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Abstract

Variations in medical imaging modalities and individual
anatomical differences pose challenges to cross-modality
generalization in multi-modal tasks. Existing methods often
concentrate exclusively on common anatomical patterns,
thereby neglecting individual differences and consequently
limiting their generalization performance. This paper em-
phasizes the critical role of learning individual-level in-
variance, i.e., personalized representation Xh, to enhance
multi-modality generalization under both homogeneous and
heterogeneous settings. It reveals that mappings from in-
dividual biological profile to different medical modalities
remain static across the population, which is implied in
the personalization process. We propose a two-stage ap-
proach: pre-training with invariant representation Xh for
personalization, then fine-tuning for diverse downstream
tasks. We provide both theoretical and empirical evidence
demonstrating the feasibility and advantages of personal-
ization, showing that our approach yields greater generaliz-
ability and transferability across diverse multi-modal medi-
cal tasks compared to methods lacking personalization. Ex-
tensive experiments further validate that our approach sig-
nificantly enhances performance in various generalization
scenarios.

1. Introduction
Three-dimensional radiological medical images, generated
through specialized techniques and radiopharmaceuticals,
excel at highlighting specific physiological features, col-
lectively providing a comprehensive view of a patient’s
structural and functional characteristics. As illustrated in
Fig. 1, current research in medical intelligence mainly tar-
gets structural modalities like Magnetic Resonance Imaging
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Figure 1. A diagram of medical modalities and individual differ-
ences. These variations are significant and deserve further study
by the medical intelligence community.

(MRI) [58] and Computed Tomography (CT) [36, 56] scans.
Other studies [54] focus on the functional modalities asso-
ciated with biochemistry, like Positron Emission Tomogra-
phy (PET) scans. Notably, all modalities exhibit significant
individual variations. Individuals differ fundamentally from
population averages [50], making anatomical and metabolic
variations evident. In clinical settings, financial or physical
limitations may restrict access to certain modalities, high-
lighting the need for generalization in medical image anal-
ysis across different modalities and individuals. The gen-
eralization faces significant challenges due to modality and
individual variations. We classify generalization tasks into
two types: homogeneous generalization within structural or
functional modalities, e.g., MRI sequences Fig. 1; and het-
erogeneous generalization across both structural and func-
tional modalities, such as CT and PET scans.

A well-generalized medical model should integrate in-
sights from all available modalities to support downstream
tasks, relying on condition invariance [10, 43]. Some meth-
ods enhance generalization through class-level anatomy in-
variance [25], which may not fit models based on func-
tional biochemistry and may degrade transferability for un-

1

ar
X

iv
:2

41
1.

06
10

6v
4 

 [
cs

.C
V

] 
 2

4 
Ju

l 2
02

5

https://arxiv.org/abs/2411.06106v4


ℋ!

ℳ"|ℋ! ℳ#|ℋ! ℳ$|ℋ!

…

𝑔" 𝑔# 𝑔% 𝒟𝒰𝒟!

ℋ𝒰

ℳ"|ℋ𝒰 ℳ#|ℋ𝒰 ℳ$|ℋ𝒰

…

𝑔" 𝑔# 𝑔%Pre-training 
stage

Fine-tuning stage

ℳ",ℳ#,…, ℳ$: Medical modalities                   ℋ! , ℋ𝒰: Seen/Unseen  patients

Figure 2. A diagram of patient domains and medical modalities
linked to our method. In the Pre-training stage, static mappings
between domains and modalities are implicitly learned. The fine-
tuning stage addresses gaps between seen and unseen patients.

seen individual domains. Single-modal task transfer re-
search [25, 44, 51] might not translate to multi-modal sce-
narios. Homogeneous generalization in medical tasks of-
ten employs cross-modality transfer [27, 32, 56] or tack-
les missing modalities [7, 34, 40, 41, 56] in MRI or
CT, while heterogeneous generalization is insufficiently ex-
plored. Furthermore, these limited efforts often focus on
modality or class-level invariance, neglecting individual dif-
ferences and impeding a model’s capacity to generalize ef-
fectively across patient populations and modalities.

This paper reveals that both homogeneous and hetero-
geneous settings for multi-modality generalization can be
tackled within the framework of personalization, i.e., learn-
ing the personal-level invariant representation. Based on
medical imaging principles, mappings from an individual’s
identical biological profile to various modalities remain
static across individuals. Learning personal-level invariant
representations, which apply across multiple modalities, en-
hances cross-modality generalization and transferability to
novel individuals. To formalize this approach, the hypothe-
sis of a personalized invariant representation is introduced,
denoted as Xh, which exists for each individual in multi-
modal generalization. Hypothesis 3.1 rigorously details the
constraints and properties of Xh.

Building on this hypothesis, a general approach termed
PUIR is proposed to augment the generalization of various
medical imaging tasks through personalization. As shown
in Fig. 2, our approach consists of two stages: (1) The pre-
training stage constructs an approximation of Xh using the
learnable biological prior knowledge O, via decomposition,
invariance, and equivariance constraints during pre-training
(refer to Sec. 3.1.1), focusing on individual-level modality
generalization. (2) The fine-tuning stage, employs stan-
dard downstream training methods to adapt the modality
encoders derived from the first stage to mitigate the gap be-
tween seen and unseen individuals. A key distinction be-
tween our method and previous pre-training strategies lies
in our specific focus on enhancing generalization across var-
ious medical modalities and individuals.

Importantly, this paper theoretically demonstrates that
obtaining a personalized invariant representation, Xh, is
feasible through our approach, and such invariance leads to
generalization improvements across various medical tasks

(see Sec. 3.3). To validate our methodology, we con-
duct experiments on modality transfer and missing modal-
ity segmentation tasks, addressing not only the homoge-
neous generalization of MRI but also the rarely explored
heterogeneous generalization, such as generalization be-
tween PET and CT. Our findings reveal that our approach
successfully captures comprehensive, personalized infor-
mation even when only partial modalities are available for
a given individual. Moreover, extensive experiments on
both homogeneous (Sec. 4.1) and heterogeneous (Secs. 4.2
and 4.3) generalization demonstrate that our approach can
be adapted for downstream tasks and surpasses current
state-of-the-art (SOTA) methods in multiple tasks, validat-
ing its superiority. Our code and data splits are available
at https://github.com/zhaorui-tan/PUIR_
ICCV25.

2. Related work
Medical generalization tasks currently concentrates on
homogeneous generalization, introducing tasks, such as
modality transfer and missing modality segmentation for
structural modalities — Flair, T1, T2, and T1ce of MRI-
in brain tumor segmentation [58], or between MRI and
CT [56] for modality transfer. [38] proposes an approach
for heterogeneous generalization in terms of modality trans-
fer, but only tailored for transferring PET to CT. In terms of
tasks, most current studies focus on one specific general-
ization task, either segmentation [6, 14, 33, 47, 48, 57] or
modality transfer [13, 15, 24, 27, 28, 32, 36, 39, 42, 52, 56,
60]. This paper aims to develop an approach that is feasi-
ble for different downstream tasks under both homogeneous
and heterogeneous modality generalization. Our approach
aims to learn the Xh through pre-training; we list related
medical pre-training work [9, 25, 37, 44, 51] here. A no-
table work among them is [25], which extracts class-specific
anatomical invariance. However, they only focus on a sin-
gle modality. Such single-modality approaches may not be
able to construct Xh for improving the generalization across
modalities. The generalization in medical images also con-
nects to alignment in multi-domain generalization for natu-
ral images [16, 22, 29, 30, 43]. Please refer to Appendix B
for a detailed literature review.

3. Learning personalized invariant representa-
tion for medical generalization

Notations. The encoder is denoted to E , while its asso-
ciated decoder is defined as D. An individual human en-
tity, denoted as h ∈ H, with corresponding medical im-
ages Xh = Xi

h, X
j
h, . . . , X

k
h , whereby i, j, . . . , k ∈ M,

andM cover all conceivable modality combinations. Inter-
mediate features generated by E(Xh) and E(Xi

h) are desig-
nated as xh and xih, respectively. The encoder’s final layer
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Figure 3. Left: Overall framework of learning Xh during the pre-training stage. Right: Diagrams of differences between previous methods
of learning Zh and our proposed method of learning Xh.

features are zh and zih. The learned approximation of Xh

is expressed as Xh
′. The geometric warping function is

ϕi ∈ Φ, with ϕi(Xi
h) ∈ X and Φ as the ensemble of all

possible warping functions. Conclusively, I(·; ·) and P (·)
signify mutual information and probability distribution, re-
spectively.

Personalized invariant representation hypothesis.
Before addressing the problem for both homogeneous and
heterogeneous generalization, we introduce the personal-
ized invariant representation hypothesis, termed as Xh Hy-
pothesis, for medical imaging:

Hypothesis 3.1 (Xh Hypothesis). Consider the setM of all
possible modality combinations and the set Φ of possible
geometric transformations (e.g., SO(3)), such as rotations
corresponding to different postures of an individual. For a
given individual from the population h ∈ H, there exists
a personalized invariant representation Xh, which can be
decomposed into modality-specific images Xi

h conditioned
on a modality combination i ∈ M. This relationship is
formally expressed as:

Xi
h = Xh|i; i ∈M, h ∈ H, s.t.,Xh ⊥⊥M,Φ. (1)

Despite potential differences in modalities and individ-
ual variations, clinical diagnoses focus on the biological
conditions of a certain patient, which remain mostly invari-
ant during a single hospital visit. Thus, the Xh Hypothesis
holds in most cases. Our method aims to obtain an accurate
approximation of Xh. The overall learning framework for
Xh is illustrated on the left-hand side of Fig. 3. Data from
each modality are encoded by E , and the encoded features
are used to retrieve knowledge from the learnable biologi-
cal prior O. The features and retrieved knowledge are then
fused. By applying constraints of decomposition, equivari-
ance, and invariance on the fused features, we approximate
Xh effectively.

As illustrated in Fig. 3 right-hand side top, previous ap-
proaches [7, 34, 40, 41] learn invariant representations Zh

across modalities through the encoder E for generalization:

E(Xm
h ) → Zh,Zh ⊥⊥ M,m ∈ M, h ∈ H during pre-

training or training. Is Zh a good approximation of Xh, and
does it benefit the generalization of different downstream
tasks? The answer might be negative because such an ap-
proach may erase modal-specific information in Z, making
it impossible to be decomposed back into different modal-
ities as shown in Eq. (1). Moreover, while current stud-
ies [14, 21, 45, 57] also disentangle modality-dependent
features alongside the invariant representation Z to enhance
transferability, this strategy may compromise the general-
ization ability of Z. The reason is that the transferred tar-
gets become constrained by the learned modal-dependent
features, potentially limiting their broader applicability.

3.1. Pre-training stage
To learn a better approximation of Xh, we leverage a learn-
able biological prior, denoted as O. If O can be learned,
representations from any modality can complete themselves
by retrieving the missing knowledge from O, forming a bet-
ter approximation of Xh. Empirically, we initialize a learn-
able tensor as O. As shown in Fig. 3, the representation
zih retrieves its missing knowledge from O via attention:
zih

′
:= attn(query : zih, key : O, value : O). The original

representation and the retrieved knowledge are then fused
through convolution: Xi

h := conv(zih
′
, zih). If the model is

well-trained under the constraints of equivariance, invari-
ance, and decomposition, the fused feature Xi

h becomes
X′

h, a good approximation of Xh. The details of these con-
straints are discussed in Sec. 3.1.1.

3.1.1. Constraints of equivariance, invariance, and de-
composition

Contrastive learning. Before we introduce the constraints,
we include the contrastive loss as our baseline. During the
pre-training stage, we follow previous work [9, 44] and em-
ploy the contrastive learning loss. Specifically, the positive
pairs are constructed as augmented samples from the same
sub-volume, while the negative pairs are the views from dif-
ferent sub-volumes. Similar to [44], the contrastive coding
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is obtained by attaching a linear layer ψ(·) to the zh, its pos-
itive pair z+h , and all samples {zih}Bi=1 where B is the total
number of samples. The contrastive loss is then defined as:

Lcontr = − log
exp

(
sim

(
ψ(zh), ψ(z

+
h )

)
/t
)∑B

i=0 exp
(
sim

(
ψ(zh), ψ(zih)

)
/t
) , (2)

where t is the measurement of the normalized temperature
scale and sim(·, ·) denotes the dot product between normal-
ized embeddings as the similarity.

As discussed in Sec. 3.1, the Xh can be obtained through
a model trained under the constraints of equivariance, in-
variance, and decomposition. The following part presents
details of those constraints according to the Xh hypothesis.

Invariance constraint. We constrain the invariance
for Xh where Xh ⊥⊥ M,Φ through alignment. The zih
firstly uses attention to fetch the knowledge from the prior:
zih

′
= attn(zih,O) and then they are concatenated and fused

through convolution Xi
h
′
= conv(zih ⊕ zih

′
). Despite the

different modality combinations and geometric transforma-
tions, Xh should be invariant for the person:

Linv =
∑∥∥∥Xi

h

′
,Xh

′
∥∥∥2 , i ∈M. (3)

While it is well aligned, Xi
h
′
= Xj

h

′
= ... = Xh

′ where
j ∈ M. Empirically, we use Xh

′ ≜ mean(Xi
h
′
,Xj

h

′
, ...)

and mean(·) refers the averaging of the input sequence.
Equivariance constraint. To learn better O and Xh

′ as
the personalized invariant representation, we constrain the
geometric equivariance and representation invariance. Con-
sider the sample space of all modalities Xi

h ∈ X , i ∈ M,
the geometric equivariance constraint forces that the geom-
etry of the generated medical image is equivariant to ϕi,
which can be constrained by the MSE loss in Eq. (6). Fur-
thermore, such equivariance demands that ϕ(xih) and zih
contain the information of the geometric transformation ϕi,
inferring that it is able to extract the ϕi from ϕi(xih) and
zih. Therefre, if ϕi can be extracted from the last-layer out-
put zih, it can also be extracted from the ϕi(xih) from the
previous layers:

minD,F Dis(ϕ
i,F(zih)), (4)

where F : F(zih)→ ϕi
′ extracts the geometric transforma-

tion and Dis(,̇)̇ denotes the distance measurement between
ϕi

′ and ϕi. Empirically, following [44], we also adopt ro-
tation as the geometric transformation, predicting the angle
categories of input sub-volume is rotated. Under this case,
ΦR is defined as rotations at [0, 90, 180, 270] degrees along
the z-axis, and ϕir ∈ ΦR is the ground truth rotation cate-
gories. Fzih produces the softmax probabilities of rotation
categories, predicting which kind of rotation is applied, and
loss is in the form of:

Lequ = −
∑|ΦR|

r=1
ϕir logF(zih). (5)

Decomposition constraint. As shown in Eq. (1)
of Xh Hypothesis, the Xh

′ need to be able to
be decomposed as different modalities, which refers:
minE,D,O I(P (Xh

′|i);P (Xi
h)). An intuitive approach is re-

constructing all possible modalities by using Xh, whose ob-
jective can be formed as:

Ldecom=
∑|M|

1

∥∥∥ϕi−1(D (
Xh

′|ϕi(xih)
))
, Xh

∥∥∥2 , (6)

where i ∈ M and ϕi(xih) represents intermediate repre-
sentations produced during E(ϕi(Xi

h)) and Xh denotes all
possible modalities. Intuitively, ϕi(xih) from earlier lay-
ers of the encoder constrains modality information thus
D(Xh

′|ϕi(xih)) ≜ D(Xh
′|i). Specifically, the generated

medical image is transformed back by using the inverse of
ϕi to align with the inputs.

Final loss for learning Xh. The final loss for pre-
training is the combination of the above losses:

Lpre = Lcontr + Ldecom + Lequ + Linv, (7)

where the weight of each loss is omitted here.

3.1.2. The connection between the constraints and global
biological prior

It is important to note that the above constraints are closely
interconnected, as they align with Eq. (1). After obtain-
ing additional knowledge from O, the invariance constraint
ensures that the representations from each modality for a
given individual are the same, such that Xi

h
′ and Xh

′ can
be considered equivalent. Combined with the decomposi-
tion constraint, which enforces that Xh

′ is shared for the
generation of all possible modalities, Xh

′ is thus able to
generalize across modalities. Additionally, the equivariance
and decomposition constraints implicitly maintain SO(3)-
equivariance by satisfying the relation D ◦ E(ϕi(Xi

h); θ) =
ϕi(D ◦ E(Xi

h; θ))
1, where θ represents the model param-

eters after training. This ensures that geometric transfor-
mations are preserved in the latent features zih, such that
F(zih) = ϕi. The invariance constraint then requires that zih
with geometric transformations can retrieve features from
O to form Xi

h
′, which remains invariant to any geomet-

ric transformation. This implicitly constrains O to con-
tain comprehensive biological information, including other
potential geometric transformations, thereby improving the
X′

h through O in approximating Xh and enhancing the ro-
bustness of Xh

′.

3.2. Fine-tuning stage
After pre-training with the loss function Lpre, the model
is then utilized for downstream tasks such as segmentation

1The SO(3) transformations are left-multiplication; they are expressed
here in a simplified form, using ϕi(·).

4



Task T1→T2
Method PSNR↑ NMSE↓ SSIM↑

2D
Pix2Pix [24] 24.624∗ 0.109∗ 0.874∗

CycleGAN [60] 23.535∗ 0.155∗ 0.837∗

NICEGAN [8] 23.721∗ 0.148∗ 0.840∗

RegGAN [28] 24.884∗ 0.094∗ 0.881∗

ResViT [12] 25.578∗ 0.088∗ 0.895∗

3D
Pix2Pix 23.740∗ 0.138∗ 0.835∗

CycleGAN 25.181∗ 0.097∗ 0.887∗

EaGAN [55] 24.884∗ 0.094∗ 0.881∗

Ours (PUIR) 30.756 0.065 0.944

Task T2 → Flair
Method PSNR↑ NMSE↓ SSIM↑

2D
Pix2Pix [24] 24.82† 0.0250† 0.846†

CycleGAN [60] 23.418∗ 0.164∗ 0.825∗

NICEGAN [8] 23.643∗ 0.148∗ 0.829∗

RegGAN [28] 24.576∗ 0.112∗ 0.852∗

ResViT [12] 24.825∗ 0.108∗ 0.861∗

Diffusion [13] 31.98† - 0.930†

MD-Diff [52] 30.76† - 0.934†

3D
Pix2Pix 23.508∗ 0.152∗ 0.822∗

CycleGAN 24.602∗ 0.113∗ 0.854∗

EaGAN [55] 24.576∗ 0.112∗ 0.852∗

Ours (PUIR) 32.224 0.046 0.941

Task T1 → T1ce
Method PSNR↑ SSIM↑

2D
Pix2Pix [24] 27.05† 0.858†

CycleGAN [60] 30.13† 0.906†

GcGAN [15] 25.98† 0.872†

CUT [39] 26.27† 0.846†

RegGAN [28] 31.36† 0.930†

ResViT [12] 31.46† 0.932†

Diffusion [13] 29.22† 0.921†

MD-Diff [52] 33.08† 0.948†

3D
Ours (PUIR) 34.547 0.955

Table 1. Modality transfer results of MRI on BRATS23: Comparison between previous one-to-one modality transfer methods and our
method. The best results are highlighted in blue. Results denoted with ∗ are gained from [27]; with † are gathered from [52].

or generation. We denote the commonly used loss func-
tions for these tasks, such as dice loss, cross-entropy loss, or
mean squared error (MSE) loss, as Lori, where paired data
and labels (X,Y ) ∈ (X ,Y) are provided. In addition to
Lori, we incorporate the invariance loss, denoted as Linv,
as part of the fine-tuning process for downstream tasks:

Ldown = Lori + Linv. (8)

Empirically, we adopt the SwinUNETR architecture [19]
as the backbone of the encoder E , and implement the pro-
posed components. The model is trained with Lpre dur-
ing the pre-training phase; users have the option to ei-
ther use the standard SwinUNETR by loading only our
pre-trained encoder weights or to employ our proposed
model structure with all pre-trained weights for downstream
tasks. Notably, all modalities for a given individual, Xh =
Xi

h, X
j
h, ..., X

k
h , i, j, ..., k ∈ M, share the same encoder,

with the encoder’s channel size set to match the number of
modality types. The input volume size for all experiments
is fixed at 96 × 96 × 96. Further empirical details on how
Xh is leveraged for homogeneous and heterogeneous gen-
eralization are provided in Secs. 4.1 and 4.2.

3.3. Theoretical analysis
Consider a mapping g : H → M that extracts modalities
from the individual biological profile, where g ∈ G repre-
sents a set of candidate hypotheses. In modality generaliza-
tion, our objective is to guarantee that the model effectively
generalizes across diverse modalitiesM for previously un-
seen patients. To achieve this, the learning bound must ac-
count for the relationships between seenHS and unseen pa-
tientsHU . Inspired by the theoretical framework of domain
adaptation (DA) risk bounds in [4], we derive the following
bound for medical cross-modality generalization:

Theorem 3.2. LetRS andRU denote the generalization er-
rors on the modalities from the seen patient domainDS and
the unseen patient domain DU , respectively. For a given
hypothesis g ∈ G, the overall unseen risk is bounded by:

RU (g) ≤ RS(g) + dG∆G(DS ,DU ) + λ, (9)

where dG∆G is the G∆G-divergence between DS and DU ,
and joint hypothesis λ quantifies the inherent difficulty of
aligning the seen and unseen domains (can be omitted).

The bound emphasizes the importance of minimizing the
divergence between domains and achieving a low risk on
the seen domain to ensure effective generalization to unseen
domains. For a well-trained model on RS(g) is minimized.
the key focus shifts to dG∆G(DS ,DU ). Considering modal-
ities, dG∆G(DS ,DU ) is defined as follows:

dG∆G(DS ,DU ) := dG∆G([HS ⊕M|HS ], [HU ⊕M|HU ]),

where⊕ denotes that each domain combines the patient do-
main with its derived modalities. Upon rearranging, it fol-
lows that:

dG∆G(HS ,HU ) + dG∆G(M|HS ,M|HU ). (10)

Our approach minimizes dG∆G(M|HS ,M|HU ) by
initially learning Xh for each patient at the pre-training
stage and then employing a fine-tuning stage to minimize
dG∆G(HS ,HU ). As shown in Fig. 2, while each modality
uniquely visualizes a patient’s biological profile, the under-
lying generation principles remain unchanged. Thus, the
mapping gm : H → Xm that derives the modality-specific
visualizations m ∈ M from the individual biological pro-
file is consistent across individuals. Since direct access to
a person’s anatomical structure is infeasible, we propose
learning an invariant representation Xh for h ∈ H with a bi-
ological prior, allowing decomposition into various modali-
ties. To ensure Xh effectively captures anatomical features,
we enforce equivariance constraints to preserve geometric
information. This learned representation augments the qual-
ity of gm, improving its generalization ability by reducing
dG∆G(M|HS ,M|HU ). In the second fine-tuning stage, it
is only necessary to mitigate dG∆G(HS ,HU ), thus facilitat-
ing the transfer process.

Previous approaches ignore personal variations, opting
instead to focus on minimizing the gap between modalities,

5



From scratch PSNR↑ NMSE↓ SSIM↑
SwinUNETR 29.1776 0.2196 0.8961
MS-SPADE 26.4225 0.0822 0.9086

Ours (PUIR) (96× 96× 96) 35.4378 0.0362 0.9587
Ours (PUIR) (192× 192× 192) 33.7418 0.0481 0.9502

Table 2. Modality transfer results of MRI on BRATS23: Com-
parison between the previous one-to-all modality transfer meth-
ods and ours for transfer between all four modalities. The aver-
aged results of metrics for all validation samples across all modal-
ities are listed. The best results are highlighted in blue. Please
refer to Appendix Tab. 10 for more detailed results.

as noted in dG∆G(MS ,MU ). To facilitate a more effec-
tive comparison with our approach, we simplify this issue
by positing that dG∆G is quantifiable via Kullback-Leibler
(KL) divergence. Consequently, previous method aimed at
minimizing dG∆G(MS ,MU ) can be converted as follows:

dG∆G(MS ,MU ) := KL(MS∥MU )

=KL(HS∥HU ) + EHS ,HU [KL(MS |HS∥MU |HU )]

≥KL(MS |HS∥MU |HU ) =: dG∆G(HS ,HU ) (Ours).

Our methodology narrows the gap identified in Eq. (10)
compared to earlier methods, thereby demonstrating en-
hanced generalization and transferability capabilities.

4. Experiments
Overall experiment arrangement. Our experiments ex-
amine various generalization scenarios in two stages: gen-
eration pre-training and downstream fine-tuning. We assess
pre-training by comparing generation quality to SOTA med-
ical generation methods and evaluate fine-tuning by com-
paring with SOTA methods for each task, including bench-
marking against SOTA medical self-supervised pre-training
methods. More results and analysis are in Appendix G.

4.1. Homogeneous generalization: MRI
4.1.1. Pre-training stage: Modality transfer
Experimental settings. Following previous methods [27],
we utilize the multi-modal brain tumor segmentation chal-
lenge 2023 (BRATS23) dataset [1–3, 35]. BRATS23 in-
cludes four structural MRI modalities (T1, T1ce, T2, and
FLAIR) for each individual. Our model is tested on the
BRATS23 validation set, which contains these four modal-
ities for 219 individuals. We evaluate the quality of syn-
thesis using peak signal-to-noise ratio (PSNR), normalized
mean squared error (NMSE), and structural similarity in-
dex (SSIM) [53]. To provide comprehensive results, we
separately compare the translation results for T1→ T2 and
T2 → FLAIR, as some previous methods are only capa-
ble of single-modality transfer. These include both 2D and
3D generation methods, as shown in Tab. 1. Additionally,
we employed SwinUNTER for multi-modality translation
comparisons. All evaluations were performed on 3D vol-
umes; for the 2D methods, synthesized target images were

All settings FM MN=1 MN=2 MN=3Method Mean Std. - Mean Std. Mean Std. Mean Std.
Tumor core

RFNET [14] 76.08 6.99 83.40 80.63 4.53 76.57 7.15 68.95 6.07
mmFormer [57] 76.43 5.83 82.22 79.78 4.33 76.55 6.03 71.45 6.80

SPA [46] 74.80 6.95 82.23 78.99 5.38 75.01 8.31 68.44 8.88
M3AE [31] 72.67 7.43 80.29 77.61 4.59 73.37 7.96 64.79 9.85
M2F [42] 73.69 6.83 80.34 77.48 5.19 74.17 6.88 67.51 6.63

SwinUNETR pre-training 79.19 4.24 84.69 82.59 3.43 79.19 2.69 74.41 3.54
Ours (PUIR) 79.78 4.55 86.72 83.64 2.29 79.56 3.28 74.51 3.87

Enhancing tumor
RFNET 59.31 15.10 73.65 66.91 12.90 59.17 14.50 48.35 13.86

mmFormer 62.14 18.60 79.91 71.54 15.94 61.77 19.65 48.86 20.73
SPA 58.92 17.68 73.40 68.44 17.11 58.05 19.77 47.10 19.99

M3AE 55.98 17.45 73.79 65.09 14.54 55.53 20.37 43.09 22.03
M2F 58.84 16.58 75.26 66.67 13.83 58.99 16.19 46.70 15.97

SwinUNETR pre-training 59.47 6.25 61.38 60.61 3.43 60.85 6.10 55.79 9.14
Ours (PUIR) 63.49 7.58 70.64 64.44 6.62 63.87 11.45 60.19 11.31

Whole tumor
RFNET 83.92 6.14 89.27 87.25 2.94 84.95 3.81 77.70 7.46

mmFormer 84.84 5.35 88.26 87.59 2.40 85.36 5.60 80.45 4.64
SPA 84.52 5.48 89.03 87.81 1.25 85.26 4.69 78.98 7.32

M3AE 81.52 6.71 86.82 85.64 1.36 82.43 6.08 74.74 8.69
M2F 83.88 5.79 88.72 87.30 1.99 84.62 2.57 78.13 7.81

SwinUNETR pre-training 86.55 3.49 89.22 88.18 1.38 86.69 3.15 84.04 4.91
Ours (PUIR) 87.63 3.25 91.19 89.49 1.82 87.45 1.03 85.17 3.93

Table 3. Missing modality segmentation results of MRI on
BRATS18: Comparisons between previous SOTA methods and
ours. MN: Number of how many missing modalities; FM: Full
Modality. We report mean and standard deviations of DICE re-
sults under the MN. The best DICE results are highlighted in blue.
Please refer to Appendix Tab. 11 for more details.

stacked to form a 3D volume for comparison. Please refer
to model training details to Appendix F.

Results. Tab. 1 exhibits the transfer results in compari-
son between our and previous one-to-one modality transfer
methods. Following previous of T1→ T2 and T2→ Flair.
Our approach significantly surpasses previous 2D and 3D
generation methods, including single- and multi-modality
translation methods. Specifically, our approach exceeds
current SOTA diffusion-based methods, such as 2D-based
MD-Diff and 3D-based MS-SPADE. In terms of one-to-all
multi-modality translation, as Tab. 2 and additional results
in the Appendix show, our approach with various volume
sizes (96 and 192) performs better than MS-SPADE and
SwinUNETR across all metrics under all settings. More-
over, our method significantly improves the SSIM, indicat-
ing a better anatomy structure obtained by our approach.
These results indicate that the Xh Hypothesis is plausible
for homogeneous generalization, and our personalized ap-
proach is able to obtain its approximation. Please refer to
more analysis on O in Appendix G.1.

More analysis on personalization. Fig. 5 also shows
that combining the prior and constraints results in more
scattered embeddings at the individual level compared to
the method without them. Tab. 6, Tab. 3, and the quantita-
tive results in the paper further confirm the advantages of
personalization.

4.1.2. Fine-tuning stage: Missing modality segmentation
Experimental settings. To validate the generalization abil-
ity of the pre-trained model, we fine-tune the model ob-
tained from Sec. 4.1.1 on the BRATS18 [35] from the Mul-
timodal Brain Tumor Segmentation Challenge. Similar to

6



SSIM↑ PSNR↑
+ Contrastive
+ Decomposition • • • • • • • • • • • •

+ Equivariance • • • • • • • •
+ Invariance • • • • • • • •
+ O • • • • • •
PET→ PET 0.9903 0.9835 0.9955 0.9931 0.9957 0.9969 44.8811 42.2223 46.5603 45.5829 47.4198 49.5473
CT→ CT 0.9739 0.9475 0.9419 0.9437 0.9664 0.9780 37.2309 32.0777 31.2692 33.1866 35.4194 37.0989
PET→ CT 0.9161 0.9148 0.9215 0.9070 0.9121 0.9282 28.1046 29.3181 29.6694 26.8885 27.2708 30.1548
CT→ PET 0.9884 0.9824 0.9851 0.9834 0.9842 0.9883 39.8490 39.0795 39.1718 39.4528 39.4348 41.5840
Avg. 0.9672 0.9571 0.9610 0.9568 0.9646 0.9728 37.5164 35.6744 36.6677 36.2777 37.3862 39.5963

Table 4. Ablation study - Modality transfer results of PET and CT on AutoPET-II: Ablation results of
models trained under different combinations of constraints. The best and second results are highlighted in
blue and cyan, respectively.

CT

PET

CT PET

GT 

Target

In
pu

t

Figure 4. Generated
samples on AUTOPET-
II.

Without Personalization (Swinunetr) Personalized (Ours)

* The embeddings of each individual across different modalities are evenly sampled.

Figure 5. T-SNE visualizations on embeddings of SwinUnetr and
ours trained on BRATS23 for one-to-all modalities generation.

BRATS23, BRATS18 also consists of the same four struc-
tural modalities. We employ the Dice similarity coefficient
(DICE) as the metric for evaluation. For a fair compari-
son, we follow data splits of [42] and reproduce the results
of previous methods [14, 31, 42, 46, 57] on these splits by
using their released code and following their original set-
tings 2. We also reproduce the results by using the Swin-
UNETR pre-training method [44], employing their official
code to train the model on the same datasets with identical
training epochs, learning rates, and other hyperparameters
as ours. See additional experimental details in Appendix F.

Results. Tab. 3 presents the segmentation results of our
approach compared to previous methods. We also compute
the standard deviation of DICE scores under various miss-
ing modality settings, which highlights the robustness of
models. Notably, our approach outperforms previous meth-
ods in most missing modality scenarios, particularly when
the number of missing modalities is large (e.g., NM=3).
Meanwhile, our approach also obtain a relatively low stan-
dard deviation for most settings, showing its robustness to
various modalities missing scenario. Compared with Swi-
nUNETR pre-training, our methods yield consistently bet-
ter DICE with comparable standard deviation. This perfor-
mance improvement stems from the enhanced generaliza-
tion of our model, which is rooted in the learned Xh

′.

2Though we tried our best, it can be noticed some reproduced results
are lowered than their reported results in their original paper. It should be
clarified that our results also exceed those reported results. However,
for a comprehensive study, we mainly report our reproduced results.

4.2. Heterogeneous generalization: PET and CT
4.2.1. Pre-training stage: Modality transfer
Experimental settings. We utilize the AutoPET-II dataset
from the Automated Lesion Segmentation in PET/CT chal-
lenge [17] for pre-training. The AutoPET-II dataset in-
cludes AC-PET and CT pairs, where the PET scans adopt
FDG tracers, and their attenuation is corrected using the
corresponding CT scans. Specifically, we divide the
AutoPET-II dataset into training and testing sets. Similar
to our approach for heterogeneous generalization, we adopt
the Peak Signal-to-Noise Ratio (PSNR) and Structural Sim-
ilarity Index (SSIM) as evaluation metrics. In this section,
we present the results of models that employ different com-
binations of the constraints and the set O. We use both con-
trastive loss and the decomposition constraint as our base-
line. Please refer to training details in Appendix F.

Results. As shown in Tab. 4 and generated examples
in Fig. 4, incorporating O with different combinations of
constraints improves generation quality across most met-
rics. Specifically, using the constraints without O does not
guarantee improvements, as discussed in Sec. 3.1.2. Ulti-
mately, employing all constraints along with O yields the
best average results across all translations, validating that
our approach performs well in heterogeneous generalization
settings. These results indicate that our method under the
scope of personalization bridges the gap between structural
and functional modalities. We validate the transferability
of all these pre-trained models in Appendix E, where addi-
tional analyses are provided.

4.2.2. Fine-tuning stage: Segmentation
Experimental settings. We utilize the AutoPET-II [17]
dataset for segmentation, evaluating performance using the
DICE metric. It is important to note that we employ the
same training and testing splits as in Sec. 4.2.1 to avoid data
leakage. Specifically, we adhere to the settings from the of-
ficial challenge; DICE is calculated in the standard manner
but is set to zero for false negatives and true negatives. Ad-
ditionally, we introduce DICE- to include the mean across
all samples, along with true positive rate (TPR), true nega-
tive rate (TNR), false negative rate (FNR), and false positive
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SSIM↑ PSNR↑
HNSCC validation NAC→CT NAC →AC Avg. NAC→CT NAC→AC Avg.
UNETR 0.4899 0.8998 0.6949 21.7330 42.8557 32.2944
SwinUNETR 0.5853 0.9265 0.7559 23.5628 42.5495 33.0561
Ours (PUIR) 0.6939 0.9516 0.8227 25.8498 46.4658 36.1578

SSIM↑ PSNR↑
NSCLC NAC→CT NAC →AC Avg. NAC→CT NAC→AC Avg.
UNETR 0.4476 0.8703 0.6590 20.6182 40.8570 30.7376
SwinUNETR 0.4476 0.8705 0.6591 22.5086 41.3272 31.9179
Ours (PUIR) 0.4744 0.8853 0.6798 22.7791 42.7687 32.7739

Table 5. Modality transfer results of NAC-PET to AC-PET and CT that tuned
on HNSCC and evaluated on HNSCC validation set and NSCLC: Comparison
between the previous method and ours for transfer between different modalities.
The best results are highlighted in blue.

NAC
Input

AC
(GT)

NAC→AC
Generated

NAC
Input

AC
(GT)

NAC→AC
Generated

Figure 6. Modality transfer results of NAC-PET to
AC-PET: Generated examples on the NSCLC dataset
for NAC → AC across individuals.

rate (FPR) for the missing modality segmentation evalua-
tion. Our method is compared against nnUNET [23], UN-
ETR [20], and SwinUNETR [19], which are trained directly
on the dataset without pre-training. Notably, we also com-
pare our approach with SwinUNETR using its pre-training
strategy [44]. Please refer to training details in Appendix F.

From scratch Dice
nnUnet [23] 33.1
SwinUNETR [19] 43.5
With 3D medical image SSL
SwinUNETR [44] 44.1
SwinMM [49] 44.2
PCRL v2 [59] 41.9
VoCo [51] 46.3
Ours (PUIR) 48.2

Table 6. Comparison be-
tween different SOTA med-
ical 3D SSL methods on
AUTOPET segmentation.

Results. The segmen-
tation results are presented
in Tab. 6, with additional
details provided in Ap-
pendix Tab. 8. For a fair
comparison, all other SSL
methods were reproduced
using the same pre-training
and fine-tuning datasets as
those used in our approach.
Our approach significantly
improves the DICE results
in comparison to other SSL methods since we specifically
address the cross-modality generalization. The perfor-
mance gains on heterogeneous modalities also enhance
the significance of our Xh hypothesis for heterogeneous
generalization.

4.3. Fine-tuning special case: A complex scenario

We introduce a more complex scenario in which the pre-
trained model for heterogeneous generalization settings is
tuned downstream to span both heterogeneous and homo-
geneous generalization.

Experimental settings. The pre-train model we adopted
is from Sec. 4.2 that trained on AC-PET and CT. Specifi-
cally, we tune the model by using the Head and Neck Squa-
mous Cell Carcinoma (HNCSS) dataset [18] as the training
set and the Non-Small Cell Lung Cancer (NSCLC) dataset
as the testing set. Both datasets are sourced from The Can-
cer Imaging Archive (TCIA) [11], and they contain paired
non-attenuation-corrected PET (NAC-PET), attenuation-
corrected PET (AC-PET), and CT scans. The model is pre-
trained for heterogeneous generalization between AC-PET
and CT. It is tuned for both homogeneous generalization be-

tween AC-PET and NAC-PET and heterogeneous general-
ization between NAC-PET and CT. Similar to the previous
translation experiments, we use SSIM and PSNR as eval-
uation metrics. Performance in this scenario further vali-
dates the model’s generalization capabilities. Note here the
training and testing data in the downstream task come from
different domains. See training details in Appendix F.

Results. Tab. 5 presents the results on the HNSCC
dataset, while Fig. 6 displays generated sample images
for homogeneous generalization. Our approach achieves
superior results across both heterogeneous and homoge-
neous generalizations. For heterogeneous generalization,
our method consistently improves SSIM for NAC-PET to
CT, indicating that the learned Xh

′ successfully captures
and emphasizes anatomical structures in the generated im-
ages, as indicated by improved SSIM. Moreover, though the
model is pre-trained between AC-PET and CT, the improve-
ments are also consistent for NAC-PET and AC-PET. These
findings confirm that our personalized approach is effective
for a complex real-world scenario, demonstrating the trans-
ferability and generalizability of the pre-trained model to
downstream tasks under various scenarios.

5. Conclusion

This paper proposes a universal approach to address multi-
modality generalization by approximating a personalized
invariant representation, Xh, through constraints of invari-
ance, equivariance, and decomposition, guided by a learn-
able biological prior. We demonstrate that learning Xh is
both feasible and highly beneficial for enhancing general-
ization in medical tasks. Our method also correlates to per-
sonalized medicine, a transformative framework for 21st

century healthcare, tailoring medical treatments to each pa-
tient’s unique characteristics [5, 26, 50]. By discussing limi-
tations, future directions, and social impact in Appendices C
and D, our study may point to a promising path for achiev-
ing medical generalization through personalization in com-
plex multi-modality medical analysis.
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Towards a Universal 3D Medical Multi-modality Generalization via Learning
Personalized Invariant Representation

Supplementary Material

A. Brief descriptions of different modalities

Magnetic Resonance Imaging (MRI) scans [58]: use
strong magnetic fields and radiofrequency currents yielding
distinct sequences. Typically, MRI has different modalities,
include T1, T2, T1ce and Flair.

Computed Tomography (CT) scans [36, 56] employ
X-rays to measure its attenuation.

Positron Emission Tomography (PET) scans are ex-
pensive functional imaging scans that employ radiotracers
emitting gamma rays to visualize and measure metabolic
processes. Thus, PET scans have a large percentage of
background areas.

B. Related work

Medical generalization tasks. Most current work focuses
on homogeneous generalization, introducing tasks such as
modality transfer and missing modality segmentation. The
most commonly employed structural modalities — Flair,
T1, T2, and T1ce of MRI — are used for brain tumor seg-
mentation [58], or between MRI and CT [56] for modality
transfer. [38] propose an approach for heterogeneous gen-
eralization in terms of modality transfer, but only tailored
for transferring PET to CT.

Self-supervised medical pre-train models for medi-
cal generalization. Our approach aims to learn the Xh

through pre-training. We list related medical pre-training
work [9, 25, 44, 51] here. A notable work among them
is [25], which extracts class-specific anatomical invariance.
However, they only focus on a single modality. Such single-
modality approaches may not be able to construct Xh for
improving the generalization across modalities.

Alignment in multi-domain generalization. The issue
of cross-modality generalization is similar to the problem of
multi-domain generalization, which aims to extract domain
invariant representations [16, 22, 29, 30, 43]. Most of these
approaches focus on learning invariance across different do-
mains, which may not fit the scope of personalization.

Generalization for medical translation. Typical
modality transfer approaches are based on GAN mod-
els [15, 24, 28, 39, 60]. In contrast to these GAN-based ap-
proaches, some work adopts transformer models [32, 42],
while others, such as [13, 27, 36, 52], explore diffusion-
based approaches. The methods such as MedM2G [56] fur-
ther incorporate textual information for modality transfer.
Additionally, UNET-like architectures, which can also be
applied to these tasks, are highlighted in [19, 20]. Most cur-

rent modality transfer research focuses on improving syn-
thesis quality. Our approach, however, demonstrates that
full-modality transfer, when accompanied by specific con-
straints, not only enhances generation but also improves
downstream generalization.

Generalization for medical segmentation. There are
three main types of approaches to missing modality seg-
mentation. Knowledge distillation-based approaches trans-
fer knowledge from models with complete modality infor-
mation (teachers) to models with missing modality informa-
tion (students) [6, 47]. [14, 57] recover missing information
by leveraging the multimodal latent feature space. Domain
adaptation-based methods aim to reduce the gap between
models with complete and incomplete modalities by align-
ing their domains [48]. One prominent shared latent space
method, MmFormer [57], exploits intra- and inter-modality
dependencies for feature fusion, which is closely related to
our work. Our work reveals that our pre-train model with
basic segmentation tuning exceeds these approaches.

C. Limitations, challenges, and future work
To enhance the validation of our approach, we adhere to
commonly used settings during the tuning stage. Exploring
alternative strategies, such as knowledge distillation, could
further improve downstream performance. Our approach
requires datasets where all modalities are instance-level
matched, which can be a stringent condition and may be
unattainable for certain modalities. Future research should
explore methods to achieve personalized invariance without
relying on instance-level matched datasets. Additionally,
we advocate for the availability of more open-source multi-
modal medical datasets, particularly for functional modali-
ties, as these are not widely accessible to researchers.

D. Social impact
This work presents an approach to tackle multi-modality
generalization through personalization. We hope our work
can encourage the community to work towards practical,
personalized medical models with border generalization
ability.

E. Downstream segmentation ablation study
The effectiveness of our proposed components is demon-
strated alongside an exploration of the methodology em-
ployed to develop an individual-invariant representation.
Experimental results for downstream segmentation tasks
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Table 7. Ablation study - Segmentation results of using different pre-train models on AutoPET-II: Comparison between the pre-train
models with different settings and ours. The best results are highlighted in blue and cyan.

ID Pretrian DICE↑ DICE-↑ TPR↑ TNR↑ FNR↓ FPR↓
1 + Contrastive + Decomposition + Equivariance 40.85 55.79 81.72 69.09 18.28 30.91
2 + Contrastive + Decomposition + Invariance 44.34 48.63 77.42 91.82 22.58 8.18
3 + Contrastive + Decomposition + Equivariance + Invariance 42.42 60.67 89.25 63.64 10.75 36.36
4 + Contrastive + Decomposition + Equivariance + O 46.31 55.77 83.87 82.73 16.13 17.27
5 + Contrastive + Decomposition + Invariance + O 44.42 57.80 88.17 74.55 11.83 25.45
6 + Contrastive + Decomposition + Equivariance + Invariance + O 48.20 61.16 88.17 77.27 11.83 22.72

and visualizations of the pre-trained models are presented
in Tab. 7. All experiments are conducted under consistent
settings to ensure a fair comparison.

Using all constraints together with O yields the best
results. Consistent with Sec. 3.1.2, the results indicate
that using different constraints alone may not guarantee im-
provements; however, incorporating all constraints along
with O results in the best outcomes. This validates the plau-
sibility of the Xh Hypothesis and demonstrates that achiev-
ing a good approximation of it significantly enhances gen-
eralization.

Using prior O with decomposition constraint im-
proves the model performance for different settings. De-
spite different settings, additionally using O with decompo-
sition improves the downstream model performance. Com-
bined with the improvements from modality transfer re-
sults in Tab. 4, it suggests that O helps in better obtaining
anatomical structure.

The invariance and equivariance constraints can not
be applied to the same feature. It needs to be highlighted
that invariance and equivariance constraints cannot be ap-
plied to the same features as they conflict with each other.
As shown in task 3, without O, invariance and equivariance
constraints are applied to the latent feature simultaneously,
leading to a significant performance drop. In comparison,
applying equivariance constraint before using O and apply-
ing the invariance constraint after using O yields the best
results. This is because the geometrical transformation con-
tained in zih needs to be accomplished by fetching other pos-
sible geometrical transformation information from O and
then fusing it to be invariant.

F. Experimental details
The model and data loaders are built by using
MONAI https://docs.monai.io/en/stable/
index.html. Please refer to all the details of the
implementation in the code. We present some key
implementations below.

F.1. Overall training procedure
A pseudo-code is provided for our approach. The loss cal-
culation for Pre-training procedure is simplified as Algo-

rithm 1 and Downstream tuning as Algorithm 2. It is no-
table that the empirical procedure is flexible as long as the
O is properly used to construct X′

h and those constraints are
applied to X′

h.

F.2. Homogeneous generalization: structural
modalities in MRI

F.2.1. Pre-training and Modality transfer.
Experimental settings. Four A100 GPUs are employed for
training. The learning rate we used for the modality transfer
is set to 0.0002, and the training epoch is set to 1000. Both
the number of input and out channels is set as 4.

Training details. For the model, both the input and out-
put channels are set to 4, corresponding to the four MRI
modalities. All modalities are loaded and cropped to a size
of 96 × 96 × 96 simultaneously. Following [27], we also
normalize each MRI modality to have zero mean and unit
variance. During training, the background is excluded for
modal generation. A single modality is repeated four times
to create four channels during training to obtain Xi

h
′. The

training loss follows the Lpre, whose calculation details
during the training phase can be seen in Algorithm 1.

F.2.2. Missing modality segmentation.
Four A100 GPUs are employed for tuning. The learning
rate we used for the modality transfer is set to 0.0002, and
the training epoch is set to 1000. Both the number of input
and out channels is set as 4.

Training details. Following [42], we also normalize
each MRI modality to zero mean and unit variance. For
the fine-tuning, we employ Dice loss, the weighted cross-
entropy loss that is adopted by [42], and the additionalLinv .

F.3. Heterogeneous generalization: PET and CT
modalities

F.3.1. Modality transfer
All models are trained using A100 GPUs. Training details.
All models are trained under the same situations, using the
same data pre-processing transforms.

F.3.2. Downstream segmentation
Training details. All training and fine-tuning experiments
use the same losses, while the approaches with our pre-train
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Algorithm 1: Calculate losses during one step for
pre-training

Data: X ∈ X , epoch
Initialize learnable O E(·),D(·);
while i ̸= epoch do

X ′
h ← None;

for h ∈ H do
for i ∈M do
Lpre ← 0;
Xi

h ∼ X , ϕi ∼ Φ;
Xi

h
+
, Xi

h
−
= Augment(ϕi(Xi

h));
(zih, x

i
h), (z

i
h
−
, xih

−
), (zih

+
, xih

+
)←

E(ϕi(Xi
h)), E(Xi

h
−
), E(Xi

h
+
);

Calculate Lcontr(z
i
h, z

i
h
+
, zih

−
),

Lpre+ = Lcontr;
F(zih)→ ϕi

′;
Calculate Lequ(ϕ

i′, ϕi), Lpre+ = Lequ;
zih

′
:= Attn(query : zih, key :

O, value : O);
Xi

h
′
:= Conv(zih

′, zih) ;
if X ′

h is not None ; /* For saving
memory */

then
Calculate Linv(X

i
h
′, X ′

h),
Lpre+ = Linv;
X ′

h := (Xh +Xi
h
′)/2;

else
X ′

h := Xi
h
′ ;

end
Xi

h
′ := D(Xi

h
′, xih);

Calculate Ldecom(ϕi−1(Xi
h
′), Xh),

Lpre+ = Ldecom;
end

end
end

additionally use Linv for downstream fine-tuning. More-
over, we also compare the original architecture of Swin-
UNETR using our pre-trained weights with fully using our
architecture and our weights for fine-tuning.

F.4. Fine-tuning special case: Tuning from hetero-
geneous to homogeneous generalization with
domain gap

Training details. For the fine-tuning stage, we use the
decoder architecture of SwinUNETR, which is randomly
initialized. The training procedure is similar to the above
modality transfer experiments, with the primary difference
being that the input and output channels are set to two. Ad-
ditionally, we reproduced the results of UNETR and Swin-

Algorithm 2: Calculate losses during one step for
fine-tuning

Data: (X,Y ) ∈ (X ,Y), epoch
Load pre-trained O E(·),D(·);
while i ̸= epoch do

X ′
h ← None;

for h ∈ H do
for i ∈M do
Ldown ← 0;
(Xi

h, Yh) ∼ X,Y ;
(zih, x

i
h)← E(Xi

h);
zih

′
:= Attn(query : zih, key :

O, value : O);
Xi

h
′
:= Conv(zih

′, zih) ;
if X ′

h is not None ; /* For saving
memory */

then
Calculate Linv(X

i
h
′, X ′

h),
Ldown+ = Linv;
X ′

h := (Xh +Xi
h
′)/2;

else
X ′

h := Xi
h
′ ;

end
Y ′
h := D(Xi

h
′, xih);

Calculate Lori(Y
′
h, Yh),

Ldown+ = Lori;
end

end
end

UNETR for comparison, ensuring that the same loss func-
tions were applied across models.

G. More results and analysis
G.1. More analysis on learnable biological prior
Analysis of O. We show that using O for Xh mainly accom-
plishes the personalized knowledge of each sequence from
MRI modalities. Those modalities are mainly focused on
the physical anatomy. For the Flair modality in MRI, which
mainly highlights the lesion but suppresses structures like
bones, Fig. 8 shows that without O, the main difference be-
tween the generated images and ground truth (GT) images
is the personalized structure. Prior O for Xh accomplishes
and refines the personal level anatomical information, miti-
gating the gap between them with the GT, so it can be better
transferred to other structural focusing modalities.

G.2. Segmentation results on AutoPET-II.
Detailed metrics results of AutoPET-II are presented in
Tab. 8. The results indicate that with proper model archi-
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Ground truth modalities

T1  T1ce T2  Flair
Input 

Generated (Ours)

T1  T1ce T2  Flair
Reconstructed Transferred TransferredTransferred

Figure 7. Visualizations of generated modalities with T1 as input of our method, which allows the capturing of subtle structures.

(1) Without 
prior

(2) With 
prior

(2) – (1) (3)-(1)(3) GT (1) Without prior (2) With prior (2) – (1) (3)-(1)(3) GT

T1

T1ce

T2

Flair

Figure 8. Visualization of the efficacy of prior O. Displayed are the generated modalities on the input Flair modality of a testing sample
on the BTATS21 dataset. Columns show: the generated images of the model (1) without prior O and (2) with prior O are aligned with
(3) the GT images. Typically, the differences between without and with prior O (the (2)-(1) column) are visualized to compare with the
differences between without O and GT (the (3)-(1) column). Red and blue refer to the positive (accomplishment) and negative (refinement)
values of the differences, respectively.

tecture, such as SwinUNETR, using both two modalities
usually outperforms solely using PET. It can be observed
that models using our pre-train improve the results across all
metrics. Typically, SwinUNETR using our pre-train signif-
icantly exceeds it without our pre-trained model, indicating
the personalized invariant learned by our pre-train general-
izes to the downstream well and can boost the downstream
tasks. Moreover, using our proposed components with the
pre-train leads to the best DICE and DICE-. This validates
that using the prior further emphasizes the personalized in-
variant, which yields the most segmentation improvements.

G.3. Modality transfer results on BRATS22.

Tab. 9 and Tab. 10 presents the generation result with stan-
dard derivations. The results of our method and Swin-
UNETR are produced by ourselves, while the rest of the
results are gathered from [27]. Generated examples are pre-
sented in Figs. 10 to 12.

G.4. Missing modality segmentation results on
BRATS18.

We provide detailed segmentation results on BRATS18 as
Tab. 11.
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Method Dice↑ Dice-↑ TPR↑ TNR↑ FNR↓ FPR↓
From scratch

nnUnet [23] 33.10 - - - - -
SwinUNETR [19] 43.45 62.60 90.32 62.73 9.68 37.27

SwinUNETR with different pre-train
With pre-train in [44] 44.06 57.79 89.25 73.64 10.75 26.36
With ours 48.20 61.16 88.17 77.27 11.83 22.72

Table 8. Segmentation results of PET and CT on AutoPET-II: Comparison between the previous method and ours. The best results are
highlighted in blue.

Task T1→T2 T2 → Flair
Dimension Method PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑

Pix2Pix 24.624 ± 0.962 0.109 ± 0.028 0.874 ± 0.015 24.361 ± 1.061 0.117 ± 0.021 0.846 ± 0.019
CycleGAN 23.535 ± 1.334 0.155 ± 0.035 0.837 ± 0.028 23.418 ± 0.944 0.164 ± 0.033 0.825 ± 0.035
NICEGAN 23.721 ± 1.136 0.148 ± 0.029 0.840 ± 0.029 23.643 ± 1.045 0.148 ± 0.022 0.829 ± 0.033
RegGAN 24.884 ± 0.991 0.094 ± 0.024 0.881 ± 0.017 24.576 ± 1.073 0.112 ± 0.022 0.852 ± 0.028

2D

ResViT 25.578 ± 0.812 0.088 ± 0.021 0.895 ± 0.018 24.825 ± 1.030 0.108 ± 0.018 0.861 ± 0.021
CycleGAN 25.181 ± 0.861 0.097 ± 0.031 0.887 ± 0.012 24.602 ± 1.181 0.113 ± 0.021 0.854 ± 0.018

Pix2Pix 23.740 ± 1.198 0.138 ± 0.032 0.835 ± 0.019 23.508 ± 1.301 0.152 ± 0.039 0.822 ± 0.024
EaGAN 24.884 ± 0.991 0.094 ± 0.024 0.881 ± 0.017 24.576 ± 1.073 0.112 ± 0.022 0.852 ± 0.028

MS-SPADE 25.818 ± 0.857 0.079 ± 0.016 0.904 ± 0.012 25.074 ± 1.085 0.098 ± 0.021 0.867 ± 0.018
3D

Ours 30.756 ± 1.950 0.065 ± 0.034 0.944 ± 0.031 32.224 ± 2.518 0.046 ± 0.029 0.941 ± 0.025

Table 9. Modality transfer results of MRI on BRATS23: Comparison between previous methods and our method. The best results are
highlighted in blue.

Figure 9. TSNE of latent features of PET and CT images obtained
under different applied constraints. Downstream performances are
noted.

Non-personalized +ℒ!"# +All constraints

Dice: 43.5 Dice: 44.34 Dice: 48.20

G.5. Comparison with non-personalized methods.
We provide further visual evidence in Fig. 9 for an in-
depth analysis. Fig. 9 shows that applying our constraints
aligns CT and PET representations more closely, indicat-
ing smaller dG∆G(M|HS ,M|HU ) in Paper Eq. (10), yield-
ing tightened bounds and better downstream performance
(Dice:48.20), in comparison to the non-personalized base-
line (Dice:43.5). This further supports our theoretical anal-
ysis.
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Target T1 T1ce T2 Flair
Source PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑

SwinUNETR 32.815 0.092 0.941 31.655 0.202 0.912 24.650 0.361 0.857 27.593 0.202 0.883
Std. 0.968 0.043 0.049 1.062 0.067 0.052 1.008 0.069 0.077 1.144 0.072 0.050

MS-SPADE 29.001 0.055 0.942 26.119 0.078 0.912 25.818 0.103 0.904 24.842 0.113 0.859
Std. 0.643 0.025 0.022 0.816 0.022 0.015 0.857 0.030 0.014 0.728 0.034 0.019

Ours 43.472 0.003 0.996 34.547 0.045 0.955 30.756 0.065 0.944 31.693 0.049 0.937

T1

Std. 2.495 0.004 0.011 1.956 0.030 0.018 1.950 0.034 0.031 2.287 0.024 0.019
SwinUNETR 32.456 0.100 0.929 33.001 0.156 0.926 25.125 0.366 0.859 27.699 0.211 0.882

Std. 1.018 0.044 0.048 0.889 0.055 0.051 0.964 0.071 0.074 1.129 0.071 0.049
MS-SPADE 26.228 0.076 0.922 28.759 0.060 0.937 25.990 0.092 0.907 25.204 0.092 0.881

Std. 0.794 0.027 0.033 0.885 0.019 0.015 0.859 0.032 0.908 0.811 0.050 0.037
Ours 34.077 0.020 0.962 46.663 0.003 0.996 30.775 0.063 0.942 32.224 0.046 0.941

T1ce

Std. 2.484 0.012 0.017 3.240 0.004 0.008 1.812 0.030 0.028 2.518 0.029 0.025
SwinUNETR 30.102 0.171 0.896 30.354 0.283 0.883 26.831 0.268 0.887 27.234 0.242 0.872

Std. 1.405 0.056 0.050 1.249 0.086 0.054 1.144 0.054 0.075 1.154 0.073 0.051
MS-SPADE 25.422 0.085 0.908 25.234 0.087 0.895 29.230 0.048 0.942 25.074 0.098 0.867

Std. 0.852 0.026 0.020 1.152 0.034 0.025 0.720 0.018 0.915 1.085 0.021 0.018
Ours 32.646 0.028 0.955 33.857 0.051 0.949 43.653 0.006 0.991 32.224 0.046 0.941

T2

Std. 2.391 0.028 0.028 1.925 0.040 0.027 3.467 0.024 0.038 2.518 0.029 0.025
SwinUNETR 31.371 0.135 0.916 31.285 0.240 0.905 25.579 0.338 0.867 29.092 0.148 0.923

Std. 1.198 0.051 0.054 1.161 0.077 0.053 0.956 0.064 0.073 0.974 0.055 0.049
MS-SPADE 25.186 0.090 0.905 25.899 0.094 0.906 26.146 0.086 0.913 28.608 0.058 0.938

Std. 0.759 0.028 0.048 1.039 0.025 0.027 0.636 0.028 0.944 0.769 0.025 0.028
Ours 32.752 0.026 0.951 33.471 0.055 0.944 30.571 0.068 0.940 43.624 0.004 0.995

Flair

Std. 2.399 0.020 0.022 1.634 0.035 0.021 1.951 0.035 0.034 2.441 0.008 0.013

Table 10. Modality transfer results of MRI on BRATS23: The averaged results with standard derivations of metrics between all modali-
ties.

Missing Num =3 =2 =1 =0
flair
T1

T1ceModality

T2
SPA 65.86 65.27 78.26 66.4 72.99 83.23 70.66 81.25 70.66 80.63 83.22 73.89 83.36 82.05 83.4

M3AE 69.4 65.45 79.12 71.84 79.9 70.45 82.79 81.17 71.62 73.35 81.78 82.42 73.31 81.61 82.22
mmFormer 67.8 77.32 64.56 64.08 81.51 79.43 69.14 70.63 68.6 80.75 81.75 70.92 81.74 81.55 82.23

RFNET 64.03 74.53 58.63 61.95 79.2 77.45 69.25 67.48 67.98 78.85 80.15 70.75 79.4 80.15 80.29
M2F 65.79 63.29 77.31 63.64 70.38 79.93 68.01 79.62 67.68 79.37 80.65 69.73 80.01 79.53 80.34

Tumour Core

Ours 75.83 71.2 75.29 75.71 80.66 83.6 79.23 74.83 79.51 79.52 83.92 82.78 86.65 81.22 86.72
SPA 39.85 41.39 70.43 41.72 45.99 73.07 45.25 72.87 45.25 72.59 73.52 47.56 73.01 73.55 73.65

M3AE 37 38.41 75.8 44.22 78.09 45.2 79.36 78.16 41.71 48.12 79.14 80.06 47.63 79.31 79.91
mmFormer 40.08 72.19 38.89 37.23 73.11 73.06 40.64 42.27 43.65 75.56 43.34 81.74 73.36 75.31 73.4

RFNET 38.69 69.22 30.89 33.56 71.4 70.9 38.53 41.91 40.9 69.51 71.61 43.37 71.17 74.2 73.79
M2F 37.99 37.79 71.74 39.28 43.37 74.66 45.42 73.48 43.5 73.48 73.56 45.93 73.15 74.03 75.26

Enhancing tumour

Ours 67.45 54.83 70.86 47.63 69.38 52.91 70.1 59.45 67.44 63.91 70.79 57.78 69.42 59.76 70.64
SPA 85.77 72.69 71.95 80.4 87.82 87.97 88.27 75.57 88.27 81.8 88.3 88.78 89.06 82.87 89.27

M3AE 87.78 74.69 74.91 84.43 76.09 84.48 89.63 84.4 88.64 88.91 84.04 89.29 88.58 88.45 88.26
mmFormer 84.09 72.85 73.37 85.6 85.97 76.93 87.09 86.09 87.55 87.94 88.36 88.16 88.74 85.96 89.03

RFNET 80.52 67.06 68.42 82.96 82.57 71.97 85.82 83.25 86 84.94 86.06 86.53 86.34 83.61 86.82
M2F 85.72 72.48 71.78 82.53 87.73 87.66 84.35 76.03 87.69 84.27 88.17 88.22 88.47 84.32 88.72

Whole tumour

Ours 89.23 81.73 82.26 87.45 89.74 89.03 88.00 81.92 89.72 86.27 89.12 90.5 91.25 87.1 91.19

Table 11. Missing modality segmentation results of MRI on BRATS18: Num denotes the number of missing modalities for different
settings. The used modalities are highlighted with gray boxes and the missing ones remain as blank. The results of each setting are
presented accordingly.
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Figure 10. Generated images of our proposed method: slices across ventricles.
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Figure 11. Generated images of our proposed method: slices across cerebral sulcus.
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Figure 12. Generated images of our proposed method: slices across the cerebellar hemisphere. Our method can generate defined cerebellar
folia.
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