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Abstract— Liquid phase change pouch actuators (liquid
pouch motors) hold great promise for a wide range of robotic
applications, from artificial organs to pneumatic manipulators
for dexterous manipulation. However, the usability of liquid
pouch motors remains challenging due to the nonlinear intrinsic
properties of liquids and their highly dynamic implications for
liquid-gas phase changes, which complicate state modeling and
estimation. To address these issues, we propose a reservoir
computing-based method for modeling the inflation states of a
customized liquid pouch motor, which serves as an actuator,
featuring four Peltier heating junctions. We use a motion
capture system to track the landmark movements on the
pouch as a proxy for its volumetric profile. These movements
represent the internal liquid-gas phase changes of the pouch
at stable room temperature, atmospheric pressure, and in
the presence of electrical noise. The motion coordinates are
thus learned by our reservoir computing framework, PhysRes,
to model the states based on prior observations. Through
training, our model achieves excellent results on the test set,
with a normalized root mean squared error of 0.0041 in
estimating the states and a corresponding volumetric error of
0.0160%. To further demonstrate how such actuators could
be implemented in the future, we also design a dual-pouch
actuator-based robotic gripper to control the grasping of
soft objects. Our design and source code are available at:
https://github.com/tatung/liquidpouch _reservoir.

I. INTRODUCTION

Liquid phase change pouch actuators are utilized in vari-
ous applications, including soft robotics, tangible interfaces,
and haptics, due to their advantages in compact size, high
force output, and ease of fabrication. However, due to
the nonlinearity in both liquid-gas phase transitions and
deformable structures, it remains challenging to model and
control the behavior of these actuators. In most applications,
the control of these actuators is open-loop and heavily relies
on empirical, heuristic trial-and-error. The difficulties in
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Fig. 1: Left: The overall pipeline includes collecting, estimating,
and modeling the states of a liquid phase change actuator using
a reservoir computing model. Right: The liquid phase change
pouch actuators are applied to make a soft robotic gripper that can
delicately grasp a fragile object.

modeling and controlling soft actuators make it challenging
to design robust and reliable soft robotic systems with greater
granularity in the motion of liquid phase change pouch
actuators. In this paper, the “deformation” of the liquid pouch
governs the highly nonlinear behavior of the inflation of
a liquid-based, phase-change, actuator. The observed non-
linearities exhibit hysteresis-like behavior (characterized by
time dependency), making it difficult to capture them with
traditional analytical models. To address this challenge, we
adopt a data-driven approach following the principles of a
physical reservoir computing (PRC), PhysRes [1], where
the complex dynamics of a physical system (here, our
actuated pouch) is used for computation. Importantly, in this
work, we primarily focus on modeling the nonlinear phase
changes in a latent space or “states”. In return, this state
space is what allows us to model the essential underlying
physical configuration and dynamics of the future system
state. Since the reservoir’s internal state space is used to learn
a latent representation of the actuator’s underlying physical
configuration from sensor data, we can effectively model the
system’s complex memory effects without an explicit first-
principles physical model.

Soft Pneumatic Actuator: Soft pneumatic actuators have
been widely explored. This line of work is primarily based
on the volumetric state changes of a deformable bag caused
by changing the pressure inside and outside the chamber [2],
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Fig. 2: The design of a square liquid pouch motor. (A) The liquid
pouch motor is a square pouch filled with a low-boiling point
liquid. Four Peltier elements are attached to four corners of the
square pouch. (B) Side-view of a deflated liquid phase change pouch
actuator. (C) The inflating liquid pouch during the liquid-gas phase
transition where part of the liquid gathers at the pouch edges.

[3], [4]. An external compressor pump typically controls the
pressure inside the chamber through a medium, such as gas
or liquid. The chamber’s shape is varied, such as bellow
shapes [5], digitated shapes [6], and long tubes [7]. The
early work of Pouch Motor [8] introduced a computational
approach to designing the shape of the pneumatic actuator.
Therefore, this research enabled the development of various
rapid-prototyping soft pneumatic actuators based on the
inflation and deflation of a nylon pouch.

Liquid Phase Change Pouch Actuators: The liquid phase
change pouch actuators work based on the volumetric change
due to the liquid-gas phase change of the liquid inside the ac-
tuator [9]. A typical method for triggering this phase change
is through thermal cycling. The work in [10] combined the
pneumatic pouch motor design in [8] with a low-boiling-
point liquid to enable rapid prototyping of a liquid phase
change pouch actuator. Meanwhile, other researchers extend
the concept of the liquid phase change pouch motor to
different types of materials to make the chamber [11] and
various ways of thermally triggering the phase change [12],
[13]. Because of their compact size and strong exerted force,
liquid pouch actuators are used in applications such as a soft
haptic display [14] and an origami jumper [15]. However,
due to the nonlinearity of the thermal cycling process and
the deformability of the pouch, it remains a challenge to
model and control liquid-phase-change pouch actuators.

Reservoir Computing (RC) for Soft-Bodied Robots: Reser-
voir computing has been widely adopted in the soft robotics
community in recent years thanks to its ability to handle
complex, nonlinear dynamics efficiently with minimal com-
putational overhead via echo state networks (ESNs) [16],
[17], [18], [19] and liquid state machines (LSMs) [20],
[21]. Flexible material-based robots first utilized ESNs for
controlling the seminal octopus arm [22], [23], [24]. Taking
a step forward, ESNs are further employed on pneumatic
artificial muscle [25], [26] and SMA-based bending robots
for sensorimotor learning [16]. However, the large-scale
development of soft robotics is not only focused on flexible,
deformable, and rigid materials, but also on non-rigid bodies,
which are not yet well-explored, specifically for liquid-based
actuators. These robots make control uncertainty and state

estimation more challenging because of the unpredictable
phase changes in the underlying liquid materials.
Our contributions are layered as follows:

e Design: We design a liquid phase change pouch actuator
driven by Peltier elements that is proven to work under
electrical current.

o Pipeline: We develop a pipeline for collecting positional
and volumetric data for estimating liquid phase change
pouch actuators.

o State Modeling and Estimation: We theoretically and
empirically model and estimate the state of the lig-
uid phase change pouch actuators using a reservoir
computing-based approach.

o Application: We apply our design and the proposed
framework together to build a soft robotic gripper based
on liquid phase change actuation with the capability to
grab and pick up fragile objects.

II. DESIGN OF A LIQUID POUCH ACTUATOR

As mentioned earlier, the liquid pouch actuator operates
based on the liquid-gas phase transition of the liquid inside
the plastic pouch. In this work, we design a square pouch
with a size of 20mm x 20 mm. The pouch is fabricated by
sealing two nylon sheets using a heat sealer. We then fill the
pouch with Vy = 0.02 mL of low-boiling point (61 °C) liquid
Noah 7100 [27] as illustrated in Fig. 1. Table I shows the
values of the liquid pouch actuator’s morphology parameters,
including the parametric parameters used for fabrication.

TABLE I: Our parametric design of the liquid pouch actuator with
pouch size in millimeters (mm), liquid volume in milliliters (mL),
pouch material, and low-boiling-point liquid.

Parameter | Value

Pouch Size (L)

Liquid Volume (V0)
Pouch Material
Low-boiling Point Liquid

20 mm

0.02mL
ONy15/L-LDPE!
Noah 7100 [27]

To actuate the liquid pouch actuator, we heat the liquid
inside the pouch to its boiling point (61 °C for Noah 7100).
The input signal corresponds to the heating power applied
to the pouch via four Peltier elements with [28] size of
3.96mm x 3.96mm x 2.40mm attached to one side at
the four corners of the liquid pouch actuators (as shown
in Fig. 2). In our modeling framework, the input signal to
the reservoir computing model is derived from displacement
readings captured via the OptiTrack motion tracking system,
rather than from electrical signals or sensor measurements
internal to the actuator. These displacement inputs reflect the
externally observable volumetric deformation of the pouch
over time, enabling the reservoir to infer latent dynamic
states and predict future behavior. Empirically, we observe
that during the inflation process, due to surface tension,
the liquid inside the pouch that has not yet vaporized
accumulates at the edges and corners of the pouch. We
therefore attach the four Peltier elements to the pouch’s



four corners, ensuring that the liquid is vaporized during the
heating-up phase. Peltier elements are adhered to the pouch
using a thin double-sided tape to fix the Peltier elements
while maintaining thermal conductivity. Note that four Peltier
elements are put in series and connected to a stable 3.7V
DC power source through a MOSFET-based switch.

ITII. VOLUMETRIC POUCH STATE MODELING &
ESTIMATION

A. Estimating Liquid Phase Changes

An ESN can be formally defined as a reservoir of NV
neurons whose state evolves according to:

x(t) = c(Wipu(t) + Wiex(t — 1)), (D

where u(t) € RP is the input signal vector, x(¢) € R" is
the recurrent layer, Wj, € RV*P is the connection weights
from the input layer to the reservoir, W, € RVY*N is the
connecting weights within the reservoir, and o(-) represents
nonlinear activation function.

In this work, the relation among the pouch’s volumet-
ric states, the input signal, and liquid phase changes is
highly nonlinear and time-dependent, which is difficult to
approximate. We employed the hysteretic encoding function
o(+), which ideally represents these dynamics, together with
PhysRes [1], a robust approach based on the physical RC
for controlling soft actuators (e.g., McKibben pneumatic
artificial muscles or PAMs). Specifically, PhysRes is superior
to ESN by leveraging the nonlinear properties of a hysteretic
encoding to estimate future states based on past observations.
Hysteretic behavior, denoted by a latency, A, governs the
interaction between system input and output as:

0 if k<A

O-(Ck) = 1/ |:1 + e*a(gkf)‘) , otherwise

2

Eq. 2 outputs zero, representing the lag when the input
vector index k is less than \; otherwise, it applies its nonlin-
ear activation function, modulated by the scaling parameter
«. Here, the system input is interpreted as past observations
of the pouch’s physical changes, and the system output is
used to model the pouch’s states. From this, the hysteretic
reservoir’s state updated at time ¢ is determined by the
hysteretic encoding’s output, relying on the previous state
with a fixed delay 7:

x(t) == 0(Ck) = c(Wiu(t) + x(t — 7)) 3)

Therefore, Eq. 3 better handles nonlinearity via the hys-
teretic encoding itself. In addition, the predictive state update
only depends on the past state x(¢—7) rather than a weighted
sum of past activations like in ESN, via getting rid of
random internal connectivities Wj, as in Eq. 1. Specifically,
the encoding function o(-) captures nonlinear dynamics by
transforming input and past states into a high-dimensional,
nonlinear representation. In our hysteretic formulation (Eq.
3), the encoder o(-) further embeds memory effects and

"https://www.kintora.co.jp/html/index.php/rami/

delayed responses, enabling accurate modeling of time-
dependent physical transitions. Thus, the trainable readout
weight matrix, Wy, is conducted through linear regression
with the target y with the trained weights W, :

Wout = W;:n 'y (4)

Subsequent predictions y are derived from the trained state
matrix x(t):
y =x(t) - Wou &)

The predictions y output by PhysRes in Eq. 5 correspond
to our aim to estimate the pouch’s state.

Fig. 3: The pouch inflation is symmetric through the mid-plane,
so we only need to estimate the volume of the upper part of the
pouch, which is approximated as a round square frustum. In Eq. 7,
the integral stacks are the areas of the rounded-corner square from
the base to the top of the shape, resulting in the cap’s volume.

B. Modeling Inflated Volumetric States with Observations

According to our design specification, the liquid pouch is
primarily inflated at the rounded-corner, square-sized regions
at both ends, as depicted in Fig. 3. We establish connections
between the positional states and the volumetric states of the
pouch for further investigation. Note that while modeling
the states of our customized liquid pouch, we implicitly
assume that the four corners of the pouch are well-positioned
on the same plane and unaffected by the pouch’s growth.
The main interesting point in the pouch is the growing
height, which is a good proxy for observing its volumetric
change. Although the pouch buckles when the pressure
inside exceeds a specific threshold, for the simplicity of the
volumetric estimation calculation, we maintain the pressure
below the threshold, thereby preventing buckling. We also
assume that the inflation of the pouch is symmetric through
the mid-plane.

The volume of the inflated pouch can be estimated as twice
the volume of the frustum, also known as the pouch cap, as
shown in Fig. 3. Presumably, the pouch is defined to be at
a rest state when the cap height is zero and to be inflated
when the cap height is larger. The dimension of the caps,
when being inflated, is considered as a rounded-corner square
base, which can be characterized in terms of s as a square
dimension and r as the rounded corner radius:

A=+ 4rs+mr? (6)

Eq. 6 portrays the cross-sectional area of the pouch’s cap
only. As the pouch gets inflated, the base dimension is called
b, and the top dimension is called ¢, making the pouch cap’s
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shape a square-round frustum. During the design process of
the liquid pouch, the formation of a rounded square geometry
(denoted as r in our volumetric calculation) was consistently
observed and quantified throughout the inflation phase. This
empirical observation remained reproducible across multiple
experimental trials and formed our geometric approximation.
By stacking the rounded-squared squares, its inflated
volume, AV, is calculated via the integration along the
growing height h with the sliced area functions A(z):

AV, = Q/OhA(z) iz = 2/0h8(z)2 t drs(z) 4
zz/oh [(b+z(th_b>]2+4r [b+z(th_b)} + 2

2h
= g(b2 + bt + 2 + 6rb + 6rt + 377r?)

(N
Given the dimension of b = 20mm, ¢ = 15mm, and
r = 2mm as shown in Fig. 3, Eq. 7 is simplified to:
2690 + 24
AV, = (7;7% (mm®) @®)

With continuous height measurements, we estimate the
liquid pouch’s inflated volume profile instantaneously. Within
the scope of this work, we consider pouch states with a
continuous spectrum of the inflated volume. The maximal
inflated volume of the pouch is depicted as the growing
height reaches its maximum value. Coupling the predictive
outcomes of Eq. 5 and the computed volume in Eq. 8, we
map the coordinate states back into volumetric states of the
robot pouch.

IV. EXPERIMENTS & EVALUATIONS

In this section, we evaluate the performance of the liquid
pouch actuator inflation, given an initial set of coordinates
with our PhysRes framework. We conduct offline training and
testing experiments and deploy the liquid pouch actuator in
real-world experiments.

A. Experiment Set-up

1) Hardware Set-up: The motion capture system Opti-
Track 2 is deployed to track the embedded reflective markers
on the pouch actuator with micrometer precision. This sys-
tem provides a labeled state representation for controlling the
liquid pouch during offline experiments and serves as visual
feedback during online experiments. In specific, we utilize
an OptiTrack setup consisting of three cameras to track the
inflation and deflation behavior of a liquid pouch actuator in
a controlled cubic workspace of 0.6 m x 0.6 m x 0.6 m. The
liquid pouch actuator has a dimension of 20 mm x 20 mm and
is equipped with five 3 mm-semisphere reflective markers:
four markers at the corners and one at the center of the pouch,
which are used to approximate the skeleton of the actuator
as it undergoes cyclic volume inflation and deflation.

2https://www.optitrack.com/cameras/

TABLE II: Training hyperparameters for our PhysRes model,
including reservoir size in number of neurons N, scale «, latency
A, state delay 7, and initial condition zo.

Hyperparameters \ Value

Reservoir Size (N) | 1000
Scale (o) | 1

Latency (\) | 1

State Delay (1) | 1

Initial Condition (xq) | O

2) Data Collection: We first collect our dataset on differ-
ent liquid pouches of the same size to avoid internal design
bias, such as geometric patterns, marker locations, and the
intrinsic physical property of liquid-gas phase change. These
properties are sensitive and can vary among pouches due
to design imperfections. In each data collection phase, the
positions of the markers are precisely recorded at 120 Hz
with OptiTrack reported accuracy of 0.2 mm.

3) Implementation Details: We also outline the hyperpa-
rameter configuration in Table II, detailing the default values
we used for reservoir size, scaling factor, latency, state delay,
and initial conditions that shape our model operational dy-
namics, resulting in rapid offline training procedure (in mere
seconds on an Apple MacBook Pro M3). In Section III, the
input signal u(¢) € RP encodes both control commands and
environmental conditions, while the state vector x(t) € RY
represents the latent volumetric configuration of the pouch.
The hysteretic encoding function o(-) maps input-driven
variations and delayed physical responses into nonlinear
internal states, thereby enabling the model to capture phase
transitions and memory-dependent dynamics.

B. Evaluation Metrics

1) Markers Displacement Error: The network can be
easily optimized to learn the task as only two primary
hyperparameters (A, «) are used. Therefore, the network’s
estimation of the states is determined by Normalized Root
Mean Square Error (NRMSE):

on (Vk —y)?

NRMSE(y,y) = var(y)

9

In Eq. 9, y and § are, therefore, interpreted as the actual
and estimated states, respectively.

2) Volumetric Error: Thus, by using Eq. 8, we determine
the volume for both the target and the estimated states. To
verify the estimated volumetric estimation, we compute the
absolute percentage of the volumetric error, E, between the
expected volume, V, and the target volume, V, as follows:

E {V, V} — 100 (10)

For the experiments, we use the median to provide a
more robust estimation of the typical estimations of markers
displacement (Eq. 9) and volumetric errors (Eq.10).
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Fig. 4: PhysRes’s estimation on a segment in our collected test dataset for offline experiments: past positional observations of five markers
are recorded, and our reservoir model makes state estimations, which we smooth out with Gaussian kernel (dashed lines in black), closely
matching the ground truth for each marker (each represented by a different colored line). The estimations are made along time steps
ranging from O to 19587 along the horizontal axis, with each displacement calculated in mm along the vertical axis. Our trained PhysRes
generates good state estimations in terms of NRMSE among all marker axes.
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Fig. 5: Spatial representation of the pouch’s state evolution over time for estimated points (red triangle) and control points (blue circle)

for all markers. Left: the initial state, Middle: the estimated states,

Right: the final state. Note that the edges are gradually colored from

gray to blue, following the time steps evolution, where darker blue shows the closer to the final state. We denote the middle marker as
Marker 2, and the markers at the four corners as Marker 1, Marker 0, Marker 3, and Marker 4 clockwise. The axes are plotted in mm.

C. Real-Robot Experiments

1) Hardware & Software Setup: The Peltier elements of
the liquid pouch actuator are connected to the 3.7V output of
a MOSFET-based switching circuit, which is controlled by an
M5StickC PLUS2 [29]. The program in the microcontroller
controls the Peltier elements to heat and cool the liquid pouch
actuator, following random thermal cycling (as shown in Fig.
6A). One thermal cycle includes a pair of random heating
time ¢, and a random cooling time %:

o Heating time: to, = {18,28,3s,---,40s}
o Cooling time: tof = {5s,65,7s,--+,15s}
For each pair of {tn, tofr}, We repeat the thermal cycle for

m = 5 times. After that, the liquid pouch actuator is turned
off for m X tpause = 5 X 1.5 = 7.5 s before starting the next

pair of {ton, tofr}. Fig. 6B shows snapshots of the inflation
of a liquid phase change pouch actuator.

2) Real-World Performance of Method: To evaluate the
method’s real-world performance, we prepare the collected
data from the OptiTrack setup to be ready for the PhysRes
model with the number of the experiment (416 in total), the
time-dependent values (19, 588 points), and the coordinates
(15 positional profiles for five markers with x, y, z). Analo-
gously, the recorded markers’ coordinates that serve as inputs
into PhysRes are captured using the OptiTrack system with
the same setup as in the data collection phase.

Specifically, each session corresponds to a different signal
length (or heating time) between 1s and 40s, as explained
previously. We thus visually inspect to ensure that the
markers’ positions are consistent across all experiments
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Fig. 6: (A) The liquid phase change actuator is driven by a power
source Vip = 3.7 V. An M5StickC PLUS2 microcontroller controls
the timing of the thermal cycling through a MOSFET-based switch
circuit. (B) The volumetric inflation profile of a liquid phase change
pouch actuator, both in image frames and recorded data.

(markers 1, 0, 3, 4 are organized clockwise, and marker
2 is at the center), and discard any erroneous labeling,
resulting in a final number of 399 experiments. The time-
dependent coordinates are interpolated to have a fixed length
for all experiments, matching the requirements of the model
matrices. The collected data are then divided into a training
set (70%) and a test set (30%), and randomized across 279
experiments for the training set and 120 experiments for the
test set, so that the model does not learn patterns specific
to the data collection’s sequential nature. The input to the
network consists of shifted coordinates by half of the points
in the original array, while the other half indexes the target
for model estimations (i.e., the input shifted ahead in time by
9,794 steps, half the total number of time steps). Then, the
model is trained to reconstruct the pouch’s state on the test
set 9,794 steps ahead. Fig. 4 shows how the estimations (in
red) match the target (blue) from the test set input (green).
The spatial representation of the pouch’s time evolution is
also shown in Fig. 5. From the results of both Fig. 4 and
Fig. 5, we conclude that the network can model the states.
Nevertheless, due to the high nonlinearity of the actuator’s
liquid phase, the inflation states vary widely, even with an
identical heating time. We highlight that such nonlinearity
and the difficulty of controlling the pouch despite receiving
the same signals are the primary motivations for this work.
We obtain a mean NRMSE of 0.00413 with a median
NRMSE of 0.000159 for the network over 120 testing
experiments. Fig. 7 shows that the trained model could
accurately reconstruct the test set. We also obtain a median
of 0.016% absolute percentage error for the volumetric state
estimation, indicating accurate estimations of the volumetric
state from the initial set of coordinates provided to PhysRes.
The model provides us with more insights into the type of
signal length to use for a real-world application of object
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Fig. 7: Network error quantification with mean (u) and standard
deviation (o) between estimated states and ground truth of all five
markers across 120 testing experiments using PhysRes.
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Fig. 8: Gripper with two liquid phase change pouch actuators as
two fingers to grasp soft and delicate objects. (A) When the liquid
pouch is deflated, the gripper is resting. (B) The gripper applies
gripping force by inflating the pouch actuators to grasp the object.

picking, as discussed in the next section. For instance, longer
heating signals do not lead to better inflations, while signals
in the 20s range are more reliable for the steady inflation
required for grabbing, holding, and picking.

D. Demonstration: Gripper with Liquid Pouch Actuators

We demonstrate the application of our liquid-phase change
pouch actuator modeling in a gripper made from two liquid
pouch actuators, which can grasp soft and delicate objects,
such as a tissue ball and a potato chip.

We attach two 20 mm x 20 mm liquid phase change pouch
actuators, serving as the fingers of the gripper, to a 3D-
printed rigid gripper frame. When the liquid phase change
pouch actuators are not activated, they are deflated and ready
to approach the targeted object (Fig. 8A). Once the gripper
is in the position that is ready to grasp, the two liquid phase
change pouch actuators are activated and inflated to hold
around the object, as shown in Fig. 8B. This gripper is
attached to a robotic arm, as shown in Fig. 9A. The robotic
arm lifts both the gripper and the object being grasped. The
gripper is flexible enough to hold and pick up a deformable
object like a tissue ball (Fig. 9B) and a brittle object like a
potato chip (Fig. 9C).

V. DISCUSSION AND FUTURE WORKS

In this study, we deploy PhysRes as a physical reser-
voir computing-based method to estimate the volumetric
states of a liquid phase change pouch actuator. This study
demonstrates that the model can accurately represent the
system states. Our findings hint at using the model to
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Fig. 9: (A) The two liquid phase change pouch actuators are
attached to a 3D-printed robotic arm end-effector mount. (B) Grasp-
ing, holding, and picking up a soft tissue ball. (C) Grasping and
picking up a brittle potato chip delicately.

estimate and provide control signals to the liquid phase
change pouch actuators. The challenge of modeling and
controlling soft actuators, particularly those with complex
behaviors like phase change, is well-documented. Traditional
approaches often rely on computationally intensive Finite
Element Method (FEM) simulations or simplified analytical
models that struggle to capture the full spectrum of nonlinear
dynamics. We observed that the signal predicted by PhysRes
appears relatively noisy compared to the local mean kernel.
This apparent noise is primarily attributed to the small scale
of variation in the data (particularly in the Z-direction, where
fluctuations occur within a few tenths of a millimeter, at the
limit of the accuracy threshold of the OptiTrack system),
which then propagates into the model’s state reconstruction.
Rather than being mere noise, these details reflect the high
sensitivity of our model, which successfully propagates these
micro-dynamics into the state reconstruction. While we apply
a Gaussian kernel to smooth the output for visualization
purposes, the raw prediction’s high fidelity to the ground
truth makes PhysRes a promising candidate for applications
requiring precise positional control. The development of
a gripper demonstrates the practical utility of our state
estimation model. While a comprehensive force control loop
is a goal for future work, many robotic manipulation tasks,
such as handling delicate or lightweight objects, prioritize
precise positioning and gentle interaction over high force
application. In the future, we will expand the work to build a
closed-loop, stable control paradigm for liquid phase change
pouch actuators based on different variations of reservoir
computing.

Learning Control Parameters from An Expected Actuation:
We will conduct more extensive experiments to build a
reservoir computing-based network to learn the optimal con-

trolling parameters for the liquid pouch’s desired volumetric
inflation/deflation.

Benchmarking with Different Reservoir Computing Vari-
ations: We will benchmark the performance of different
variations of reservoir computing, such as ESN, LSM, and
Hysteretic Reservoir.

Force Characterization and Multi-Modal Sensing: Our
priority is to establish the relationship between the actuator’s
volumetric state and its force generation capability, a critical
step for stable grasping and force-feedback control. We will
collect additional non-linear output from the liquid phase
change pouch actuators, such as temperature profile, to use
as a physical reservoir for training the model. We will
instrument the actuator to measure output forces, creating a
comprehensive model that links volume to force, similar to
characterization efforts for other soft actuators and building
on recent advances in sensorless estimation techniques [30],
[31]. Additionally, the relationship between the resulting
volumetric state and the applied forces is being established
to support future investigations in the areas of force control
and grasping stability assessment.

Exploration of Model Transferability to Different Liquid
Pouch Configurations: We will evaluate the performance of
our learned model on liquid phase change pouch actuators
with various sizes, shapes, and working environments (e.g.,
pressurized, air, or underwater settings).

VI. CONCLUSIONS

In this paper, we explore the modeling of liquid phase
change pouch actuators using PhysRes, our reservoir comput-
ing framework. We detail the design, hardware, and software
pipeline for collecting data on the behavior of a Peltier
elements-driven liquid phase change pouch actuator through
multiple inflation/deflation cycles. We succeed in modeling
the states of the system based on the observed inflation. This
finding is one step closer to controlling non-linear systems
that are well-suited for robotic applications, such as the liquid
phase change pouch actuators we propose for our soft robotic

gripper.
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