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Abstract— Traditional vision-based autonomous driving sys-
tems often face difficulties in navigating complex environments
when relying solely on single-image inputs. To overcome this
limitation, incorporating temporal data such as past image
frames or steering sequences, has proven effective in enhancing
robustness and adaptability in challenging scenarios. While
previous high-performance methods exist, they often rely on
resource-intensive fusion networks, making them impractical
for training and unsuitable for federated learning. To address
these challenges, we propose lightweight temporal transformer
decomposition, a method that processes sequential image frames
and temporal steering data by breaking down large attention
maps into smaller matrices. This approach reduces model
complexity, enabling efficient weight updates for convergence
and real-time predictions while leveraging temporal information
to enhance autonomous driving performance. Intensive exper-
iments on three datasets demonstrate that our method outper-
forms recent approaches by a clear margin while achieving real-
time performance. Additionally, real robot experiments further
confirm the effectiveness of our method. Our source code can
be found at: https:/github.com/aioz-ai/LTFed.

I. INTRODUCTION

Autonomous driving has the potential to revolutionize
transportation by significantly improving safety, efficiency,
and convenience [1], [2] for human drivers. Central to the
effectiveness of autonomous vehicles is their ability to pro-
cess and interpret visual data to make accurate driving deci-
sions. However, traditional vision-based autonomous driving
systems face privacy concerns, as they require collecting
data from multiple users to train the model [3]. Further-
more, while recent studies have introduced various methods
for autonomous driving, many of them predict trajectory
information from a single image input [2]. This limitation
reduces the system’s ability to respond quickly and safely
while maintaining the privacy of the users’ data [4].

To overcome the limitation when using a single frame
as input for the network, several works have included a
sequence of frames to predict directly the steering control
signal [5], [6]. This approach enables the system to anticipate
potential hazards and take preventive measures, such as
adjusting speed or changing lanes, to avoid close encounters.
Despite the potential benefits, integrating temporal infor-
mation into autonomous driving systems presents several
challenges. In particular, the recent model complexity may
necessitate substantial data for training, impede integration
on devices with limited computational power, and pose
significant challenges in ensuring real-time responses [7].
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Fig. 1. Comparison between traditional approach for federated autonomous
driving (a) and our lightweight temporal transformer network (b).

To address data privacy, several autonomous driving ap-
proaches utilize federated learning to train decentralized
models across multiple vehicles [8]-[10]. However, most
autonomous driving models still rely on the single frame
as input and develop a relatively simple network to enable
feasible a training in federated learning setup [11]-[13].
This single-frame approach overlooks the temporal data that
each vehicle collects over time, which can provide essential
context for understanding motion patterns, tracking objects,
and anticipating potential hazards. As a result, these models
do not fully leverage the sequence of information needed
to better predict and respond to dynamic driving scenarios,
ultimately limiting their performance and adaptability.

In this paper, we aim to develop a federated autonomous
driving framework that takes into account the temporal
information. To address the complexity challenges of the
fusion model when training in a federated scenario using
temporal information, we propose a Lightweight Temporal
Transformer. This new approach reduces the complexity
of the network in each silo by efficiently approximating
the information from the inputs. Our method utilizes a
decomposition method under unitary attention to break down
learnable attention maps into low-rank ones, ensuring that
the resulting models remain lightweight and trainable. By
reducing model complexity, our approach enables the net-
work to use temporal data while ensuring convergence.
Intensive experiments show that our approach outperforms
recent methods in federated autonomous driving.


https://github.com/aioz-ai/LTFed

II. RELATED WORKS

Autonomous Driving. Autonomous driving is a rapidly
advancing field that has garnered significant research interest
in recent years. Various studies have explored the appli-
cation of deep learning for critical tasks, including object
detection and tracking [14], [15], trajectory prediction [16],
and autonomous braking and steering control [17]. For
example, Xin et al. [18] proposed a recursive backstep-
ping steering controller that connects yaw-rate-based path-
following commands to steering adjustments, while Xiong
et al. [19] analyzed nonlinear dynamics using proportional
control methods. Yi et al. [20] introduced an algorithm
that determines the instantaneous center of rotation within
a self-reconfigurable robot’s area, enabling waypoint naviga-
tion while avoiding collisions. Additionally, Yin et al. [21]
combined model predictive control with covariance steering
theory to create a robust controller for nonlinear autonomous
driving systems. Moreover, recent works have leveraged
temporal information to address complex environments and
dynamic scene changes, demonstrating improved robustness
and adaptability in challenging scenarios [22]. However,
despite these advances [23], managing model complexity to
enable deployment on low-level devices while maintaining
effective performance remains a significant challenge.

Federated Learning. Federated learning (FL) supports
decentralized training of machine learning models across
multiple devices while keeping data localized, thereby pre-
serving privacy and reducing data transfer [24]. In au-
tonomous driving, FL enables vehicles to collaboratively
learn from diverse datasets without sharing raw data [12].
Previous research has explored the use of FL in autonomous
driving [9], [10], [25]. Recently, Zhao et al. [26] developed a
federated learning framework for vehicle-to-vehicle commu-
nication that enhances model robustness and generalization.
Some recent works also consider temporal information to
improve performance in complex environments [27]-[30].
Other works have explored clustering-based solutions for
post-processing [24], [31], learning feasibility through the
modifying of the accumulator [32], topology design [33],
or global architecture [9], [10]. However, fully exploiting
temporal information within the constraints of federated
learning remains a significant challenge due to computational
complexity and limited device resources [34].

Lightweight Models. The tensor decomposition tech-
niques aim at breaking down complex interactions into
simpler components [35], thus, reducing the computational
burden and improving the interpretability of models [36].
This technique shows promise in various applications, in-
cluding image recognition [37]-[39] and natural language
processing [40], [41], but its potential in federated learning
for autonomous driving remains largely untapped. Compared
with distillation [42]-[44], pruning [45]-[47], or quantiza-
tion [48], [49] that require complex training setups, decom-
posing the network tensor can be trained directly with less
parameters without the need to modify training paradigm,
which shows potentials in federated training for autonomous
vehicles when handling high dimensional data inputs.

III. METHODOLOGY
A. Preliminary

We consider a federated network with N autonomous
vehicles, collaboratively training a global driving policy 6
by aggregating local weights 6; from each silo ¢, where
i € [1, N]. Each silo minimizes a regression loss £ computed
using a deep network that predicts the steering angle from
temporally ordered RGB images and steering series.

Local Regression Objective. We use mean squared error
(MSE) as the objective function for predicting the steering
angle in each local silo. Here, we only use the extracted joint
features z of the local model to predict steering angles.

L = MSE(6;, &) (1

where b is the mini-batch size; £ is the ground-truth steering
angle of batch b from silo <.

Local Optimization. To ensure the model convergence
under a federated training scenario, for each k commu-
nication round, we use decentralized periodic averaging
stochastic gradient descent (DPASGD) [50].

ZjeNlﬁLu{i} Ai,jej (k)7
if k=0(mod u+ 1) &[N;"| > 1,

0: (k) — g >y VL (6: (k) € (F)
otherwise.

0; (k+1) =

2)
where /\/;r is the in-neighbors set of silo ¢; u is the number
of local updates; A is a consensus matrix for parameter
accumulating.

Global Accumulation. Since our method focuses on the
practical application of a network under a federated learn-
ing scenario, we use the simple accumulation solution Fe-
dAvg [51] for computing the global model 6. The federated
averaging process is conducted as follows:

1 N
0= —x— Z s, (3)
Zi:o Ai i50
where A; = {0,1}. Note that A; = 1 indicates that silo 4

joins the inference process and \; = 0 if not.

Feature Extraction. We use a standard vision transformer
to extract the feature from the sequence of temporal inputs.
This representation, z € R%, is computed as:

z = <T, vec(My) o vec(Ms) o Vec(M3)>, 4)

where o is the outer product; (.,.) is the inner product;
T € Ry ¥dary Xdag Xd= g g Jearnable tensor; M, € R™ >
is the modality input with n; elements, each represented
by d;-dimension features; dy;, = n; x dj; and vec(M;)
vectorizes M; into a row vector. My, My, M3 represent past
frames, steering series, and the current RGB image, respec-
tively. While 7 captures input interactions, learning such a
large tensor is impractical with high-dimensional inputs dy,,
straining vehicle computing resources and hindering model
convergence due to large linear parameter correlations. Thus,
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Fig. 2.

we aim to reduce the size of 7 by minimizing unneces-
sary linear combinations through the introduced Lightweight
Temporal Transformer Decomposition. Specifically, we use
unitary attention decoupling to approximate large tensor T
into smaller ones, followed by a fensor factorization to
factorize tensors into factor matrices.

B. Unitary Attention Decoupling

Inspired by [52], we rely on the idea of unitary attention
mechanism to reduce the size of 7. Specifically, let 2, € R4=
be the joint representation of p** triplet of channels where
each channel in the triplet is from a different input. The
representation of each channel in a triplet is m;,, ma;, M3,
where ¢ € [1,n41],7 € [1,n2], k € [1,n3], respectively. There
are ni X mg X ng possible triplets over the three inputs.
The joint representation z, resulted from a fully parameter-
ized trilinear interaction over three channel representations
my,,my;,ms, of p™™ triplet is computed as

2p = (Toes ma, 0ma, omg, ), 5)

where T, € R4 xd2xd3xd= i the learning tensor between
channels in the triplet.

Following [52], the joint representation z is approximated
by using joint representations of all triplets described in (5)
instead of using fully parameterized interaction over three
inputs. Hence, we compute

2= Mpz, (6)
p

Note that in (6), we compute a weighted sum over all
possible triplets. The p'” triplet is associated with a scalar
weight M,,. The set of M,, is called as the attention map
M, where M € R *n2xns,

An overview of our lightweight temporal transformer decomposition method for federated autonomous driving.

The attention map M resulted from a reduced parameter-
ized trilinear interaction over three inputs M, My and M3
is computed as follows

M:<TM, M10M20M3>7 (7

where Ty € R%1*d2%ds g the learning tensor of attention
map M. Note that the learning tensor 7pq in (7) has a
reduced size compared to the learning tensor 7.

By integrating (5) into (6), the joint representation z in
(6) can be rewritten as

n1 nz n3

2= 3> Miji(Tc, ma, 0ma; 0mg,),  (8)

i=1 j=1 k=1

where M, in (8) is actually a scalar attention weight M,
of the attention map M in (7).

It is also worth noting from (8) that to compute z, instead
of learning the large tensor 7 € R&M1*dary*dargxdz
we now only need to learn two smaller tensors 75, €
]Rdl Xdo Xd3Xd in (5) and T./\/l c Rdl Xda Xd3 in (7)

C. Tensor Factorization

Although the large tensor 7 is replaced by two smaller
tensors 7a¢ and 7., there are too many linear fusions
between mentioned tensors which still affect the learning of
the global model. Therefore, we apply the factorization as
in [53] to T and 7. into learnable factor matrices.

The factorization for the learning tensor 7T, € R%1*d2xd3
can be calculated as

Tumy (Gr, Wi, 0 W2, 0 WP, ), ©)

r=1

where G, € R¥r*d2,%d3, are compact learnable Tucker
tensors [54], small-sized tensors that support minimizing



error when approximating a larger tensor using its factorized
matrices; R is a slicing parameter, establishing a trade-off
between the decomposition rate (which is directly related
to the usage memory and the computational cost) and the
performance. The maximum value for R is usually set
to the greatest common divisor of dj,ds and ds. In our
experiments, we found that R = 32 gives a good trade-off
between the decomposition rate and the performance.

Here, we have dimension di, = di1/R, d2, = da/R
and ds, = d3/R; Wi, € Ra*dir W, € R%2*92 and
W3, € R9>9, are learnable factor matrices. Fig. 2 shows
the illustration of factorization for a tensor Ta4.

The shortened form of T, in (9) can be rewritten as

R
Z [[gr; Wl-,-7 W27" W37'ﬂ’

r=1

T =~ (10)

Integrating the learning tensor 74 from (10) into (7), the
attention map M can be rewritten as

R
M =[G MyWy,, MyWs,, MsWi, ],

r=1

(an

Similar to T, we apply to T, in (8) to reduce the
complexity. Note that the size of Ty, directly affects the
dimension of the joint representation z € R?. Hence, to
minimize the loss of information, we set the slicing param-
eter R = 1 and the projection dimension of factor matrices
at d,, i.e., the same dimension of the joint representation z.

Therefore, T, € R%1*d2xd3xd= ip (8) is calculated as

Toe % (Goes Wey 0 Wy 0 Wy ), (12)
where W, € Rd1xdz
are learnable factor matrices and G,. €
smaller tensor (compared to 7).

Up to now, we already have M by (11) and T, by (12).
Hence, we can compute z using (8) as

W,, € R¥Exd: W, ¢ Rdsxd:
]Rdzxdzxdzxdz is a

ni n2 n3

13)

Mijk<gsc> (mliWZ1) ° (m2jW22) o (m?’szS))’

Here, it is interesting to note that G,. € R%=*d=xd=xd=
in (13) has rank 1. Thus, the result obtained from (13)
can be approximated by the Hadamard products without the
presence of rank-1 tensor Gg. [35]. In particular, z in (13)
can be computed without using G, as

np n2 n3
2= ZZ ZMU’V (mliW21 “mg; W, - ms, Wzs) )

i=1 j=1k=1
(14)
The joint embedding dimension d, is a user-defined
parameter that makes a trade-off between the capability
of the representation and the computational cost. In our
experiments, d, = 1,024 gives a good trade-off.

D. Convergence Analysis

Proposition 1. Lightweight Temporal Transformer Decom-
position in Equation 4 can be considered a form of Bilinear
Attention [55], naturally inheriting its convergence ability.

Proof. Let the input contain two representations of two
modalities, i.e., M? € R"1*% and M} € R"*9, where
n% and nY are number of channels; d} and db are the
representation dimension of each corresponding channel.
Following Equation 4, the joint representation z € R%* can

now be described as

z= <77,, vec(M}) o vec(M§)>, (15)
where ’7?) € Rn1*dn2xdx i learnable tensor; d° b =nbxd};
d?, = nb x d5. By applying parameter factorization (Sec. ITI-
C), z in (15) can be approximated based on (14) as

”/1 rL2
T
c= 30 My (MY W, g WL, ) ae)
=1 j=1
where W.,, € R4*? and W,,, € R%*% are learnable

factor matrices; M;; is an attention weight of attention map
b b .
M € R"1*"2 which can be computed from (11) as

R
M=3"06 MY Wy, MY W, ], (17)

r=1

where W1, € R4*4, and W, € R%*%, are learnable
factor matrices; dj = di/R; d = dj/R; each G, €
R %%, is a learnable Tucker tensor. By extracting k-
element and reorganize the multiplication computations over
tensors, (16) can be rewritten as

"1 "2

=03 M (M3 (W, WE ) M)

=1 j=1

(18)

where z;, is k*" element of the joint representation z; Wi
and W, are k" column in factor matrices W,, and W_,.
Interestingly, from (18), we can rewrite it as a computa-

tional form of a Bilinear Attention as below:

”1 ”2

2k = ZZMU (M (Wzlkw—g;k) )

1=15=1
"1 n2 (19)
=33y (o) (W5, M8
i=1 j=1
= (MW ), MOMET W)
0

Remark 1. Proposition 1 suggests that the results of
our decomposition method can be considered as a Bilin-
ear Attention, which inherits its convergence ability and
ensures the network will converge during the training.



. Learning RMSE MAE #Params | Avg. Cycle
Method Main Focus | Inputs Scenario | Udacity+ | Gazebo | Carla | Udacity+ | Gazebo | Carla M) Time (ms)
MobileNet [56] Realtime 0.193 0.083 | 0.286| 0.176 0.057 |0.200 2.22 _
DroNet [57] Vision 0.183 0.082 |0.333 0.15 0.053 |0.218 0.31 _
St-p3 [6] Archtecture CLL 0.092 0.071 |0.132| 0.090 0.049 [0.132 | 1247.87 _
ADD [4] Temporal 0.097 0.049 | 0.166 | 0.092 0.042 | 0.121 | 3234.22 _
HPO [5] 0.088 0.044 | 0.157| 0.070 0.044 | 0.105 | 5990.19 _
FedAvg [58] Realtime 0.212 0.094 | 0.269| 0.185 0.064 |0.222 0.31 1524
FedProx [59] Aggregation/ Vision 0.152 0.077 10226 | 0.118 0.063 |0.151 0.31 111.5
STAR [60] Optimization 0.179 0.062 | 0.208 | 0.149 0.053 |0.155 0.31 299.9
FedTSE [32] SFL 0.144 0.063 | 0.079 | 0.075 0.051 |0.154 89.1 1172
TGCN [61] Clustering 0.137 0.069 |0.193| 0.069 0.047 |0.179| 78.33 224
Fed-STGRU [24] Temporal 0.129 0.059 | 0.151| 0.080 0.048 [0.156 | 91.01 370
BFRT [10] Archtecture 0.113 0.054 | 0.111| 0.081 0.043 |0.133 | 427.26 1256
MFL [9] 0.108 0.052 | 0.133| 0.093 0.043 |0.138 | 173.87 781
CDL [25] Optimization 0.141 0.062 | 0.183 | 0.083 0.052 |0.147 0.63 72.7
MATCHA [62] Realtime 0.182 0.069 | 0.208 | 0.148 0.058 |0.215 0.31 171.3
MBST [63], [64] | Topology Vision DFL 0.183 0.072 |0.214| 0.149 0.058 |0.206 0.31 82.1
FADNet [12] Design 0.162 0.069 | 0.203| 0.134 0.055 |0.197 0.32 62.6
PriRec [33] Temporal 0.137 0.066 | 0.196 | 0.093 0.052 |0.127 | 325.57 272
PEPPER [31] Clustering 0.124 0.055 | 0.115| 0.078 0.054 |0.122| 89.13 438
Compact CLL 0.088 0.045 | 0.091| 0.078 0.039 |0.114 5.01 _
Ours Network Temporal SFL 0.107 0.049 |0.072| 0.069 0.035 [ 0.119 5.01 180
DFL 0.091 0.043 | 0.076 | 0.076 0.038 |0.104 5.01 121
TABLE 1

PERFORMANCE COMPARISON BETWEEN DIFFERENT METHODS. THE GAIA TOPOLOGY IS USED.

IV. EXPERIMENT

A. Implementation Details

Dataset. Udacity+ [65], Gazebo Indoor [12], and Carla
Outdoor dataset [12] are used as benchmarking datasets,
which are similar to setups mentioned in [3], [12]. To provide
temporal information, we further preprocess the training
data by chunking videos into multiple consequences. Each
consequence includes a current input image, 5 previous
frames, and their corresponding 5 past steering angles.

Training. Each local model is trained with a dynamic
batch size and an adaptive learning rate, utilizing the RM-
Sprop [66] optimizer. The training process is executed in
decentralized silos, where local updates are periodically
transmitted and aggregated following Equation 3. The Early
stopping criterion is applied to ensure convergence and the
simulation setup follows the framework outlined in [12]. As
in [64], our experiments explore three federated network
topologies: Gaia [67], the NWS [68], and Exodus frame-
work [67]. While we adopt the NWS topology in primary
evaluations to reflect real-world cloud-based federated learn-
ing scenarios, Gaia and Exodus are analyzed in an ablation
study to assess the impact of varying network structures on
performance and convergence behavior.

Baselines. We evaluate our approach across various learn-
ing settings, including real-time vision-based and temporal-
based methods. For Centralized Local Learning (CLL),
we benchmark against MobileNet-V2 [56], Dronet [57],
St-p3 [6], ADD [4], and HPO [5]. In the Server-based
Federated Learning (SFL) setting, comparisons are made

with FedAvg [58], FedProx [59], STAR [60], FedTSE [32],
TGCN [61], Fed-STGRU [24], BFRT [10], and MFL [9].
For Decentralized Federated Learning (DFL), we assess
performance against MATCHA [62], MBST [64], FAD-
Net [12], PriRec [33], and PEPPER [31]. We assess model
performance using Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE). Additionally, we measure
computational efficiency by recording the wall-clock time
(ms) for training each method on an NVIDIA A100 GPU.

B. Main Results

Table I shows a comparison between our approach and
state-of-the-art methods, both with and without temporal
information. The results demonstrate a clear performance
advantage, as our method achieves notably lower RMSE
and MAE across all three datasets: Udacity+, Carla, and
Gazebo. Besides, we also provide visualization of method
comparisons in Fig. 3 and in our supplementary video,
which emphasizes our approach’s effectiveness in optimizing
model complexity while maintaining model convergence and
real-time performance, making it suitable for deployment in
federated autonomous driving scenarios.

C. Ablation Study

Temporal Analysis. Table II shows the performance and
the computing trade-off between our compact network and
a full-parametrized network HPO [5] in handling different
modalities for decentralized autonomous driving. The results
show that using more temporal information provides higher
change to increase model performance. However, they also



Inputs RMSE #Params Avg. T ! Architect Dataset
Method Type Current|Previous Steer.ing Udacity+|Gazebo|Carla| M) ll.1ference opology rchitecture Udaci y+ Gazebo Carla
Image | Frame | Series Time (ms) - >
o T v v 078 o Tos 20772 | az6 Gaia FADNet 0.162@0.07]) 0.069@(:).026) 0.203 (10.127)
(5 [Parametrized| v v | 0223 | 0137 |0.149] 121.03 | 128 (11 silos) CDL 0.141(10.050) | 0.062(10.019) | 0.183(10.107)
g Network v v v 1.127 _ 10.972]5,990.19 - Ours 0.091 0.043 0.076
N Compact v v 0.162 | 0.091 10.109| 1.42 19 NWS FADNet |0.165(,0.084)| 0.07(/0.017) | 0.2(10.082)
™S | Nework | Y V| 0144 100920092 097 | 17 ‘ CDL  |0.138(10.057)[0.058(0.005)| 0.182(10.064)
v v v 0.091 | 0.043 0.076| 5.01 22 (22 silos) Ours 0.081 0.053 0.118
TABLE 11 Exodus FADNet {0.179(10.087){0.081(10.026)| 0.238(10.117)
PERFORMANCE OF METHODS UNDER MULTI-MODALITY INPUTS. (79 silos) CDL 0.138(/0.046)|0.061(,0.006) | 0.176(10.055)
Ours 0.092 0.055 0.121
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burst complexity and cause divergence. These results also
imply our method’s effectiveness in handling complexity
while fully leveraging temporal information to maximize
performance. Besides, the compact network also ensures
convergence and real-time computation.

Robustness Analysis. Training federated algorithms be-
comes increasingly challenging as the number of vehicle data
silos grows. To evaluate the robustness of our approach, we
test it alongside baseline methods across different topology
sizes. Table III compares the performance of FADNet [12],
CDL [25], and our method across three network topology
infrastructures: Gaia [67] (11 silos), NWS [68] (22 silos),
and Exodus [67] (79 silos). The results indicate that our
approach consistently outperforms the baselines in all setups,
demonstrating its scalability and effectiveness in large-scale
vehicle networks. Moreover, the consistent performance of
our approach across different environments, as shown in
Fig. 4, further confirms its robustness and adaptability.

Decomposition Effectiveness. We further compute the de-
composition rate of our Lightweight Temporal Transformer
Decomposition. For a full interaction between the multi-
modal inputs with the original vision transformer network,
we would need to learn 5.9 billion parameters, which is
infeasible in practice in the federated learning setup. By
using the proposed decomposition method with the provided
settings, i.e., the number of slicing R = 32 and the
dimension of the joint representation d, = 1024, the number
of parameters that need to be learned is only around 5
million. In other words, we achieve a decomposition rate
of approximately 1179 times.

Fig. 4. Visualization results of our method on different environments.

D. Robotic Demonstration

We deploy the aggregated trained model on an au-
tonomous mobile platform for real-world validation. The
training process utilized the Udacity+ dataset using Gaia
topology. The mobile robot is equipped with a 12-core
ARM Cortex-A78AE 64-bit CPU and an NVIDIA Orin NX
GPU, providing sufficient computational resources for edge-
based inference. With an optimized inference time of I8 ms,
our approach enables low-latency, real-time steering angle
predictions, crucial for responsive autonomous navigation
(Fig. 5). Real-world visualizations are in our demo video.

Fig. 5. Visualization results in real robot experiments. Our proposed model
is lightweight and can be integrated into robot edge devices.



E. Limitation and Discussion

While our proposed lightweight temporal transformer de-
composition demonstrates significant improvements in reduc-
ing parameter complexity and enhancing computational effi-
ciency, certain limitations remain. Specifically, because our
method approximates a large transformer into a smaller one
with fewer parameters, as the temporal input length increases
(e.g., past frames increasing from 5 to 30), the model may
be insufficient to learn useful information from the input,
potentially leading to degraded performance. Additionally,
the choice of the slicing parameter R and the embedding
dimension d. impacts the trade-off between accuracy and
efficiency. Moreover, the reliance on the rank-1 tensor ap-
proximation can lead to a loss of expressiveness, prevent-
ing architecture-based solutions from effectively addressing
non-independent and identically distributed issues. While
our experiments show promising results, addressing these
limitations in future work could involve exploring adaptive
mechanisms to dynamically adjust the tensor decomposition
parameters or integrating regularization techniques to miti-
gate approximation errors and enhance model stability.

V. CONCLUSION

We propose temporal transformer decomposition, a new
method designed to efficiently learn image frames and
temporal steering series in a federated autonomous driving
context. By leveraging unitary attention decoupling and
tensor factorization, we decompose learnable attention maps
into small-sized learnable matrices, maintaining an efficient
model suitable for real-time predictions while preserving
critical temporal information to enhance autonomous driving
performance. Extensive evaluations conducted across three
datasets demonstrate the effectiveness of our approach, val-
idating its potential for practical deployment. In the future,
we intend to validate our approach with a broader range of
data sources and deploy trained models in more real-world
scenarios using autonomous vehicles on public roads.
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