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Abstract— Grasp detection is a fundamental robotic task
critical to the success of many industrial applications. However,
current language-driven models for this task often struggle with
cluttered images, lengthy textual descriptions, or slow inference
speed. We introduce GraspMamba, a new language-driven
grasp detection method that employs hierarchical feature fusion
with Mamba vision to tackle these challenges. By leveraging
rich visual features of the Mamba-based backbone alongside
textual information, our approach effectively enhances the
fusion of multimodal features. GraspMamba represents the
first Mamba-based grasp detection model to extract vision
and language features at multiple scales, delivering robust
performance and rapid inference time. Intensive experiments
show that GraspMamba outperforms recent methods by a clear
margin. We validate our approach through real-world robotic
experiments, highlighting its fast inference speed.

I. INTRODUCTION

Robotic grasping is an important task with several ap-
plications and has received growing attention from re-
searchers in the past decades [1]-[3]. Traditional grasp
detection methods [4] often overlook the use of language
prompts [5], limiting the agent’s ability to interpret language
instructions beyond their literal meaning and resulting in
unpredictable behavior [6]. Emerging language-driven grasp
methodologies [7], [8] have enabled robots to grasp specific
objects based on language prompts [9]. These robotic sys-
tems, trained on large-scale datasets, provide robust visual-
language understanding, like determining which object part
to grasp based on human instructions [10], showing promise
in developing general-purpose robots [11].

Recently, language-driven grasping has gained attention as
a promising research area in robotic manipulation. The use
of language can be viewed as a representation of the scenario
surrounding objects, conveying information to humans or
machines for conceptual understanding. For example, by
giving a command to “grasp a cup on the table,” the
robot knows where a cup is and can determine the specific
grasp actions for objects. Therefore, by leveraging language,
many studies attempt to bridge the gap between vision
and language for robotic applications [9], [12]-[14]. For
example, Roco [15] and Manipllm [16] are robotic language
models designed to provide instructions for robots operating
in real-world environments by leveraging large language
models such as [17] or large vision language models [18]—
[20]. Previous studies have examined multiple approaches
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for integrating language understanding into robotic grasp
detection. One approach treats this as a grasp-pose generation
problem conditioned on language prompts [21] or uses
diffusion models [9] to achieve promising results. However,
diffusion models face challenges in real-time robotics due to
their long inference times [13]. Alternatively, methods that
leverage transformers [12], [18], [22] successfully combine
textual and visual features but often struggle with object
complexities [23]. This limitation is particularly evident in
scenarios requiring long-range visual-language dependencies
and handling images with extensive textual descriptions,
which restricts their application to real-world robots.

Recently, Mamba [24], with its global receptive field cov-
erage and dynamic weights offering linear complexity [25],
presents an ideal solution for addressing long-range visual-
language dependencies while maintaining fast inference
speeds, making it well-suited for robotic applications [26].
Mamba has demonstrated exceptional effectiveness in tasks
involving long sequence modeling, especially in natural
language processing [27]. Researchers have begun exploring
its potential for vision-related applications, including image
classification [28]-[30], image segmentation [31]-[33], and
point cloud analysis [25], [34], [35]. Roboticists are also
investigating how Mamba’s context-aware reasoning and
linear complexity can be applied to solve robotic tasks [26],
[36]. In line with this direction, this paper aims to leverage
Mamba to integrate image and text modalities to generate
semantically plausible grasping poses for robotic systems.

This paper introduces GraspMamba, the first language-
driven grasp detection framework built on the State Space
Model. Specifically, we propose a novel hierarchical feature
fusion technique that integrates textual features with visual
features at each stage of the hierarchical vision backbone. We
argue that our Mamba-based fusion technique addresses the
computational inefficiencies of transformers caused by the
doubled sequence length when combining text and vision
features [37]. Our method maintains strong performance in
grasp detection by efficiently learning spatial information
and hierarchically incorporating textual features to enhance
context and semantics. By aligning textual features within
a shared space, the model effectively merges multimodal
representations across multiple scales, which is known for
enabling grounding objects [38]. We validate our approach
on a recent large-scale language-driven grasping dataset [9],
demonstrating better accuracy and faster inference than
current state-of-the-art methods. Additionally, our approach
supports zero-shot learning and is generalized to real-world
robotic grasping applications.



Our main contributions are summarized as follows:

« We propose a novel vision-language model built upon
the Mamba technique, designed to fuse vision and
language features within a hidden state space. This
approach establishes a novel framework for integrat-
ing multimodal information, improving efficiency and
accuracy in language-driven grasp detection.

o We validate GraspMamba ’s applicability by showing
an in-depth analysis of our proposed method and pre-
senting experimental results on benchmark datasets. Our
findings demonstrate that it surpasses other approaches
in accuracy and execution speed. Our code and models
will be released.

II. RELATED WORK

Grasp Detection. Traditional robot grasp detection meth-
ods include analytic approaches [39], [40] that rely on kine-
matic and dynamic models to identify stable grasp points,
ensuring they meet flexibility, balance, and stability criteria.
In contrast, several data-driven approaches based on machine
learning [41]-[44] have been developed to enable robots to
learn and mimic human grasping strategies through deep
learning techniques. These approaches have been further en-
hanced by the use of RGB-D images [45], [46] and 3D point
clouds [47], [48], allowing for grasp detection in 3D space.
However, one major limitation of both analytic and CNN-
based methods is their restricted scene understanding and in-
ability to process language instructions, which reduces their
effectiveness in dynamic, human-centered environments.

Language-driven Grasping. Language-driven grasping
represents the use of natural language to localize the object
region for grasping [9], [13], [49]-[55]. Recent research
focuses on establishing correlations between textual embed-
dings and vision embeddings within a shared embedding
space. This approach aims to identify the target object
and subsequently generate the grasping pose based on the
foundation models [14]. Bhat et al. [56] introduce a method
that fuses image and text embeddings by leveraging the
lightweight segmentation decoder. However, these methods
are hindered by high computational and memory demands
during training and inference.

Cross-Modal Feature Fusion. Multimodal feature fusion
is a critical technique in various applications to optimize the
alignment between linguistic and visual domains. Conven-
tionally, many approaches have focused on independently
mapping global features of images and sentences into a
shared embedding space to compute image-sentence sim-
ilarity [57]-[60]. Recent advancements, such as the work
by Xu et al. [61], capture higher-order interactions between
visual regions and textual elements by incorporating inter-
and intra-modality relations in the feature fusion process.
Furthermore, the attention mechanism in Transformers [62]
and cosine similarity metrics have been widely used to
enhance the alignment of textual and visual embeddings, im-
proving multimodal representation learning. However, these
multimodal feature fusion methods face limitations when
focusing on fine-grained image regions or when processing

queries with limited textual information or complex sen-
tences.

State Space Models for Vision-and-Language. State
Space Models (SSMs) with selection mechanisms and
hardware-aware architectures have recently demonstrated
substantial promise in long-sequence modeling. The origi-
nal SSM block is designed for processing one-dimensional
sequences, while vision-related tasks necessitate handling
multi-dimensional inputs like images, videos, and 3D rep-
resentations. Several approaches have been proposed to
adapt SSMs for complex vision-related applications. For
instance, ViM [63], also called the Bidirectional Mamba
block, annotates image sequences with position embeddings
and condenses visual representations using bidirectional state
space models. Additionally, PlainMamba [64] and Effi-
cientVMamba [65] improve the capabilities of visual state
space [66] blocks by stacking multiple blocks on the feature
map and employing different scanning approaches. While
these methods effectively address the need for global context
and spatial understanding, their increased complexity can
lead to challenges in training and a higher risk of overfitting.
To mitigate these issues, Hatamizadeh et al. [67] introduced
a hybrid Mamba-Transformer backbone that enhances global
context representation learning.

Despite Mamba’s increasing popularity in vision
tasks [34], [68], there remains a significant gap in
integrating text and image modalities [69], [70]. A key
challenge in vision-and-language Mamba models is using
a single projection from the image to the language
domain [71], which fails to capture image features at
multiple resolutions [38]. To mitigate this issue, we propose
a hierarchical feature fusion method that integrates vision
and text features at various scales, leveraging Mamba’s
efficient computation [67]. Specifically, we integrate rich
textual information from a text encoder at each stage of the
vision backbone to enhance global multimodal information,
retaining all crucial features through an element-wise
technique. Consequently, the output for grasp detection
preserves the essential information from the input data
at multiple scales, which can serve as robust guidance
to solve such fine-grained generative problems [72] like
the language-driven grasp generation. Experimental results
confirm that our Mamba-based fusion method delivers
competitive performance with faster, linearly scalable
inference and constant memory usage in both vision and
robotic applications.

III. GRASPMAMBA
A. Overview

We propose a method for detecting the grasping pose of an
object by integrating textual features with rich visual features
derived from a Mamba-based architecture. Given an input
RGB image and a corresponding text prompt describing the
object of interest, our approach aims to accurately identify
the object’s grasping pose. Following the established conven-
tion of rectangle grasp, as outlined in [73], we define each
grasping pose using five parameters: the center coordinates
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Fig. 1.

(z,y), the rectangle’s width and height (w,h), and the
rotational angle that indicates the rectangle’s orientation
relative to the image’s horizontal axis. The overall framework
of our method is depicted in Fig. 1.

B. Visual and Language Feature Extraction

Mamba Visual Feature Extraction. Inspired by the
powerful Swin Transformer [38] hierarchical design, we
adopt a four-stage structure to balance speed and accuracy in
vision tasks. Therefore, we leverage weights of pre-trained
MambaVision [67] to produce multi-level representations at
each stage. Given an image of size H X W x 3, the initial two
stages consist of CNN-based layers for fast feature extraction
at higher input resolutions with size of % X % x C' and % X
% x 2C, respectively. Subsequently, the MambaVision and
multihead self-attention [62] blocks are applied afterward
as referred to as feature transformation stages, with output
resolution of 1% X Tv‘g and 3% X % respectively. Specifically,
the MambaVision block modifies the original Mamba by
creating the symmetric path without SSM as a token mixer
to enhance the modeling of the global context. SSMs map
one-dimensional sequence x(t) € R to y(¢) € RL through
a hidden state h(t) € RY. With the evolution parameter
A € RV*N and the projection parameters B € RV*1,
C € R™N such a model is formulated as linear ordinary
differential equations:

h'(t)
y(t)

Ah(t) + Bx(t),
Ch(t).

(1a)
(1b)

As continuous-time models, state space models are
adapted for deep learning applications with discrete data
space through a discretization step using Zero-Order Hold
assumption [24]. In this transformation, the continuous-
time parameters A and B are converted into their discrete-
time equivalents, denoted as A and B, respectively, with a
timescale parameter A according to:

Xp(AA),
AA) !(exp(AA) — 1) - AB.

(2a)
(2b)
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The overview of our GraspMamba framework for the language-driven grasp detection task.

Thus, Equation (1) can be rewritten as:

h, = Ah,_; + Bx,
yi: = Chy.

(3a)
(3b)
To improve computational performance and allow for

better scaling, the iterative process in Equation (3) can be
synthesized through a global convolution

K = (CB,CAB,.-- ,CA" " 'B),
y = X*K,

(4a)
(4b)

where L is the length of the input sequence x, K € R”
serves as the kernel of the SSMs and * represents the
convolution operation. Using hierarchical representations at
different stages of the Mamba-based backbone, our method
effectively captures global structures and fine-grained details,
enhancing performance across vision-related tasks.

Text Embedding. Following the standard practice [9], we
encode the input query (e.g., “grasp a pencil”) using a pre-
trained CLIP [74], and SigLIP [75] model, producing text
embedding features T € RE*CT,

C. Hierarchical Feature Fusion

While Mamba is effective in modeling long sequences,
many Mamba-based multimodal approaches treat multimodal
data as a single domain sequence rather than focusing on
how to integrate features effectively [68], [76], [77]. To
address this, inspired by the hierarchical nature of Swin
Transformer [38], we aim to develop a new approach to
fuse visual and textual features in a multiscale manner.
Additionally, our hierarchical feature fusion is a simple,
learnable module that aligns the vision and text features by
transforming the dimensionality of the textual representation
to match the token dimensions used in the Mamba-based
model to create rich, multimodal representation for tasks
such as visual grounding or language-driven grasp detection.
Our hierarchical feature fusion block is shown in Fig. 1.

To combine visual and textual information effectively, we
begin by aligning their dimensions and preparing them for
fusion. This process involves applying 1 x 1 convolutions to
both the image and the text features, reducing their channel



dimensions to a common space while allowing the network
to learn combined feature representations for fusion. We then
expand the text features to match the spatial dimensions of
the image features, ensuring that each spatial location in
the image can attend to the entire text representation. These
processed features are then concatenated along the channel
dimension, creating a unified representation that preserves
information from both modalities. Let X; € REXCrxHixW,
represent the image features at level [ € {1,...,L}, T €
RExCr represent the text features, and Tey, represent the
expanded text features to match the spatial dimensions of
X;. The visual-language fusion at level [, denoted as ®;, is
defined as:

Z; = Concat (Convi(X 1(Xy), Convri"“X 1 (Texp)) 5)

To further integrate the concatenated features and capture
spatial relationships, we apply a 3x3 convolution. This cru-
cial step allows for local feature interactions between the
image and text modalities, helps to learn spatially-aware
multimodal representations, and increases the receptive field
to capture more context. This integration is achieved through:

®;(X;, T) = Convsys (Z;) (6)

where Conv3,,, and Convy, ; are 1 x 1 convolutions applied
to the image and text features, respectively. Convsys is a
3 X 3 convolution.

To preserve global information across different levels of
the vision backbone, we define an upscaling operation U,
which allows information to flow from deeper layers to
shallower layers, helps to preserve fine-grained details while
incorporating global context, and enables the model to make
more informed decisions at each level of the hierarchy. The
upscaling operation is applied to the hierarchical feature
fusion Fj in layer [ is defined as:

U, (F;) = BilinearUpsample (Convsx3(F})) 7

Here, F; represents the hierarchical feature fusion in
layer [, which is introduced recursively to capture and
refine multiscale information across the network. By adding
Ui+1(Fj41) at layer [, we merge high-level semantic cues
from deeper layers with the local, level-specific details at
shallower layers. Specifically, the upscaling operation U;
reshapes the features of the deeper layer Fjy; to match the
spatial resolution of the layer [, allowing them to be added to
®;(X;, T). This recursive property is essential as it enables
the model to capture multiscale information effectively and
facilitates the integration of global and local features at each
level. Hierarchical feature fusion is recursively defined as:

F,l _ (I)L(XLyT)a
(X, T) 4+ U1 (Fig1),

ifl=1,

8
if1<lI<L. ©

Inspired by GR-ConvNet [78], the final high-dimensional
features F; are subsequently transformed into the grasp
detection output through a composition of multiple MLP
layers.

IV. EXPERIMENTAL RESULTS

The experiments initially focus on evaluating the effec-
tiveness of our approach on the Grasp-Anything dataset [7].
We test our proposed method on real robot grasp detection
tasks. Additionally, we conduct ablation studies to analyze
our process in the context of language-driven grasp detec-
tion. Finally, we discuss the challenges and highlight open
questions for future research.

A. Experimental Setup

Dataset. To assess the generalization of all methods, we
set up our experiments by training on the Grasp-Anything
dataset [7]. This dataset is created from large-scale founda-
tion models that offer 1M images with textual descriptions.
Following the approaches in [7], [79], we split the data
into ‘Seen’ and ‘Unseen’ categories, designating 70% of the
categories as ‘Seen’ and the remaining 30% as ‘Unseen.” We
also employ the harmonic mean (‘H’) metric to assess overall
success rates [79]. In addition to the dataset details, our
training is conducted over 50 epochs, with 1000 batches per
epoch and a batch size of 8. We employ the Adam optimizer
with a base learning rate of le-3, using a linear warmup over
the first 500 batches and applying gradient clipping (max
norm of 1.0) to ensure stable training.

Evaluation Metrics. Our primary evaluation metric is the
success rate, defined similarly to [78]. A grasp is considered
successful if the Intersection over Union (IoU) score between
the predicted grasp and the ground truth exceeds 25%, and
the offset angle is less than 30 degrees. The text encoder is
frozen during training, while the pre-trained vision backbone
is fine-tuned using our dataset. We also measure the inference
time of all methods using the same NVIDIA RTX 4080 GPU,
Intel 17 12700K.

Baselines. We compare our method GraspMamba with
recent state-of-the-art language-driven grasp detection meth-
ods, including: GR-CNN [78], Det-Seg-Refine [80], GG-
CNN [81], CLIP-Fusion [53], MaskGrasp [12], LGD [9],
LLGD [13], GraspSAM [14] and CLIPORT [18], utilizing
pretrained CLIP [74], and SigLIP [75] models for text
embedding. Bold and underline mean the best result and
second best result respectively.

TABLE I
LANGUAGE-DRIVEN GRASP DETECTION RESULTS.

Baseline Seen UnSeen H  Inference time
Det-Seg-Refine [80] + CLIP [74] 0.30 0.15 0.20 0.200s
GG-CNN [81] + CLIP [74] 0.12 0.08 0.10 0.040s
GR-ConvNet [78] + CLIP [74] 0.37 0.18 0.24 0.022s
CLIP-Fusion [53] 0.40 0.29 0.33 0.157s
CLIPORT [18] 0.36 0.26 0.29 0.131s
LGD [9] 0.48 0.42 0.45 22.00s
MaskGrasp [12] 0.50 046  0.45 0.116s
LLDG [13] 0.53 0.39 0.46 0.264s
GraspSAM [14] 0.64 0.62 0.63 0.510s
GraspMamba + CLIP [74] (ours) 0.69 0.42 0.56 0.030s
GraspMamba + SigLIP [75] (ours) 0.73 0.44 0.59 0.029s
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B. Language-driven Grasp Detection Results

Quantitative Results. Table I summarises the results
of all methods. This table shows that our GraspMamba
significantly outperforms other grasp detection techniques
on the Grasp-Anything dataset. Our method consistently
achieves better results than other baseline approaches in the
‘Seen’ scenario. Our method substantially improves, sur-
passing other methods in the “Seen” scenario. Additionally,
our inference time remains competitive, thanks to its simple
architecture. Compared to diffusion-based methods [9], [13],
our GraspMamba demonstrates a good balance between
accuracy and inference speed. We further observe that the
variant incorporating SigLIP outperforms the one using
CLIP. The key difference is in the loss functions: while CLIP
uses a softmax loss that normalizes across the entire batch
and pits all negative examples against each other, SigLIP
applies a pairwise sigmoid loss that treats each image—text
pair individually. This approach reduces the negative impact
of semantically similar negatives, a significant advantage
for text embeddings that capture subtle nuances. While
our method excels on ‘Seen’ objects, its performance on
‘Unseen’ objects is lower than the GraspSAM baseline. We
note that GraspSAM [14] performs well on unseen cases
as it was fine-tuned from a foundation model (Segment
Anything [82]), which utilizes extra extensive data for train-
ing, while our method is trained from scratch. Furthermore,
our inference time is approximately 15 times faster than
GraspSAM [14].

Qualitative Results. Fig. 2 shows the quantitative evalua-
tion of our method and other baselines. This figure shows that
our method produces semantically plausible results, particu-
larly in cluttered scenes with occlusions. The attention maps
of our method also show an accurate connection between the

(e) CLIP-Fusion

Visual language-driven grasp detection results on examples from the ‘Seen’ testing set of different methods.

() CLIPORT  (g) MaskGrasp (h) LGD (i) LLGD
TABLE II
FEATURE FUSION ANALYSIS.
Baseline Seen UnSeen H

GraspMamba without feature fusion 0.66 0.40 0.53
GraspMamba with feature fusion 0.73 0.44 0.59

text prompt and the visual region.

C. Ablation Study

Hierarchical Feature Fusion Analysis. To evaluate the
performance of our hierarchical feature fusion block, we
experiment with and without using the feature fusion block in
our architecture. Table II summarises the results. We can see
that the hierarchical feature fusion block positively impacts
the grasp detection performance. Additionally, we visualize
the attention maps generated by different methods using the
text command. As shown in the heatmap row of Fig. 2,
our approach effectively concentrates attention on the target
object with minimal distraction from the surrounding area,
distinguishing it from other methods. Our feature fusion tech-
nique successfully directs the model’s focus toward essential
regions, enabling the extraction of richer contextual infor-
mation and enhancing grasp accuracy. While other methods
tend to be less precise, with more background interference
and a broader focus area. In addition, Fig. 3 indicates our
method’s effectiveness in aligning visual features with textual
inputs. Overall, our method can locate and understand the
referenced object based on textual instructions under the
variability in different textual instructions while maintaining
consistent visual alignment.

D. Qualitative Analysis

In the Wild Detection. Fig. 4 presents in the wild
visualization results by our method, which is exclusively



Pick up the spoon Grasp me a lime Give me the keyring Grasp the wallet

Give me the notebook Give me the mug Pick up the car toy at its head Grasp the keyring

Fig. 3. The visual feature fusion results on examples from the ‘Seen’ (left)
and ‘UnSeen’ (right) testing set when different text inputs are used.

trained on the Grasp-Anything dataset. These examples,
applied to various random internet images and images from
other datasets, illustrate our model’s strong ability to gen-
eralize to real-world scenarios, even though it was trained
entirely on synthetic data from the Grasp-Anything dataset.
This generalization is critical for deploying grasp detection
systems in real-world applications, where the complexity
and variability of environments often differ from training
datasets.

Pick up the phone Bring me the pen Pass me the pan Grasp me the scissors

Hand me the glasses Grasp up the mouse Pick up the spanner Give me the vase

Fig. 4. In the wild detection results. The images are from the YCB-
Video [83] dataset and the internet.

Failure Cases. Despite successfully improving the align-
ment of textual and visual features, our method still produces
incorrect grasping poses in some cases. The wide variety of
objects and grasping prompts presents a significant challenge
as the network struggles to capture the full range of real-
life scenarios. Fig. 5 illustrates several failure cases where
our GraspMamba makes incorrect predictions. Sometimes,
the text prompt is aligned with the correct object, but the
grasping pose remains inaccurate. This can be attributed
to multiple similar objects or shapes that are difficult to
differentiate and text prompts lacking sufficient detail for
precise predictions.

Get me the pliers Hand me the flowers Grasp the stapler for me Pick up the hammer

Fig. 5. Failure cases of our method on examples from the ‘Unseen’ testing
set and the internet.
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Fig. 6. The robotic experiment setup.

TABLE III
ROBOTIC LANGUAGE-DRIVEN GRASP DETECTION RESULTS

Baseline Single Cluttered

Det-Seg-Refine [80] + CLIP [74]  0.30 0.23
GG-CNN [81] + CLIP [74] 0.10 0.07
GR-ConvNet [78] + CLIP [74] 0.33 0.30
CLIP-Fusion [53] 0.40 0.40

CLIPORT [18] 0.27 0.30

LLGD [13] 043 0.42

MaskGrasp [12] 0.43 0.42

GraspSAM [14] 0.45 0.43

GraspMamba (ours) 0.54 0.52

E. Robotic Validation

In Fig. 6, we present our robotic evaluation using a Kinova
Gen3 7-DoF robot. The grasp detection and other techniques
listed in Table III are tested using depth images from an
Intel RealSense D410 depth camera. Our method predicts
4-DoF grasping poses converted to 6-DoF poses, assuming
objects are placed on flat surfaces. Trajectory optimization,
as outlined in [84], [85], directs the robot toward the desired
poses. The inference and control processes run on an Intel
Core 17 12700K processor and an NVIDIA RTX 4080S Ti
graphics card. We evaluate performance in single-object and
cluttered environments with various real-world objects, re-
peating each test 25 times for consistency across all methods.
As highlighted in Table III, our approach, utilizing Mamba
architecture, consistently outperforms other baselines. No-
tably, despite being trained exclusively on Grasp-Anything,
a synthetic dataset generated using foundational models, it
demonstrates strong performance on real-world objects.

F. Discussion

Limitation. While our method demonstrates notable re-
sults regarding inference time and grasp pose accuracy in
both ‘Seen’ and real-robot applications, it still struggles with
predicting correct grasping poses for objects in complex
real-world scenes, particularly within the ‘Unseen’ category.
Although our approach shows promise in identifying the
attention area on the target object, faulty grasping poses
often arise when the target object is in cluttered environments



where visually similar distractors are present, as shown in
Fig. 5. This indicates that the challenge lies in parsing
ambiguous language and robustly aligning clear textual in-
structions with intricate visual features under high scene
complexity. For example, given the instruction “grasp me
the stapler”, the model struggles to distinguish the stapler
from a nearby pencil. Addressing this limitation will require
enhanced feature representations and domain adaptation
strategies to better generalize to novel object categories.
Future Work. While our study proposes a new method
that integrates textual and visual features using the Mamba
architecture for grasping pose detection, several promising
avenues remain. First, we aim to extend our method to handle
tasks in 3D space, including 3D point clouds and RGB-D
images, to overcome the limitations of depth information
in robotic applications. Additionally, we plan to investigate
the SIM2real gap by fine-tuning our method on a smaller
real-world dataset leveraging the two versions of the Grasp-
Anything dataset [7] to determine if the performance gap
between synthetic and real-world scenarios can be closed.
Moreover, bridging the gap between the semantic concepts
in text prompts and input images could enhance speed,
efficiency, and hardware optimization, particularly for pro-
cessing long sequences. For instance, a key goal is en-
abling the robot to comprehend and analyze complex human
instructions and make accurate decisions quickly without
relying on high-powered, energy-inefficient hardware. These
approaches offer significant potential for advancing the ca-
pabilities of language-driven robotic grasping systems.

V. CONCLUSION

We introduce a new vision-language model based on
the MambaVision architecture for the language-driven grasp
detection task. Our approach employs hierarchical feature
fusion of text and image inputs, effectively integrating vi-
sual and textual information to improve grasping accuracy
and inference speed. Our method achieves high precision
by focusing on key regions highlighted by text guidance
prompts. Extensive experiments demonstrate that our ap-
proach significantly outperforms existing baselines in vision-
based benchmarks and real-world robotic grasping tests. Our
code and model will be released.
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