
Online Trajectory Replanner for Dynamically Grasping
Irregular Objects

Minh Nhat Vu1, Florian Grander2, Anh Nguyen3

Abstract— This paper presents a new trajectory replanner
for grasping irregular objects. Unlike conventional grasping
tasks where the object’s geometry is assumed simple, we aim
to achieve a “dynamic grasp” of the irregular objects, which
requires continuous adjustment during the grasping process.
To effectively handle irregular objects, we propose a trajectory
optimization framework that comprises two phases. Firstly, in
a specified time limit of 10 s, initial offline trajectories are
computed for a seamless motion from an initial configuration
of the robot to grasp the object and deliver it to a pre-defined
target location. Secondly, fast online trajectory optimization is
implemented to update robot trajectories in real-time within
100 ms. This helps to mitigate pose estimation errors from the
vision system. To account for model inaccuracies, disturbances,
and other non-modeled effects, trajectory tracking controllers
for both the robot and the gripper are implemented to ex-
ecute the optimal trajectories from the proposed framework.
The intensive experimental results effectively demonstrate the
performance of our trajectory planning framework in both
simulation and real-world scenarios.

I. INTRODUCTION

Robots have become popular in the manufacturing indus-
try because of the demand for increased automation and
advances in computer processors. Besides, modular produc-
tion setup allowing components to be changed has been
trending in several industry sectors. Since robots are easily
interchangeable for different purposes, they play a central
role in rapidly adapting to new products and production pro-
cesses. This study focuses on a proof-of-concept for a robot-
assisted application. Specifically, grasping irregular objects
with complex geometries in producing engine casing parts
(Fig. 1). While typical robotic applications involve grasping
objects from fixed positions [1], [2], this work investigates
scenarios where the object’s placement is random, which
increases the complexity but improves the production line’s
flexibility. The research focuses on achieving flexibility and
dynamic grasping capabilities where the robot remains in
motion during the grasping process, which reduces applica-
tion time and increases production efficiency.

A. Problem description

To facilitate the seamless grasping task, our equipment
comprises a KUKA LBR iiwa R820 robot, SDH2 gripper,
BASLER AVA 1000-100GC camera, and a grasping object,
see Fig. 1. The camera, mounted on the robot end-effector,
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BASLER AVA 1000-100GC

Fig. 1: An example setup of grasping irregular objects.

follows an eye-in-hand configuration. Without loss of gen-
erality, we consider the grasping pose to be located at Og ,
which can be computed via a computer vision module at
30 Hz (e.g., AruCo marker and an extended Kalman filter).
Note that since the object has an irregular shape and is
not symmetrical, a small error caused by either the vision
system or the trajectory planner can lead to unbalanced forces
on the object’s surface, causing internal dislocation of the
object between two gripper fingers. Therefore, the replanning
capability of the proposed framework is critical.

B. Literature review

1) Optimization-based trajectory optimization: Motion
planning can be addressed through numerical optimization
to determine a locally optimal trajectory, considering all
dynamic constraints of the system [3], [4], [5]. Two notably
successful algorithms for this purpose are CHOMP [6] and
TrajOpt [7]. In these algorithms, the trajectory is param-
eterized by its path progress or time. Then, the gradient-
based methods are employed to identify the locally optimal
trajectory. While these methods have proven successful in
numerous applications [6], their computation time remains
too long for real-time implementation on a standard elec-
tronic control unit, as observed in studies such as [8], [9].
In authors’ previous works [10], [11], [12], a distinction
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is drawn between offline and online trajectory planning.
Offline trajectory planning is conducted before the robot’s
movement to compute an optimal initial guess, whereas
online trajectory planning occurs during execution. Recently,
stochastic trajectory optimization (STO) methods, e.g., Via
Point-STO [13], Chance-Constrained Via Point-STO [14],
have been utilized to optimize over a continuous trajectory
space defined by via points. Constraints such as system
limits are specified implicitly and handled by the trajectory
representation. Although these mentioned approaches have
been successfully implemented in different robotic systems,
the online capability is still challenging for this grasping task.

2) Model predictive control-based trajectory optimization:
In recent years, there has been growing interest in extending
trajectory optimization to online planning using receding
horizons, encompassing gradient-based methods [15] and
sampling-based approaches [16]. However, for manipulation
tasks, simple point-to-point planning often falls short, ne-
cessitating the inclusion of additional constraints, such as
pre-grasp points. Model Predictive Path Integral control [17],
[18], [19], also called sampling-based MPC, has proven real-
time performance on real robotic systems in challenging and
dynamic environments. However, these methods are typically
limited to short-horizon problems [13]. Toussaint et al.
[20] introduced a sequence-of-constraints Model Predictive
Control (MPC) approach to address task and motion plan-
ning (TAMP) in three stages. First, task planning generates
waypoints; next, these waypoints are optimized in terms
of timing to create a reference trajectory. Finally, MPC
uses this reference to calculate collision-free paths over a
short planning horizon. A global reference is essential for
integrating waypoints into the MPC.

Inspired by the two phases mentioned above of trajectory
planning and the MPC-based trajectory optimization, we first
compute the offline trajectories for three phases, e.g., moving
to the object, grasping the object, and moving to the target.
Then, in an MPC fashion, a novel online trajectory planner
is implemented to account for the new object pose update
from the vision system.

C. Paper’s contributions

Our contributions are threefold.
• Firstly, our method synchronizes offline trajectories for

the robot and the gripper, considering the robot’s dy-
namics, within a short computing time of 10 s, allowing
dynamic grasping without disrupting the robot’s motion.

• Secondly, our new online trajectory replanning method
reactively adjusts the robot’s and the gripper’s trajecto-
ries within 100ms from the real-time updates of the ob-
ject’s pose. This responsiveness is crucial for precisely
grasping objects with complex geometry, minimizing
the impact of minor errors in position detection.

• Thirdly, experiments are demonstrated to show the gen-
eralization of the proposed framework. The proposed
framework can be generalized to different grippers and
grasping a moving object. Videos of experiments are
found at acin.tuwien.ac.at/39bb
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Fig. 2: Schematic drawing of (a) the KUKA LBR iiwa
R820, (b) the SDH 2 hand, (c) the camera BASLER AVA
1000-100GC, and (d) the object. The x-, y-, and z-axis of
each coordinate frame are depicted by red, green, and blue
arrows, respectively. In the tuple of the rotation angle and
its corresponding frame (Oh,i, qh,i), the illustrating color of
the joint angle qh,i matches the corresponding rotate axis.

II. MODELING

This section briefly presents the modeling of the robot and
the SCHUNK Dextrous Hand 2.0 (SDH2) gripper.

A. Modeling of the KUKA LBR iiwa R820 robot

The robot is modeled as a rigid-body system with the
generalized coordinates qT = [q1, q2, . . . , q7], see Fig. 2(a),
which are the rotation angles qi around the z-axes (blue ar-
rows) of each coordinate frame Oi, i = 1, . . . , 7. Considering
system state xT = [qT, q̇T] and v is the vector of control
inputs, the state-space form system dynamics is expressed as

ẋ = f(x,v) = [(q̇)T,vT]T (1)

B. Modeling of SCHUNK Dextrous Hand 2.0 gripper

The system state of the SDH2 consists of four DoF qT
h =

[qh,2, qh,3, qh,7, qh,8], see Fig. 3(b). The grasping (contact)
point G is chosen as the midpoint of the line between the
points C1 and C3. These points are the centers of arcs
formed by the tactile sensor surfaces of fingers 1 and 3,
respectively. Note that the choice of this grasping point is
crucial to achieve the steady state movement of the object
after grasping. This is because the contact points at the
object’s surface will be perpendicular to the arcs of tactile
sensor surfaces. Thereby, the contact forces are equally
distributed to the object’s surface. The forward kinematics
formulation

pG
h = [xG, yG, zG]

T = SHD2_FK(qh) (2)

describes the position of the grasping point G depending on
the joint coordinates qh.
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Fig. 3: (a) Side view of the SDH2 without the finger 2 with
qh,1 = −qh,6 = −π/2. (b) Side view of the gripping hand
with the SDH2 state variables qh and the grasping state qG.
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Fig. 4: Timeline

III. TRAJECTORY OPTIMIZATION

This section presents the overall optimization framework,
which consists of two stages. In the offline stage, we consider
three trajectory optimization phases; see Fig 4. In the first
blue region of the timeline, the trajectory guides the robot
from the initial configuration to the robot’s target pose
before the grasping process during the time 0 ≤ t ≤ T1.
Subsequently, the second trajectory phase ∆T2, discussed in
Section III-A.2, helps to move the robot from the robot’s
target pose before the grasping process to the target robot’s
pose after the grasping process during the time T1 < t ≤ T2.
Finally, Section III-A.3 describes the trajectory computation
that brings the object to a user-defined target position during
the time T2 < t ≤ T3.

A. The offline trajectory optimization of the robot

In the i-th trajectory phase, i ∈ 1, ..., 3, the trajectory that
moves the robot from an initial configuration xi,S to the
target configuration xi,Ti is formulated as an optimization by
discretizing the trajectory ξi(t), t ∈ [0,∆Ti], with Ni+1 grid
points and solving the resulting static optimization problem

min
ξi

J (ξi) = ∆Ti +∆ti

Ni∑
k=0

vT
1,kv1,k (3a)

s.t. xi,k+1 − xi,k =
1

2
∆th

[
q̇i,k+1 + q̇i,k

vi,k+1 + vi,k

]
(3b)

xi,0 = xi,S , xi,N = xi,Ti
(3c)

x ≤ xi,k ≤ x, (3d)
τ − c ≤ (M(qi,k)vi,k + g(qi,k)) ≤ τ − c (3e)
k = 0, . . . , Ni

for the optimal trajectory

(ξ∗i )
T =

[
∆T ∗

i , (x
∗
i,0)

T, . . . , (x∗
i,Ni

)T, (v∗
i,0)

T, . . . , (v∗
i,Ni

)T
]
,

(4)
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Fig. 5: Side view of the grasping object and fingertips with
the potential function p (0, y).

with the time step ∆ti = ∆Ti/Ni. Note that the final time
∆T ∗

i in (4) denotes the optimal duration of the trajectory
from the initial state xi,S to the target configuration qi,T1 .
The system dynamics (1) is approximated by the trapezoidal
rule in (3b). Additionally, x and x in (3d) denote the
symmetric lower and upper bounds of the state, respectively,
and (3e) considers the upper and lower torque limit τ and τ .
Note that the torque limits in (3e) are an expensive inequality
constraint. Instead of fully neglecting the Coriolis matrix
C(q, q̇), which is often done in industrial applications [21],
upper and lower bounds, c and c, for the values of C(q, q̇)
are determined according to [10]. Although the influence
of the Coriolis matrix on the overall system’s dynamics
is insignificant, it is still advantageous to consider these
physical limits in the optimization problem (3). Note that
to create smooth transitions, the final state of a trajectory
is chosen as the initial state of the subsequent trajectory.
The following presents additional constraints to (3) for each
phase.

1) Phase 1: Trajectory of approaching the object from an
initial configuration

Since the object to be grasped has an unconventional
shape, see Fig. 2(d), the potential function is employed
that restricts the motion of the gripper while approaching
the object. In Fig. 5, a simple description of the potential
function is illustrated where a slide view of a potential
function is drawn in blue. Therein, the motion of the grasping
point G of the gripper is restricted in the inverted Gaussian
bell shape (illustrated in blue color) when the height of
the point G is smaller than a threshold value zth. In the
following, the potential function is described in detail. The
potential function is formulated as an inverted Gaussian
function in the form

p (x, y) = zth

(
1−exp

(
−1

2

[
x− µx

y − µy

]T
Σ−1

[
x− µx

y − µy

]))
,

(5)
where zth is the threshold value, Σ is the covariance matrix,
and µT = [µx, µy] is mean value of the Gaussian function.
In Fig. 5, a slide view of the potential function p(x = 0, y) in
the frame Op is depicted with the variances are chosen to be
σ2
x = 5mm and σ2

y = 2mm. The mean value is µT = [0, 0].



Thereby, to guarantee that the grasping point is inside the
region of the Gaussian bell shape created by the potential
function, the following condition

h(q) = zG,p − p(xG,p, yG,p) ≥ 0 (6)

must be added in (3) for the phase i = 1.
2) Phase 2: Trajectory of the robot during grasping

action of the gripper
In addition to (3) for i = 2, to ensure the object is lifted

from the ground at the end of this second trajectory phase,
the z-axis velocity vh

0,T2
of the gripper w.r.t. the world frame

O0 is larger than 0, corresponding to

eTz v
h
0,T2
≥ 0, with vh

0,T2
=

∂ph
0

∂q

∣∣∣∣∣
q=q2,T2

q̇2,T2 . (7)

3) Phase 3: Trajectory of the movement from the grasping
object to the target position

In this phase (green region in Fig. 4), the optimal trajectory
ξ3 obtained from (3) drives the robot from the final state
x2,T2 of phase 2 to a predefined target state x3,T3 . Note that
the target state is a stationary point, i.e., x3,T3

= [q3,T3
,03].

B. Online trajectory replanner

Due to the complexity of optimization problems, the opti-
mization (3) requires longer computation times (≥3 s) with
dense grid points Ni = 100, i = {1, 2, 3}. Therefore, the
following procedure presents the online trajectory replanner
to adapt the robot trajectories ξ∗i , i = {1, 2, 3}. To precisely
grasp the object, the pose of the object Ĥo

0 is updated using
the computer vision module at the rate 10 Hz. Thereby, the
new starting x̂Si

and target states x̂Ti
, i = {1, 2, 3} are

computed accordingly. Here, the online trajectory replanner
is used to minimize the deviation from the current optimal
trajectory while satisfying the dynamic constraints of the
system and adapting these new target states. Since the
following procedures are identical for three trajectory phases
ξi, i ∈ {1, 2, 3}, the subscript i is omitted for compact
notations. The current optimal trajectory is expressed as

(ξ∗)T = [∆T ∗, (x∗
0)

T, . . . , (x∗
N )T, (v∗

0)
T, . . . , (v∗

N )T] .
(8)

Note that this optimal trajectory satisfies the dynamical
constraints approximated by the trapezoidal rule in the form

x∗
k+1 = x∗

k +
∆T

2N
(f∗k + f∗k+1) . (9)

For the online trajector replanner, small deviations

δξT = [δT, (δx0)
T, ...., (δxN )T, (δv0)

T, ..., (δvN )T]

need to be taken into account to compute the new trajectory
connecting the current starting state x̂S with the updated
target state x̂T . The discrete-time system dynamics (1) w.r.t.
the interpolated optimal state ξ∗ reads as

xk+1 = xk +
∆T ∗ + δT

2N

(
f∗k + Γx

kδxk + Γv
kδvk

+ f∗k+1 + Γx
k+1δxk+1 + Γv

k+1δvk+1

)
,

(10)

with δxk = xk −x∗
k, δvk = vk −v∗

k, δt = ∆T −∆T ∗, and

Γx
k =

∂f

∂x

∣∣∣
x∗
k,v

∗
k

, Γv
k =

∂f

∂v

∣∣∣
x∗
k,v

∗
k

for k = 0, ..., N−1. Subtracting (9) from (10) and neglecting
terms containing a product of deviation variables, we have

δxk+1 = δxk +
∆T ∗

2N

(
Γx
kδxk + Γv

kδvk + Γx
k+1δxk+1

+ Γv
k+1δvk+1

)
+

δT

∆T ∗ (x
∗
k+1 − x∗

k).

(11)
In a more compact form, (11) is rewritten as

Ck+1sk+1 = Aksk, (12)

where

Ck+1 =

[
I− h∗

2
Γx
k+1 −h∗

2
Γv
k+1 0

0 0 1

]
,

Ak =

I+ h∗

2
Γx
k

h∗

2
Γv
k

x∗
k+1 − x∗

k

∆T ∗
0 0 1

 ,

sk =

δxk

δvk

δTk

 ,

and h∗ =
∆T ∗

N
. For simplicity, only one variable for the

final time δT in (10) was introduced instead of δTk, k =
0, . . . , N − 1. Thus, δTk+1 = δTk was used in (12). The
deviation vector ξk is obtained as the solution of a linear
constrained quadratic program (LCQP) of the form

min
sk

1

2

N−1∑
k=1

sTkQksk (13a)

s.t. Ck+1sk+1 = Aksk, k = 0, ..., N − 1 (13b)
sk ≤ sk ≤ sk, k = 0, ..., N (13c)

and the positive definite weighting matrix

Qk = diag(Qxk
,Qvk

, Q∆T ). (14)

With the choice of QtF > 0 and the submatrices Qxk
and

Qvk
, the deviation of the online trajectory from the trajectory

(8) can be weighted explicitly in the objective function (13a)
w.r.t. the traversal time ∆T , the state xk, and the control
input vk, respectively. The inequality condition (13c) allows
the admissible tolerances of the online trajectory, where

sk
T = [xk

T − (x∗
k)

T,vk
T − (v∗

k)
T, δT ] ,

sk
T = [xk

T − (x∗
k)

T,vk
T − (v∗

k)
T, δT ] ,

for k = 1, . . . , N − 1, and δT and δT is a sufficiently large
upper and lower bound for δtF , respectively. Additionally,
the equality constraints must be taken into account by

s0
T = [δxT

0 , δv
T
0 , δT ], s0

T = [δxT
0 , δv

T
0 , δT ],

sN
T = [δxT

N , δvT
N , δT ], sN

T = [δxT
N , δvT

N , δT ] .



Finally, for each trajectory phase, the optimal trajectory of
the online trajectory replanner ξ∗ reads as

ξ∗ ← ξ∗ + δξ∗ , (15)

where δξ∗ results from the solution of (13) in the form

(δξ∗)T = [δT ∗, (δx∗
0)

T, ..., (δx∗
N )T, (δv∗

0)
T, ..., (δv∗

N )T] .

IV. RESULTS

The experimental setup is illustrated in Fig. 1, driven by
the 4.0 GHz Intel Core i7-10700K PC with 32 GB RAM.
Three network interface controllers (NIC) are used for com-
munication with the robot, the SDH2 gripper, and the cam-
era via EtherCAT, RT-Ethernet, and Ethernet, respectively.
Since the joint velocities of the complete system cannot be
measured directly, differential filters with a time constant of
T1 = 12 ms are used for each joint. The sampling time for the
controller is Ts = 125 µs. The offline trajectory optimization
(3) and the online replanner (13) are solved using the Interior
Point Optimizer (IPOPT) [22] with the linear solver MA57
[23], [24]. In these optimization problems, the numbers of
grid points Ni, i ∈ {1, 2, 3} are set to 100, and the average
computing times are listed in Table I.

A. Simulation results

Statistical results. We report the average computing
times are taken on 988 successful trials over the total
1000 trials of random uniformly distributed object poses
(p̂o

0)
T =

[
po0,x, p

o
0,y, p

o
0,z

]
∈

[
po
0,p

o
0

]
with (po

0)
T =

[0.6m,−0.1m, 0.1m] and (po
0)

T = [0.7m, 0.1m, 0.1m]. In
12 failed trials, the optimization problems reach the iteration
limits set to 100. In simulations, the proposed framework
shows excellent results with a success rate of approximately
98.8%. In Tab. I, the computation times of the offline phases
do not exceed 10 s.

TABLE I: Average computation time comparison.
Phase Ours VP-STO [13]

phase 1 opt. traj. (3) 2.7± 0.4 (s) 7.2± 1.6 (s)
phase 2 opt. traj. (3) 1.2± 0.1 (s) 9.8± 3.7 (s)
phase 3 opt. traj. (3) 4.3± 0.9 (s) 11.5± 2.3 (s)
online opt. traj. (13) 53.5± 7.9 (ms) NA

Comparison. In addition, we utilize the via-point stochastic
trajectory optimization (VP-STO) [13] to solve the offline
trajectory planning phases. Although the success rate of VP-
STO is 100%, our computational speed for offline trajectory
planning outperforms VP-STO significantly. Note that the
average computation time of the online replanner is below
100ms, significantly faster than the computing time of the
offline trajectory planning.

B. Real robot results

Static scenarios. The initial and the target configuration of
the robot are chosen as

qT
T = [55◦, 39.5◦,−6.6◦,−22◦,−36.3◦, 110.6◦, 134◦] .

(16)
and

qT
T = [0◦, 0◦, 0◦,−40◦, 0◦, 100◦, 90◦] . (17)

Fig. 6: Time evolution of the scaled offline and the online
trajectory optimization with the initial robot configuration
(16). The dashed lines are the scaled offline trajectories
ξi, i ∈ {1, 2, 3} obtained from (3). The solid lines represent
the scaled online trajectories obtained from (15). The grey
areas indicate the second trajectory phase when the robot
grasps the object. The subscript j indicates the jth joint of
the robot.
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Fig. 7: Time evolution of the experiment on the comparison
of the proposed algorithm with and without the online
replanning in (13). The dashed lines illustrate the computed
trajectory without the online replanner. The solid lines depict
the computed trajectory from (15).

The object is placed in the camera’s field of view on the
ground. With a given object pose from the computer vision
system, the three-phase trajectory of the robot, illustrated
by dashed lines in Fig. 6, is computed offline using (3).
During the robot’s motion, the online trajectories, depicted
by solid lines, are updated periodically. In Fig. 6, the grey
areas indicate the second phase, i.e., the grasping process. It
is worth noting that three parts of the robot’s trajectory are
smoothly connected. Since the trajectories in Fig. 6 do not
surpass the ±1 horizontal line, hence, all the state and input
constraints according to (3d) and (13c) are respected.
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Fig. 8: Snapshots of experiment on the comparison of the
proposed trajectory optimization framework with (a) and
without (b) the online replanning.

TABLE II: Results of grasping moving objects over 20 trials.

Ours RRTConnect [25]
success rate (%) 95 75

comp. violation (num. of trials) 0 2
missed object (num. of trials) 1 3

Comparison between with and without the online re-
planner. To further validate the effectiveness of the online
replanner, a comparison with only the offline solution is
conducted. To this end, two trials in which the initial and
the target configuration of the robot are both chosen as

qT
S = qT

T = [0◦, 0◦, 0◦,−40◦, 0◦, 100◦, 90◦] , (18)

and the object is randomly positioned in the camera’s field
of view, as shown in Fig. 8. Only the offline trajectories
computed from (3) are sent to the robot controller in the
first trial. On the other hand, in the second trial, the online
replanner (13) periodically updates the trajectory according
to the object pose’s update. The scaled trajectories of the first
and second trials are illustrated by the dashed lines and the
solid lines in Fig. 7. Therein, during 0 ≤ t ≤ 3, the robot
mainly follows the offline optimal trajectories. Once the
robot is close to the object and a more precise object pose is
acquired, minor deviations occur at 3 < t ≤ 4. Although the
deviations are minor, the online trajectory replanner helps the
robot to successfully grasp the object while only executing
the offline trajectory failed to grasp the object, illustrated in
Fig. 8 (a) and (b), respectively.
Generalization to dynamic scenarios. The proposed frame-
work is generalized to a different gripper (Robotiq 2F85) and
can grasp a dynamically moving object. In Fig. 9, overlay im-
ages of an experiment are illustrated. When the robot nearly
reaches the object, the object is suddenly relocated (see sub-
figures 2,3 in Figure 9). The online replanner can still adjust
the offline trajectories and precisely grasp the object (see sub-
figure 6 in Fig. 9). We further run a small-scale Monte Carlo
simulation of 20 trials to compare the performance of our
proposed framework with RRTConnect [26] implemented
in MoveIt [25]. Statistical results are presented in Tab. II.
Note that the Time-Optimal Trajectory Generation (TOTG)
algorithm [27] is applied to obtain the time parametrization
for the RRTConnect algorithm. We chose RRTConnect over

1 2
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Fig. 9: A demonstration of grasping the moving object.

another variant of the RRT algorithm due to the computation
speed, which is fast enough for this moving object scenario.
The update frequency for the trajectory replanner is 100 ms.
With our proposed approach, there is a 1 failed trial when the
robot misses grasping the object, i.e., 95% success rate. On
the other hand, the RRTConnect planner violated the time
limit in 2 trials and failed to grasp the moving object in
another three trials. Video of the experiments is provided at
acin.tuwien.ac.at/39bb

V. DISCUSSION

This paper presents the two-stage trajectory optimization
framework for grasping irregular objects with complex ge-
ometry using a novel online trajectory replanning. To account
for the object’s pose estimation errors from a computer vision
module, a novel online update of the robot trajectory is im-
plemented to react to the change of the object’s pose during
the grasping motion. This application has been verified and
tested in several experiments and outperforms the current
state-of-the-art trajectory planning method in computational
speed. The proposed framework is also generalized with
different grippers and in moving object scenarios. With this
extreme scenario, the proposed framework can successfully
grasp the object in 19 over 20 trials. The main limitation of
the proposed method is that it relies on offline trajectories
requiring 10 s for computation. Therefore, we are currently
extending this two-stage approach to the online version,
where we consider the shorter planning horizon for the
offline phase and the incremental update when approaching
the goal. Another direction is to compute and learn motion
primitives for the offline planning phase via generative AI
techniques, e.g., diffusion models, and variant autoencoder.
As a result, this method could be used in an interactive sce-
nario like language-driven human-robot collaboration tasks.

acin.tuwien.ac.at/39bb
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