the decomposition process is stopped. A similar approach using the mean

intensity value was used with respect to the region growing method described in [30].

AIV was included as a feature in the MPEG-7 algorithm [147].

ω =
1

s

s∑
i=1

√
(AIVp −AIVi)2 (2.1)

KCC was proposed in [153] where it was used to assess the homogeneity of regions

in functional MRI (fMRI) images. KCC is a time-series based method for measuring

the relationships between each voxel and its neighbours. In the context of 3D volumes

KCC operates as follows. First, for each voxel in a decomposed region, a time series

involving the intensity values of the voxel’s nearest neighbours is formed. Then the

KCC is applied on the generated time series to check the homogeneity of the region.

KCC is calculated using Equation 2.2.

KCC =

∑
(R2

i − nR̄2)

1/12K2(n3 − n)
(2.2)

where Ri is the sum of the ith time series for the ith voxel, R̄ = (n+1)K
2 , R̄ is the mean

of each time series, K is the size of the time series (number of selected neighbours for

each voxel) and n is the number of voxels in a given region. The resulting KCC value

has a range of 0 to 1, where 1 indicates a completely homogeneous region and 0 an

entirely un-homogeneous region.

Note that AIV and KCC are both used later in this thesis for comparison with the

author’s own proposed critical functions.

2.4 Region-based Representation

Once an image has been decomposed, either the individual region represented by each

node, or the decomposition as a whole, needs to be translated into a representation

compatible with classifier generation. Whole image-based representation methods are

discussed in the following section. This section deals with previous work that lends

itself to individual region representation (although clearly these representations could
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equally well be applied in the context of whole, non-decomposed, image representa-

tion). From the literature, two categories of region-based representation can be identi-

fied: (i) statistical-based techniques and (ii) histogram-based techniques. Two types of

statistical-based techniques can also be identified: (i) first-order and (ii) second-order

[134]. In the case of first-order methods, images are described using statistical functions

such as mean, variance, energy and standard deviation of the image’s intensity values.

With respect to the second-order methods, the relationship between the intensity

value of each pixel with respect to those of its neighbours is taken into considera-

tion [134]. In other words, relative location information is used. One example of a

second-order method is where the concept of a co-occurrence matrix [44, 49] is used

to enumerate the number of times two intensity values appear in an image within a

certain distance and a direction of each other. A Voxel Co-occurrence Matrix (VCM)

is used in the same manner as a pixel co-occurrence matrix but with respect to 3D

images [44]. In a VCM matrix, the rows and the columns represent intensity values

and a field represents the frequency that an intensity value in the ith row was adjacent

to the intensity value in the jth column. The adjacency is defined by a displacement

distance d and angle. After computing VCM, various statistical functions can be ap-

plied to this matrix, such as angular second moment, contrast, correlation and variance.

Another example of a second-order method is where run-length encoding matrices are

used. These are matrices that hold information about the set of consecutive intensity

pixels/voxels that have the same values [43, 132]. A Voxel Run-Length Matrix (VRLM)

is the 3D form of a pixel run-length matrix. In a VRLM matrix, the rows represent

intensity values, the columns represent the length of the run and the fields show the

frequency of a specific intensity value in adjacent pixels/voxels in a specific direction.

Similar to VCM, in the case of the VRLM matrix, different functions may be applied,

such as, short/long run emphasis, length nonuniformity, run percentage and so on.

Regardless of whether first-order or second-order statistical methods are used, the

generated statistics describe individual features which in turn can be used to define a

feature space from which feature vectors can be extracted.

In the case of the histogram-based methods, there are a number of techniques

that can be adapted: (i) simple histograms, (ii) Histograms of Oriented Gradients (or

HOGs), (iii) histograms of Local Binary Patterns (LBPs) and (iv) histograms of Local

Phase Quantisation (LPQ). In the case of simple histograms, the x-axis represents the

values for some image features and the y-axis a count of the number of times that each

feature value occurs. Often the attribute-values are grouped into sub-ranges referred

to as “bins”. The simplest form of histogram image representation is where the x-axis

represents intensity values. The histogram thus represents the number of times each

intensity value, or group of intensity values, appears. The disadvantages of such simple

histograms are: (i) significant information is lost, such as spatial information, because
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only the frequency of the intensity values are considered; and (ii) invariant problems,

especially when two images have similar content but with different resolutions (in which

case different histograms will be produced).

A more advanced histogram-based method is the use of Histograms of Oriented

Gradients (or HOGs) [24]. Using HOGs the changes in the intensity values of the region,

with respect to either the azimuth and/or zenith direction, are computed and referred

to as gradients. In order to compute a gradient at each location the difference between

the “left” and “right” neighbouring intensity values, in a given direction, is calculated.

Following this, the angles between the image gradients are computed and stored in

what are called “orientation” bins. The gradient magnitudes in each orientation bin

are accumulated. In the generated histogram, the x-axis represents directions and the

y-axis the sum of the gradient magnitudes.

In order to generate LBPs, each pixel/voxel is compared to its immediate neigh-

bours. For each comparison a one is stored if the intensity value of the pixel/voxel is

greater than the neighbour, otherwise a zero is stored. The generated binary number

from the sequence of neighbours then describes an integer value. In the generated his-

togram, the x-axis represents the computed integer values and the y-axis the frequency

with which they occur. In order to generate a robust representation, it is desirable

to compute rotation invariant LBPs. With respect to 2D images it is straightforward

to calculate rotation invariant LBPs because each location has only eight immediate

neighbours. With respect to 3D images the generation of 3D rotation invariant LBPs

(26 neighbours in contrast to 8 neighbours) is computationally expensive. To address

this issue Zhao and Pietikainen [157] proposed the use of Three Orthogonal Plane LBPs

(LBP-TOP). The LBP-TOP representation considers the calculation of LBPs only with

respect to neighbouring voxels located in the XY , XZ and Y Z planes. A combina-

tion of HOG and LBP (HOG-LBP) has also been proposed and found to be a robust

representation [143].

The concept of histograms of Local Phase Quantisation (LPQ) was proposed in

[101]. LPQ uses low frequency local Fourier transforms whereby a histogram of the

quantised Fourier transform can be generated [99]. At each image location, a Short-

Term Fourier Transform (STFT) is applied with respect to the immediate neighbours.

Then the resulting values are quantised (a value of one is used if the value is bigger than

or equal to zero, otherwise a value of zero is used). In this manner a binary encoding

is computed for each image location which can then be interpreted as an integer value

between 0-256 (b =
∑8

i=0 qi2
i−1, where qi is the quantised value of a neighbouring

pixel/voxel). Histograms describing the number of times that each integer value occurs

are then computed, one per image.
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2.5 Whole Image-Based Representation

An alternative to representing individual regions is to represent the decomposition in

its entirety, for example as some form of tree which can eventually be translated into a

feature vector format (again to ensure compatibility with the data mining techniques to

later be applied). There are a variety of mechanisms whereby this can be achieved that

have been reported in the literature; however, hierarchical decomposition techniques

naturally lend themselves to tree representations where the nodes represent regions.

The question is then what features to store at the tree nodes (and by extension the

links connecting the nodes); in other words, what information should the tree hold?

There has been a substantial amount of work directed at tree based representations

of space but mostly directed at 2D space such as [31] and [59]. In [31] a quad tree

representation was used to encapsulate a 2D representation of the Corpus Callosum,

the part of the brain that connects the left and right hand sides of the brain. The

shape of the Corpus Callosum was extracted from MRI scan data. In this case, the

data stored at the tree nodes was either the digit 1 or the digit 0, 1 indicating that the

associated region was part of the Corpus Callosum and 0 indicating it was not. The

work of [59] is particularly relevant with respect to the work described in this thesis

because a hierarchical representation was used to describe 2D retinal images. In this

case, each node held the mean intensity values of all the pixels in the associated region

[59].

What is interesting about tree representations is that a tree is a type of graph and

therefore graph mining techniques can be applied. For example, frequently occurring

sub-graphs (sub-trees) can be used as attributes in a feature space model. Both [31]

and [59] experimented with this idea. A similar idea is adapted with respect to the

work described in this thesis and hence graph mining is considered in some further

detail below in Subsection 2.6.2.

2.6 Feature Vector Generation

As already noted the feature vector format is the standard format used in data mining.

The format initially requires the generation of a feature space. In some cases, this is

straightforward; in others, it is not so straightforward. Thus in the case of the region-

based representations considered in this thesis the feature space of interest is formed by

identifying a set of features of interest across the regions. Whatever the case, for reasons

of computational efficiency, it is often necessary to reduce the number of dimensions in

a given feature space. There are a variety of techniques whereby this can be achieved

and these are discussed in Subsection 2.6.1. In the whole image-based representation

where the decompositions as represented as a graph, extracting a feature space is not so

straightforward. Techniques for identifying a feature space with a graph representation
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are therefore discussed in Subsection 2.6.2.

2.6.1 Feature Vector Generation for Region-based Methods

Two commonly used methods used to reduce the dimensionality of a given feature space

are: (i) Principal Component Analysis (PCA) and (ii) the coding-pooling framework.

In PCA [69] orthogonal linear transforms are applied to the set of feature vectors,

forming a new set of vectors according to the variance of the feature vectors. PCA is

used to transform a feature space into lower-dimensional space. PCA operates by first

calculating the Eigenvectors and Eigenvalues for the new space. Feature vectors are

then generated using the list of Eigenvectors. They are sorted and a specific number

of Eigenvectors are chosen. There is an assumption that an Eigenvector with a larger

Eigenvalue indicates that this Eigenvector is significant, so Eigenvectors with the largest

Eigenvalues are selected to represent the image [146].

In the coding-pooling framework the coding element consists of identifying a subset

of vectors (the “dictionary”). The pooling element is then used to generate a single

feature vector guided by the dictionary where feature vectors linked to the same vec-

tor in the dictionary are combined. The coding should operate so that the selected

vectors include the most representative features. There are different ways of conduct-

ing the coding, of note are: (i) Vector Quantization (VQ), (ii) Sparse Coding (SC),

(iii) Locality-constrained Linear Coding (LLC), (iv) Improved Fisher Kernel Encoding

(IFK) and (v) SuperVector encoding (SV).

Lazebnik et al. [82] proposed the use of Vector Quantization (VQ) for feature

selection. VQ is essentially a clustering technique. In the context of region-based

representation methods K-means is applied to a random sub-set of regions extracted

from the training images to form the dictionary. The dictionary in this case thus consists

of cluster centres. The dictionary typically comprises between 200 to 400 cluster centres.

Alternatively, Sparse Coding (SC) or Locality-constrained Linear Coding (LLC) may

be used to form the dictionary. SC tries to find a feature vector that best represents

a group of feature vectors by measuring the “response” of the vector to the group.

In the case of region-based representation methods, this group of feature vectors is

extracted from the whole set of given feature vectors across all images [149]. In order

to reduce the computing time, SC may be applied to a random sample of feature vectors.

LLC may be used as an alternative to SC to achieve the same result [142]. Improved

Fisher Kernel Encoding (IFK) [105] is another method used for generating dictionaries.

Here, given a set of feature vectors, the feature vectors’ distributions are computed

using a Gaussian Mixture Model (GMM) (based on the Maximum Likelihood (ML)

estimation) to identify a feature vector-specific distribution. In order to distinguish

between different image signatures, L2 normalisation is applied to the feature vector-

specific distribution to form the “Fisher vector signature” aimed at encapsulating class-
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specific information. Similar to IFK, SuperVector (SV) encoding was used in [158].

Instead of GMM as in IFK, K-means clustering was computed. Then the clusters were

improved by using upper bounds aimed at minimising the error using the Euclidean

distance between feature vectors and their means. In [62] an experiment is reported

that compares the operation of different coding methods; FK proposed in [105] was

shown to outperform the rest.

With respect to the pooling element of the coding-pooling framework, the aim is to

map each feature vector with its equivalent vector in the dictionary in order to form a

single feature vector. There are two common methods for achieving this, average and

maximum pooling. In “average pooling”, the average values between similar feature

vector elements in the dictionary are computed and then used to form a new feature

vector. Following this, a long global feature vector is generated by concatenating the

new feature vectors for each image. The resulting feature vector is then normalised [82].

One example of maximum pooling is Multi-scale Spatial Maximum Pooling (MSMP)

[149]. MSMP recursively computes the histograms of the maximum values for a given

set of vectors and their association with elements in the dictionary. Feature vectors

in neighbouring regions are recursively united by getting the maximum values of each

element. This process of combing feature vectors is applied until a final single feature

vector is reached.

2.6.2 Feature Vector Generation for Whole Image-based Methods

As noted above, the generation of feature vectors from tree-based representations is

more challenging than in the case of region-based representation methods. One ap-

proach, used in [59] in the context of 2D retinal images and in [89] with respect to MRI

brain scan data, is to first identify frequently occurring sub-graphs in the tree data

using some appropriate search method. Various Frequent Sub-Graph (FSG) mining

techniques can be used for this purpose. One of the most commonly used is the graph-

based Substructure pattern mining (gSpan) algorithm [148]. The gSpan algorithm uses

a Depth First Search (DFS) approach to identify frequent sub-graphs (sub-trees). A

sub-graph is said to be frequent according to a “support threshold” σ. In the case of

the tree representations considered in this thesis, each identified frequent sub-tree is

then conceptualised as a dimension within a feature space. Sub-graphs may be ranked

according to some weighting measure as suggested in [15] and the top K sub-graphs

selected. This later approach was adapted in [59] in the context of 2D retinal images.

2.7 Classifier Generation Techniques

From the literature we can identify a great many proposed classifier generation algo-

rithms. The most common techniques include: (i) Support Vector Machines (many
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“kernel” variations can be identified), (ii) clustering (variations of the KNN algorithm)

and (iii) probability based. Examples of each were adapted with respect to the work

described in this thesis for evaluation purposes.

The Support Vector Machine (SVM) method was introduced in [7, 20, 138]. The

basic idea is to fit a hyperplane to data contained in a multi-dimensional space that

serves to divide the data into two classes. SVMs thus operate in a similar manner to

perceptrons. The difference between a perceptron and an SVM is the “kernel trick”

whereby data that could not be discriminated is translated into a further dimension so

that a hyperplane can be fitted. The advantage of SVM is that application of a kernel

function makes the data linearly separable, which leads to a robust classification. One

of the main disadvantages of SVMs is that they are essentially binary classifiers. If we

wish to apply the technique for multi-class classification a collection of “one against

all” SVMs must be adapted. However, in our case, a binary classification is only used.

Another disadvantage is that SVMs are essentially a “black box” method; it is difficult

to derive an explanation for a particular classification.

The most common clustering-based classifier is the K-Nearest Neighbours (KNN)

technique. KNN was proposed by [38] and is both a clustering and classification tech-

nique [86]. The learning part is the most important element in this method. A KNN

cluster configuration is typically generated by considering a training set record by

record. The first record defines the initial cluster. Further records are then assigned

to this cluster according to a distance function. If the distance of a new record to the

centre of the cluster is too great, a new cluster is created for the new record. The

process continues until all records in the training set have been assigned, at which

point we have K clusters. The centroid of each cluster then defines a class. The class

definitions can then be used to classify new records. Distance-based comparisons such

as Euclidean distance are used for this purpose [52]. However, the method is not very

resilient to noise. Although there have been some attempts to enhance the method by

including (for example) weighting factors [2], the accuracy of this method tends not to

be as good as that associated with other classification techniques.

The most commonly used example of a probability-based classifier is the Bayesian

Network (BN). BN is founded on acyclic graphs where the nodes are the attribute vari-

able values and the edges describe the probabilistic relationships between the variables.

Each node is associated with a probability distribution derived from the dependency

between the node and its ancestors [46]. There are two main components for BN: a

directed acyclic graph and a set of probability tables linked to each variable. The prob-

abilities are derived from pre-labelled training data. Given a particular set of variable

values the network can be used to determine the class label to be associated with this

set. BNs have been shown to work well, but computational complexity remains an

issue.
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2.8 Evaluating Classification Algorithms

This section discusses the evaluation metrics used to measure the quality of classification

algorithms. The significance is that these are used later in this thesis in the context of

the proposed techniques. The effectiveness of a generated classifier is typically measured

by applying it to pre-labelled test data so that generated class labels can be compared

to the known class labelling. In the context of research into classification algorithms,

classifier generation and testing are often combined into a single process. One commonly

adopted approach is to use a Ten-fold Cross Validation (TCV) technique whereby the

training and test data is combined to form a single pre-labelled data set. The classifier

generation and evaluation is then conducted ten times, on each occasion using a different

tenth of the concatenated dataset as the test set. In this section, two types of evaluation

are presented: (i) classifier performance evaluation (Subsection 2.8.1) and (ii) statistical

significance testing (Subsection 2.8.2).

2.8.1 Evaluating Performance of Classifiers

Various metrics can be used to evaluate the performance of a classifier. One com-

monly used technique with respect to binary (positive-negative) classification is to use

a “confusion matrix” of the form shown in Table 2.3. The confusion matrix records

the number of: (i) True Positives (TP), the number of records for which the classifier

correctly predicts the positive class; (ii) False Positives (FP), the number of records for

which the classifier wrongly predicts the positive class; (iii) False Negatives (FN), the

number of records for which the classifier wrongly predicts the negative class; and (iv)

True Negatives (TN), the number of records for which the classifier correctly predicts

the negative class. Using a confusion matrix, a number of measures can be computed

as follows:

1. Accuracy (Acc) measures the probability that an unseen record is classified

correctly, Acc = TP+TN
TP+TN+FP+FN .

2. Sensitivity (Sen) (also referred to as the True Positive Rate (TPR) or recall)

is the probability that a positive record is classified correctly, Sen = TP
TP+FN .

3. Specificity (Spec) or True Negative Rate (TNR) is the probability that a neg-

ative record is classified correctly, Spec = TN
TN+FP .

4. False Positive Rate (FPR) is the probability that a positive record is classified

incorrectly, FPR = 1− Spec.

5. Positive Predictive Value (PPV) or precision is the probability that a positive

predication is correct, PPV = TP
TP+FP .
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6. Negative Predictive Value (NPV) is the probability that a predication is

negative when an image is negative, NPV = TN
TN+FN .

7. Area Under the receiver operator characteristic Curve (AUC) which in-

dicates the relative relationship between True Positive Rate (TPR) and the False

Positive Rate (FPR) [33]. The AUC value for a given classifier is computed us-

ing the Receiver Operating Characteristic (ROC) curve. The Receiver Operating

Characteristic (ROC) curve is the plot of FPR on the x-axis against TPR on

the y-axis for the classifier giving all the test instances. Figure 2.2(a) shows an

example ROC graph.

8. Equal Error Rate (EER) is used to measure the error when TPR equals FPR

(as in Figure 2.2(b)) [122]. In general, the classifier with the lowest EER is most

accurate.

Table 2.3: Confusion matrix

Actual Class
Positive (P) Negative (N) Total

Predicted Class
Positive (P̂ ) True Positive (TP) False Positive (FP) TP + FP

Negative (N̂) False Negative(FN) True Negative (TN) FN+TN

Total TP + FN FP + TN

(a) ROC (b) EER

Figure 2.2: A diagram showing an example plot of ROC and EER.

2.8.2 Statistical Significance Testing

Given two classifiers and when using the above metrics one classifier is bound to be

better than the other. The question is: is this statistically significant or not? ANalysis

Of VAriance (ANOVA) is a common statistical method used to compare the statistical

significance of the operation of groups of classifiers. More specifically, ANOVA is used

to determine whether the null hypothesis (that there is no statistical distinction between
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the operation of the classifiers) holds or not. If the null hypothesis can be rejected,

then a post-hoc test can be employed to identify the classifiers whose operation is

statistically different from others [29].

With respect to the work described in this thesis, a group of k classifiers with

associated n results (e.g accuracy or AUC) is given and the objective is to determine

whether the operation of any of these k classifiers is statistically significant from the

rest. In our case, different techniques to decompose the image are proposed and tested

with different parameters. The goal of using ANOVA is thus to determine whether,

although one result is better than another, there is a statistical difference between the

operation of the techniques or not. The processes for conducting ANOVA uses the

following equations [67, 124, 125]:

1. The Total Sum of Squares (SST ).

SST =
∑

X2
T −

(
∑
XT )2

N

where N =
∑k

i=n ni (the total number of results), ni is the number of results

associated with the ith classifier, X is a particular result (expressed in terms of

(say) accuracy or AUC), XT is the set containing all the results from all the group

of classifiers.

2. The Between-Groups Sum of Squares (SSBG), which indicates the statistical

changes between the k groups.

SSBG =
k∑
j=1

[
(
∑
Xj)

2

nj

]
− (
∑
XT )2

N

3. The Within-groups Sum of Squares (SSError), which describes the amount of

change within each of the k groups (error).

SSError =

k∑
j=1

[ ∑
X2
j −

(
∑
Xj)

2

nj

]
= SST − SSBG

4. Between-groups degrees of freedom (dfBG).

dfBG = k − 1

5. Within-groups degrees of freedom (dfError).

dfError = N − k

6. Total degrees of freedom (dfT ).

dfT = N − 1
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7. Mean Square Between-Groups (MSBG).

MSBG =
SSBG
dfBG

8. Mean Square Within-Groups (MSError).

MSError =
SSError
dfError

9. F ratio (F)

F =
MSBG
MSError

10. Probability value (Prob or p-value) is the probability that the observed F ratio

(F) is statistically significant taking into consideration the degrees of freedom

dfBG, dfError using the F Cumulative Distribution Function (FCDF).

If the p-value is less than or equal to a threshold α (usually α = 0.05) the null

hypothesis can be rejected and this indicates there is a statistical significance between

the groups. To determine the significant differences between different classifiers, a post-

hoc test can then be conducted. In this thesis Tukey’s Honestly Significant Difference

(HSD) Post-Hoc Test is applied, which indicates the differences between algorithm

performance. In order to apply HSD, the Standard Error (SE) is computed for the

results of each classifier using Equation 2.3. Then the q statistic between two classifiers

is computed (Equation 2.4, where m̄k1 and m̄k2 are the means of the results for the

given two classifiers). Then the q statistic is compared to qα, which is the critical

q value with respect to the significance level α, and if q > qα. Finally, the HSD

is calculated using Equation 2.5, indicating the minimum difference between the two

classifiers’ means [67].

SE =

√
MSError

n
(2.3)

qα =
m̄k1 − m̄k2

SE
(2.4)

HSD = qαSE (2.5)

In order to determine the range of values of each classifier’s outcome, presented for

example in terms of accuracy or AUC values, the Confidence Interval (CI) is computed.

From the given sample (classification results of each technique), CI shows the range

of values that the classifier will produce. The CI is computed in the form of (1 − α)

where α ∈ [0, 1]. It is common to set the value of α to 0.05, where this results in

95% CI (1- 0.05). CI is expressed in terms of a lower and upper bound, CIlower and

CIupper calculated as shown in Equations 2.6 and 2.7; where Sk is the set of samples
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for the classifier k, k̄ is the means of the classifier results, σ is the variance, u is the

true distribution mean and Zp the probability value computed using Equation 2.8 [67].

CIlower = k̄ − Zp
σ(k)√
| Sk |

(2.6)

CIupper = k̄ + Zp
σ(k)√
| Sk |

(2.7)

Zp =
k̄ − u

α/
√
| Sk |

(2.8)

In order to provide a better understanding of the above statistical significance test-

ing methods, two simple examples are provided here using the data presented in Tables

2.4 and 2.5. With reference to the tables, each column represents a classifier and each

row a set of classification results. The ANOVA for the data presented in Table 2.4 is con-

ducted using the following: SST = (25511+42919+34968+34817)− (357+463+418+417)2

5×5×5×5
= 1.2638e+03, SSBG = (357

2

5 + 4632

5 + 4182

5 + 4172

5 ) − (357+463+418+417)2

5×5×5×5 =1.1349e+03,

SSError = 1.2638e+03 - 1.1349e+03 = 128.8000, dfT = (5 × 5 × 5 × 5) − 1 = 19,

dfBG = 4− 1 = 3, dfError = (5× 5× 5× 5)− 4 = 16, MSBG = 1.1349e+03
3 = 378.3167,

MSError = 128.8000
16 = 8.05, F = 378.3167

8.05 = 46.9959 and p-value = 3.7064e-08. With

respect to Table 2.5 the ANOVA is conducted using the following: SST = 194.2000,

SSBG = 5.8000, SSError = 188.4000, dfT = 19, dfBG = 3, dfError = 16, MSBG =

1.9333, MSError = 11.7750, F = 0.1642 and p-value =0.9189. The analysis in both

cases is summarised in Tables 2.6 and 2.7; note that this is the manner in which ANOVA

results will be presented later in this thesis. The p-value for results presented in Ta-

ble 2.4 is less than 0.05 (3.7064e-08), indicating that there is a statistically significant

difference between the operation of the classifiers. However, in the case of the data

presented in Table 2.5 the results are not statistically different as the p-value is 0.9189

(p-value > α = 0.05). The post-hoc test for the classifiers in Table 2.4 is conducted

because there is a statistical difference between them. Figure 2.3(a) shows a boxplot

of the significant difference between the groups where the x-axis represents the results

and the y-axis lists the groups. The lines represent the “comparison interval” around

the mean of each group and the dot in the middle of the line is the mean of each group.

When the lines of two groups do not overlap, the two groups are significantly different.

Figure 2.3(b) shows boxplot of the confidence interval for each group where the notch

in each box represents the 95% confidence intervals (top is the CIupper and the bottom

is the CIlower).
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Table 2.4: Example accuracy classification results where there is statistical difference in the
operation of the classifiers.

Classifier Number
1 2 3 4

A
c
c
u

ra
c
y

70 90 85 88
75 92 82 85
71 89 87 80
72 95 81 82
69 97 83 82

Table 2.5: Example accuracy classification results where there is not a statistical difference in
the operation of the classifiers.

Classifier Number
1 2 3 4

A
c
c
u

ra
c
y

90 80 85 88
79 81 82 85
88 84 87 80
84 83 81 82
78 84 83 82

Table 2.6: ANOVA results for the example results in Table 2.4.

Source SS df MS F p-value

Between-Groups 1.1349e+03 3 378.3167 46.9959 3.7064e-08

Error 128.8000 16 8.0500

Total 1.2638e+03 19

Table 2.7: ANOVA results for the example results in Table 2.5.

Source SS df MS F p-value

Between-Groups 5.8000 3 1.9333 0.1642 0.9189

Error 188.4000 16 11.7750

Total 194.2000 19
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(a) Significance differences (b) Confidence interval

Figure 2.3: The statistical differences and confidence intervals for the example results in Table
2.4.

2.9 Summary

In this chapter, an overview concerning the previous work related to knowledge discov-

ery in images, and image mining, was presented. Some related work about hierarchical

spatial decomposition was also presented. Following this, a review of the selected meth-

ods for image representation, feature vector generation and classification was included.

Finally, some selected mechanisms for evaluating classifiers were summarised. These

evaluation methods will be used later in this thesis. In the following chapter, the reti-

nal image analysis application domain will be presented including a review of previous

research related to this domain.
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Chapter 3

Application Domain and Dataset

3.1 Overview

This chapter introduces the application domain used to evaluate the different hierarchi-

cal spatial (volumetric) decomposition based representation methods proposed in this

thesis in the context of classification. For the evaluation the proposed methods were

applied to 3D retinal images obtained using Optical Coherence Tomography (OCT).

More specifically, the proposed methods were applied to 3D retinal image datasets in

order to determine whether they featured Age-related Macular Degeneration (AMD)

or not. AMD in 3D OCT image data was selected as the application domain for this

thesis because: (i) OCT is a commonly used 3D imaging technique and (ii) AMD is one

of the leading causes of worldwide vision loss in people aged over 50 years. Due to the

global ageing population, AMD is affecting a significant number of people especially

in Western countries. For instance, according to [111], in the U.S. at least 1.7 million

people have lost vision because of AMD. Every year, AMD effects more than 165,000

people in the USA; 16,000 of them will lose their vision completely. Therefore, AMD is

clinically significant, and automated detection of AMD is desirable. At present, there

is a lack of automated AMD detection tools. Notwithstanding the above, it should also

be noted that the methods proposed in this thesis will be equally applicable to other

3D image analysis domains.

The rest of this chapter is organised as follows. Section 3.2 provides an overview of

the structure of the eye and the retina and then describes AMD. In Section 3.3 the basic

principles of OCT scanning are presented. Section 3.4 reviews existing classification

techniques that have been applied to retinal images. In Section 3.5 the 3D OCT retinal

dataset considered in this thesis is described. Section 3.6 then describes the necessary

preprocessing steps applied to this data so as to be compatible with the proposed

decomposition techniques.
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3.2 The Human Eye and the Retina

In this section, we present the main structure of the human visual system, the eye and

the retina. Vision dominates our perception of the world surrounding us. In the human

visual system, eyes are the organs by which we see the nearby environment. The eye

has three main layers (see Figure 3.1): (i) the external layer including the sclera and

the cornea, (ii) the intermediate layer consisting of two parts: anterior (iris and ciliary

body) and posterior (the choroid), and (iii) the internal layer, the retina, which is the

main part of the eye. There are three parts of the eye that are filled with fluid: (i) the

Anterior chamber between the cornea and the iris, (ii) the Posterior chamber between

the iris, the zonule fibers and the lens and (iii) the Vitreous between the lens and the

retina. Light penetrates and is focused through the cornea and lens and then impinges

on the retina [76].

The retina is the only layer in the eye that contains neurons and is actually part

of the central nervous system. The retina has the main task of processing the visual

information received by the light-sensitive neurons (photoreceptors) in order to pass

them onto the brain. Retinal tissues translate light energy into a complex series of

neural signals in the visual pathway through the optic nerve. This is achieved by a

process known as phototransduction. During phototransduction photoreceptor cells

transform photons of light into neural signals [113]. Before visual information reaches

the brain, the retina codes it into channels. Each channel carries a special type of

visual information. The visual information in each channel is then analysed in the

brain [112]. The brain gives the interpretation for such visual information, resulting

in the perception of vision [100, 108, 113]. Conditions such as AMD and diabetic

retinopathy affect the operation of the retina.

Figure 3.1: Section of human eye [76].

36



3.2.1 Anatomy of the Retina

The size of the retina is approximately 0.5 mm2 [77]. The retina has five types of neu-

rons: (i) photoreceptors, (ii) bipolar cells, (iii) ganglion cells, (iv) horizontal cells and

(v) amacrine cells. These neurons are stacked in different layers [108]. From the outer-

side to inside, the retina has ten layers (see Figure 3.2(a)) [108, 113]: (i) the Retinal

Pigment Epithelium (RPE), which is a mono-cell layer with various visual functions

such as reducing backscattering of light that enters the eye; (ii) the Photoreceptor Cell

Layer (PCL), where the photoreceptor cells (referred to as “rods” and “cones”) are

special sensor cells containing photopigments that absorb photons of light; (iii) the Ex-

ternal Limiting Membrane (ELM); (iv) the Outer Nuclear Layer (ONL); (v) the Outer

Plexiform Layer (OPL); (vi) the Inner Nuclear Layer (INL); (vii) the Inner Plexiform

Layer (IPL); (viii) the Ganglion Cell Layer (GCL); (ix) the Nerve Fibre Layer (NFL);

and (x) the Internal Limiting Membrane (ILM). In a normal retina, these layers are

connected and there is interaction between them [113]. In the presence of conditions

such as AMD gaps appear between retina layers.

(a) Schematic showing the retinal layers

(b) A diagram showing the fovea

Figure 3.2: A schematic of the retinal layers and the fovea [113].
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The macula or the macula lutea is the centre part of the retina (shown in Figure

3.1) which includes the fovea. Clinically, the term fovea refers to the very centre of the

retina and is an area of horizontal diameter of approximately 1.5 mm. The fovea is

a shallow depression where there are only photoreceptors cells, allowing light to pass

unobstructed (Figure 3.2(b)). Light reaches the photoreceptor cells through the fovea

directly without the interference of any other retinal cells or blood or vessels. The fovea

has the highest concentration of sensory cells, making it specialised for discrimination

of detailed visual information and colour vision [113].

3.2.2 Age-related Macular Degeneration

AMD is a macular disease that can result in severe vision loss in people aged 50 years

or over. It is the most common worldwide disease that leads to blindness [107]. AMD

occurs when the macula becomes damaged or infected. In the early stage of AMD,

patients may notice a blurring of central vision when doing tasks such as reading and/or

driving. In the late stages, complete loss of vision may occur [108]. Figure 3.3 illustrates

the difference between a normal eye and an eye with AMD from the patient’s viewpoint

(a) (a), the location of the problem (b) and the structure of the eye (c).

AMD results in damage to the retina, causing RPE atrophy which leads to: (i) a

change in the shape of the retina, (ii) RPE detachment and (iii) other abnormalities

such as “drusen” (which are extra accumulations in the eye) and fluid within the retina

[66]. Drusen appear as “dots” within retina images, whose colours range from white to

yellow in colour fundus photographs. Drusen can be defined as being “hard” or “soft”

[27]. If there is only a small number of hard drusen in the retina, then this is not

diagnosed as a sign of AMD because this is normal for people over 50 [66].

Figure 3.3: Illustration of the difference between (a) normal and AMD vision, (b) a normal
and an AMD eye (drusen present in the macula) and (c) a normal retina and an AMD retina
[16].
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3.3 Optical Coherence Tomography

Optical Coherence Tomography (OCT) was invented by Huang et al. [61]. OCT is a 3D

imaging technique that is used to digitally capture, with a high level of resolution, the

inner structure of objects. OCT makes use of low-coherence light and ultra-short laser

pulses in order to detect the spatial position of tissue and resolve depth information.

The use of light waves enables acquisition of images (volumes), with a very high level

of resolution, that can reveal the fine detail of internal structures. 3D volumes are

generated from a series of 2D OCT “slices” referred to as B-scans. OCT has been

widely used in ophthalmological and skin examination.

Figure 3.4: An example of an OCT scanner system, where CCD is the Charge-Coupled Device
[22].

Spectral Domain OCT (SD-OCT) is currently the most commonly used form of

OCT [106]. Figure 3.4 shows a diagram illustrating how an OCT system works. SD-

OCT has four main components: (i) a light source, (ii) a reference mirror, (iii) a beam

splitter and (iv) a spectrometer. SD-OCT relies on low-coherence interferometry where

Super-Luminescent Diodes (SLD) produce a light. The beam splitter is used to split

the light omitted by SLD into two paths. The first path is to the reference mirror

and the second path is to the object to be scanned (the retina in our case). The

reflected lights from the two paths are detected by using multiple signal detection to

form an inteferometric signal [45]. Spectrometer and linear CCD cameras are used to

measure the depth information from the inteferometric signal using the Fast Fourier-

Transform [37]. It has been suggested that the Signal-to-Noise ratio (SNR) in SD-OCT

is improved in comparison to other forms of OCT so that the quality of the scanned

images is enhanced and the noise level is reduced [96, 145]. SNR of 80 decibel (dB)
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or above is generally accepted rate while the typical SNR value for SD-OCT is 110 dB

[152].

In the context of retinal analysis, OCT images provide useful information whereby

ophthalmologists can conduct non-invasive examinations. OCT has been found to be

very accurate and sensitive owing to the fact that the reflected optical signals are

grouped by their speed; the exact depth of a scanned object can thus be obtained.

Since OCT relies on light reflection, the optical features can be clearly identified [61].

OCT images give more precise information about scanned objects than other scan-

ning techniques such as fundus images. In the context of retinal imagery, an OCT scan

allows for different views of the retina. This in turn helps eye examination as clinicians

can view various structures within the eye from different angles. In the context of the

work described in this thesis, OCT allows for the identification of the different layers

of the retina. OCT has thus provided ophthalmologists with significantly more detail

concerning the retina than was available using 2D images.

3.3.1 Retinal OCT Images

In order to distinguish between “normal” eyes and diseased eyes, the anatomy of the

retina is typically considered. It is thus important to be able to recognise the differ-

ent parts of the eye, such as the RPE and the choroid, in order to know if the retina

is healthy or not. The contour of the retina and the foveal depression are important

anatomical elements used when analysing retinal data. Figure 3.5 illustrates ten differ-

ent retinal layers within an example OCT image. In a healthy eye, the retinal layers

are connected and there is no space between the layers but in a diseased eye separations

between layers tend to appear. The appearance of such undesirable spaces typically

indicates the presence of fluid between the layers involved.

Figure 3.5: An OCT image showing different retinal layers [39].
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3.3.2 AMD in 3D OCT

So far OCT is the only imaging technique that can show the cross-sectional details of the

retina and the choroid, where most indicators of AMD (if any) will be located, while the

use of 2D fundus images are limited in terms of location [74]. AMD is typically identified

in retinal OCT images by visual inspection. A normal retinal volume has smooth and

connective tissue layers whilst an AMD retinal volume has disrupted layers and other

abnormal patterns. Figure 3.6 shows two 3D OCT volumes. Note that one side is

longer than the other; this is significant with respect to the decomposition techniques

presented later in this thesis. Figure 3.6(a) shows a normal OCT retinal image where the

retina features smooth contours and a regular arrangement of individual retinal layers.

Figures 3.6(b) and (c) show examples of OCT retinal images with AMD, showing the

abnormal change in the retina associated with AMD where fluid and detachment of the

retina cause the layers of the retina to separate from one another.

There are some distinct features of AMD that can be found in OCT images such

as: (i) disturbance of the RPE layer underneath the neuro-retina due to the presence

of drusen, pigment epithelium detachment, geographic atrophy or membrane changes;

(ii) disruption of layered neuro-retinal tissue; (iii) the presence of intra- and sub-retinal

fluid and (iv) retinal thickening. From Figure 3.6, it can be seen that there are notable

distinctions between the normal and the AMD volumes. The normal volume features

smooth and connected layers. However, the AMD volume features thickening of the

RPE layer, intra-retinal fluid, PED and some unusual texture patterns.
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(a) A 3D OCT of a normal eye

(b) An early stage of a 3D OCT of an AMD eye

(c) An advanced stage of a 3D OCT of an AMD eye

Figure 3.6: Examples of 3D OCT images from the RLUH data set used in this thesis showing
the difference between a “normal” and an AMD retina.

3.4 Classification of Retinal Images

In this section, we review the classification techniques which have been used as retinal

disease diagnosis tools. From the literature, most of the current disease diagnosis tools

are focused on 2D image data. Two examples can be found in [49] and [88] which

used statistical-based methods. In addition, a study was conducted in [59] proposing a

tree-based method. In [109] a 3D OCT retinal image classifier was proposed.

In [49] a statistical-based method was applied to a global representation. A co-
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occurrence matrix was used to represent the OCT image features. Then statistical

functions were used to extract the features of the co-occurrence matrix; features such

as energy, entropy, correlation, local homogeneity and inertia. In addition, the Discrete

Fourier Transform (DFT) was computed over the frequency of the image. A Maha-

lanobis distance-based method was applied to measure the similarities between image

features and a Bayesian classifier was used to differentiate between features. However,

this study was again applied only to 2D OCT retinal image slices.

The study conducted in [88] implemented a classifier for OCT images for classifying

different retinal diseases, including AMD, in 2D OCT image slices. The classification

process comprised three steps. The first step was image preprocessing (noise removal

and image alignment). During noise removal, a threshold and median filter were ap-

plied. Following this, a morphological operator was used to remove unwanted objects.

During image alignment, a least square curve fitting based-method was applied to a

curve which represented the middle of the retina, the objective being to flatten the

main region. This alignment process was introduced in order to build a representation

for the same area. In the next step, the flattened image was represented using a Multi-

Scale Spatial Pyramid (MSSP) up to three levels. MSSP is a region-based technique,

where each region is recursively divided into four regions. The local descriptors of each

region in each level of the MSSP were generated using a Local Binary Pattern (LBP)

histogram. Then the dimensionality of the set of LBP histograms, for the whole set of

regions, was reduced by the means of Principal Component Analysis (PCA). All the

LBPs were added together, leading to a global feature descriptor. In the third step,

the RBF kernel-based SVM classifier was applied to the global descriptor in order to

categorise the diseases. One of the limitations with this approach is that it does not

consider the complete set of slices available in a 3D OCT image. Only a single 2D

foveal slice is used and it is selected manually.

The work described in [59] proposed a whole image-based representation which was

applied to 2D fundus retinal images. The image was hierarchically decomposed down

to a predefined level whilst taking into consideration a critical function for checking the

homogeneity of each region. A graph was then built. A sub-graph mining technique was

applied to this graph so as to extract the most important patterns according to their

frequency. Then a feature vector was generated using the most frequent sub-graphs.

The generated feature vectors were fed into a classifier such as KNN or SVM. In this

thesis we compare the operation of the proposed 3D hierarchical decomposition based

representation methods to the method proposed in [59].

The study conducted in [109] proposed a method for 3D OCT retinal classification.

The retinal layers were segmented using a multi-scale 3D graph algorithm. A set of

sub-volumes were generated, one sub-volume per layer. A set of statistical features

was generated for each sub-volume. These features included intensity distribution, run
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length and co-occurrence matrices and wavelet. These feature were fed into a KNN

classifier.

3.5 3D Retinal Image Datasets

In this section, we describe the dataset used to assess the performance of the proposed

hierarchical 3D representation approaches to support the volumetric classification pre-

sented in this thesis. A dataset comprising 140 3D OCT volumes was used, 68 “normal”

(control) volumes and 72 AMD volumes. The size of each volume was approximately

1024×496 pixels ×19 slices representing a 6×6×2 mm retinal volume. Different types

of AMD are included in the dataset, namely classic AMD, Occult AMD and RAP AMD.

For evaluation purposes, these types of AMD images were merged because the work

described in this thesis is directed at binary (disease versus no-disease) classification.

All the images were obtained from the Royal Liverpool University Hospital (RLUH)

under ethical approval. These images were labelled by trained clinicians.

In the work presented, the high-definition spectral domain OCT SD-OCT was used.

System specifications includes a 5 m depth resolution, a 20 m transversal resolution and

a scanning speed of 40,000 A-scans per second. The system allowed for the scanning of

the ocular fundus using two different macular cube protocols, namely the 1024 × 496

×19, covering a volume of 6,000x6,000x2,000 m3.

The OCT data was collected from patients with AMD and healthy control volunteers

attending St Pauls Eye Unit within the Royal Liverpool University Hospital. The study

was approved by the UK Research Ethics Committee and the institutional review board

at the Royal Liverpool University Hospital. The study was undertaken in accordance

with the tenets of the Helsinki Declaration. Written informed consent was obtained

from all the patients prior to the enrolment.

3.6 3D OCT Preparation

Due to the nature of the OCT image acquisition process, the captured individual images

often had different orientations, and included “speckle” noise and unwanted structures.

Therefore, some image preprocessing (cleaning) was required to improve, correct and

enhance the quality of the images and reference the images to a common coordinate

system prior to the application of any further processing. The preprocessing comprised

two steps: (i) removing unwanted structures from the input retinal images and (ii)

flattening of the retinal layers (as proposed in [88]). The result of the preprocessing of

each volume is a Volume Of Interest (VOI) encompassing the flattened retina. Detail

concerning the two steps is presented in the following two subsections.
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3.6.1 Unwanted Structure Removal

In order to remove unwanted structures from the input retinal images, an approach

was proposed combing: (i) a segmentation based method and (ii) the application of

morphological operators.

The segmentation based method was applied to separate the retina from the rest of

the image. One of the advanced techniques directed at solving the image segmentation

problem is the split Bregman method [47]. This algorithm is an extension of the Rudin-

Osher-Fatemi (ROF) algorithm [116] and considers the problem as a L1-regularised

optimisation problem based on Total Variation (TV).

The morphological operators were applied to further enhance the quality of the

image and obtain a single connected area. Morphological operations are defined as

“neighbourhood operations” whereby a mask or a template with specific shape (e.g.

rectangle or square) and size (called the Structuring Element (SE)) is defined for com-

paring the value of each voxel with its neighbours (within the mask). With respect to

morphological operators, a voxel or pixel with intensity of 0 is considered black and

all the other values are white. The SE is used to specify a neighbourhood relative to

a reference voxel (centre voxel). The reason behind using morphological operators is

that they rely on the concept of “connectedness”, whereby the connectivity between

the voxels of the image is taken into consideration [4].

There are two basic morphological operators, namely dilation and erosion. Morpho-

logical dilation is a process used to augment white regions in an input image by adding

white voxels around the edges of the white regions, or to the holes within individual

regions, so that holes in a single region and gaps between different regions are filled.

Thus during this process some of the black voxels (zero values) will be converted to

white object voxels (non-zero values). The size and the shape of SE plays an essential

role in determining which black voxels to leave unchanged and which to change to white

voxels. Morphological erosion is a process by which some of the white voxels in an input

image are converted to black voxels (thus the reverse of morphological dilation). Again

the SE is used to determine which white voxels to keep and which white voxels to erode

[4, 48]. A Disc-shaped Structuring Element (DSE) was employed with respect to the

morphological operators used in the research described in this thesis.

In addition to dilation and erosion operators, two extension morphological opera-

tors, based on the dilation and erosion operators, were employed with respect to the

research described in this thesis: (i) closing operator and (ii) opening operator. The

first performed morphological closing and was used to eliminate small holes inside the

retina caused by applying the split Bregman or which were originally present within

the image (indicating fluid or detachment in the retina). Morphological closing com-

prises the morphological dilation followed by morphological erosion. The morphological

closing was guided by a DSE with a radius of 15 voxels. The second operator was a
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morphological opening operator, which was applied in order to remove the small parts

of the image not connected to the main retina (and to fill some gaps). In this case, the

morphological opening was controlled by a DSE with a radius of 5 voxels (in 3D).

3.6.2 Retinal Layer Flattening

In this subsection, the method used to implement a uniform alignment for the images,

referred to as “flattening” in [88], is described. This is required because of the OCT

settings used during the scanning of retinal images (volumes). Images may not all be

referenced to the same “horizon”. The images therefore need to be aligned so that the

adapted feature extraction methods can be roughly applied to the same region across

the entire 3D image set. Figures 3.7(a) and 3.8(a) show an example of a retinal image

where the retina is not flattened. In this thesis, each slice in a given retina volume

is flattened using a second-order polynomial least-square curve fitting procedure [88]

according to the nature of the mean surface of the retina (defined according to the top

and bottom retina surfaces). In order to do this, we select the slice where the top and

bottom surfaces of the volume (retina) are furthest apart and consider these two layers

in terms of two vectors made up of voxel values. These two vectors are used to define

the “middle” vector, which is then used as a reference for flattening the entire retinal

volume. Figures 3.7(b) and 3.8(b) illustrate the retinal image after the processing.

(a) Given 3D OCT (b) After applying the Preprocessing

Figure 3.7: Examples of 3D OCT image before and after applying the preprocessing.
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(a) A set of slices for Figure 3.7(a)
	
  

(b) A set of slices for Figure 3.7(b)

Figure 3.8: Examples of a set of slices for Figure 3.7.

3.7 Summary

This chapter firstly presented an overview of the eye, the retina and AMD. The OCT 3D

imaging technique was then described. This was followed by discussion of the dataset

used to evaluate the proposed approaches described later in this thesis together with

the preprocessing applied to this data so as to identify VOI. In the following chapter,

the proposed hierarchical decomposition is presented as applied to the extracted VOI.
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Chapter 4

Volumetric Decomposition

4.1 Overview

As stated in Section 1.3 of the introductory chapter, the proposed 3D volumetric mining

methods rely on the concept of hierarchical spatial decomposition. In the literature

review chapter (Subsection 2.3.1), we identified two types of decomposition methods:

(i) segmentation based and (ii) grid based. In Subsection 2.3.1, it was argued that

segmentation based methods were inappropriate and that grid based methods were

more desirable in the context of 3D volumes. The proposed volumetric decomposition

methods are thus presented in this chapter, starting with an overview in Section 4.2. As

noted earlier in this thesis, an important issue in hierarchical decomposition is when to

stop the decomposition. One common approach, and that adapted with respect to the

work described in this thesis, is to use what is called a “critical function”. Section 4.3

describes a number of critical functions for measuring the homogeneity of regions (sub-

volumes in 3D space) including a number proposed by the author. Section 4.4 presents

a method for addressing the boundary issue associated with hierarchical decomposition.

A summary concerning this chapter is presented in Section 4.5.

4.2 The Proposed Hierarchical Spatial Decomposition

The problem considered in this section is how to decompose an image in a way that each

decomposed region can be used to form a meaningful representation (discussed in more

detail in the following chapters). As the name suggests, hierarchical decomposition pro-

ceeds in a recursive manner. In the case of 2D space we can think of the decomposition

in terms of a quadtree and in 3D space in terms of an octree. In both cases, the root

node represents the entire volume and the remaining nodes the decomposed sub-spaces

and regions. In the case of 2D decomposition, the space is recursively decomposed into

four sub-spaces. In the case of 3D decomposition the space is recursively decomposed

into eight regions. Hierarchical decomposition usually assumes that the shape to be

decomposed is symmetric (a square in 2D or a cube in 3D). However, in Chapter 3 it
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was noted that the retinal volumes of interest are rectangular in shape with one side

being much shorter than the other two; thus “traditional” octree decomposition will

result in some very “thin” regions. This phenomena is illustrated in Figure 4.1 where

it can be observed that the depth of the volume (z axis) is significantly smaller than

its width and the height. Consequently, an alternative form of hybrid decomposition is

proposed more suited to the nature of the retinal volumes of interest.

Figure 4.1: Example of a 3D OCT volume showing the size in 3 dimensions (140 (x) × 140
(y) × 20(z) ).

Given a retinal VOI to be decomposed we commence, at the first level, by dividing it

into eight regions. The resulting nodes are then the “children” of the root node. These

children nodes are then recursively decomposed into sets of four regions (as opposed

to eight) until some chosen maximum level is reached or homogeneous volumes are

arrived at as defined by a critical function. The aim of a critical function, as noted

above, is to determine whether a given region is, in some sense, homogeneous. If it is

then the region is not decomposed further. Consequently, the resulting decomposition

(tree) may not be balanced (later in this thesis some evaluation is presented between

balanced tees generated without the use of a critical function and unbalanced trees

generated using a critical function; thus use of critical functions versus their non use).

Algorithm 4.1 describes the proposed decomposition process. The retinal image

and the chosen maximum level, maxLevel, are the given inputs. The output is a tree

data structure T . We indicate the child i of a node in the tree t using the notation

t.i. The root of the tree is t. The algorithm commences by first assigning the whole

volume to t (line 2). There is then a test (line 3) in case the maxLevel is 1 or the entire

volume is homogeneous (an unlikely event). If the maxLevel has not been reached

and the volume is not homogeneous it is decomposed into eight sub-volumes (line 5)
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using the OctDecomposedVolume() function. Each of these eight sub-volumes, if not

homogeneous, is then decomposed further (line 9) using a quad tree decomposition

(using the QuadDecomposedVolume() function). In the quadtree decomposition, the

z dimension is ignored. This is done using the decompose procedure (line 15 to 23).

The decomposition continues in this manner until either the maximum level or non-

homogeneous regions are reached. Various critical functions will be described in detail

in the following section, Section 4.3. The identified regions are stored in a hierarchical

manner in order to allow for various types of representation to be used.

Algorithm 4.1 Pseudocode for the proposed hierarchical spatial decomposition
method

Input: VolumetricData, maxLevel
Output: Tree data structure T

1: level = 1
2: t ← VolumetricData
3: if level < maxLevel and not Homogeneous(t) then
4: level = level +1
5: t.1 . . . t.8 ← OctDecomposedVolume(t)
6: if level < maxLevel then
7: for i = 1 to i=8 do
8: if not Homogeneous(t.i) then
9: decompose(t.i,level+1)

10: end if
11: end for
12: end if
13: end if
14: exit with T
15: Procedure decompose (s,level)
16: s.1 . . . s.4 ← QuadDecomposedVolume(s)
17: if level < maxLevel then
18: for i = 1 to i=4 do
19: if not Homogeneous(s.i) then
20: decompose(s.i,level+1)
21: end if
22: end for
23: end if

4.3 Critical Functions for Regional Homogeneity

Measuring region homogeneity is an important aspect of hierarchical decomposition and

the proposed decomposition described above. The basic idea is to employ a function

that serves to minimise the number of regions that are generated during the decom-

position without losing significant information. In the context of this thesis the term

Homogeneity, with respect to 3D regions, refers to the situation where a region’s voxels

are in some sense uniform. To this end, as already noted, a critical function is used (the
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function Homogeneous in the algorithm presented in Algorithm 4.1). In this thesis,

we rely on the assumption that if there is no difference between the new decomposed

regions and their parent volume then the decomposition is not required and the parent

region can be considered to be a homogeneous region. In our proposed method, a dis-

tance measure was used to compare the homogeneity of the immediate region and the

parent region. In order to apply a critical function, the current region is first decom-

posed and then the relationships between the new regions and the parent are checked.

A threshold value t is used to decide whether each region, in comparison with its parent

region, is homogeneous or not; if so the decomposition is accepted, otherwise the parent

region is decomposed further.

In this section, seven different critical functions are presented. Two of these have

been previously proposed with respect to other applications while the remainder are

mechanisms that, although they are used elsewhere for alternative comparisons, have

been specifically derived with respect to the work described. The two existing critical

functions that have been identified from the literature are:

1. Average Intensity Value (AIV) [59], and

2. Kendall’s Coefficient Concordance (KCC)[153]

The five that have been adapted by the author are:

1. Gray Level Co-occurrence Matrix (GLCM)

2. Euclidean Distance (ED)

3. Kullback-Leibler divergence (KLD)

4. Dynamic Time Warping (DTW)

5. Longest Common Subsequence (LCS)

The above defined functions can be categorised as being either: (i) intensity value

based or (ii) histogram based. The intensity value based methods are: (i) AIV, (ii)

KCC and (iii) GLCM. The rest are histogram based. With respect to the intensity

value based methods, the simplest approach is to use a first-order statistical function

such as the mean value of the intensity values of each region as in AIV. In more

advanced techniques, a second-order statistical method could be employed. Time series-

based methods are another option which can be used where the voxel intensity values

compared to the set of values for their neighbours are represented as a time series.

In the histogram-based method, a histogram is generated for each region. Then a

distance function is used to measure the differences between two regions’ histograms.

If the distance is less than a given threshold t, then the decomposition stops. Euclidean
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Distance and Kullback-Leibler divergence are simple ways to compare two histograms

by taking into account the difference between each histogram value (bin). Alternatively,

time series-based approaches may be employed to measure the differences between two

histograms. DTW and LCS are two time series based techniques. Note that for the

purpose of this thesis the size of the histograms used, n, was set to 256.

Each of the considered critical functions is described in some further detail below.

Note that in the description, where appropriate, Hp is the histogram of the parent

and Hc is the histogram of the child (region), n is the length of the histograms. Note

that AIV and KCC were previously described in Section 2.3.2, but have been briefly

included here for reasons of completeness.

1. Average Intensity Value (AIV). AIV was used by Hijazi et al. [59]. AIV

is the mean of the intensity of the volume. AIV is an example of a first-order

statistical function. The AIV is computed for the parent region and the child

nodes. Then the difference between the AIV values is computed. If the generated

distances are less than a given threshold t then the decomposition is stopped.

Recall that this method was fully described in Section 2.3.2.

2. Kendall’s Coefficient Concordance (KCC). KCC indicates homogeneity

without the need to decompose an image further because it compares each voxel

with its neighbours. Recalling the discussion in Section 2.3.2, the KCC value

ranges from between 0 and 1 [153]. The higher is the KCC value the more ho-

mogeneous the region. If the KCC value is close to one, then the space has a

complete agreement between its elements, which means it is completely homoge-

neous. In our case, a threshold value t was used to determine if the region should

be decomposed further or not. If KCC is less than a specified threshold t then

the decomposition is valid and the child regions are added to the collection of

regions in the level and the decomposition continues. Although KCC has been

previously used for regional homogeneity to determine the similarity of regions

in images, it has not been previously used in the same context as in this thesis

(image classification).

3. Gray Level Co-occurance Matrix (GLCM). The use of GLCM or Voxel

Co-occurrence Matrix (VCM) is another option for deciding if a set of regions,

generated by decomposing an immediate parent volume, is homogeneous or not. A

GLCM is a second-order statistical function. Recall the discussion in Section 2.4,

in a GLCM matrix the number of times that the frequency of two intensity values

are neighbours is counted within a certain distance and direction. The values

recorded along the GLCM leading diagonal indicate the frequency of neighbours

having the same intensity value. Thus if the values of the GLCM diagonal are

higher than rest of the matrix then this indicates regional homogeneity. The
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desired GLCM matrix is first extracted and then the GLCM diagonal is checked.

The average value recorded along the diagonal then indicates whether the region

is homogeneous or not according to Equation 4.1 [54]. In order to distinguish

between the use of VCM as a region representation and a critical function, in

the remainder of this thesis we will refer to a 3D GLCM as voxel Co-occurrence

Matrix (VCM) for region representation and GLCM as a critical function. The

VCM concept is discussed further in Subsection 5.2.2.1 in the context of the region

representation technique.

GLCMhomogeneity =
∑
i,j

GLCM(i, j)

1 + |i− j|
(4.1)

Using Equation 4.1, if the calculated GLCMhomogeneity value is great than a

given threshold t, then the region is homogeneous and so it is not divided further.

4. Euclidean Distance (ED). Using the Euclidean Distance (ED) critical func-

tion, the differences between bin values of two histograms to be compared are

accumulated. Equation 4.2 illustrates how ED is computed where hci is the his-

togram of the ith child region and hp is the histogram of the parent region. If

the calculated ed values for the parent and all child region are less than a given

threshold t, then the region is homogeneous and so it is not divided further.

ed(hci, hp) =

√√√√size∑
j=1

(hcij − hpj)2 (4.2)

5. Kullback-Leibler divergence (KLD). Kullback-Leibler divergence (KLD) is

another way of comparing two vectors. KLD [68] is used to quantify the distance

between two distributions. In our case, the two distributions are the histograms

of the parent and the child region. Equation 4.3 is used to compute the KLD

value. If all calculated KLD values for all the children regions are less than a

given threshold t, then the region is homogeneous and so it is not divided further.

KLD = (KL1 +KL2)/2 (4.3)

KL1 =

size∑
j=1

(hpj × (log(hpj)− log(hcij ))) (4.4)

KL2 =

size∑
j=1

(hcij × (log(hcij )− log(hpj))) (4.5)
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6. Dynamic Time Warping (DTW). DTW is a time series based method. In

DTW, the Euclidean distance between the elements of the two given series is

computed and fed into a grid matrix G. The best match between the elements of

the two series is the warping path. The warping path should minimise the total

cumulative Euclidean distance between the two series. In this thesis, the work

presented in [72] was used where a bounding measure for DTW was proposed.

Equation 4.6 illustrates this bounding measure. The optimal warping path be-

tween the two sequences (histograms) hp and hci minimises the total cumulative

distance within the boundary. The assumption is that if the DTW value is small

then there is homogeneity between two histograms. Therefore, if all calculated

DTW values for all the child regions are less than a threshold t the region is

considered to be homogeneous and so it is not decomposed further.

DTW (hp, hci) =

√√√√√ n∑
j=1


(hcij − Uj)2 if hcij > Uj
(hcij − Lj)2 if hcij < Lj

0 otherwise
(4.6)

In Equation 4.6, Ui = max(hpi−r : hpi+r) and L = min(hpi−r : hpi+r) are some

Upper and Lower bounds respectively and ∀ Ui ≥ hpi ≥ Li, r is the “reach”,

which is the maximum number of elements covered in the grid.

7. Longest Common Subsequence (LCS). LCS is a more advanced method than

DTW used with respect to time series domains. LCS computes the similarities

between two series located within a region of a size δ × ε. The Longest Common

Subsequence (LCS) time series analysis technique [140] is used to establish the

similarity between histograms using the Minimum Bounding Envelope (MBE).

When the MBE is used, only the elements of the two series included in the region

controlled by δ, ε is considered and the rest are ignored. Equations 4.8 and 4.7

show how the MBE LCS is computed where n is the size of the two histograms

hp and hci. The advantage offered by the LCS mechanism, compared to other

time series mechanisms, is that it reduces the complexity of the problem by using

an upper and lower Minimum Bounding Envelope (MBE) so as to estimate the

similarities within the MBE (as in Equation 4.7). This difference between each

histogram value (bin) is only considered if it is within the MBE region as described

by Equation 4.7. In the equation, if the difference between each histogram values

(bins) is within the MBE region, then the LCS is recursively called with the

“head bin” of the given two histograms (in LCSδ,ε(hp|hp|−1, hci|hci|−1)) removed

and otherwise the the LCS function is called again twice, once with the top bin of

the hp removed and once with hci; and then the maximum value is selected. This

is recursively run until the two histograms are empty. If the calculated distance

Dδ,ε(hp, hci) (Equation 4.8) values between the parent histogram hp and all the
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children histograms hci are less than a threshold t, then the region is considered

homogeneous (and not decomposed further).

LCSδ,ε(hp, hci) =


0 ifhp or hci is empty

1 + LCSδ,ε(hp|hp|−1, hci|hci|−1) if | hp|hp| − hc|hci| |< ε

| |hp| − |hci| |≤ δ
max{LCSδ,ε(hp|hp|−1, hci), LCSδ,ε(hp, hci|hci|−1), otherwise

(4.7)

Dδ,ε(hp, hci) = 1−
lcsδ,ε(hp, hci)

n
(4.8)

(a) AIV (b) GLCM (c) KCC

(d) ED (e) KLD (f) DTW

(g) LCS

Figure 4.2: Illustration of the effect of the seven different critical functions considered in this
thesis when applied to decompose the volume in Figure 4.1.

In order to illustrate the comparative operation of each critical function, they were

used to perform the decomposition of the 140 pixel × 140 pixel × 20 slice retinal OCT

volume given in Figure 4.1 (which was decomposed using Algorithm 4.1). Figure 4.2
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depicts the seven trees that resulted. From the figure, it can be noted, from the general

shape of the trees, that there are clear differences between the operation of the critical

functions. For example, from the third level (the root is level one) it can be noticed

that in some cases the regions are decomposed further, and in other cases not. The

above critical functions are evaluated in further detail later in this thesis with respect

to the different representations proposed, both region-based and whole image-based.

4.4 Decomposition Methods and the Boundaries

When an image is decomposed, there is a possibility that a boundary region is included

between two regions; a connected region that exists in more than one region at a given

level of decomposition. In this thesis, we also refer to this issue as the “boundary prob-

lem”. In this thesis, other than standard (oct-trees) decomposition, we also proposed

overlapping (non-tree) decomposition. The later is illustrated in Figure 4.3(b) and (c).

For comparison purposes, standard decomposition is shown in Figure 4.3(a). In the

case of standard decomposition, the given volume is divided into eight regions. The

whole volume is considered as the only region at the first level. The eight regions at

the second level of decomposition are then considered as the children regions. In the

overlapping decomposition, an overlapping volume is included as a ninth region. This

is included in order to cover the part of the image located at the region intersection

of the standard decomposition, where boundary regions are most likely to occur. The

children regions, in each case, are then recursively decomposed into further groupings

of five regions (four regions plus an overlapping region).

(a) Standard decomposition (b) Overlapped decomposition (c) Nine tree

Figure 4.3: Standard volumetric decomposition versus the overlapping volumetric decompo-
sition.

4.5 Summary

In this chapter, the proposed hierarchical spatial decomposition algorithms have been

described. For reasons of both efficiency and effectiveness it is desirable to decompose
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the image down to homogeneous regions. For this purpose, a set of associated critical

functions for measuring the regional homogeneity were considered. A mechanism for

addressing the overlap problems, non-tree decomposition, was also presented. In the

following chapter (Chapter 5), the proposed region-based representation methods are

considered. These are evaluated in Chapter 6. Chapter 7 presents the proposed whole

image-based representation methods.
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Chapter 5

Classification Based on
Decomposition and Region-based
Volumetric Representation

5.1 Overview

This chapter presents the procedure for building 3D (volumetric) image classifiers using

Region-Based (RB) representation methods. Recall that the basic idea of the region-

based representation method is to form a description for each region (node in the

decomposition) in terms of a feature vector format. Figure 5.1 presents a schematic

of the region-based volumetric classification process presented in this chapter. From

the figure, it can be seen that the process comprises four stages commencing with

decomposition (as described in the foregoing chapter), the result of which is a tree

where the nodes represent the individual regions. Next the regions are represented

in a format that will provide for the generation of feature vectors. As will be seen

later in this chapter, a number of alternative formats may be adapted. However, as

discussed previously in Section 2.4 these formats can be characterised as being either:

(i) statistical or (ii) histogram-based techniques. A set of techniques for both the

statistical and histogram-based formates will be described in this chapter and will be

evaluated in the following chapter. More formally, a given image In is decomposed

into a set Sn of r regions Sn = {s1, . . . sr} where the regions are at a number of

different levels of decomposition. The regions Sn are then represented using one of

the techniques presented in this chapter to form a set of r feature vectors. The third

stage is feature vector generation; the objective being to represent each image in terms

of a single feature vector subscribing to some global set of features (feature space).

The final stage is classifier generation. Referring back to the KDI process presented

in Subsection 2.2.3, the first three stages belong to the KDI preprocessing phase while

the last stage belongs to the KDI mining phase.

The rest of the chapter is structured as follows. First of all, the region-based
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Figure 5.1: Overview of the region-based classification process.

representations proposed in this thesis are presented. Statistical-based techniques are

described in Section 5.2 and histogram-based techniques in Section 5.3. Section 5.4

describes different techniques whereby a single feature vector for each image can be

generated. In Section 5.5 the classification techniques applied to these feature vectors

are briefly considered (they were introduced in Chapter 2). A summary concerning this

chapter is provided in Section 5.6.

5.2 Statistical-Based Representation Techniques

As noted above, regions identified at nodes in the decomposition can be represented

using either statistical based techniques or histogram-based techniques. This section

considers the first of these while the following section considers the second. Essentially,

statistical-based representation techniques, as the name suggests, are founded on the

use of statistical functions to extract representative values that can be used to describe

individual regions. As also noted in Section 2.4, the statistical functions that can be

used can be characterised as being either: (i) First-Order Representation (FOR) or (ii)

Second-Order Representation (SOR) [134]. The distinction is that first-order statistical

functions are applied directly to the region of interest while second-order functions are

applied to a matrix intermediate representation of the region (generated using informa-
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tion such as the relative position and spatial relationship of each voxel making up the

region and its associated intensity with respect to each voxel’s “neighbourhood”). The

first-order statistical techniques used with respect to the work described in this thesis

are presented in Subsection 5.2.1 below, while the second-order adapted techniques are

presented in Subsection 5.2.2.

5.2.1 First-Order Representation (FOR)

In this subsection, we describe the adapted First-Order Representation (FOR) tech-

niques used to represent each region. The symbols used for FOR are listed in Table

5.1. The first-order statistical functions that have been derived from the literature

[50, 53, 73, 84, 155] are listed below.

Table 5.1: Symbols used for FOR

Symbols Description

S A decomposed region.
(x, y, z) the location coordinates of a voxel.
S(x, y, z) The intensity value of a voxel in a given x, y, z location.
sizeof(S) The number of voxels in a region S.
removeS(x,y) To return a vector after removing x and y elements from the

vector S.
max(S) The maximum intensity value in a region S.
min(S) The minimum intensity value in a region S.
µ(S) The mean intensity value of a given region S.
std(S) The standard deviation of a region S.

1. Angular Second Moment (ASM): fASM =
∑

x

∑
y

∑
z S(x, y, z)2

2. Entropy (E): fE = −
∑

x

∑
y

∑
z S(x, y, z) log(S(x, y, z))

3. Mean (µ): fµ = 1
sizeof(S)

∑
x

∑
y

∑
z S(x, y, z)

4. Median (M): fM = middle(sort(S)). The voxels’ intensity values of region S

are sorted and the middle value selected as the median.

5. Trimmed Mean (TM): fTM = mean(removeS(max(S),min(S))). The Mean

of the intensity values is computed after discarding the highest and lowest inten-

sity values associated with the voxels in a region S.

6. Geometric Mean (GM): fGM =
[∏

x

∏
y

∏
z S(x, y, z)

]1/max(S)
7. Harmonic Mean (HM): fHM = max(S)∑

x

∑
y

∑
z 1/S(x,y,z)

8. Range (R): fR = max(S)−min(S). The difference between the maximum and

the minimum intensity values of the region S.
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Figure 5.2: Example of a region (S), where the colour represents the intensity value.

9. InterQuartile Range (IQR): The intensity values of voxels in a region S sorted

and the difference between the values of the first and the third quartiles calculated.

10. Standard deviation (std): fstd = ( 1
sizeof(S)

∑
x

∑
y

∑
z (S(x, y, z)− µ(S))2)1/2

11. Variance (V): fV = 1
sizeof(S)

∑
x

∑
y

∑
z (S(x, y, z)− µ(S))2

12. Central Moments (CM): fCMo =
∑

x

∑
y

∑
z(S(x, y, z) − µ(S))o, where o is

the order of the moments. Note that in this thesis five values for o were used:

{3, 4, 5, 6, 7}.

13. Skewness (S): fS =
∑

x

∑
y

∑
z(S(x,y,z)−µ(S))3

std(S)3
.

14. Kurtosis (K): fK =
∑

x

∑
y

∑
z(S(x,y,z)−µ(S))4

std(S)4
.

Each function described above gives an output of one value. The collected values

can be stored in a vector of length 18 (including five CM values), one per region. Figure

5.2 shows an example region with the associated FOR values given in Table 5.2. (Note

that the example region presented in Figure 5.2 will be revisited later in this chapter.)

5.2.2 Second-Order Representation (SOR)

As noted above, SOR uses second-order statistical functions whereby first-order style

statistical functions are applied to a matrix intermediate representation that describes

the relationship between “neighbourhoods” of voxels. Two types of matrix were used

with respect to the work described in this thesis: (i) the Voxel Co-occurrence Matrix

(VCM) and (ii) the Voxel Run-Length Matrix (VRLM) [134]. These were originally

proposed in the context of 2D image representations, but in this thesis they have been

adapted for use with respect to 3D volumes in the context of spatial decomposition

(recall that the concept of VCM was introduced in Section 2.4). The first, together

with the statistical functions that might be applied, is described in Subsection 5.2.2.1

below, the second is described in Subsection 5.2.2.2. The advantage offered by the

use of these kinds of matrices is that they reduce the dimensionality of the given 3D

image to a 2D matrix by considering only the relationships between the image voxels’
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Table 5.2: FOR values for the region presented in Figure 5.2.

Function Value

fASM 5071388

fE 0.4634

fµ 0.7246

fM 0

fTM 0.2916

fGM 0

fR 15

fIQR 0

fV 5.3671

fCM(3) 39.1555

fCM(4) 337.5897

fCM(5) 3.0151e+03

fCM(6) 2.7993e+04

fCM(7) 2.6844e+05

fS 3.1491

fK 11.7195

intensity values (instead of the intensity values themselves). The single value outcomes

from application of the first-order style statistical functions to the intermediate matrix

representation are again used to form a feature vector representation (one for each

region). The statistical functions used are presented at the end of this subsection.

In 2D images, a pixel has eight immediate neighbours defined by a displacement

distance d and “azimuth” direction with respect to the angle between the x and y

axises in this thesis referred to as Φ with respect to a pixel of interest. In 3D images,

a voxel has 26 immediate neighbours, as illustrated in Figure 5.3(a) defined by: (i) a

displacement distance d; and (ii) a direction described in terms of a pair of displacement

angles Φ, as the “azimuth” direction, and Θ as the “zenith” direction with respect to

the z axis for each voxel, as shown in Figure 5.3(b). The complete set of definitions for

the 26 neighbours to a voxel in a 3D space, in terms of d, Φ and Θ, is given in Table

5.3.

5.2.2.1 Voxel Co-occurrence Matrix (VCM)

The VCM concept was introduced in Sections 2.4 and again in Section 4.3 in the context

of critical functions for regional homogeneity. Recall that the idea of the VCM matrix

is founded on the concept of the Grey-Level Co-occurrence Matrix (GLCM) as used in

the context of 2D image analysis [53]. Typically, a number of GLCMs are generated,

each defined by a azimuth angle (Φ) and distance (d). The rows and columns in each

GLCM represent intensity values, and the fields represent intensity value pairings. The

value of each field is the frequency of occurrence for a particular pairing. Table 5.4

shows an example region with intensity values (1, 2 and 3) and its GLCM for d = 1

62



(a) The 26 immediate neighbours for a
voxel in 3D space

(b) Definition of the azimuth angle Φ and
the zenith angle Θ

Figure 5.3: Illustration of neighbours and directions of a voxel in a 3D region [18].

Table 5.3: The possible 26 displacement vectors that can be associated with a voxel [18].

Displacement distance (d) Direction (Φ, θ)

±(d, 0, 0) (0, 90)

±(0, d, 0) (90, 90)

±(0, 0, d) (0, 90)

±(d, d, 0) (45, 90)

±(−d, d, 0) (135, 90)

±(0, d, d) (90, 45)

±(0, d,−d) (90, 135)

±(d, 0, d) (0, 45)

±(d, 0,−d) (0, 135)

±(d, d, d) (45, 54.7)

±(−d, d, d) (135, 54.7)

±(d, d,−d) (54, 125.3)

±(−d, d,−d) (135, 125.3)
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and Φ = 0.

Table 5.4: Illustration of how to generate a GLCM from a region (d = 1 and Φ = 0). In the
region, there are 3 intensity values (1,2, and 3).

Region GLCM
1 1 2 2 i/j 1 2 3
1 1 2 2 1 4 2 0
3 3 1 1 2 0 2 0
3 3 1 1 3 2 0 2

Thus when generated, a GLCM matrix holds the frequencies of neighbouring inten-

sity values (for a particular value of d and Φ) which in turn can be interpreted as the

second-order conditional probability of each intensity value over the complete range of

intensity values. With respect to the work described in this thesis, the GLCM ideas

was adapted to produced the concept of the VCM, the 3D extension of a GLCM where

direction is specified in terms of an azimuth Φ and a zenith angle Θ. Equation 5.1

illustrates how a VCM is generated. The symbols used are given in Table 5.5.

V CM(i, j, dx, dy, dz) =

X∑
x=1

Y∑
y=1

Z∑
z=1

{
1 ifS(x, y, z) = i and S(x+ dx, y + dy, z + dz) = j
0, otherwise

(5.1)

From Equation 5.1 it can be seen that many VCMs could be computed from the same

data by varying the value d with respect to three dimensions (x, y, z) (dx, dy, dz). A

total of 13 (26 if both directions, plus and minus are considered) matrices can be

generated for a given value of d. However, in this research, for simplicity one VCM

matrix is generated by summing up of all the possible VCMs. After computing the

VCM matrix, the following statistical functions are applied [53, 73]:

Table 5.5: Symbols used for VCM

Symbols Description

i, j The i, j row and column respectively of the VCM matrix.
Ng The maximum value included in intensity values of the re-

gion.
V CM(i, j) The VCM with i and j intensity values.
υ The mean value of the VCM matrix.
υi The means of VCM row i.
υj The means of VCM column j .
σi The standard deviations of VCM row i.
σj The standard deviations of VCM column j .
max(V CM) The maximum value of V CM(i, j) ∀ i, j.

1. Angular Second Moment (ASM): fASM =
∑

i

∑
j V CM(i, j)2.
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2. Contrast (c): fC =
∑Ng

n=1 n
2
{∑Ng

i=1

∑Ng

j=1 V CM(i, j)
}

, where |i− j|= n.

3. Correlation (CO): fCO =
∑

i

∑
j(ij)V CM(i,j)−υiυj

σiσj
.

4. Sum of squares (Variance (V)): fV =
∑

i

∑
j(i− υ)2V CM(i, j).

5. Inverse Difference Moment (IDM): fIDM =
∑

i

∑
j

1
1+(i−j)2V CM(i, j).

6. Sum Average (SA): fSA =
∑Ng

i=2 iV CMx+y(i),

where V CMx+y(s) =
∑Ng

i=1

∑Ng

j=1 V CM(i, j) s.t i+ j = s.

7. Sum Entropy (SE): fSE =
∑2Ng

i=2 V CMx+y(i) log V CMx+y(i).

8. Sum Variance (SV): fSV =
∑2Ng

i=2 (i− fSE)2V CMx+y(i).

9. Entropy (E): fE = −
∑

i

∑
j V CM(i, j) log(V CM(i, j)).

10. Difference Entropy: fDE =
∑Ng−1

i=0 V CMx−y(i) log V CMx−y(i), where V CMx−y(s) =∑Ng

i=1

∑Ng

j=1 V CM(i, j) s.t i− j = s.

11. Difference Variance (DV): fDV =variance of V CMx−y.

12. Maximal Correlation Coefficient (MCC): fMCC=(second eigenvalue of Q)1/2, where

Q(i, j)=
∑

k
V CM(i,k)V CM(j,k)
V CMx(i)V CMj(k)

.

13. Information Measures of Correlation (IMC): fMCC = fE−XY 1
max(HX,HY ) , fIMC = (1 −

exp[−2.0(XY 2 − fE)1/2]) where: (i) HX and HY are the entropies of V CMx

and V CMy and (ii) XY 1 = −
∑

i

∑
j V CM(i, j) log {V CMx(i)V CMy(j)} and

XY 2 = −
∑

i

∑
j V CMx(i)V CMy(j) log {V CMx(i)V CMy(j)}.

14. Dissimilarity (D): fD =
∑

i

∑
j |(i− j)|V CM(i, j).

15. Inverse Difference: fID =
∑

i

∑
j

1
1+(i−j)V CM(i, j).

16. Maximum Probability (MP): fMP = max(V CM).

17. Inverse Difference Normalised (IDN): fIDN =
∑

i

∑
j

V CM(i,j)
1+|i−j|2/N2

g
.

18. Autocorrelation (A): fA =
∑

i

∑
j (ij)V CM(i, j).

19. Cluster Shade (CS): fCS =
∑

i

∑
j (i+ j − υi − υj)3V CM(i, j).

20. Cluster Prominence (CP): fCP =
∑

i

∑
j (i+ j − υi − υj)4V CM(i, j).

Thus, after applying the above set of functions to a VCM matrix, a set of 20 values

are generated for each region (node in the decomposition tree). These values are used

to produce a feature vector formate. Table 5.6 shows an example set of “VCM” values

for the region in Figure 5.2.
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Table 5.6: SOR values for the region presented in Figure 5.2 generated using a VCM

Function Value

fASM 0.01

fC 11.23

fCO 0.36

fV 58.93

fIDM 0.2916

fSA 1.36

fSE 11.23

fSV 1.99

fE 4.25

fDE 0.06

fDV 1.99

fMCC 0.51

fIMC 0.46

fD 2.35

fID 0.46

fMP 3.1491

fIDN 0.96

fA 49.12

fCS -22.19

fCP 1.01e+03

5.2.2.2 Voxel Run-Length Matrix (VRLM)

The concept of the VRLM is founded on the Grey Level Run-Length Matrix (GLRLM);

the relationship is similar to that between a GLCM and a VCM as described in the

foregoing section. A GLRLM holds the run information for each region. A “run” in

this context is a set of consecutive, collinear, image intensity pixels/voxels that have

the same values. The length of the run is the number of adjacent pixels/voxels that

have the same value. A 2D GLRLM(Φ) matrix includes a run of length j in a certain

direction in the column and in the row is the associated intensity value i [43, 132].

Table 5.7 shows an example of GLRM for angle Φ = 0. A V RLM(Φ,Θ) is a volumetric

extension to the GLRLM. As in the case of VCM, VRLM is defined in term of two

displacement angles Φ and Θ.

Table 5.7: Illustration of how to generate a GLRLM from a region. In the region, there are
three intensity values (1,2, and 3), the GLRLM for Φ = 0.

Region GLRLM
2 2 2 2 i/j 1 2 3
1 1 2 2 1 2 0 0
3 3 3 1 2 1 0 1
3 3 1 1 3 1 1 0

Again, as in the case of VCM, one VRLM is computed which is the sum of all the
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13 (26 if both directions, plus and minus, are considered) VRLMs. The following five

statistical function were extracted from a VRLM matrix, defined as suggested in [43]

and used to define a feature vector (the symbols used are given in Table 5.8).

Table 5.8: Symbols used for VRLM.

Symbols Description

i The i is the intensity value.
j The j is the length of the run.
Ng The maximum value included in intensity values of the re-

gion.
VRLM(i,j) The VRLM with intensity value i and run length j.
Nr The maximum run length in the given VRLM.

1. Short Runs Emphasis (SRE): fSRE =
∑Ng

i=1

∑Nr
j=1

V RLM(i,j)
j2

/
∑Ng

i=1

∑Nr
j=1 V RLM(i, j).

2. Long Runs Emphasis (LRE): fLRE =
∑Ng

i=1

∑Nr
j=1 j

2V RLM(i, j)/
∑Ng

i=1

∑Nr
j=1 V RLM(i, j).

3. Gray Level Nonuniformity (GLN): fGLN =
∑Ng

i=1(
∑Nr

j=1 V RLM(i, j))2/
∑Ng

i=1

∑Nr
j=1 V RLM(i, j).

4. Run Length Nonuniformity (RLN): fRLN =
∑Ng

j=1(
∑Nr

i=1 V RLM(i, j))2/
∑Ng

i=1

∑Nr
j=1 V RLM(i, j).

5. Run Percentage (RP): fRP =
∑Ng

i=1

∑Nr
j=1 V RLM(i, j)/V RLM .

In addition, emphasis functions are used [19, 26]. An emphasis function is used to

characterise the frequency. The emphasis functions used were as follows:

6. Low Gray-Level Run Emphasis (LGRE): fLGRE = 1
Nr

∑Ng

i=1

∑Nr
j=1

V RLM(i,j)
i2

.

7. High Gray-Level Run Emphasis (HGRE): fHGRE = 1
Nr

∑Ng

i=1

∑Nr
j=1 V RLM(i, j)i2.

8. Short Run Low Gray-Level Emphasis (SRLGE): fSRLGE = 1
Nr

∑Ng

i=1

∑Nr
j=1

V RLM(i,j)
i2·j2 .

9. Short Run High Gray-Level Emphasis (SRHGE): fSRHGE = 1
Nr

∑Ng

i=1

∑Nr
j=1

V RLM(i,j)·i2
j2

.

10. Long Run Low Gray-Level Emphasis (LRLGE): fLRLGE = 1
Nr

∑Ng

i=1

∑Nr
j=1

V RLM(i,j)·j2
i2

.

11. Long Run High Gray-Level Emphasis (LRHGE): fLRHGE = 1
Nr

∑Ng

i=1

∑Nr
j=1 V RLM(i, j)·

i2 · j2.

All these statistical functions were applied to each VRLM. Each one of the functions

resulted in a singe value. Each set of values was then combined into a single feature

vector representing each region. Table 5.9 shows a set of example values generated

using these statistical functions when applied to a VRLM generated with respect to

the region in Figure 5.2.
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Table 5.9: SOR values for the region presented in Figure 5.2 generated using a VRLM .

Function Value

fSRE 2.64

fLRE 6.25

fGLN 8.63

fRLN 2.01e+05

fRP 33.98

fLGRE 9.57

fHGRE 1.06e+04

fSRLGE 1.62

fSRHGE 4.95

fLRLGE 4.80e+02

fLRHGE 1.34

5.3 Histogram-based Techniques

In the histogram-based techniques, as the name suggests, histograms are used to rep-

resent the occurrence counts for individual values (or bins of values) associated with

some attribute (such as intensity values). A histogram is generated with respect to the

intensity values of each decomposed region. With respect to the work described in this

thesis, four different types of histogram were considered: (i) Histograms of Oriented

Gradients (HOG), (ii) Histograms of Local Binary Pattern (LBP), (iii) a combination

of HOG and LBP and (iv) Local Phase Quantisation (LPQ). These histogram tech-

niques were selected because, as reported in the literature, they tend to be effective and

generate discriminative representations (see discussion presented previously in Section

2.4). These histogram techniques are presented in more detail in the following subsec-

tions, Subsections 5.3.1 to 5.3.4. (The effectiveness of each histogram representation in

the context of image classification will be measured in the next chapter.)

5.3.1 Histograms of Oriented Gradients (HOG)

The HOG concept was introduced in Section 2.4. Recall that a HOG [24] records the

changes of image intensity values. HOGs are the core of the successful Scale-Invariant

Feature Transform (SIFT) algorithm [90] used for computer vision applications.

In order to generate a HOG representation the changes in the intensity values of the

region, with respect to the azimuth and zenith directions, are computed. These values

are referred to as gradients. In order to compute the gradient at each location in the

region the differences between the “left” and “right” neighbouring intensity values, in a

given direction, are calculated. For an region, I, the gradient at each voxel, ∇(x, y, z),

is computed using Equation 5.2.

∇I(x, y, z) =
∂I

∂x
i +

∂I

∂y
j +

∂I

∂z
k (5.2)
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In Equation 5.2, ∂I
∂x , ∂I

∂y , and ∂I
∂z are partial derivatives along the x, y and z direction

respectively. Figure 5.4 shows the region presented in Figure 5.2 in terms of difference

in gradient. Each location is represented using an arrow indicating the gradient change.

These partial derivatives are usually estimated by finite difference schemes such as the

forward difference form.

Figure 5.4: Example of gradients with respect to the region presented in Figure 5.2.

The “angles” in each location of the region θ(x, y, z) are extracted using Equation

5.4 [90, 123]. These angles give values of between 0 and 2π. In order to fix the

number of bins in each histogram, the number of angles was set to 8 and the angles

quantised using angle = 2 ∗ π/8. For each quantised angle a between 0 and 8, h =

cos(θ(x, y, z)−angle(a))α, where α is constant and set to 9 [126] forming an orientation

histogram for each angle a as hist(a) = hist(a) + (h. ∗magnitude). The histogram is

then normalised. Table 5.10 shows example values for the 8 bins extracted from the

region presented in Figure 5.2.

|∇I(x, y, z)| =

√
(
∂I

∂x
)2 + (

∂I

∂y
)2 + (

∂I

∂z
)2 (5.3)

θ(x, y, z) = atan2(
∂I

∂z
,

√
(
∂I

∂x
)2 + (

∂I

∂y
)2) (5.4)

Table 5.10: Example values for 8 bins generated using HOG with respect to the region
presented in Figure 5.2.

Bins 1 2 3 4 5 6 7 8

Values 1.08 9.37 2.70 1.42 0 8.02 2.07 1.13

5.3.2 Histograms of Local Binary Pattern (LBP)

The basic idea of a LBP was introduced in Section 2.4. The idea is to compare the

intensity value of a voxel with the intensity values of its neighbours [56]. Equation

5.5 shows how the LBP is computed in 2D, where vi is the intensity value of the

ith neighbour, vc is the value for the centre voxel and n is the number of considered
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neighbours. In each comparison, a binary value is generated and the concatenation of

binary values are converted to a decimal number.

LBPn(x, y) =
n∑
i=1

f(vi − vc))2
i
, f(s) =

{
1, s ≥ 0
0, otherwise

(5.5)

Due to the possibility that any rotation of the image will change the LBP pattern,

there is a need to generate an invariant LBP representation technique. With respect

to 2D, each pixel has only eight neighbours (as noted in Section 2.4) so generating

such invariant LBP values is not computationally expensive. However, with respect to

3D images, there are 26 neighbours so generating an invariant LBP representation is

time consuming and complex. Various approaches have been suggested to cope with

this issue: (i) [156] proposed the use of Three Orthogonal Planes LBPs (LBP-TOP),

where the calculation of LBPs is only considered with respect to neighbouring voxels

located in the XY , XZ and Y Z planes, and (ii) [3] proposed the use of Discrete Fourier

Transforms LBPs (LBP-DFT). The problem with LBP-TOP is that it only considers the

voxels located in the three planes and thus generates three feature vectors, one feature

vector per plane, for each image. The problem with LBP-DFT is the time complexity

required to calculate the DFT for each location. An alternative LBP approach to

address the invariant problem is to use Centre-Symmetric LBP (CSLBP) [57]. CSLBP

represents the image by quantising the LBP. The positive aspects of CSLBP are: (i) it

derives invariant LBP, (ii) it requires less computational time than other invariant LBP

algorithms and (iii) it forms a single feature vector for each region, which is better than

LBP-TOP [156]. Equation 5.6 shows how the representation is computed, where n is

the number of neighbours (26) and vi and vi+(n/2) are the opposite voxels to each other

around the centre voxel. In CSLBP, each neighbour is compared with its neighbour

around the centre voxel so that it ensures the invariant condition is satisfied. In this

thesis, given the above identified advantages, CSLBP will be used. Table 5.11 shows

an simple example for generating a CSLBP code. Table 5.12 shows example values

generated using CSLBP with respect to the region presented in Figure 5.2.

CSLBP (x, y, z) =

(n/2)−1∑
i=0

f(vi − vi+(n/2))
2i (5.6)

Table 5.11: Illustration of how to generate a CSLBP from a region. In the region, there are
three intensity values (1,2, and 3).

Region CSLBP
1 1 2 2 0 0 0 0
1 1 2 2 0 13 9 0
3 3 1 1 0 12 8 0
3 3 1 1 0 0 0 0
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Table 5.12: Example values of eight bins generated using CSLBP with respect to the region
presented in Figure 5.2.

Bins 1 2 3 4 5 6 7 8

Values 5.46 -1.93 2.04 1.92 1.32 2.03 1.56 1.89

5.3.3 HOG and LBP Combination (HOG-LBP)

An alternative to using either HOGs or LBPs is to combine the two as described in

[143]. The process is as follows:

1. First the LBP value is computed for each voxel of the given region. LBP values

in this case serve as a filter which normalises the region against noise as LBP

compares the voxel’s value to its neighbours.

2. HOG is applied to the LBP code. In this case, both LBP and HOG consider

the immediate neighbours so that applying HOG to LBP will allow us to have a

representation that will cover a wider region from the centre voxel.

3. HOG histogram generation.

Table 5.13 shows an example of eight bin values for a HOG-LBP extracted from the

region presented in Figure 5.2.

Table 5.13: Example values of eight bins generated using HOG-LBP with respect to the region
presented in Figure 5.2.

Bins 1 2 3 4 5 6 7 8

Values 2.85 2.24 6.21 3.71 1.03 2.03 2.46 4.7

5.3.4 Histograms of Local Phase Quantisation (LPQ)

Table 5.14: Symbols used for Local Phase Quantisation (LPQ)

Symbols Description

Nx,y,z The set of neighbouring voxels’ values where the centre is
S(x, y, z) .

µ A specific intensity value.
fx,y,z A vector involving all the intensity values of the neighbour-

ing voxels in Nx,y,z.
Fx,y,z The Fourier Transform (FT) applied to a set of S(x, y, z)

neighbours.

As noted in in Section 2.4, Local Phase Quantisation (LPQ) is based on the Fourier

Transform (FT) at low frequency whereby a histogram of the quantised low phase of

the FT is computed [101]. Table 5.14 illustrates some of the symbols used with respect
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to LPQ. At each {x, y, z} coordinate location the Fourier Transform (FT) is applied on

the set of neighbouring voxel values Nx,y,z with respect to the 13 available 3D directions

(see Subsection 5.2.2). Given a voxel at location {x, y, z}, the FT for this voxel, FTx,y,z,

is generated with respect to the 13 directions, forming 13 values. In order to generate

a single value for each voxel, the FTx,y,z values are quantised by generating a binary

code (bx,y,z) for each element using Equation 5.7. In this case, there are 13 elements

associated with FTx,y,z, thus when the binary code is translated into a decimal number

a large number will be generated. Therefore, a dimensionality reduction technique

is applied so as to avoid the inefficiency of generating large histograms (a histogram

with 213). Principal Component Analysis (PCA) was applied to reduce the number of

elements in FTx,y,z and then the top L highest values for the eigenvectors V associated

with FTx,y,z were selected to get Gx,y,z = [v1, . . . , vL]TFTx,y,z. Following this, Gx was

quantised using Equation 5.8, where qx(j) is the jth value in Gx, to generate a binary

code for each voxel. Then an integer value derived from the binary code for each voxel

was generated using Equation 5.7. Finally a histogram of the integer values of bx was

calculated from each location x. This histogram then describes a feature vector with

2L bins. Table 5.15 shows an example of LPQ code generation. Table 5.16 shows an

example of eight bin values for LPQ generated for the region presented in Figure 5.2.

bx,y,z =

L∑
j=1

qx,y,z(j)2
j−1 (5.7)

qx,y,z(j) =

{
1, gx,y,z(j) ≥ 0
0, otherwise

(5.8)

Table 5.15: Illustration of how to generate a LPQ for a region. In the region, there are three
intensity values (1, 2 and 3).

Region LPQ
1 1 2 2 215 215 95 62
1 1 2 2 229 95 94 14
3 3 1 1 109 93 14 134
3 3 1 1 61 60 148 132

Table 5.16: Example values for eight bins generated by LPQ for the region in Figure 5.2.

Bins 1 2 3 4 5 6 7 8

Values 1.09 9.28 7.82 4.32 1.28 1.37 4.93 2.25

5.4 Single Feature Vector Generation (Stage 3)

Stage 3 of the region-based classification process (Figure 5.1) comprises feature vector

generation. Recall that with respect to the volumetric region-based representations
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under discussion in this chapter each region is represented by a feature vector leading

to a set of feature vectors describing each image. In order to classify images using a

traditional form of classifier, a single feature vector for each image is required as input.

The problem in our case is that the number of feature vectors can be different between

images. In this section, we describe the adapted techniques whereby a single feature

vectors can be generated. The objective is to generate the most discriminative feature

vector from a given set of such vectors that describes the image in a manner best

suited to classification. This process can be achieved using either: (i) dimensionality

reduction or (ii) feature selection. In the case of dimensionality reduction, the set of

feature vectors generated describing a single image is considered without taking into

consideration the feature vectors associated with other images in the image set, while

when using feature selection-based techniques the whole dataset of feature vectors is

considered. The advantage of feature selection is that the selected feature vectors

should maximise the discriminative power as each region is considered with respect to

other classes in the dataset. In this thesis, two examples (one for each technique) of

feature generation will be employed. Further detail concerning the two adapted feature

generation techniques is presented in the following two subsections.

5.4.1 Dimensionality Reduction

One technique for reducing the size of a feature vector representation is to apply some

form of dimensionality reduction, the process of either removing unwanted or super-

fluous dimensions from the feature space or combining dimensions. The issue is de-

termining which dimensions to remove. There are a number of mechanisms whereby

this can be achieved; one popular mechanism, and that adopted with respect to the

work presented in this thesis, is Principal Component Analysis (PCA) [69]. The con-

cept of PCA was presented in Subsection 2.6.1. The basic idea is to identify a set of

eigenvectors and their associated values. An eigenvector with a high associated value is

considered more significant than Eigenvectors with a low associated value. Therefore,

eigenvectors are sorted in a descending order and the top k selected; for the work in this

thesis k = 40 was found to be the most appropriate value. The identified eigenvector

values are then used to form a single feature vector FV (i) per image i [146] .

5.4.2 Feature Selection

As noted in Subsection 2.6.1, feature selection is a technique used to choose a subset

of feature vectors from a large collection of feature vectors. The selected subset is

used to form a single feature vector for each image. One of the exemplar feature

selection techniques is dictionary learning. In the dictionary, a subset of feature vectors

is selected and used to generate a single feature vector. A dictionary in this case refers

to a repository of feature vectors that most effectively summarises the whole set of
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images.

With respect to the work described in this thesis, the Improved Fisher Kernel (IFK)

encoding [105] was used for dictionary feature selection purposes. IFK is used to encode

the dictionary learning estimating the distribution of feature vectors. IFK relies on the

Gaussian Mixture Model (GMM) to form the dictionary (we refer to this process as

IFK-GMM). The dictionary in this context is defined in terms of a clustering of the

whole set of feature vectors for the dataset. The process has the two steps: (i) the

Gaussian Mixture Model (GMM) is used to model the distribution of the given feature

vectors for a whole set of images so forming a dictionary and (ii) the Fisher Kernel

approach is used to encode the information about the distribution.

In IFK-GMM, GMM is first applied to the whole sets of feature vectors N with

a required number of clusters K. Let X = {x1, . . . ,xN} be the whole sets of feature

vectors corresponding to all the decomposed regions of the whole dataset. The distri-

bution of the feature vectors is estimated using the GMM; a mixture of K multivariate

Gaussian distributions, where K is the number of desired elements in the dictionary.

For a sample x the conditional probability p(x|Λ) is calculated as follows:

p(x|Λ) =

K∑
k=1

wkg(x|µk,Σk) (5.9)

g(x|µk,Σk) =
1√

(2π)D det Σk

exp

[
−1

2
(x− µk)

TΣ−1k (x− µk)

]
(5.10)

where wk, µk and Σk are the prior probability, mean, and covariance matrix of the

Gaussian gk. D is the number of dimensions of the feature vector describing a sub-

volume. The GMM can be described by the parameters Λ = {wk,µk,Σk, k = 1, . . . ,K}.
In general, the parameters Λ are unknown at the beginning and have to be learnt by

maximising the log-likelihood of the data X. This is usually conducted using the Ex-

pectation Maximisation (EM) algorithm (interested readers are referred to the original

paper for further details [28]).

Once the GMM parameters are learnt, Improved Fisher Kernel Encoding (IFK)

[105] is used to encode all the features of an image. The reasons for using IFK are: (i)

it has been shown to perform well with respect to other image classification applications

[62], and (ii) the anticipated relatively small size of dictionary required to represent all

the possible features. More specifically, IFK forms the gradients of the mean GNµ,i and

standard deviation GNσ,i of Gaussian i for feature vectors i = 1 . . .K as in Equations

5.12 and 5.13.

γn(i) =
wiµi(xn)∑K
j=1wjµj(xn)

(5.11)

GNµ,i =
1

N
√
wi

N∑
n=1

γn(i)(
xn − µi

σi
) (5.12)
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GNσ,i =
1

N
√

2wi

N∑
n=1

γn(i)[
(xn − µi)

2

σi2
− 1] (5.13)

Finally, the single feature vector is formed by concatenating the two gradients (GNµ,i

and GNσ,i). All the generated single feature vectors for each image will be of the same

size, 2 ∗K ∗D, where D is the dimension of the feature vector and K is the number of

elements (feature vectors) in the dictionary.

5.5 Classifier Generation (Stage 4)

The final stage, Stage 4, of the region-based classification process is concerned with

the classifier generation. From the foregoing, a single feature vector FV (i) is used to

describe each data volume i (retinal volume with respect to the motivation for this

thesis) where each volume is made up of a number of features. For training purposes,

each feature vector FV (i) was combined with a class label ci ∈ {−1, 1}. The class

label in our case is in a binary form where +1 indicates a retina with AMD, and -1 a

normal retina. The resulting representation is compatible with a number of classifier

generators.

In order to evaluate the seven region-based representations (FOR, SOR-VCM, SOR-

VRLM, HOG, LBP, HOG-LBP and LPQ), three classifier generators were employed: (i)

Support Vector Machines(SVM), (ii) k-Nearest Neighbours (KNN), and (iii) Bayesian

Networks (BN). The implementations for these classifiers were taken from Weka [51].

For SVM, the Library for Support Vector Machines (LIBSVM) package [14] is used.

The outcomes of the evaluation are presented in the following chapter.

5.6 Summary

The general process for generating region-based representations advocated in this chap-

ter comprises a four-stage process: (i) image decomposition to produce a set of regions,

(ii) feature vector generation for each region, (iii) a single feature vector and (iv) classi-

fier generation applied to the complete set of single feature vectors. Two types of region-

based techniques were considered: (i) statistical-based techniques and (ii) histogram-

based techniques. With respect to the statistical-based techniques, two approaches were

considered: (i) First-Order Representation (FOR) and (ii) two Second-Order Represen-

tation (SOR) using VCM and VRLM. With respect to the histogram-based techniques,

four approaches were considered: (i) HOG, (ii) LBP, (iii) HOG-LBP and (iv) LPQ. For

stage three, two feature vector generation techniques were proposed: (i) dimensionality

reduction and (ii) feature selection. An evaluation of the techniques described in this

chapter is presented in the following chapter.
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Chapter 6

Evaluation of Classification
Performance Using Region-Based
Volumetric Representations

6.1 Overview

In the previous chapter (Chapter 5), a four-stage region-based process for generating

binary classifiers for application to volumetric data, specifically retinal volumes, was

described. The four stages were: (i) image decomposition to produce a set of regions, (ii)

region representation, (iii) single feature vector generation (feature vector combination)

and (iv) classifier generation. In this chapter, the evaluation of this process is presented

in terms of the different techniques that can be used at each stage.

Image decomposition (Stage one) was presented in Chapter 4 where it was noted

that an important aspect of image decomposition is the use of critical functions to

establish regional homogeneity. Recall that seven critical functions were considered:

1. Average Intensity Value (AIV).

2. Kendall’s Coefficient Concordance (KCC).

3. Gray Level Co-occurrence Matrix (GLCM).

4. Euclidean Distance (ED).

5. Dynamic Time Warping (DTW).

6. Longest Common Subsequence (LCS).

7. Kullback-Leibler divergence (KLD).

Of which the last five were adapted by the author with respect to volumetric decom-

position. In this chapter, we compare between these different critical functions and
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different forms of decomposition in terms of classification effectiveness. For the exper-

iments the threshold value t used with the critical functions, as presented in Section

4.3, was set to 0.5. This value was selected because experiments conducted using the

whole image-based representation indicated that this produced the best classification

outcomes. The details of these experiments is not reported in the main body of this

thesis; however, for completeness, it has been included in Appendix A. In Chapter 4,

two forms of decomposition, standard and overlapping, were also discussed.

With respect to region representation (Stage two), seven representation techniques

were proposed in Chapter 5 as follows:

1. First-Order Representation (FOR).

2. Voxel Co-occurrence Matrix (VCM).

3. Voxel Run-Length Matrix (VRLM).

4. Histograms of Oriented Gradients (HOG).

5. Histograms of Local Binary Pattern (LBP).

6. A combination of HOG and LBP (HOG-LBP).

7. Local Phase Quantisation (LPQ).

Of which the first three are statistical representations (2 and 3 are second-order statisti-

cal representation or SOR) and the remaining four are histogram based representations.

Note that each of the above resulted in a feature vector representation, one for each

identified region (node) in the decomposition.

With respect to Stage three (feature vector combination for single feature genera-

tion), two mechanisms were proposed:

1. A dimensionality reduction-based method using Principal Component Analysis

(PCA).

2. A feature selection-based method using Improved Fisher Kernel (IFK).

The result in each case was a single feature vector representing an entire volume (made

up of regions). In terms of IFK, as described in Subsection 5.4.2, different dictionary

sizes could be used. Thus for the evaluation presented in this chapter we compare

between the operation of a range of dictionary sizes (32, 64, 128, 256 and 512).

The final stage of the process (Stage four) was classifier generation. As noted

previously, there are a great many binary classifier generators available that operate

using a feature vector representation. Three were considered with respect to the work

described in this thesis:
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1. Support Vector Machines (SVM).

2. K-Nearest Neighbour (KNN).

3. Bayesian Networks (BN).

As noted in the previous chapter, these were selected because they tended to produce

good results when used with other related application domains and because their usage

is widely reported in the literature. For the SVM classifier, the complexity constant

was set to one and the linear polynomial kernel was used with a coefficient value of

one. For KNN, the number of nearest neighbours (k) was set to one.

Given the above, the different techniques can be combined to give 4 (levels) × 2

(standard and overlapping decomposition) × 7 (critical functions) × 7 (region repre-

sentation techniques) × 2 (single feature vector generation techniques) × 3 (classifiers)

= 2, 352 different ways whereby region-based volumetric classification can be achieved.

The combination of these techniques forms as a set of 3, 528 (4×2×7×7×3) classifica-

tion results if we include the option of not using a critical function at all. Experiments

were undertaken with respect to all these combinations; however, for ease of presenta-

tion these are reported in this chapter by considering the alternatives with respect to

each stage (decomposition, region representation, feature vector generation and classi-

fication) in isolation. In each case, a constant set of techniques for the remaining stages

was typically used; these were selected according to their anticipated best performance.

The overall objectives of the evaluation presented in this chapter were as follows:

1. Stage 1: To determine if the use of a critical function produces a more effective

classification than when a critical function is not used, and if so to determine

which critical function produced the best classification results; and to determine

whether standard or overlapping decomposition was more appropriate.

2. Stage 2: To determine the most appropriate region-based representation tech-

nique in terms of classification effectiveness.

3. Stage 3: To determine which single feature vector generation mechanism pro-

duced the best result and whether using feature selection improves the outcome.

4. Stage 4: To identify the most appropriate classifier to be applied (out of the

three different generators considered).

The experiments conducted with respect to each stage fell into two categories: (i)

classifier performance evaluation and (ii) statistical significance testing. The evaluation

metrics used for classifier performance evaluation were: (i) Accuracy (Acc.), (ii) Sensi-

tivity (Sen.), (iii) Specificity (Spec.), (iv) Positive Predictive Value (PPV), (v) Negative

Predictive Value (NPV), (vi) Error Equal Rate (EER) and (vii) Area Under the Curve
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(AUC) of the receiver operating characteristic as defined in Subsection 2.8.1. Ten-fold

Cross Validation (TCV) was used throughout. Significance testing was conducted using

ANalysis Of VAriance (ANOVA). This aim was to check whether there is a statisti-

cal significance between results in terms of AUC. Recall that the ANOVA procedure

was described in Subsection 2.8.2. Using this procedure, the results concerned with

the analysis of a particular stage were grouped together and ANOVA testing applied,

resulting in a p-value in each case. The p-values indicate the level of significance; a re-

sult was considered to be significant if the associated p-value was below 0.05. Tukey’s

Honestly Significant Difference (HSD) Post-Hoc Test was then applied to determine

whether there were any significant differences between the operation of the classifier

performances (as also described in Subsection 2.8.2). The dataset used was the 3D

OCT retinal image data set introduced in Section 3.5.

In the remainder of this chapter the evaluation results, with respect to each stage

and each of the above objectives, are presented and discussed in Sections 6.2 to 6.5

below. A summary of the main findings of the conducted evaluation is presented at the

end of this chapter in Section 6.6.

6.2 Decomposition (Stage One)

From the foregoing, the aim of the reported experiments presented in this section was to

determine the best decomposition method in the context of classification performance.

More specifically, the objectives were:

1. To determine whether a better result is produced when using a critical function

to support the decomposition than when not using a critical function.

2. If the use of a critical function is desirable which, out of the seven functions

considered, produced the best results.

3. In the context of the critical functions considered (and no critical function), which

is the best level of decomposition to use.

4. To determine whether standard or overlapping decomposition is more desirable.

For the performance evaluation the following techniques were used with respect to

the stages not considered in this section (representation, feature vector generation and

classification): (i) the HOG region-based representation, (ii) dimensionality reduction

using PCA and (iii) SVM classifier generation. Four levels of decomposition (L) were

considered, 3, 4, 5 and 6. These levels were selected because preliminary experiments

had indicated that these tended to produce good classification results. As noted in the

introduction to this chapter, and in line with the experiments conducted with respect

to stages two, three and four reported later in this chapter, two sets of experiments
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are reported on in this section: (i) classifier performance in Subsection 6.2.1 and (ii)

statistical significance testing in Subsection 6.2.2.

6.2.1 Classifier Performance in the Context of Decomposition

Tables 6.1 and 6.2 show the decompositions results obtained in the context of classifi-

cation performance. Best average results are highlighted in bold font. The first set of

rows, labelled “0NCF”, gives the results obtained when no critical function was used.

The column labelled “L” indicates the level of decomposition. Table 6.1 gives the re-

sults obtained using standard decomposition while Table 6.2 provides the results using

overlapping decomposition. From the tables, it can be observed that a good overall

performance was recorded.

When comparing the use of a critical function with not using a critical function

the best AUC value obtained using 0NCF was 0.97, while the best critical function

AUC result was 0.98; thus not a significant difference between the two. However, when

no critical function was used no best average value was recorded. Out of the seven

critical functions considered AIV, KCC and ED all produced a best AUC value of 0.98.

GLCM produced the worst performance. Overall, a marginal argument can be made

that the use of a critical function produces a better classification result, and therefore

a better decomposition, than when no critical function is used. A marginal argument

can also be made that use of the ED and LCS critical functions was the most effective

because they produced the best average accuracy, EER and AUC values with standard

and overlapping decomposition. Recall that the ED and LCS critical functions were

proposed by the author.

Table 6.3: The number of occasions when the best recorded AUC value from Tables 6.1 and 6.2
with respect to level of decomposition L and type of decomposition (standard or overlapping)
was recorded

L Standard Overlapping Totals

3 2 25
6 45

6
4 3 22

6 42
6

5 2 15
6 35

6
6 1 2 3

Totals 8 8 16

In the context of the standard versus overlapping decomposition, the results in Ta-

bles 6.1 and 6.2 indicate that better AUC results were generated using the overlapping

decomposition. This is probably because the overlapping decomposition alleviates the

boundary problem encountered when undertaking image decomposition. From the ta-

bles, the best recorded AUC value for the standard decomposition was 0.94 while the

best for the overlapping decomposition was 0.98.

In the context of the most appropriate level of decomposition, Table 6.3 summarises
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Table 6.1: Classifier performance results using standard decomposition, the HOG region-based
representation, dimensionality reduction using PCA and SVM classification in the context of
decomposition (Stage 1) using: (i) a range of decomposition levels, (ii) a number of critical
functions (including no critical function).

CF L Acc Sen Spec PPV NPV EER AUC

0NCF

3 89.29% 92.06% 87.01% 85.29% 93.06% 0.14 0.89
4 92.86% 95.31% 90.79% 89.71% 95.83% 0.10 0.93
5 92.14% 95.24% 89.61% 88.24% 95.83% 0.11 0.92
6 92.14% 95.24% 89.61% 88.24% 95.83% 0.11 0.92

Ave. 91.6% 94.46% 89.25% 87.87% 95.13% 0.11 0.91

AIV

3 92.86% 98.33% 88.75% 86.76% 98.61% 0.12 0.93
4 91.43% 96.67% 87.50% 85.29% 97.22% 0.13 0.91
5 91.43% 93.75% 89.47% 88.24% 94.44% 0.11 0.91
6 91.43% 93.75% 89.47% 88.24% 94.44% 0.11 0.91

Ave. 91.78% 95.62% 88.79% 87.13% 96.17% 0.11 0.91

KCC

3 90.00% 95.00% 86.25% 83.82% 95.83% 0.14 0.9
4 93.57% 98.36% 89.87% 88.24% 98.61% 0.11 0.93
5 89.29% 94.92% 85.19% 82.35% 95.83% 0.16 0.89
6 92.14% 95.24% 89.61% 88.24% 95.83% 0.11 0.92

Ave. 91.25% 95.88% 87.73% 85.66% 96.52% 0.13 0.93

GLCM

3 89.29% 92.06% 87.01% 85.29% 93.06% 0.14 0.89
4 87.14% 90.32% 84.62% 82.35% 91.67% 0.16 0.87
5 91.43% 95.16% 88.46% 86.76% 95.83% 0.12 0.91
6 91.43% 95.16% 88.46% 86.76% 95.83% 0.12 0.91

Ave. 89.82% 93.17% 87.13% 85.29% 94.09% 0.13 0.89

ED

3 92.86% 98.33% 88.75% 86.76% 98.61% 0.12 0.93
4 92.14% 98.31% 87.65% 85.29% 98.61% 0.13 0.92
5 94.29% 100.00% 90.00% 88.24% 100.00% 0.11 0.94
6 93.57% 98.36% 89.87% 88.24% 98.61% 0.11 0.93

Ave. 93.21% 98.75% 89.06% 87.13% 98.95% 0.11 0.93

DTW

3 89.29% 92.06% 87.01% 85.29% 93.06% 0.14 0.89
4 92.86% 95.31% 90.79% 89.71% 95.83% 0.10 0.93
5 91.43% 95.16% 88.46% 86.76% 95.83% 0.12 0.91
6 90.71% 93.65% 88.31% 86.76% 94.44% 0.12 0.91

Ave. 91.07% 94.04% 88.64% 87.13% 94.79% 0.12 0.91

LCS

3 92.86% 98.33% 88.75% 86.76% 98.61% 0.12 0.93
4 93.57% 96.83% 90.91% 89.71% 97.22% 0.10 0.93
5 94.29% 98.39% 91.03% 89.71% 98.61% 0.09 0.94
6 94.29% 98.39% 91.03% 89.71% 98.61% 0.09 0.94

Ave. 93.75% 97.98% 90.43% 88.97% 98.26% 0.10 0.93

KLD

3 90.71% 93.65% 88.31% 86.76% 94.44% 0.12 0.91
4 92.86% 95.31% 90.79% 89.71% 95.83% 0.10 0.93
5 92.14% 93.85% 90.67% 89.71% 94.44% 0.10 0.92
6 92.14% 93.85% 90.67% 89.71% 94.44% 0.10 0.92

Ave. 91.96% 94.16% 90.11% 88.97% 94.78% 0.1 0.92
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Table 6.2: Classifier performance results using overlapping decomposition, the HOG region-
based representation, dimensionality reduction using PCA and SVM classification in the context
of decomposition (Stage 1) using: (i) a range of decomposition levels, (ii) a number of critical
functions (including no critical function).

CF L Acc Sen Spec PPV NPV EER AUC

0NCF

3 93.57% 98.36% 89.87% 88.24% 98.61% 0.11 0.93
4 95.71% 100.00% 92.31% 91.18% 100.00% 0.08 0.96
5 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96
6 97.14% 100.00% 94.74% 94.12% 100.00% 0.06 0.97

Ave. 95.71% 99.2% 92.89% 91.91% 99.3% 0.07 0.95

AIV

3 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
4 95.71% 100.00% 92.31% 91.18% 100.00% 0.08 0.96
5 94.29% 98.39% 91.03% 89.71% 98.61% 0.09 0.94
6 93.57% 98.36% 89.87% 88.24% 98.61% 0.11 0.93

Ave. 95.35% 98.81% 92.61% 91.54% 98.95% 0.07 0.95

KCC

3 97.86% 97.10% 98.59% 98.53% 97.22% 0.01 0.98
4 95.71% 96.97% 94.59% 94.12% 97.22% 0.06 0.96
5 97.86% 100.00% 96.00% 95.59% 100.00% 0.04 0.98
6 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.95

Ave. 96.6% 97.74% 95.62% 95.22% 97.91% 0.04 0.96

GLCM

3 94.29% 96.88% 92.11% 91.18% 97.22% 0.08 0.94
4 94.29% 98.39% 91.03% 89.71% 98.61% 0.09 0.94
5 95.71% 98.44% 93.42% 92.65% 98.61% 0.07 0.96
6 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96

Ave. 95.18% 98.04% 92.80% 91.91% 98.26% 0.07 0.95

ED

3 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
4 96.43% 97.01% 95.89% 95.59% 97.22% 0.04 0.96
5 95.71% 95.59% 95.83% 95.59% 95.83% 0.04 0.96
6 95.71% 96.97% 94.59% 94.12% 97.22% 0.06 0.96

Ave. 96.42% 97.02% 95.89% 95.59% 97.22% 0.04 0.96

DTW

3 94.29% 100.00% 90.00% 88.24% 100.00% 0.11 0.94
4 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96
5 97.14% 100.00% 94.74% 94.12% 100.00% 0.06 0.97
6 97.14% 100.00% 94.74% 94.12% 100.00% 0.06 0.97

Ave. 96.25% 99.61% 93.53% 92.65% 99.65% 0.07 0.96

LCS

3 95.71% 95.59% 95.83% 95.59% 95.83% 0.04 0.96
4 97.14% 98.48% 95.95% 95.59% 98.61% 0.04 0.97
5 95.71% 98.44% 93.42% 92.65% 98.61% 0.07 0.96
6 95.00% 98.41% 92.21% 91.18% 98.61% 0.08 0.95

Ave. 95.89% 97.73% 94.35% 93.75% 97.91% 0.05 0.96

KLD

3 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96
4 96.43% 100.00% 93.51% 92.65% 100.00% 0.07 0.96
5 95.71% 98.44% 93.42% 92.65% 98.61% 0.07 0.96
6 95.00% 98.41% 92.21% 91.18% 98.61% 0.08 0.95

Ave. 95.89% 98.82% 93.45% 92.65% 98.95% 0.07 0.95
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the results obtained. The table lists the number of occasions, from Tables 6.1 and 6.2,

when a best AUC value was recorded with respect to each value for L and the type

of decomposition (standard or overlapping). From the summary, it can be seen that

best AUC results were most frequently obtained with L = 3, with L = 4 giving a close

second best performance. However, there is no clear best value for L.

6.2.2 Decomposition Significance Testing

Other than that, the use of critical function was beneficial to inspection of the re-

sults presented in Tables 6.1 and 6.2, using the HOG representation, PCA and SVM

classifier generation, suggesting that there is no significant difference with respect to

the operation of the different decomposition techniques considered although some pro-

duced better results than the others. This subsection reports on the ANOVA that

was applied to all the generated results (including results using all other combination

of the proposed techniques not included in Section 6.2.1) to determine if there was

any statistically significant difference in the operation between the different techniques

considered in this section.

As already noted in the previous subsection, 64 different combinations of techniques

were considered: 4 (levels) × 2 (standard and overlapping decomposition) × 8 (critical

functions) = 64 combinations. ANOVA was applied to check if there was any significant

difference between the operation of these 64 different techniques. The analysis was

conducted with respect to AUC values.

In the context of comparing the use of the critical functions against each other and

without a critical function (0NCF), Table 6.4 shows the ANOVA table (more detail

about ANOVA was presented in Subsection 2.8.2). The ANOVA table has six columns:

1. Source: The source of variation in terms of: (i) the differences between groups

(Between-Groups), and (ii) the change within each group (Error).

2. SS: The sum of squares value for each source.

3. df: The degrees of freedom for each source.

4. MS: The mean square value associated with each source.

5. F: The F ratio of the mean square values.

6. p-value: The p-value obtained by the cumulative distribution function of F.

From the table, it can be noted that the calculated p-value (2.8315e-20) is less

than 0.05, indicating that there is indeed a statistical significance between the results

obtained. From the table, ErrorSS = 14.02, indicating that there are a wide range

of values for each critical function but with a smaller range in terms of the difference

between critical functions (Between-GroupsSS = 0.7024).
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Figure 6.1(a) shows the significant difference between the results of the critical

functions where the x-axis represents the AUC results and the y-axis lists the methods.

The lines represent the “comparison interval” around the AUC mean of each group

(critical function); the dot in the middle of each line makes the mean of each group.

When the lines of two methods do not overlap, the operation (in terms of AUC) between

the two methods can be said to be significantly different.

Figure 6.1(b) shows boxplots of the confidence intervals for each method. In the

diagram, the x-axis lists the methods and the y-axis the AUC value. The red line in

each box represents the median value of the AUC results while the top and bottom of

the box represent the 75% and 25% quartile of the AUC results. The notch in each box

represents the 95% confidence intervals of the measured median value. The whiskers

mark the highest/lowest AUC values of each group of AUC results that are within 1.5

times the interquartile range of the box edges. The red plus signs represent the outliers

beyond the data range. When the notches of two methods do not overlap, the medians

of them will be significantly different at the 0.05 significance level. From both figures

it can be observed that:

1. The results obtained using 0NCF were statistically different from the results ob-

tained using critical functions (except for the DTW and GLCM critical functions)

where the range of AUC results for 0NCF were less than the results of the pro-

posed critical functions, a lower mean (0.86) than the critical functions and a

lower median (0.87) than the rest of the critical functions. This result supports

the conjecture that the use of critical functions for measuring the regional homo-

geneity produces a more concise and descriptive representation.

2. The AUC results recorded using the ED critical function were statistically dif-

ferent from those recorded using 0NCF, DTW, GLCM, KCC and KLD because

the range of the confidence interval for the ED result was higher than the other

critical functions.

3. The LCS results were not statistically different from AIV, ED and KCC but were

statistically different from the other critical functions.

4. The AUC results obtained using GLCM were statistically different from AIV, ED

and LCS.

5. The results obtained using KCC were statistically different from ED, DTW and

0NCF.

6. The KLD results were statistically different from the 0NCF, ED and LCS results.

In the context of level of decomposition, the ANOVA table presented in Table 6.5

shows that there was a statistical significance between the results obtained for the
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Table 6.4: ANOVA table for comparing critical functions

Source SS df MS F p-value

Between-Groups 0.7024 7 0.1003 15.7415 2.8315e-20

Error 14.0246 2200 0.0064

Total 14.7271 2207

(a) Significance differences (b) Confidence intervals

Figure 6.1: Significance differences and confidence intervals for comparing critical functions

different levels of decomposition in the context of the recorded AUC values (the p-

value was 6.9209e-04). Note that in the table the groups are the techniques used with

respect to each level. From the table, it can be seen that the range of values was

wide (ErrorSS=14.69), while the difference in values between the groups was slightly

smaller (Between-GroupsSS=0.1). The significant difference and confidence interval

diagrams shown in Figure 6.2(a) illustrate the significant differences between the levels

of decomposition. From the figure, it can be observed that the AUC results obtained

using L = 3 were statistically different from those obtained using L = 5 and L = 6;

while the AUC results obtained using L = 4 were not statistically different from the

others because the range of recorded AUC results overlaps with the ranges of the results

associated with the other groups. The confidence intervals shown in Figure 6.2(b) reveal

that there was a similarity between the results with slight improvement with respect

to L = 5, which had a slightly higher median AUC result of 0.91, thus contradicting

the previously conducted but less sophisticated, analysis presented in Table 6.3.

In terms of comparing standard and overlapping decomposition, Table 6.6 gives the

ANOVA table, where the p-value of 1.7955e-25 indicates that there was a statistical

difference between the standard and overlapping decomposition, as also demonstrated

in Figure 6.3. From the table, it can be seen that there was similarity between the

results of the standard and overlapping decomposition as Between-GroupsSS=0.6906
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Table 6.5: ANOVA table for comparing levels of decomposition

Source SS df MS F p-value

Between-Groups 0.1099 3 0.0366 5.7014 6.9209e-04

Error 14.6999 2288 0.0064

Total 14.8098 2291

(a) Significance differences (b) Confidence intervals

Figure 6.2: Significance differences and confidence intervals for comparing levels of decompo-
sition

which is slightly low. The table revels also that the differences within each decomposi-

tion method with ErrorSS=14.1132 were higher than between groups, indicating that

there were large differences between the classification results. The confidence interval,

shown in Figure 6.3, indicates that the overlapping decomposition outperformed the

standard decomposition in a statistically significant manner, thus confirming the earlier

conclusions presented in Subsection 6.2.1.

Table 6.6: Comparison of decomposition techniques

Source SS df MS F p-value

Between-Groups 0.6906 1 0.6906 111.4646 1.7955e-25

Error 14.1132 2278 0.0062

Total 14.8038 2279

Thus in conclusion we can consider that the best critical function to use is either

the ED or LCS critical function together with L = 5 and overlapping decomposition.

Note that both ED and LCS are amongst the critical functions proposed by the author.
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Figure 6.3: Confidence intervals for overlapping with standard decomposition.

6.3 Region Representation (Stage Two)

In this section, the results obtained comparing the operation of the seven proposed

region-based representation techniques are considered. Recall that the objective was

to identify the most appropriate region representation in the context of classification

performance based on the decomposition process. As in the previous section, results

with respect to both classification performance and significance testing are presented

(Subsections 6.3.1 and 6.3.2 respectively). For the performance evaluation, four levels of

decomposition were again considered, L = 3, L = 4, L = 5 and L = 6, together with the

ED critical function and overlapping decomposition because the experiments presented

in the previous section (and others not specifically reported in this thesis) indicated

that these later two worked well. Although in the previous section it was demonstrated

that L = 5 tended to produced a best performance, the reason for using a range of

levels with respect to the experiments reported here was because it was conjectured

that the operation of the different region representation techniques might be affected by

the nature of the level of decomposition used. As previously, with respect to the other

two stages not considered in this section (feature vector generation and classification),

dimensionality reduction using PCA and SVM classification were adapted.

6.3.1 Classifier Performance in the Context of Region Representation

In this section, we present the results obtained to compare the operation of the seven

proposed region-based representation techniques. The results are presented in Table

6.7. Out of the seven representation techniques considered, the results presented in

the table indicate that the HOG representation method produced the best results with

a best average AUC of 0.96. From the table, the best accuracy and AUC value were

produced using the HOG representation with L = 4 (97.14% and 0.97 respectively).

Overall, use of the HOG representation produced the average best results with respect
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to the all the metrics considered.

Considering the three statistical representations (FOR, VCM and VRLM), they

produced a similar performance to each other. With respect to the FOR representation,

it is interesting to note that when a higher level of decomposition was used a better

performance was obtained. The AUC with respect to FOR representation when L = 3

was 0.83 while for L = 6 the AUC was 0.92. It was conjectured that this was because

FOR can produce a better performance with smaller regions than with larger regions.

With respect to the histogram based representation techniques (HOG, LBP, HOG-

LBP and LPQ) the best performing method as already noted above was HOG. The

lowest recorded AUC using the HOG representation was 0.96 while the lowest recorded

AUC for LBP, HOG-LBP and LPQ were 0.8, 0.84, and 0.73 respectively. When compar-

ing the LBP and HOG-LBP results, HOG-LBP produced better average results where

the average AUC for HOG-LBP is 0.85 while the average AUC for LBP is 0.82. It was

conjectured that this was because of the positive effect of combing the HOG and LBP

representations. With respect to the LPQ representation, the recorded performance

was worse than that for the LBP and HOG-LBP representation. It was conjectured

that this was because LPQ generated less effective histograms when a higher level of

decomposition is used than in the case of LBP and HOG-LBP. The AUC for LPQ

with L = 3 was 0.94 while with L = 6 it was 0.75. This is because LPQ is based on

the Fourier Transform which is a more effective representation when larger regions are

used, but the effectiveness is decreased when smaller regions are used. However, when

using the HOG representation the changes in the intensity values of the regions (sub-

volumes) in different directions are considered. The HOG representation improved the

discriminative power when applied to homogeneous and small regions as in the case

of the proposed decomposition. The reason is that the HOG representation uses the

gradient (change) in the intensity value even when the region is small; while other rep-

resentation techniques, such LPQ which relies on the frequency of the neighbours, tend

to work better with larger regions.

6.3.2 Region Representations Significance Testing

The objective of this subsection is to consider whether the result presented above, that

HOG representation is the most effective, is indeed statistically significant. ANOVA

was conducted using seven groups, where each group represents the AUC results for a

specific region representation. The results from the ANOVA, as shown in Table 6.8,

demonstrated that there was a statistical difference in the effectiveness of the seven

representations (from Table 6.8 it can be seen that the p-value was 3.4274e-119 which

is less than 0.05). From the table, it can also be seen that the difference between

the groups and within the groups were very similar (Between-GroupsSS = 2.5 and

ErrorSS = 2.2).
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Table 6.7: Classifier performance results using overlapping decomposition, an ED critical
function, dimensionality reduction using PCA and SVM classification in the context of region
representation methods (Stage 2) using: (i)) a range of decomposition levels (L), (ii) the seven
region-based representation techniques.

Method L Acc Sen Spec PPV NPV EER AUC

FOR

3 82.86% 81.43% 84.29% 83.82% 81.94% 0.16 0.83
4 84.29% 83.82% 84.72% 83.82% 84.72% 0.16 0.84
5 95.00% 94.20% 95.77% 95.59% 94.44% 0.04 0.95
6 92.14% 92.54% 91.78% 91.18% 93.06% 0.09 0.92

Ave. 88.57% 87.99% 89.14% 88.60% 88.54% 0.11 0.88

VCM

3 87.86% 86.96% 88.73% 88.24% 87.50% 0.12 0.88
4 90.00% 89.71% 90.28% 89.71% 90.28% 0.10 0.9
5 85.71% 84.29% 87.14% 86.76% 84.72% 0.14 0.86
6 85.71% 84.29% 87.14% 86.76% 84.72% 0.14 0.86

Ave. 87.32% 86.31% 83.32% 87.84% 86.80% 0.12 0.87

VRLM

3 85.71% 86.36% 85.14% 83.82% 87.50% 0.16 0.86
4 84.29% 84.85% 83.78% 82.35% 86.11% 0.17 0.84
5 85.71% 86.36% 85.14% 83.82% 87.50% 0.16 0.86
6 85.71% 86.36% 85.14% 83.82% 87.50% 0.16 0.86

Ave. 85.35% 85.98% 84.80% 83.45% 87.15% 0.16 0.85

HOG

3 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
4 96.43% 97.01% 95.89% 95.59% 97.22% 0.04 0.96
5 95.71% 95.59% 95.83% 95.59% 95.83% 0.04 0.96
6 95.71% 96.97% 94.59% 94.12% 97.22% 0.06 0.96

Ave. 96.42% 97.02% 95.89% 95.59% 97.22% 0.04 0.96

LBP

3 86.43% 83.56% 89.55% 89.71% 83.33% 0.11 0.87
4 82.86% 80.56% 85.29% 85.29% 80.56% 0.15 0.83
5 80.00% 77.03% 83.33% 83.82% 76.39% 0.17 0.8
6 80.00% 77.03% 83.33% 83.82% 76.39% 0.17 0.8

Ave. 82.32% 79.54% 85.37% 85.66% 79.16% 0.15 0.82

HOG-LBP

3 87.86% 94.74% 83.13% 79.41% 95.83% 0.18 0.88
4 84.29% 91.07% 79.76% 75.00% 93.06% 0.21 0.84
5 85.00% 91.23% 80.72% 76.47% 93.06% 0.20 0.85
6 85.00% 91.23% 80.72% 76.47% 93.06% 0.20 0.85

Ave. 85.53% 92.06% 81.08% 76.83% 93.75% 0.19 0.85

LPQ

3 94.29% 94.12% 94.44% 94.12% 94.44% 0.06 0.94
4 72.86% 66.67% 84.00% 88.24% 58.33% 0.17 0.73
5 75.00% 68.97% 84.91% 88.24% 62.50% 0.16 0.75
6 75.00% 68.97% 84.91% 88.24% 62.50% 0.16 0.75

Ave. 79.28% 74.60% 87.06% 89.71% 69.44% 0.13 0.79
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Figure 6.4(a) shows the significant differences and confidence intervals between the

region-based representation methods. From the figure, it can be seen that the operation

of three of the methods was not statistically different from each other: LBP-HOG,

VCM and VRLM - but they are different from the rest of the representation methods.

A statistical difference in operation can be noted between FOR, LPQ, LBP and HOG.

The results from the confidence interval diagram (Figure 6.4(b)) indicate that the

LPQ results had the lowest median AUC value (0.7), while the HOG representation

produced the highest median AUC value (0.9). From Figure 6.4(b), it can be seen that

the HOG representation has the narrowest confidence interval, which is indicative of the

effectiveness of the representation. Overall, the statistical significance result confirms

the results presented in the previous subsection that the HOG representation is the

most appropriate with respect to the proposed 3D image classification based on spatial

decomposition and region-based representation.

Table 6.8: Comparison of region-based representation methods.

Source SS df MS F p-value

Between-Groups 2.5743 6 0.4290 140.7131 3.4274e-119

Error 2.2837 749 0.0030

Total 4.8580 755

(a) Significance differences (b) Confidence intervals

Figure 6.4: Significance differences and Confidence intervals for comparing representation
techniques.

6.4 Single Feature Vector Generation (Stage Three)

In this section, the results obtained using the proposed process with respect to the

single feature vector generation methods are considered. Recall that two methods were
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considered: (i) a dimensionality reduction based technique using Principal Component

Analysis (PCA) and (ii) a feature selection based technique using the Improved Fisher

Kernel (IFK). For the evaluation, four levels of decomposition were again considered,

L = 3, L = 4, L = 5 and L = 6, together with the LCS critical function, overlapping de-

composition and the HOG representation technique because the experiments presented

in the previous section (and others not specifically reported in this thesis) indicated that

these produced “best” results. With respect to the classification stage, SVM classifica-

tion was again adapted. As before, two sets of experiments were conducted: (i) classifier

performance (described in Subsection 6.4.1) and (ii) significance testing (described in

Subsection 6.4.2). Recall (Subsection 5.4.2) that the IFK feature selection technique

required the dictionary size K to be pre-specified. The experiments conducted to eval-

uate the use of IFK therefore used a range of K values ({32, 64, 128, 256, 512}). The

objectives of the comparison were as follows:

1. To determine which feature selection technique, PCA or IFK, served to produce

the best classification performance.

2. In the context of the IFK feature selection technique, to determine the effect of

using different dictionary sizes (defined by the parameter K).

6.4.1 Classifier Performance in the Context of Single Feature Vector
Generation

In this section, we compare between the performance of PCA and IFK in terms of

classification effectiveness. In addition, we compare classification performance with

respect to different dictionary sizes K when using IFK.

Table 6.9 presents the comparison between the results using PCA and IFK (K =

32). From the table, it can be seen that the best classification results when using IFK

were accuracy of 99.29% and AUC of 0.99, while the best accuracy for PCA was 97.14%

and the best AUC value was 0.97. Overall, IFK produced the best average results with

respect to all the metrics considered. It is conjectured that this was because the IFK-

based technique selects feature vectors to be included in the single feature vector by

considering the entire collection of feature vectors for the entire collection of images,

while PCA considers each image individually. The results of all experiments using IFK

are presented in Appendix A.3.

Considering the most appropriate dictionary size (K) with respect to the IFK single

feature vector generation method, the results obtained are presented in Table 6.10.

In the table, for the evaluation the following techniques were used: (i) overlapping

decomposition, (ii) a range of decomposition levels, (iii) the LCS critical function, (iv)

the HOG region-based representation and (v) SVM classification. From the table, it can

be seen that all the dictionary sizes produced good performance results. The average
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Table 6.9: Classifier performance results using overlapping decomposition, a LCS critical
function, the HOG region-based representation and ) SVM classification in the context of single
feature vector generation (Stage 3) using: (i) a range of decomposition levels (L), (ii) PCA and
IFK (with K = 32) feature selection.

Method L Acc Sen Spec PPV NPV EER AUC

PCA

3 95.71% 95.59% 95.83% 95.59% 95.83% 0.04 0.96
4 97.14% 98.48% 95.95% 95.59% 98.61% 0.04 0.97
5 95.71% 98.44% 93.42% 92.65% 98.61% 0.07 0.96
6 95.00% 98.41% 92.21% 91.18% 98.61% 0.08 0.95

Ave. 95.89% 97.73% 94.35% 93.75% 97.91% 0.05 0.96

IFK

3 95.71% 98.44% 93.42% 92.65% 98.61% 0.07 0.96
4 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
5 97.14% 98.48% 95.95% 95.59% 98.61% 0.04 0.97
6 99.29% 98.55% 100.00% 100.00% 98.61% 0.00 0.99

Ave. 97.5% 98.49% 96.65% 96.32% 98.61% 0.03 0.97

results for the dictionary size of K = 128 were the best with accuracy of 98.57%

and AUC of 0.98. From the table, it can be seen that K = 128 produced the best

average results with respect to all the evaluation metrics considered. From the table,

it can also be seen that there was a relationships between the dictionary size and the

level of decomposition. For example, the most effective results are generated for small

dictionary sizes such as K = 32, 64 with higher levels of decomposition such as L = 5, 6.

This is because when a larger K is used the IFK will required more feature vectors; a

higher level of L will ensure that there is a large selection to choose from.

Table 6.10: Classifier performance results using overlapping decomposition, a LCS critical
function, the HOG region-based representation and (v) SVM classification in the context of the
IFK single feature generation method with (i) a range of dictionary sizes and (ii) a range of
decomposition levels.

k L Acc Sen Spec PPV NPV EER AUC

32

3 95.71% 98.44% 93.42% 92.65% 98.61% 0.07 0.96
4 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
5 97.14% 98.48% 95.95% 95.59% 98.61% 0.04 0.97
6 99.29% 98.55% 100.00% 100.00% 98.61% 0.00 0.99

Ave. 97.5% 98.49% 96.65% 96.41% 98.61% 0.035 0.97

64

3 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
4 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
5 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
6 97.86% 97.10% 98.59% 98.53% 97.22% 0.01 0.98

Ave. 98.21% 98.53% 97.93% 97.79% 98.61% 0.02 0.98

128

3 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
4 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
5 97.86% 100.00% 96.00% 95.59% 100.00% 0.04 0.98
6 97.86% 95.77% 100.00% 100.00% 95.83% 0.00 0.98

Ave. 98.57% 98.94% 98.31% 98.16% 98.95% 0.01 0.98
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256

3 95.71% 96.97% 94.59% 94.12% 97.22% 0.06 0.96
4 97.86% 97.10% 98.59% 98.53% 97.22% 0.01 0.98
5 95.71% 94.29% 97.14% 97.06% 94.44% 0.03 0.96
6 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99

Ave. 97.14% 97.09% 97.23% 97.06% 97.22% 0.02 0.97

512

3 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.95
4 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1.00
5 98.57% 97.14% 100.00% 100.00% 97.22% 0.00 0.99
6 97.14% 100.00% 94.74% 94.12% 100.00% 0.06 0.97

Ave. 97.67% 98.51% 97.01% 96.69% 98.61% 0.03 0.97

6.4.2 Single Feature Vector Generation Significance Testing

The results presented in Subsection 6.4.1 above using PCA and IFK single feature

vector generation suggest that there is a significant difference, in terms of classifica-

tion effectiveness, between the two techniques. In this section, the results from an

ANOVA for comparing the two techniques are presented to demonstrate whether there

was indeed a statistically significant difference between the two techniques or not. In

addition, a second ANOVA is presented compare between the effect of using different

IFK dictionary sizes with respect to classification performance in the context of AUC.

With respect to the comparison of PCA and IFK (with K = 32) Table 6.11 sows the

ANOVA result. From the table, it can be seen that the ANOVA confirms that there is

indeed a statistical difference between the operation of the PCA and IFK single feature

vector generation methods in terms of classifier performance (p−value = 2.106e−211).

Figure 6.5 shows the confidence interval diagram comparing the results of PCA and

IFK, from which it can be clearly seen that the operation of the IFK techniques is

statistically better than the operation of the PCA technique. As noted above, it is

conjectured that this is because IFK generates the feature vector for each image with

respect to the entire images collection, whilst the PCA methods consider the set of

regions for each image individually.

Table 6.11: Comparing IFK and PCA-based methods.

Source SS df MS F p-value

Between-Groups 4.73 1 4.73 1255.37 2.106e-211

Error 7.14 1894 0.00377

Total 11.87 1895

With respect to experiments conducted to identify the most appropriate dictionary

size (K), the ANOVA result is presented in Table 6.12. From the table, it can be seen

that the difference in operation resulting from using different dictionary sizes is not

statistically significant (p − value = 0.7106 > 0.05). From the table, it can also be

noted that the difference between the groups, where each group represents the results
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Figure 6.5: Confidence intervals for comparing single feature vector generation techniques.

using a particular dictionary size K, is very small (Between-GroupsSS = 0.0030) while

the difference within each group is slightly higher with ErrorSS = 1.2460. From Figure

6.6, it can be seen that there were no major differences between the confidence intervals

associated with the different dictionary sizes where all the medians of the results are

above 0.9 of AUC. It seems that K = 128 was slightly better than the rest because it

has a shorter interval and all the result range above 0.86.

Table 6.12: Comparing different dictionary size K in IFK.

Source SS df MS F p-value

Between-Groups 0.0030 4 7.4372e-04 0.5342 0.7106

Error 1.2460 895 0.0014

Total 1.2490 895

Figure 6.6: Confidence intervals for comparing different dictionary sizes K when using IFK
single feature vector generation.
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6.5 Stage Four Evaluation: Classifier Generation

In this section, the results obtained from the evaluation conducted to compare the

operation of the proposed process using different classification methods are presented.

Recall that three classifier generators were considered: (i) SVM, (ii) KNN and (iii) BN.

For KNN K = 1 was used. The objective of the evaluation was to determine which is

the best classifier generator in the context of the proposed methods for 3D classifica-

tion using hierarchical spatial decomposition. As before, two sets of experiments were

conducted: (i) classifier performance evaluation (Subsection 6.5.1) and (ii) statistical

significance testing (Subsection 6.5.2). For the performance evaluation, four levels of

decomposition were again considered, L = 3, L = 4, L = 5 and L = 6, together with

the KLD critical function, overlapping decomposition, the HOG region representation

method and IFK feature selection (with K = 32) because the above reported experi-

ments indicated that these were the most appropriate techniques with respect to each

of the previous classification stages. For the significance testing, all the results obtained

using each classifier were used.

6.5.1 Classifier Performance in the Context of Classifier Generation

Table 6.13 shows the classification results obtained using each classifier generation

method and the four different values for L considered in order to show a range of results

for each classifier. From the table, it can be seen that, in general, the classification

results obtained using SVM and BN were better than those obtained using KNN. From

the table, it can also be seen that best average results were obtained using SVM classifier

generation with respect to all the evaluation measure considered (best recorded AUC

of 0.99).

6.5.2 Classifier Generation Significance Testing

This subsection presents the results obtained from the statistical significance testing

with respect to the classifier generation results presented above. Three groups are

identified, one for each of the classifier generators considered. Table 6.14 shows the

ANOVA results obtained. From the table, it can be seen that the calculated p-value

was 5.7819e-06, indicating that there is a statistical significance between the operation

of the classifiers. There was a small difference between the results as indicated by

the Between-GroupsSS value which equates to 0.1552. The significance difference and

confidence interval diagrams given in Figures 6.7(a) and 6.7(b) indicate that there was a

statistically significant difference in operation between the BN and KNN classifiers, and

between the SVM and KNN classifiers. There was no statistically significant difference

in operation between the SVM and BN classifiers. From Figure 6.7(b), it can be seen

that when using the SVM classifier the highest median and data range was recorded,
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Table 6.13: Classification results using a LCS critical functions, the HOG region-based rep-
resentation, IFK feature selection (with K = 32) in the context of classifier generation (Stage
4) using: (i) a range of decomposition levels (L), (ii) three classifier generators (SVM, NB and
KNN).

CF L Acc Sen Spec PPV NPV EER AUC

SVM

3 97.86% 97.10% 98.59% 98.53% 97.22% 0.01 0.98
4 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
5 98.57% 100.00% 97.30% 97.06% 100.00% 0.03 0.99
6 98.57% 100.00% 97.30% 97.06% 100.00% 0.03 0.99

Ave. 98.57% 99.27% 97.95% 97.79% 99.3% 0.02 0.98

KNN

3 94.29% 95.45% 93.24% 92.65% 95.83% 0.04 0.96
4 98.21% 100.00% 96.64% 96.32% 100.00% 0.03 0.99
5 97.86% 100.00% 96.00% 95.59% 100.00% 0.04 0.98
6 95.36% 99.20% 92.26% 91.18% 99.31% 0.08 0.97

Ave. 96.43% 98.66% 94.53% 93.93% 98.78% 0.04 0.97

BN

3 94.05% 95.43% 92.83% 92.16% 95.83% 0.04 0.97
4 98.57% 100.00% 97.30% 97.06% 100.00% 0.00 0.99
5 98.10% 100.00% 96.43% 96.08% 100.00% 0.04 0.99
6 96.43% 99.48% 93.89% 93.14% 99.54% 0.06 0.98

Ave. 96.78% 98.72% 95.11% 94.61% 98.84% 0.03 0.98

while when using the KNN classifier the lowest median was recorded. The BN classifier

had the smallest confidence interval and data range associated with it.

Table 6.14: Comparing classifiers.

Source SS df MS F p-value

Between-Groups 0.1552 2 0.0776 12.1246 5.7819e-06

Error 14.6545 2289 0.0064

Total 14.8098 2291

(a) Significance differences (b) Confidence intervals

Figure 6.7: Significance differences and confidence intervals for comparing classifiers.

96



6.6 Summary and Conclusions

This chapter has reported on the evaluation of the proposed region-based volumetric

representations in terms of classification effectiveness using the AMD data sets in-

troduced earlier. The process involved four stages each with a number of potential

techniques associated with it. The evaluation was therefore conducted by considering

the techniques available at each stage in isolation with a fixed set of techniques for the

remaining stages.

According to the results provided in this chapter, the main findings can be sum-

marised as follows:

1. Regional homogeneity (measured using a critical function) in the decomposition

process plays an important role in image classification. The classification results

with respect to methods using the five critical functions identified, namely AIV,

ED, KCC, KLD and LCS, outperformed the results obtained when no critical

function (0NCF) was used. The best critical functions were LCS and ED.

2. Overlapping decomposition was more effective than the standard decomposition.

3. The results produced using the HOG region-based image representation were

statistically the best among the seven different representations considered.

4. In terms of single feature vector generation methods, feature selection using IFK

with K = 128 outperformed the PCA dimensionality reduction based method.

5. Use of the BN and SVM classifier generators produced results that were better

than the results produced using KNN classification.

Table 6.15 summarises the best four combinations of techniques in terms of AUC

(arguably the best overall measure). For reference later in this thesis, the techniques

have been labelled as follows: (i) RB1, (ii) RB2 (iii) RB3 (iv) RB4.

For completeness, Table 6.16 summarises the classification results obtained with

respect to the best four combinations of techniques presented in Table 6.15. From the

tables, it can be seen that the best results in terms of accuracy reached 99.29% with

respect to RB1 and in terms of AUC reached 0.99 with respect to RB1 and RB2.

The following chapter considers and evaluates the proposed whole image-based rep-

resentations using the concept of hierarchical spatial decomposition.
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Table 6.15: Best four performing combinations of techniques as identified in the foregoing
evaluation.

Identifier Image Decompo-
sition

Region Represen-
tation

Feature Selection Classification

RB1 overlapping de-
composition,
L=5, ED critical
function

HOG representa-
tion

IFK with K =
128

SVM classifier

RB2 overlapping de-
composition,
L=5, ED critical
function

HOG representa-
tion

IFK with K =
128

BN classifier

RB3 overlapping de-
composition,
L=5, LCS critical
function

HOG representa-
tion

IFK with K =
128

SVM classifier

RB4 overlapping de-
composition,
L=5, LCS critical
function

HOG representa-
tion

IFK with K =
128

BN classifier

Table 6.16: Summary of evaluation results obtained using the four best techniques identified
in Table 6.15

Label Acc Sen Spec PPV NPV EER AUC

RB1 99.29% 98.55% 100.00% 100.00% 98.61% 0.00 0.99

RB2 98.57% 99.01% 98.17% 98.04% 99.07% 0.02 0.99

RB3 97.86% 100.00% 96.00% 95.59% 100.00% 0.04 0.98

RB4 97.62% 99.49% 95.98% 95.59% 99.54% 0.04 0.98
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Chapter 7

Classification Based on
Decomposition and Whole
Image-Based Representation

7.1 Overview

This chapter discusses the proposed procedure for building 3D (volumetric) image clas-

sifiers using Whole Image-Based (WIB) representation methods, as opposed to the

region based methods described in Chapter 5. Note that the distinction between the

RB and the WIB methods is that using the RB methods each region was represented

individually while WIB the all the regions are considered. Recall that the decompo-

sition results in a hierarchy, which for practical purposes is best encapsulated in the

form of some kind of tree structure. In the case of the work described in this thesis,

hybrid quad/oct-trees and non-trees were used, quad/oct-tress when using a standard

decomposition and non-trees when using an overlapping decomposition. Recall that

non-trees were introduced as a potential solution to the boundary problem often en-

countered as a result of decomposition (see Section 4.4). Broadly, the idea behind the

work presented in this chapter is to apply frequent sub-graph mining techniques to a set

of trees representing images so as to identify a set of frequently occurring sub-graphs

that in turn can be used to define a feature space from which feature vectors can be

generated (one per input image) which can then be input to a classifier generator.

A schematic of the entire process is presented in Figure 7.1. From the figure, it

can be seen that the process comprises five stages: (i) image decomposition, (ii) tree

conceptualisation, (iii) frequent sub-graph mining, (iv) feature vector generation and

(v) classifier generation. The image decomposition element was previously described

in Chapter 4. This work is inspired by [59] where Frequent Sub-graph Mining (FSM)

is applied (Stage 3) to the tree representing the image set so as to identify frequently

occurring sub-graphs. The identified set of frequent sub-graphs is then used (Stage

4) to define a feature space from which a set of binary-valued feature vectors (one
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Figure 7.1: Schematic illustrating the whole image-based representation approach to image
classification.

per volume) is drawn. The identified set of feature vectors is then used to generate a

classifier (Stage 5).

The rest of this chapter is organised as follows. First the adapted tree conceptuali-

sation is presented in Section 7.2. Section 7.3 describes the frequent sub-graph mining

process and Section 7.4 the feature vector generation process. Classifier generation

is briefly discussed in Section 7.5. The evaluation of the proposed WIB technique is

then presented in Section 7.6. Section 7.7 discuses the reported results and presents a

summary of the work described in this chapter.

7.2 Tree Conceptualisation (Stage Two)

Decomposition techniques tend to operate in a top-down manner (either breadth first or

depth first) and thus lend themselves to tree storage structures, quad trees in the case

of 2D data and oct-trees in the case of volumetric data. In the case of the overlapping

decomposition, the boundary region is included as presented in Section 4.4 leading

to nine regions (hence a non-tree). In the context of the region based representation

techniques, the nature of this tree conceptualisation was not of significance; it was the

regions identified by the nodes in the tree that were of importance. In the case of the

WIB representation techniques considered in this chapter, the structure of the tree is

of significance as is the nature of the node and edge labelling. More formally, a tree
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T is a 4-tuple T = (N,E, nl, el), where N is the set of nodes (representing regions),

E ⊆ N × N is the set of edges, nl is the set of node labels, and el is the set of edge

labels. The node label is a single value representing each node (region). The edge label

is typically a mapping between the parent and child node. In the generated tree, every

newly generated node is connected to an existing parent node with an edge having a

label that indicates the relationship between the parent node and the child node. The

edge labels are also single values. On completion, each node in the tree will describe a

region in terms of a node label.

Algorithm 7.1 describes the process of adding node and edge labels to trees, gen-

erated as part of a decomposition, so that Frequent Sub-graph Mining (FSM) can

be applied. The input for the algorithm is a decomposed image (represented as a

tree) generated using Algorithm 4.1 previously presented in Section 4.2. The notation

n.nodeLabel is used to indicate the node label belonging to node n, ni to indicate the

ith child node from node n, and n.edgeLabeli to indicate the edge label for the edge

connecting a current node to a child node ni. The functions nodeLabel (line 6) and

edgeLabel (line 9) are used to generate node and edge labels as appropriate; these

functions are discussed further in Subsections 7.2.1 and 7.2.2 below. Of course, this

process could have been integrated with the decomposition process, but the labelling

is not required in the case of the region based representations.

Algorithm 7.1 Pseudocode for the tree labelling.

Input: An image decomposed into a tree t
Output: The labelled tree Gi

1: max = Number of regions (Children) per node.
2: Start
3: treeLabelling(t)
4: End
5: Function treeLabelling(n)
6: n.nodeLabel← nodeLabel(n)
7: if n has child nodes then
8: for i = 1 to max do
9: n.edgeLabeli ← edgeLabel(i)

10: treeLabelling(ni)
11: end for
12: end if
13: End Function

7.2.1 Node Labels

We refer to the different types of values that may be associated with a node as node

features. The node features are used to form node labels. The selection of appropriate

node features plays an important role in the context of the effectiveness of whole image

tree representations. In the Average Intensity Values (AIVs), the mean of the intensity
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values of the pixels (voxels) making up the region represented by a tree node, were

used to label the nodes. This is probably the simplest way of assigning labels to nodes.

However, it is conjectured here that such mean values for regions do not provide a

sufficient description of content. Instead, for the work described in this thesis, the

Kurtosis of each region is used as the node label. Kurtosis measures the “peakedness”

of a distribution (an intensity histogram in our case). In other words, Kurtosis describes

the shape of a distribution [79]. In this case, Kurtosis represents the distribution of the

histogram of the region. Kurtosis is calculated as follows (Equation 7.1):

Kurtosis =
1
n

∑n
i=1(hi − h)4

( 1
n

∑n
i=1(hi − h)2)2

(7.1)

where h is the histogram vector associated with the region/volume represented by a

given node, h is the mean of h and n is the number of bins in h.

Later on in this chapter we compare between both these node labelling techniques.

However, in order to not confuse AIV node labelling with the critical function of the

same name, for the rest of this thesis the term “mean” node labelling will be used to

indicate AIV node labelling.

7.2.2 Edge Labels

Using tree-based image representations, the edge features used are typically defined

in terms of some node feature similarity measure describing the similarity between a

parent-child node coupling. Edge features are essential for the envisioned volumetric

tree classification as they are used, together with the node labels, for distinguishing

between sub-graphs (sub-trees). With respect to the work described in this thesis, edge

labels are defined in terms of the Kullback-Leibler Divergence (KLD) [68] between

parent node pairs. The concept of KLD was introduced in Section 4.3 in terms of

histogram based critical functions. KLD is a measure of the similarity between the

parent and the child node intensity histograms for the regions/volumes they represent.

Essentially, KLD measures the divergence between the two histograms. Thus KLD

was used to generate edge labels in a similar manner to that with which it was used

to determine the intensity homogeneity between parent-child node pairs during the

decomposition process (as described in Section 4.3). Recall that Equations 4.4 to 4.3,

presented in Section 4.3, demonstrated how the KLD measure is generated. Alternatives

to using KLD include ED, DTW and LCS as also introduced in Section 4.3. These

were not selected because the KLD measure indicates the likelihood ratio between two

distributions (in our case histograms of nodes) and if two distributions are identical

then the KLD value is zero while the other techniques compute the average difference

between each histogram value (bin).
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7.3 Frequent Sub-graph Mining (Stage Three)

After trees of the form described in the foregoing section have been generated, one tree

per image, the next stage is to generate the feature vector representation so that the

salient features of the tree collection are preserved. In this case, the salient features of

interest are deemed to be frequently occurring sub-graphs; sub-graphs that represent

common structures that occur across the tree represented data set as a whole. A sub-

graph is deemed to be “frequent” if its occurrence count is greater than some threshold

value σ. The occurrence count for a sub-graph is the number of trees in the input data

in which the sub-graph occurs (one count per tree in the input data). The value for

σ is thus expressed in terms of a proportion of the total number of trees considered.

Usually σ is set to a low value so as to ensure that nothing is missed; however the

consequence of this is that many frequent sub-graphs may be identified (hence some

form of feature selection may need to be applied).

From the literature, the advocated method for identifying frequently occurring sub-

graphs in a collection of trees is to apply a Frequent Sub-graph Mining (FSM) al-

gorithm. With respect to the work described in this thesis, the well-known frequent

sub-graph mining the graph-based Substructure pattern mining (gSpan) [148] algorithm

was employed, although alternative FSM algorithms could equally well have been used.

Formally:

Definition Given two trees T ′ = (N ′, E′, nl′, el′) and T = (N,E, nl, el), T ′ is a sub-

graph of T (T ′ ⊆ T ) if N ′ ⊆ N , E′ ⊆ E, nl′ ⊆ nl and el′ ⊆ el.

7.4 Feature Vector Generation (Stage Four)

Having identified a set of frequently occurring sub-graphs, the sub-graphs were then

used to define a feature space where each identified sub-graph represents a dimension

within that space and each dimension can have the values 0 or 1 (exists or does not

exist). However, using algorithms such as gSpan, as noted above, many frequent sub-

graphs may be identified (especially if a low σ value is used), which in turn may hinder

both efficiency and effectiveness. To reduce the number of features included in the

feature space representation, some form of feature selection can be applied.

With respect to the work described in this thesis, feature selection was conducted

by allocating a gain value to each sub-graph s. Gain is essentially a measure of the

discriminative power of individual features (an important concept in the context of

classification) and is calculated as shown in Equation 7.3 [78, 97, 117], where n is the

total number of training images, ci ∈ {−1, 1} is the class label of the image and M(s, gn)

is a function to match a sub-graph s to the graph gn generated for the image in. Each

sub-graph gain g(s) is computed and if the gain is less than a threshold α then the

103



sub-graph is ignored.

Match(sg, tn) =

{
1, if sg ⊆ tn
−1, otherwise

(7.2)

gain(sg) =
n∑
i=1

ciMatch(sg, ti) (7.3)

Algorithm 7.2 Pseudocode for the proposed feature vector generation for the whole
image-based methods

Input: A set of Trees T , Set of class label C, Set of Sub-Graphs SG, gainThreshold

Output: FV
1: M = |SG| × |T |
2: for each i = 1 to |T | do
3: for each l = 1 to |SG| do
4: Ml,i ←Match(sgl, ti)
5: end for
6: end for
7: g = vector of size |T |
8: for each l = 1 to |SG| do
9: for each i = 1 to |T | do

10: g(i) = ci ×Ml,i

11: end for
12: gain(l) =

∑|T |
i=1 g(i)

13: if gain(l) > gainThreshold then
14: IncludedSubgraphs← sgl
15: end if
16: end for
17: for each i = 1 to |T | do
18: for each l = 1 to |IncludedSubgraphs| do
19: if Match(IncludedSubgraphsl, ti) then
20: FV (i, l)← 1
21: else
22: FV (i, l)← 0
23: end if
24: end for
25: end for

Algorithm 7.2 describes the process used to generate a feature vector for each image.

The input to the algorithm is: (i) a set of trees T (one tree per image), (ii) the set of

classes C ∈ {−1, 1}, (iii) a set of identified frequent sub-graphs SG (identified using

the gSpan algorithm in the case of the work presented in this thesis) and (iv) a gain

threshold. A matrix M is then built with rows I representing the number of individual

trees (images) and columns L representing the identified frequent sub-graphs (lines 2 to

6). Note that a matrix intersection is indicated using the notation Mi,j . The function
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Match (line 4) is used to determine if the sub-graph sg is in the given tree tn. The

match function is defined in Equation 7.2. The output of the match function is fed into

the matrix M . A vector g is then built with the same size as |T |, the size of the set of

columns (lines 9 to 11). The vector g holds the multiplication of the class label, ci ∈ C,

(-1 or +1), by the corresponding matched graph Mi,j for each sub-graph j, where i is

the ith tree and j is the jth sub-graph. Then we calculate the gain as in Equation 7.3

for each sub-graph (from line 12) by summing the value of the vector g. If the gain for

a sub-graph is greater than a given threshold (line 13) then the sub-graph is included

in the set of sub-graphs. Finally, the feature vector FV for each image is formed. If

the included sub-graph l is found in the tree of the image i then the FV (i, l) holds the

value 1 and otherwise the value 0 (from line 17 to line 25).

7.5 Classifier generation (Stage Five)

Once a set of feature vectors has been generated these can be used as input to a super-

vised learning algorithm provided that we have a known class label for each vector; in

other words, we need to have a training set. With respect to the evaluation presented

later in this thesis, the same AMD dataset as used to evaluate the region-based repre-

sentation was used. Also, as in the case of the region-based methods, three classifier

generation techniques were experimented with: (i) Support Vector Machine (SVM),

(ii) K-Nearest Neighbours (KNN) and (iii) Bayesian Network (BN), all provided within

the Weka machine learning workbench [51].

7.6 Evaluation

From the foregoing, a five-stage process for generating binary classifiers using the whole

image-based representation method for application to volumetric data was described.

The five stages were: (i) image decomposition, (ii) tree conceptualisation, (iii) frequent

sub-graph mining, (iv) feature vector generation (one per image) and (v) classifier

generation.

Image decomposition was discussed in Chapter 4 where it was noted that an impor-

tant aspect is the use of critical functions to establish regional homogeneity. For the

experimentation reported in this chapter, the five critical functions (out of the total of

seven critical functions considered in this thesis) that produced the best results with

respect to the region-based representation (discussed in the previous chapter, Chapter

6) were used. Recall that these were:

1. Average Intensity Value (AIV).

2. Kendall’s Coefficient Concordance (KCC).

3. Euclidean Distance (ED).
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4. Longest Common Subsequence (LCS).

5. Kullback-Leibler divergence (KLD).

As before, a range of levels of decomposition was considered with respect to the

reported evaluation from L = 3 to L = 6, and both standard an overlapping decompo-

sition was used.

With respect to tree representation (Stage two) two node labellings were considered

in Section 7.2.1 as follows:

1. Mean (as used in [59]).

2. Kurtosis.

Recall that only one edge-labelling mechanism was proposed.

Regarding the frequent sub-graph mining (stage three), only one algorithm is used,

the gSpan [148] algorithm described in Section 7.3. In the experiment, the threshold

value σ for the frequent sub-graph mining as presented in Section 7.3 was set to 20%.

This relatively low value was selected so as to ensure that a reasonably large number

of sub-graphs were selected. In stage four, one technique is again proposed for feature

vector generation with gainThreshold = 0 as presented in Section 7.4. This value was

selected because if the gain for a graph is zero then the sub-graph is found in both class

labels.

The final stage of the process (Stage 5) was classifier generation. As noted previ-

ously, there are a great many binary classifier generators that operate using a feature

vector representation. Three were considered with respect to the evaluation described

in this chapter (and the foregoing chapter):

1. Support Vector Machines(SVM).

2. K-Nearest Neighbour (KNN).

3. Bayesian Networks (BN).

These were selected for the same reason that they were used with respect to the exper-

iments used to evaluate the operation of the region-based representation techniques;

because: (i) they tend to produced good results with respect to other application do-

mains and (ii) their usage is widely reported in the literature. With respect to the SVM

classifier, the complexity constant was set to one and the linear polynomial kernel was

used with a coefficient value of one. For the KNN classifier, the number of nearest

neighbours (k) was set to one.

Given the above, the different techniques whereby whole image-based volumetric

classification can be achieved can be combined in: 4 (levels of decomposition) ×2 (types
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of decomposition) ×5 (critical functions) ×2 (labellings) ×3 (classifiers) = 240 different

manners (fewer techniques than in the case of the region-based representation methods).

As in the previous chapter, this chapter presents an evaluation of these different

combinations in the context of the AMD detection application that has acted as a

focus for the work described in this thesis. The objectives of the evaluation were (in

the context of the relevant stage in the proposed process) as follows:

1. Stage 1

(a) To determine the best critical function.

(b) To determine whether standard or overlapping decomposition was more ap-

propriate.

(c) To determine which level of decomposition produced the most effective clas-

sification results.

2. Stage 2: To determine the most appropriate node labelling in terms of classifi-

cation effectiveness.

3. Stage 5: To identify the most appropriate classifier to be applied (out of the

three different mechanisms considered)

In the context of stage one, the option of not using a critical function was not considered

because previous work with respect to region-based methods had already demonstrated

that this did not work well. As before, the adapted evaluation strategy was to consider

each of the above objectives in turn with respect to the applicable techniques for the

stage in question, while using a constant set of techniques for the remaining stages. As

in the previous chapter, two styles of evaluation were conducted: (i) classifier perfor-

mance evaluation and (ii) significance testing. The individual evaluation metrics with

respect to the classifier performance evaluation were again: (i) Accuracy (Acc.), (ii)

Sensitivity (Sen.), (iii) Specificity (Spec.), (iv) Positive Predictive Value (PPV), (v)

Negative Predictive Value (NPV), (vi) Error Equal Rate (EER) and (vii) Area Un-

der the Curve (AUC) of the receiver operating characteristic as defined in Subsection

2.8.1. Ten-fold Cross Validation (TCV) was used throughout. ANalysis Of VAriance

(ANOVA) was applied to the recorded AUC values for the statistical significance testing

in the same manner as presented in the previous chapter. Some of the results that were

obtained are presented in the main body of this chapter while the rest of the results can

be found in Appendix B. More specifically, the evaluation results, with respect to each

of the above objectives, are presented and discussed in Sections 7.6.1 to 7.6.3 below.

7.6.1 Decomposition (Stage One)

In this section, the results obtained using the proposed whole image-based representa-

tion process, with respect to the five critical functions identified above, are presented.

107



Recall that the objectives of the evaluation were:

1. To determine which of the five critical functions considered produced the best

result.

2. To determine which is the best level of decomposition to use (a range of values

were considered).

3. To determine whether standard or overlapping decomposition is more desirable.

7.6.1.1 Classifier Performance in the Context of Decomposition

Tables 7.1 and 7.2 show the results obtained using the WIB approach with respect to the

decomposition and in the context of classification performance. The column labelled

“L” indicates the level of decomposition. Table 7.1 gives the results obtained using

standard decomposition and 7.2 the results using overlapping decomposition. For the

evaluation, the following techniques were fixed with respect to the stages not considered

in this section (node labelling, FSG and classification): (i) Kurtosis node labelling, (ii)

gSpan using σ = 20% and (iii) SVM classification. As in the case of the evaluation

conducted with respect to region based techniques, four levels of decomposition were

considered, {3, 4, 5, 6}. In the experiment, the threshold value t with respect to the five

critical functions considered was set to 0.5.

Considering the five different critical functions, from both tables it can be seen that

the best result, reaching a recorded AUC value of 1.00, was obtained with respect to

the LCS and KLD critical functions. Note that both LCS and KLD were proposed by

the author. For the LCS critical function, the best result was obtained using L = 5

and L = 6 in the case of standard decomposition; and L = 4, L = 5 and L = 6 in

the case of overlapping decomposition. For the KLD critical function, the best result

was obtained using the overlapping decomposition with L = 5. LCS and KLD were

more effective because they were better in terms of comparing between histograms of

regions, leading to a better method in identifying homogeneous regions. In general, it

can be observed that the LCS critical function was very effective in comparison to the

other critical functions considered. The lowest recorded result was obtained using the

KCC critical function, standard decomposition and L = 4 (Accuracy = 75.00%, EER

= 0.29 and AUC = 0.75). The results of using the AIV critical function with average

AUC of 0.87 were slightly better than KCC with 0.8 and ED with 0.86 with respect

to both decomposition types. Recall that the LCS and KLD were among the critical

functions proposed by the author.

Regarding the difference between the standard and the overlapping decomposition,

from Tables 7.1 and 7.2 the results using overlapping decomposition produced a better

performance than in the case of the standard decomposition, thus confirming the results

obtained using the region-based representation presented in Chapter 6. For example,
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using L = 3, the best AUC result using standard decomposition was 0.81 while the

best result using overlapping decomposition was 0.94. The best KLD AUC result for

standard decomposition was 0.90 with L = 3 and an average of 0.86, while for the

overlapping decomposition it was 1.00 and the average was 0.97.

With respect to level of decomposition, as in the case of the region-based methods,

there was not a discernible difference between the results obtained using different levels

of decomposition. For example, the AUC results using L = 3 and L = 5 using standard

decomposition and KLD were the same. Table 7.3 shows the number of occasions that

the best AUC was recorded with respect to each level of decomposition. From the

table, the best overall level was L = 5 (Recall that L = 5 also performed well with

respect to region-based methods).

Table 7.1: Classifier performance results in the context of decomposition (Stage 1) using:
(i) standard decomposition with decomposition threshold t = 0.5, (ii) a range of decomposi-
tion levels (L), (iii) a number of critical functions, (iv) Kurtosis node labelling and (v) SVM
classification.

CF L Acc Sen Spec PPV NPV EER AUC

AIV

3 82.86% 83.82% 81.94% 81.43% 84.29% 0.18 0.83
4 86.43% 85.92% 86.96% 87.14% 85.71% 0.13 0.86
5 81.43% 78.21% 85.48% 87.14% 75.71% 0.15 0.81
6 88.57% 87.50% 89.71% 90.00% 87.14% 0.10 0.89

Ave. 84.82% 83.86% 86.02% 86.42% 83.21% 0.14 0.87

KCC

3 80.71% 77.92% 84.13% 85.71% 75.71% 0.16 0.81
4 75.00% 80.70% 71.08% 65.71% 84.29% 0.29 0.75
5 86.43% 89.23% 84.00% 82.86% 90.00% 0.16 0.86
6 80.71% 80.28% 81.16% 81.43% 80.00% 0.19 0.81

Ave. 80.71% 82.03% 80.09% 78.92% 82.5% 0.2 0.80

ED

3 89.29% 95.08% 84.81% 82.86% 95.71% 0.15 0.89
4 90.71% 90.14% 91.30% 91.43% 90.00% 0.09 0.91
5 78.57% 80.30% 77.03% 75.71% 81.43% 0.23 0.79
6 85.71% 86.76% 84.72% 84.29% 87.14% 0.15 0.86

Ave. 85.32% 88.07% 84.46% 83.57% 88.57% 0.15 0.86

LCS

3 90.71% 90.14% 91.30% 91.43% 90.00% 0.09 0.91
4 98.57% 98.57% 98.57% 98.57% 98.57% 0.01 0.99
5 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1.00
6 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1.00

Ave. 97.32% 97.17% 97.46% 97.50% 97.14% 0.05 0.97

KLD

3 90.00% 92.42% 87.84% 87.14% 92.86% 0.12 0.9
4 83.57% 84.06% 83.10% 82.86% 84.29% 0.17 0.84
5 83.57% 84.06% 83.10% 82.86% 84.29% 0.17 0.84
6 85.71% 87.88% 83.78% 82.86% 88.57% 0.16 0.86

Ave. 85.75% 87.10% 84.45% 83.93% 87.50% 0.15 0.86
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Table 7.2: Classifier performance results in the context of decomposition (Stage 1) using:
(i) overlapping decomposition with decomposition threshold t = 0.5, (ii) a range of decompo-
sition levels (L), (iii) a number of critical functions, (iv) Kurtosis node labelling and (v) SVM
classification.

CF L Acc Sen Spec PPV NPV EER AUC

AIV

3 89.29% 87.67% 91.04% 91.43% 87.14% 0.09 0.89
4 82.86% 81.94% 83.82% 84.29% 81.43% 0.16 0.83
5 96.43% 95.77% 97.10% 97.14% 95.71% 0.03 0.96
6 85.00% 83.56% 86.57% 87.14% 82.86% 0.13 0.85

Ave. 88.39% 87.23% 89.63% 90.00% 86.78% 0.10 0.90

KCC

3 83.57% 82.19% 85.07% 85.71% 81.43% 0.15 0.84
4 82.14% 83.58% 80.82% 80.00% 84.29% 0.19 0.82
5 85.00% 84.51% 85.51% 85.71% 84.29% 0.14 0.85
6 83.57% 84.06% 83.10% 82.86% 84.29% 0.17 0.84

Ave. 83.57% 83.58% 83.62% 83.57% 83.57% 0.16 0.83

ED

3 90.00% 88.89% 91.18% 91.43% 88.57% 0.09 0.9
4 87.86% 87.32% 88.41% 88.57% 87.14% 0.12 0.88
5 85.00% 84.51% 85.51% 85.71% 84.29% 0.14 0.85
6 84.29% 85.29% 83.33% 82.86% 85.71% 0.17 0.84

Ave. 86.57% 86.50% 87.17% 87.14% 86.42% 0.13 0.86

LCS

3 99.29% 100.00% 98.59% 98.57% 100.00% 0.01 0.99
4 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1.00
5 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1.00
6 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1.00

Ave. 99.82% 100.00% 99.64% 99.64% 100.00% 0.00 0.99

KLD

3 92.86% 92.86% 92.86% 92.86% 92.86% 0.07 0.93
4 97.14% 97.14% 97.14% 97.14% 97.14% 0.03 0.97
5 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1.00
6 97.86% 98.55% 97.18% 97.14% 98.57% 0.03 0.98

Ave. 96.96% 97.13% 96.79% 96.78% 97.13% 0.03 0.97

Table 7.3: The number of occasions when the best recorded AUC value from Tables 7.1 and
7.2 was recorded with respect to level of decomposition L and type of decomposition (standard
or overlapping).

Level Standard Overlapping Totals

3 1 1 2
4 2

6 1 1 2
6

5 32
6 13

6 45
6

6 12
6 13

6 25
6

Totals 5 5 10

7.6.1.2 Decomposition Significance Testing

In this subsection, the reported results from the ANOVA are presented to determine

whether the above results are statistically significant or not. The ANOVA table for

comparing the critical functions against each other is given in Table 7.4. Note that in
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the table, as in the case of Chapter 6, the rows indicate: (i) the differences between

groups and (ii) within groups (Error). The column labelling is as follows: (i) SS is the

sum of squares of the source, (ii) df is the degree of freedom in the source, (iii) MS is

the mean square of the source, and (iv) F is the F ratio. More information about the

ANOVA table was described in Section 2.8.2. The most important element of Table

7.4 to note is the p-value (6.3746e-143) which tells use if the groups are statistically

significant from each other. The term “groups” in this context refers to the AUC sets of

results associated with each critical functions (the AUC results for each critical function

are considered to be a group).

From the results it can be seen that the difference between the SS value between

groups (Between-GroupsSS = 2.4282) and the SS value within each group (ErrorSS

=1.5800) was large. From Table 7.4 it can also be seen that there is a statistical

significance between the usage of the critical functions. This can more clearly be

observed with respect to Figures 7.2(a) and (b), which show the significant difference

and confidence interval diagrams. From Figure 7.2(a) it can be seen that the critical

differences between the performances of LCS and AIV, ED, KCC and KLD is significant.

The results of ED and KCC were not statistically different. This can be confirmed by

reference to Figure 7.2(b) where it can be seen that LCS generated the best AUC

results. Thus it can be concluded that the result presented in Subsection 7.6.1.1, where

the LCS critical function produced the best performance, is statistically significant. It

is interesting to note that the ED critical function, which performed well with respect

to the region-based representation methods, did not performed well with respect to the

whole image based methods. Recall that LCS also performed well with respect to the

region-based methods (second place after ED).

Table 7.4: ANOVA data for critical function comparison

Source SS df MS F p-value

Between-Groups 2.4282 4 0.6070 274.7054 6.3746e-143

Error 1.5800 715 0.0022

Total 4.0082 719

Regarding the level of decomposition, four levels of decomposition were used in the

above reported experiments. ANOVA was applied to each level of decomposition AUC

results. The resulting p-value of 0.1246 (>0.05) (see Table 7.5) confirmed that there

was no statistically significant difference between the operation of the different levels

of decomposition considered (3, 4, 5 and 6). There was a small difference between the

groups, with a Between-GroupsSS= 0.0326 (Table 7.5). Figure 7.3 shows the confidence

interval diagrams, where it can be seen that there was similarity between the results

associated with the different levels of decomposition. From the figure, it can be seen
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(a) Significance differences (b) Confidence intervals

Figure 7.2: Significance difference and confidence intervals for comparing critical functions

that there was no significant difference in operation when using either L = 4 or L = 5.

The fact that L = 6 produced a slightly better performance than L = 3, L = 4 and

L = 5 is not statistically significant.

Table 7.5: ANOVA data for levels of decomposition comparison (L = {3, 4, 5, 6})

Source SS df MS F p-value

Between-Groups 0.0326 3 0.0109 1.9218 0.1246

Error 4.2466 752 0.0056

Total 4.2791 755

In terms of comparing the operation of standard and overlapping decomposition,

Table 7.6 gives the ANOVA data, where the calculated p-value (5.7568e-26) indicates

that there was a statistical difference in operation between usage of the standard and the

overlapping decomposition. Figures 7.4, which shows the confidence intervals, confirms

the above observation that using overlapping decomposition produced a significantly

better performance than when using standard decomposition.

Table 7.6: ANOVA data for decomposition comparison (standard v. overlapping)

Source SS df MS F p-value

Between-Groups 0.5689 1 0.5689 119.6620 5.7568e-26

Error 3.6130 760 0.0048

Total 4.1818 761
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Figure 7.3: Confidence interval diagrams for comparing levels of decomposition (L =
{3, 4, 5, 6})

Figure 7.4: Confidence intervals diagrams for decomposition comparison (standard v. over-
lapping)
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7.6.2 Tree Conceptualisation (Stage Two)

In this section, the evaluation results obtained with respect to the proposed node and

edge labelling process are considered. Recall that the objective of the evaluation was

to determine whether Kurtosis or Mean intensity value node labelling was the most

appropriate in the context of classifier performance. As in the foregoing subsection,

two forms of testing were conducted: (i) classifier performance testing and (ii) statis-

tical significance testing. The following two subsections present the results associated

with each. For the evaluation, the following techniques were fixed with respect to

the stages not considered in this section (decomposition, FSG, feature vector genera-

tion and classification): (i) the KLD critical function with a threshold of t = 0.5 and

standard decomposition, (ii) gSpan FSG using σ = 20%, (iii) feature selection with

gainthreshold = 0, and (iv) SVM classifier generation. Four different levels of decom-

position (L = {3, 4, 5, 6}) were used for the experiments because it was thought that

the level of decomposition might have an effect on the usage of the considered edge-

labelling mechanisms. These techniques were adapted for the same reason as presented

in Section 7.6.1.1.

7.6.2.1 Classifier Performance in the Context of Tree Conceptualisation

The results for the classifier performance testing are provided in Table 7.7. From the

table, it can be seen that the use of Kurtosis as a node label mechanism improved the

overall classification performance compared to Mean labelling regardless of the value

of L (the suggestion that the level of decomposition might have an effect was therefore

unfounded). The average AUC result for the Mean was 0.79 while the average for the

Kurtosis was 0.85. The conjecture (Subsection 7.2.1) that mean intensity node labelling

did not provide for a sufficient description was verified.

Table 7.7: Classifier performance results in the context of the edge labelling mechanism used
(Stage 2) using: (i) standard decomposition, (ii) a range of decomposition levels, (iii) KLD
critical function, (iv) gSpan FSG using σ = 2 and (v) SVM classification.

CF L Acc Sen Spec PPV NPV EER AUC

Mean

3 80.71% 82.09% 79.45% 78.57% 82.86% 0.21 0.81
4 75.71% 77.27% 74.32% 72.86% 78.57% 0.26 0.76
5 77.86% 76.71% 79.10% 80.00% 75.71% 0.21 0.78
6 83.57% 85.07% 82.19% 81.43% 85.71% 0.18 0.84

Ave. 79.46% 80.28% 78.76% 78.21% 79.96% 0.21 0.79

Kurtosis

3 90.00% 92.42% 87.84% 87.14% 92.86% 0.12 0.9
4 83.57% 84.06% 83.10% 82.86% 84.29% 0.17 0.84
5 80.71% 79.45% 82.09% 82.86% 78.57% 0.18 0.81
6 85.71% 87.88% 83.78% 82.86% 88.57% 0.16 0.86

Ave. 84.99% 85.95% 84.20% 83.93% 86.07% 0.15 0.85
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7.6.2.2 Tree Conceptualisation Significance Testing

In this subsection, the results for the significance testing applied to the above results

are presented. The resulting ANOVA data is presented in Table 7.8 from which it can

be seen that there was a statistically significant difference between the Kurtosis and

Means node labelling mechanisms (the p-value was 3.0482e-05). Figure 7.5 shows the

confidence interval diagrams. From the figure, it can be seen that the classification

performance AUC results produced using Kurtosis node labelling were significantly

better than when Mean intensity labelling was used, thus confirming the above result

as being statistically significant.

Table 7.8: ANOVA data for edge-labelling comparison (Kurtosis v. Mean)

Source SS df MS F p-value

Between-Groups 0.1033 1 0.1033 17.5826 3.0482e-05

Error 4.8546 826 0.0059

Total 4.9579 827

Figure 7.5: Confidence intervals for comparing edge-labelling techniques.

7.6.3 Evaluation of Classifier Generation (Stage Five)

In this section, the results obtained using the proposed process with respect to the

three different classifier generation mechanisms (KNN, SVM and BN) are considered.

Recall that the objective was to determine which classifier produced the best results.

Recall also that in the context of the region-based method the BN and SVM classifier

generators produced the best results. Two sets of experiments were again conducted:

(i) classifier performance evaluation and (ii) statistical significance testing. For the

evaluation, the following techniques were fixed with respect to the stages not consid-
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ered in this section: (i) standard decomposition and the KLD critical function with a

threshold of t = 0.5, (ii) gSpan FSG using σ = 20%. A range of values for L were

considered (L = {3, 4, 5, 6}) again because it was conjectured that the level of decom-

position would have an effect on the nature of the adapted classifier generator. The

results obtained are discussed in the following subsections.

7.6.3.1 Classifier Performance in the Context of Classifier Generation

In this subsection, we present the results obtained using the three classifiers considered:

(i) SVM, (ii) KNN and (iii) BN. Table 7.9 presents the results obtained. From the table,

it can be seen that the SVM and BN classifier generator tended to produce the best

results with respect to the four different decomposition levels considered. The SVM

produced the best average results with respect to all the metrics considered. It can also

be observed that as the level of decomposition increased the classification performance

tended to decrease. All reported AUC results obtained, as shown in the table, were

between 0.82 and 0.92.

Table 7.9: Classifier performance results in the context of classifiers generation (Stage 5) using:
(i) standard decomposition, (ii) a range of decomposition levels, (iii) KLD critical function and
(iv) Kurtosis node labelling.

CF L Acc Sen Spec PPV NPV EER AUC

SVM

3 89.29% 88.73% 89.86% 90.00% 88.57% 0.10 0.89
4 85.00% 82.67% 87.69% 88.57% 81.43% 0.12 0.85
5 83.57% 78.31% 91.23% 92.86% 74.29% 0.09 0.84
6 82.14% 80.00% 84.62% 85.71% 78.57% 0.15 0.82

Ave. 85.00% 82.42% 88.35% 89.28% 80.71% 0.15 0.85

KNN

3 88.93% 87.59% 90.37% 90.71% 87.14% 0.11 0.90
4 80.00% 77.27% 83.33% 85.00% 75.00% 0.22 0.83
5 81.07% 77.71% 85.37% 87.14% 75.00% 0.22 0.83
6 80.71% 76.54% 86.44% 88.57% 72.86% 0.20 0.82

Ave. 82.67% 79.77% 86.37% 87.85% 77.5% 0.18 0.84

BN

3 89.29% 87.67% 91.04% 91.43% 87.14% 0.11 0.92
4 79.29% 77.33% 81.54% 82.86% 75.71% 0.22 0.83
5 80.95% 78.26% 84.21% 85.71% 76.19% 0.21 0.84
6 81.19% 77.18% 86.59% 88.57% 73.81% 0.21 0.83

Ave. 82.68% 80.11% 85.84% 87.14% 78.21% 0.18 0.85

7.6.3.2 Classifier Generation Significance Testing

The test conduced to measure the differences between the operation of the classifiers

in the context of the whole image-based methods showed that there was no statistical

difference between the classifiers. Table 7.10 presents the calculated ANOVA data.

The reported p-value was 0.4920, indicating that there was no difference between the

operation of the classifiers. Thus the fact that the BN classifier generator produced
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Table 7.10: ANOVA data for classifier generation comparison.

Source SS df MS F p-value

Between-Groups 0.0085 2 0.0042 0.7098 0.4920

Error 5.0104 840 0.0060

Total 5.0188 842

the best performance, as reported above, is not statistically significant. Because there

was no detected significant difference in the operation of the three classifier generators

considered, no further analysis was conducted. There was a small difference between

the groups with a Between-GroupsSS= 0.0085 (Table 7.5). Figure 7.6 shows the confi-

dence diagrams showing the similarities between the results obtained using the different

classifiers. From the diagram, it can be seen that BN and SVM were slightly better

than KNN.

Figure 7.6: Confidence intervals for comparing classifiers.

7.7 Summary and Conclusions

In this chapter, the whole image-based representation mechanism, in the context of

AMD classification, has been presented and evaluated. The process comprised five

stages: (i) image decomposition, (ii) tree conceptualisation, (iii) frequent sub-graph

mining, (iv) feature vector generation and (v) classifier generation. First the images

of interest were decomposed into a tree structure. To this end, two different types of

decomposition were suggested (standard and overlapping) and the use of six different

critical functions (including no critical unction). Nodes were labelled using a single

statistical value computed by comparing parent-child regions. The gSpan graph mining

algorithm was then applied to generate a set of frequent sub-graphs. These sub-graphs
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were then used to form a feature vector for each image. Three classifier generators were

considered for the final stage (SVM, KNN and BN).

Table 7.11: Best four performing combinations of techniques as identified in the foregoing
evaluation.

Identifier Image Decompo-
sition

Node Labelling Feature Selection Classification

WIB1 overlapping de-
composition,
L=6, LCS critical
function

Kurtosis node la-
belling

gSpan FSG using
σ = 20%

SVM classifier

WIB2 overlapping de-
composition,
L=3, LCS critical
function

Kurtosis node la-
belling

gSpan FSG using
σ = 20%

BN classifier

WIB3 overlapping de-
composition,
L=6, KLD criti-
cal function

Kurtosis node la-
belling

gSpan FSG using
σ = 20%

SVM classifier

WIB4 overlapping de-
composition,
L=6, KLD and
LCS critical
function

Kurtosis node la-
belling

gSpan FSG using
σ = 20%

BN classifier

Table 7.12: The best classification results obtained using decomposition and whole image-
based methods.

Label Acc Sen Spec PPV NPV EER AUC

WIB1 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

WIB2 99.29% 100.00% 98.59% 98.57% 100.00% 0.00 0.99

WIB3 97.86% 98.55% 97.18% 97.14% 98.57% 0.03 0.98

WIB4 98.10% 99.03% 97.20% 97.14% 99.05% 0.01 0.98

The evaluation results for the whole image-based representation established that

the proposed method produced good classification performances. It was clearly demon-

strated that overlapping decomposition produced a much better classification perfor-

mance than when using standard decomposition. It was also established that the best

performing critical function was LCS (which produced an accuracy of 100%, an error

rate of 0.00 and an AUC of 1). It is noteworthy that the use of LCS outperformed the

use of AIV, as proposed in [59] where work on retina classification was also presented

(bit directed at 2D images). In the context of the selected level of decomposition, the

overall results demonstrated that six levels of decomposition produced high-performing

classifiers. In addition, it was established that node labelling using the Kurtosis measure

produced better results than when Means labelling was used. The ANOVA statistical

significance testing and the post-hoc test (the Tukey’s test) analysis revealed that the

results obtained were statistically significant.
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The best results from the reported experiments concerning the operation of the

proposed whole image-based techniques are summarised. Tables 7.11 gives the best

four performing combination of techniques and the associated results obtained. For

reference later in this thesis, the techniques have been labelled as follows: (i) WIB1,

(ii) WIB2 (iii) WIB3 (iv) WIB4. From the tables, it can be seen that the best

results in terms of accuracy reached 100%. From the given results with respect to the

proposed approaches using the decomposition, it can be concluded that: (i) overlapping

decomposition is more effective than standard decomposition, and (ii) the LCS and

KLD critical functions produced a good performance.

Thus, in summary, the main findings from this chapter are as follows:

1. The LCS critical function contributed to a better whole image-based representa-

tion.

2. There were similarities between levels of decomposition with slightly better per-

formance using level 6 of decomposition.

3. Kurtosis node labelling produced better results than Mean node labelling.

4. All the classifiers produced good results although SVM and BN results were

slightly better than KNN.

In the next chapter, we compare the obtained results in this chapter with the results

from the previous chapter (Chapter 6).
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Chapter 8

Discussion

8.1 Overview

This short chapter discusses and compares the operation of the proposed volumetric

representation methods, both Region-Based (RB) and Whole Image-Based (WIB), for

image classification described in the foregoing chapters. The comparison is conducted

in the context of the four best region-based methods and the four best whole image-

based representation methods identified in Chapters 6 and 7. The aim of this chapter is

to provide a comparison between these two groups of techniques and to compare their

operation with other techniques taken from the literature (identified in Chapters 2 and

3). For the evaluation, the AMD data set used previously was again used.

With respect to the RB category, the best identified performing techniques are sum-

marised in Table 8.1. With respect to the WIB category the best identified performing

techniques are summarised in Table 8.2. The alternative techniques with which the

best four RB and best four WIB techniques were compared were as follows:

1. Voxel Co-occurrence Matrix (VCM) [53, 73].

2. Voxel Run-Length Matrix (VRLM) [19, 26, 43, 132].

3. Histograms of Oriented Gradients (HOG) [24, 90, 123].

4. Histograms of Local Binary Pattern (LBP) [57].

5. A combination of HOG and LBP (HOG-LBP) [143].

6. Local Phase Quantisation (LPQ) [101].

Details of these techniques were presented earlier in the previous work chapter (Section

2.4). These methods have been widely used for image feature extraction. Note that

none of these featured any form of decomposition. They have thus been adapted for the

purpose of 3D (volumetric) image classification in the research domain of interest with

respect to this thesis. The SVM classifier was used with all the given techniques because
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Table 8.1: Best four performing combinations of techniques for region-based methods.

Identifier Image Decompo-
sition

Region Represen-
tation

Feature Selection Classification

RB1 overlapping de-
composition,
L=5, ED critical
function

HOG representa-
tion

IFK with K =
128

SVM classifier

RB2 overlapping de-
composition,
L=5, ED critical
function

HOG representa-
tion

IFK with K =
128

BN classifier

RB3 overlapping de-
composition,
L=5, LCS critical
function

HOG representa-
tion

IFK with K =
128

SVM classifier

RB4 overlapping de-
composition,
L=5, LCS critical
function

HOG representa-
tion

IFK with K =
128

BN classifier

it had been shown to produce good performance (see evaluation results presented in

Chapters 6 and 7).

Table 8.2: Best four performing combinations of techniques for whole image-based methods.

Identifier Image Decompo-
sition

Node Labelling Feature Selection Classification

WIB1 overlapping de-
composition,
L=6, LCS critical
function

Kurtosis node la-
belling

gSpan FSG using
σ = 20%

SVM classifier

WIB2 overlapping de-
composition,
L=3, LCS critical
function

Kurtosis node la-
belling

gSpan FSG using
σ = 20%

BN classifier

WIB3 overlapping de-
composition,
L=6, KLD criti-
cal function

Kurtosis node la-
belling

gSpan FSG using
σ = 20%

SVM classifier

WIB4 overlapping de-
composition,
L=6, KLD and
LCS critical
function

Kurtosis node la-
belling

gSpan FSG using
σ = 20%

BN classifier

With respect to the above, two sets of comparisons are presented. The first set of

comparisons is concerned with classifier performance. The second set of comparisons is

directed at investigating the run time complexity of the proposed methods (classification

efficiency).

The rest of this short chapter is organised as follows. Section 8.2 presents the
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comparison in performance between the selected techniques. The time complexity of

the selected techniques is then considered in Section 8.3. Some conclusion concerning

the results is presented in Section 8.4.

8.2 Comparison Between the Performance of Volumetric
Representations

This section compares and discusses the classification results obtained using the best

performing techniques identified in the foregoing chapters and the identified techniques

from the literature which have been adapted for 3D classification.

Table 8.3 summarises the results obtained; best results highlighted in bold font. The

table presents the results in three blocks: (i) classification performance with respect to

the alternative methods taken from the literature (no decomposition), (ii) classification

performances with respect to the proposed RB methods (with decomposition), and (iii)

classification performances with respect to the proposed WIB methods. Note that the

best results presented in blocks 2 and 3 are identical; those presented in Tables 6.16

and 7.12.

From the first block of results (results produced using techniques taken from the

literature), it can be seen that the best performance was produced using VCM (Acc. =

95.71%, Sen. = 95.59%, Spec. = 95.83%, PPV = 95.59%, NPV = 95.83%, EER = 0.04

and AUC = 0.96). VCM was more effective because feature vectors were generated

using different statistical functions for feature extraction. In addition, these statistical

functions used were more effective when applied to the VCM matrix. The worst result

was obtained using VRLM. This may be because VRLM was less descriptive than the

VCM and the rest of the methods.

Comparing these results with the RB and WIB results (blocks 2 and 3), it can

be seen that the techniques taken from the literature did not perform as well as the

techniques proposed in this thesis. It is argued that this is because these techniques do

not use decomposition.

Comparing the RB and WIB results, there were no significant differences between

them, although it can be argued that WIB1 produced the overall best results. Recall

that WIB1 used: (i) overlapping decomposition, with L=6 and LCS critical function,

(ii) Kurtosis node labelling, (iii) feature selection FSG ( gSpan with σ = 20%) and (iv)

SVM classifier.

The strengths of the proposed methods are: (i) avoid the use of the segmentation-

based methods such as the work in [109] and (ii) the use of decomposition process has

improved the classification performance as reported early in this section. Although

successfully able to differentiate between AMD and non-AMD volumes, the proposed

RB methods associated with the decomposition decreases the performance compared

to alternative methods without the the use of decomposition.
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Table 8.3: Best classification results for the alternative techniques, RB techniques, WIB
techniques.

Method Acc Sen Spec PPV NPV EER AUC

Classification performance for alternative methods without decomposition

VCM [53, 73] 95.71% 95.59% 95.83% 95.59% 95.83% 0.04 0.96

VRLM [19, 26, 43, 132] 82.38% 84.95% 80.34% 77.45% 87.04% 0.19 0.84

HOG [24, 90, 123] 94.29% 95.45% 93.24% 92.65% 95.83% 0.07 0.94

LBP[57] 90.00% 89.71% 90.28% 89.71% 90.28% 0.10 0.90

HOG-LBP [143] 89.29% 98.18% 83.53% 79.41% 98.61% 0.17 0.89

LPQ [101] 87.86% 89.23% 86.67% 85.29% 90.28% 0.14 0.88

Classification performance for the proposed region-based representation methods

RB1 99.29% 98.55% 100.00% 100.00% 98.61% 0.00 0.99

RB2 98.57% 99.01% 98.17% 98.04% 99.07% 0.02 0.99

RB3 97.86% 100.00% 96.00% 95.59% 100.00% 0.04 0.98

RB4 97.62% 99.49% 95.98% 95.59% 99.54% 0.04 0.98

Classification for the proposed whole image-based methods

WIB1 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1.00

WIB2 99.29% 100.00% 98.59% 98.57% 100.00% 0.00 0.99

WIB3 97.86% 98.55% 97.18% 97.14% 98.57% 0.03 0.98

WIB4 98.10% 99.03% 97.20% 97.14% 99.05% 0.01 0.98

8.3 Run Time Complexity

In this section, we present the results obtained with respect to a set of run time complex-

ity experiments conducted using the techniques considered in Section 8.2. Experiments

were conducted with respect to: (i) the required run time for decomposition, (ii) the

required run time for the feature vector generation, (iii) the required run time for clas-

sifier generation and (iv) the required total run time. For these experiments, Apple

iMac with quad-core Intel Core i5 processor with 12 GB of RAM memory were used.

The results obtained are presented in Table 8.4. Again, as in the case of Table 8.3, the

table is divided into three blocks.

From the table, it can be seen that the whole image-based methods required signif-

icantly more time than the other methods. The reason for this is that when the level of

decomposition increases the required computation time becomes an issue with respect

to the WIB methods. Recall that the proposed WIB methods rely on the frequent

sub-graph mining based approaches, such as gSpan algorithm, to generate feature vec-

tors. The use of gSpan added significantly to the overall run time of the WIB methods

especially when the size of the graph is large (recall that the graph size is affected by

the level of decomposition). The alternative methods, especially (VCM), required very

little run time, largely because they did not involve any decomposition.

When the level of decomposition increases the required computation time becomes

an issue with respect to the WIB methods as presented in this section. Recall that the

proposed WIB methods rely on frequent sub-graph mining based approaches. One of

the issues with graph mining is time complexity. For graph mining algorithms, such

as gSpan, required more processing time than the other methods such as IFK for RB
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Table 8.4: The average run time in seconds for the identified methods in this chapter. The
following are given: Average Decomposition Time (ADT), Average Feature Vector Generation
Time (AFVGT), Classifier Generation (CG) and Total Execution Time (TET).

CF ADT AFVGT CG TET

Alternative methods

VCM - 2.31 0.01 2.32

VRLM - 5.83 0.01 5.4

HOG - 5.09 0.01 5.1

LBP - 37.94 0.01 37.95

HOG-LBP - 42.84 0.01 42.85

LPQ - 4.71 0.01 4.72

Region-based methods

RB1 2.69 4.12 0.31 7.12

RB2 2.69 4.12 0.82 7.63

RB3 16.05 3.80 0.26 20.11

RB4 16.05 3.80 0.75 20.60

Whole image-based methods

WIB1 15.63 433.51 0.01 449.15

WIB2 16.05 4,703.56 0.01 4,719.62

WIB3 8.75 4208.72 0.01 4,217.48

WIB4 8.81 378,785.1 0.01 378,793.92

methods, especially when the size of the graph, it depends on the level of decomposition,

is increased. Another issue with algorithms such as the gSpan algorithm is the required

space complexity especially when considering large trees (high levels of decomposition).

8.4 Summary

In this chapter, we have compared and discussed the operation of the best performing

RB and WIB methods with alternative approaches from the literature. Two types of

comparison were conducted: (i) in terms of best overall classification performance and

(ii) in terms of run time complexity. From the reported results, it can be seen that there

is a trade-off between performance and time complexity. Decomposition-based methods

performed well but required more time than the alternative methods which did not use

decomposition. The whole image-based methods required much more run time than

the region-based methods and the alternative methods. An important conclusion from

the experiments reported in this chapter is that the use of decomposition produces very

good results in the context of the AMD application and with respect to the alternative

techniques considered, but requires more run time.
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Chapter 9

Conclusion

This chapter summarises the proposed hierarchical spatial decomposition techniques

to represent 3D images (volumetric data) for classification purposes presented in this

thesis, in particular with respect to their application to 3D OCT retinal images for the

detection of AMD. The main findings of the research, the research contributions and

their implications are presented in this chapter with respect to the research question

and issues identified in Chapter 1. Some recommendations for further research work

are also provided.

This chapter is structured as follows. The summary of the proposed techniques is

presented in Section 9.1. Section 9.2 then presents the main findings of the research.

The research contributions are provided in Section 9.3. Some suggested future research

work is proposed in Section 9.4.

9.1 Summary

This thesis has investigated the effectiveness of hierarchical spatial decomposition tech-

niques to support 3D image classification methods. This study set out to determine the

effect of the decomposition on image representation methods for image classification.

To act as a focus for the work described, the proposed decomposition methods were

applied to support the classification of retinal images so as to identify AMD. AMD is an

eye disease that may lead to blindness in elderly people. The reported performance of

the proposed decomposition methods shows that the hierarchical spatial decomposition

helps to derive regions that can be represented better than when no decomposition is

used and thus can lead to good classification performance.

The proposed methods served to classify 3D images using various 3D representation

methods based on hierarchical spatial decomposition. The proposed process comprised

the following stages: (i) preparation presented in Section 3.6, (ii) decomposition in

Chapter 4, (iii) representation using region-based in Chapter 5 and whole image-based

in Chapter 7, (iv) feature vector generation, (v) classifier generation and (vi) evaluation.

In the first stage, the quality of the given images is improved using some preprocessing
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such as removing unwanted content, and flattening. The retinal layers are flattened in

order to reference the images to some common coordinate system. The preprocessing

methods produced a Volume Of Interest (VOI).

In the second stage, each VOI was recursively decomposed until it reached a pre-

defined maximum level of decomposition or a homogeneous region. In order to de-

termine regional homogeneity, seven critical functions were considered: (i) Average

Intensity Value (AIV), (ii) Kendall’s Coefficient Concordance (KCC), (iii) Gray Level

Co-occurrence Matrix (GLCM), (iv) Euclidean Distance (ED), (v) Kullback-Leibler

divergence (KLD), (vi) Dynamic Time Warping (DTW) and (vii) Longest Common

Subsequence (LCS). These critical function were defined in Section 4.3. Two of the

critical functions were proposed by other authors, namely AIV [59] and KCC [153];

the rest were introduced by the author. Four histogram-based critical functions were

proposed, namely ED, KLD, DTW and LCS. For the histogram based methods, his-

tograms of each region in the decomposition were generated. Histograms for potential

region were then computed. If there was a substantial difference between the two, the

decomposition proceeded; otherwise the decomposition was terminated.

Two types of decomposition techniques were also considered: (i) standard and (ii)

overlapping. Once the image was decomposed, the decomposition was stored in a tree

structure (the decomposition process naturally lends itself to a tree structure).

In the representation stage, two sorts of representation methods were proposed:

(i) Region-Based (RB) and (ii) Whole Image-Based (WIB). These two representation

methods are central to the contribution of the thesis. A variety of different techniques,

and variations of the methods, were considered. What the methods all had in common

was that they were all designed to ultimately define a feature space model.

Using these models, feature vector generation methods were applied so as to derive

a single feature vector for each image. The set of feature vectors for a collection of

images was then input into a classifier generator. For the classification stage, three

different classifier generators were considered: (i) SVM, (ii) KNN and (iii) BN.

To evaluate the proposed region-based and the whole image-based methods, two

sorts of evaluation were used: (i) classification performance evaluation using different

evaluation metrics such as accuracy, equal error rate and AUC, and (ii) statistical

significance testing using ANalysis Of VAriance (ANOVA). Ten-fold Cross Validation

(TCV) was used throughout.

In the context of the RB methods, two types of techniques were used to represent

each region: (i) statistical based and (ii) histogram based. In total, seven techniques

were considered:

1. First-Order Representation (FOR),

2. Voxel Co-occurrence Matrix (VCM),
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3. Voxel Run-Length Matrix (VRLM),

4. Histograms of Oriented Gradients (HOG),

5. Histograms of Local Binary Pattern (LBP),

6. A combination of HOG and LBP and

7. Local Phase Quantisation (LPQ)

of which the first three were statistical-based and the remainder were histogram-based.

With respect to the RB methods, two feature vector generation methods were used

to form a single feature vector for each image: (i) a dimensionality reduction-based

method using Principal Component Analysis (PCA) and (ii) a feature selection-based

method in terms of dictionary learning using Improved Fisher Kernel Encoding (IFK).

In the dimensionality reduction-based method, each set of image regions was considered

independently without considering the collection of other images’ regions, while in the

feature selection-based method all the image regions were considered as one set. Once

a single feature vector was generated for each image, the set of feature vectors was used

for the training and testing of the selected classifier.

The proposed WIB methods relied on graph-mining techniques. Once the images

were decomposed, each region was considered as a node label in the tree and the

relationships between the parent node and the child node were considered as the edge

labels in the tree. The effect of two types of node labelling was compared: (i) using

the mean value of each region intensity value as in [59], and (ii) using the kurtosis

of the histogram of the intensity values represented by the voxels representing each

region represented by each node. Two types of edge labels were also considered: (i)

the difference between the parent node and the child node in terms of mean values as

in [59] and (ii) using the result of the Kullback-Leibler Divergence (KLD) comparing

the histograms of the child node and the parent nodes. Using the WIB approach, each

image was represented as a tree with a set of nodes and edges. These trees were fed into

a Frequent Sub-graph Mining (FSM) algorithm, namely gSpan [148], to determine the

set of frequent sub-graphs contained across the tree represented image set. A feature

selection mechanism was used to select a subset from the sub-graphs generated. These

sub-graphs were used as the basis for generating a binary-valued feature vector for each

image. A value of 1 was used if the sub-graph existed in the generated tree of the image,

and a value of 0 if it did not exist. The generated feature vector was then fed into a

classifier generator in the same way as for the RB methods.

The different techniques presented in this thesis were compared with each other and

alternative techniques taken from the literature. Very positive results were obtained

and these are discussed further in the next section.
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9.2 Main Findings

This section presents the main findings from the conducted research presented in this

thesis. Referring back to Chapter 1, the initial research question was:

Is it possible to devise hierarchical spatial decomposition-based representa-

tion methods, suited to the classification of volumetric data, in such a way

that effective classification performance can be achieved given the significant

size and complexity of volumetric data sets?

The resolution of this research question required that a number of associated research

issues be addressed. Each is discussed below:

1. What is the most appropriate method to decompose images so that

homogeneous regions are identified? The comparison between the results of

the proposed approaches presented in this thesis, as given in Chapter 8, indicated

that the best way to decompose the image is to use the overlapping decomposition

proposed by the author coupled with either the ED or LCS or KLD critical

function. The results obtained using this decomposition, using both the RB and

WIB methods, indicated that it outperformed the situation where decomposition

without a critical function was used (and where alternative critical functions were

used).

2. Once a volume has been decomposed, is it better to represent the

volume in terms of the individual decomposed regions (region-based)

or in terms of the entire decomposition (whole image-based)? From the

results, both representations performed well.

3. With respect to the use of either region-based or whole image-based

representation, what is the most appropriate representation for encap-

sulating the decomposition to support the desired classification? In the

case of the RB methods, it was found that the best mechanism for representing

regions was using the HOG representation. In the case of the WIB mechanism,

it was found that the best ways of encapsulating the decomposition was to use

the Kurtosis node labelling.

4. Given a particular representation, what is the most effective way of

generating a single feature vector for each image? According to the results

presented in Chapter 6, the best feature vector generation technique with respect

to the RB methods was found to be where the IFK feature selection method (with

K = 128) was adapted. This was because IFK used the concept of dictionary

learning where the selection of the feature vector was based on the entire collection
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of feature vectors derived from several images. In the case of WIB methods, the

use of the proposed frequent sub-graph mining approach work well.

5. What is the most appropriate mechanism for conducting volumetric

classification? From the comprehensive comparisons between the results ob-

tained, reported in Subsections 6.5.1 and 7.6.3, the SVM and BN classifiers gen-

erated the best classification results with respect to the proposed representation

methods.

Returning to the research question posed at the beginning of this thesis in Chapter

1, it is now possible to state that the proposed methods presented in Chapters 5 and

7 can be successfully employed to classify volumetric data sets. The most appropri-

ate approach was to use overlapping hierarchical spatial decomposition coupled with

the LCS critical function coupled with WIB representation using: (i) Kurtosis node

labelling, (ii) gSpan FSG using σ = 20% and (iii) SVM classifier. With appropriate

representation, feature generation methods and classifiers can perform effective classi-

fication of 3D images. One of the more significant findings to emerge from this study

is that homogeneous decomposition coupled with region-based representation methods

and feature selection-based methods using dictionary learning can also form feature

vectors that can be classified effectively.

9.3 Research Contributions

The findings from this thesis make several contributions to the current state of the art.

These contributions may be summarised as follows:

1. A novel and effective approach to 3D image classification using spatial decompo-

sition for generating classifiers applicable to 3D volumetric data.

2. Two methods for representing volumetric data within the context of spatial de-

composition: (i) region-based and (ii) whole image-based.

3. A mixed oct and quad decomposition mechanism specifically designed for retinal

OCT data volumes.

4. Four critical functions to derive regional homogeneity associated with the decom-

position methods, especially the ED, KLD, DTW and LCS critical functions.

5. A WIB representation method that utilised the concept of frequent sub-graph

mining for generating feature vectors to support 3D image classification.

6. Novel approaches to AMD image screening with respect to 3D OCT data.

7. Approaches to support future automated retinal disease screening.
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9.4 Future Work

In this section, a number of possible directions for future work are suggested as follows:

1. It would be interesting to consider further alternative mechanisms for conducting

the desired decomposition other than using the standard and overlapping decom-

positions considered in this thesis, such as wavelet or curvelet transforms. This is

because wavelet and curvelet transforms are frequency-based methods and spatial

decomposition by the means of these methods would lead to homogeneous regions

in terms of frequency.

2. The time complexity issue associated with the frequent sub-graph mining tech-

niques is a significant issue. A reasonable approach to address this issue could be

to use a heuristic approach for selecting a subset of sub-graphs according to some

criteria instead of considering each possible sub-graph. However, in this context

it should be noted that efficient sub-graph mining is a substantial area of current

research within data mining community.

3. It would also be useful to conduct further research directed at exploring the

effect of using RB methods coupled with class-based dictionary learning. The

idea here would be to try to remove redundant regions by identifying regions that

commonly occur with a specific class and adding these to the dictionary so that

regions associated with a specific class are included (assuming they exist).

4. It would be interesting to explore the potential generic nature of the proposed

techniques, to assess the effects of the proposed methods on alternative image

datasets with different application domains; for example, the classification of

MRI brain images for investigating brain disorders.

5. Further research might be directed at investigating the effect of combining the

region-based method with the whole image-based methods. The intuition here is

that the use of graph mining applied to trees, where each node is represented by

one of the region-based methods such HOG, might produce good results. It is

suggested that in this case the information held at nodes would be more descrip-

tive than in the case of the current “single value per node” method used in the

WIB methods presented earlier in this thesis.

Whatever the case, the work presented in this thesis has provided a sound foundation

on which further investigations can be conducted.
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Appendix A

Further Results for Region-based
Representation Methods

A.1 Overview

In this appendix some additional results are presented with respect to the evaluation

of the region-based volumetric representation presented in Chapter 6. Recall that the

region-based representation comprised four stages as illustrated previously in Figure

5.1: (i) decomposition, (ii) region representation, (iii) single feature vector generation

and (iv) classifier generation. Each of these stages had a number of techniques as-

sociated with it. With respect to the third stage, single feature vector generation,

two techniques were proposed: (i) dimensionality reduction using Principal Compo-

nent Analysis (PCA) and (ii) feature selection using the Improved Fisher Kernel (IFK)

encoding. For the evaluation presented in Chapter 6 both techniques were evaluated

using static techniques for the remaining stages, these were: the LCS critical function,

overlapping decomposition, the HOG representation and SVM classification. For com-

pleteness in this appendix results from additional experiments with respect to PCA

and IFK are presented in Parts A.2 and A.3 respectively. The results presented in this

appendix confirm the earlier results that, in the context of the region based represen-

tation: (i) overlapping decomposition outperforms standard decomposition, (ii) use of

a critical function is more advantageous than when not using a critical function, (iii)

the best performing critical functions tend to be ED and LCS, (iv) that the use of IFK

is more beneficial than PCA and (v) SVM and BN classification tend to outperform

KNN classification.

A.2 Dimensionality Reduction-based Results using PCA

In this part results are presented from additional experiments with respect to dimen-

sionality reduction using PCA that were not included in the main body of the thesis.

For comparison purposes the results previously reported have also been included. The
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results included in this part are presented in seven different tables (Tables A.1 to A.7)

one for each region representation:

1. First-Order Representation (FOR).

2. Voxel Co-occurrence Matrix (VCM).

3. Voxel Run-Length Matrix (VRLM).

4. Histograms of Oriented Gradients (HOG).

5. Histograms of Local Binary Pattern (LBP).

6. A combination of HOG and LBP (HOG-LBP).

7. Local Phase Quantisation (LPQ).

In each table, the standard and overlapping decomposition results with a range of

levels, {3, 4, 5, 6}, are presented as well as the results associated with the use of the

seven critical functions. The critical functions were:

1. No critical function (0NCF),

2. Average Intensity Value (AIV),

3. Kendall’s Coefficient Concordance (KCC),

4. Gray Level Co-occurrence Matrix (GLCM),

5. Euclidean Distance (ED),

6. Dynamic Time Warping (DTW),

7. Longest Common Subsequence (LCS) and

8. Kullback-Leibler divergence (KLD).

In addition, three classifier generators were used:

1. Support Vector Machines(SVM).

2. K-Nearest Neighbour (KNN).

3. Bayesian Networks (BN).

Table A.1: The results using FOR with PCA.

Method Classifiers Acc Sen Spec PPV NPV EER AUC
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Standard-0NCF-3L
SVM 70.00% 66.67% 74.19% 76.47% 63.89% 0.27 0.7
KNN 74.29% 69.05% 82.14% 85.29% 63.89% 0.30 0.72
BN 77.86% 74.03% 82.54% 83.82% 72.22% 0.16 0.78

Standard-0NCF-4L
SVM 85.71% 85.29% 86.11% 85.29% 86.11% 0.15 0.86
KNN 83.93% 83.21% 84.62% 83.82% 84.03% 0.16 0.85
BN 85.95% 85.71% 86.18% 85.29% 86.57% 0.15 0.88

Standard-0NCF-5L
SVM 82.86% 83.33% 82.43% 80.88% 84.72% 0.18 0.83
KNN 81.79% 81.95% 81.63% 80.15% 83.33% 0.19 0.82
BN 84.05% 84.42% 83.71% 82.35% 85.65% 0.17 0.86

Standard-0NCF-6L
SVM 83.57% 84.62% 82.67% 80.88% 86.11% 0.18 0.83
KNN 78.21% 80.00% 76.77% 73.53% 82.64% 0.24 0.81
BN 81.67% 83.96% 79.83% 76.96% 86.11% 0.22 0.85

Standard-AIV-3L
SVM 74.29% 73.53% 75.00% 73.53% 75.00% 0.26 0.74
KNN 74.64% 71.52% 78.29% 79.41% 70.14% 0.22 0.75
BN 79.52% 77.06% 82.18% 82.35% 76.85% 0.23 0.8

Standard-AIV-4L
SVM 87.86% 84.93% 91.04% 91.18% 84.72% 0.09 0.88
KNN 85.36% 82.31% 88.72% 88.97% 81.94% 0.17 0.87
BN 88.10% 85.00% 91.50% 91.67% 84.72% 0.08 0.9

Standard-AIV-5L
SVM 90.00% 87.50% 92.65% 92.65% 87.50% 0.08 0.9
KNN 87.86% 86.96% 88.73% 88.24% 87.50% 0.12 0.89
BN 88.81% 87.92% 89.67% 89.22% 88.43% 0.11 0.91

Standard-AIV-6L
SVM 90.71% 93.65% 88.31% 86.76% 94.44% 0.12 0.91
KNN 83.57% 87.50% 80.62% 77.21% 89.58% 0.19 0.87
BN 83.81% 86.96% 81.36% 78.43% 88.89% 0.11 0.88

Standard-GLCM-3L
SVM 74.29% 70.51% 79.03% 80.88% 68.06% 0.22 0.74
KNN 76.07% 70.41% 84.68% 87.50% 65.28% 0.28 0.75
BN 79.05% 74.79% 84.41% 85.78% 72.69% 0.15 0.81

Standard-GLCM-4L
SVM 85.00% 84.06% 85.92% 85.29% 84.72% 0.15 0.85
KNN 80.00% 78.17% 81.88% 81.62% 78.47% 0.21 0.83
BN 83.57% 82.30% 84.83% 84.31% 82.87% 0.17 0.87

Standard-GLCM-5L
SVM 90.00% 89.71% 90.28% 89.71% 90.28% 0.10 0.9
KNN 89.64% 89.05% 90.21% 89.71% 89.58% 0.10 0.9
BN 90.95% 91.09% 90.83% 90.20% 91.67% 0.08 0.92

Standard-GLCM-6L
SVM 87.14% 86.76% 87.50% 86.76% 87.50% 0.13 0.87
KNN 82.86% 83.33% 82.43% 80.88% 84.72% 0.18 0.85
BN 84.76% 86.08% 83.63% 81.86% 87.50% 0.12 0.88

Standard-KCC-3L
SVM 78.57% 75.00% 82.81% 83.82% 73.61% 0.18 0.79
KNN 76.07% 69.94% 85.98% 88.97% 63.89% 0.28 0.78
BN 80.71% 75.52% 87.71% 89.22% 72.69% 0.12 0.83

Standard-KCC-4L
SVM 82.86% 85.48% 80.77% 77.94% 87.50% 0.20 0.83
KNN 81.07% 84.30% 78.62% 75.00% 86.81% 0.22 0.82
BN 84.29% 85.20% 83.48% 81.86% 86.57% 0.13 0.86

Standard-KCC-5L
SVM 92.86% 96.77% 89.74% 88.24% 97.22% 0.11 0.93
KNN 92.86% 97.54% 89.24% 87.50% 97.92% 0.11 0.93
BN 94.05% 96.86% 91.70% 90.69% 97.22% 0.03 0.94

Standard-KCC-6L
SVM 97.14% 97.06% 97.22% 97.06% 97.22% 0.03 0.97
KNN 94.64% 96.18% 93.29% 92.65% 96.53% 0.07 0.96
BN 95.24% 95.54% 94.95% 94.61% 95.83% 0.04 0.96

Standard-ED-3L
SVM 82.86% 81.43% 84.29% 83.82% 81.94% 0.16 0.83
KNN 84.64% 82.07% 87.41% 87.50% 81.94% 0.17 0.84
BN 87.38% 85.45% 89.37% 89.22% 85.65% 0.11 0.88
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Standard-ED-4L
SVM 88.57% 87.14% 90.00% 89.71% 87.50% 0.11 0.89
KNN 89.29% 86.81% 91.91% 91.91% 86.81% 0.13 0.89
BN 90.24% 88.26% 92.27% 92.16% 88.43% 0.12 0.91

Standard-ED-5L
SVM 94.29% 92.86% 95.71% 95.59% 93.06% 0.05 0.94
KNN 92.50% 92.59% 92.41% 91.91% 93.06% 0.07 0.93
BN 92.14% 91.71% 92.56% 92.16% 92.13% 0.08 0.93

Standard-ED-6L
SVM 92.86% 92.65% 93.06% 92.65% 93.06% 0.07 0.93
KNN 90.00% 91.54% 88.67% 87.50% 92.36% 0.12 0.91
BN 90.71% 91.88% 89.69% 88.73% 92.59% 0.11 0.92

Standard-DTW-3L
SVM 72.14% 68.83% 76.19% 77.94% 66.67% 0.25 0.72
KNN 75.00% 69.64% 83.04% 86.03% 64.58% 0.29 0.74
BN 78.57% 74.78% 83.16% 84.31% 73.15% 0.16 0.79

Standard-DTW-4L
SVM 85.00% 84.06% 85.92% 85.29% 84.72% 0.15 0.85
KNN 80.71% 77.33% 84.62% 85.29% 76.39% 0.21 0.83
BN 84.29% 81.94% 86.76% 86.76% 81.94% 0.13 0.87

Standard-DTW-5L
SVM 90.00% 92.19% 88.16% 86.76% 93.06% 0.12 0.9
KNN 83.21% 83.46% 82.99% 81.62% 84.72% 0.18 0.87
BN 85.95% 85.37% 86.51% 85.78% 86.11% 0.14 0.9

Standard-DTW-6L
SVM 87.14% 89.06% 85.53% 83.82% 90.28% 0.15 0.87
KNN 81.79% 83.46% 80.39% 77.94% 85.42% 0.20 0.84
BN 84.76% 86.08% 83.63% 81.86% 87.50% 0.12 0.88

Standard-LCS-3L
SVM 78.57% 78.79% 78.38% 76.47% 80.56% 0.23 0.79
KNN 74.29% 73.19% 75.35% 74.26% 74.31% 0.26 0.76
BN 78.10% 78.00% 78.18% 76.47% 79.63% 0.22 0.81

Standard-LCS-4L
SVM 85.00% 87.30% 83.12% 80.88% 88.89% 0.18 0.85
KNN 81.43% 83.33% 79.87% 77.21% 85.42% 0.21 0.83
BN 82.38% 83.85% 81.14% 78.92% 85.65% 0.21 0.85

Standard-LCS-5L
SVM 90.71% 89.86% 91.55% 91.18% 90.28% 0.09 0.91
KNN 86.07% 89.43% 83.44% 80.88% 90.97% 0.10 0.88
BN 87.62% 89.18% 86.28% 84.80% 90.28% 0.10 0.9

Standard-LCS-6L
SVM 90.00% 90.91% 89.19% 88.24% 91.67% 0.11 0.9
KNN 87.14% 90.32% 84.62% 82.35% 91.67% 0.16 0.88
BN 87.62% 88.38% 86.94% 85.78% 89.35% 0.11 0.89

Standard-KLD-3L
SVM 82.86% 82.35% 83.33% 82.35% 83.33% 0.17 0.83
KNN 83.21% 79.87% 87.02% 87.50% 79.17% 0.13 0.83
BN 84.52% 81.74% 87.56% 87.75% 81.48% 0.13 0.86

Standard-KLD-4L
SVM 90.00% 87.50% 92.65% 92.65% 87.50% 0.08 0.9
KNN 81.43% 80.88% 81.94% 80.88% 81.94% 0.18 0.86
BN 85.48% 85.22% 85.71% 84.80% 86.11% 0.15 0.9

Standard-KLD-5L
SVM 89.29% 88.41% 90.14% 89.71% 88.89% 0.10 0.89
KNN 83.21% 80.69% 85.93% 86.03% 80.56% 0.18 0.86
BN 85.00% 84.06% 85.92% 85.29% 84.72% 0.15 0.89

Standard-KLD-6L
SVM 85.71% 83.33% 88.24% 88.24% 83.33% 0.12 0.86
KNN 76.43% 75.00% 77.86% 77.21% 75.69% 0.24 0.81
BN 78.81% 78.05% 79.53% 78.43% 79.17% 0.21 0.84

Overlapped-0NCF-3L
SVM 70.00% 68.06% 72.06% 72.06% 68.06% 0.29 0.7
KNN 69.64% 65.27% 76.11% 80.15% 59.72% 0.33 0.7
BN 74.29% 70.69% 78.72% 80.39% 68.52% 0.20 0.77

Overlapped-0NCF-4L
SVM 77.86% 77.61% 78.08% 76.47% 79.17% 0.23 0.78
KNN 77.86% 76.06% 79.71% 79.41% 76.39% 0.21 0.78
BN 82.38% 80.37% 84.47% 84.31% 80.56% 0.19 0.84
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Overlapped-0NCF-5L
SVM 77.86% 76.81% 78.87% 77.94% 77.78% 0.22 0.78
KNN 82.14% 80.28% 84.06% 83.82% 80.56% 0.19 0.8
BN 85.00% 82.79% 87.32% 87.25% 82.87% 0.16 0.84

Overlapped-0NCF-6L
SVM 81.43% 81.82% 81.08% 79.41% 83.33% 0.20 0.81
KNN 79.64% 80.62% 78.81% 76.47% 82.64% 0.22 0.8
BN 82.38% 83.51% 81.42% 79.41% 85.19% 0.15 0.85

Overlapped-AIV-3L
SVM 65.71% 65.15% 66.22% 63.24% 68.06% 0.35 0.66
KNN 70.36% 68.28% 72.59% 72.79% 68.06% 0.28 0.68
BN 74.76% 73.56% 75.94% 75.00% 74.54% 0.25 0.74

Overlapped-AIV-4L
SVM 84.29% 82.86% 85.71% 85.29% 83.33% 0.15 0.84
KNN 81.43% 81.34% 81.51% 80.15% 82.64% 0.18 0.83
BN 84.05% 83.74% 84.33% 83.33% 84.72% 0.16 0.87

Overlapped-AIV-5L
SVM 83.57% 80.82% 86.57% 86.76% 80.56% 0.14 0.84
KNN 82.50% 79.59% 85.71% 86.03% 79.17% 0.19 0.83
BN 85.71% 82.73% 89.00% 89.22% 82.41% 0.11 0.88

Overlapped-AIV-6L
SVM 77.86% 74.67% 81.54% 82.35% 73.61% 0.19 0.78
KNN 78.21% 75.51% 81.20% 81.62% 75.00% 0.24 0.78
BN 81.67% 79.81% 83.57% 83.33% 80.09% 0.20 0.84

Overlapped-GLCM-3L
SVM 72.14% 71.01% 73.24% 72.06% 72.22% 0.28 0.72
KNN 71.07% 66.47% 77.88% 81.62% 61.11% 0.21 0.72
BN 75.95% 72.10% 80.75% 82.35% 69.91% 0.30 0.78

Overlapped-GLCM-4L
SVM 81.43% 80.00% 82.86% 82.35% 80.56% 0.18 0.81
KNN 81.07% 77.12% 85.83% 86.76% 75.69% 0.22 0.81
BN 85.48% 81.78% 89.74% 90.20% 81.02% 0.10 0.87

Overlapped-GLCM-5L
SVM 89.29% 90.77% 88.00% 86.76% 91.67% 0.13 0.89
KNN 87.14% 89.06% 85.53% 83.82% 90.28% 0.15 0.88
BN 89.05% 89.90% 88.29% 87.25% 90.74% 0.13 0.91

Overlapped-GLCM-6L
SVM 85.71% 86.36% 85.14% 83.82% 87.50% 0.16 0.86
KNN 80.71% 82.54% 79.22% 76.47% 84.72% 0.21 0.83
BN 82.86% 84.38% 81.58% 79.41% 86.11% 0.16 0.86

Overlapped-KCC-3L
SVM 80.71% 79.71% 81.69% 80.88% 80.56% 0.19 0.81
KNN 82.14% 77.22% 88.52% 89.71% 75.00% 0.22 0.82
BN 84.76% 80.97% 89.18% 89.71% 80.09% 0.20 0.85

Overlapped-KCC-4L
SVM 86.43% 86.57% 86.30% 85.29% 87.50% 0.14 0.86
KNN 78.21% 79.07% 77.48% 75.00% 81.25% 0.23 0.82
BN 81.67% 82.23% 81.17% 79.41% 83.80% 0.21 0.86

Overlapped-KCC-5L
SVM 92.14% 92.54% 91.78% 91.18% 93.06% 0.09 0.92
KNN 86.43% 89.52% 83.97% 81.62% 90.97% 0.16 0.89
BN 89.05% 90.72% 87.61% 86.27% 91.67% 0.14 0.92

Overlapped-KCC-6L
SVM 76.43% 77.78% 75.32% 72.06% 80.56% 0.26 0.76
KNN 75.36% 83.17% 70.95% 61.76% 88.19% 0.29 0.76
BN 79.05% 83.33% 76.02% 71.08% 86.57% 0.29 0.81

Overlapped-ED-3L
SVM 82.86% 81.43% 84.29% 83.82% 81.94% 0.16 0.83
KNN 74.64% 69.01% 83.49% 86.76% 63.19% 0.28 0.79
BN 78.10% 74.14% 82.98% 84.31% 72.22% 0.28 0.83

Overlapped-ED-4L
SVM 84.29% 83.82% 84.72% 83.82% 84.72% 0.16 0.84
KNN 85.71% 83.80% 87.68% 87.50% 84.03% 0.13 0.85
BN 87.86% 85.92% 89.86% 89.71% 86.11% 0.13 0.88

Overlapped-ED-5L
SVM 95.00% 94.20% 95.77% 95.59% 94.44% 0.04 0.95
KNN 87.86% 86.43% 89.29% 88.97% 86.81% 0.13 0.91
BN 88.33% 87.08% 89.57% 89.22% 87.50% 0.11 0.92
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Overlapped-ED-6L
SVM 92.14% 92.54% 91.78% 91.18% 93.06% 0.09 0.92
KNN 88.21% 87.05% 89.36% 88.97% 87.50% 0.11 0.9
BN 89.29% 88.41% 90.14% 89.71% 88.89% 0.10 0.91

Overlapped-DTW-3L
SVM 71.43% 70.00% 72.86% 72.06% 70.83% 0.28 0.71
KNN 68.93% 65.03% 74.36% 77.94% 60.42% 0.33 0.7
BN 74.05% 70.56% 78.31% 79.90% 68.52% 0.21 0.77

Overlapped-DTW-4L
SVM 78.57% 77.14% 80.00% 79.41% 77.78% 0.21 0.79
KNN 76.43% 74.65% 78.26% 77.94% 75.00% 0.24 0.78
BN 80.95% 79.81% 82.08% 81.37% 80.56% 0.19 0.83

Overlapped-DTW-5L
SVM 85.71% 84.29% 87.14% 86.76% 84.72% 0.14 0.86
KNN 79.64% 76.16% 83.72% 84.56% 75.00% 0.22 0.83
BN 83.10% 79.30% 87.56% 88.24% 78.24% 0.12 0.87

Overlapped-DTW-6L
SVM 87.86% 89.23% 86.67% 85.29% 90.28% 0.14 0.88
KNN 79.29% 79.55% 79.05% 77.21% 81.25% 0.22 0.84
BN 81.43% 81.19% 81.65% 80.39% 82.41% 0.18 0.87

Overlapped-LCS-3L
SVM 75.71% 75.76% 75.68% 73.53% 77.78% 0.25 0.76
KNN 76.07% 75.56% 76.55% 75.00% 77.08% 0.25 0.76
BN 79.29% 79.40% 79.19% 77.45% 81.02% 0.19 0.81

Overlapped-LCS-4L
SVM 90.00% 89.71% 90.28% 89.71% 90.28% 0.10 0.9
KNN 86.79% 85.11% 88.49% 88.24% 85.42% 0.12 0.88
BN 85.95% 82.81% 89.45% 89.71% 82.41% 0.11 0.89

Overlapped-LCS-5L
SVM 83.57% 82.61% 84.51% 83.82% 83.33% 0.16 0.84
KNN 75.36% 78.15% 73.29% 68.38% 81.94% 0.22 0.79
BN 78.10% 80.11% 76.50% 73.04% 82.87% 0.19 0.83

Overlapped-LCS-6L
SVM 85.00% 87.30% 83.12% 80.88% 88.89% 0.18 0.85
KNN 77.14% 80.51% 74.69% 69.85% 84.03% 0.25 0.81
BN 80.71% 83.98% 78.24% 74.51% 86.57% 0.14 0.86

Overlapped-KLD-3L
SVM 73.57% 74.60% 72.73% 69.12% 77.78% 0.28 0.73
KNN 71.07% 67.52% 75.61% 77.94% 64.58% 0.25 0.72
BN 75.48% 72.85% 78.39% 78.92% 72.22% 0.22 0.78

Overlapped-KLD-4L
SVM 80.71% 78.87% 82.61% 82.35% 79.17% 0.18 0.81
KNN 79.29% 77.08% 81.62% 81.62% 77.08% 0.22 0.8
BN 82.86% 80.28% 85.64% 85.78% 80.09% 0.16 0.84

Overlapped-KLD-5L
SVM 88.57% 87.14% 90.00% 89.71% 87.50% 0.11 0.89
KNN 82.86% 80.56% 85.29% 85.29% 80.56% 0.18 0.86
BN 86.19% 83.49% 89.11% 89.22% 83.33% 0.11 0.89

Overlapped-KLD-6L
SVM 80.71% 82.54% 79.22% 76.47% 84.72% 0.22 0.81
KNN 79.64% 82.11% 77.71% 74.26% 84.72% 0.23 0.8
BN 83.10% 84.10% 82.22% 80.39% 85.65% 0.19 0.85

Table A.2: The results using VCM with PCA.

Method Classifiers Acc Sen Spec PPV NPV EER AUC

Standard-0NCF-3L
SVM 91.43% 92.42% 90.54% 89.71% 93.06% 0.10 0.91
KNN 86.07% 85.40% 86.71% 86.03% 86.11% 0.14 0.89
BN 88.57% 87.50% 89.62% 89.22% 87.96% 0.11 0.92

Standard-0NCF-4L
SVM 90.00% 90.91% 89.19% 88.24% 91.67% 0.11 0.9
KNN 84.29% 82.86% 85.71% 85.29% 83.33% 0.15 0.87
BN 86.67% 84.58% 88.83% 88.73% 84.72% 0.14 0.89
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Standard-0NCF-5L
SVM 90.00% 90.91% 89.19% 88.24% 91.67% 0.11 0.9
KNN 84.64% 83.94% 85.31% 84.56% 84.72% 0.15 0.87
BN 86.90% 85.65% 88.15% 87.75% 86.11% 0.14 0.9

Standard-0NCF-6L
SVM 90.00% 90.91% 89.19% 88.24% 91.67% 0.11 0.9
KNN 85.71% 84.29% 87.14% 86.76% 84.72% 0.14 0.88
BN 88.33% 86.73% 89.95% 89.71% 87.04% 0.12 0.91

Standard-AIV-3L
SVM 90.71% 88.73% 92.75% 92.65% 88.89% 0.08 0.91
KNN 89.29% 86.30% 92.54% 92.65% 86.11% 0.13 0.9
BN 90.95% 88.79% 93.20% 93.14% 88.89% 0.10 0.92

Standard-AIV-4L
SVM 92.14% 92.54% 91.78% 91.18% 93.06% 0.09 0.92
KNN 86.43% 85.00% 87.86% 87.50% 85.42% 0.13 0.89
BN 89.29% 87.32% 91.30% 91.18% 87.50% 0.12 0.92

Standard-AIV-5L
SVM 89.29% 89.55% 89.04% 88.24% 90.28% 0.12 0.89
KNN 88.57% 88.24% 88.89% 88.24% 88.89% 0.12 0.89
BN 90.24% 89.37% 91.08% 90.69% 89.81% 0.10 0.91

Standard-AIV-6L
SVM 92.14% 92.54% 91.78% 91.18% 93.06% 0.09 0.92
KNN 85.71% 85.82% 85.62% 84.56% 86.81% 0.15 0.89
BN 89.29% 88.78% 89.77% 89.22% 89.35% 0.11 0.93

Standard-GLCM-3L
SVM 88.57% 90.62% 86.84% 85.29% 91.67% 0.14 0.88
KNN 86.07% 85.93% 86.21% 85.29% 86.81% 0.14 0.87
BN 87.86% 87.32% 88.37% 87.75% 87.96% 0.12 0.9

Standard-GLCM-4L
SVM 92.14% 90.14% 94.20% 94.12% 90.28% 0.06 0.92
KNN 87.50% 84.35% 90.98% 91.18% 84.03% 0.15 0.9
BN 89.76% 86.76% 93.03% 93.14% 86.57% 0.12 0.92

Standard-GLCM-5L
SVM 92.14% 93.85% 90.67% 89.71% 94.44% 0.10 0.92
KNN 90.36% 90.37% 90.34% 89.71% 90.97% 0.10 0.91
BN 92.38% 92.16% 92.59% 92.16% 92.59% 0.08 0.93

Standard-GLCM-6L
SVM 89.29% 90.77% 88.00% 86.76% 91.67% 0.13 0.89
KNN 87.50% 88.55% 86.58% 85.29% 89.58% 0.14 0.88
BN 89.52% 89.60% 89.45% 88.73% 90.28% 0.10 0.91

Standard-KCC-3L
SVM 90.71% 91.04% 90.41% 89.71% 91.67% 0.10 0.91
KNN 88.21% 86.52% 89.93% 89.71% 86.81% 0.11 0.89
BN 89.76% 88.52% 91.00% 90.69% 88.89% 0.09 0.91

Standard-KCC-4L
SVM 95.71% 94.29% 97.14% 97.06% 94.44% 0.03 0.96
KNN 92.86% 92.65% 93.06% 92.65% 93.06% 0.07 0.94
BN 93.81% 92.79% 94.81% 94.61% 93.06% 0.06 0.95

Standard-KCC-5L
SVM 95.71% 95.59% 95.83% 95.59% 95.83% 0.04 0.96
KNN 95.36% 95.56% 95.17% 94.85% 95.83% 0.05 0.96
BN 95.95% 95.61% 96.28% 96.08% 95.83% 0.04 0.96

Standard-KCC-6L
SVM 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.95
KNN 91.79% 94.49% 89.54% 88.24% 95.14% 0.11 0.93
BN 93.33% 95.36% 91.59% 90.69% 95.83% 0.04 0.95

Standard-ED-3L
SVM 91.43% 88.89% 94.12% 94.12% 88.89% 0.06 0.92
KNN 90.00% 88.57% 91.43% 91.18% 88.89% 0.11 0.91
BN 91.43% 90.00% 92.86% 92.65% 90.28% 0.10 0.93

Standard-ED-4L
SVM 93.57% 92.75% 94.37% 94.12% 93.06% 0.06 0.94
KNN 93.57% 92.14% 95.00% 94.85% 92.36% 0.07 0.94
BN 93.81% 91.98% 95.67% 95.59% 92.13% 0.08 0.94

Standard-ED-5L
SVM 95.00% 94.20% 95.77% 95.59% 94.44% 0.04 0.95
KNN 93.93% 93.43% 94.41% 94.12% 93.75% 0.06 0.94
BN 94.29% 92.86% 95.71% 95.59% 93.06% 0.07 0.95
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Standard-ED-6L
SVM 96.43% 94.37% 98.55% 98.53% 94.44% 0.02 0.96
KNN 95.00% 95.52% 94.52% 94.12% 95.83% 0.04 0.96
BN 95.00% 94.20% 95.77% 95.59% 94.44% 0.04 0.96

Standard-DTW-3L
SVM 90.71% 91.04% 90.41% 89.71% 91.67% 0.10 0.91
KNN 85.71% 85.29% 86.11% 85.29% 86.11% 0.15 0.88
BN 88.33% 87.44% 89.20% 88.73% 87.96% 0.11 0.91

Standard-DTW-4L
SVM 85.00% 86.15% 84.00% 82.35% 87.50% 0.17 0.85
KNN 81.79% 80.14% 83.45% 83.09% 80.56% 0.17 0.83
BN 84.29% 83.17% 85.38% 84.80% 83.80% 0.16 0.86

Standard-DTW-5L
SVM 89.29% 90.77% 88.00% 86.76% 91.67% 0.13 0.89
KNN 85.00% 82.64% 87.50% 87.50% 82.64% 0.13 0.87
BN 87.86% 86.26% 89.47% 89.22% 86.57% 0.11 0.9

Standard-DTW-6L
SVM 94.29% 94.12% 94.44% 94.12% 94.44% 0.06 0.94
KNN 89.29% 88.41% 90.14% 89.71% 88.89% 0.10 0.92
BN 90.95% 89.90% 91.98% 91.67% 90.28% 0.08 0.94

Standard-LCS-3L
SVM 92.86% 93.94% 91.89% 91.18% 94.44% 0.09 0.93
KNN 87.50% 89.15% 86.09% 84.56% 90.28% 0.14 0.9
BN 90.71% 91.04% 90.41% 89.71% 91.67% 0.08 0.93

Standard-LCS-4L
SVM 88.57% 90.62% 86.84% 85.29% 91.67% 0.14 0.88
KNN 89.64% 91.47% 88.08% 86.76% 92.36% 0.13 0.89
BN 91.67% 92.04% 91.32% 90.69% 92.59% 0.07 0.92

Standard-LCS-5L
SVM 94.29% 96.88% 92.11% 91.18% 97.22% 0.08 0.94
KNN 90.71% 92.97% 88.82% 87.50% 93.75% 0.12 0.92
BN 92.38% 94.79% 90.35% 89.22% 95.37% 0.10 0.94

Standard-LCS-6L
SVM 94.29% 100.00% 90.00% 88.24% 100.00% 0.11 0.94
KNN 90.71% 95.08% 87.34% 85.29% 95.83% 0.13 0.92
BN 91.90% 95.21% 89.22% 87.75% 95.83% 0.12 0.94

Standard-KLD-3L
SVM 87.86% 88.06% 87.67% 86.76% 88.89% 0.13 0.88
KNN 89.64% 87.94% 91.37% 91.18% 88.19% 0.09 0.89
BN 90.48% 88.68% 92.31% 92.16% 88.89% 0.11 0.91

Standard-KLD-4L
SVM 89.29% 88.41% 90.14% 89.71% 88.89% 0.10 0.89
KNN 85.36% 83.22% 87.59% 87.50% 83.33% 0.16 0.87
BN 87.62% 85.19% 90.20% 90.20% 85.19% 0.15 0.9

Standard-KLD-5L
SVM 85.71% 88.71% 83.33% 80.88% 90.28% 0.17 0.86
KNN 78.21% 78.20% 78.23% 76.47% 79.86% 0.23 0.82
BN 82.14% 81.16% 83.10% 82.35% 81.94% 0.18 0.86

Standard-KLD-6L
SVM 88.57% 90.62% 86.84% 85.29% 91.67% 0.14 0.88
KNN 85.00% 87.30% 83.12% 80.88% 88.89% 0.17 0.87
BN 87.14% 87.50% 86.82% 85.78% 88.43% 0.12 0.89

Overlapped-0NCF-3L
SVM 84.29% 81.94% 86.76% 86.76% 81.94% 0.14 0.84
KNN 82.50% 80.00% 85.19% 85.29% 79.86% 0.19 0.83
BN 85.48% 83.26% 87.80% 87.75% 83.33% 0.17 0.87

Overlapped-0NCF-4L
SVM 84.29% 81.94% 86.76% 86.76% 81.94% 0.14 0.84
KNN 82.50% 80.00% 85.19% 85.29% 79.86% 0.19 0.83
BN 85.48% 83.26% 87.80% 87.75% 83.33% 0.17 0.87

Overlapped-0NCF-5L
SVM 84.29% 81.94% 86.76% 86.76% 81.94% 0.14 0.84
KNN 82.50% 80.00% 85.19% 85.29% 79.86% 0.19 0.83
BN 85.48% 83.26% 87.80% 87.75% 83.33% 0.17 0.87

Overlapped-0NCF-6L
SVM 84.29% 81.94% 86.76% 86.76% 81.94% 0.14 0.84
KNN 82.50% 80.00% 85.19% 85.29% 79.86% 0.19 0.83
BN 85.48% 83.26% 87.80% 87.75% 83.33% 0.17 0.87
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Overlapped-AIV-3L
SVM 90.71% 91.04% 90.41% 89.71% 91.67% 0.10 0.91
KNN 85.71% 83.33% 88.24% 88.24% 83.33% 0.12 0.88
BN 87.86% 86.26% 89.47% 89.22% 86.57% 0.13 0.91

Overlapped-AIV-4L
SVM 82.86% 84.38% 81.58% 79.41% 86.11% 0.19 0.83
KNN 80.36% 85.22% 76.97% 72.06% 88.19% 0.23 0.81
BN 83.57% 86.10% 81.55% 78.92% 87.96% 0.21 0.85

Overlapped-AIV-5L
SVM 82.86% 84.38% 81.58% 79.41% 86.11% 0.19 0.83
KNN 80.36% 85.22% 76.97% 72.06% 88.19% 0.23 0.81
BN 83.57% 86.10% 81.55% 78.92% 87.96% 0.21 0.85

Overlapped-AIV-6L
SVM 82.86% 84.38% 81.58% 79.41% 86.11% 0.19 0.83
KNN 80.36% 85.22% 76.97% 72.06% 88.19% 0.23 0.81
BN 83.57% 86.10% 81.55% 78.92% 87.96% 0.21 0.85

Overlapped-GLCM-3L
SVM 87.14% 86.76% 87.50% 86.76% 87.50% 0.13 0.87
KNN 86.43% 84.03% 88.97% 88.97% 84.03% 0.12 0.87
BN 88.81% 86.85% 90.82% 90.69% 87.04% 0.09 0.9

Overlapped-GLCM-4L
SVM 88.57% 89.39% 87.84% 86.76% 90.28% 0.13 0.89
KNN 86.43% 87.69% 85.33% 83.82% 88.89% 0.15 0.87
BN 86.67% 87.37% 86.04% 84.80% 88.43% 0.15 0.89

Overlapped-GLCM-5L
SVM 89.29% 90.77% 88.00% 86.76% 91.67% 0.13 0.89
KNN 86.79% 88.37% 85.43% 83.82% 89.58% 0.15 0.88
BN 87.14% 88.27% 86.16% 84.80% 89.35% 0.15 0.89

Overlapped-GLCM-6L
SVM 89.29% 90.77% 88.00% 86.76% 91.67% 0.13 0.89
KNN 86.79% 88.37% 85.43% 83.82% 89.58% 0.15 0.88
BN 87.14% 88.27% 86.16% 84.80% 89.35% 0.15 0.89

Overlapped-KCC-3L
SVM 93.57% 94.03% 93.15% 92.65% 94.44% 0.07 0.94
KNN 92.14% 91.30% 92.96% 92.65% 91.67% 0.07 0.93
BN 93.10% 91.87% 94.31% 94.12% 92.13% 0.08 0.94

Overlapped-KCC-4L
SVM 87.14% 91.67% 83.75% 80.88% 93.06% 0.17 0.87
KNN 83.21% 89.38% 79.04% 74.26% 91.67% 0.21 0.85
BN 85.24% 89.01% 82.35% 79.41% 90.74% 0.09 0.88

Overlapped-KCC-5L
SVM 85.71% 90.00% 82.50% 79.41% 91.67% 0.18 0.86
KNN 81.79% 87.61% 77.84% 72.79% 90.28% 0.22 0.84
BN 84.29% 87.91% 81.51% 78.43% 89.81% 0.22 0.86

Overlapped-KCC-6L
SVM 87.14% 89.06% 85.53% 83.82% 90.28% 0.15 0.87
KNN 81.79% 85.12% 79.25% 75.74% 87.50% 0.21 0.84
BN 84.05% 85.86% 82.53% 80.39% 87.50% 0.20 0.87

Overlapped-ED-3L
SVM 87.86% 86.96% 88.73% 88.24% 87.50% 0.12 0.88
KNN 81.79% 77.78% 86.61% 87.50% 76.39% 0.20 0.85
BN 86.43% 83.26% 89.95% 90.20% 82.87% 0.17 0.9

Overlapped-ED-4L
SVM 90.00% 89.71% 90.28% 89.71% 90.28% 0.10 0.9
KNN 83.21% 81.12% 85.40% 85.29% 81.25% 0.16 0.87
BN 85.95% 83.72% 88.29% 88.24% 83.80% 0.12 0.89

Overlapped-ED-5L
SVM 85.71% 84.29% 87.14% 86.76% 84.72% 0.14 0.86
KNN 81.07% 79.02% 83.21% 83.09% 79.17% 0.20 0.83
BN 83.57% 81.40% 85.85% 85.78% 81.48% 0.15 0.87

Overlapped-ED-6L
SVM 85.71% 84.29% 87.14% 86.76% 84.72% 0.14 0.86
KNN 81.07% 79.02% 83.21% 83.09% 79.17% 0.20 0.83
BN 83.57% 81.40% 85.85% 85.78% 81.48% 0.15 0.87

Overlapped-DTW-3L
SVM 84.29% 81.08% 87.88% 88.24% 80.56% 0.13 0.84
KNN 82.50% 79.19% 86.26% 86.76% 78.47% 0.20 0.84
BN 85.00% 82.19% 88.06% 88.24% 81.94% 0.12 0.87
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Overlapped-DTW-4L
SVM 85.71% 84.29% 87.14% 86.76% 84.72% 0.14 0.86
KNN 83.93% 81.82% 86.13% 86.03% 81.94% 0.17 0.85
BN 86.43% 84.51% 88.41% 88.24% 84.72% 0.15 0.88

Overlapped-DTW-5L
SVM 85.71% 84.29% 87.14% 86.76% 84.72% 0.14 0.86
KNN 83.93% 81.82% 86.13% 86.03% 81.94% 0.17 0.85
BN 86.43% 84.51% 88.41% 88.24% 84.72% 0.15 0.88

Overlapped-DTW-6L
SVM 85.71% 84.29% 87.14% 86.76% 84.72% 0.14 0.86
KNN 83.93% 81.82% 86.13% 86.03% 81.94% 0.17 0.85
BN 86.43% 84.51% 88.41% 88.24% 84.72% 0.15 0.88

Overlapped-LCS-3L
SVM 88.57% 89.39% 87.84% 86.76% 90.28% 0.13 0.89
KNN 86.07% 85.93% 86.21% 85.29% 86.81% 0.14 0.87
BN 88.10% 87.75% 88.43% 87.75% 88.43% 0.12 0.9

Overlapped-LCS-4L
SVM 83.57% 85.71% 81.82% 79.41% 87.50% 0.19 0.83
KNN 78.93% 85.32% 74.85% 68.38% 88.89% 0.25 0.81
BN 79.05% 81.52% 77.12% 73.53% 84.26% 0.26 0.83

Overlapped-LCS-5L
SVM 83.57% 85.71% 81.82% 79.41% 87.50% 0.19 0.83
KNN 78.93% 85.32% 74.85% 68.38% 88.89% 0.25 0.81
BN 79.52% 82.42% 77.31% 73.53% 85.19% 0.15 0.83

Overlapped-LCS-6L
SVM 83.57% 85.71% 81.82% 79.41% 87.50% 0.19 0.83
KNN 78.93% 85.32% 74.85% 68.38% 88.89% 0.25 0.81
BN 79.52% 82.42% 77.31% 73.53% 85.19% 0.15 0.83

Overlapped-KLD-3L
SVM 85.71% 86.36% 85.14% 83.82% 87.50% 0.16 0.86
KNN 82.14% 81.16% 83.10% 82.35% 81.94% 0.18 0.84
BN 85.24% 83.81% 86.67% 86.27% 84.26% 0.15 0.87

Overlapped-KLD-4L
SVM 84.29% 83.82% 84.72% 83.82% 84.72% 0.16 0.84
KNN 85.36% 83.22% 87.59% 87.50% 83.33% 0.13 0.85
BN 87.14% 85.05% 89.32% 89.22% 85.19% 0.14 0.87

Overlapped-KLD-5L
SVM 84.29% 83.82% 84.72% 83.82% 84.72% 0.16 0.84
KNN 85.36% 83.22% 87.59% 87.50% 83.33% 0.13 0.85
BN 87.14% 85.05% 89.32% 89.22% 85.19% 0.14 0.87

Overlapped-KLD-6L
SVM 84.29% 83.82% 84.72% 83.82% 84.72% 0.16 0.84
KNN 85.36% 83.22% 87.59% 87.50% 83.33% 0.13 0.85
BN 87.14% 85.05% 89.32% 89.22% 85.19% 0.14 0.87

Table A.3: The results using VRLM with PCA.

Method Classifiers Acc Sen Spec PPV NPV EER AUC

Standard-0NCF-3L
SVM 89.29% 93.44% 86.08% 83.82% 94.44% 0.15 0.89
KNN 83.93% 87.60% 81.13% 77.94% 89.58% 0.19 0.86
BN 85.48% 89.50% 82.43% 79.41% 91.20% 0.09 0.89

Standard-0NCF-4L
SVM 89.29% 90.77% 88.00% 86.76% 91.67% 0.13 0.89
KNN 83.93% 84.73% 83.22% 81.62% 86.11% 0.17 0.87
BN 84.76% 86.08% 83.63% 81.86% 87.50% 0.12 0.88

Standard-0NCF-5L
SVM 87.14% 87.88% 86.49% 85.29% 88.89% 0.14 0.87
KNN 82.14% 84.13% 80.52% 77.94% 86.11% 0.20 0.85
BN 82.38% 83.85% 81.14% 78.92% 85.65% 0.14 0.86

Standard-0NCF-6L
SVM 85.71% 88.71% 83.33% 80.88% 90.28% 0.17 0.86
KNN 80.71% 84.17% 78.12% 74.26% 86.81% 0.22 0.83
BN 81.19% 83.42% 79.40% 76.47% 85.65% 0.24 0.85
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Standard-AIV-3L
SVM 88.57% 93.33% 85.00% 82.35% 94.44% 0.16 0.88
KNN 85.36% 89.92% 81.99% 78.68% 91.67% 0.18 0.87
BN 86.90% 90.71% 83.97% 81.37% 92.13% 0.09 0.89

Standard-AIV-4L
SVM 80.71% 82.54% 79.22% 76.47% 84.72% 0.22 0.81
KNN 80.71% 84.17% 78.12% 74.26% 86.81% 0.23 0.81
BN 81.43% 85.00% 78.75% 75.00% 87.50% 0.12 0.83

Standard-AIV-5L
SVM 89.29% 92.06% 87.01% 85.29% 93.06% 0.14 0.89
KNN 81.07% 85.47% 77.91% 73.53% 88.19% 0.22 0.85
BN 82.38% 86.11% 79.58% 75.98% 88.43% 0.23 0.87

Standard-AIV-6L
SVM 86.43% 91.53% 82.72% 79.41% 93.06% 0.18 0.86
KNN 82.50% 87.83% 78.79% 74.26% 90.28% 0.22 0.84
BN 83.33% 87.22% 80.42% 76.96% 89.35% 0.23 0.86

Standard-GLCM-3L
SVM 87.86% 94.74% 83.13% 79.41% 95.83% 0.18 0.88
KNN 83.93% 88.89% 80.37% 76.47% 90.97% 0.20 0.86
BN 84.76% 89.77% 81.15% 77.45% 91.67% 0.22 0.87

Standard-GLCM-4L
SVM 86.43% 85.51% 87.32% 86.76% 86.11% 0.13 0.86
KNN 77.86% 78.03% 77.70% 75.74% 79.86% 0.21 0.82
BN 80.95% 81.96% 80.09% 77.94% 83.80% 0.22 0.86

Standard-GLCM-5L
SVM 87.86% 86.96% 88.73% 88.24% 87.50% 0.12 0.88
KNN 82.14% 82.58% 81.76% 80.15% 84.03% 0.17 0.85
BN 83.10% 84.10% 82.22% 80.39% 85.65% 0.15 0.87

Standard-GLCM-6L
SVM 87.14% 87.88% 86.49% 85.29% 88.89% 0.14 0.87
KNN 84.29% 85.38% 83.33% 81.62% 86.81% 0.17 0.86
BN 85.48% 86.29% 84.75% 83.33% 87.50% 0.17 0.87

Standard-KCC-3L
SVM 92.86% 95.31% 90.79% 89.71% 95.83% 0.10 0.93
KNN 87.86% 91.80% 84.81% 82.35% 93.06% 0.15 0.9
BN 87.86% 90.48% 85.71% 83.82% 91.67% 0.08 0.91

Standard-KCC-4L
SVM 93.57% 94.03% 93.15% 92.65% 94.44% 0.07 0.94
KNN 92.86% 93.28% 92.47% 91.91% 93.75% 0.08 0.93
BN 92.14% 91.71% 92.56% 92.16% 92.13% 0.08 0.94

Standard-KCC-5L
SVM 87.14% 90.32% 84.62% 82.35% 91.67% 0.16 0.87
KNN 86.79% 89.60% 84.52% 82.35% 90.97% 0.16 0.87
BN 86.90% 86.34% 87.44% 86.76% 87.04% 0.13 0.88

Standard-KCC-6L
SVM 88.57% 90.62% 86.84% 85.29% 91.67% 0.14 0.88
KNN 87.86% 89.84% 86.18% 84.56% 90.97% 0.14 0.88
BN 87.86% 88.83% 87.00% 85.78% 89.81% 0.14 0.88

Standard-ED-3L
SVM 90.71% 92.31% 89.33% 88.24% 93.06% 0.11 0.91
KNN 84.29% 88.98% 80.86% 77.21% 90.97% 0.19 0.87
BN 85.95% 89.62% 83.12% 80.39% 91.20% 0.09 0.9

Standard-ED-4L
SVM 91.43% 91.18% 91.67% 91.18% 91.67% 0.09 0.91
KNN 88.93% 90.08% 87.92% 86.76% 90.97% 0.13 0.9
BN 91.19% 91.54% 90.87% 90.20% 92.13% 0.10 0.93

Standard-ED-5L
SVM 85.00% 87.30% 83.12% 80.88% 88.89% 0.18 0.85
KNN 83.57% 87.50% 80.62% 77.21% 89.58% 0.20 0.84
BN 86.67% 90.22% 83.90% 81.37% 91.67% 0.08 0.88

Standard-ED-6L
SVM 92.14% 95.24% 89.61% 88.24% 95.83% 0.11 0.92
KNN 91.79% 95.20% 89.03% 87.50% 95.83% 0.11 0.92
BN 91.43% 93.75% 89.47% 88.24% 94.44% 0.06 0.92

Standard-DTW-3L
SVM 90.00% 95.00% 86.25% 83.82% 95.83% 0.14 0.9
KNN 83.93% 87.60% 81.13% 77.94% 89.58% 0.19 0.87
BN 85.48% 89.50% 82.43% 79.41% 91.20% 0.09 0.89
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Standard-DTW-4L
SVM 90.71% 92.31% 89.33% 88.24% 93.06% 0.11 0.91
KNN 86.79% 88.98% 84.97% 83.09% 90.28% 0.15 0.89
BN 86.19% 88.83% 84.05% 81.86% 90.28% 0.10 0.89

Standard-DTW-5L
SVM 91.43% 93.75% 89.47% 88.24% 94.44% 0.11 0.91
KNN 87.50% 90.40% 85.16% 83.09% 91.67% 0.15 0.89
BN 87.86% 90.05% 86.03% 84.31% 91.20% 0.16 0.9

Standard-DTW-6L
SVM 86.43% 87.69% 85.33% 83.82% 88.89% 0.15 0.86
KNN 80.00% 83.90% 77.16% 72.79% 86.81% 0.23 0.83
BN 80.71% 83.98% 78.24% 74.51% 86.57% 0.25 0.85

Standard-LCS-3L
SVM 86.43% 90.16% 83.54% 80.88% 91.67% 0.17 0.86
KNN 84.64% 89.08% 81.37% 77.94% 90.97% 0.19 0.85
BN 87.86% 91.80% 84.81% 82.35% 93.06% 0.07 0.89

Standard-LCS-4L
SVM 93.57% 92.75% 94.37% 94.12% 93.06% 0.06 0.94
KNN 88.93% 89.47% 88.44% 87.50% 90.28% 0.10 0.91
BN 89.52% 90.00% 89.09% 88.24% 90.74% 0.10 0.93

Standard-LCS-5L
SVM 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96
KNN 91.79% 95.93% 88.54% 86.76% 96.53% 0.11 0.94
BN 92.62% 94.36% 91.11% 90.20% 94.91% 0.10 0.95

Standard-LCS-6L
SVM 88.57% 90.62% 86.84% 85.29% 91.67% 0.14 0.88
KNN 85.00% 87.90% 82.69% 80.15% 89.58% 0.18 0.87
BN 88.33% 90.58% 86.46% 84.80% 91.67% 0.15 0.9

Standard-KLD-3L
SVM 95.00% 92.96% 97.10% 97.06% 93.06% 0.03 0.95
KNN 91.43% 91.79% 91.10% 90.44% 92.36% 0.08 0.93
BN 92.14% 93.40% 91.03% 90.20% 93.98% 0.07 0.95

Standard-KLD-4L
SVM 87.86% 90.48% 85.71% 83.82% 91.67% 0.15 0.88
KNN 81.43% 85.59% 78.40% 74.26% 88.19% 0.22 0.84
BN 81.67% 84.32% 79.57% 76.47% 86.57% 0.23 0.86

Standard-KLD-5L
SVM 85.00% 88.52% 82.28% 79.41% 90.28% 0.19 0.85
KNN 81.07% 84.87% 78.26% 74.26% 87.50% 0.22 0.83
BN 81.43% 83.87% 79.49% 76.47% 86.11% 0.24 0.84

Standard-KLD-6L
SVM 79.29% 79.10% 79.45% 77.94% 80.56% 0.21 0.79
KNN 77.86% 78.03% 77.70% 75.74% 79.86% 0.23 0.79
BN 78.10% 78.57% 77.68% 75.49% 80.56% 0.19 0.81

Overlapped-0NCF-3L
SVM 90.00% 93.55% 87.18% 85.29% 94.44% 0.13 0.9
KNN 83.93% 86.40% 81.94% 79.41% 88.19% 0.18 0.87
BN 83.33% 85.64% 81.47% 78.92% 87.50% 0.21 0.87

Overlapped-0NCF-4L
SVM 90.00% 93.55% 87.18% 85.29% 94.44% 0.13 0.9
KNN 83.93% 86.40% 81.94% 79.41% 88.19% 0.18 0.87
BN 83.33% 85.64% 81.47% 78.92% 87.50% 0.21 0.87

Overlapped-0NCF-5L
SVM 90.00% 93.55% 87.18% 85.29% 94.44% 0.13 0.9
KNN 83.93% 86.40% 81.94% 79.41% 88.19% 0.18 0.87
BN 83.33% 85.64% 81.47% 78.92% 87.50% 0.21 0.87

Overlapped-0NCF-6L
SVM 90.00% 93.55% 87.18% 85.29% 94.44% 0.13 0.9
KNN 83.93% 86.40% 81.94% 79.41% 88.19% 0.18 0.87
BN 83.33% 85.64% 81.47% 78.92% 87.50% 0.21 0.87

Overlapped-AIV-3L
SVM 90.71% 91.04% 90.41% 89.71% 91.67% 0.10 0.91
KNN 86.43% 90.16% 83.54% 80.88% 91.67% 0.17 0.88
BN 86.90% 90.27% 84.26% 81.86% 91.67% 0.08 0.9

Overlapped-AIV-4L
SVM 87.14% 90.32% 84.62% 82.35% 91.67% 0.16 0.87
KNN 83.21% 88.03% 79.75% 75.74% 90.28% 0.21 0.85
BN 83.10% 86.74% 80.33% 76.96% 88.89% 0.23 0.86
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Overlapped-AIV-5L
SVM 87.14% 90.32% 84.62% 82.35% 91.67% 0.16 0.87
KNN 83.21% 88.03% 79.75% 75.74% 90.28% 0.21 0.85
BN 83.10% 86.74% 80.33% 76.96% 88.89% 0.23 0.86

Overlapped-AIV-6L
SVM 87.14% 90.32% 84.62% 82.35% 91.67% 0.16 0.87
KNN 83.21% 88.03% 79.75% 75.74% 90.28% 0.21 0.85
BN 83.10% 86.74% 80.33% 76.96% 88.89% 0.23 0.86

Overlapped-GLCM-3L
SVM 85.00% 87.30% 83.12% 80.88% 88.89% 0.18 0.85
KNN 81.43% 86.21% 78.05% 73.53% 88.89% 0.22 0.83
BN 81.43% 86.21% 78.05% 73.53% 88.89% 0.12 0.84

Overlapped-GLCM-4L
SVM 87.14% 90.32% 84.62% 82.35% 91.67% 0.16 0.87
KNN 82.50% 87.83% 78.79% 74.26% 90.28% 0.21 0.85
BN 81.90% 86.36% 78.69% 74.51% 88.89% 0.24 0.85

Overlapped-GLCM-5L
SVM 87.14% 90.32% 84.62% 82.35% 91.67% 0.16 0.87
KNN 82.50% 87.83% 78.79% 74.26% 90.28% 0.21 0.85
BN 81.90% 86.36% 78.69% 74.51% 88.89% 0.24 0.85

Overlapped-GLCM-6L
SVM 87.14% 90.32% 84.62% 82.35% 91.67% 0.16 0.87
KNN 82.50% 87.83% 78.79% 74.26% 90.28% 0.21 0.85
BN 81.90% 86.36% 78.69% 74.51% 88.89% 0.24 0.85

Overlapped-KCC-3L
SVM 90.71% 93.65% 88.31% 86.76% 94.44% 0.12 0.91
KNN 88.21% 93.28% 84.47% 81.62% 94.44% 0.16 0.89
BN 86.43% 89.30% 84.12% 81.86% 90.74% 0.09 0.89

Overlapped-KCC-4L
SVM 84.29% 87.10% 82.05% 79.41% 88.89% 0.19 0.84
KNN 82.14% 85.25% 79.75% 76.47% 87.50% 0.21 0.83
BN 83.33% 86.02% 81.20% 78.43% 87.96% 0.22 0.85

Overlapped-KCC-5L
SVM 84.29% 87.10% 82.05% 79.41% 88.89% 0.19 0.84
KNN 82.86% 86.07% 80.38% 77.21% 88.19% 0.20 0.83
BN 83.33% 86.02% 81.20% 78.43% 87.96% 0.22 0.85

Overlapped-KCC-6L
SVM 83.57% 84.62% 82.67% 80.88% 86.11% 0.18 0.83
KNN 81.79% 84.00% 80.00% 77.21% 86.11% 0.21 0.83
BN 82.86% 85.11% 81.03% 78.43% 87.04% 0.22 0.84

Overlapped-ED-3L
SVM 85.71% 86.36% 85.14% 83.82% 87.50% 0.16 0.86
KNN 83.57% 85.16% 82.24% 80.15% 86.81% 0.18 0.85
BN 83.57% 86.49% 81.28% 78.43% 88.43% 0.12 0.87

Overlapped-ED-4L
SVM 84.29% 84.85% 83.78% 82.35% 86.11% 0.17 0.84
KNN 81.79% 81.48% 82.07% 80.88% 82.64% 0.19 0.83
BN 82.62% 82.27% 82.95% 81.86% 83.33% 0.18 0.85

Overlapped-ED-5L
SVM 85.71% 86.36% 85.14% 83.82% 87.50% 0.16 0.86
KNN 82.50% 82.22% 82.76% 81.62% 83.33% 0.18 0.84
BN 83.57% 83.25% 83.87% 82.84% 84.26% 0.17 0.86

Overlapped-ED-6L
SVM 85.71% 86.36% 85.14% 83.82% 87.50% 0.16 0.86
KNN 82.50% 82.22% 82.76% 81.62% 83.33% 0.18 0.84
BN 83.57% 83.25% 83.87% 82.84% 84.26% 0.17 0.86

Overlapped-DTW-3L
SVM 90.00% 93.55% 87.18% 85.29% 94.44% 0.13 0.9
KNN 83.57% 86.29% 81.41% 78.68% 88.19% 0.19 0.87
BN 83.33% 85.64% 81.47% 78.92% 87.50% 0.21 0.87

Overlapped-DTW-4L
SVM 90.00% 93.55% 87.18% 85.29% 94.44% 0.13 0.9
KNN 83.93% 86.40% 81.94% 79.41% 88.19% 0.18 0.87
BN 83.33% 85.64% 81.47% 78.92% 87.50% 0.21 0.87

Overlapped-DTW-5L
SVM 90.00% 93.55% 87.18% 85.29% 94.44% 0.13 0.9
KNN 83.93% 86.40% 81.94% 79.41% 88.19% 0.18 0.87
BN 83.33% 85.64% 81.47% 78.92% 87.50% 0.21 0.87
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Overlapped-DTW-6L
SVM 90.00% 93.55% 87.18% 85.29% 94.44% 0.13 0.9
KNN 83.93% 86.40% 81.94% 79.41% 88.19% 0.18 0.87
BN 83.33% 85.64% 81.47% 78.92% 87.50% 0.21 0.87

Overlapped-LCS-3L
SVM 86.43% 86.57% 86.30% 85.29% 87.50% 0.14 0.86
KNN 85.36% 87.40% 83.66% 81.62% 88.89% 0.17 0.86
BN 86.19% 88.83% 84.05% 81.86% 90.28% 0.10 0.88

Overlapped-LCS-4L
SVM 88.57% 88.24% 88.89% 88.24% 88.89% 0.12 0.89
KNN 81.43% 83.33% 79.87% 77.21% 85.42% 0.20 0.85
BN 81.67% 82.23% 81.17% 79.41% 83.80% 0.17 0.86

Overlapped-LCS-5L
SVM 87.14% 87.88% 86.49% 85.29% 88.89% 0.14 0.87
KNN 81.07% 83.20% 79.35% 76.47% 85.42% 0.21 0.84
BN 81.19% 82.05% 80.44% 78.43% 83.80% 0.17 0.86

Overlapped-LCS-6L
SVM 87.14% 87.88% 86.49% 85.29% 88.89% 0.14 0.87
KNN 81.07% 83.20% 79.35% 76.47% 85.42% 0.21 0.84
BN 81.19% 82.05% 80.44% 78.43% 83.80% 0.17 0.86

Overlapped-KLD-3L
SVM 90.00% 90.91% 89.19% 88.24% 91.67% 0.11 0.9
KNN 83.57% 84.62% 82.67% 80.88% 86.11% 0.18 0.87
BN 83.57% 84.97% 82.38% 80.39% 86.57% 0.20 0.87

Overlapped-KLD-4L
SVM 88.57% 90.62% 86.84% 85.29% 91.67% 0.14 0.88
KNN 82.86% 85.48% 80.77% 77.94% 87.50% 0.20 0.86
BN 82.62% 85.03% 80.69% 77.94% 87.04% 0.13 0.86

Overlapped-KLD-5L
SVM 88.57% 90.62% 86.84% 85.29% 91.67% 0.14 0.88
KNN 82.86% 85.48% 80.77% 77.94% 87.50% 0.20 0.86
BN 82.62% 85.03% 80.69% 77.94% 87.04% 0.13 0.86

Overlapped-KLD-6L
SVM 88.57% 90.62% 86.84% 85.29% 91.67% 0.14 0.88
KNN 82.86% 85.48% 80.77% 77.94% 87.50% 0.20 0.86
BN 82.62% 85.03% 80.69% 77.94% 87.04% 0.13 0.86

Table A.4: The results using HOG with PCA.

Method Classifiers Acc Sen Spec PPV NPV EER AUC

Standard-0NCF-3L
SVM 89.29% 92.06% 87.01% 85.29% 93.06% 0.14 0.89
KNN 79.64% 84.35% 76.36% 71.32% 87.50% 0.23 0.84
BN 83.57% 87.71% 80.50% 76.96% 89.81% 0.23 0.88

Standard-0NCF-4L
SVM 92.86% 95.31% 90.79% 89.71% 95.83% 0.10 0.93
KNN 81.79% 85.71% 78.88% 75.00% 88.19% 0.21 0.87
BN 84.76% 88.04% 82.20% 79.41% 89.81% 0.11 0.9

Standard-0NCF-5L
SVM 92.14% 95.24% 89.61% 88.24% 95.83% 0.11 0.92
KNN 82.50% 86.55% 79.50% 75.74% 88.89% 0.20 0.87
BN 85.24% 88.59% 82.63% 79.90% 90.28% 0.17 0.9

Standard-0NCF-6L
SVM 92.14% 95.24% 89.61% 88.24% 95.83% 0.11 0.92
KNN 82.50% 86.55% 79.50% 75.74% 88.89% 0.20 0.87
BN 85.24% 88.59% 82.63% 79.90% 90.28% 0.17 0.9

Standard-AIV-3L
SVM 92.86% 98.33% 88.75% 86.76% 98.61% 0.12 0.93
KNN 86.07% 91.45% 82.21% 78.68% 93.06% 0.18 0.89
BN 89.05% 92.93% 86.02% 83.82% 93.98% 0.16 0.92

Standard-AIV-4L
SVM 91.43% 96.67% 87.50% 85.29% 97.22% 0.13 0.91
KNN 85.00% 89.17% 81.88% 78.68% 90.97% 0.18 0.88
BN 87.14% 90.32% 84.62% 82.35% 91.67% 0.08 0.9
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Standard-AIV-5L
SVM 91.43% 93.75% 89.47% 88.24% 94.44% 0.11 0.91
KNN 81.07% 83.20% 79.35% 76.47% 85.42% 0.21 0.86
BN 84.29% 85.94% 82.89% 80.88% 87.50% 0.19 0.89

Standard-AIV-6L
SVM 91.43% 93.75% 89.47% 88.24% 94.44% 0.11 0.91
KNN 81.07% 83.20% 79.35% 76.47% 85.42% 0.21 0.86
BN 84.29% 85.94% 82.89% 80.88% 87.50% 0.19 0.89

Standard-GLCM-3L
SVM 89.29% 92.06% 87.01% 85.29% 93.06% 0.14 0.89
KNN 80.71% 84.75% 77.78% 73.53% 87.50% 0.22 0.85
BN 84.05% 87.43% 81.43% 78.43% 89.35% 0.11 0.88

Standard-GLCM-4L
SVM 87.14% 90.32% 84.62% 82.35% 91.67% 0.16 0.87
KNN 79.29% 82.50% 76.88% 72.79% 85.42% 0.23 0.83
BN 83.10% 86.34% 80.59% 77.45% 88.43% 0.23 0.87

Standard-GLCM-5L
SVM 91.43% 95.16% 88.46% 86.76% 95.83% 0.12 0.91
KNN 82.14% 85.83% 79.38% 75.74% 88.19% 0.20 0.87
BN 85.24% 88.59% 82.63% 79.90% 90.28% 0.20 0.9

Standard-GLCM-6L
SVM 91.43% 95.16% 88.46% 86.76% 95.83% 0.12 0.91
KNN 82.14% 85.83% 79.38% 75.74% 88.19% 0.20 0.87
BN 85.24% 88.59% 82.63% 79.90% 90.28% 0.10 0.9

Standard-KCC-3L
SVM 90.00% 95.00% 86.25% 83.82% 95.83% 0.14 0.9
KNN 82.86% 90.74% 77.91% 72.06% 93.06% 0.22 0.86
BN 86.43% 92.98% 81.93% 77.94% 94.44% 0.06 0.9

Standard-KCC-4L
SVM 93.57% 98.36% 89.87% 88.24% 98.61% 0.11 0.93
KNN 86.07% 94.50% 80.70% 75.74% 95.83% 0.19 0.9
BN 87.62% 93.68% 83.33% 79.90% 94.91% 0.20 0.91

Standard-KCC-5L
SVM 89.29% 94.92% 85.19% 82.35% 95.83% 0.16 0.89
KNN 81.43% 88.18% 77.06% 71.32% 90.97% 0.22 0.85
BN 84.52% 89.27% 81.07% 77.45% 91.20% 0.23 0.89

Standard-KCC-6L
SVM 92.14% 95.24% 89.61% 88.24% 95.83% 0.11 0.92
KNN 82.50% 89.19% 78.11% 72.79% 91.67% 0.21 0.87
BN 84.76% 89.77% 81.15% 77.45% 91.67% 0.23 0.89

Standard-ED-3L
SVM 92.86% 98.33% 88.75% 86.76% 98.61% 0.12 0.93
KNN 87.14% 91.67% 83.75% 80.88% 93.06% 0.16 0.9
BN 88.57% 92.86% 85.29% 82.84% 93.98% 0.17 0.92

Standard-ED-4L
SVM 92.14% 98.31% 87.65% 85.29% 98.61% 0.13 0.92
KNN 82.50% 86.55% 79.50% 75.74% 88.89% 0.20 0.87
BN 85.71% 89.56% 82.77% 79.90% 91.20% 0.20 0.9

Standard-ED-5L
SVM 94.29% 100.00% 90.00% 88.24% 100.00% 0.11 0.94
KNN 81.79% 84.55% 79.62% 76.47% 86.81% 0.20 0.88
BN 84.29% 85.94% 82.89% 80.88% 87.50% 0.17 0.9

Standard-ED-6L
SVM 93.57% 98.36% 89.87% 88.24% 98.61% 0.11 0.93
KNN 82.14% 85.25% 79.75% 76.47% 87.50% 0.20 0.88
BN 84.52% 86.39% 82.97% 80.88% 87.96% 0.17 0.9

Standard-DTW-3L
SVM 89.29% 92.06% 87.01% 85.29% 93.06% 0.14 0.89
KNN 79.64% 83.76% 76.69% 72.06% 86.81% 0.23 0.84
BN 83.57% 86.89% 81.01% 77.94% 88.89% 0.11 0.88

Standard-DTW-4L
SVM 92.86% 95.31% 90.79% 89.71% 95.83% 0.10 0.93
KNN 82.14% 86.44% 79.01% 75.00% 88.89% 0.20 0.87
BN 85.24% 88.59% 82.63% 79.90% 90.28% 0.20 0.9

Standard-DTW-5L
SVM 91.43% 95.16% 88.46% 86.76% 95.83% 0.12 0.91
KNN 81.79% 86.32% 78.53% 74.26% 88.89% 0.21 0.86
BN 85.24% 89.01% 82.35% 79.41% 90.74% 0.10 0.9
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Standard-DTW-6L
SVM 90.71% 93.65% 88.31% 86.76% 94.44% 0.12 0.91
KNN 81.43% 85.59% 78.40% 74.26% 88.19% 0.21 0.86
BN 85.00% 88.52% 82.28% 79.41% 90.28% 0.11 0.9

Standard-LCS-3L
SVM 92.86% 98.33% 88.75% 86.76% 98.61% 0.12 0.93
KNN 84.29% 89.66% 80.49% 76.47% 91.67% 0.19 0.88
BN 87.38% 92.18% 83.82% 80.88% 93.52% 0.19 0.92

Standard-LCS-4L
SVM 93.57% 96.83% 90.91% 89.71% 97.22% 0.10 0.93
KNN 85.36% 89.26% 82.39% 79.41% 90.97% 0.18 0.89
BN 88.10% 91.40% 85.47% 83.33% 92.59% 0.07 0.92

Standard-LCS-5L
SVM 94.29% 98.39% 91.03% 89.71% 98.61% 0.09 0.94
KNN 86.07% 92.17% 81.82% 77.94% 93.75% 0.18 0.9
BN 87.62% 92.70% 83.88% 80.88% 93.98% 0.19 0.92

Standard-LCS-6L
SVM 94.29% 98.39% 91.03% 89.71% 98.61% 0.09 0.94
KNN 85.71% 91.38% 81.71% 77.94% 93.06% 0.18 0.9
BN 87.38% 92.18% 83.82% 80.88% 93.52% 0.19 0.92

Standard-KLD-3L
SVM 90.71% 93.65% 88.31% 86.76% 94.44% 0.12 0.91
KNN 80.00% 85.09% 76.51% 71.32% 88.19% 0.23 0.85
BN 84.05% 88.27% 80.91% 77.45% 90.28% 0.10 0.89

Standard-KLD-4L
SVM 92.86% 95.31% 90.79% 89.71% 95.83% 0.10 0.93
KNN 82.50% 87.83% 78.79% 74.26% 90.28% 0.20 0.88
BN 85.71% 89.56% 82.77% 79.90% 91.20% 0.09 0.91

Standard-KLD-5L
SVM 92.14% 93.85% 90.67% 89.71% 94.44% 0.10 0.92
KNN 83.57% 86.89% 81.01% 77.94% 88.89% 0.19 0.88
BN 85.95% 88.36% 83.98% 81.86% 89.81% 0.11 0.9

Standard-KLD-6L
SVM 92.14% 93.85% 90.67% 89.71% 94.44% 0.10 0.92
KNN 83.57% 86.89% 81.01% 77.94% 88.89% 0.19 0.88
BN 85.95% 88.36% 83.98% 81.86% 89.81% 0.11 0.9

Overlapped-0NCF-3L
SVM 93.57% 98.36% 89.87% 88.24% 98.61% 0.11 0.93
KNN 87.50% 92.44% 83.85% 80.88% 93.75% 0.16 0.9
BN 89.29% 93.44% 86.08% 83.82% 94.44% 0.14 0.92

Overlapped-0NCF-4L
SVM 95.71% 100.00% 92.31% 91.18% 100.00% 0.08 0.96
KNN 91.43% 96.67% 87.50% 85.29% 97.22% 0.13 0.93
BN 92.14% 96.72% 88.61% 86.76% 97.22% 0.03 0.94

Overlapped-0NCF-5L
SVM 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96
KNN 91.79% 97.48% 87.58% 85.29% 97.92% 0.12 0.94
BN 91.90% 96.20% 88.56% 86.76% 96.76% 0.13 0.95

Standard-0NCF-6L
SVM 97.14% 100.00% 94.74% 94.12% 100.00% 0.06 0.97
KNN 92.14% 97.50% 88.12% 86.03% 97.92% 0.12 0.95
BN 92.38% 96.74% 88.98% 87.25% 97.22% 0.13 0.95

Standard-AIV-3L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 92.86% 93.28% 92.47% 91.91% 93.75% 0.08 0.95
BN 94.05% 94.53% 93.61% 93.14% 94.91% 0.05 0.97

Standard-AIV-4L
SVM 95.71% 100.00% 92.31% 91.18% 100.00% 0.08 0.96
KNN 88.57% 93.33% 85.00% 82.35% 94.44% 0.15 0.92
BN 90.24% 94.54% 86.92% 84.80% 95.37% 0.15 0.93

Standard-AIV-5L
SVM 94.29% 98.39% 91.03% 89.71% 98.61% 0.09 0.94
KNN 87.86% 91.80% 84.81% 82.35% 93.06% 0.15 0.91
BN 89.52% 92.55% 87.07% 85.29% 93.52% 0.06 0.93

Overlapped-AIV-6L
SVM 93.57% 98.36% 89.87% 88.24% 98.61% 0.11 0.93
KNN 87.50% 91.74% 84.28% 81.62% 93.06% 0.16 0.9
BN 89.05% 92.47% 86.32% 84.31% 93.52% 0.14 0.92

146



Overlapped-GLCM-3L
SVM 94.29% 96.88% 92.11% 91.18% 97.22% 0.08 0.94
KNN 87.86% 92.50% 84.38% 81.62% 93.75% 0.16 0.91
BN 89.52% 93.48% 86.44% 84.31% 94.44% 0.16 0.93

Overlapped-GLCM-4L
SVM 94.29% 98.39% 91.03% 89.71% 98.61% 0.09 0.94
KNN 90.00% 93.55% 87.18% 85.29% 94.44% 0.13 0.92
BN 91.19% 94.65% 88.41% 86.76% 95.37% 0.13 0.93

Overlapped-GLCM-5L
SVM 95.71% 98.44% 93.42% 92.65% 98.61% 0.07 0.96
KNN 88.93% 93.39% 85.53% 83.09% 94.44% 0.14 0.92
BN 90.71% 94.12% 87.98% 86.27% 94.91% 0.05 0.94

Overlapped-GLCM-6L
SVM 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96
KNN 88.93% 93.39% 85.53% 83.09% 94.44% 0.14 0.93
BN 90.24% 94.05% 87.23% 85.29% 94.91% 0.05 0.94

Overlapped-KCC-3L
SVM 97.86% 97.10% 98.59% 98.53% 97.22% 0.01 0.98
KNN 91.07% 93.02% 89.40% 88.24% 93.75% 0.07 0.94
BN 92.38% 94.33% 90.71% 89.71% 94.91% 0.09 0.96

Overlapped-KCC-4L
SVM 95.71% 96.97% 94.59% 94.12% 97.22% 0.06 0.96
KNN 89.29% 90.77% 88.00% 86.76% 91.67% 0.12 0.92
BN 91.19% 92.39% 90.13% 89.22% 93.06% 0.10 0.94

Overlapped-KCC-5L
SVM 97.86% 100.00% 96.00% 95.59% 100.00% 0.04 0.98
KNN 93.21% 93.33% 93.10% 92.65% 93.75% 0.07 0.95
BN 92.86% 93.50% 92.27% 91.67% 93.98% 0.06 0.95

Overlapped-KCC-6L
SVM 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.95
KNN 90.36% 92.25% 88.74% 87.50% 93.06% 0.12 0.93
BN 91.19% 93.26% 89.43% 88.24% 93.98% 0.12 0.94

Overlapped-ED-3L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 91.07% 94.40% 88.39% 86.76% 95.14% 0.12 0.94
BN 92.62% 95.29% 90.39% 89.22% 95.83% 0.04 0.96

Overlapped-ED-4L
SVM 96.43% 97.01% 95.89% 95.59% 97.22% 0.04 0.96
KNN 91.79% 93.13% 90.60% 89.71% 93.75% 0.10 0.94
BN 93.33% 94.44% 92.34% 91.67% 94.91% 0.08 0.96

Overlapped-ED-5L
SVM 95.71% 95.59% 95.83% 95.59% 95.83% 0.04 0.96
KNN 90.00% 91.54% 88.67% 87.50% 92.36% 0.12 0.93
BN 91.90% 93.37% 90.62% 89.71% 93.98% 0.06 0.95

Overlapped-ED-6L
SVM 95.71% 96.97% 94.59% 94.12% 97.22% 0.06 0.96
KNN 90.71% 92.31% 89.33% 88.24% 93.06% 0.11 0.93
BN 92.38% 93.88% 91.07% 90.20% 94.44% 0.06 0.95

Overlapped-DTW-3L
SVM 94.29% 100.00% 90.00% 88.24% 100.00% 0.11 0.94
KNN 87.86% 92.50% 84.38% 81.62% 93.75% 0.16 0.91
BN 89.52% 93.48% 86.44% 84.31% 94.44% 0.16 0.93

Overlapped-DTW-4L
SVM 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96
KNN 90.00% 92.19% 88.16% 86.76% 93.06% 0.12 0.93
BN 90.71% 93.19% 88.65% 87.25% 93.98% 0.06 0.94

Overlapped-DTW-5L
SVM 97.14% 100.00% 94.74% 94.12% 100.00% 0.06 0.97
KNN 91.43% 95.90% 87.97% 86.03% 96.53% 0.12 0.94
BN 92.14% 96.22% 88.94% 87.25% 96.76% 0.13 0.95

Overlapped-DTW-6L
SVM 97.14% 100.00% 94.74% 94.12% 100.00% 0.06 0.97
KNN 90.36% 92.25% 88.74% 87.50% 93.06% 0.11 0.94
BN 91.19% 94.18% 88.74% 87.25% 94.91% 0.05 0.95

Overlapped-LCS-3L
SVM 95.71% 95.59% 95.83% 95.59% 95.83% 0.04 0.96
KNN 93.93% 96.12% 92.05% 91.18% 96.53% 0.08 0.95
BN 95.24% 96.94% 93.75% 93.14% 97.22% 0.06 0.96
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Overlapped-LCS-4L
SVM 97.14% 98.48% 95.95% 95.59% 98.61% 0.04 0.97
KNN 92.14% 94.53% 90.13% 88.97% 95.14% 0.10 0.95
BN 93.57% 95.38% 92.00% 91.18% 95.83% 0.04 0.96

Overlapped-LCS-5L
SVM 95.71% 98.44% 93.42% 92.65% 98.61% 0.07 0.96
KNN 87.86% 90.48% 85.71% 83.82% 91.67% 0.14 0.92
BN 90.48% 92.71% 88.60% 87.25% 93.52% 0.11 0.94

Overlapped-LCS-6L
SVM 95.00% 98.41% 92.21% 91.18% 98.61% 0.08 0.95
KNN 88.93% 92.00% 86.45% 84.56% 93.06% 0.14 0.92
BN 90.71% 92.75% 88.99% 87.75% 93.52% 0.12 0.93

Overlapped-KLD-3L
SVM 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96
KNN 93.57% 96.09% 91.45% 90.44% 96.53% 0.09 0.95
BN 94.76% 96.91% 92.92% 92.16% 97.22% 0.07 0.96

Overlapped-KLD-4L
SVM 96.43% 100.00% 93.51% 92.65% 100.00% 0.07 0.96
KNN 88.57% 90.62% 86.84% 85.29% 91.67% 0.13 0.92
BN 89.52% 92.11% 87.39% 85.78% 93.06% 0.07 0.93

Overlapped-KLD-5L
SVM 95.71% 98.44% 93.42% 92.65% 98.61% 0.07 0.96
KNN 87.50% 89.15% 86.09% 84.56% 90.28% 0.14 0.92
BN 88.81% 90.26% 87.56% 86.27% 91.20% 0.09 0.93

Overlapped-KLD-6L
SVM 95.00% 98.41% 92.21% 91.18% 98.61% 0.08 0.95
KNN 88.21% 89.31% 87.25% 86.03% 90.28% 0.13 0.92
BN 89.29% 90.77% 88.00% 86.76% 91.67% 0.13 0.93

Table A.5: The results using LBP with PCA.

Method Classifiers Acc Sen Spec PPV NPV EER AUC

Standard-0NCF-3L
SVM 78.57% 75.00% 82.81% 83.82% 73.61% 0.18 0.79
KNN 65.36% 59.33% 83.10% 91.18% 40.97% 0.35 0.72
BN 73.81% 67.03% 86.81% 90.69% 57.87% 0.42 0.81

Standard-0NCF-4L
SVM 68.57% 66.67% 70.59% 70.59% 66.67% 0.31 0.69
KNN 65.36% 60.43% 75.27% 83.09% 48.61% 0.37 0.67
BN 72.62% 68.02% 79.19% 82.35% 63.43% 0.37 0.76

Standard-0NCF-5L
SVM 75.00% 75.38% 74.67% 72.06% 77.78% 0.26 0.75
KNN 71.43% 66.47% 79.09% 83.09% 60.42% 0.20 0.73
BN 77.38% 73.59% 82.01% 83.33% 71.76% 0.28 0.8

Standard-0NCF-6L
SVM 80.00% 77.03% 83.33% 83.82% 76.39% 0.17 0.8
KNN 74.29% 69.28% 81.58% 84.56% 64.58% 0.28 0.77
BN 78.57% 74.78% 83.16% 84.31% 73.15% 0.17 0.83

Standard-AIV-3L
SVM 79.29% 76.00% 83.08% 83.82% 75.00% 0.18 0.79
KNN 71.79% 64.92% 86.52% 91.18% 53.47% 0.31 0.76
BN 79.05% 72.31% 90.00% 92.16% 66.67% 0.33 0.84

Standard-AIV-4L
SVM 92.14% 91.30% 92.96% 92.65% 91.67% 0.07 0.92
KNN 86.79% 81.13% 94.21% 94.85% 79.17% 0.17 0.9
BN 89.76% 85.46% 94.82% 95.10% 84.72% 0.13 0.93

Standard-AIV-5L
SVM 93.57% 91.55% 95.65% 95.59% 91.67% 0.05 0.94
KNN 93.21% 90.91% 95.62% 95.59% 90.97% 0.09 0.93
BN 94.52% 92.49% 96.62% 96.57% 92.59% 0.07 0.95

Standard-AIV-6L
SVM 90.00% 88.57% 91.43% 91.18% 88.89% 0.09 0.9
KNN 88.21% 86.52% 89.93% 89.71% 86.81% 0.13 0.89
BN 90.71% 89.47% 91.94% 91.67% 89.81% 0.08 0.92
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Standard-GLCM-3L
SVM 83.57% 79.22% 88.89% 89.71% 77.78% 0.12 0.84
KNN 70.00% 62.75% 89.47% 94.12% 47.22% 0.31 0.77
BN 76.43% 69.37% 89.26% 92.16% 61.57% 0.09 0.84

Standard-GLCM-4L
SVM 78.57% 75.00% 82.81% 83.82% 73.61% 0.18 0.79
KNN 75.00% 68.13% 87.76% 91.18% 59.72% 0.29 0.77
BN 79.29% 73.88% 86.86% 88.73% 70.37% 0.30 0.83

Standard-GLCM-5L
SVM 98.57% 97.14% 100.00% 100.00% 97.22% 0.00 0.99
KNN 90.36% 83.44% 100.00% 100.00% 81.25% 0.14 0.95
BN 92.86% 87.83% 98.95% 99.02% 87.04% 0.10 0.97

Standard-GLCM-6L
SVM 97.86% 95.77% 100.00% 100.00% 95.83% 0.00 0.98
KNN 94.64% 90.07% 100.00% 100.00% 89.58% 0.09 0.96
BN 96.43% 93.15% 100.00% 100.00% 93.06% 0.06 0.98

Standard-KCC-3L
SVM 74.29% 72.22% 76.47% 76.47% 72.22% 0.25 0.74
KNN 63.21% 58.13% 76.62% 86.76% 40.97% 0.37 0.69
BN 72.14% 66.05% 83.22% 87.75% 57.41% 0.13 0.79

Standard-KCC-4L
SVM 86.43% 84.51% 88.41% 88.24% 84.72% 0.12 0.86
KNN 78.93% 73.05% 87.61% 89.71% 68.75% 0.24 0.83
BN 84.05% 79.40% 89.84% 90.69% 77.78% 0.18 0.88

Standard-KCC-5L
SVM 88.57% 89.39% 87.84% 86.76% 90.28% 0.13 0.89
KNN 87.50% 88.55% 86.58% 85.29% 89.58% 0.14 0.88
BN 90.24% 91.37% 89.24% 88.24% 92.13% 0.12 0.92

Standard-KCC-6L
SVM 91.43% 93.75% 89.47% 88.24% 94.44% 0.11 0.91
KNN 90.36% 91.60% 89.26% 88.24% 92.36% 0.11 0.91
BN 91.43% 92.86% 90.18% 89.22% 93.52% 0.10 0.92

Standard-ED-3L
SVM 87.14% 85.71% 88.57% 88.24% 86.11% 0.12 0.87
KNN 72.86% 65.31% 90.48% 94.12% 52.78% 0.29 0.8
BN 79.29% 72.76% 89.57% 91.67% 67.59% 0.32 0.87

Standard-ED-4L
SVM 94.29% 91.67% 97.06% 97.06% 91.67% 0.03 0.94
KNN 82.14% 73.89% 97.00% 97.79% 67.36% 0.21 0.88
BN 85.48% 79.42% 93.79% 94.61% 76.85% 0.06 0.92

Standard-ED-5L
SVM 95.00% 92.96% 97.10% 97.06% 93.06% 0.03 0.95
KNN 91.43% 88.89% 94.12% 94.12% 88.89% 0.10 0.93
BN 92.62% 90.23% 95.12% 95.10% 90.28% 0.09 0.95

Standard-ED-6L
SVM 95.71% 96.97% 94.59% 94.12% 97.22% 0.06 0.96
KNN 92.86% 92.65% 93.06% 92.65% 93.06% 0.07 0.94
BN 93.33% 92.72% 93.93% 93.63% 93.06% 0.06 0.95

Standard-DTW-3L
SVM 77.86% 74.67% 81.54% 82.35% 73.61% 0.19 0.78
KNN 65.36% 59.42% 82.19% 90.44% 41.67% 0.35 0.72
BN 74.05% 67.27% 86.90% 90.69% 58.33% 0.11 0.81

Standard-DTW-4L
SVM 75.00% 72.60% 77.61% 77.94% 72.22% 0.23 0.75
KNN 68.21% 62.70% 78.95% 85.29% 52.08% 0.34 0.72
BN 74.29% 69.20% 81.76% 84.80% 64.35% 0.35 0.79

Standard-DTW-5L
SVM 93.57% 92.75% 94.37% 94.12% 93.06% 0.06 0.94
KNN 90.00% 91.54% 88.67% 87.50% 92.36% 0.08 0.92
BN 90.71% 91.88% 89.69% 88.73% 92.59% 0.07 0.93

Standard-DTW-6L
SVM 93.57% 92.75% 94.37% 94.12% 93.06% 0.06 0.94
KNN 90.00% 86.99% 93.28% 93.38% 86.81% 0.12 0.92
BN 90.24% 88.63% 91.87% 91.67% 88.89% 0.11 0.93

Standard-LCS-3L
SVM 87.86% 88.06% 87.67% 86.76% 88.89% 0.13 0.88
KNN 73.21% 65.80% 89.66% 93.38% 54.17% 0.07 0.81
BN 80.00% 73.44% 90.24% 92.16% 68.52% 0.31 0.87
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Standard-LCS-4L
SVM 89.29% 88.41% 90.14% 89.71% 88.89% 0.10 0.89
KNN 88.57% 87.14% 90.00% 89.71% 87.50% 0.12 0.89
BN 91.19% 90.34% 92.02% 91.67% 90.74% 0.08 0.92

Standard-LCS-5L
SVM 87.14% 83.78% 90.91% 91.18% 83.33% 0.10 0.87
KNN 88.21% 86.01% 90.51% 90.44% 86.11% 0.13 0.88
BN 89.76% 88.89% 90.61% 90.20% 89.35% 0.10 0.91

Standard-LCS-6L
SVM 94.29% 95.45% 93.24% 92.65% 95.83% 0.07 0.94
KNN 91.79% 94.49% 89.54% 88.24% 95.14% 0.11 0.93
BN 91.67% 94.24% 89.52% 88.24% 94.91% 0.11 0.93

Standard-KLD-3L
SVM 87.86% 86.96% 88.73% 88.24% 87.50% 0.12 0.88
KNN 70.71% 63.37% 89.74% 94.12% 48.61% 0.30 0.8
BN 77.86% 70.79% 90.20% 92.65% 63.89% 0.07 0.87

Standard-KLD-4L
SVM 92.14% 91.30% 92.96% 92.65% 91.67% 0.07 0.92
KNN 85.71% 79.63% 94.07% 94.85% 77.08% 0.18 0.89
BN 88.57% 83.62% 94.68% 95.10% 82.41% 0.05 0.93

Standard-KLD-5L
SVM 87.14% 86.76% 87.50% 86.76% 87.50% 0.13 0.87
KNN 84.64% 81.21% 88.55% 88.97% 80.56% 0.12 0.86
BN 88.10% 85.32% 91.09% 91.18% 85.19% 0.09 0.9

Standard-KLD-6L
SVM 90.00% 88.57% 91.43% 91.18% 88.89% 0.09 0.9
KNN 88.21% 83.66% 93.70% 94.12% 82.64% 0.15 0.89
BN 89.29% 85.33% 93.85% 94.12% 84.72% 0.06 0.91

Overlapped-0NCF-3L
SVM 75.71% 72.37% 79.69% 80.88% 70.83% 0.21 0.76
KNN 65.36% 59.42% 82.19% 90.44% 41.67% 0.36 0.71
BN 72.14% 66.29% 82.35% 86.76% 58.33% 0.41 0.78

Overlapped-0NCF-4L
SVM 75.71% 72.37% 79.69% 80.88% 70.83% 0.21 0.76
KNN 65.36% 59.42% 82.19% 90.44% 41.67% 0.36 0.71
BN 72.14% 66.29% 82.35% 86.76% 58.33% 0.41 0.78

Overlapped-0NCF-5L
SVM 75.71% 72.37% 79.69% 80.88% 70.83% 0.21 0.76
KNN 65.36% 59.42% 82.19% 90.44% 41.67% 0.36 0.71
BN 72.14% 66.29% 82.35% 86.76% 58.33% 0.41 0.78

Overlapped-0NCF-6L
SVM 75.71% 72.37% 79.69% 80.88% 70.83% 0.21 0.76
KNN 65.36% 59.42% 82.19% 90.44% 41.67% 0.36 0.71
BN 72.14% 66.29% 82.35% 86.76% 58.33% 0.41 0.78

Overlapped-AIV-3L
SVM 84.29% 81.08% 87.88% 88.24% 80.56% 0.13 0.84
KNN 69.29% 62.25% 88.16% 93.38% 46.53% 0.31 0.77
BN 76.67% 69.34% 90.41% 93.14% 61.11% 0.24 0.85

Overlapped-AIV-4L
SVM 79.29% 76.71% 82.09% 82.35% 76.39% 0.19 0.79
KNN 76.79% 72.33% 82.64% 84.56% 69.44% 0.26 0.78
BN 79.29% 75.32% 84.13% 85.29% 73.61% 0.17 0.82

Overlapped-AIV-5L
SVM 79.29% 76.71% 82.09% 82.35% 76.39% 0.19 0.79
KNN 76.79% 72.33% 82.64% 84.56% 69.44% 0.26 0.78
BN 79.29% 75.32% 84.13% 85.29% 73.61% 0.17 0.82

Overlapped-AIV-6L
SVM 79.29% 76.71% 82.09% 82.35% 76.39% 0.19 0.79
KNN 76.79% 72.33% 82.64% 84.56% 69.44% 0.26 0.78
BN 79.29% 75.32% 84.13% 85.29% 73.61% 0.17 0.82

Overlapped-GLCM-3L
SVM 75.71% 74.29% 77.14% 76.47% 75.00% 0.24 0.76
KNN 63.93% 58.62% 77.92% 87.50% 41.67% 0.36 0.7
BN 70.71% 65.28% 80.00% 84.80% 57.41% 0.43 0.77

Overlapped-GLCM-4L
SVM 75.71% 72.37% 79.69% 80.88% 70.83% 0.21 0.76
KNN 69.29% 63.02% 82.95% 88.97% 50.69% 0.33 0.73
BN 73.81% 68.22% 82.72% 86.27% 62.04% 0.35 0.78
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Overlapped-GLCM-5L
SVM 75.71% 72.37% 79.69% 80.88% 70.83% 0.21 0.76
KNN 70.71% 64.36% 83.70% 88.97% 53.47% 0.32 0.74
BN 74.76% 69.29% 83.13% 86.27% 63.89% 0.33 0.79

Overlapped-GLCM-6L
SVM 75.71% 72.37% 79.69% 80.88% 70.83% 0.21 0.76
KNN 70.71% 64.36% 83.70% 88.97% 53.47% 0.32 0.74
BN 74.76% 69.29% 83.13% 86.27% 63.89% 0.33 0.79

Overlapped-KCC-3L
SVM 82.86% 81.43% 84.29% 83.82% 81.94% 0.16 0.83
KNN 67.14% 60.78% 84.21% 91.18% 44.44% 0.33 0.75
BN 74.52% 67.77% 87.07% 90.69% 59.26% 0.09 0.83

Overlapped-KCC-4L
SVM 75.71% 75.00% 76.39% 75.00% 76.39% 0.25 0.76
KNN 75.71% 72.97% 78.79% 79.41% 72.22% 0.22 0.76
BN 76.19% 73.64% 79.00% 79.41% 73.15% 0.27 0.77

Overlapped-KCC-5L
SVM 77.14% 76.47% 77.78% 76.47% 77.78% 0.23 0.77
KNN 77.86% 75.69% 80.15% 80.15% 75.69% 0.21 0.78
BN 77.86% 75.81% 80.00% 79.90% 75.93% 0.24 0.79

Overlapped-KCC-6L
SVM 75.00% 77.05% 73.42% 69.12% 80.56% 0.28 0.75
KNN 75.71% 74.64% 76.76% 75.74% 75.69% 0.24 0.75
BN 76.19% 75.00% 77.36% 76.47% 75.93% 0.24 0.77

Overlapped-ED-3L
SVM 86.43% 83.56% 89.55% 89.71% 83.33% 0.11 0.87
KNN 72.50% 64.82% 91.36% 94.85% 51.39% 0.29 0.8
BN 79.52% 72.35% 91.67% 93.63% 66.20% 0.34 0.86

Overlapped-ED-4L
SVM 82.86% 80.56% 85.29% 85.29% 80.56% 0.15 0.83
KNN 74.29% 67.20% 88.30% 91.91% 57.64% 0.29 0.79
BN 76.19% 69.70% 87.18% 90.20% 62.96% 0.10 0.82

Overlapped-ED-5L
SVM 80.00% 77.03% 83.33% 83.82% 76.39% 0.17 0.8
KNN 72.86% 65.96% 86.96% 91.18% 55.56% 0.30 0.77
BN 75.24% 68.80% 86.36% 89.71% 61.57% 0.11 0.8

Overlapped-ED-6L
SVM 80.00% 77.03% 83.33% 83.82% 76.39% 0.17 0.8
KNN 72.86% 65.96% 86.96% 91.18% 55.56% 0.30 0.77
BN 75.24% 68.80% 86.36% 89.71% 61.57% 0.11 0.8

Overlapped-DTW-3L
SVM 77.14% 73.68% 81.25% 82.35% 72.22% 0.20 0.77
KNN 66.07% 59.90% 83.56% 91.18% 42.36% 0.35 0.72
BN 73.10% 67.04% 83.66% 87.75% 59.26% 0.40 0.79

Overlapped-DTW-4L
SVM 77.14% 73.68% 81.25% 82.35% 72.22% 0.20 0.77
KNN 66.07% 59.90% 83.56% 91.18% 42.36% 0.35 0.72
BN 72.86% 66.79% 83.55% 87.75% 58.80% 0.14 0.79

Overlapped-DTW-5L
SVM 77.14% 73.68% 81.25% 82.35% 72.22% 0.20 0.77
KNN 66.07% 59.90% 83.56% 91.18% 42.36% 0.35 0.72
BN 72.86% 66.79% 83.55% 87.75% 58.80% 0.14 0.79

Overlapped-DTW-6L
SVM 77.14% 73.68% 81.25% 82.35% 72.22% 0.20 0.77
KNN 66.07% 59.90% 83.56% 91.18% 42.36% 0.35 0.72
BN 72.86% 66.79% 83.55% 87.75% 58.80% 0.14 0.79

Overlapped-LCS-3L
SVM 88.57% 88.24% 88.89% 88.24% 88.89% 0.12 0.89
KNN 72.86% 65.31% 90.48% 94.12% 52.78% 0.06 0.81
BN 77.38% 71.21% 87.12% 89.71% 65.74% 0.33 0.86

Overlapped-LCS-4L
SVM 75.00% 73.91% 76.06% 75.00% 75.00% 0.25 0.75
KNN 72.50% 68.10% 78.63% 81.62% 63.89% 0.22 0.74
BN 75.71% 72.37% 79.69% 80.88% 70.83% 0.25 0.78

Overlapped-LCS-5L
SVM 75.00% 74.63% 75.34% 73.53% 76.39% 0.26 0.75
KNN 72.14% 67.90% 77.97% 80.88% 63.89% 0.22 0.74
BN 75.71% 72.57% 79.38% 80.39% 71.30% 0.26 0.77
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Overlapped-LCS-6L
SVM 75.00% 74.63% 75.34% 73.53% 76.39% 0.26 0.75
KNN 72.14% 67.90% 77.97% 80.88% 63.89% 0.22 0.74
BN 75.71% 72.57% 79.38% 80.39% 71.30% 0.26 0.77

Overlapped-KLD-3L
SVM 80.71% 78.87% 82.61% 82.35% 79.17% 0.18 0.81
KNN 68.21% 61.69% 84.81% 91.18% 46.53% 0.33 0.75
BN 74.29% 68.18% 84.62% 88.24% 61.11% 0.38 0.81

Overlapped-KLD-4L
SVM 78.57% 75.00% 82.81% 83.82% 73.61% 0.18 0.79
KNN 66.43% 60.10% 84.72% 91.91% 42.36% 0.34 0.73
BN 73.10% 66.43% 86.01% 90.20% 56.94% 0.12 0.8

Overlapped-KLD-5L
SVM 78.57% 75.00% 82.81% 83.82% 73.61% 0.18 0.79
KNN 66.43% 60.10% 84.72% 91.91% 42.36% 0.34 0.73
BN 73.10% 66.43% 86.01% 90.20% 56.94% 0.12 0.8

Overlapped-KLD-6L
SVM 78.57% 75.00% 82.81% 83.82% 73.61% 0.18 0.79
KNN 66.43% 60.10% 84.72% 91.91% 42.36% 0.34 0.73
BN 73.10% 66.43% 86.01% 90.20% 56.94% 0.12 0.8

Table A.6: The results using HOG-LBP with PCA.

Method Classifiers Acc Sen Spec PPV NPV EER AUC

Standard-0NCF-3L
SVM 93.57% 98.36% 89.87% 88.24% 98.61% 0.11 0.93
KNN 86.43% 92.24% 82.32% 78.68% 93.75% 0.17 0.9
BN 87.14% 90.76% 84.32% 81.86% 92.13% 0.18 0.91

Standard-0NCF-4L
SVM 91.43% 98.28% 86.59% 83.82% 98.61% 0.14 0.91
KNN 83.21% 90.09% 78.70% 73.53% 92.36% 0.21 0.87
BN 85.00% 90.29% 81.22% 77.45% 92.13% 0.18 0.89

Standard-0NCF-5L
SVM 92.14% 98.31% 87.65% 85.29% 98.61% 0.13 0.92
KNN 84.64% 90.43% 80.61% 76.47% 92.36% 0.19 0.88
BN 85.71% 90.45% 82.23% 78.92% 92.13% 0.21 0.89

Standard-0NCF-6L
SVM 93.57% 98.36% 89.87% 88.24% 98.61% 0.11 0.93
KNN 84.29% 89.66% 80.49% 76.47% 91.67% 0.19 0.89
BN 85.71% 90.45% 82.23% 78.92% 92.13% 0.08 0.9

Standard-AIV-3L
SVM 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.95
KNN 87.14% 92.37% 83.33% 80.15% 93.75% 0.16 0.91
BN 89.05% 92.47% 86.32% 84.31% 93.52% 0.15 0.93

Standard-AIV-4L
SVM 91.43% 96.67% 87.50% 85.29% 97.22% 0.13 0.91
KNN 83.93% 91.74% 78.95% 73.53% 93.75% 0.20 0.87
BN 86.19% 92.44% 81.85% 77.94% 93.98% 0.22 0.89

Standard-AIV-5L
SVM 90.00% 96.55% 85.37% 82.35% 97.22% 0.15 0.9
KNN 83.57% 93.27% 77.84% 71.32% 95.14% 0.22 0.87
BN 84.52% 91.12% 80.08% 75.49% 93.06% 0.07 0.88

Standard-AIV-6L
SVM 90.00% 93.55% 87.18% 85.29% 94.44% 0.13 0.9
KNN 82.86% 90.00% 78.24% 72.79% 92.36% 0.21 0.86
BN 84.52% 89.27% 81.07% 77.45% 91.20% 0.23 0.88

Standard-GLCM-3L
SVM 92.86% 96.77% 89.74% 88.24% 97.22% 0.11 0.93
KNN 86.07% 89.43% 83.44% 80.88% 90.97% 0.17 0.89
BN 87.38% 90.37% 84.98% 82.84% 91.67% 0.17 0.9

Standard-GLCM-4L
SVM 92.14% 96.72% 88.61% 86.76% 97.22% 0.12 0.92
KNN 85.36% 91.30% 81.21% 77.21% 93.06% 0.19 0.89
BN 86.67% 91.57% 83.06% 79.90% 93.06% 0.07 0.9
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Standard-GLCM-5L
SVM 91.43% 98.28% 86.59% 83.82% 98.61% 0.14 0.91
KNN 80.71% 88.68% 75.86% 69.12% 91.67% 0.23 0.86
BN 83.33% 89.41% 79.20% 74.51% 91.67% 0.08 0.88

Standard-GLCM-6L
SVM 93.57% 98.36% 89.87% 88.24% 98.61% 0.11 0.93
KNN 84.64% 91.15% 80.24% 75.74% 93.06% 0.19 0.89
BN 85.48% 90.86% 81.63% 77.94% 92.59% 0.22 0.89

Standard-KCC-3L
SVM 95.00% 98.41% 92.21% 91.18% 98.61% 0.08 0.95
KNN 86.07% 92.92% 81.44% 77.21% 94.44% 0.18 0.9
BN 86.43% 91.06% 82.99% 79.90% 92.59% 0.19 0.91

Standard-KCC-4L
SVM 92.14% 93.85% 90.67% 89.71% 94.44% 0.10 0.92
KNN 87.50% 91.06% 84.71% 82.35% 92.36% 0.15 0.9
BN 89.52% 92.11% 87.39% 85.78% 93.06% 0.14 0.92

Standard-KCC-5L
SVM 91.43% 95.16% 88.46% 86.76% 95.83% 0.12 0.91
KNN 83.93% 90.27% 79.64% 75.00% 92.36% 0.20 0.87
BN 85.48% 90.40% 81.89% 78.43% 92.13% 0.08 0.89

Standard-KCC-6L
SVM 90.00% 96.55% 85.37% 82.35% 97.22% 0.15 0.9
KNN 83.57% 89.47% 79.52% 75.00% 91.67% 0.20 0.87
BN 84.29% 88.33% 81.25% 77.94% 90.28% 0.10 0.88

Standard-ED-3L
SVM 94.29% 96.88% 92.11% 91.18% 97.22% 0.08 0.94
KNN 85.36% 92.79% 80.47% 75.74% 94.44% 0.19 0.9
BN 86.90% 92.09% 83.13% 79.90% 93.52% 0.20 0.91

Standard-ED-4L
SVM 93.57% 95.38% 92.00% 91.18% 95.83% 0.08 0.94
KNN 88.57% 91.94% 85.90% 83.82% 93.06% 0.14 0.91
BN 90.71% 92.31% 89.33% 88.24% 93.06% 0.11 0.93

Standard-ED-5L
SVM 92.14% 95.24% 89.61% 88.24% 95.83% 0.11 0.92
KNN 86.07% 91.45% 82.21% 78.68% 93.06% 0.18 0.89
BN 86.19% 90.11% 83.19% 80.39% 91.67% 0.19 0.9

Standard-ED-6L
SVM 91.43% 92.42% 90.54% 89.71% 93.06% 0.10 0.91
KNN 86.79% 89.60% 84.52% 82.35% 90.97% 0.16 0.89
BN 86.67% 88.95% 84.78% 82.84% 90.28% 0.10 0.89

Standard-DTW-3L
SVM 93.57% 98.36% 89.87% 88.24% 98.61% 0.11 0.93
KNN 86.43% 92.24% 82.32% 78.68% 93.75% 0.17 0.9
BN 86.19% 90.56% 82.92% 79.90% 92.13% 0.08 0.9

Standard-DTW-4L
SVM 92.14% 98.31% 87.65% 85.29% 98.61% 0.13 0.92
KNN 85.36% 90.60% 81.60% 77.94% 92.36% 0.18 0.89
BN 86.90% 91.16% 83.68% 80.88% 92.59% 0.07 0.9

Standard-DTW-5L
SVM 92.14% 98.31% 87.65% 85.29% 98.61% 0.13 0.92
KNN 82.86% 92.31% 77.27% 70.59% 94.44% 0.22 0.87
BN 84.29% 91.57% 79.53% 74.51% 93.52% 0.25 0.88

Standard-DTW-6L
SVM 90.71% 95.08% 87.34% 85.29% 95.83% 0.13 0.91
KNN 81.43% 86.84% 77.71% 72.79% 89.58% 0.22 0.86
BN 83.10% 88.00% 79.59% 75.49% 90.28% 0.10 0.88

Standard-LCS-3L
SVM 93.57% 91.55% 95.65% 95.59% 91.67% 0.05 0.94
KNN 90.36% 91.60% 89.26% 88.24% 92.36% 0.08 0.92
BN 91.90% 92.50% 91.36% 90.69% 93.06% 0.07 0.94

Standard-LCS-4L
SVM 92.86% 93.94% 91.89% 91.18% 94.44% 0.09 0.93
KNN 87.86% 92.50% 84.38% 81.62% 93.75% 0.16 0.9
BN 88.57% 91.94% 85.90% 83.82% 93.06% 0.14 0.92

Standard-LCS-5L
SVM 91.43% 96.67% 87.50% 85.29% 97.22% 0.13 0.91
KNN 82.14% 89.81% 77.33% 71.32% 92.36% 0.22 0.87
BN 83.33% 88.51% 79.67% 75.49% 90.74% 0.25 0.88
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Standard-LCS-6L
SVM 90.71% 96.61% 86.42% 83.82% 97.22% 0.14 0.91
KNN 83.21% 90.83% 78.36% 72.79% 93.06% 0.21 0.87
BN 84.29% 89.66% 80.49% 76.47% 91.67% 0.09 0.88

Standard-KLD-3L
SVM 95.71% 100.00% 92.31% 91.18% 100.00% 0.08 0.96
KNN 90.36% 92.25% 88.74% 87.50% 93.06% 0.12 0.93
BN 90.95% 92.35% 89.73% 88.73% 93.06% 0.11 0.93

Standard-KLD-4L
SVM 92.86% 96.77% 89.74% 88.24% 97.22% 0.11 0.93
KNN 84.29% 91.82% 79.41% 74.26% 93.75% 0.20 0.88
BN 85.71% 91.38% 81.71% 77.94% 93.06% 0.22 0.89

Standard-KLD-5L
SVM 92.86% 96.77% 89.74% 88.24% 97.22% 0.11 0.93
KNN 83.57% 90.18% 79.17% 74.26% 92.36% 0.20 0.88
BN 84.05% 88.70% 80.66% 76.96% 90.74% 0.23 0.89

Standard-KLD-6L
SVM 92.86% 98.33% 88.75% 86.76% 98.61% 0.12 0.93
KNN 82.86% 90.00% 78.24% 72.79% 92.36% 0.21 0.88
BN 83.33% 88.07% 79.92% 75.98% 90.28% 0.10 0.89

Overlapped-0NCF-3L
SVM 88.57% 96.43% 83.33% 79.41% 97.22% 0.17 0.88
KNN 79.29% 86.79% 74.71% 67.65% 90.28% 0.25 0.84
BN 80.48% 85.06% 77.24% 72.55% 87.96% 0.27 0.85

Overlapped-0NCF-4L
SVM 88.57% 96.43% 83.33% 79.41% 97.22% 0.17 0.88
KNN 79.29% 86.79% 74.71% 67.65% 90.28% 0.25 0.84
BN 80.48% 85.06% 77.24% 72.55% 87.96% 0.27 0.85

Overlapped-0NCF-5L
SVM 88.57% 96.43% 83.33% 79.41% 97.22% 0.17 0.88
KNN 79.29% 86.79% 74.71% 67.65% 90.28% 0.25 0.84
BN 80.48% 85.06% 77.24% 72.55% 87.96% 0.27 0.85

Overlapped-0NCF-6L
SVM 88.57% 96.43% 83.33% 79.41% 97.22% 0.17 0.88
KNN 79.29% 86.79% 74.71% 67.65% 90.28% 0.25 0.84
BN 80.48% 85.06% 77.24% 72.55% 87.96% 0.27 0.85

Overlapped-AIV-3L
SVM 85.00% 92.73% 80.00% 75.00% 94.44% 0.21 0.85
KNN 76.79% 83.81% 72.57% 64.71% 88.19% 0.27 0.81
BN 80.48% 85.47% 77.02% 72.06% 88.43% 0.27 0.85

Overlapped-AIV-4L
SVM 85.71% 92.86% 80.95% 76.47% 94.44% 0.20 0.85
KNN 76.43% 82.41% 72.67% 65.44% 86.81% 0.27 0.81
BN 79.29% 83.05% 76.54% 72.06% 86.11% 0.28 0.84

Overlapped-AIV-5L
SVM 85.71% 92.86% 80.95% 76.47% 94.44% 0.20 0.85
KNN 76.43% 82.41% 72.67% 65.44% 86.81% 0.27 0.81
BN 79.29% 83.05% 76.54% 72.06% 86.11% 0.28 0.84

Overlapped-AIV-6L
SVM 85.71% 92.86% 80.95% 76.47% 94.44% 0.20 0.85
KNN 76.43% 82.41% 72.67% 65.44% 86.81% 0.27 0.81
BN 79.29% 83.05% 76.54% 72.06% 86.11% 0.28 0.84

Overlapped-GLCM-3L
SVM 86.43% 92.98% 81.93% 77.94% 94.44% 0.19 0.86
KNN 77.50% 83.49% 73.68% 66.91% 87.50% 0.26 0.82
BN 80.00% 84.09% 77.05% 72.55% 87.04% 0.14 0.84

Overlapped-GLCM-4L
SVM 85.71% 92.86% 80.95% 76.47% 94.44% 0.20 0.85
KNN 77.86% 84.91% 73.56% 66.18% 88.89% 0.26 0.81
BN 79.52% 84.30% 76.21% 71.08% 87.50% 0.27 0.84

Overlapped-GLCM-5L
SVM 86.43% 92.98% 81.93% 77.94% 94.44% 0.19 0.86
KNN 78.21% 85.05% 73.99% 66.91% 88.89% 0.25 0.82
BN 79.52% 83.91% 76.42% 71.57% 87.04% 0.14 0.84

Overlapped-GLCM-6L
SVM 86.43% 92.98% 81.93% 77.94% 94.44% 0.19 0.86
KNN 78.21% 85.05% 73.99% 66.91% 88.89% 0.25 0.82
BN 79.52% 83.91% 76.42% 71.57% 87.04% 0.14 0.84
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Overlapped-KCC-3L
SVM 85.00% 91.23% 80.72% 76.47% 93.06% 0.20 0.85
KNN 76.07% 82.24% 72.25% 64.71% 86.81% 0.27 0.8
BN 77.86% 81.71% 75.10% 70.10% 85.19% 0.16 0.83

Overlapped-KCC-4L
SVM 85.00% 94.34% 79.31% 73.53% 95.83% 0.22 0.85
KNN 78.57% 85.85% 74.14% 66.91% 89.58% 0.26 0.81
BN 79.76% 84.39% 76.52% 71.57% 87.50% 0.28 0.83

Overlapped-KCC-5L
SVM 85.71% 96.15% 79.55% 73.53% 97.22% 0.21 0.85
KNN 78.57% 85.85% 74.14% 66.91% 89.58% 0.26 0.82
BN 80.00% 84.48% 76.83% 72.06% 87.50% 0.13 0.84

Overlapped-KCC-6L
SVM 85.71% 96.15% 79.55% 73.53% 97.22% 0.21 0.85
KNN 78.21% 85.05% 73.99% 66.91% 88.89% 0.26 0.82
BN 80.24% 84.57% 77.14% 72.55% 87.50% 0.27 0.84

Overlapped-ED-3L
SVM 87.86% 94.74% 83.13% 79.41% 95.83% 0.18 0.88
KNN 75.71% 84.00% 71.11% 61.76% 88.89% 0.27 0.81
BN 78.33% 83.83% 74.70% 68.63% 87.50% 0.31 0.84

Overlapped-ED-4L
SVM 84.29% 91.07% 79.76% 75.00% 93.06% 0.21 0.84
KNN 76.43% 80.17% 73.78% 68.38% 84.03% 0.26 0.8
BN 77.14% 79.35% 75.42% 71.57% 82.41% 0.26 0.82

Overlapped-ED-5L
SVM 85.00% 91.23% 80.72% 76.47% 93.06% 0.20 0.85
KNN 76.07% 79.49% 73.62% 68.38% 83.33% 0.26 0.8
BN 77.38% 79.46% 75.74% 72.06% 82.41% 0.19 0.82

Overlapped-ED-6L
SVM 85.00% 91.23% 80.72% 76.47% 93.06% 0.20 0.85
KNN 76.07% 79.49% 73.62% 68.38% 83.33% 0.26 0.8
BN 77.38% 79.46% 75.74% 72.06% 82.41% 0.19 0.82

Overlapped-DTW-3L
SVM 88.57% 94.83% 84.15% 80.88% 95.83% 0.17 0.88
KNN 79.64% 86.24% 75.44% 69.12% 89.58% 0.24 0.84
BN 80.24% 84.57% 77.14% 72.55% 87.50% 0.27 0.85

Overlapped-DTW-4L
SVM 88.57% 96.43% 83.33% 79.41% 97.22% 0.17 0.88
KNN 79.64% 86.92% 75.14% 68.38% 90.28% 0.24 0.84
BN 80.71% 85.55% 77.33% 72.55% 88.43% 0.27 0.85

Overlapped-DTW-5L
SVM 88.57% 96.43% 83.33% 79.41% 97.22% 0.17 0.88
KNN 79.64% 86.92% 75.14% 68.38% 90.28% 0.24 0.84
BN 80.71% 85.55% 77.33% 72.55% 88.43% 0.27 0.85

Overlapped-DTW-6L
SVM 88.57% 96.43% 83.33% 79.41% 97.22% 0.17 0.88
KNN 79.64% 86.92% 75.14% 68.38% 90.28% 0.24 0.84
BN 80.71% 85.55% 77.33% 72.55% 88.43% 0.27 0.85

Overlapped-LCS-3L
SVM 89.29% 96.49% 84.34% 80.88% 97.22% 0.16 0.89
KNN 83.57% 88.79% 79.88% 75.74% 90.97% 0.20 0.86
BN 85.00% 87.70% 82.83% 80.39% 89.35% 0.20 0.88

Overlapped-LCS-4L
SVM 84.29% 92.59% 79.07% 73.53% 94.44% 0.22 0.84
KNN 78.21% 84.40% 74.27% 67.65% 88.19% 0.26 0.81
BN 79.76% 85.21% 76.10% 70.59% 88.43% 0.28 0.83

Overlapped-LCS-5L
SVM 85.00% 92.73% 80.00% 75.00% 94.44% 0.21 0.85
KNN 78.21% 84.40% 74.27% 67.65% 88.19% 0.26 0.81
BN 80.00% 84.88% 76.61% 71.57% 87.96% 0.28 0.83

Overlapped-LCS-6L
SVM 85.00% 92.73% 80.00% 75.00% 94.44% 0.21 0.85
KNN 78.21% 84.40% 74.27% 67.65% 88.19% 0.26 0.81
BN 80.00% 84.88% 76.61% 71.57% 87.96% 0.28 0.83

Overlapped-KLD-3L
SVM 84.29% 91.07% 79.76% 75.00% 93.06% 0.21 0.84
KNN 77.86% 84.26% 73.84% 66.91% 88.19% 0.26 0.81
BN 78.33% 82.66% 75.30% 70.10% 86.11% 0.29 0.82
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Overlapped-KLD-4L
SVM 87.86% 94.74% 83.13% 79.41% 95.83% 0.18 0.88
KNN 78.57% 85.19% 74.42% 67.65% 88.89% 0.25 0.83
BN 79.52% 83.52% 76.64% 72.06% 86.57% 0.27 0.85

Overlapped-KLD-5L
SVM 87.86% 94.74% 83.13% 79.41% 95.83% 0.18 0.88
KNN 78.57% 85.19% 74.42% 67.65% 88.89% 0.25 0.83
BN 79.52% 83.52% 76.64% 72.06% 86.57% 0.27 0.85

Overlapped-KLD-6L
SVM 87.86% 94.74% 83.13% 79.41% 95.83% 0.18 0.88
KNN 78.57% 85.19% 74.42% 67.65% 88.89% 0.25 0.83
BN 79.52% 83.52% 76.64% 72.06% 86.57% 0.27 0.85

Table A.7: The results using LPQ with PCA.

Method Classifiers Acc Sen Spec PPV NPV EER AUC

Standard-0NCF-3L
SVM 73.57% 68.67% 80.70% 83.82% 63.89% 0.20 0.74
KNN 62.50% 57.21% 80.00% 90.44% 36.11% 0.38 0.69
BN 67.38% 62.01% 78.01% 84.80% 50.93% 0.46 0.73

Standard-0NCF-4L
SVM 68.57% 63.64% 76.92% 82.35% 55.56% 0.24 0.69
KNN 59.29% 54.95% 75.86% 89.71% 30.56% 0.40 0.65
BN 65.24% 60.07% 76.52% 84.80% 46.76% 0.21 0.7

Standard-0NCF-5L
SVM 72.14% 67.47% 78.95% 82.35% 62.50% 0.22 0.72
KNN 62.14% 56.88% 80.65% 91.18% 34.72% 0.38 0.68
BN 67.38% 61.59% 80.15% 87.25% 48.61% 0.35 0.72

Standard-0NCF-6L
SVM 65.00% 61.45% 70.18% 75.00% 55.56% 0.31 0.65
KNN 57.86% 54.09% 71.67% 87.50% 29.86% 0.42 0.62
BN 66.90% 61.40% 78.52% 85.78% 49.07% 0.50 0.69

Standard-AIV-3L
SVM 75.71% 70.24% 83.93% 86.76% 65.28% 0.17 0.76
KNN 62.86% 57.84% 76.32% 86.76% 40.28% 0.37 0.7
BN 69.05% 63.70% 78.67% 84.31% 54.63% 0.21 0.75

Standard-AIV-4L
SVM 83.57% 79.22% 88.89% 89.71% 77.78% 0.12 0.84
KNN 72.50% 65.95% 85.26% 89.71% 56.25% 0.30 0.78
BN 76.43% 70.27% 86.34% 89.22% 64.35% 0.11 0.84

Standard-AIV-5L
SVM 80.71% 78.87% 82.61% 82.35% 79.17% 0.18 0.81
KNN 68.93% 62.69% 82.76% 88.97% 50.00% 0.32 0.75
BN 74.05% 67.53% 85.91% 89.71% 59.26% 0.13 0.81

Standard-AIV-6L
SVM 87.86% 84.93% 91.04% 91.18% 84.72% 0.09 0.88
KNN 78.93% 72.00% 90.48% 92.65% 65.97% 0.24 0.84
BN 80.00% 74.59% 87.50% 89.22% 71.30% 0.29 0.85

Standard-GLCM-3L
SVM 75.71% 71.25% 81.67% 83.82% 68.06% 0.19 0.76
KNN 63.57% 58.02% 80.88% 90.44% 38.19% 0.36 0.7
BN 71.43% 65.44% 82.43% 87.25% 56.48% 0.43 0.76

Standard-GLCM-4L
SVM 72.14% 67.06% 80.00% 83.82% 61.11% 0.21 0.72
KNN 61.07% 56.11% 79.66% 91.18% 32.64% 0.38 0.67
BN 66.90% 61.48% 78.10% 85.29% 49.54% 0.47 0.73

Standard-GLCM-5L
SVM 72.86% 67.86% 80.36% 83.82% 62.50% 0.21 0.73
KNN 60.71% 56.07% 75.76% 88.24% 34.72% 0.38 0.67
BN 69.52% 63.29% 82.84% 88.73% 51.39% 0.44 0.76

Standard-GLCM-6L
SVM 75.00% 72.60% 77.61% 77.94% 72.22% 0.23 0.75
KNN 61.07% 59.85% 62.24% 60.29% 61.81% 0.39 0.68
BN 69.52% 68.45% 70.56% 69.12% 69.91% 0.31 0.76
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Standard-KCC-3L
SVM 70.00% 64.77% 78.85% 83.82% 56.94% 0.22 0.7
KNN 59.64% 55.20% 76.27% 89.71% 31.25% 0.40 0.65
BN 67.38% 61.36% 81.60% 88.73% 47.22% 0.50 0.72

Standard-KCC-4L
SVM 72.14% 67.47% 78.95% 82.35% 62.50% 0.22 0.72
KNN 60.36% 55.87% 74.63% 87.50% 34.72% 0.39 0.67
BN 67.86% 62.55% 77.93% 84.31% 52.31% 0.47 0.74

Standard-KCC-5L
SVM 87.14% 85.71% 88.57% 88.24% 86.11% 0.12 0.87
KNN 75.36% 71.61% 80.00% 81.62% 69.44% 0.26 0.81
BN 79.52% 77.06% 82.18% 82.35% 76.85% 0.22 0.86

Standard-KCC-6L
SVM 71.43% 70.00% 72.86% 72.06% 70.83% 0.28 0.71
KNN 65.36% 61.27% 71.96% 77.94% 53.47% 0.36 0.69
BN 71.43% 68.26% 75.26% 76.96% 66.20% 0.33 0.75

Standard-ED-3L
SVM 81.43% 76.92% 87.10% 88.24% 75.00% 0.14 0.82
KNN 71.07% 63.82% 88.89% 93.38% 50.00% 0.31 0.77
BN 76.67% 70.87% 85.54% 88.24% 65.74% 0.34 0.83

Standard-ED-4L
SVM 79.29% 76.00% 83.08% 83.82% 75.00% 0.18 0.79
KNN 67.14% 60.68% 85.14% 91.91% 43.75% 0.34 0.74
BN 76.19% 69.26% 88.67% 91.67% 61.57% 0.38 0.82

Standard-ED-5L
SVM 81.43% 75.61% 89.66% 91.18% 72.22% 0.11 0.82
KNN 68.57% 61.43% 90.00% 94.85% 43.75% 0.33 0.76
BN 74.05% 67.40% 86.39% 90.20% 58.80% 0.39 0.81

Standard-ED-6L
SVM 80.71% 79.71% 81.69% 80.88% 80.56% 0.19 0.81
KNN 78.21% 73.58% 84.30% 86.03% 70.83% 0.25 0.8
BN 82.62% 79.91% 85.57% 85.78% 79.63% 0.20 0.85

Standard-DTW-3L
SVM 71.43% 66.67% 78.57% 82.35% 61.11% 0.22 0.72
KNN 59.29% 55.29% 70.83% 84.56% 35.42% 0.40 0.66
BN 65.24% 60.58% 73.97% 81.37% 50.00% 0.46 0.71

Standard-DTW-4L
SVM 55.71% 53.75% 58.33% 63.24% 48.61% 0.43 0.56
KNN 52.86% 50.93% 59.38% 80.88% 26.39% 0.47 0.55
BN 60.71% 56.94% 68.35% 78.43% 43.98% 0.51 0.63

Standard-DTW-5L
SVM 60.00% 58.11% 62.12% 63.24% 56.94% 0.39 0.6
KNN 56.07% 53.37% 62.07% 75.74% 37.50% 0.44 0.58
BN 63.10% 59.18% 69.93% 77.45% 49.54% 0.30 0.65

Standard-DTW-6L
SVM 70.71% 71.43% 70.13% 66.18% 75.00% 0.31 0.71
KNN 64.29% 63.04% 65.49% 63.97% 64.58% 0.36 0.67
BN 69.52% 68.63% 70.37% 68.63% 70.37% 0.31 0.72

Standard-LCS-3L
SVM 90.00% 90.91% 89.19% 88.24% 91.67% 0.11 0.9
KNN 80.00% 73.26% 90.74% 92.65% 68.06% 0.09 0.85
BN 83.81% 79.06% 89.78% 90.69% 77.31% 0.23 0.89

Standard-LCS-4L
SVM 92.86% 92.65% 93.06% 92.65% 93.06% 0.07 0.93
KNN 81.79% 74.29% 94.29% 95.59% 68.75% 0.05 0.88
BN 85.48% 78.95% 94.80% 95.59% 75.93% 0.04 0.91

Standard-LCS-5L
SVM 87.86% 88.06% 87.67% 86.76% 88.89% 0.13 0.88
KNN 86.79% 83.22% 90.84% 91.18% 82.64% 0.09 0.87
BN 87.86% 85.58% 90.24% 90.20% 85.65% 0.10 0.89

Standard-LCS-6L
SVM 89.29% 89.55% 89.04% 88.24% 90.28% 0.12 0.89
KNN 89.29% 90.15% 88.51% 87.50% 90.97% 0.12 0.89
BN 90.71% 91.04% 90.41% 89.71% 91.67% 0.10 0.92

Standard-KLD-3L
SVM 73.57% 69.62% 78.69% 80.88% 66.67% 0.22 0.74
KNN 61.79% 56.68% 79.37% 90.44% 34.72% 0.38 0.68
BN 69.29% 63.25% 81.75% 87.75% 51.85% 0.47 0.75

157



Standard-KLD-4L
SVM 67.86% 64.56% 72.13% 75.00% 61.11% 0.29 0.68
KNN 57.86% 54.25% 69.12% 84.56% 32.64% 0.41 0.63
BN 64.29% 59.64% 73.57% 81.86% 47.69% 0.22 0.7

Standard-KLD-5L
SVM 70.00% 68.06% 72.06% 72.06% 68.06% 0.29 0.7
KNN 62.50% 57.87% 73.49% 83.82% 42.36% 0.38 0.67
BN 69.52% 64.29% 78.57% 83.82% 56.02% 0.42 0.72

Standard-KLD-6L
SVM 70.71% 69.57% 71.83% 70.59% 70.83% 0.29 0.71
KNN 66.43% 63.64% 69.84% 72.06% 61.11% 0.32 0.69
BN 70.71% 69.19% 72.25% 71.57% 69.91% 0.29 0.74

Overlapped-0NCF-3L
SVM 67.86% 64.56% 72.13% 75.00% 61.11% 0.29 0.68
KNN 59.29% 55.29% 70.83% 84.56% 35.42% 0.41 0.64
BN 64.52% 59.93% 73.43% 81.37% 48.61% 0.47 0.68

Overlapped-0NCF-4L
SVM 67.86% 64.56% 72.13% 75.00% 61.11% 0.29 0.68
KNN 59.29% 55.29% 70.83% 84.56% 35.42% 0.41 0.64
BN 64.52% 59.93% 73.43% 81.37% 48.61% 0.47 0.68

Overlapped-0NCF-5L
SVM 67.86% 64.56% 72.13% 75.00% 61.11% 0.29 0.68
KNN 59.29% 55.29% 70.83% 84.56% 35.42% 0.41 0.64
BN 64.52% 59.93% 73.43% 81.37% 48.61% 0.47 0.68

Overlapped-0NCF-6L
SVM 67.86% 64.56% 72.13% 75.00% 61.11% 0.29 0.68
KNN 59.29% 55.29% 70.83% 84.56% 35.42% 0.41 0.64
BN 64.52% 59.93% 73.43% 81.37% 48.61% 0.47 0.68

Overlapped-AIV-3L
SVM 75.71% 70.24% 83.93% 86.76% 65.28% 0.17 0.76
KNN 65.00% 59.13% 81.94% 90.44% 40.97% 0.36 0.71
BN 68.81% 63.77% 77.42% 82.84% 55.56% 0.40 0.74

Overlapped-AIV-4L
SVM 72.14% 71.01% 73.24% 72.06% 72.22% 0.28 0.72
KNN 66.79% 62.29% 74.29% 80.15% 54.17% 0.26 0.7
BN 70.71% 66.67% 76.27% 79.41% 62.50% 0.35 0.73

Overlapped-AIV-5L
SVM 72.14% 71.01% 73.24% 72.06% 72.22% 0.28 0.72
KNN 66.79% 62.29% 74.29% 80.15% 54.17% 0.26 0.7
BN 70.71% 66.67% 76.27% 79.41% 62.50% 0.35 0.73

Overlapped-AIV-6L
SVM 72.14% 71.01% 73.24% 72.06% 72.22% 0.28 0.72
KNN 66.79% 62.29% 74.29% 80.15% 54.17% 0.26 0.7
BN 70.71% 66.67% 76.27% 79.41% 62.50% 0.35 0.73

Overlapped-GLCM-3L
SVM 76.43% 71.08% 84.21% 86.76% 66.67% 0.17 0.77
KNN 66.07% 59.81% 84.51% 91.91% 41.67% 0.35 0.72
BN 72.38% 66.06% 84.25% 88.73% 56.94% 0.41 0.77

Overlapped-GLCM-4L
SVM 67.14% 67.19% 67.11% 63.24% 70.83% 0.34 0.67
KNN 59.29% 56.18% 64.71% 73.53% 45.83% 0.39 0.63
BN 67.38% 63.90% 72.07% 75.49% 59.72% 0.38 0.71

Overlapped-GLCM-5L
SVM 70.00% 70.97% 69.23% 64.71% 75.00% 0.32 0.7
KNN 61.07% 57.63% 66.99% 75.00% 47.92% 0.36 0.66
BN 68.81% 65.15% 73.74% 76.96% 61.11% 0.37 0.72

Overlapped-GLCM-6L
SVM 70.00% 70.97% 69.23% 64.71% 75.00% 0.32 0.7
KNN 61.07% 57.63% 66.99% 75.00% 47.92% 0.36 0.66
BN 68.81% 65.15% 73.74% 76.96% 61.11% 0.37 0.72

Overlapped-KCC-3L
SVM 75.71% 69.77% 85.19% 88.24% 63.89% 0.16 0.76
KNN 62.86% 57.41% 81.25% 91.18% 36.11% 0.37 0.7
BN 72.14% 64.85% 88.98% 93.14% 52.31% 0.15 0.78

Overlapped-KCC-4L
SVM 67.86% 67.69% 68.00% 64.71% 70.83% 0.33 0.68
KNN 63.57% 61.33% 66.15% 67.65% 59.72% 0.35 0.66
BN 68.57% 66.98% 70.19% 69.61% 67.59% 0.31 0.71

158



Overlapped-KCC-5L
SVM 67.86% 68.85% 67.09% 61.76% 73.61% 0.34 0.68
KNN 65.00% 66.38% 64.02% 56.62% 72.92% 0.37 0.66
BN 69.52% 70.88% 68.49% 63.24% 75.46% 0.26 0.72

Overlapped-KCC-6L
SVM 69.29% 70.49% 68.35% 63.24% 75.00% 0.33 0.69
KNN 66.07% 67.52% 65.03% 58.09% 73.61% 0.36 0.67
BN 69.76% 71.27% 68.62% 63.24% 75.93% 0.25 0.72

Overlapped-ED-3L
SVM 94.29% 94.12% 94.44% 94.12% 94.44% 0.06 0.94
KNN 74.29% 66.00% 95.00% 97.06% 52.78% 0.03 0.85
BN 80.24% 73.00% 92.36% 94.12% 67.13% 0.06 0.9

Overlapped-ED-4L
SVM 72.86% 66.67% 84.00% 88.24% 58.33% 0.17 0.73
KNN 65.36% 60.32% 75.82% 83.82% 47.92% 0.36 0.7
BN 71.67% 66.04% 81.29% 85.78% 58.33% 0.38 0.76

Overlapped-ED-5L
SVM 75.00% 68.97% 84.91% 88.24% 62.50% 0.16 0.75
KNN 66.79% 62.15% 74.76% 80.88% 53.47% 0.35 0.71
BN 72.62% 67.73% 79.88% 83.33% 62.50% 0.36 0.76

Overlapped-ED-6L
SVM 75.00% 68.97% 84.91% 88.24% 62.50% 0.16 0.75
KNN 66.79% 62.15% 74.76% 80.88% 53.47% 0.35 0.71
BN 72.62% 67.73% 79.88% 83.33% 62.50% 0.36 0.76

Overlapped-DTW-3L
SVM 70.71% 67.09% 75.41% 77.94% 63.89% 0.26 0.71
KNN 60.00% 55.83% 71.62% 84.56% 36.81% 0.39 0.66
BN 64.76% 60.07% 73.94% 81.86% 48.61% 0.45 0.7

Overlapped-DTW-4L
SVM 68.57% 64.63% 74.14% 77.94% 59.72% 0.27 0.69
KNN 59.64% 55.45% 72.46% 86.03% 34.72% 0.40 0.65
BN 64.29% 59.64% 73.57% 81.86% 47.69% 0.47 0.69

Overlapped-DTW-5L
SVM 68.57% 64.63% 74.14% 77.94% 59.72% 0.27 0.69
KNN 59.64% 55.45% 72.46% 86.03% 34.72% 0.40 0.65
BN 64.29% 59.64% 73.57% 81.86% 47.69% 0.47 0.69

Overlapped-DTW-6L
SVM 68.57% 64.63% 74.14% 77.94% 59.72% 0.27 0.69
KNN 59.64% 55.45% 72.46% 86.03% 34.72% 0.40 0.65
BN 64.29% 59.64% 73.57% 81.86% 47.69% 0.47 0.69

Overlapped-LCS-3L
SVM 86.43% 87.69% 85.33% 83.82% 88.89% 0.15 0.86
KNN 73.93% 67.03% 87.37% 91.18% 57.64% 0.11 0.8
BN 79.52% 72.87% 90.12% 92.16% 67.59% 0.31 0.86

Overlapped-LCS-4L
SVM 68.57% 68.75% 68.42% 64.71% 72.22% 0.33 0.68
KNN 66.07% 68.14% 64.67% 56.62% 75.00% 0.36 0.67
BN 65.71% 67.86% 64.29% 55.88% 75.00% 0.36 0.67

Overlapped-LCS-5L
SVM 67.86% 67.69% 68.00% 64.71% 70.83% 0.33 0.68
KNN 65.00% 66.67% 63.86% 55.88% 73.61% 0.37 0.66
BN 65.00% 66.86% 63.75% 55.39% 74.07% 0.36 0.67

Overlapped-LCS-6L
SVM 67.86% 67.69% 68.00% 64.71% 70.83% 0.33 0.68
KNN 65.00% 66.67% 63.86% 55.88% 73.61% 0.37 0.66
BN 65.00% 66.86% 63.75% 55.39% 74.07% 0.36 0.67

Overlapped-KLD-3L
SVM 70.71% 66.27% 77.19% 80.88% 61.11% 0.24 0.71
KNN 60.00% 55.71% 72.86% 86.03% 35.42% 0.39 0.66
BN 65.00% 60.29% 74.13% 81.86% 49.07% 0.47 0.71

Overlapped-KLD-4L
SVM 69.29% 64.71% 76.36% 80.88% 58.33% 0.25 0.7
KNN 60.36% 55.81% 75.38% 88.24% 34.03% 0.40 0.65
BN 65.48% 60.57% 75.18% 82.84% 49.07% 0.48 0.7

Overlapped-KLD-5L
SVM 69.29% 64.71% 76.36% 80.88% 58.33% 0.25 0.7
KNN 60.36% 55.81% 75.38% 88.24% 34.03% 0.40 0.65
BN 65.48% 60.57% 75.18% 82.84% 49.07% 0.48 0.7
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Overlapped-KLD-6L
SVM 69.29% 64.71% 76.36% 80.88% 58.33% 0.25 0.7
KNN 60.36% 55.81% 75.38% 88.24% 34.03% 0.40 0.65
BN 65.48% 60.57% 75.18% 82.84% 49.07% 0.48 0.7

A.3 Feature Selection-based Results

In this part additional results for the evaluation of the IFK single feature generation

mechanism are considered with respect to true seven proposed critical functions and

no critical functions. The results included in this part are presented in eight different

tables (Tables A.8 to A.15) for each critical function. Recall that the original reported

experiments reported in Chapter 6 only featured overlapping decomposition, the LCS

critical function and SVM classification. Additional results are thus presented using:

1. No critical function (0NCF),

2. Average Intensity Value (AIV),

3. Kendall’s Coefficient Concordance (KCC),

4. Gray Level Co-occurrence Matrix (GLCM),

5. Euclidean Distance (ED),

6. Dynamic Time Warping (DTW),

7. Longest Common Subsequence (LCS) and

8. Kullback-Leibler divergence (KLD).

The results are presented in a series of tables using the range of dictionary sizes each

K considered previously, {32, 64, 128, 256, 512}, and a range of values for L.

Table A.8: IFK results without using a critical function (0NCF).

Method Classifiers Acc Sen Spec PPV NPV EER AUC

Standard-64K-3L
SVM 90.71% 91.04% 90.41% 89.71% 91.67% 0.10 0.91
KNN 88.21% 88.72% 87.76% 86.76% 89.58% 0.13 0.89
BN 89.05% 90.31% 87.95% 86.76% 91.20% 0.13 0.91

Standard-128K-3L
SVM 92.14% 95.24% 89.61% 88.24% 95.83% 0.11 0.92
KNN 89.29% 89.55% 89.04% 88.24% 90.28% 0.12 0.91
BN 90.00% 91.33% 88.84% 87.75% 92.13% 0.12 0.91

Standard-256K-3L
SVM 85.71% 87.50% 84.21% 82.35% 88.89% 0.17 0.86
KNN 85.36% 84.67% 86.01% 85.29% 85.42% 0.15 0.85
BN 77.62% 84.38% 73.46% 66.18% 88.43% 0.31 0.78
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Standard-512K-3L
SVM 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.95
KNN 95.00% 95.52% 94.52% 94.12% 95.83% 0.06 0.95
BN 93.57% 95.38% 92.00% 91.18% 95.83% 0.09 0.93

Standard-128K-4L
SVM 90.71% 92.31% 89.33% 88.24% 93.06% 0.11 0.91
KNN 87.86% 86.43% 89.29% 88.97% 86.81% 0.11 0.89
BN 88.33% 87.80% 88.84% 88.24% 88.43% 0.12 0.9

Standard-256K-4L
SVM 92.86% 93.94% 91.89% 91.18% 94.44% 0.09 0.93
KNN 90.00% 91.54% 88.67% 87.50% 92.36% 0.12 0.91
BN 89.52% 89.60% 89.45% 88.73% 90.28% 0.10 0.91

Standard-512K-4L
SVM 97.14% 100.00% 94.74% 94.12% 100.00% 0.06 0.97
KNN 93.93% 94.74% 93.20% 92.65% 95.14% 0.07 0.95
BN 92.14% 94.30% 90.31% 89.22% 94.91% 0.10 0.93

Standard-64K-4L
SVM 92.86% 95.31% 90.79% 89.71% 95.83% 0.10 0.93
KNN 91.43% 94.44% 88.96% 87.50% 95.14% 0.11 0.92
BN 91.67% 94.24% 89.52% 88.24% 94.91% 0.12 0.93

Standard-128K-5L
SVM 94.29% 95.45% 93.24% 92.65% 95.83% 0.07 0.94
KNN 91.43% 93.75% 89.47% 88.24% 94.44% 0.11 0.93
BN 89.29% 89.16% 89.40% 88.73% 89.81% 0.10 0.9

Standard-256K-5L
SVM 92.86% 96.77% 89.74% 88.24% 97.22% 0.11 0.93
KNN 88.93% 92.00% 86.45% 84.56% 93.06% 0.14 0.91
BN 86.43% 87.31% 85.65% 84.31% 88.43% 0.15 0.88

Standard-512K-5L
SVM 91.43% 93.75% 89.47% 88.24% 94.44% 0.11 0.91
KNN 88.57% 92.62% 85.44% 83.09% 93.75% 0.15 0.9
BN 85.95% 87.18% 84.89% 83.33% 88.43% 0.16 0.87

Standard-64K-5L
SVM 92.86% 93.94% 91.89% 91.18% 94.44% 0.09 0.93
KNN 90.71% 92.97% 88.82% 87.50% 93.75% 0.12 0.92
BN 89.05% 88.73% 89.35% 88.73% 89.35% 0.11 0.9

Standard-128K-6L
SVM 92.14% 93.85% 90.67% 89.71% 94.44% 0.10 0.92
KNN 92.86% 95.31% 90.79% 89.71% 95.83% 0.10 0.92
BN 89.52% 91.24% 88.05% 86.76% 92.13% 0.13 0.89

Standard-256K-6L
SVM 91.43% 93.75% 89.47% 88.24% 94.44% 0.11 0.91
KNN 89.29% 92.74% 86.54% 84.56% 93.75% 0.14 0.9
BN 85.71% 86.73% 84.82% 83.33% 87.96% 0.17 0.86

Standard-512K-6L
SVM 91.43% 93.75% 89.47% 88.24% 94.44% 0.11 0.91
KNN 87.50% 87.41% 87.59% 86.76% 88.19% 0.13 0.89
BN 84.52% 83.57% 85.45% 84.80% 84.26% 0.16 0.85

Standard-64K-6L
SVM 94.29% 96.88% 92.11% 91.18% 97.22% 0.08 0.94
KNN 92.14% 94.53% 90.13% 88.97% 95.14% 0.10 0.93
BN 87.86% 88.44% 87.33% 86.27% 89.35% 0.14 0.89

Overlapped-32K-3L
SVM 92.86% 96.77% 89.74% 88.24% 97.22% 0.11 0.93
KNN 90.36% 94.31% 87.26% 85.29% 95.14% 0.13 0.91
BN 89.05% 92.93% 86.02% 83.82% 93.98% 0.06 0.9

Overlapped-64K-3L
SVM 94.29% 98.39% 91.03% 89.71% 98.61% 0.09 0.94
KNN 92.14% 95.24% 89.61% 88.24% 95.83% 0.11 0.93
BN 90.95% 94.15% 88.36% 86.76% 94.91% 0.12 0.91

Overlapped-128K-3L
SVM 92.86% 96.77% 89.74% 88.24% 97.22% 0.11 0.93
KNN 91.79% 93.80% 90.07% 88.97% 94.44% 0.10 0.92
BN 90.48% 93.16% 88.26% 86.76% 93.98% 0.13 0.9

Overlapped-256K-3L
SVM 90.71% 92.31% 89.33% 88.24% 93.06% 0.11 0.91
KNN 78.93% 80.80% 77.42% 74.26% 83.33% 0.23 0.85
BN 74.05% 73.40% 74.65% 73.04% 75.00% 0.26 0.77
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Overlapped-512K-3L
SVM 91.43% 92.42% 90.54% 89.71% 93.06% 0.10 0.91
KNN 92.14% 92.54% 91.78% 91.18% 93.06% 0.09 0.92
BN 91.43% 92.86% 90.18% 89.22% 93.52% 0.10 0.92

Overlapped-32K-4L
SVM 97.14% 98.48% 95.95% 95.59% 98.61% 0.04 0.97
KNN 90.71% 95.08% 87.34% 85.29% 95.83% 0.12 0.94
BN 90.00% 95.00% 86.25% 83.82% 95.83% 0.14 0.93

Overlapped-64K-4L
SVM 90.00% 89.71% 90.28% 89.71% 90.28% 0.10 0.9
KNN 87.86% 89.23% 86.67% 85.29% 90.28% 0.14 0.89
BN 88.57% 91.05% 86.52% 84.80% 92.13% 0.15 0.9

Overlapped-128K-4L
SVM 87.86% 86.96% 88.73% 88.24% 87.50% 0.12 0.88
KNN 85.71% 85.29% 86.11% 85.29% 86.11% 0.14 0.87
BN 86.67% 87.76% 85.71% 84.31% 88.89% 0.15 0.88

Overlapped-256K-4L
SVM 90.71% 93.65% 88.31% 86.76% 94.44% 0.12 0.91
KNN 89.29% 91.41% 87.50% 86.03% 92.36% 0.13 0.9
BN 86.90% 89.84% 84.55% 82.35% 91.20% 0.16 0.87

Overlapped-512K-4L
SVM 86.43% 87.69% 85.33% 83.82% 88.89% 0.15 0.86
KNN 84.64% 84.44% 84.83% 83.82% 85.42% 0.16 0.85
BN 81.43% 80.58% 82.24% 81.37% 81.48% 0.19 0.81

Overlapped-32K-5L
SVM 93.57% 95.38% 92.00% 91.18% 95.83% 0.08 0.94
KNN 94.64% 96.18% 93.29% 92.65% 96.53% 0.07 0.94
BN 92.14% 94.30% 90.31% 89.22% 94.91% 0.11 0.92

Overlapped-64K-5L
SVM 95.00% 95.52% 94.52% 94.12% 95.83% 0.06 0.95
KNN 93.21% 95.35% 91.39% 90.44% 95.83% 0.09 0.94
BN 91.43% 94.21% 89.13% 87.75% 94.91% 0.11 0.93

Overlapped-128K-5L
SVM 88.57% 90.62% 86.84% 85.29% 91.67% 0.14 0.88
KNN 88.21% 89.92% 86.75% 85.29% 90.97% 0.14 0.88
BN 87.86% 90.05% 86.03% 84.31% 91.20% 0.15 0.89

Overlapped-256K-5L
SVM 92.14% 93.85% 90.67% 89.71% 94.44% 0.10 0.92
KNN 89.29% 88.97% 89.58% 88.97% 89.58% 0.11 0.91
BN 88.10% 88.50% 87.73% 86.76% 89.35% 0.13 0.9

Overlapped-512K-5L
SVM 93.57% 95.38% 92.00% 91.18% 95.83% 0.08 0.94
KNN 90.36% 92.25% 88.74% 87.50% 93.06% 0.12 0.92
BN 85.95% 86.07% 85.84% 84.80% 87.04% 0.15 0.86

Overlapped-32K-6L
SVM 91.43% 96.67% 87.50% 85.29% 97.22% 0.13 0.91
KNN 90.71% 93.65% 88.31% 86.76% 94.44% 0.12 0.91
BN 89.76% 92.59% 87.45% 85.78% 93.52% 0.07 0.91

Overlapped-64K-6L
SVM 92.86% 96.77% 89.74% 88.24% 97.22% 0.11 0.93
KNN 91.79% 94.49% 89.54% 88.24% 95.14% 0.11 0.92
BN 89.76% 92.59% 87.45% 85.78% 93.52% 0.13 0.91

Overlapped-128K-6L
SVM 93.57% 96.83% 90.91% 89.71% 97.22% 0.10 0.93
KNN 91.79% 95.20% 89.03% 87.50% 95.83% 0.11 0.93
BN 90.24% 93.12% 87.88% 86.27% 93.98% 0.13 0.91

Overlapped-256K-6L
SVM 86.43% 86.57% 86.30% 85.29% 87.50% 0.14 0.86
KNN 86.43% 87.12% 85.81% 84.56% 88.19% 0.15 0.86
BN 85.95% 87.18% 84.89% 83.33% 88.43% 0.17 0.87

Overlapped-512K-6L
SVM 92.14% 92.54% 91.78% 91.18% 93.06% 0.09 0.92
KNN 90.36% 90.37% 90.34% 89.71% 90.97% 0.10 0.91
BN 90.24% 91.79% 88.89% 87.75% 92.59% 0.12 0.92
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Table A.9: The results of using the AIV critical function in the context of IFK.

Method Classifiers Acc Sen Spec PPV NPV EER AUC

Standard-32K-3L
SVM 96.43% 97.01% 95.89% 95.59% 97.22% 0.04 0.96
KNN 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.96
BN 95.48% 96.95% 94.17% 93.63% 97.22% 0.06 0.96

Standard-64K-3L
SVM 92.86% 92.65% 93.06% 92.65% 93.06% 0.07 0.93
KNN 92.86% 92.65% 93.06% 92.65% 93.06% 0.07 0.93
BN 93.10% 93.53% 92.69% 92.16% 93.98% 0.08 0.94

Standard-32K-4L
SVM 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
KNN 96.79% 98.47% 95.30% 94.85% 98.61% 0.05 0.98
BN 95.48% 96.95% 94.17% 93.63% 97.22% 0.06 0.96

Standard-128K-3L
SVM 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
KNN 98.57% 100.00% 97.30% 97.06% 100.00% 0.03 0.99
BN 96.19% 98.96% 93.86% 93.14% 99.07% 0.07 0.96

Standard-256K-3L
SVM 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
KNN 98.21% 98.52% 97.93% 97.79% 98.61% 0.02 0.99
BN 97.62% 98.02% 97.25% 97.06% 98.15% 0.03 0.98

Standard-512K-3L
SVM 97.86% 100.00% 96.00% 95.59% 100.00% 0.04 0.98
KNN 96.07% 97.71% 94.63% 94.12% 97.92% 0.06 0.97
BN 95.24% 96.94% 93.75% 93.14% 97.22% 0.07 0.95

Standard-128K-4L
SVM 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
KNN 98.57% 100.00% 97.30% 97.06% 100.00% 0.03 0.99
BN 96.19% 97.00% 95.45% 95.10% 97.22% 0.05 0.97

Standard-256K-4L
SVM 95.71% 95.59% 95.83% 95.59% 95.83% 0.04 0.96
KNN 97.14% 96.38% 97.89% 97.79% 96.53% 0.02 0.96
BN 96.67% 95.67% 97.64% 97.55% 95.83% 0.04 0.96

Standard-512K-4L
SVM 96.43% 95.65% 97.18% 97.06% 95.83% 0.03 0.96
KNN 92.14% 93.85% 90.67% 89.71% 94.44% 0.06 0.94
BN 87.62% 89.18% 86.28% 84.80% 90.28% 0.14 0.89

Standard-64K-4L
SVM 99.29% 98.55% 100.00% 100.00% 98.61% 0.00 0.99
KNN 95.71% 98.44% 93.42% 92.65% 98.61% 0.01 0.97
BN 94.52% 96.41% 92.89% 92.16% 96.76% 0.08 0.96

Standard-128K-5L
SVM 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
KNN 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
BN 97.38% 98.01% 96.80% 96.57% 98.15% 0.03 0.98

Standard-256K-5L
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 99.52% 99.03% 100.00% 100.00% 99.07% 0.01 0.99

Standard-32K-5L
SVM 94.29% 96.88% 92.11% 91.18% 97.22% 0.08 0.94
KNN 93.57% 96.83% 90.91% 89.71% 97.22% 0.09 0.94
BN 93.33% 95.36% 91.59% 90.69% 95.83% 0.09 0.94

Standard-512K-5L
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 99.76% 99.51% 100.00% 100.00% 99.54% 0.00 1

Standard-64K-5L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 97.50% 98.50% 96.60% 96.32% 98.61% 0.04 0.98
BN 95.71% 95.59% 95.83% 95.59% 95.83% 0.04 0.96

Standard-128K-6L
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 99.64% 100.00% 99.31% 99.26% 100.00% 0.01 1
BN 97.86% 97.56% 98.14% 98.04% 97.69% 0.02 0.98

Standard-256K-6L
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
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KNN 99.29% 99.26% 99.31% 99.26% 99.31% 0.01 1
BN 98.33% 98.05% 98.60% 98.53% 98.15% 0.02 0.99

Standard-32K-6L
SVM 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
KNN 98.93% 100.00% 97.96% 97.79% 100.00% 0.02 0.99
BN 97.86% 98.99% 96.83% 96.57% 99.07% 0.03 0.98

Standard-512K-6L
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 99.29% 98.55% 100.00% 100.00% 98.61% 0.00 1
BN 99.29% 98.55% 100.00% 100.00% 98.61% 0.00 1

Standard-64K-6L
SVM 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
KNN 98.93% 100.00% 97.96% 97.79% 100.00% 0.02 0.99
BN 97.62% 98.50% 96.82% 96.57% 98.61% 0.03 0.98

Overlapped-128K-3L
SVM 91.43% 92.42% 90.54% 89.71% 93.06% 0.10 0.91
KNN 91.79% 93.13% 90.60% 89.71% 93.75% 0.10 0.92
BN 90.71% 91.88% 89.69% 88.73% 92.59% 0.11 0.91

Overlapped-256K-3L
SVM 98.57% 100.00% 97.30% 97.06% 100.00% 0.03 0.99
KNN 96.43% 97.73% 95.27% 94.85% 97.92% 0.05 0.97
BN 93.57% 94.03% 93.15% 92.65% 94.44% 0.06 0.95

Overlapped-32K-3L
SVM 97.14% 98.48% 95.95% 95.59% 98.61% 0.04 0.97
KNN 96.43% 99.22% 94.08% 93.38% 99.31% 0.06 0.97
BN 94.76% 97.89% 92.17% 91.18% 98.15% 0.08 0.95

Overlapped-512K-3L
SVM 92.86% 95.31% 90.79% 89.71% 95.83% 0.10 0.93
KNN 90.36% 91.60% 89.26% 88.24% 92.36% 0.11 0.92
BN 89.76% 90.86% 88.79% 87.75% 91.67% 0.12 0.91

Overlapped-64K-3L
SVM 94.29% 98.39% 91.03% 89.71% 98.61% 0.09 0.94
KNN 92.50% 96.00% 89.68% 88.24% 96.53% 0.11 0.93
BN 90.71% 93.65% 88.31% 86.76% 94.44% 0.12 0.91

Overlapped-128K-4L
SVM 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.95
KNN 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96
BN 95.71% 96.50% 95.00% 94.61% 96.76% 0.05 0.95

Overlapped-256K-4L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 96.79% 97.04% 96.55% 96.32% 97.22% 0.04 0.97
BN 96.43% 96.55% 96.31% 96.08% 96.76% 0.04 0.97

Overlapped-32K-4L
SVM 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.95
KNN 94.29% 97.62% 91.56% 90.44% 97.92% 0.09 0.95
BN 93.57% 96.34% 91.27% 90.20% 96.76% 0.10 0.94

Overlapped-512K-4L
SVM 95.71% 95.59% 95.83% 95.59% 95.83% 0.04 0.96
KNN 96.43% 97.01% 95.89% 95.59% 97.22% 0.04 0.96
BN 96.67% 97.03% 96.33% 96.08% 97.22% 0.04 0.97

Overlapped-64K-4L
SVM 93.57% 94.03% 93.15% 92.65% 94.44% 0.07 0.94
KNN 93.21% 95.35% 91.39% 90.44% 95.83% 0.09 0.93
BN 93.81% 95.41% 92.41% 91.67% 95.83% 0.08 0.94

Overlapped-128K-5L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 97.14% 99.23% 95.33% 94.85% 99.31% 0.05 0.97
BN 96.67% 98.47% 95.09% 94.61% 98.61% 0.05 0.97

Overlapped-256K-5L
SVM 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
KNN 98.93% 99.26% 98.62% 98.53% 99.31% 0.01 0.99
BN 98.33% 98.52% 98.16% 98.04% 98.61% 0.02 0.98

Overlapped-32K-5L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 95.36% 96.95% 93.96% 93.38% 97.22% 0.06 0.97
BN 92.62% 93.91% 91.48% 90.69% 94.44% 0.09 0.94

Overlapped-512K-5L
SVM 99.29% 98.55% 100.00% 100.00% 98.61% 0.00 0.99
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KNN 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
BN 98.33% 98.05% 98.60% 98.53% 98.15% 0.02 0.99

Overlapped-64K-5L
SVM 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
KNN 98.21% 99.25% 97.28% 97.06% 99.31% 0.03 0.98
BN 96.67% 97.50% 95.91% 95.59% 97.69% 0.02 0.97

Overlapped-128K-6L
SVM 97.86% 97.10% 98.59% 98.53% 97.22% 0.01 0.98
KNN 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.98
BN 98.33% 98.05% 98.60% 98.53% 98.15% 0.02 0.98

Overlapped-256K-6L
SVM 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
KNN 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
BN 98.33% 98.05% 98.60% 98.53% 98.15% 0.02 0.98

Overlapped-32K-6L
SVM 97.86% 97.10% 98.59% 98.53% 97.22% 0.01 0.98
KNN 96.07% 96.30% 95.86% 95.59% 96.53% 0.04 0.97
BN 95.00% 95.98% 94.12% 93.63% 96.30% 0.06 0.96

Overlapped-512K-6L
SVM 98.57% 100.00% 97.30% 97.06% 100.00% 0.03 0.99
KNN 98.21% 99.25% 97.28% 97.06% 99.31% 0.03 0.98
BN 98.33% 99.00% 97.72% 97.55% 99.07% 0.02 0.99

Overlapped-64K-6L
SVM 97.86% 97.10% 98.59% 98.53% 97.22% 0.01 0.98
KNN 97.50% 97.08% 97.90% 97.79% 97.22% 0.03 0.98
BN 96.90% 96.59% 97.21% 97.06% 96.76% 0.03 0.97

Table A.10: The results of using the GLCM critical function using IFK.

Method Classifiers Acc Sen Spec PPV NPV EER AUC

Standard-128K-3L
SVM 93.57% 96.83% 90.91% 89.71% 97.22% 0.10 0.93
KNN 92.50% 94.57% 90.73% 89.71% 95.14% 0.10 0.93
BN 92.14% 94.76% 89.96% 88.73% 95.37% 0.11 0.92

Standard-256K-3L
SVM 95.00% 98.41% 92.21% 91.18% 98.61% 0.08 0.95
KNN 92.50% 95.28% 90.20% 88.97% 95.83% 0.10 0.94
BN 91.19% 92.82% 89.78% 88.73% 93.52% 0.11 0.92

Standard-32K-3L
SVM 92.14% 95.24% 89.61% 88.24% 95.83% 0.11 0.92
KNN 89.64% 94.21% 86.16% 83.82% 95.14% 0.14 0.91
BN 90.48% 93.62% 87.93% 86.27% 94.44% 0.06 0.92

Standard-512K-3L
SVM 90.00% 89.71% 90.28% 89.71% 90.28% 0.10 0.9
KNN 92.50% 93.23% 91.84% 91.18% 93.75% 0.09 0.91
BN 89.29% 89.16% 89.40% 88.73% 89.81% 0.10 0.87

Standard-64K-3L
SVM 92.86% 96.77% 89.74% 88.24% 97.22% 0.11 0.93
KNN 90.36% 91.60% 89.26% 88.24% 92.36% 0.11 0.92
BN 90.95% 93.23% 89.04% 87.75% 93.98% 0.06 0.92

Standard-128K-4L
SVM 93.57% 95.38% 92.00% 91.18% 95.83% 0.08 0.94
KNN 91.07% 93.70% 88.89% 87.50% 94.44% 0.11 0.92
BN 91.19% 93.72% 89.08% 87.75% 94.44% 0.11 0.92

Standard-256K-4L
SVM 90.71% 92.31% 89.33% 88.24% 93.06% 0.11 0.91
KNN 92.50% 93.89% 91.28% 90.44% 94.44% 0.09 0.92
BN 92.14% 94.76% 89.96% 88.73% 95.37% 0.11 0.91

Standard-32K-4L
SVM 93.57% 94.03% 93.15% 92.65% 94.44% 0.07 0.94
KNN 92.86% 93.94% 91.89% 91.18% 94.44% 0.09 0.93
BN 92.38% 93.43% 91.44% 90.69% 93.98% 0.09 0.93
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Standard-512K-4L
SVM 95.71% 98.44% 93.42% 92.65% 98.61% 0.07 0.96
KNN 95.00% 96.21% 93.92% 93.38% 96.53% 0.06 0.95
BN 94.05% 95.90% 92.44% 91.67% 96.30% 0.08 0.94

Standard-64K-4L
SVM 96.43% 97.01% 95.89% 95.59% 97.22% 0.04 0.96
KNN 92.86% 94.62% 91.33% 90.44% 95.14% 0.09 0.95
BN 91.43% 91.18% 91.67% 91.18% 91.67% 0.09 0.93

Standard-128K-5L
SVM 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96
KNN 95.00% 97.66% 92.76% 91.91% 97.92% 0.08 0.96
BN 93.33% 94.44% 92.34% 91.67% 94.91% 0.08 0.94

Standard-256K-5L
SVM 97.14% 98.48% 95.95% 95.59% 98.61% 0.04 0.97
KNN 95.00% 98.41% 92.21% 91.18% 98.61% 0.08 0.96
BN 94.52% 96.41% 92.89% 92.16% 96.76% 0.07 0.95

Standard-32K-5L
SVM 96.43% 97.01% 95.89% 95.59% 97.22% 0.04 0.96
KNN 95.36% 96.24% 94.56% 94.12% 96.53% 0.06 0.96
BN 94.29% 95.45% 93.24% 92.65% 95.83% 0.07 0.95

Standard-512K-5L
SVM 97.14% 98.48% 95.95% 95.59% 98.61% 0.04 0.97
KNN 95.36% 98.43% 92.81% 91.91% 98.61% 0.07 0.96
BN 94.05% 95.90% 92.44% 91.67% 96.30% 0.08 0.95

Standard-64K-5L
SVM 94.29% 96.88% 92.11% 91.18% 97.22% 0.08 0.94
KNN 91.79% 96.69% 88.05% 86.03% 97.22% 0.12 0.93
BN 90.95% 94.15% 88.36% 86.76% 94.91% 0.12 0.92

Standard-128K-6L
SVM 97.14% 97.06% 97.22% 97.06% 97.22% 0.03 0.97
KNN 94.64% 96.90% 92.72% 91.91% 97.22% 0.07 0.96
BN 93.81% 95.88% 92.04% 91.18% 96.30% 0.08 0.95

Standard-256K-6L
SVM 97.14% 97.06% 97.22% 97.06% 97.22% 0.03 0.97
KNN 95.71% 97.69% 94.00% 93.38% 97.92% 0.06 0.96
BN 94.29% 95.92% 92.86% 92.16% 96.30% 0.07 0.95

Standard-32K-6L
SVM 97.14% 98.48% 95.95% 95.59% 98.61% 0.04 0.97
KNN 95.00% 97.66% 92.76% 91.91% 97.92% 0.07 0.96
BN 93.57% 96.34% 91.27% 90.20% 96.76% 0.03 0.95

Standard-512K-6L
SVM 97.14% 97.06% 97.22% 97.06% 97.22% 0.03 0.97
KNN 96.79% 98.47% 95.30% 94.85% 98.61% 0.05 0.97
BN 95.71% 96.97% 94.59% 94.12% 97.22% 0.06 0.96

Standard-64K-6L
SVM 95.71% 96.97% 94.59% 94.12% 97.22% 0.06 0.96
KNN 94.64% 96.18% 93.29% 92.65% 96.53% 0.07 0.95
BN 93.10% 94.87% 91.56% 90.69% 95.37% 0.09 0.94

Overlapped-128K-3L
SVM 93.57% 98.36% 89.87% 88.24% 98.61% 0.11 0.93
KNN 88.93% 90.08% 87.92% 86.76% 90.97% 0.13 0.91
BN 87.86% 90.05% 86.03% 84.31% 91.20% 0.15 0.89

Overlapped-256K-3L
SVM 93.57% 98.36% 89.87% 88.24% 98.61% 0.11 0.93
KNN 92.14% 95.97% 89.10% 87.50% 96.53% 0.11 0.93
BN 91.67% 96.17% 88.19% 86.27% 96.76% 0.12 0.92

Overlapped-32K-3L
SVM 91.43% 96.67% 87.50% 85.29% 97.22% 0.13 0.91
KNN 89.29% 94.17% 85.62% 83.09% 95.14% 0.15 0.9
BN 88.33% 92.35% 85.23% 82.84% 93.52% 0.17 0.9

Overlapped-512K-3L
SVM 92.86% 95.31% 90.79% 89.71% 95.83% 0.10 0.93
KNN 90.71% 90.44% 90.97% 90.44% 90.97% 0.10 0.92
BN 90.71% 91.88% 89.69% 88.73% 92.59% 0.11 0.92

Overlapped-64K-3L
SVM 92.14% 96.72% 88.61% 86.76% 97.22% 0.12 0.92
KNN 88.93% 93.39% 85.53% 83.09% 94.44% 0.15 0.9
BN 88.10% 91.40% 85.47% 83.33% 92.59% 0.07 0.9
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Overlapped-128K-4L
SVM 90.00% 92.19% 88.16% 86.76% 93.06% 0.12 0.9
KNN 88.57% 90.00% 87.33% 86.03% 90.97% 0.13 0.89
BN 87.38% 89.53% 85.59% 83.82% 90.74% 0.15 0.89

Overlapped-256K-4L
SVM 89.29% 89.55% 89.04% 88.24% 90.28% 0.12 0.89
KNN 86.43% 85.51% 87.32% 86.76% 86.11% 0.13 0.88
BN 81.19% 84.92% 78.42% 74.51% 87.50% 0.25 0.8

Overlapped-32K-4L
SVM 95.00% 95.52% 94.52% 94.12% 95.83% 0.06 0.95
KNN 93.21% 95.35% 91.39% 90.44% 95.83% 0.09 0.94
BN 92.14% 95.24% 89.61% 88.24% 95.83% 0.04 0.93

Overlapped-512K-4L
SVM 92.14% 92.54% 91.78% 91.18% 93.06% 0.09 0.92
KNN 89.64% 90.23% 89.12% 88.24% 90.97% 0.11 0.91
BN 88.57% 90.62% 86.84% 85.29% 91.67% 0.14 0.89

Overlapped-64K-4L
SVM 89.29% 89.55% 89.04% 88.24% 90.28% 0.12 0.89
KNN 87.86% 88.64% 87.16% 86.03% 89.58% 0.13 0.89
BN 88.81% 90.26% 87.56% 86.27% 91.20% 0.13 0.9

Overlapped-128K-5L
SVM 90.71% 89.86% 91.55% 91.18% 90.28% 0.09 0.91
KNN 86.43% 88.28% 84.87% 83.09% 89.58% 0.11 0.89
BN 86.90% 89.84% 84.55% 82.35% 91.20% 0.16 0.9

Overlapped-256K-5L
SVM 92.86% 92.65% 93.06% 92.65% 93.06% 0.07 0.93
KNN 90.00% 90.91% 89.19% 88.24% 91.67% 0.11 0.91
BN 90.00% 92.19% 88.16% 86.76% 93.06% 0.13 0.92

Overlapped-32K-5L
SVM 94.29% 95.45% 93.24% 92.65% 95.83% 0.07 0.94
KNN 92.50% 94.57% 90.73% 89.71% 95.14% 0.10 0.93
BN 91.19% 94.65% 88.41% 86.76% 95.37% 0.05 0.92

Overlapped-512K-5L
SVM 96.43% 97.01% 95.89% 95.59% 97.22% 0.04 0.96
KNN 93.57% 95.38% 92.00% 91.18% 95.83% 0.08 0.95
BN 86.43% 94.01% 81.42% 76.96% 95.37% 0.21 0.87

Overlapped-64K-5L
SVM 90.71% 93.65% 88.31% 86.76% 94.44% 0.12 0.91
KNN 89.64% 94.21% 86.16% 83.82% 95.14% 0.14 0.9
BN 89.29% 93.92% 85.77% 83.33% 94.91% 0.05 0.91

Overlapped-128K-6L
SVM 92.14% 93.85% 90.67% 89.71% 94.44% 0.10 0.92
KNN 88.57% 92.62% 85.44% 83.09% 93.75% 0.15 0.9
BN 87.62% 91.76% 84.45% 81.86% 93.06% 0.18 0.9

Overlapped-256K-6L
SVM 90.00% 92.19% 88.16% 86.76% 93.06% 0.12 0.9
KNN 84.64% 91.89% 79.88% 75.00% 93.75% 0.20 0.87
BN 85.48% 91.81% 81.12% 76.96% 93.52% 0.18 0.88

Overlapped-32K-6L
SVM 90.00% 90.91% 89.19% 88.24% 91.67% 0.11 0.9
KNN 88.57% 89.39% 87.84% 86.76% 90.28% 0.13 0.89
BN 89.29% 90.77% 88.00% 86.76% 91.67% 0.13 0.9

Overlapped-512K-6L
SVM 88.57% 91.94% 85.90% 83.82% 93.06% 0.15 0.88
KNN 83.57% 89.47% 79.52% 75.00% 91.67% 0.20 0.86
BN 84.29% 89.20% 80.74% 76.96% 91.20% 0.19 0.87

Overlapped-64K-6L
SVM 87.86% 89.23% 86.67% 85.29% 90.28% 0.14 0.88
KNN 86.79% 91.60% 83.23% 80.15% 93.06% 0.17 0.87
BN 86.90% 91.16% 83.68% 80.88% 92.59% 0.07 0.88

Table A.11: The results of using the KCC critical function using IFK.

Method Classifiers Acc Sen Spec PPV NPV EER AUC
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Standard-128K-3L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 94.29% 94.78% 93.84% 93.38% 95.14% 0.06 0.96
BN 93.81% 94.06% 93.58% 93.14% 94.44% 0.07 0.95

Standard-256K-3L
SVM 97.14% 100.00% 94.74% 94.12% 100.00% 0.06 0.97
KNN 93.57% 96.09% 91.45% 90.44% 96.53% 0.09 0.95
BN 93.10% 95.81% 90.83% 89.71% 96.30% 0.04 0.95

Standard-32K-3L
SVM 94.29% 96.88% 92.11% 91.18% 97.22% 0.08 0.94
KNN 93.21% 96.80% 90.32% 88.97% 97.22% 0.10 0.94
BN 92.86% 94.85% 91.15% 90.20% 95.37% 0.09 0.94

Standard-512K-3L
SVM 96.43% 97.01% 95.89% 95.59% 97.22% 0.04 0.96
KNN 96.07% 96.99% 95.24% 94.85% 97.22% 0.05 0.96
BN 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.95

Standard-64K-3L
SVM 94.29% 96.88% 92.11% 91.18% 97.22% 0.08 0.94
KNN 92.50% 93.89% 91.28% 90.44% 94.44% 0.09 0.93
BN 89.29% 89.95% 88.69% 87.75% 90.74% 0.12 0.9

Standard-128K-4L
SVM 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
KNN 97.50% 98.50% 96.60% 96.32% 98.61% 0.04 0.98
BN 97.62% 97.55% 97.69% 97.55% 97.69% 0.02 0.98

Standard-256K-4L
SVM 95.71% 96.97% 94.59% 94.12% 97.22% 0.06 0.96
KNN 96.43% 96.32% 96.53% 96.32% 96.53% 0.04 0.96
BN 88.81% 92.90% 85.65% 83.33% 93.98% 0.17 0.9

Standard-32K-4L
SVM 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
KNN 97.50% 98.50% 96.60% 96.32% 98.61% 0.04 0.98
BN 97.62% 97.55% 97.69% 97.55% 97.69% 0.02 0.98

Standard-512K-4L
SVM 96.43% 97.01% 95.89% 95.59% 97.22% 0.04 0.96
KNN 93.57% 96.09% 91.45% 90.44% 96.53% 0.09 0.95
BN 91.43% 93.30% 89.82% 88.73% 93.98% 0.11 0.92

Standard-64K-4L
SVM 97.14% 97.06% 97.22% 97.06% 97.22% 0.03 0.97
KNN 96.79% 97.74% 95.92% 95.59% 97.92% 0.04 0.97
BN 96.19% 95.63% 96.73% 96.57% 95.83% 0.04 0.96

Standard-128K-5L
SVM 96.43% 97.01% 95.89% 95.59% 97.22% 0.04 0.96
KNN 97.14% 97.76% 96.58% 96.32% 97.92% 0.04 0.97
BN 97.14% 96.60% 97.66% 97.55% 96.76% 0.03 0.97

Standard-256K-5L
SVM 97.14% 97.06% 97.22% 97.06% 97.22% 0.03 0.97
KNN 97.50% 97.78% 97.24% 97.06% 97.92% 0.03 0.97
BN 97.38% 96.62% 98.12% 98.04% 96.76% 0.03 0.97

Standard-32K-5L
SVM 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
KNN 97.14% 98.48% 95.95% 95.59% 98.61% 0.04 0.98
BN 97.14% 97.06% 97.22% 97.06% 97.22% 0.03 0.98

Standard-512K-5L
SVM 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
KNN 98.21% 98.52% 97.93% 97.79% 98.61% 0.02 0.98
BN 97.86% 97.56% 98.14% 98.04% 97.69% 0.02 0.98

Standard-64K-5L
SVM 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
KNN 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
BN 98.33% 97.58% 99.06% 99.02% 97.69% 0.02 0.98

Standard-128K-6L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 97.50% 98.50% 96.60% 96.32% 98.61% 0.04 0.98
BN 97.62% 98.02% 97.25% 97.06% 98.15% 0.03 0.98

Standard-256K-6L
SVM 97.14% 97.06% 97.22% 97.06% 97.22% 0.03 0.97
KNN 97.50% 97.78% 97.24% 97.06% 97.92% 0.03 0.97
BN 97.86% 97.56% 98.14% 98.04% 97.69% 0.02 0.98

168



Standard-32K-6L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.97
BN 96.67% 97.03% 96.33% 96.08% 97.22% 0.03 0.97

Standard-512K-6L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
BN 98.10% 98.51% 97.71% 97.55% 98.61% 0.02 0.98

Standard-64K-6L
SVM 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
KNN 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
BN 98.10% 98.04% 98.15% 98.04% 98.15% 0.02 0.98

Overlapped-128K-3L
SVM 94.29% 96.88% 92.11% 91.18% 97.22% 0.08 0.94
KNN 93.21% 96.06% 90.85% 89.71% 96.53% 0.10 0.94
BN 91.43% 94.21% 89.13% 87.75% 94.91% 0.11 0.91

Overlapped-256K-3L
SVM 92.86% 96.77% 89.74% 88.24% 97.22% 0.11 0.93
KNN 91.79% 94.49% 89.54% 88.24% 95.14% 0.11 0.92
BN 90.71% 94.59% 87.66% 85.78% 95.37% 0.13 0.92

Overlapped-32K-3L
SVM 92.86% 96.77% 89.74% 88.24% 97.22% 0.11 0.93
KNN 91.07% 95.87% 87.42% 85.29% 96.53% 0.13 0.92
BN 90.00% 94.51% 86.55% 84.31% 95.37% 0.16 0.91

Overlapped-512K-3L
SVM 95.00% 95.52% 94.52% 94.12% 95.83% 0.06 0.95
KNN 92.50% 95.28% 90.20% 88.97% 95.83% 0.10 0.94
BN 90.48% 93.16% 88.26% 86.76% 93.98% 0.12 0.91

Overlapped-64K-3L
SVM 94.29% 96.88% 92.11% 91.18% 97.22% 0.08 0.94
KNN 87.14% 90.32% 84.62% 82.35% 91.67% 0.15 0.91
BN 81.43% 82.47% 80.53% 78.43% 84.26% 0.20 0.82

Overlapped-128K-4L
SVM 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
KNN 96.07% 98.45% 94.04% 93.38% 98.61% 0.06 0.97
BN 95.71% 95.59% 95.83% 95.59% 95.83% 0.04 0.97

Overlapped-256K-4L
SVM 97.14% 98.48% 95.95% 95.59% 98.61% 0.04 0.97
KNN 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.96
BN 93.33% 95.36% 91.59% 90.69% 95.83% 0.09 0.94

Overlapped-32K-4L
SVM 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
KNN 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
BN 97.86% 96.65% 99.05% 99.02% 96.76% 0.03 0.98

Overlapped-512K-4L
SVM 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
KNN 96.07% 96.99% 95.24% 94.85% 97.22% 0.05 0.97
BN 93.57% 94.47% 92.76% 92.16% 94.91% 0.08 0.94

Overlapped-64K-4L
SVM 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96
KNN 95.71% 98.44% 93.42% 92.65% 98.61% 0.07 0.96
BN 96.19% 97.00% 95.45% 95.10% 97.22% 0.03 0.97

Overlapped-128K-5L
SVM 97.14% 98.48% 95.95% 95.59% 98.61% 0.04 0.97
KNN 96.79% 98.47% 95.30% 94.85% 98.61% 0.05 0.97
BN 96.90% 97.04% 96.77% 96.57% 97.22% 0.03 0.97

Overlapped-256K-5L
SVM 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
KNN 97.50% 98.50% 96.60% 96.32% 98.61% 0.04 0.98
BN 96.90% 96.14% 97.65% 97.55% 96.30% 0.04 0.97

Overlapped-32K-5L
SVM 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96
KNN 92.86% 98.33% 88.75% 86.76% 98.61% 0.11 0.95
BN 93.10% 96.79% 90.13% 88.73% 97.22% 0.10 0.95

Overlapped-512K-5L
SVM 97.14% 98.48% 95.95% 95.59% 98.61% 0.04 0.97
KNN 96.07% 98.45% 94.04% 93.38% 98.61% 0.06 0.97
BN 90.24% 94.54% 86.92% 84.80% 95.37% 0.14 0.91
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Overlapped-64K-5L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 96.79% 98.47% 95.30% 94.85% 98.61% 0.05 0.97
BN 96.67% 96.57% 96.76% 96.57% 96.76% 0.03 0.97

Overlapped-128K-6L
SVM 88.57% 90.62% 86.84% 85.29% 91.67% 0.14 0.88
KNN 88.21% 91.87% 85.35% 83.09% 93.06% 0.15 0.88
BN 89.29% 92.51% 86.70% 84.80% 93.52% 0.14 0.9

Overlapped-256K-6L
SVM 90.00% 93.55% 87.18% 85.29% 94.44% 0.13 0.9
KNN 89.64% 94.21% 86.16% 83.82% 95.14% 0.14 0.9
BN 89.76% 93.51% 86.81% 84.80% 94.44% 0.14 0.9

Overlapped-32K-6L
SVM 91.43% 93.75% 89.47% 88.24% 94.44% 0.11 0.91
KNN 91.07% 94.40% 88.39% 86.76% 95.14% 0.12 0.91
BN 91.19% 93.72% 89.08% 87.75% 94.44% 0.12 0.92

Overlapped-512K-6L
SVM 88.57% 90.62% 86.84% 85.29% 91.67% 0.14 0.88
KNN 88.93% 93.39% 85.53% 83.09% 94.44% 0.15 0.89
BN 89.52% 93.01% 86.75% 84.80% 93.98% 0.15 0.9

Overlapped-64K-6L
SVM 91.43% 93.75% 89.47% 88.24% 94.44% 0.11 0.91
KNN 88.93% 95.65% 84.24% 80.88% 96.53% 0.16 0.9
BN 89.29% 94.41% 85.48% 82.84% 95.37% 0.15 0.91

Table A.12: The results of using the ED critical function using IFK.

Method Classifiers Acc Sen Spec PPV NPV EER AUC

Standard-128K-3L
SVM 93.57% 92.75% 94.37% 94.12% 93.06% 0.06 0.94
KNN 90.36% 89.78% 90.91% 90.44% 90.28% 0.10 0.92
BN 87.86% 87.32% 88.37% 87.75% 87.96% 0.12 0.89

Standard-256K-3L
SVM 95.00% 98.41% 92.21% 91.18% 98.61% 0.08 0.95
KNN 95.71% 99.21% 92.86% 91.91% 99.31% 0.08 0.95
BN 95.00% 97.91% 92.58% 91.67% 98.15% 0.08 0.95

Standard-32K-3L
SVM 92.86% 90.28% 95.59% 95.59% 90.28% 0.05 0.93
KNN 92.14% 91.30% 92.96% 92.65% 91.67% 0.08 0.93
BN 92.14% 92.54% 91.78% 91.18% 93.06% 0.09 0.93

Standard-512K-3L
SVM 92.14% 92.54% 91.78% 91.18% 93.06% 0.09 0.92
KNN 87.86% 87.50% 88.19% 87.50% 88.19% 0.12 0.9
BN 84.05% 81.86% 86.34% 86.27% 81.94% 0.17 0.84

Standard-64K-3L
SVM 92.86% 96.77% 89.74% 88.24% 97.22% 0.11 0.93
KNN 92.86% 96.03% 90.26% 88.97% 96.53% 0.10 0.93
BN 92.86% 95.79% 90.43% 89.22% 96.30% 0.11 0.93

Standard-128K-4L
SVM 99.29% 98.55% 100.00% 100.00% 98.61% 0.00 0.99
KNN 98.21% 97.81% 98.60% 98.53% 97.92% 0.02 0.99
BN 98.33% 97.58% 99.06% 99.02% 97.69% 0.01 0.99

Standard-256K-4L
SVM 99.29% 98.55% 100.00% 100.00% 98.61% 0.00 0.99
KNN 98.57% 97.83% 99.30% 99.26% 97.92% 0.02 0.99
BN 98.57% 97.60% 99.53% 99.51% 97.69% 0.02 0.99

Standard-32K-4L
SVM 99.29% 98.55% 100.00% 100.00% 98.61% 0.00 0.99
KNN 97.50% 98.50% 96.60% 96.32% 98.61% 0.01 0.98
BN 96.90% 96.59% 97.21% 97.06% 96.76% 0.03 0.98

Standard-512K-4L
SVM 97.86% 97.10% 98.59% 98.53% 97.22% 0.01 0.98
KNN 96.43% 95.00% 97.86% 97.79% 95.14% 0.05 0.97
BN 89.29% 89.95% 88.69% 87.75% 90.74% 0.12 0.87
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Standard-64K-4L
SVM 99.29% 98.55% 100.00% 100.00% 98.61% 0.00 0.99
KNN 98.57% 97.83% 99.30% 99.26% 97.92% 0.02 0.99
BN 98.57% 97.60% 99.53% 99.51% 97.69% 0.02 0.99

Standard-128K-5L
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 1
BN 98.57% 98.06% 99.07% 99.02% 98.15% 0.02 0.99

Standard-256K-5L
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 99.29% 98.55% 100.00% 100.00% 98.61% 0.01 0.99

Standard-32K-5L
SVM 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
KNN 98.21% 98.52% 97.93% 97.79% 98.61% 0.02 0.98
BN 97.14% 97.06% 97.22% 97.06% 97.22% 0.03 0.98

Standard-512K-5L
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 99.64% 100.00% 99.31% 99.26% 100.00% 0.01 1
BN 98.81% 100.00% 97.74% 97.55% 100.00% 0.02 0.99

Standard-64K-5L
SVM 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
KNN 98.93% 100.00% 97.96% 97.79% 100.00% 0.02 0.99
BN 98.10% 97.57% 98.60% 98.53% 97.69% 0.02 0.98

Standard-128K-6L
SVM 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
KNN 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
BN 97.62% 96.19% 99.05% 99.02% 96.30% 0.04 0.97

Standard-256K-6L
SVM 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
KNN 98.93% 100.00% 97.96% 97.79% 100.00% 0.02 0.99
BN 96.90% 95.69% 98.10% 98.04% 95.83% 0.04 0.97

Standard-32K-6L
SVM 99.29% 98.55% 100.00% 100.00% 98.61% 0.00 0.99
KNN 97.86% 97.79% 97.92% 97.79% 97.92% 0.02 0.99
BN 95.24% 94.23% 96.23% 96.08% 94.44% 0.06 0.96

Standard-512K-6L
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 99.64% 100.00% 99.31% 99.26% 100.00% 0.01 1
BN 97.62% 95.75% 99.52% 99.51% 95.83% 0.04 0.97

Standard-64K-6L
SVM 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
KNN 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
BN 97.38% 95.73% 99.04% 99.02% 95.83% 0.04 0.97

Overlapped-128K-3L
SVM 95.71% 98.44% 93.42% 92.65% 98.61% 0.07 0.96
KNN 93.93% 96.12% 92.05% 91.18% 96.53% 0.08 0.95
BN 94.52% 95.94% 93.27% 92.65% 96.30% 0.07 0.96

Overlapped-256K-3L
SVM 95.71% 96.97% 94.59% 94.12% 97.22% 0.06 0.96
KNN 96.79% 96.35% 97.20% 97.06% 96.53% 0.03 0.96
BN 96.19% 96.53% 95.87% 95.59% 96.76% 0.04 0.96

Overlapped-32K-3L
SVM 95.71% 98.44% 93.42% 92.65% 98.61% 0.07 0.96
KNN 95.36% 97.67% 93.38% 92.65% 97.92% 0.07 0.95
BN 94.76% 95.96% 93.69% 93.14% 96.30% 0.07 0.95

Overlapped-512K-3L
SVM 92.86% 93.94% 91.89% 91.18% 94.44% 0.09 0.93
KNN 88.57% 88.81% 88.36% 87.50% 89.58% 0.12 0.91
BN 88.10% 89.29% 87.05% 85.78% 90.28% 0.13 0.89

Overlapped-64K-3L
SVM 95.00% 98.41% 92.21% 91.18% 98.61% 0.08 0.95
KNN 93.93% 96.85% 91.50% 90.44% 97.22% 0.09 0.94
BN 92.38% 95.74% 89.66% 88.24% 96.30% 0.11 0.92

Overlapped-128K-4L
SVM 97.86% 95.77% 100.00% 100.00% 95.83% 0.00 0.98
KNN 97.86% 96.43% 99.29% 99.26% 96.53% 0.03 0.98
BN 98.10% 97.57% 98.60% 98.53% 97.69% 0.02 0.98
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Overlapped-256K-4L
SVM 97.86% 97.10% 98.59% 98.53% 97.22% 0.01 0.98
KNN 96.43% 95.65% 97.18% 97.06% 95.83% 0.04 0.97
BN 93.81% 95.88% 92.04% 91.18% 96.30% 0.09 0.93

Overlapped-32K-4L
SVM 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
KNN 98.93% 98.54% 99.30% 99.26% 98.61% 0.01 0.99
BN 98.81% 98.07% 99.53% 99.51% 98.15% 0.02 0.99

Overlapped-512K-4L
SVM 97.14% 97.06% 97.22% 97.06% 97.22% 0.03 0.97
KNN 96.79% 97.04% 96.55% 96.32% 97.22% 0.04 0.97
BN 93.10% 90.32% 96.06% 96.08% 90.28% 0.10 0.92

Overlapped-64K-4L
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 99.76% 99.51% 100.00% 100.00% 99.54% 0.00 1

Overlapped-128K-5L
SVM 99.29% 98.55% 100.00% 100.00% 98.61% 0.00 0.99
KNN 99.64% 99.27% 100.00% 100.00% 99.31% 0.01 0.99
BN 98.57% 99.01% 98.17% 98.04% 99.07% 0.02 0.99

Overlapped-256K-5L
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 1
BN 99.29% 99.51% 99.08% 99.02% 99.54% 0.00 1

Overlapped-32K-5L
SVM 98.57% 97.14% 100.00% 100.00% 97.22% 0.00 0.99
KNN 98.57% 97.83% 99.30% 99.26% 97.92% 0.02 0.99
BN 98.10% 97.12% 99.06% 99.02% 97.22% 0.03 0.98

Overlapped-512K-5L
SVM 97.86% 97.10% 98.59% 98.53% 97.22% 0.01 0.98
KNN 98.57% 97.83% 99.30% 99.26% 97.92% 0.02 0.98
BN 98.81% 98.07% 99.53% 99.51% 98.15% 0.02 0.99

Overlapped-64K-5L
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 99.64% 99.27% 100.00% 100.00% 99.31% 0.00 1
BN 99.52% 99.03% 100.00% 100.00% 99.07% 0.01 1

Overlapped-128K-6L
SVM 97.14% 97.06% 97.22% 97.06% 97.22% 0.03 0.97
KNN 97.50% 96.40% 98.58% 98.53% 96.53% 0.01 0.97
BN 97.14% 96.15% 98.11% 98.04% 96.30% 0.04 0.97

Overlapped-256K-6L
SVM 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
KNN 97.86% 97.79% 97.92% 97.79% 97.92% 0.02 0.98
BN 97.86% 97.10% 98.59% 98.53% 97.22% 0.03 0.98

Overlapped-32K-6L
SVM 98.57% 97.14% 100.00% 100.00% 97.22% 0.00 0.99
KNN 98.57% 97.14% 100.00% 100.00% 97.22% 0.03 0.99
BN 97.62% 96.63% 98.58% 98.53% 96.76% 0.03 0.98

Overlapped-512K-6L
SVM 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
KNN 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
BN 99.29% 99.51% 99.08% 99.02% 99.54% 0.01 0.99

Overlapped-64K-6L
SVM 97.86% 97.10% 98.59% 98.53% 97.22% 0.01 0.98
KNN 97.86% 97.10% 98.59% 98.53% 97.22% 0.03 0.98
BN 97.62% 96.19% 99.05% 99.02% 96.30% 0.04 0.98

Table A.13: The results of using the DTW critical function using IFK.

Method Classifiers Acc Sen Spec PPV NPV EER AUC

Standard-128K-3L
SVM 94.29% 96.88% 92.11% 91.18% 97.22% 0.08 0.94
KNN 89.29% 90.15% 88.51% 87.50% 90.97% 0.12 0.92
BN 90.24% 91.79% 88.89% 87.75% 92.59% 0.07 0.93
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Standard-256K-3L
SVM 92.14% 95.24% 89.61% 88.24% 95.83% 0.11 0.92
KNN 90.00% 90.91% 89.19% 88.24% 91.67% 0.11 0.91
BN 90.48% 91.41% 89.64% 88.73% 92.13% 0.11 0.92

Standard-32K-3L
SVM 89.29% 92.06% 87.01% 85.29% 93.06% 0.14 0.89
KNN 86.79% 88.98% 84.97% 83.09% 90.28% 0.16 0.88
BN 87.62% 88.78% 86.61% 85.29% 89.81% 0.15 0.89

Standard-512K-3L
SVM 94.29% 95.45% 93.24% 92.65% 95.83% 0.07 0.94
KNN 94.64% 96.18% 93.29% 92.65% 96.53% 0.07 0.94
BN 92.86% 95.31% 90.79% 89.71% 95.83% 0.10 0.92

Standard-64K-3L
SVM 94.29% 98.39% 91.03% 89.71% 98.61% 0.09 0.94
KNN 89.29% 91.41% 87.50% 86.03% 92.36% 0.13 0.92
BN 89.05% 90.72% 87.61% 86.27% 91.67% 0.08 0.92

Standard-128K-4L
SVM 93.57% 95.38% 92.00% 91.18% 95.83% 0.08 0.94
KNN 90.00% 89.71% 90.28% 89.71% 90.28% 0.10 0.92
BN 90.24% 90.55% 89.95% 89.22% 91.20% 0.11 0.92

Standard-256K-4L
SVM 93.57% 94.03% 93.15% 92.65% 94.44% 0.07 0.94
KNN 91.79% 91.85% 91.72% 91.18% 92.36% 0.09 0.93
BN 89.76% 90.05% 89.50% 88.73% 90.74% 0.11 0.91

Standard-32K-4L
SVM 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96
KNN 93.57% 95.38% 92.00% 91.18% 95.83% 0.08 0.95
BN 92.86% 94.39% 91.52% 90.69% 94.91% 0.09 0.94

Standard-512K-4L
SVM 92.86% 92.65% 93.06% 92.65% 93.06% 0.07 0.93
KNN 87.14% 85.21% 89.13% 88.97% 85.42% 0.12 0.9
BN 88.33% 87.44% 89.20% 88.73% 87.96% 0.11 0.91

Standard-64K-4L
SVM 92.86% 93.94% 91.89% 91.18% 94.44% 0.09 0.93
KNN 88.93% 88.89% 88.97% 88.24% 89.58% 0.12 0.91
BN 89.76% 90.05% 89.50% 88.73% 90.74% 0.11 0.92

Standard-128K-5L
SVM 96.43% 97.01% 95.89% 95.59% 97.22% 0.04 0.96
KNN 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.96
BN 93.10% 93.97% 92.31% 91.67% 94.44% 0.08 0.93

Standard-256K-5L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 96.43% 97.73% 95.27% 94.85% 97.92% 0.05 0.97
BN 95.48% 96.48% 94.57% 94.12% 96.76% 0.06 0.96

Standard-32K-5L
SVM 94.29% 94.12% 94.44% 94.12% 94.44% 0.06 0.94
KNN 93.57% 92.14% 95.00% 94.85% 92.36% 0.05 0.94
BN 92.86% 93.07% 92.66% 92.16% 93.52% 0.08 0.93

Standard-512K-5L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 96.79% 98.47% 95.30% 94.85% 98.61% 0.05 0.97
BN 94.05% 94.09% 94.01% 93.63% 94.44% 0.06 0.94

Standard-64K-5L
SVM 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.95
KNN 93.57% 96.09% 91.45% 90.44% 96.53% 0.09 0.94
BN 92.62% 94.36% 91.11% 90.20% 94.91% 0.05 0.94

Standard-128K-6L
SVM 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96
KNN 95.00% 95.52% 94.52% 94.12% 95.83% 0.06 0.96
BN 91.90% 91.67% 92.13% 91.67% 92.13% 0.08 0.92

Standard-256K-6L
SVM 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96
KNN 96.43% 97.73% 95.27% 94.85% 97.92% 0.05 0.96
BN 93.81% 93.63% 93.98% 93.63% 93.98% 0.06 0.93

Standard-32K-6L
SVM 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96
KNN 94.64% 96.18% 93.29% 92.65% 96.53% 0.07 0.95
BN 90.71% 90.24% 91.16% 90.69% 90.74% 0.09 0.91
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Standard-512K-6L
SVM 97.14% 98.48% 95.95% 95.59% 98.61% 0.04 0.97
KNN 95.71% 96.97% 94.59% 94.12% 97.22% 0.06 0.96
BN 92.86% 93.07% 92.66% 92.16% 93.52% 0.08 0.93

Standard-64K-6L
SVM 94.29% 92.86% 95.71% 95.59% 93.06% 0.05 0.94
KNN 92.86% 91.43% 94.29% 94.12% 91.67% 0.08 0.94
BN 90.71% 88.73% 92.75% 92.65% 88.89% 0.11 0.92

Overlapped-128K-3L
SVM 89.29% 94.92% 85.19% 82.35% 95.83% 0.16 0.89
KNN 85.00% 85.61% 84.46% 83.09% 86.81% 0.16 0.87
BN 85.71% 87.11% 84.51% 82.84% 88.43% 0.12 0.88

Overlapped-256K-3L
SVM 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.95
KNN 91.07% 93.02% 89.40% 88.24% 93.75% 0.11 0.93
BN 89.29% 92.97% 86.38% 84.31% 93.98% 0.14 0.92

Overlapped-32K-3L
SVM 87.86% 90.48% 85.71% 83.82% 91.67% 0.15 0.88
KNN 88.57% 91.27% 86.36% 84.56% 92.36% 0.14 0.88
BN 89.05% 91.58% 86.96% 85.29% 92.59% 0.15 0.89

Overlapped-512K-3L
SVM 93.57% 98.36% 89.87% 88.24% 98.61% 0.11 0.93
KNN 90.00% 92.19% 88.16% 86.76% 93.06% 0.12 0.92
BN 89.29% 90.36% 88.34% 87.25% 91.20% 0.13 0.91

Overlapped-64K-3L
SVM 93.57% 96.83% 90.91% 89.71% 97.22% 0.10 0.93
KNN 89.29% 88.97% 89.58% 88.97% 89.58% 0.11 0.91
BN 88.33% 88.18% 88.48% 87.75% 88.89% 0.11 0.91

Overlapped-128K-4L
SVM 92.86% 96.77% 89.74% 88.24% 97.22% 0.11 0.93
KNN 89.29% 94.92% 85.19% 82.35% 95.83% 0.15 0.91
BN 89.29% 93.92% 85.77% 83.33% 94.91% 0.05 0.91

Overlapped-256K-4L
SVM 91.43% 91.18% 91.67% 91.18% 91.67% 0.09 0.91
KNN 87.86% 86.43% 89.29% 88.97% 86.81% 0.11 0.9
BN 87.14% 87.13% 87.16% 86.27% 87.96% 0.13 0.88

Overlapped-32K-4L
SVM 90.00% 95.00% 86.25% 83.82% 95.83% 0.14 0.9
KNN 87.86% 91.80% 84.81% 82.35% 93.06% 0.16 0.89
BN 88.33% 93.30% 84.65% 81.86% 94.44% 0.16 0.9

Overlapped-512K-4L
SVM 89.29% 90.77% 88.00% 86.76% 91.67% 0.13 0.89
KNN 82.14% 84.68% 80.13% 77.21% 86.81% 0.20 0.86
BN 79.76% 82.87% 77.41% 73.53% 85.65% 0.23 0.81

Overlapped-64K-4L
SVM 92.86% 95.31% 90.79% 89.71% 95.83% 0.10 0.93
KNN 90.36% 91.60% 89.26% 88.24% 92.36% 0.11 0.92
BN 90.24% 93.12% 87.88% 86.27% 93.98% 0.13 0.92

Overlapped-128K-5L
SVM 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.95
KNN 93.93% 96.12% 92.05% 91.18% 96.53% 0.08 0.94
BN 91.67% 95.19% 88.84% 87.25% 95.83% 0.12 0.92

Overlapped-256K-5L
SVM 95.00% 95.52% 94.52% 94.12% 95.83% 0.06 0.95
KNN 92.86% 93.94% 91.89% 91.18% 94.44% 0.08 0.94
BN 91.43% 93.75% 89.47% 88.24% 94.44% 0.11 0.92

Overlapped-32K-5L
SVM 92.86% 93.94% 91.89% 91.18% 94.44% 0.09 0.93
KNN 92.50% 92.59% 92.41% 91.91% 93.06% 0.08 0.93
BN 90.24% 91.37% 89.24% 88.24% 92.13% 0.11 0.91

Overlapped-512K-5L
SVM 95.00% 95.52% 94.52% 94.12% 95.83% 0.06 0.95
KNN 93.93% 94.07% 93.79% 93.38% 94.44% 0.07 0.94
BN 92.62% 94.82% 90.75% 89.71% 95.37% 0.10 0.93

Overlapped-64K-5L
SVM 89.29% 90.77% 88.00% 86.76% 91.67% 0.13 0.89
KNN 90.00% 90.30% 89.73% 88.97% 90.97% 0.11 0.9
BN 89.05% 90.31% 87.95% 86.76% 91.20% 0.13 0.89
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Overlapped-128K-6L
SVM 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96
KNN 94.29% 96.88% 92.11% 91.18% 97.22% 0.08 0.95
BN 92.62% 95.77% 90.04% 88.73% 96.30% 0.10 0.94

Overlapped-256K-6L
SVM 97.14% 97.06% 97.22% 97.06% 97.22% 0.03 0.97
KNN 96.07% 94.96% 97.16% 97.06% 95.14% 0.03 0.97
BN 94.52% 95.02% 94.06% 93.63% 95.37% 0.06 0.96

Overlapped-32K-6L
SVM 95.71% 96.97% 94.59% 94.12% 97.22% 0.06 0.96
KNN 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.95
BN 91.67% 92.89% 90.58% 89.71% 93.52% 0.10 0.92

Overlapped-512K-6L
SVM 95.00% 95.52% 94.52% 94.12% 95.83% 0.06 0.95
KNN 94.64% 96.18% 93.29% 92.65% 96.53% 0.07 0.95
BN 92.86% 95.31% 90.79% 89.71% 95.83% 0.10 0.93

Overlapped-64K-6L
SVM 97.14% 98.48% 95.95% 95.59% 98.61% 0.04 0.97
KNN 93.93% 95.42% 92.62% 91.91% 95.83% 0.08 0.95
BN 91.43% 92.86% 90.18% 89.22% 93.52% 0.10 0.93

Table A.14: The results of using the LCS critical function using IFK.

Method Classifiers Acc Sen Spec PPV NPV EER AUC

Standard-128K-3L
SVM 97.86% 97.10% 98.59% 98.53% 97.22% 0.01 0.98
KNN 94.29% 95.45% 93.24% 92.65% 95.83% 0.04 0.96
BN 94.05% 95.43% 92.83% 92.16% 95.83% 0.04 0.97

Standard-256K-3L
SVM 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.96
KNN 94.64% 96.90% 92.72% 91.91% 97.22% 0.08 0.95
BN 93.81% 96.35% 91.67% 90.69% 96.76% 0.09 0.95

Standard-512K-3L
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 97.50% 98.50% 96.60% 96.32% 98.61% 0.04 0.99
BN 94.05% 96.86% 91.70% 90.69% 97.22% 0.09 0.94

Standard-64K-3L
SVM 99.29% 98.55% 100.00% 100.00% 98.61% 0.00 0.99
KNN 98.57% 99.25% 97.95% 97.79% 99.31% 0.01 0.99
BN 95.95% 97.46% 94.62% 94.12% 97.69% 0.06 0.97

Standard-128K-4L
SVM 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
KNN 98.21% 100.00% 96.64% 96.32% 100.00% 0.03 0.99
BN 98.57% 100.00% 97.30% 97.06% 100.00% 0.00 0.99

Standard-256K-4L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 96.79% 97.04% 96.55% 96.32% 97.22% 0.04 0.97
BN 96.19% 95.63% 96.73% 96.57% 95.83% 0.04 0.97

Standard-512K-4L
SVM 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
KNN 97.50% 98.50% 96.60% 96.32% 98.61% 0.04 0.98
BN 95.00% 96.45% 93.72% 93.14% 96.76% 0.07 0.95

Standard-64K-4L
SVM 98.57% 98.53% 98.61% 98.53% 98.61% 0.01 0.99
KNN 98.57% 99.25% 97.95% 97.79% 99.31% 0.02 0.99
BN 98.57% 99.50% 97.73% 97.55% 99.54% 0.02 0.99

Standard-128K-5L
SVM 98.57% 100.00% 97.30% 97.06% 100.00% 0.03 0.99
KNN 97.86% 100.00% 96.00% 95.59% 100.00% 0.04 0.98
BN 98.10% 100.00% 96.43% 96.08% 100.00% 0.04 0.99

Standard-256K-5L
SVM 97.86% 100.00% 96.00% 95.59% 100.00% 0.04 0.98
KNN 97.14% 100.00% 94.74% 94.12% 100.00% 0.05 0.97
BN 97.62% 100.00% 95.58% 95.10% 100.00% 0.05 0.98
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Standard-512K-5L
SVM 98.57% 100.00% 97.30% 97.06% 100.00% 0.03 0.99
KNN 98.21% 100.00% 96.64% 96.32% 100.00% 0.04 0.98
BN 98.10% 100.00% 96.43% 96.08% 100.00% 0.04 0.98

Standard-64K-5L
SVM 98.57% 100.00% 97.30% 97.06% 100.00% 0.03 0.99
KNN 97.50% 100.00% 95.36% 94.85% 100.00% 0.05 0.98
BN 98.10% 100.00% 96.43% 96.08% 100.00% 0.04 0.99

Standard-128K-6L
SVM 98.57% 100.00% 97.30% 97.06% 100.00% 0.03 0.99
KNN 95.36% 99.20% 92.26% 91.18% 99.31% 0.08 0.97
BN 96.43% 99.48% 93.89% 93.14% 99.54% 0.06 0.98

Standard-256K-6L
SVM 98.57% 100.00% 97.30% 97.06% 100.00% 0.03 0.99
KNN 97.86% 100.00% 96.00% 95.59% 100.00% 0.04 0.98
BN 98.10% 100.00% 96.43% 96.08% 100.00% 0.04 0.98

Standard-512K-6L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 97.14% 97.06% 97.22% 97.06% 97.22% 0.03 0.97
BN 97.62% 98.02% 97.25% 97.06% 98.15% 0.03 0.98

Standard-64K-6L
SVM 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
KNN 96.43% 100.00% 93.51% 92.65% 100.00% 0.06 0.98
BN 97.62% 100.00% 95.58% 95.10% 100.00% 0.04 0.99

Overlapped-128K-3L
SVM 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
KNN 97.50% 99.24% 95.97% 95.59% 99.31% 0.04 0.98
BN 94.52% 97.38% 92.14% 91.18% 97.69% 0.08 0.94

Overlapped-256K-3L
SVM 95.71% 96.97% 94.59% 94.12% 97.22% 0.06 0.96
KNN 94.29% 96.88% 92.11% 91.18% 97.22% 0.08 0.95
BN 90.00% 88.94% 91.04% 90.69% 89.35% 0.11 0.89

Overlapped-32K-3L
SVM 95.71% 98.44% 93.42% 92.65% 98.61% 0.07 0.96
KNN 95.36% 96.95% 93.96% 93.38% 97.22% 0.06 0.95
BN 95.95% 97.46% 94.62% 94.12% 97.69% 0.06 0.96

Overlapped-512K-3L
SVM 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.95
KNN 94.64% 96.18% 93.29% 92.65% 96.53% 0.07 0.95
BN 94.05% 95.90% 92.44% 91.67% 96.30% 0.04 0.95

Overlapped-64K-3L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 96.79% 97.74% 95.92% 95.59% 97.92% 0.04 0.97
BN 91.67% 97.21% 87.55% 85.29% 97.69% 0.14 0.91

Overlapped-128K-4L
SVM 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
KNN 98.93% 98.54% 99.30% 99.26% 98.61% 0.01 0.99
BN 99.05% 98.54% 99.53% 99.51% 98.61% 0.00 0.99

Overlapped-256K-4L
SVM 97.86% 97.10% 98.59% 98.53% 97.22% 0.01 0.98
KNN 95.71% 94.93% 96.48% 96.32% 95.14% 0.05 0.97
BN 91.19% 88.84% 93.66% 93.63% 88.89% 0.11 0.91

Overlapped-32K-4L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
BN 97.62% 97.55% 97.69% 97.55% 97.69% 0.02 0.98

Overlapped-512K-4L
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 98.21% 100.00% 96.64% 96.32% 100.00% 0.03 0.99
BN 90.00% 93.55% 87.18% 85.29% 94.44% 0.14 0.88

Overlapped-64K-4L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 97.14% 97.06% 97.22% 97.06% 97.22% 0.03 0.97
BN 97.62% 97.55% 97.69% 97.55% 97.69% 0.02 0.98

Overlapped-128K-5L
SVM 97.86% 100.00% 96.00% 95.59% 100.00% 0.04 0.98
KNN 97.14% 99.23% 95.33% 94.85% 99.31% 0.05 0.97
BN 97.62% 99.49% 95.98% 95.59% 99.54% 0.04 0.98
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Overlapped-256K-5L
SVM 95.71% 94.29% 97.14% 97.06% 94.44% 0.03 0.96
KNN 96.43% 95.65% 97.18% 97.06% 95.83% 0.04 0.96
BN 97.14% 97.06% 97.22% 97.06% 97.22% 0.03 0.97

Overlapped-32K-5L
SVM 97.14% 98.48% 95.95% 95.59% 98.61% 0.04 0.97
KNN 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.97
BN 96.43% 97.49% 95.48% 95.10% 97.69% 0.05 0.97

Overlapped-512K-5L
SVM 98.57% 97.14% 100.00% 100.00% 97.22% 0.00 0.99
KNN 97.86% 97.10% 98.59% 98.53% 97.22% 0.03 0.98
BN 97.14% 97.52% 96.79% 96.57% 97.69% 0.02 0.98

Overlapped-64K-5L
SVM 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
KNN 97.86% 99.24% 96.62% 96.32% 99.31% 0.04 0.99
BN 98.10% 99.00% 97.27% 97.06% 99.07% 0.03 0.99

Overlapped-128K-6L
SVM 97.86% 95.77% 100.00% 100.00% 95.83% 0.00 0.98
KNN 98.21% 96.45% 100.00% 100.00% 96.53% 0.03 0.98
BN 98.57% 97.60% 99.53% 99.51% 97.69% 0.02 0.99

Overlapped-256K-6L
SVM 99.29% 100.00% 98.63% 98.53% 100.00% 0.01 0.99
KNN 98.21% 98.52% 97.93% 97.79% 98.61% 0.02 0.99
BN 98.33% 98.52% 98.16% 98.04% 98.61% 0.02 0.99

Overlapped-32K-6L
SVM 99.29% 98.55% 100.00% 100.00% 98.61% 0.00 0.99
KNN 99.29% 98.55% 100.00% 100.00% 98.61% 0.01 0.99
BN 97.86% 96.65% 99.05% 99.02% 96.76% 0.03 0.98

Overlapped-512K-6L
SVM 97.14% 100.00% 94.74% 94.12% 100.00% 0.06 0.97
KNN 95.71% 100.00% 92.31% 91.18% 100.00% 0.08 0.96
BN 96.43% 100.00% 93.51% 92.65% 100.00% 0.07 0.98

Overlapped-64K-6L
SVM 97.86% 97.10% 98.59% 98.53% 97.22% 0.01 0.98
KNN 98.21% 97.81% 98.60% 98.53% 97.92% 0.02 0.98
BN 98.33% 97.58% 99.06% 99.02% 97.69% 0.02 0.98

Table A.15: The results of using the KLD critical function using IFK.

Method Classifiers Acc Sen Spec PPV NPV EER AUC

Standard-128K-3L
SVM 97.14% 95.71% 98.57% 98.53% 95.83% 0.02 0.97
KNN 94.64% 93.53% 95.74% 95.59% 93.75% 0.06 0.96
BN 93.57% 91.94% 95.22% 95.10% 92.13% 0.08 0.95

Standard-256K-3L
SVM 95.00% 95.52% 94.52% 94.12% 95.83% 0.06 0.95
KNN 95.00% 94.20% 95.77% 95.59% 94.44% 0.04 0.95
BN 94.76% 92.52% 97.09% 97.06% 92.59% 0.07 0.95

Standard-32K-3L
SVM 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.95
KNN 96.07% 96.30% 95.86% 95.59% 96.53% 0.04 0.95
BN 95.00% 93.78% 96.21% 96.08% 93.98% 0.06 0.94

Standard-512K-3L
SVM 95.71% 95.59% 95.83% 95.59% 95.83% 0.04 0.96
KNN 95.00% 95.52% 94.52% 94.12% 95.83% 0.06 0.95
BN 93.33% 95.83% 91.23% 90.20% 96.30% 0.09 0.93

Standard-64K-3L
SVM 95.00% 95.52% 94.52% 94.12% 95.83% 0.06 0.95
KNN 95.71% 96.27% 95.21% 94.85% 96.53% 0.05 0.95
BN 94.76% 96.43% 93.30% 92.65% 96.76% 0.07 0.95

Standard-128K-4L
SVM 96.43% 94.37% 98.55% 98.53% 94.44% 0.02 0.96
KNN 96.07% 94.96% 97.16% 97.06% 95.14% 0.05 0.96
BN 95.24% 93.81% 96.67% 96.57% 93.98% 0.06 0.96
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Standard-256K-4L
SVM 95.00% 91.78% 98.51% 98.53% 91.67% 0.02 0.95
KNN 95.36% 93.62% 97.12% 97.06% 93.75% 0.06 0.95
BN 95.00% 92.17% 98.03% 98.04% 92.13% 0.08 0.95

Standard-32K-4L
SVM 94.29% 94.12% 94.44% 94.12% 94.44% 0.06 0.94
KNN 92.14% 90.14% 94.20% 94.12% 90.28% 0.06 0.93
BN 90.71% 89.86% 91.55% 91.18% 90.28% 0.09 0.92

Standard-512K-4L
SVM 93.57% 92.75% 94.37% 94.12% 93.06% 0.06 0.94
KNN 94.29% 94.12% 94.44% 94.12% 94.44% 0.06 0.94
BN 93.10% 94.42% 91.93% 91.18% 94.91% 0.09 0.92

Standard-64K-4L
SVM 95.71% 98.44% 93.42% 92.65% 98.61% 0.07 0.96
KNN 93.57% 94.03% 93.15% 92.65% 94.44% 0.07 0.95
BN 92.62% 92.20% 93.02% 92.65% 92.59% 0.07 0.93

Standard-128K-5L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 95.71% 94.93% 96.48% 96.32% 95.14% 0.04 0.97
BN 93.57% 92.75% 94.37% 94.12% 93.06% 0.07 0.95

Standard-256K-5L
SVM 97.86% 97.10% 98.59% 98.53% 97.22% 0.01 0.98
KNN 96.07% 95.62% 96.50% 96.32% 95.83% 0.04 0.97
BN 93.10% 91.87% 94.31% 94.12% 92.13% 0.08 0.93

Standard-32K-5L
SVM 94.29% 95.45% 93.24% 92.65% 95.83% 0.07 0.94
KNN 92.50% 92.59% 92.41% 91.91% 93.06% 0.08 0.93
BN 92.38% 93.43% 91.44% 90.69% 93.98% 0.06 0.94

Standard-512K-5L
SVM 96.43% 94.37% 98.55% 98.53% 94.44% 0.02 0.96
KNN 96.43% 95.00% 97.86% 97.79% 95.14% 0.05 0.96
BN 94.76% 92.92% 96.63% 96.57% 93.06% 0.03 0.95

Standard-64K-5L
SVM 93.57% 91.55% 95.65% 95.59% 91.67% 0.05 0.94
KNN 90.71% 89.29% 92.14% 91.91% 89.58% 0.10 0.92
BN 90.24% 89.00% 91.47% 91.18% 89.35% 0.09 0.92

Standard-128K-6L
SVM 97.86% 98.51% 97.26% 97.06% 98.61% 0.03 0.98
KNN 96.43% 96.32% 96.53% 96.32% 96.53% 0.04 0.97
BN 93.81% 92.79% 94.81% 94.61% 93.06% 0.07 0.94

Standard-256K-6L
SVM 97.14% 98.48% 95.95% 95.59% 98.61% 0.04 0.97
KNN 96.43% 98.46% 94.67% 94.12% 98.61% 0.06 0.97
BN 93.57% 93.60% 93.55% 93.14% 93.98% 0.06 0.93

Standard-32K-6L
SVM 92.86% 92.65% 93.06% 92.65% 93.06% 0.07 0.93
KNN 92.50% 92.59% 92.41% 91.91% 93.06% 0.08 0.93
BN 92.14% 92.12% 92.17% 91.67% 92.59% 0.08 0.93

Standard-512K-6L
SVM 97.86% 95.77% 100.00% 100.00% 95.83% 0.00 0.98
KNN 97.14% 97.06% 97.22% 97.06% 97.22% 0.03 0.98
BN 95.71% 95.15% 96.26% 96.08% 95.37% 0.05 0.96

Standard-64K-6L
SVM 96.43% 97.01% 95.89% 95.59% 97.22% 0.04 0.96
KNN 94.64% 94.16% 95.10% 94.85% 94.44% 0.05 0.96
BN 92.62% 91.79% 93.43% 93.14% 92.13% 0.07 0.93

Overlapped-128K-3L
SVM 92.86% 96.77% 89.74% 88.24% 97.22% 0.11 0.93
KNN 91.07% 95.12% 87.90% 86.03% 95.83% 0.13 0.92
BN 89.76% 93.51% 86.81% 84.80% 94.44% 0.06 0.91

Overlapped-256K-3L
SVM 92.14% 95.24% 89.61% 88.24% 95.83% 0.11 0.92
KNN 91.07% 93.02% 89.40% 88.24% 93.75% 0.11 0.92
BN 90.00% 91.75% 88.50% 87.25% 92.59% 0.13 0.91

Overlapped-32K-3L
SVM 93.57% 96.83% 90.91% 89.71% 97.22% 0.10 0.93
KNN 91.07% 95.12% 87.90% 86.03% 95.83% 0.12 0.92
BN 89.76% 93.51% 86.81% 84.80% 94.44% 0.06 0.91
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Overlapped-512K-3L
SVM 94.29% 96.88% 92.11% 91.18% 97.22% 0.08 0.94
KNN 93.21% 95.35% 91.39% 90.44% 95.83% 0.09 0.94
BN 91.19% 93.26% 89.43% 88.24% 93.98% 0.11 0.91

Overlapped-64K-3L
SVM 91.43% 93.75% 89.47% 88.24% 94.44% 0.11 0.91
KNN 89.64% 92.13% 87.58% 86.03% 93.06% 0.13 0.9
BN 87.14% 90.32% 84.62% 82.35% 91.67% 0.16 0.87

Overlapped-128K-4L
SVM 90.00% 92.19% 88.16% 86.76% 93.06% 0.12 0.9
KNN 88.21% 89.31% 87.25% 86.03% 90.28% 0.13 0.89
BN 89.05% 91.15% 87.28% 85.78% 92.13% 0.13 0.9

Overlapped-256K-4L
SVM 93.57% 95.38% 92.00% 91.18% 95.83% 0.08 0.94
KNN 89.64% 90.23% 89.12% 88.24% 90.97% 0.11 0.92
BN 89.05% 90.31% 87.95% 86.76% 91.20% 0.13 0.91

Overlapped-32K-4L
SVM 89.29% 90.77% 88.00% 86.76% 91.67% 0.13 0.89
KNN 89.64% 89.05% 90.21% 89.71% 89.58% 0.10 0.89
BN 89.76% 90.45% 89.14% 88.24% 91.20% 0.12 0.9

Overlapped-512K-4L
SVM 89.29% 92.06% 87.01% 85.29% 93.06% 0.14 0.89
KNN 86.07% 88.19% 84.31% 82.35% 89.58% 0.16 0.88
BN 84.05% 89.14% 80.41% 76.47% 91.20% 0.21 0.84

Overlapped-64K-4L
SVM 90.00% 89.71% 90.28% 89.71% 90.28% 0.10 0.9
KNN 90.00% 90.30% 89.73% 88.97% 90.97% 0.11 0.9
BN 89.76% 91.28% 88.44% 87.25% 92.13% 0.12 0.9

Overlapped-128K-5L
SVM 93.57% 95.38% 92.00% 91.18% 95.83% 0.08 0.94
KNN 92.14% 90.71% 93.57% 93.38% 90.97% 0.07 0.93
BN 91.19% 91.54% 90.87% 90.20% 92.13% 0.10 0.92

Overlapped-256K-5L
SVM 96.43% 94.37% 98.55% 98.53% 94.44% 0.02 0.96
KNN 96.07% 95.62% 96.50% 96.32% 95.83% 0.04 0.96
BN 95.24% 96.00% 94.55% 94.12% 96.30% 0.06 0.96

Overlapped-32K-5L
SVM 97.86% 97.10% 98.59% 98.53% 97.22% 0.01 0.98
KNN 91.43% 88.89% 94.12% 94.12% 88.89% 0.10 0.95
BN 89.52% 88.83% 90.19% 89.71% 89.35% 0.11 0.93

Overlapped-512K-5L
SVM 97.14% 95.71% 98.57% 98.53% 95.83% 0.02 0.97
KNN 96.79% 95.68% 97.87% 97.79% 95.83% 0.04 0.97
BN 97.14% 95.71% 98.57% 98.53% 95.83% 0.04 0.97

Overlapped-64K-5L
SVM 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.95
KNN 92.50% 91.97% 93.01% 92.65% 92.36% 0.07 0.94
BN 90.71% 91.88% 89.69% 88.73% 92.59% 0.11 0.92

Overlapped-128K-6L
SVM 97.14% 95.71% 98.57% 98.53% 95.83% 0.02 0.97
KNN 97.50% 96.40% 98.58% 98.53% 96.53% 0.03 0.97
BN 96.90% 96.59% 97.21% 97.06% 96.76% 0.03 0.97

Overlapped-256K-6L
SVM 97.86% 97.10% 98.59% 98.53% 97.22% 0.01 0.98
KNN 98.21% 97.81% 98.60% 98.53% 97.92% 0.02 0.98
BN 98.10% 97.12% 99.06% 99.02% 97.22% 0.03 0.98

Overlapped-32K-6L
SVM 88.57% 90.62% 86.84% 85.29% 91.67% 0.14 0.88
KNN 86.07% 83.92% 88.32% 88.24% 84.03% 0.12 0.87
BN 86.90% 86.70% 87.10% 86.27% 87.50% 0.14 0.89

Overlapped-512K-6L
SVM 98.57% 97.14% 100.00% 100.00% 97.22% 0.00 0.99
KNN 97.86% 96.43% 99.29% 99.26% 96.53% 0.03 0.98
BN 97.62% 95.75% 99.52% 99.51% 95.83% 0.04 0.98

Overlapped-64K-6L
SVM 95.00% 96.92% 93.33% 92.65% 97.22% 0.07 0.95
KNN 92.14% 91.91% 92.36% 91.91% 92.36% 0.08 0.94
BN 90.95% 91.09% 90.83% 90.20% 91.67% 0.10 0.92
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Appendix B

Further Results for Whole
Image-based Representation

In this appendix some additional results are presented with respect to the evaluation of

the whole image-based volumetric representation presented in Chapter 7. Recall that

the whole image-based representation comprised five stages as illustrated previously in

Figure 7.1: (i) image decomposition, (ii) tree conceptualisation, (iii) frequent sub-graph

mining, (iv) feature vector generation and (v) classifier generation. Each of these stages

had a number of techniques associated with it. With respect to the first stage, image

decomposition, five critical functions were used:

1. Average Intensity Value (AIV).

2. Kendall’s Coefficient Concordance (KCC).

3. Euclidean Distance (ED).

4. Longest Common Subsequence (LCS).

5. Kullback-Leibler divergence (KLD).

For the evaluation presented in Chapter 7 all five techniques were evaluated using

static techniques for the remaining stages, these were: (i) Kurtosis node labelling, (ii)

gSpan using σ = 20% and (iii) SVM classification. For completeness in this appendix

results from additional experiments with respect to these critical function are presented

in the following tables (Tables B.1 to B.5). In the evaluation, the results of standard

and overlapping decomposition are included. Four levels of decomposition L are also

presented (L = {3, 4, 5, 6}). In addition, four decomposition threshold values t =

{0.3, 0.5, 0.7, 0.9} were used. With respect to stage two, tree conceptualisation, two

types of node labellings were used: (i) Kurtosis and (ii) Mean intensity value. The

results presented in this appendix confirm the earlier results that, in the context of the

whole image-based representation:

1. Overlapping decomposition outperforms standard decomposition,
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2. The best threshold value t were 0.5.

3. The best performing critical functions tend to be LCS,

4. Kurtosis node labelling produced better results than Mean,

5. SVM and BN classification tend to outperform KNN classification.

Table B.1: The results using the AIV critical function in the context of whole image-based
methods, where S means standard decomposition, O overlapped decomposition, t is the thresh-
old for the critical function and L is the level.

Method Classifier Acc Sen Spec PPV NPV EER AUC

SM 3L t 0.3
SVM 89.29% 88.73% 89.86% 90.00% 88.57% 0.10 0.89
KNN 82.86% 81.08% 84.85% 85.71% 80.00% 0.17 0.88
BN 81.90% 81.31% 82.52% 82.86% 80.95% 0.18 0.86

SM 4L t 0.3
SVM 80.00% 79.17% 80.88% 81.43% 78.57% 0.19 0.8
KNN 75.00% 73.65% 76.52% 77.86% 72.14% 0.28 0.77
BN 75.00% 74.88% 75.12% 75.24% 74.76% 0.25 0.78

SM 5L t 0.3
SVM 79.29% 79.71% 78.87% 78.57% 80.00% 0.21 0.79
KNN 77.14% 76.03% 78.36% 79.29% 75.00% 0.23 0.8
BN 77.38% 76.02% 78.89% 80.00% 74.76% 0.22 0.8

SM 6L t 0.3
SVM 77.86% 77.46% 78.26% 78.57% 77.14% 0.22 0.78
KNN 73.93% 71.90% 76.38% 78.57% 69.29% 0.25 0.77
BN 74.76% 72.81% 77.08% 79.05% 70.48% 0.25 0.79

SM 3L t 0.5
SVM 89.29% 88.73% 89.86% 90.00% 88.57% 0.10 0.89
KNN 88.93% 87.59% 90.37% 90.71% 87.14% 0.11 0.9
BN 89.29% 87.67% 91.04% 91.43% 87.14% 0.11 0.92

SM 4L t 0.5
SVM 85.00% 82.67% 87.69% 88.57% 81.43% 0.12 0.85
KNN 80.00% 77.27% 83.33% 85.00% 75.00% 0.22 0.83
BN 79.29% 77.33% 81.54% 82.86% 75.71% 0.22 0.83

SM 5L t 0.5
SVM 83.57% 78.31% 91.23% 92.86% 74.29% 0.09 0.84
KNN 81.07% 77.71% 85.37% 87.14% 75.00% 0.22 0.83
BN 80.95% 78.26% 84.21% 85.71% 76.19% 0.21 0.84

SM 6L t 0.5
SVM 82.14% 80.00% 84.62% 85.71% 78.57% 0.15 0.82
KNN 80.71% 76.54% 86.44% 88.57% 72.86% 0.20 0.82
BN 81.19% 77.18% 86.59% 88.57% 73.81% 0.21 0.83

SM 3L t 0.7
SVM 85.71% 82.89% 89.06% 90.00% 81.43% 0.11 0.86
KNN 84.29% 80.77% 88.71% 90.00% 78.57% 0.21 0.85
BN 83.57% 80.00% 88.11% 89.52% 77.62% 0.20 0.85

SM 4L t 0.7
SVM 78.57% 80.30% 77.03% 75.71% 81.43% 0.23 0.79
KNN 78.57% 78.99% 78.17% 77.86% 79.29% 0.21 0.78
BN 80.24% 79.53% 80.98% 81.43% 79.05% 0.19 0.81

SM 5L t 0.7
SVM 86.43% 84.00% 89.23% 90.00% 82.86% 0.11 0.86
KNN 85.71% 83.33% 88.46% 89.29% 82.14% 0.17 0.86
BN 84.76% 82.88% 86.87% 87.62% 81.90% 0.17 0.87
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SM 6L t 0.7
SVM 88.57% 85.53% 92.19% 92.86% 84.29% 0.08 0.89
KNN 86.43% 82.28% 91.80% 92.86% 80.00% 0.16 0.89
BN 85.24% 80.58% 91.57% 92.86% 77.62% 0.17 0.87

SM 3L t 0.9
SVM 82.86% 81.94% 83.82% 84.29% 81.43% 0.16 0.83
KNN 82.50% 80.13% 85.27% 86.43% 78.57% 0.19 0.82
BN 83.81% 81.70% 86.22% 87.14% 80.48% 0.18 0.85

SM 4L t 0.9
SVM 85.71% 82.05% 90.32% 91.43% 80.00% 0.10 0.86
KNN 86.07% 82.58% 90.40% 91.43% 80.71% 0.19 0.85
BN 86.90% 82.98% 91.89% 92.86% 80.95% 0.18 0.87

SM 5L t 0.9
SVM 85.00% 82.67% 87.69% 88.57% 81.43% 0.12 0.85
KNN 85.00% 81.41% 89.52% 90.71% 79.29% 0.18 0.85
BN 85.71% 81.25% 91.67% 92.86% 78.57% 0.20 0.86

SM 6L t 0.9
SVM 88.57% 85.53% 92.19% 92.86% 84.29% 0.08 0.89
KNN 86.43% 82.28% 91.80% 92.86% 80.00% 0.16 0.89
BN 85.24% 80.58% 91.57% 92.86% 77.62% 0.17 0.87

OM 3L t 0.3
SVM 93.57% 91.78% 95.52% 95.71% 91.43% 0.04 0.94
KNN 93.21% 91.16% 95.49% 95.71% 90.71% 0.08 0.94
BN 93.33% 91.36% 95.50% 95.71% 90.95% 0.07 0.95

OM 4L t 0.3
SVM 94.29% 94.29% 94.29% 94.29% 94.29% 0.06 0.94
KNN 93.21% 93.53% 92.91% 92.86% 93.57% 0.06 0.94
BN 93.10% 92.49% 93.72% 93.81% 92.38% 0.08 0.94

OM 5L t 0.3
SVM 92.86% 92.86% 92.86% 92.86% 92.86% 0.07 0.93
KNN 93.57% 91.78% 95.52% 95.71% 91.43% 0.06 0.93
BN 94.29% 92.66% 96.04% 96.19% 92.38% 0.07 0.94

OM 3L t 0.5
SVM 93.57% 91.78% 95.52% 95.71% 91.43% 0.04 0.94
KNN 93.21% 91.16% 95.49% 95.71% 90.71% 0.08 0.94
BN 93.33% 91.36% 95.50% 95.71% 90.95% 0.07 0.95

OM 4L t 0.5
SVM 94.29% 94.29% 94.29% 94.29% 94.29% 0.06 0.94
KNN 93.21% 93.53% 92.91% 92.86% 93.57% 0.06 0.94
BN 93.10% 92.49% 93.72% 93.81% 92.38% 0.08 0.94

OM 5L t 0.5
SVM 92.86% 92.86% 92.86% 92.86% 92.86% 0.07 0.93
KNN 93.57% 91.78% 95.52% 95.71% 91.43% 0.06 0.93
BN 94.29% 92.66% 96.04% 96.19% 92.38% 0.07 0.94

OM 3L t 0.7
SVM 93.57% 91.78% 95.52% 95.71% 91.43% 0.04 0.94
KNN 93.21% 91.16% 95.49% 95.71% 90.71% 0.08 0.94
BN 93.33% 91.36% 95.50% 95.71% 90.95% 0.07 0.95

OM4 t 0.7
SVM 94.29% 94.29% 94.29% 94.29% 94.29% 0.06 0.94
KNN 93.21% 93.53% 92.91% 92.86% 93.57% 0.06 0.94
BN 93.10% 92.49% 93.72% 93.81% 92.38% 0.08 0.94

OM 5L t 0.7
SVM 92.86% 92.86% 92.86% 92.86% 92.86% 0.07 0.93
KNN 93.57% 91.78% 95.52% 95.71% 91.43% 0.06 0.93
BN 94.29% 92.66% 96.04% 96.19% 92.38% 0.07 0.94

OM 3L t 0.9
SVM 88.57% 88.57% 88.57% 88.57% 88.57% 0.11 0.89
KNN 86.79% 86.01% 87.59% 87.86% 85.71% 0.12 0.9
BN 87.38% 84.89% 90.26% 90.95% 83.81% 0.11 0.91
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OM 4L t 0.9
SVM 91.43% 89.19% 93.94% 94.29% 88.57% 0.06 0.91
KNN 90.00% 86.84% 93.75% 94.29% 85.71% 0.11 0.91
BN 89.76% 85.84% 94.65% 95.24% 84.29% 0.14 0.91

OM 5L t 0.9
SVM 97.14% 95.83% 98.53% 98.57% 95.71% 0.01 0.97
KNN 97.14% 95.83% 98.53% 98.57% 95.71% 0.04 0.97
BN 97.38% 95.85% 99.01% 99.05% 95.71% 0.03 0.98

SK 3L t0.3
SVM 87.14% 89.39% 85.14% 84.29% 90.00% 0.15 0.87
KNN 84.64% 86.47% 82.99% 82.14% 87.14% 0.18 0.86
BN 82.38% 83.66% 81.19% 80.48% 84.29% 0.19 0.86

SK 4L t0.3
SVM 90.00% 88.89% 91.18% 91.43% 88.57% 0.09 0.9
KNN 84.29% 83.33% 85.29% 85.71% 82.86% 0.15 0.88
BN 83.33% 84.31% 82.41% 81.90% 84.76% 0.15 0.88

SK 5L t0.3
SVM 78.57% 79.41% 77.78% 77.14% 80.00% 0.22 0.79
KNN 75.36% 75.91% 74.83% 74.29% 76.43% 0.26 0.78
BN 75.95% 77.39% 74.66% 73.33% 78.57% 0.25 0.79

SK 6L t0.3
SVM 83.57% 84.06% 83.10% 82.86% 84.29% 0.17 0.84
KNN 79.64% 79.02% 80.29% 80.71% 78.57% 0.20 0.83
BN 79.76% 80.19% 79.34% 79.05% 80.48% 0.20 0.84

SK 3L t0.5
SVM 82.86% 83.82% 81.94% 81.43% 84.29% 0.18 0.83
KNN 79.29% 80.15% 78.47% 77.86% 80.71% 0.19 0.83
BN 79.29% 79.15% 79.43% 79.52% 79.05% 0.21 0.83

SK 4L t0.5
SVM 86.43% 85.92% 86.96% 87.14% 85.71% 0.13 0.86
KNN 83.57% 81.76% 85.61% 86.43% 80.71% 0.15 0.86
BN 83.10% 80.62% 86.01% 87.14% 79.05% 0.18 0.86

SK 5L t0.5
SVM 81.43% 78.21% 85.48% 87.14% 75.71% 0.15 0.81
KNN 79.64% 76.43% 83.74% 85.71% 73.57% 0.21 0.81
BN 80.95% 78.02% 84.57% 86.19% 75.71% 0.20 0.83

SK 6L t0.5
SVM 88.57% 87.50% 89.71% 90.00% 87.14% 0.10 0.89
KNN 85.36% 84.14% 86.67% 87.14% 83.57% 0.15 0.87
BN 84.76% 82.88% 86.87% 87.62% 81.90% 0.17 0.87

SK 3L t0.7
SVM 87.14% 85.14% 89.39% 90.00% 84.29% 0.11 0.87
KNN 85.00% 82.67% 87.69% 88.57% 81.43% 0.17 0.87
BN 83.57% 81.61% 85.79% 86.67% 80.48% 0.19 0.86

SK 4L t0.7
SVM 86.43% 84.93% 88.06% 88.57% 84.29% 0.12 0.86
KNN 81.43% 79.73% 83.33% 84.29% 78.57% 0.14 0.86
BN 82.14% 79.48% 85.34% 86.67% 77.62% 0.14 0.86

SK 5L t0.7
SVM 87.86% 87.32% 88.41% 88.57% 87.14% 0.12 0.88
KNN 84.29% 82.00% 86.92% 87.86% 80.71% 0.14 0.87
BN 84.52% 81.39% 88.36% 89.52% 79.52% 0.16 0.88

SK 6L t0.7
SVM 88.57% 88.57% 88.57% 88.57% 88.57% 0.11 0.89
KNN 85.00% 83.56% 86.57% 87.14% 82.86% 0.14 0.86
BN 85.48% 83.41% 87.82% 88.57% 82.38% 0.15 0.87

SK 5L t0.9
SVM 86.43% 82.28% 91.80% 92.86% 80.00% 0.08 0.86
KNN 84.29% 79.63% 90.68% 92.14% 76.43% 0.21 0.85
BN 84.52% 79.35% 91.91% 93.33% 75.71% 0.22 0.86
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SK 4L t0.9
SVM 86.43% 81.48% 93.22% 94.29% 78.57% 0.07 0.86
KNN 86.43% 81.48% 93.22% 94.29% 78.57% 0.18 0.88
BN 85.95% 80.82% 93.14% 94.29% 77.62% 0.18 0.87

SK 3L t0.9
SVM 87.14% 86.11% 88.24% 88.57% 85.71% 0.12 0.87
KNN 83.21% 80.39% 86.61% 87.86% 78.57% 0.16 0.87
BN 83.81% 81.14% 86.98% 88.10% 79.52% 0.15 0.87

SK 6L t0.9
SVM 90.00% 84.15% 98.28% 98.57% 81.43% 0.02 0.9
KNN 90.00% 84.57% 97.46% 97.86% 82.14% 0.18 0.89
BN 90.24% 84.77% 97.74% 98.10% 82.38% 0.18 0.9

OK 3L t0.3
SVM 85.00% 86.57% 83.56% 82.86% 87.14% 0.16 0.85
KNN 82.86% 84.33% 81.51% 80.71% 85.00% 0.18 0.86
BN 84.52% 86.43% 82.81% 81.90% 87.14% 0.16 0.88

OK 4L t0.3
SVM 92.14% 91.55% 92.75% 92.86% 91.43% 0.07 0.92
KNN 89.64% 87.76% 91.73% 92.14% 87.14% 0.11 0.91
BN 87.14% 86.45% 87.86% 88.10% 86.19% 0.13 0.9

OK 5L t0.3
SVM 87.14% 86.11% 88.24% 88.57% 85.71% 0.12 0.87
KNN 87.14% 86.11% 88.24% 88.57% 85.71% 0.14 0.88
BN 86.90% 86.05% 87.80% 88.10% 85.71% 0.14 0.89

OK 6L t0.3
SVM 93.57% 92.96% 94.20% 94.29% 92.86% 0.06 0.94
KNN 88.93% 87.07% 90.98% 91.43% 86.43% 0.11 0.92
BN 87.86% 86.98% 88.78% 89.05% 86.67% 0.12 0.92

OK 3L t0.5
SVM 89.29% 87.67% 91.04% 91.43% 87.14% 0.09 0.89
KNN 88.57% 86.49% 90.91% 91.43% 85.71% 0.14 0.88
BN 89.05% 85.65% 93.16% 93.81% 84.29% 0.15 0.9

OK 4L t0.5
SVM 82.86% 81.94% 83.82% 84.29% 81.43% 0.16 0.83
KNN 82.14% 81.25% 83.09% 83.57% 80.71% 0.19 0.83
BN 84.05% 82.95% 85.22% 85.71% 82.38% 0.16 0.85

OK 5L t0.5
SVM 96.43% 95.77% 97.10% 97.14% 95.71% 0.03 0.96
KNN 93.21% 91.16% 95.49% 95.71% 90.71% 0.08 0.96
BN 92.62% 90.50% 94.97% 95.24% 90.00% 0.09 0.95

OK 6L t0.5
SVM 85.00% 83.56% 86.57% 87.14% 82.86% 0.13 0.85
KNN 85.71% 83.33% 88.46% 89.29% 82.14% 0.14 0.85
BN 86.19% 84.55% 88.00% 88.57% 83.81% 0.12 0.87

OK 3L t0.7
SVM 87.14% 83.33% 91.94% 92.86% 81.43% 0.08 0.87
KNN 87.86% 83.12% 94.17% 95.00% 80.71% 0.17 0.87
BN 88.10% 82.79% 95.45% 96.19% 80.00% 0.19 0.88

OK 4L t0.7
SVM 91.43% 89.19% 93.94% 94.29% 88.57% 0.06 0.91
KNN 91.07% 88.08% 94.57% 95.00% 87.14% 0.06 0.92
BN 90.48% 86.96% 94.74% 95.24% 85.71% 0.13 0.92

OK 5L t0.7
SVM 89.29% 88.73% 89.86% 90.00% 88.57% 0.10 0.89
KNN 89.29% 87.67% 91.04% 91.43% 87.14% 0.12 0.89
BN 89.52% 87.39% 91.92% 92.38% 86.67% 0.13 0.9

OK 6L t0.7
SVM 85.00% 83.56% 86.57% 87.14% 82.86% 0.13 0.85
KNN 85.71% 83.33% 88.46% 89.29% 82.14% 0.14 0.85
BN 86.19% 84.55% 88.00% 88.57% 83.81% 0.12 0.87
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OK 3L t0.9
SVM 92.86% 91.67% 94.12% 94.29% 91.43% 0.06 0.93
KNN 93.57% 91.78% 95.52% 95.71% 91.43% 0.09 0.94
BN 94.05% 91.86% 96.48% 96.67% 91.43% 0.07 0.95

OK 4L t0.9
SVM 94.29% 91.89% 96.97% 97.14% 91.43% 0.03 0.94
KNN 95.36% 93.20% 97.74% 97.86% 92.86% 0.05 0.95
BN 95.95% 94.06% 98.01% 98.10% 93.81% 0.04 0.97

OK 5L t0.9
SVM 92.14% 91.55% 92.75% 92.86% 91.43% 0.07 0.92
KNN 92.50% 91.03% 94.07% 94.29% 90.71% 0.08 0.92
BN 93.33% 91.74% 95.05% 95.24% 91.43% 0.08 0.93

Table B.2: The results using the ED critical function in the context of whole image-based
methods, where S means standard decomposition, O overlapped decomposition, t is the thresh-
old for the critical function and L is the level..

Method Classifier Acc Sen Spec PPV NPV EER AUC

SM 3L t0.3
SVM 78.57% 78.57% 78.57% 78.57% 78.57% 0.21 0.79
KNN 75.36% 74.83% 75.91% 76.43% 74.29% 0.24 0.78
BN 76.43% 76.30% 76.56% 76.67% 76.19% 0.23 0.79

SM 4L t0.3
SVM 77.14% 79.69% 75.00% 72.86% 81.43% 0.25 0.77
KNN 71.79% 71.94% 71.63% 71.43% 72.14% 0.29 0.75
BN 73.57% 74.38% 72.81% 71.90% 75.24% 0.26 0.77

SM 5L t0.3
SVM 78.57% 77.78% 79.41% 80.00% 77.14% 0.21 0.79
KNN 73.21% 72.41% 74.07% 75.00% 71.43% 0.29 0.77
BN 73.57% 72.60% 74.63% 75.71% 71.43% 0.26 0.78

SM 6L t0.3
SVM 75.00% 75.36% 74.65% 74.29% 75.71% 0.25 0.75
KNN 72.14% 70.39% 74.22% 76.43% 67.86% 0.27 0.74
BN 73.57% 72.00% 75.38% 77.14% 70.00% 0.26 0.76

SM 3L t0.5
SVM 71.43% 70.83% 72.06% 72.86% 70.00% 0.28 0.71
KNN 69.29% 68.24% 70.45% 72.14% 66.43% 0.28 0.71
BN 71.90% 71.10% 72.77% 73.81% 70.00% 0.26 0.74

SM 4L t0.5
SVM 82.14% 80.82% 83.58% 84.29% 80.00% 0.16 0.82
KNN 78.21% 78.01% 78.42% 78.57% 77.86% 0.22 0.81
BN 78.81% 79.80% 77.88% 77.14% 80.48% 0.20 0.83

SM 5L t0.5
SVM 87.14% 88.24% 86.11% 85.71% 88.57% 0.14 0.87
KNN 78.21% 76.87% 79.70% 80.71% 75.71% 0.19 0.84
BN 78.33% 78.20% 78.47% 78.57% 78.10% 0.22 0.85

SM 6L t0.5
SVM 77.86% 79.10% 76.71% 75.71% 80.00% 0.23 0.78
KNN 74.64% 74.13% 75.18% 75.71% 73.57% 0.24 0.78
BN 73.81% 73.58% 74.04% 74.29% 73.33% 0.26 0.75

SM 3L t0.7
SVM 78.57% 77.03% 80.30% 81.43% 75.71% 0.20 0.79
KNN 76.79% 75.86% 77.78% 78.57% 75.00% 0.23 0.78
BN 75.71% 75.23% 76.21% 76.67% 74.76% 0.25 0.78

SM 4L t0.7
SVM 76.43% 74.03% 79.37% 81.43% 71.43% 0.21 0.76
KNN 76.43% 74.03% 79.37% 81.43% 71.43% 0.27 0.76
BN 76.90% 75.80% 78.11% 79.05% 74.76% 0.23 0.78
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SM 5L t0.7
SVM 83.57% 84.06% 83.10% 82.86% 84.29% 0.17 0.84
KNN 80.71% 81.62% 79.86% 79.29% 82.14% 0.20 0.83
BN 79.29% 81.22% 77.58% 76.19% 82.38% 0.21 0.83

SM 6L t0.7
SVM 74.29% 74.29% 74.29% 74.29% 74.29% 0.26 0.74
KNN 72.50% 71.72% 73.33% 74.29% 70.71% 0.27 0.76
BN 74.05% 73.49% 74.63% 75.24% 72.86% 0.27 0.78

OM 3L t0.3
SVM 84.29% 85.29% 83.33% 82.86% 85.71% 0.17 0.84
KNN 79.64% 79.86% 79.43% 79.29% 80.00% 0.20 0.82
BN 79.05% 80.20% 77.98% 77.14% 80.95% 0.22 0.82

OM 4L t0.3
SVM 86.43% 85.92% 86.96% 87.14% 85.71% 0.13 0.86
KNN 87.14% 86.62% 87.68% 87.86% 86.43% 0.12 0.88
BN 84.29% 84.95% 83.64% 83.33% 85.24% 0.16 0.86

OM 5L t0.3
SVM 79.29% 78.87% 79.71% 80.00% 78.57% 0.20 0.79
KNN 75.36% 75.18% 75.54% 75.71% 75.00% 0.25 0.78
BN 76.67% 76.92% 76.42% 76.19% 77.14% 0.23 0.79

OM 6L t0.3
SVM 80.71% 79.45% 82.09% 82.86% 78.57% 0.18 0.81
KNN 75.00% 73.65% 76.52% 77.86% 72.14% 0.26 0.79
BN 75.00% 74.65% 75.36% 75.71% 74.29% 0.25 0.8

OM 3L t0.5
SVM 85.71% 84.72% 86.76% 87.14% 84.29% 0.13 0.86
KNN 84.29% 82.43% 86.36% 87.14% 81.43% 0.15 0.86
BN 81.90% 80.73% 83.17% 83.81% 80.00% 0.18 0.85

OM 4L t0.5
SVM 75.71% 76.47% 75.00% 74.29% 77.14% 0.25 0.76
KNN 71.07% 69.54% 72.87% 75.00% 67.14% 0.28 0.74
BN 72.14% 71.23% 73.13% 74.29% 70.00% 0.28 0.76

OM 5L t0.5
SVM 78.57% 77.78% 79.41% 80.00% 77.14% 0.21 0.79
KNN 76.43% 74.67% 78.46% 80.00% 72.86% 0.25 0.77
BN 75.95% 73.80% 78.53% 80.48% 71.43% 0.26 0.78

OM 6L t0.5
SVM 82.14% 79.22% 85.71% 87.14% 77.14% 0.14 0.82
KNN 76.79% 72.46% 83.19% 86.43% 67.14% 0.25 0.8
BN 77.86% 74.07% 83.05% 85.71% 70.00% 0.23 0.81

OM 3L t0.7
SVM 80.71% 83.08% 78.67% 77.14% 84.29% 0.21 0.81
KNN 80.00% 79.58% 80.43% 80.71% 79.29% 0.20 0.81
BN 80.00% 79.72% 80.29% 80.48% 79.52% 0.20 0.82

OM 4L t0.7
SVM 79.29% 83.61% 75.95% 72.86% 85.71% 0.24 0.79
KNN 76.43% 78.46% 74.67% 72.86% 80.00% 0.25 0.78
BN 74.76% 76.00% 73.64% 72.38% 77.14% 0.26 0.77

OM 5L t0.7
SVM 82.14% 80.82% 83.58% 84.29% 80.00% 0.16 0.82
KNN 79.64% 78.62% 80.74% 81.43% 77.86% 0.21 0.82
BN 78.81% 77.88% 79.80% 80.48% 77.14% 0.21 0.82

OM 6L t0.7
SVM 77.14% 75.68% 78.79% 80.00% 74.29% 0.21 0.77
KNN 73.93% 71.34% 77.24% 80.00% 67.86% 0.24 0.76
BN 75.00% 72.53% 78.07% 80.48% 69.52% 0.25 0.78

OM 3L t0.9
SVM 75.00% 73.97% 76.12% 77.14% 72.86% 0.24 0.75
KNN 75.36% 74.15% 76.69% 77.86% 72.86% 0.25 0.75
BN 76.67% 76.17% 77.18% 77.62% 75.71% 0.22 0.77
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OM 4L t0.9
SVM 78.57% 78.57% 78.57% 78.57% 78.57% 0.21 0.79
KNN 77.86% 77.86% 77.86% 77.86% 77.86% 0.22 0.79
BN 78.10% 78.10% 78.10% 78.10% 78.10% 0.22 0.8

OM 5L t0.9
SVM 81.43% 82.35% 80.56% 80.00% 82.86% 0.19 0.81
KNN 77.14% 77.54% 76.76% 76.43% 77.86% 0.24 0.8
BN 76.90% 77.56% 76.28% 75.71% 78.10% 0.24 0.79

OM 6L t0.9
SVM 87.14% 89.39% 85.14% 84.29% 90.00% 0.15 0.87
KNN 81.79% 83.46% 80.27% 79.29% 84.29% 0.20 0.85
BN 79.76% 82.72% 77.29% 75.24% 84.29% 0.22 0.84

SK 3L t0.3
SVM 92.86% 95.45% 90.54% 90.00% 95.71% 0.09 0.93
KNN 89.29% 90.44% 88.19% 87.86% 90.71% 0.10 0.93
BN 88.57% 91.75% 85.84% 84.76% 92.38% 0.12 0.93

SK 4L t0.3
SVM 88.57% 89.71% 87.50% 87.14% 90.00% 0.12 0.89
KNN 85.71% 85.71% 85.71% 85.71% 85.71% 0.14 0.88
BN 85.95% 87.94% 84.16% 83.33% 88.57% 0.17 0.89

SK 5L t0.3
SVM 80.00% 83.87% 76.92% 74.29% 85.71% 0.23 0.8
KNN 76.79% 79.07% 74.83% 72.86% 80.71% 0.25 0.78
BN 77.14% 80.65% 74.36% 71.43% 82.86% 0.26 0.8

SK 6L t0.3
SVM 85.71% 89.06% 82.89% 81.43% 90.00% 0.17 0.86
KNN 82.50% 85.83% 79.74% 77.86% 87.14% 0.19 0.84
BN 83.10% 88.83% 78.84% 75.71% 90.48% 0.20 0.86

SK 3L t0.5
SVM 89.29% 95.08% 84.81% 82.86% 95.71% 0.15 0.89
KNN 87.50% 92.68% 83.44% 81.43% 93.57% 0.19 0.87
BN 87.38% 93.37% 82.85% 80.48% 94.29% 0.19 0.88

SK 4L t0.5
SVM 90.71% 90.14% 91.30% 91.43% 90.00% 0.09 0.91
KNN 85.71% 85.21% 86.23% 86.43% 85.00% 0.15 0.88
BN 85.71% 86.06% 85.38% 85.24% 86.19% 0.14 0.89

SK 5L t0.5
SVM 78.57% 80.30% 77.03% 75.71% 81.43% 0.23 0.79
KNN 74.29% 75.00% 73.61% 72.86% 75.71% 0.25 0.79
BN 75.95% 78.84% 73.59% 70.95% 80.95% 0.24 0.81

SK 6L t0.5
SVM 85.71% 86.76% 84.72% 84.29% 87.14% 0.15 0.86
KNN 80.36% 79.31% 81.48% 82.14% 78.57% 0.19 0.86
BN 81.67% 82.13% 81.22% 80.95% 82.38% 0.18 0.87

SK 3L t0.7
SVM 89.29% 91.04% 87.67% 87.14% 91.43% 0.12 0.89
KNN 85.71% 87.31% 84.25% 83.57% 87.86% 0.16 0.86
BN 84.76% 88.42% 81.74% 80.00% 89.52% 0.19 0.87

SK 4L t0.7
SVM 88.57% 93.55% 84.62% 82.86% 94.29% 0.15 0.89
KNN 85.71% 88.46% 83.33% 82.14% 89.29% 0.17 0.87
BN 85.95% 90.81% 82.13% 80.00% 91.90% 0.19 0.88

SK 5L t0.7
SVM 83.57% 87.30% 80.52% 78.57% 88.57% 0.19 0.84
KNN 78.57% 80.30% 77.03% 75.71% 81.43% 0.22 0.84
BN 80.48% 83.68% 77.83% 75.71% 85.24% 0.20 0.85

SK 6L t0.7
SVM 85.00% 83.56% 86.57% 87.14% 82.86% 0.13 0.85
KNN 82.86% 81.94% 83.82% 84.29% 81.43% 0.17 0.84
BN 83.10% 83.57% 82.63% 82.38% 83.81% 0.17 0.86
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OK 3L t0.3
SVM 82.86% 85.94% 80.26% 78.57% 87.14% 0.20 0.83
KNN 80.71% 80.71% 80.71% 80.71% 80.71% 0.19 0.84
BN 83.33% 83.98% 82.71% 82.38% 84.29% 0.18 0.86

OK 4L t0.3
SVM 83.57% 85.07% 82.19% 81.43% 85.71% 0.18 0.84
KNN 80.36% 81.02% 79.72% 79.29% 81.43% 0.19 0.85
BN 83.33% 85.00% 81.82% 80.95% 85.71% 0.15 0.88

OK 5L t0.3
SVM 91.43% 93.94% 89.19% 88.57% 94.29% 0.11 0.91
KNN 87.86% 88.97% 86.81% 86.43% 89.29% 0.13 0.91
BN 86.67% 88.12% 85.32% 84.76% 88.57% 0.14 0.9

OK 6L t0.3
SVM 85.00% 87.69% 82.67% 81.43% 88.57% 0.17 0.85
KNN 85.00% 85.51% 84.51% 84.29% 85.71% 0.15 0.86
BN 85.00% 85.17% 84.83% 84.76% 85.24% 0.15 0.87

OK 3L t0.5
SVM 90.00% 88.89% 91.18% 91.43% 88.57% 0.09 0.9
KNN 85.00% 83.56% 86.57% 87.14% 82.86% 0.15 0.9
BN 86.19% 85.85% 86.54% 86.67% 85.71% 0.13 0.91

OK 4L t0.5
SVM 87.86% 87.32% 88.41% 88.57% 87.14% 0.12 0.88
KNN 85.71% 84.25% 87.31% 87.86% 83.57% 0.13 0.88
BN 86.43% 85.58% 87.32% 87.62% 85.24% 0.13 0.89

OK 5L t0.5
SVM 85.00% 84.51% 85.51% 85.71% 84.29% 0.14 0.85
KNN 84.29% 83.80% 84.78% 85.00% 83.57% 0.16 0.85
BN 85.48% 85.31% 85.65% 85.71% 85.24% 0.15 0.87

OK 6L t0.5
SVM 84.29% 85.29% 83.33% 82.86% 85.71% 0.17 0.84
KNN 82.14% 83.09% 81.25% 80.71% 83.57% 0.18 0.85
BN 83.81% 85.50% 82.27% 81.43% 86.19% 0.16 0.87

OK 3L t0.7
SVM 83.57% 85.07% 82.19% 81.43% 85.71% 0.18 0.84
KNN 81.43% 80.56% 82.35% 82.86% 80.00% 0.18 0.83
BN 83.81% 83.81% 83.81% 83.81% 83.81% 0.16 0.86

OK 4L t0.7
SVM 78.57% 78.57% 78.57% 78.57% 78.57% 0.21 0.79
KNN 78.21% 78.42% 78.01% 77.86% 78.57% 0.22 0.81
BN 81.43% 83.00% 80.00% 79.05% 83.81% 0.20 0.83

OK 5L t0.7
SVM 89.29% 88.73% 89.86% 90.00% 88.57% 0.10 0.89
KNN 84.64% 84.40% 84.89% 85.00% 84.29% 0.16 0.89
BN 84.52% 85.37% 83.72% 83.33% 85.71% 0.15 0.89

OK 6L t0.7
SVM 83.57% 83.10% 84.06% 84.29% 82.86% 0.16 0.84
KNN 80.71% 79.45% 82.09% 82.86% 78.57% 0.18 0.85
BN 82.38% 82.08% 82.69% 82.86% 81.90% 0.18 0.87

OK 3L t0.9
SVM 80.71% 79.45% 82.09% 82.86% 78.57% 0.18 0.81
KNN 78.21% 76.87% 79.70% 80.71% 75.71% 0.25 0.82
BN 81.19% 80.47% 81.95% 82.38% 80.00% 0.18 0.85

OK 4L t0.9
SVM 83.57% 81.33% 86.15% 87.14% 80.00% 0.14 0.84
KNN 80.00% 78.38% 81.82% 82.86% 77.14% 0.19 0.82
BN 81.90% 80.45% 83.50% 84.29% 79.52% 0.17 0.85

OK 5L t0.9
SVM 82.14% 82.61% 81.69% 81.43% 82.86% 0.18 0.82
KNN 78.21% 78.42% 78.01% 77.86% 78.57% 0.22 0.81
BN 80.00% 80.00% 80.00% 80.00% 80.00% 0.20 0.83
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OK 6L t0.9
SVM 84.29% 82.43% 86.36% 87.14% 81.43% 0.14 0.84
KNN 82.86% 81.08% 84.85% 85.71% 80.00% 0.18 0.85
BN 84.52% 83.41% 85.71% 86.19% 82.86% 0.17 0.87

Table B.3: The results using the KCC in the context of whole image-based methods, where S
means standard decomposition, O overlapped decomposition, t is the threshold for the critical
function and L is the level..

Method Classifier Acc Sen Spec PPV NPV EER AUC

SM 3L t0.3
SVM 84.29% 82.43% 86.36% 87.14% 81.43% 0.14 0.84
KNN 81.43% 79.33% 83.85% 85.00% 77.86% 0.20 0.84
BN 80.24% 79.26% 81.28% 81.90% 78.57% 0.20 0.83

SM 4L t0.3
SVM 85.00% 83.56% 86.57% 87.14% 82.86% 0.13 0.85
KNN 76.43% 75.00% 78.03% 79.29% 73.57% 0.24 0.81
BN 76.19% 75.70% 76.70% 77.14% 75.24% 0.24 0.81

SM 5L t0.3
SVM 73.57% 73.24% 73.91% 74.29% 72.86% 0.26 0.74
KNN 69.64% 69.23% 70.07% 70.71% 68.57% 0.31 0.73
BN 71.67% 70.59% 72.86% 74.29% 69.05% 0.27 0.75

SM 6L t0.3
SVM 79.29% 79.71% 78.87% 78.57% 80.00% 0.21 0.79
KNN 76.07% 74.17% 78.29% 80.00% 72.14% 0.23 0.78
BN 76.43% 74.45% 78.76% 80.48% 72.38% 0.24 0.8

SM 3L t0.5
SVM 73.57% 73.24% 73.91% 74.29% 72.86% 0.26 0.74
KNN 70.00% 69.18% 70.90% 72.14% 67.86% 0.28 0.73
BN 72.62% 71.89% 73.40% 74.29% 70.95% 0.27 0.75

SM 4L t0.5
SVM 82.14% 79.22% 85.71% 87.14% 77.14% 0.14 0.82
KNN 78.93% 78.72% 79.14% 79.29% 78.57% 0.21 0.83
BN 79.76% 80.19% 79.34% 79.05% 80.48% 0.20 0.83

SM 5L t0.5
SVM 85.00% 86.57% 83.56% 82.86% 87.14% 0.16 0.85
KNN 79.64% 79.43% 79.86% 80.00% 79.29% 0.20 0.84
BN 78.81% 78.40% 79.23% 79.52% 78.10% 0.21 0.84

SM 6L t0.5
SVM 75.71% 74.32% 77.27% 78.57% 72.86% 0.23 0.76
KNN 73.57% 72.30% 75.00% 76.43% 70.71% 0.27 0.75
BN 74.05% 72.65% 75.63% 77.14% 70.95% 0.27 0.74

SM 3L t0.7
SVM 82.14% 82.61% 81.69% 81.43% 82.86% 0.18 0.82
KNN 79.29% 79.71% 78.87% 78.57% 80.00% 0.20 0.81
BN 77.14% 77.14% 77.14% 77.14% 77.14% 0.23 0.8

SM 4L t0.7
SVM 82.86% 79.49% 87.10% 88.57% 77.14% 0.13 0.83
KNN 82.14% 80.00% 84.62% 85.71% 78.57% 0.20 0.83
BN 80.71% 79.72% 81.77% 82.38% 79.05% 0.20 0.82

SM 6L t0.7
SVM 82.14% 83.58% 80.82% 80.00% 84.29% 0.19 0.82
KNN 78.21% 81.10% 75.82% 73.57% 82.86% 0.26 0.81
BN 77.38% 79.19% 75.78% 74.29% 80.48% 0.21 0.82

SM 5L t0.7
SVM 75.71% 76.47% 75.00% 74.29% 77.14% 0.25 0.76
KNN 73.57% 72.60% 74.63% 75.71% 71.43% 0.27 0.75
BN 73.33% 73.33% 73.33% 73.33% 73.33% 0.27 0.76
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SM 3L t0.9
SVM 75.71% 73.08% 79.03% 81.43% 70.00% 0.21 0.76
KNN 75.36% 73.83% 77.10% 78.57% 72.14% 0.26 0.76
BN 75.71% 73.89% 77.84% 79.52% 71.90% 0.23 0.78

SM 4L t0.9
SVM 81.43% 80.56% 82.35% 82.86% 80.00% 0.18 0.81
KNN 74.29% 73.29% 75.37% 76.43% 72.14% 0.25 0.78
BN 74.05% 72.85% 75.38% 76.67% 71.43% 0.26 0.79

SM 5L t0.9
SVM 73.57% 74.63% 72.60% 71.43% 75.71% 0.27 0.74
KNN 71.79% 71.63% 71.94% 72.14% 71.43% 0.28 0.74
BN 72.38% 72.38% 72.38% 72.38% 72.38% 0.28 0.76

SM 6L t0.9
SVM 78.57% 78.57% 78.57% 78.57% 78.57% 0.21 0.79
KNN 75.00% 75.36% 74.65% 74.29% 75.71% 0.25 0.78
BN 75.95% 76.85% 75.12% 74.29% 77.62% 0.24 0.79

OM 3L t0.3
SVM 79.29% 79.71% 78.87% 78.57% 80.00% 0.21 0.79
KNN 76.43% 75.00% 78.03% 79.29% 73.57% 0.24 0.79
BN 76.19% 75.46% 76.96% 77.62% 74.76% 0.23 0.79

OM 4L t0.3
SVM 80.00% 80.00% 80.00% 80.00% 80.00% 0.20 0.8
KNN 76.43% 75.34% 77.61% 78.57% 74.29% 0.24 0.78
BN 75.95% 74.22% 77.95% 79.52% 72.38% 0.25 0.79

OM 5L t0.3
SVM 81.43% 80.56% 82.35% 82.86% 80.00% 0.18 0.81
KNN 77.86% 74.68% 81.97% 84.29% 71.43% 0.23 0.79
BN 78.10% 75.00% 82.07% 84.29% 71.90% 0.23 0.81

OM 6L t0.3
SVM 80.00% 80.00% 80.00% 80.00% 80.00% 0.20 0.8
KNN 78.21% 78.42% 78.01% 77.86% 78.57% 0.22 0.79
BN 78.57% 78.04% 79.13% 79.52% 77.62% 0.22 0.8

OM 3L t0.5
SVM 79.29% 78.08% 80.60% 81.43% 77.14% 0.19 0.79
KNN 76.07% 75.52% 76.64% 77.14% 75.00% 0.24 0.8
BN 78.10% 77.83% 78.37% 78.57% 77.62% 0.22 0.82

OM 6L t0.5
SVM 78.57% 79.41% 77.78% 77.14% 80.00% 0.22 0.79
KNN 77.86% 77.86% 77.86% 77.86% 77.86% 0.22 0.79
BN 76.43% 75.81% 77.07% 77.62% 75.24% 0.24 0.8

OM 4L t0.5
SVM 80.71% 78.67% 83.08% 84.29% 77.14% 0.17 0.81
KNN 77.50% 75.84% 79.39% 80.71% 74.29% 0.23 0.81
BN 78.10% 76.82% 79.50% 80.48% 75.71% 0.22 0.81

OM 5L t0.5
SVM 77.14% 77.14% 77.14% 77.14% 77.14% 0.23 0.77
KNN 74.29% 72.37% 76.56% 78.57% 70.00% 0.28 0.76
BN 73.10% 70.82% 75.94% 78.57% 67.62% 0.28 0.75

OM 3L t0.7
SVM 82.86% 81.94% 83.82% 84.29% 81.43% 0.16 0.83
KNN 82.14% 80.41% 84.09% 85.00% 79.29% 0.18 0.83
BN 80.95% 79.82% 82.18% 82.86% 79.05% 0.19 0.83

OM 6L t0.7
SVM 75.00% 73.33% 76.92% 78.57% 71.43% 0.23 0.75
KNN 75.00% 73.65% 76.52% 77.86% 72.14% 0.25 0.76
BN 76.43% 75.81% 77.07% 77.62% 75.24% 0.24 0.78

OM 4L t0.7
SVM 82.14% 80.82% 83.58% 84.29% 80.00% 0.16 0.82
KNN 76.79% 74.83% 79.07% 80.71% 72.86% 0.22 0.8
BN 76.90% 76.28% 77.56% 78.10% 75.71% 0.22 0.81
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OM 5L t0.7
SVM 87.14% 90.62% 84.21% 82.86% 91.43% 0.16 0.87
KNN 81.79% 83.97% 79.87% 78.57% 85.00% 0.21 0.85
BN 79.52% 81.00% 78.18% 77.14% 81.90% 0.22 0.84

OM 3L t0.9
SVM 75.71% 75.71% 75.71% 75.71% 75.71% 0.24 0.76
KNN 76.43% 75.69% 77.21% 77.86% 75.00% 0.24 0.77
BN 76.67% 76.17% 77.18% 77.62% 75.71% 0.24 0.78

OM 4L t0.9
SVM 80.71% 80.28% 81.16% 81.43% 80.00% 0.19 0.81
KNN 76.43% 76.06% 76.81% 77.14% 75.71% 0.24 0.8
BN 76.43% 76.56% 76.30% 76.19% 76.67% 0.24 0.79

OM 5L t0.9
SVM 87.86% 90.77% 85.33% 84.29% 91.43% 0.15 0.88
KNN 82.50% 84.21% 80.95% 80.00% 85.00% 0.19 0.86
BN 80.24% 83.25% 77.73% 75.71% 84.76% 0.22 0.85

OM 6L t0.9
SVM 87.86% 88.41% 87.32% 87.14% 88.57% 0.13 0.88
KNN 83.57% 82.19% 85.07% 85.71% 81.43% 0.16 0.86
BN 82.38% 81.48% 83.33% 83.81% 80.95% 0.18 0.86

SK 3L t0.3
SVM 82.86% 81.94% 83.82% 84.29% 81.43% 0.16 0.83
KNN 80.36% 80.14% 80.58% 80.71% 80.00% 0.20 0.8
BN 81.43% 82.67% 80.28% 79.52% 83.33% 0.18 0.83

SK 4L t0.3
SVM 82.86% 81.94% 83.82% 84.29% 81.43% 0.16 0.83
KNN 79.29% 78.47% 80.15% 80.71% 77.86% 0.19 0.81
BN 81.19% 81.64% 80.75% 80.48% 81.90% 0.19 0.84

SK 5L t0.3
SVM 86.43% 91.80% 82.28% 80.00% 92.86% 0.18 0.86
KNN 81.43% 85.48% 78.21% 75.71% 87.14% 0.24 0.84
BN 81.43% 86.26% 77.73% 74.76% 88.10% 0.23 0.84

SK 6L t0.3
SVM 80.71% 82.09% 79.45% 78.57% 82.86% 0.21 0.81
KNN 78.93% 80.00% 77.93% 77.14% 80.71% 0.23 0.8
BN 79.29% 81.87% 77.09% 75.24% 83.33% 0.24 0.81

SK 3L t0.5
SVM 80.71% 77.92% 84.13% 85.71% 75.71% 0.16 0.81
KNN 75.00% 73.33% 76.92% 78.57% 71.43% 0.24 0.79
BN 75.00% 75.86% 74.19% 73.33% 76.67% 0.23 0.81

SK 4L t0.5
SVM 75.00% 80.70% 71.08% 65.71% 84.29% 0.29 0.75
KNN 69.64% 72.73% 67.30% 62.86% 76.43% 0.34 0.73
BN 73.10% 77.40% 69.96% 65.24% 80.95% 0.32 0.76

SK 5L t0.5
SVM 86.43% 89.23% 84.00% 82.86% 90.00% 0.16 0.86
KNN 78.57% 78.17% 78.99% 79.29% 77.86% 0.21 0.83
BN 78.57% 81.25% 76.32% 74.29% 82.86% 0.22 0.83

SK 6L t0.5
SVM 80.71% 80.28% 81.16% 81.43% 80.00% 0.19 0.81
KNN 77.14% 77.14% 77.14% 77.14% 77.14% 0.23 0.78
BN 77.38% 79.19% 75.78% 74.29% 80.48% 0.24 0.81

SK 3L t0.7
SVM 81.43% 81.43% 81.43% 81.43% 81.43% 0.19 0.81
KNN 77.14% 77.54% 76.76% 76.43% 77.86% 0.23 0.8
BN 77.86% 79.70% 76.23% 74.76% 80.95% 0.20 0.81

SK 4L t0.7
SVM 79.29% 78.87% 79.71% 80.00% 78.57% 0.20 0.79
KNN 78.93% 80.00% 77.93% 77.14% 80.71% 0.21 0.79
BN 79.52% 81.96% 77.43% 75.71% 83.33% 0.20 0.82
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SK 5L t0.7
SVM 89.29% 86.67% 92.31% 92.86% 85.71% 0.08 0.89
KNN 83.93% 83.22% 84.67% 85.00% 82.86% 0.17 0.85
BN 84.52% 84.36% 84.69% 84.76% 84.29% 0.15 0.87

SK 6L t0.7
SVM 87.14% 90.62% 84.21% 82.86% 91.43% 0.16 0.87
KNN 82.14% 84.09% 80.41% 79.29% 85.00% 0.21 0.84
BN 82.14% 86.10% 78.97% 76.67% 87.62% 0.22 0.85

SK 3L t0.9
SVM 86.43% 94.74% 80.72% 77.14% 95.71% 0.19 0.86
KNN 81.79% 88.03% 77.30% 73.57% 90.00% 0.21 0.85
BN 81.67% 89.82% 76.28% 71.43% 91.90% 0.23 0.85

SK 4L t0.9
SVM 85.00% 83.56% 86.57% 87.14% 82.86% 0.13 0.85
KNN 81.43% 80.56% 82.35% 82.86% 80.00% 0.19 0.82
BN 81.43% 81.43% 81.43% 81.43% 81.43% 0.19 0.84

SK 5L t0.9
SVM 87.86% 88.41% 87.32% 87.14% 88.57% 0.13 0.88
KNN 83.57% 85.07% 82.19% 81.43% 85.71% 0.19 0.85
BN 83.57% 86.91% 80.79% 79.05% 88.10% 0.21 0.86

SK 6L t0.9
SVM 85.00% 85.51% 84.51% 84.29% 85.71% 0.15 0.85
KNN 81.07% 80.85% 81.29% 81.43% 80.71% 0.19 0.85
BN 81.67% 82.76% 80.65% 80.00% 83.33% 0.18 0.86

OK 3L t0.3
SVM 83.57% 82.19% 85.07% 85.71% 81.43% 0.15 0.84
KNN 79.64% 78.62% 80.74% 81.43% 77.86% 0.19 0.83
BN 81.90% 81.02% 82.84% 83.33% 80.48% 0.17 0.85

OK 4L t0.3
SVM 82.14% 83.58% 80.82% 80.00% 84.29% 0.19 0.82
KNN 78.57% 79.41% 77.78% 77.14% 80.00% 0.21 0.81
BN 80.24% 80.68% 79.81% 79.52% 80.95% 0.20 0.83

OK 5L t0.3
SVM 85.00% 84.51% 85.51% 85.71% 84.29% 0.14 0.85
KNN 83.21% 82.52% 83.94% 84.29% 82.14% 0.17 0.85
BN 84.76% 84.43% 85.10% 85.24% 84.29% 0.15 0.87

OK 6L t0.3
SVM 83.57% 84.06% 83.10% 82.86% 84.29% 0.17 0.84
KNN 79.29% 79.71% 78.87% 78.57% 80.00% 0.21 0.83
BN 79.52% 80.69% 78.44% 77.62% 81.43% 0.21 0.84

OK 3L t0.9
SVM 85.00% 82.67% 87.69% 88.57% 81.43% 0.12 0.85
KNN 80.36% 78.15% 82.95% 84.29% 76.43% 0.21 0.85
BN 82.38% 80.91% 84.00% 84.76% 80.00% 0.19 0.86

OK 4L t0.9
SVM 80.00% 80.00% 80.00% 80.00% 80.00% 0.20 0.8
KNN 79.64% 79.02% 80.29% 80.71% 78.57% 0.21 0.81
BN 81.90% 82.52% 81.31% 80.95% 82.86% 0.18 0.84

OK 5L t0.9
SVM 75.71% 78.12% 73.68% 71.43% 80.00% 0.26 0.76
KNN 74.29% 74.29% 74.29% 74.29% 74.29% 0.26 0.76
BN 75.71% 76.73% 74.77% 73.81% 77.62% 0.26 0.79

OK 6L t0.9
SVM 88.57% 84.62% 93.55% 94.29% 82.86% 0.06 0.89
KNN 85.71% 82.47% 89.68% 90.71% 80.71% 0.17 0.87
BN 86.19% 83.63% 89.18% 90.00% 82.38% 0.14 0.89
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Table B.4: The results using the KLD critical function in the context of whole image-based,
where S means standard decomposition, O overlapped decomposition, t is the threshold for the
critical function and L is the level.

Method Classifier Acc Sen Spec PPV NPV EER AUC

SM 3L t0.3
SVM 77.14% 76.39% 77.94% 78.57% 75.71% 0.22 0.77
KNN 74.64% 72.85% 76.74% 78.57% 70.71% 0.26 0.76
BN 73.57% 72.20% 75.13% 76.67% 70.48% 0.26 0.77

SM 4L t0.3
SVM 66.43% 67.69% 65.33% 62.86% 70.00% 0.35 0.66
KNN 66.07% 65.73% 66.42% 67.14% 65.00% 0.34 0.67
BN 68.10% 67.76% 68.45% 69.05% 67.14% 0.31 0.71

SM 5L t0.3
SVM 72.14% 73.13% 71.23% 70.00% 74.29% 0.29 0.72
KNN 66.79% 66.67% 66.91% 67.14% 66.43% 0.33 0.7
BN 68.57% 68.75% 68.40% 68.10% 69.05% 0.32 0.71

SM 6L t0.3
SVM 82.14% 84.62% 80.00% 78.57% 85.71% 0.20 0.82
KNN 79.29% 81.54% 77.33% 75.71% 82.86% 0.23 0.81
BN 78.10% 80.41% 76.11% 74.29% 81.90% 0.23 0.81

SM 3L t0.5
SVM 80.71% 82.09% 79.45% 78.57% 82.86% 0.21 0.81
KNN 75.00% 76.52% 73.65% 72.14% 77.86% 0.22 0.78
BN 75.95% 78.53% 73.80% 71.43% 80.48% 0.27 0.8

SM 4L t0.5
SVM 75.71% 77.27% 74.32% 72.86% 78.57% 0.26 0.76
KNN 73.21% 73.38% 73.05% 72.86% 73.57% 0.27 0.75
BN 74.29% 74.06% 74.52% 74.76% 73.81% 0.26 0.77

SM 5L t0.5
SVM 77.86% 76.71% 79.10% 80.00% 75.71% 0.21 0.78
KNN 74.64% 75.18% 74.13% 73.57% 75.71% 0.24 0.77
BN 76.67% 78.57% 75.00% 73.33% 80.00% 0.22 0.79

SM 6L t0.5
SVM 83.57% 85.07% 82.19% 81.43% 85.71% 0.18 0.84
KNN 84.29% 86.92% 82.00% 80.71% 87.86% 0.19 0.83
BN 85.48% 89.42% 82.25% 80.48% 90.48% 0.19 0.86

SM 3L t0.7
SVM 87.14% 89.39% 85.14% 84.29% 90.00% 0.15 0.87
KNN 84.29% 82.88% 85.82% 86.43% 82.14% 0.16 0.86
BN 83.33% 83.33% 83.33% 83.33% 83.33% 0.17 0.86

SM 4L t0.7
SVM 78.57% 80.30% 77.03% 75.71% 81.43% 0.23 0.79
KNN 75.36% 75.54% 75.18% 75.00% 75.71% 0.24 0.78
BN 77.14% 78.79% 75.68% 74.29% 80.00% 0.23 0.8

SM 5L t0.7
SVM 88.57% 98.21% 82.14% 78.57% 98.57% 0.18 0.89
KNN 86.43% 96.36% 80.00% 75.71% 97.14% 0.18 0.89
BN 85.00% 94.55% 78.82% 74.29% 95.71% 0.18 0.87

SM 6L t0.7
SVM 81.43% 84.38% 78.95% 77.14% 85.71% 0.21 0.81
KNN 80.00% 81.34% 78.77% 77.86% 82.14% 0.21 0.81
BN 81.19% 83.25% 79.37% 78.10% 84.29% 0.21 0.83

SM 3L t0.9
SVM 88.57% 92.19% 85.53% 84.29% 92.86% 0.14 0.89
KNN 86.07% 89.15% 83.44% 82.14% 90.00% 0.16 0.88
BN 85.00% 88.48% 82.10% 80.48% 89.52% 0.17 0.88

SM 4L t0.9
SVM 87.86% 92.06% 84.42% 82.86% 92.86% 0.16 0.88
KNN 88.21% 92.13% 84.97% 83.57% 92.86% 0.16 0.88
BN 86.43% 92.27% 82.01% 79.52% 93.33% 0.19 0.88
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SM 5L t0.9
SVM 92.86% 95.45% 90.54% 90.00% 95.71% 0.09 0.93
KNN 92.14% 96.09% 88.82% 87.86% 96.43% 0.11 0.93
BN 90.48% 96.20% 86.02% 84.29% 96.67% 0.13 0.92

SM 6L t0.9
SVM 90.71% 95.24% 87.01% 85.71% 95.71% 0.13 0.91
KNN 88.93% 92.25% 86.09% 85.00% 92.86% 0.13 0.9
BN 89.05% 94.09% 85.04% 83.33% 94.76% 0.15 0.91

OM 3L t0.3
SVM 87.86% 87.32% 88.41% 88.57% 87.14% 0.12 0.88
KNN 86.43% 86.96% 85.92% 85.71% 87.14% 0.14 0.88
BN 85.24% 87.00% 83.64% 82.86% 87.62% 0.14 0.88

OM 4L t0.3
SVM 86.43% 86.96% 85.92% 85.71% 87.14% 0.14 0.86
KNN 85.00% 86.57% 83.56% 82.86% 87.14% 0.16 0.85
BN 85.48% 87.06% 84.02% 83.33% 87.62% 0.16 0.88

OM 5L t0.3
SVM 91.43% 93.94% 89.19% 88.57% 94.29% 0.11 0.91
KNN 90.36% 88.97% 91.85% 92.14% 88.57% 0.10 0.93
BN 89.52% 90.69% 88.43% 88.10% 90.95% 0.11 0.92

OM 6L t0.3
SVM 92.14% 96.83% 88.31% 87.14% 97.14% 0.12 0.92
KNN 91.43% 96.77% 87.18% 85.71% 97.14% 0.14 0.91
BN 91.67% 97.81% 86.92% 85.24% 98.10% 0.14 0.92

OM 3L t0.5
SVM 93.57% 94.20% 92.96% 92.86% 94.29% 0.07 0.94
KNN 93.21% 93.53% 92.91% 92.86% 93.57% 0.06 0.94
BN 91.67% 91.87% 91.47% 91.43% 91.90% 0.09 0.93

OM 4L t0.5
SVM 89.29% 91.04% 87.67% 87.14% 91.43% 0.12 0.89
KNN 88.57% 91.54% 86.00% 85.00% 92.14% 0.12 0.91
BN 89.76% 92.82% 87.11% 86.19% 93.33% 0.13 0.92

OM 5L t0.5
SVM 95.71% 97.06% 94.44% 94.29% 97.14% 0.06 0.96
KNN 96.43% 97.79% 95.14% 95.00% 97.86% 0.04 0.97
BN 96.90% 98.52% 95.39% 95.24% 98.57% 0.03 0.97

OM 6L t0.5
SVM 99.29% 100.00% 98.59% 98.57% 100.00% 0.01 0.99
KNN 99.29% 100.00% 98.59% 98.57% 100.00% 0.00 0.99
BN 99.05% 100.00% 98.13% 98.10% 100.00% 0.00 0.99

SK 3L t0.3
SVM 83.57% 83.10% 84.06% 84.29% 82.86% 0.16 0.84
KNN 79.29% 80.60% 78.08% 77.14% 81.43% 0.21 0.81
BN 80.24% 83.60% 77.49% 75.24% 85.24% 0.23 0.83

SK 4L t0.3
SVM 88.57% 90.91% 86.49% 85.71% 91.43% 0.14 0.89
KNN 85.71% 88.46% 83.33% 82.14% 89.29% 0.17 0.87
BN 86.19% 90.00% 83.04% 81.43% 90.95% 0.15 0.88

SK 5L t0.3
SVM 84.29% 85.29% 83.33% 82.86% 85.71% 0.17 0.84
KNN 82.86% 83.33% 82.39% 82.14% 83.57% 0.18 0.84
BN 83.10% 84.58% 81.74% 80.95% 85.24% 0.19 0.85

SK 6L t0.3
SVM 86.43% 85.92% 86.96% 87.14% 85.71% 0.13 0.86
KNN 83.21% 83.45% 82.98% 82.86% 83.57% 0.17 0.85
BN 85.00% 86.93% 83.26% 82.38% 87.62% 0.16 0.88

SK 3L t0.5
SVM 90.00% 92.42% 87.84% 87.14% 92.86% 0.12 0.9
KNN 89.29% 91.67% 87.16% 86.43% 92.14% 0.12 0.9
BN 89.76% 93.72% 86.46% 85.24% 94.29% 0.12 0.92
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SK 4L t0.5
SVM 83.57% 84.06% 83.10% 82.86% 84.29% 0.17 0.84
KNN 79.64% 79.02% 80.29% 80.71% 78.57% 0.19 0.83
BN 81.67% 83.42% 80.09% 79.05% 84.29% 0.19 0.85

SK 5L t0.5
SVM 80.71% 79.45% 82.09% 82.86% 78.57% 0.18 0.81
KNN 78.93% 79.14% 78.72% 78.57% 79.29% 0.21 0.8
BN 81.19% 83.25% 79.37% 78.10% 84.29% 0.21 0.83

SK 6L t0.5
SVM 85.71% 87.88% 83.78% 82.86% 88.57% 0.16 0.86
KNN 82.14% 84.09% 80.41% 79.29% 85.00% 0.19 0.84
BN 83.33% 86.84% 80.43% 78.57% 88.10% 0.20 0.86

SK 3L t0.7
SVM 79.29% 82.54% 76.62% 74.29% 84.29% 0.23 0.79
KNN 76.79% 80.00% 74.19% 71.43% 82.14% 0.25 0.79
BN 77.86% 83.82% 73.68% 69.05% 86.67% 0.27 0.81

SK 4L t0.7
SVM 82.86% 83.82% 81.94% 81.43% 84.29% 0.18 0.83
KNN 83.93% 83.22% 84.67% 85.00% 82.86% 0.17 0.85
BN 85.00% 86.21% 83.87% 83.33% 86.67% 0.15 0.87

SK 5L t0.7
SVM 85.71% 86.76% 84.72% 84.29% 87.14% 0.15 0.86
KNN 82.86% 83.82% 81.94% 81.43% 84.29% 0.19 0.87
BN 83.57% 86.53% 81.06% 79.52% 87.62% 0.14 0.88

SK 6L t0.7
SVM 90.71% 95.24% 87.01% 85.71% 95.71% 0.13 0.91
KNN 88.21% 92.13% 84.97% 83.57% 92.86% 0.16 0.89
BN 88.10% 93.96% 83.61% 81.43% 94.76% 0.18 0.9

SK 3L t0.9
SVM 85.00% 85.51% 84.51% 84.29% 85.71% 0.15 0.85
KNN 83.21% 83.45% 82.98% 82.86% 83.57% 0.17 0.86
BN 84.52% 86.07% 83.11% 82.38% 86.67% 0.16 0.88

SK 4L t0.9
SVM 90.00% 93.75% 86.84% 85.71% 94.29% 0.13 0.9
KNN 89.29% 92.97% 86.18% 85.00% 93.57% 0.14 0.89
BN 89.05% 94.57% 84.75% 82.86% 95.24% 0.15 0.9

SK 5L t0.9
SVM 89.29% 88.73% 89.86% 90.00% 88.57% 0.10 0.89
KNN 88.21% 88.49% 87.94% 87.86% 88.57% 0.11 0.89
BN 88.33% 91.28% 85.78% 84.76% 91.90% 0.14 0.9

SK 6L t0.9
SVM 89.29% 95.08% 84.81% 82.86% 95.71% 0.15 0.89
KNN 88.57% 94.26% 84.18% 82.14% 95.00% 0.18 0.88
BN 88.57% 95.00% 83.75% 81.43% 95.71% 0.18 0.89

OK 3L t0.3
SVM 86.43% 85.92% 86.96% 87.14% 85.71% 0.13 0.86
KNN 86.07% 85.31% 86.86% 87.14% 85.00% 0.13 0.88
BN 86.67% 85.98% 87.38% 87.62% 85.71% 0.13 0.88

OK 4L t0.3
SVM 85.71% 86.76% 84.72% 84.29% 87.14% 0.15 0.86
KNN 85.36% 87.79% 83.22% 82.14% 88.57% 0.17 0.87
BN 85.95% 86.47% 85.45% 85.24% 86.67% 0.14 0.89

OK 5L t0.3
SVM 86.43% 88.06% 84.93% 84.29% 88.57% 0.15 0.86
KNN 86.79% 88.15% 85.52% 85.00% 88.57% 0.12 0.87
BN 88.33% 89.27% 87.44% 87.14% 89.52% 0.12 0.9

OK 6L t0.3
SVM 95.00% 98.46% 92.00% 91.43% 98.57% 0.08 0.95
KNN 92.86% 96.15% 90.00% 89.29% 96.43% 0.10 0.94
BN 92.14% 97.33% 87.98% 86.67% 97.62% 0.12 0.94
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OK 3L t0.5
SVM 92.86% 92.86% 92.86% 92.86% 92.86% 0.07 0.93
KNN 90.71% 89.58% 91.91% 92.14% 89.29% 0.10 0.93
BN 90.71% 89.04% 92.54% 92.86% 88.57% 0.10 0.93

OK 4L t0.5
SVM 97.14% 97.14% 97.14% 97.14% 97.14% 0.03 0.97
KNN 97.50% 97.16% 97.84% 97.86% 97.14% 0.03 0.98
BN 97.62% 97.17% 98.08% 98.10% 97.14% 0.03 0.98

OK 5L t0.5
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 99.76% 100.00% 99.53% 99.52% 100.00% 0.00 1

OK 6L t0.5
SVM 97.86% 98.55% 97.18% 97.14% 98.57% 0.03 0.98
KNN 97.86% 98.55% 97.18% 97.14% 98.57% 0.01 0.98
BN 98.10% 99.03% 97.20% 97.14% 99.05% 0.01 0.98

Table B.5: The results using the LCS critical function in the context of whole image-based,
where S means standard decomposition, O overlapped decomposition, t is the threshold for the
critical function and L is the level.

Method Classifier Acc Sen Spec PPV NPV EER AUC

SM 3L t0.3
SVM 93.57% 95.52% 91.78% 91.43% 95.71% 0.08 0.94
KNN 92.50% 93.43% 91.61% 91.43% 93.57% 0.07 0.95
BN 91.43% 92.23% 90.65% 90.48% 92.38% 0.08 0.94

SM 4L t0.3
SVM 97.14% 97.14% 97.14% 97.14% 97.14% 0.03 0.97
KNN 97.50% 97.16% 97.84% 97.86% 97.14% 0.02 0.98
BN 97.86% 97.63% 98.09% 98.10% 97.62% 0.02 0.98

SM 5L t0.3
SVM 98.57% 98.57% 98.57% 98.57% 98.57% 0.01 0.99
KNN 98.57% 99.28% 97.89% 97.86% 99.29% 0.01 0.99
BN 98.57% 99.04% 98.11% 98.10% 99.05% 0.01 0.99

SM 6L t0.3
SVM 96.43% 98.51% 94.52% 94.29% 98.57% 0.05 0.96
KNN 96.07% 97.08% 95.10% 95.00% 97.14% 0.05 0.97
BN 96.67% 97.57% 95.79% 95.71% 97.62% 0.04 0.98

SM 3L t0.5
SVM 95.00% 94.37% 95.65% 95.71% 94.29% 0.04 0.95
KNN 95.71% 95.07% 96.38% 96.43% 95.00% 0.05 0.96
BN 94.29% 93.87% 94.71% 94.76% 93.81% 0.06 0.95

SM 4L t0.5
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 99.64% 100.00% 99.29% 99.29% 100.00% 0.00 1
BN 99.29% 100.00% 98.59% 98.57% 100.00% 0.00 1

SM 5L t0.5
SVM 99.29% 100.00% 98.59% 98.57% 100.00% 0.01 0.99
KNN 99.29% 100.00% 98.59% 98.57% 100.00% 0.01 0.99
BN 99.29% 100.00% 98.59% 98.57% 100.00% 0.00 1

SM 6L t0.5
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

SM 3L t0.7
SVM 96.43% 94.52% 98.51% 98.57% 94.29% 0.01 0.96
KNN 95.00% 93.75% 96.32% 96.43% 93.57% 0.04 0.96
BN 94.52% 93.49% 95.61% 95.71% 93.33% 0.05 0.96
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SM 4L t0.7
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

SM 5L t0.7
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

SM 6L t0.7
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

SM 3L t0.9
SVM 92.86% 92.86% 92.86% 92.86% 92.86% 0.07 0.93
KNN 93.57% 92.96% 94.20% 94.29% 92.86% 0.06 0.93
BN 94.29% 93.46% 95.15% 95.24% 93.33% 0.06 0.95

SM 4L t0.9
SVM 97.86% 100.00% 95.89% 95.71% 100.00% 0.04 0.98
KNN 98.21% 100.00% 96.55% 96.43% 100.00% 0.03 0.98
BN 98.10% 100.00% 96.33% 96.19% 100.00% 0.03 0.98

SM 5L t0.9
SVM 99.29% 100.00% 98.59% 98.57% 100.00% 0.01 0.99
KNN 99.64% 100.00% 99.29% 99.29% 100.00% 0.00 0.99
BN 99.76% 100.00% 99.53% 99.52% 100.00% 0.00 1

SM 6L t0.9
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

OM 3L t0.3
SVM 93.57% 95.52% 91.78% 91.43% 95.71% 0.08 0.94
KNN 93.93% 94.89% 93.01% 92.86% 95.00% 0.07 0.94
BN 94.52% 95.61% 93.49% 93.33% 95.71% 0.07 0.95

OM 4L t0.3
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

OM 5L t0.3
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 99.64% 100.00% 99.29% 99.29% 100.00% 0.01 1
BN 99.52% 100.00% 99.06% 99.05% 100.00% 0.01 1

OM 6L t0.3
SVM 97.86% 98.55% 97.18% 97.14% 98.57% 0.03 0.98
KNN 98.57% 99.28% 97.89% 97.86% 99.29% 0.02 0.98
BN 98.57% 99.51% 97.66% 97.62% 99.52% 0.02 0.99

OM 3L t0.5
SVM 96.43% 97.10% 95.77% 95.71% 97.14% 0.04 0.96
KNN 96.43% 97.10% 95.77% 95.71% 97.14% 0.03 0.97
BN 96.67% 97.57% 95.79% 95.71% 97.62% 0.02 0.97

OM 4L t0.5
SVM 98.57% 100.00% 97.22% 97.14% 100.00% 0.03 0.99
KNN 98.57% 100.00% 97.22% 97.14% 100.00% 0.02 0.99
BN 98.57% 100.00% 97.22% 97.14% 100.00% 0.02 0.99

OM 5L t0.5
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

OM 6L t0.5
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
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OM 3L t0.7
SVM 93.57% 92.96% 94.20% 94.29% 92.86% 0.06 0.94
KNN 95.71% 95.71% 95.71% 95.71% 95.71% 0.04 0.95
BN 95.48% 96.59% 94.42% 94.29% 96.67% 0.04 0.96

OM 4L t0.7
SVM 99.29% 100.00% 98.59% 98.57% 100.00% 0.01 0.99
KNN 99.29% 100.00% 98.59% 98.57% 100.00% 0.00 0.99
BN 99.29% 100.00% 98.59% 98.57% 100.00% 0.00 0.99

OM 5L t0.7
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

OM 6L t0.7
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

OM 3L t0.9
SVM 93.57% 95.52% 91.78% 91.43% 95.71% 0.08 0.94
KNN 95.71% 96.38% 95.07% 95.00% 96.43% 0.05 0.95
BN 96.19% 97.09% 95.33% 95.24% 97.14% 0.05 0.96

OM 4L t0.9
SVM 98.57% 98.57% 98.57% 98.57% 98.57% 0.01 0.99
KNN 98.93% 98.58% 99.28% 99.29% 98.57% 0.01 0.99
BN 98.81% 98.12% 99.52% 99.52% 98.10% 0.01 0.99

OM 5L t0.9
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

OM 6L t0.9
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

SK 3L t0.3
SVM 92.14% 91.55% 92.75% 92.86% 91.43% 0.07 0.92
KNN 91.79% 90.91% 92.70% 92.86% 90.71% 0.07 0.92
BN 92.38% 91.20% 93.63% 93.81% 90.95% 0.06 0.93

SK 4L t0.3
SVM 96.43% 95.77% 97.10% 97.14% 95.71% 0.03 0.96
KNN 95.71% 94.44% 97.06% 97.14% 94.29% 0.04 0.97
BN 95.48% 93.21% 97.99% 98.10% 92.86% 0.03 0.97

SK 5L t0.3
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 99.64% 99.29% 100.00% 100.00% 99.29% 0.00 1
BN 99.29% 98.59% 100.00% 100.00% 98.57% 0.00 1

SK 6L t0.3
SVM 99.29% 98.59% 100.00% 100.00% 98.57% 0.00 0.99
KNN 98.93% 97.90% 100.00% 100.00% 97.86% 0.01 0.99
BN 98.33% 96.77% 100.00% 100.00% 96.67% 0.03 0.98

SK 3L t0.5
SVM 90.71% 90.14% 91.30% 91.43% 90.00% 0.09 0.91
KNN 91.43% 90.85% 92.03% 92.14% 90.71% 0.08 0.93
BN 92.14% 90.78% 93.60% 93.81% 90.48% 0.09 0.93

SK 4L t0.5
SVM 98.57% 98.57% 98.57% 98.57% 98.57% 0.01 0.99
KNN 98.57% 98.57% 98.57% 98.57% 98.57% 0.01 0.99
BN 98.57% 98.57% 98.57% 98.57% 98.57% 0.01 0.99

SK 5L t0.5
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
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SK 6L t0.5
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

SK 3L t0.7
SVM 95.00% 94.37% 95.65% 95.71% 94.29% 0.04 0.95
KNN 95.71% 94.44% 97.06% 97.14% 94.29% 0.05 0.96
BN 95.48% 94.84% 96.14% 96.19% 94.76% 0.05 0.96

SK 4L t0.7
SVM 97.14% 95.83% 98.53% 98.57% 95.71% 0.01 0.97
KNN 97.14% 95.83% 98.53% 98.57% 95.71% 0.04 0.98
BN 97.38% 95.85% 99.01% 99.05% 95.71% 0.04 0.98

SK 5L t0.7
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

SK 6L t0.7
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

SK 3L t0.9
SVM 95.00% 93.15% 97.01% 97.14% 92.86% 0.03 0.95
KNN 94.64% 93.10% 96.30% 96.43% 92.86% 0.04 0.95
BN 94.76% 93.12% 96.53% 96.67% 92.86% 0.06 0.95

SK 4L t0.9
SVM 97.86% 97.18% 98.55% 98.57% 97.14% 0.01 0.98
KNN 97.14% 97.14% 97.14% 97.14% 97.14% 0.03 0.98
BN 97.38% 97.61% 97.16% 97.14% 97.62% 0.03 0.98

SK 5L t0.9
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

SK 6L t0.9
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

OK 3L t0.3
SVM 99.29% 98.59% 100.00% 100.00% 98.57% 0.00 0.99
KNN 99.29% 98.59% 100.00% 100.00% 98.57% 0.01 0.99
BN 99.29% 98.59% 100.00% 100.00% 98.57% 0.01 0.99

OK 4L t0.3
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

OK 5L t0.3
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

OK 6L t0.3
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

OK 3L t0.5
SVM 99.29% 100.00% 98.59% 98.57% 100.00% 0.01 0.99
KNN 99.29% 100.00% 98.59% 98.57% 100.00% 0.00 0.99
BN 99.29% 100.00% 98.59% 98.57% 100.00% 0.00 0.99

OK 4L t0.5
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
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OK 5L t0.5
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

OK 6L t0.5
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

OK 3L t0.7
SVM 97.86% 98.55% 97.18% 97.14% 98.57% 0.03 0.98
KNN 97.86% 98.55% 97.18% 97.14% 98.57% 0.01 0.98
BN 97.62% 98.54% 96.73% 96.67% 98.57% 0.03 0.98

OK 4L t0.7
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

OK 5L t0.7
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1

OK 6L t0.7
SVM 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
KNN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
BN 100.00% 100.00% 100.00% 100.00% 100.00% 0.00 1
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