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Abstract— Robot-assisted endovascular navigation provides
significant advantages, including reduced radiation exposure
for surgeons and improved patient safety. However, a major
challenge is to control curvilinear instruments like guidewires
precisely for smooth and accurate navigation while adapt-
ing to anatomical variations and external forces. Traditional
segmentation-based approaches struggle with real-time pre-
diction of the guidewire’s evolving shape, limiting their ef-
fectiveness in navigation tasks. In this paper, we propose
SplineFormer, an explainable transformer network that predicts
the continuous, structured representation of the guidewire as
a B-spline. This formulation enables a compact, smooth, and
explainable state representation that facilitates downstream
navigation. By leveraging SplineFormer’s predictions within
an imitation learning framework, our system successfully per-
forms autonomous endovascular navigation. Experimental re-
sults show that SplineFormer achieves a 50% success rate when
fully autonomously cannulating the Brachiocephalic Artery in
a real robotic setup, demonstrating its potential for improved
autonomous navigation in endovascular interventions.

I. INTRODUCTION

Cardiovascular diseases remain the leading cause of mor-
tality worldwide, accounting for over a million deaths annu-
ally, with coronary heart disease and cerebrovascular disease
being the primary contributors [1]. Endovascular interven-
tions, such as Percutaneous Coronary Intervention (PCI),
Pulmonary Vein Isolation (PVI), and Mechanical Thrombec-
tomy (MT), have become well-established procedures for
treating these conditions [2]–[4]. These minimally invasive
techniques rely on the precise navigation of a guidewire and
catheter through the vasculature to the target site, guided
by intraoperative fluoroscopy. Once the target is reached,
procedures such as thrombus removal, stent deployment,
or tissue ablation are performed [5]. However, achieving
safe and efficient navigation remains a critical challenge, as
misalignment or excessive force can lead to vessel injury.
Furthermore, the time-sensitive nature of these interventions,
particularly in acute cases such as stroke, necessitates rapid
and accurate navigation, where delays beyond 7.3 hours sig-
nificantly reduce the benefits of MT [6]. Yet, only a fraction
of eligible patients receive timely treatment, underscoring the
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Fig. 1: System Overview: The experimental setup includes
three main components: i) an anatomically accurate half-
body vascular phantom model from Elastrat Sarl Ltd.; ii) a
joystick controller (robotic leader); and iii) a robotic follower.
Data is collected through teleoperation, where the robotic
follower is controlled by the joystick controller.

need for advancements in autonomous navigation systems to
improve procedural efficiency and accessibility [7].

To achieve precise endovascular navigation, operators pri-
marily rely on fluoroscopic imaging to visualize the vascu-
lature and manually guide instruments. However, prolonged
fluoroscopy use poses risks such as radiation exposure to
both patients and surgeons, along with potential nephro-
toxicity from contrast agents used during angiography [8].
Moreover, manual operation demands significant skill and
dexterity, increasing the risk of complications such as vessel
perforation, misalignment, and distal embolization [9]. While
robotic and semi-autonomous systems have been introduced
to assist operators, they still require human oversight for
fine adjustments, limiting scalability and increasing cognitive
load. In contrast, fully autonomous approaches can reduce
operator dependency and improve procedural efficiency in
high-risk interventions.

Recent advancements in machine learning offer promis-
ing solutions to improve autonomous endovascular naviga-
tion [10]. Among various learning-based approaches, Re-
inforcement Learning (RL) has been extensively explored,
showing the potential to optimize guidewire control strate-
gies [11]–[15]. While RL methods have demonstrated early
success, their deployment in real-world endovascular navi-
gation remains limited due to factors such as high cognitive
workload for operators, the need for precise state represen-
tations, and the difficulty of translating learned policies to
real robots [16], [17]. Furthermore, ensuring explainability
and safety in autonomous navigation is crucial as these
technologies advance towards clinical applications [18].



In this paper, we introduce SplineFormer, a transformer-
based model designed to predict the guidewire’s geometry
in a structured and explainable manner. Unlike conventional
segmentation-based methods, which generate dense pixel-
wise representations, our approach predicts a continuous
B-spline representation that captures the smooth and nat-
ural curvature of the guidewire. This formulation provides
an efficient, compact, and structured representation, which
facilitates downstream navigation by offering a state-space
representation that can be leveraged for action selection. We
validate our method in a high-fidelity experimental setup
featuring a robotic system and an anatomically accurate
human vascular phantom (Fig. 1). Utilizing SplineFormer’s
predictions, the robot successfully performs autonomous
endovascular navigation, achieving a 50% success rate in
cannulating the Brachiocephalic Artery (BCA). Our contri-
butions are summarized as follows:

1) We introduce SplineFormer, an explainable transformer
network capable of inferring the guidewire’s geometry
in a constrained parametric space.

2) We train our network to i) retrieve meaningful and
concise representations, and ii) use this latent space to
derive the appropriate actions to successfully navigate
the anatomy.

II. RELATED WORKS

Guidewire and Catheter Representation. Accurate mod-
eling of guidewires and catheters is a critical challenge in
endovascular interventions, as it directly impacts the preci-
sion of robotic navigation. Traditional approaches have pre-
dominantly relied on segmentation-based methods, wherein
the guidewire is identified from fluoroscopic images using
classical image processing techniques such as pixel inten-
sity analysis, texture feature extraction, and histogram-based
methods [19]–[23]. More advanced methodologies, including
the Hough transform and curvature-based techniques, have
been employed to enhance detection accuracy [24]–[26].
However, these approaches often exhibit limitations in the
presence of low contrast, occlusions, and imaging artifacts,
thereby reducing their reliability for real-time navigation in
dynamic clinical environments.

Deep learning methods have introduced more robust so-
lutions for guidewire detection and segmentation. Convolu-
tional Neural Networks (CNN) have been widely adopted
for surgical tool localization, demonstrating significant im-
provements in accuracy [27]–[31]. In particular, U-Net-
based architectures [32] have achieved state-of-the-art per-
formance in segmenting guidewires from X-ray images, with
refinements such as Recurrent Neural Networks (RNN) and
adaptive binarization further improving accuracy [33], [34].
However, these methods primarily operate on pixel-wise
segmentations, which fail to provide a structured, continuous
representation of the guidewire’s geometry. One common
failure mode is fragmentation, where discontinuities appear
in the predicted segmentation mask (Fig. 2), making it
unsuitable for stable robotic navigation [35].

Fig. 2: Segmentation Failure Cases. Due to challenges
in capturing thin and elongated guidewires, segmentation
models often produce discontinuous segmented maps, which
are unsuitable for stable robotic navigation.

Unlike segmentation-based methods, B-spline representa-
tions offer a structured and interpretable formulation of the
guidewire’s geometry. By parameterizing the guidewire as a
set of control points, B-splines inherently enforce smooth-
ness and geometric consistency, thereby reducing sensitivity
to noise and enhancing navigation stability. This parametric
representation is particularly advantageous for robotic ap-
plications, where compact, continuous state encodings are
preferable to high-dimensional, pixel-wise outputs. Building
upon this principle, our approach leverages SplineFormer
to directly predict B-spline parameters, enabling seamless
integration into downstream robotic navigation policies.

Autonomous Navigation. Autonomous navigation of
guidewires within the vasculature is a highly complex task
that has garnered significant attention due to its potential
benefits, including reduced operative times, minimized radia-
tion exposure, and improved procedural success rates. Recent
advancements have increasingly focused on learning-based
approaches to enhance the autonomous control of surgical
tools, leveraging data-driven models to improve precision,
adaptability, and robustness in dynamic clinical environ-
ments. Reinforcement Learning (RL) has been extensively
explored in endovascular navigation, demonstrating the capa-
bility to learn complex control policies [12]–[15], [36]–[38].
Various RL-based approaches have been proposed to train
agents for autonomous guidewire navigation. However, their
performance is highly contingent on the quality of the state
representation. Many existing methods rely on raw image-
based observations, which are inherently high-dimensional
and lack an explicit geometric structure, posing challenges
for interpretability and efficient decision-making.

To mitigate these challenges, several studies have inte-
grated Learning from Demonstration (LfD) techniques, such
as Generative Adversarial Imitation Learning (GAIL) [37]
and Behavioural Cloning (BC) [36], where expert trajecto-
ries serve as supervisory signals to guide learning. These
approaches have demonstrated potential in reducing the
sample complexity of RL algorithms by incorporating expert
knowledge. However, existing methods often suffer from
poor generalization due to the absence of structured state
representations. In contrast, our proposed approach employs
B-spline representations to construct a compact and struc-
tured state space, facilitating more stable and interpretable
endovascular navigation.
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Fig. 3: SplineFormer Network Architecture: The input fluoroscopic image X is processed by a visual transformer encoder
that divides the image into patches, embeds them, and generates visual feature representations X ′. Simultaneously, a positional
encoder processes embeddings of the target sequence. These encoded features are fed into a transformer decoder composed
of ND layers. Using masked self-attention and cross-attention mechanisms, the decoder sequentially generates the B-spline
control points Pi and knots ti that define the guidewire’s geometry. The decoder predicts these parameters by projecting its
outputs onto the B-spline dimensionality, yielding pairs {P0, t0}, {P1, t1}, . . . , {Pn, tn}, which are subsequently passed to a
multi-layer perceptron (MLP) to predict the navigation action at = (∆x, θ). An independent tip predictor module initializes
the generation by predicting the starting point {P0, t0}.

III. B-SPLINE REPRESENTATION FOR AUTONOMOUS
ENDOVASCULAR NAVIGATION

Accurate geometric modeling of curvilinear guidewires
and catheters is essential for precise navigation and con-
trol in interventional procedures. Conventional approaches
primarily rely on dense image-based representations [39],
which capture the tool’s shape at the pixel level but lack
an intrinsic parametric structure suitable for real-time nav-
igation. To overcome these limitations, we develop Spline-
Former (Fig. 3), which adopts a B-spline-based represen-
tation to encode the guidewire’s shape in a compact, con-
tinuous, and structured form. By directly parameterizing
the guidewire’s geometry, our approach eliminates the need
for post-processing steps required by segmentation-based
methods, facilitating seamless integration into downstream
robotic navigation policies.

A. B-Spline Representation for Guidewire Modeling

A B-spline curve represents the guidewire’s shape using
a set of control points and a non-decreasing sequence of
knots, providing a smooth and flexible parametric formula-
tion (Fig. 4). This structured encoding inherently enforces
continuity and geometric consistency, enabling stable and
anatomically realistic trajectory adjustments during naviga-
tion. A B-spline curve C(t) of degree p is defined as:

C(t) =
n∑

i=0

PiBi,p(t), (1)

where Pi denotes the control points, and Bi,p(t) represents
the B-spline basis functions of degree p, defined over the

Fig. 4: B-spline Representation of a Guidewire: A
guidewire can be represented as a continuous B-spline curve.

knot vector t0, t1, . . . , tm. The basis functions Bi,p(t) are
computed recursively as follows:

Bi,0(t) =

{
1, if ti ≤ t < ti+1,

0, otherwise.
(2)

Bi,p(t) =
t− ti

ti+p − ti
Bi,p−1(t) +

ti+p+1 − t

ti+p+1 − ti+1
Bi+1,p−1(t).

(3)
Additionally, the constraint

∑m−p−1
i=0 Bi,p(t) = 1 ensures

that the guidewire’s shape remains consistent across varying
imaging conditions, enabling real-time inference. To balance
smoothness and computational efficiency, we set the B-
spline degree to p = 3. The number of control points n
is dynamically selected based on the guidewire’s length,
optimizing flexibility while maintaining model stability. The
knot vector follows a uniform non-decreasing sequence,
ensuring numerical robustness during optimization.



B. SplineFormer Network Architecture

Our SplineFormer (Fig. 3) is built upon a Vision Transformer
(ViT) backbone [40] with Ne = 12 encoder layers and
ND = 6 decoder layers. Each encoder layer employs H = 8
attention heads with a hidden dimension of dk = 512. Input
fluoroscopic images are resized to 224 × 224 pixels and
tokenized into 16 × 16 patches. The model is trained using
the Adam optimizer on an NVIDIA A100 GPU with a batch
size of 32, reaching convergence after 120K iterations.

Encoder. Two encoders are employed to extract struc-
tured features from fluoroscopic images, enabling precise
guidewire representation for downstream navigation. The
first encoder follows a ViT, where the input image X ∈
RH×W is divided into NP patches, computed as:

NP =
H

|P |
× W

|P |
(4)

where |P | denotes the patch size. These patches are flattened
into a 1D tensor and embedded into a latent feature space via
a linear projection layer. The second encoder is a sinusoidal
positional encoder [41], applied to both the image patches
P and the target sequence YTGT ∈ RS×E , where S and
E denote the sequence length and embedding dimension,
respectively. This dual encoding mechanism ensures that the
extracted features capture both local and global information,
essential for accurately predicting the guidewire’s shape.

The transformer encoder consists of Ne stacked identical
layers, each comprising a Multi-Head Self-Attention (MHA)
module followed by a positional Feed-Forward Network
(FFN). The MHA module contains H parallel attention
heads, each computing a scaled dot-product attention func-
tion. This architecture enables the network to attend to both
local and global contextual information, which is critical for
capturing the intricate bending and twisting of the guidewire
during navigation. The outputs from all heads are aggregated
via a learnable linear transformation WO, formulated as:

MHA(Q,K, V ) = Concat(h1, h2, . . . , hH)WO (5)

where the scaled dot-product attention for each head is
computed as:

Attention(Q,K, V ) = Softmax

(
QKT

√
dk

)
V (6)

where {Q,K, V } ∈ RNq×dk represent the query, key, and
value matrices, respectively.

Following the MHA module, the positional FFN is im-
plemented using two fully connected layers with GELU
activation and dropout regularization:

FFN(x) = FC2 (Dropout (GELU (FC1(x)))) (7)

To enhance stability, each sublayer is equipped with a
residual connection, followed by layer normalization:

xout = LayerNorm
(
xin + Sublayer(xin)

)
(8)

Decoder. The decoder consists of ND transformer lay-
ers that sequentially generate the B-spline control points
and corresponding knots, defining the guidewire’s smooth
representation. Each layer comprises masked self-attention,
multi-head cross-attention, and a FFN [41]. This hierarchical
structure enables the model to iteratively refine the predicted
guidewire shape while capturing its curvature and spatial
relationships in a compact form.

The decoder’s final output is projected onto the B-spline
parameter space, yielding the structured representation:

{P0, t0}, {P1, t1}, . . . , {Pn, tn} (9)

where Pi are the control points and ti are the associated knot
values. This formulation defines the guidewire’s geometry
as a continuous parametric curve C(t), enabling accurate
and interpretable navigation. By leveraging a structured
and smooth state representation, this approach ensures both
robust real-time inference and geometrically consistent tra-
jectory estimation.

Tip Predictor. The tip predictor module establishes a
geometrically consistent anchor for guidewire shape pre-
diction by estimating the initial tip position in the image.
It consists of a series of convolutional layers with ReLU
activations, followed by linear transformations that regress
the tip coordinates. Given an input image I , the module
predicts the tip location:

P0 = (x0, y0), (10)

which serves as the initial token for autoregressive guidewire
prediction, ensuring that the generated trajectory remains
spatially coherent and well-anchored.

The encoder and tip predictor interact in a complementary
manner: the encoder extracts hierarchical guidewire features
from the fluoroscopic image, while the tip predictor refines
the initial tip estimate using these extracted features. By
leveraging encoder-derived representations, the tip predictor
gains a richer contextual understanding of vessel topology,
allowing it to produce a more precise and anatomically valid
starting point. This is crucial, as an inaccurate tip estimation
could introduce propagation errors in the subsequent trajec-
tory prediction. The refined tip prediction is then passed to
the decoder, which generates the full guidewire trajectory
based on this initialization.

C. Loss Function

The shape loss function Lshape combines three weighted
components, each scaled by a corresponding hyperparameter
λ: (i) A Mean Squared Error (MSE) loss applied to the
predicted and target sequences of control points and knots.
(ii) A Binary Cross-Entropy (BCE) loss for the end-of-
sequence (EOS) prediction. (iii) A curvature consistency loss,
computed by sampling the predicted B-spline curve at n
parameter values tk, uniformly distributed over the valid
parameter range [tp, tm−p].

The sampled parameter values are defined as:
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Fig. 5: Robot Setup in X-ray Room: The data acquisition and teleoperation process is highlighted, showcasing the user
navigating the guidewire towards the designated target within the vascular phantom. The setup employs a Bi-planar X-ray.
To enhance data variability, two different guidewires are used—the Radifocus™ Guide Wire M Stiff Type with an angled
tip and the Nitrex Guidewire straight tip.

tk = tp +
k

n− 1
(tm−p − tp), k = 0, 1, . . . , n− 1. (11)

The complete loss function is:

Lshape =
1

N

N∑
i=1

(
λa

(
∥ti − t̂i∥2 + ∥Pi − P̂i∥2

)
+

λb

(
− si log(ŝi)− (1− si) log(1− ŝi)

)
+

λc

∥∥∥C(tk)− Ĉ(tk)
∥∥∥2 ).

(12)

The output of SplineFormer is a predicted sequence of
control points and knots: This sequence serves not only as a
shape descriptor but also as the input state for downstream
action prediction. By coupling shape inference directly to
action generation, the model forms a single cohesive pipeline
from image to navigation decision.

D. Policy Training

The predicted control points and knots from Eq. 9 are
directly passed to a Multi-Layered Perceptron (MLP) that
predicts the next navigation action. The MLP processes these
inputs—along with derived curvature features—through fully
connected layers with ReLU activations, producing:

at = (∆x, θ), (13)

where ∆x denotes the translation step and θ denotes the
rotation angle. This policy network is trained by minimizing
the mean squared error between predicted and expert actions:

Laction =
∑
t

∥at − a∗t ∥2. (14)

This direct dependence between the predicted guidewire
shape and the navigation action ensures that every con-
trol decision is grounded in the current estimate of the
guidewire’s geometry, providing both physical consistency
and a structured link between perception and control.

IV. EXPERIMENTS

To evaluate the effectiveness of our SplineFormer, we first
setup the real endovascular robot and collect data to train the
network. After training, the learned policy is evaluated on
state-action pairs within our endovascular robotic system to
assess how effectively the predicted B-spline representation
supports autonomous guidewire navigation. All experiments
were conducted on a computer equipped with an NVIDIA
RTX 4080 GPU, 128GB RAM, and an Intel Core i9-13900
processor, implemented using PyTorch.

A. Endovascular Robot Setup

Robot Setup. Endovascular robotic systems commonly
utilize a leader-follower (master-slave) architecture, where
the leader device—operated by a clinician—translates in-
put commands to a follower robot that manipulates the
catheter [42]. These systems typically offer up to six Degrees
of Freedom (DoF), enabling precise translation and rotation
control [43]. Human-Machine Interfaces (HMIs), such as
multi-DoF joysticks or handheld controllers, convert oper-
ator movements into electromechanical actions, facilitating
accurate catheter navigation [43], [44]. In our system, since
only a guidewire is used, the robotic setup is streamlined
to focus solely on translation and rotation movements. This
simplification reduces mechanical complexity, making the
design more accessible and easier to replicate compared to
multi-DoF systems. The actuation mechanism comprises a
NEMA 17 Bipolar stepper motor (59N cm, 2A) for linear
motion, along with an additional motor for rotational control.
System control is managed by an Arduino Uno Rev3 with a
CNC shield and two A4988 drivers, powered by a 12V DC
power supply. Teleoperation input is provided via a Google
Stadia joystick for intuitive manual control.

Data Collection. Our experiments utilize a Bi-planar X-
ray system (Fig. 5) equipped with 60 kW Epsilon X-ray
Generators (EMD Technologies Ltd.) and 16-inch Image In-
tensifier Tubes (Thales), incorporating dual focal spot Varian
X-ray tubes for high-definition imaging. System calibration
is achieved using acrylic mirrors and geometric alignment
grids. To simulate human vascular anatomy, we employ



Method Setup Explainable?
BCA LCCA

Success (%) Time (s) Success (%) Time (s)

Expert Teleoperation Fully Manual 100 32.1± 9.1 100 25.0± 6.7

GAIL-PPO [37] Semi-Autonomous No 69.4 52.1± 9.9 72.2 76.5± 24.1

Behavior Cloning [37] Fully Autonomous No 5.60 > 200 -

SplineFormer (ours) Fully Autonomous Yes 50.0 150± 45.6 -

TABLE I: Endovascular navigation results.

BCA LCCA Start

Fig. 6: Navigation setup.

a half-body vascular phantom model (Elastrat Sarl Ltd.,
Switzerland) enclosed in a transparent box and integrated
into a closed water circuit to replicate blood flow. The model,
constructed from soft silicone and featuring continuous flow
pumps, was derived from detailed postmortem vascular casts,
ensuring anatomical accuracy consistent with human vascu-
lature [45], [46]. Finally, we utilized a Radifocus™ Guide
Wire M Stiff Type (Terumo Ltd.), a 0.89mm nitinol wire
with a 3 cm angled tip and Nitrex Guidewire straight tip.

Dataset. We collect a dataset of 8,746 high-resolution
samples (1, 024× 1, 024 pixels), consisting of 4, 373 paired
instances with and without a simulated blood flow medium.
Specifically, the dataset includes 6, 136 samples from the
Radifocus Guidewire and 2, 610 from the Nitrex Guidewire,
establishing a foundation for automated guidewire tracking
in bi-planar X-ray images. Manual annotation was performed
using CVAT tool [47], where polylines were meticulously
created to capture the dynamic trajectory of the guidewire
with high precision. To ensure balanced representation across
different guidewire types and imaging conditions, the dataset
was partitioned using a stratified sampling method.

B. Autonomous Navigation Results

Our SplineFormer was evaluated in a fully autonomous
guidewire navigation task. The objective was to navigate
from a predefined position in the descending aorta toward
two distinct arterial targets: the Brachiocephalic Artery
(BCA) and the Left Common Carotid Artery (LCCA), as
illustrated in Fig. 6. For each target, the system performed
20 trials, recording trajectories to construct datasets of state-
action pairs. The agent operated using fluoroscopic image
observations, with an action space defined by translation
within ±2mm and rotation within ±15◦.

Following training, SplineFormer was deployed on the
robotic platform for fully autonomous navigation. The sys-
tem achieved a 50% success rate in reaching the BCA,
with a mean completion time of 2.5 ± 0.76min. This rep-
resents a substantial improvement over the baseline BCA
method, which achieved only 5.6% success under identi-
cal autonomous conditions. The semi-autonomous GAIL-
PPO approach, which incorporates human demonstrations,
performed better with success rates of 69.4% for the BCA
and 72.2% for the LCCA, but unlike SplineFormer, it still
required human intervention.

Fig. 7: Qualitative comparison between SplineFormer
and segmentation method. U-Net (top row) produces seg-
mentation masks, which often contain discontinuities and
require additional post-processing before being used for
robotic control. In contrast, our SplineFormer (bottom row)
directly predicts the guidewire’s geometry as a structured
shape representation, making it more useful for navigation.

While our method did not surpass GAIL-PPO [37], a semi-
autonomous method, in success rate, it offers the advantage
of full autonomy. Moreover, our B-spline representation
provides an explainable and structured state space, improving
model interpretability. However, neither SplineFormer nor
BC successfully cannulated the LCCA, highlighting chal-
lenges in navigating more complex vascular geometries. The
failure in LCCA navigation can be attributed to its sharper
curvature, narrower lumen diameter, and more abrupt bifur-
cation angle compared to the BCA. These factors increase
resistance and the likelihood of collision, making it more
difficult for the learned policy to generalize effectively.

C. Qualitative Results

SplineFormer was trained for 300 epochs on the annotated
dataset from Section IV-A using the Adam optimizer with
an initial learning rate of 1 × 10−5 and the loss function
from Eq. 12. As illustrated in Fig. 7, the model effectively



predicts the global guidewire shape within a compressed
feature space, ensuring a compact and structured geometric
representation. A key strength of SplineFormer is its ability
to localize key guidewire points precisely. By leveraging a
B-spline-based formulation, the model maintains smoothness
and structural integrity, ensuring a continuous representation
that aligns well with the guidewire’s physical properties.

D. Attention Visualization
To better understand how the model processes fluoroscopic

images, attention maps were generated from SplineFormer’s
transformer layers. Using maximal fusion across the final
layer, with a discard factor to isolate key features, the
resulting visualizations in Fig. 8 highlight the critical regions
where the model concentrates its predictions. These attention
maps reveal a strong focus on the guidewire tip and essential
anatomical landmarks, including the central portion of the
aortic arch and the BCA cannulation site.

Fig. 8: Attention visualization: Attention maps highlight
regions where SplineFormer focuses its predictions, includ-
ing the guidewire tip and key vascular landmarks. This
localized attention improves interpretability and facilitates
precise autonomous navigation.

Unlike traditional segmentation methods, where atten-
tion is often dispersed across large areas of the image,
SplineFormer exhibits highly localized attention, refining
its focus on the most relevant regions for navigation. This
precise attention mechanism enhances stability and accu-
racy in guidewire positioning, improving the reliability of
autonomous navigation.

E. Discussion
We present SplineFormer, a new transformer network for
predicting continuous guidewire geometries using a B-spline
representation, enabling efficient encoding for real-time nav-
igation. By parameterizing the guidewire with control points
and knots, our approach ensures geometric consistency and
provides a compact state representation for downstream
robotic control. However, small variations in B-spline param-
eters can introduce spatial misalignment, affecting trajectory
accuracy. In robotic experiments, our SplineFormer success-
fully cannulated the BCA but failed in the LCCA, consistent
with prior findings [37], [48]. The LCCA’s sharper turns, nar-
rower lumen, and abrupt bifurcation angle increase resistance
and the risk of collision, challenging model generalization.
These findings highlight the need for improved adaptability
in high-curvature vascular structures.

F. Limitations

While SplineFormer provides a structured and interpretable
representation for autonomous navigation, its reliance on B-
spline parameterization makes it sensitive to perturbations,
which can affect trajectory stability. Additionally, its failure
in LCCA navigation reinforces the well-documented chal-
lenges of traversing high-curvature vascular regions [37]. The
LCCA’s complex morphology makes navigation inherently
more difficult than in the BCA, limiting policy generaliza-
tion. Addressing these challenges will require adaptive tra-
jectory optimization, uncertainty-aware planning, and biome-
chanical modeling to improve robustness. Despite these con-
straints, SplineFormer demonstrates the viability of shape-
driven navigation strategies, motivating further research into
learning-based autonomous interventions.

V. CONCLUSIONS

We introduce SplineFormer, a spline-based framework for
autonomous endovascular navigation that encodes guidewire
geometry in a compact and structured latent representa-
tion. Our method enhances trajectory planning and real-
time decision-making, providing a foundation for precision-
driven robotic control. While SplineFormer performs well in
structured environments, addressing its limitations in high-
curvature navigation is essential for real-world deployment.
Future work will focus on adaptive learning strategies,
biomechanical modeling, and preclinical validation to en-
hance generalization. By leveraging explainable curvilinear
representations, SplineFormer shows the potential for fully
autonomous endovascular interventions, contributing to safer
and more efficient vascular navigation.
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