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Figure 1. We present a new dataset and method for estimating human dance motion from the egocentric video and music.

Abstract

Estimating human dance motion is a challenging task
with various industrial applications. Recently, many efforts
have focused on predicting human dance motion using ei-
ther egocentric video or music as input. However, the task
of jointly estimating human motion from both egocentric
video and music remains largely unexplored. In this paper,
we aim to develop a new method that predicts human dance
motion from both egocentric video and music. In practice,
the egocentric view often obscures much of the body, mak-
ing accurate full-pose estimation challenging. Additionally,
incorporating music requires the generated head and body
movements to align well with both visual and musical in-
puts. We first introduce EgoAIST++, a new large-scale
dataset that combines both egocentric views and music with
more than 36 hours of dancing motion. Drawing on the
success of diffusion models and Mamba on modeling se-
quences, we develop an EgoMusic Motion Network with a
core Skeleton Mamba that explicitly captures the skeleton
structure of the human body. We illustrate that our ap-
proach is theoretically supportive. Intensive experiments
show that our method clearly outperforms state-of-the-art
approaches and generalizes effectively to real-world data.

1. Introduction

Dance is a fundamental form of human expression, cre-
ativity, and is deeply embedded in cultural and social con-
texts [21,36]. Estimating full-body dance motion is a cru-
cial task with many industrial applications, such as dance
education [13, 20, 38], virtual metaverses [33, 35], or film
animation [6, 84]. While several works have focused on hu-
man dance pose estimation, they mostly tackle the problem
using the input from third-person video [4, 25, 64, 65, 98]
or motion tracking device [56,57]. In practice, third-person
video methods suffer from occlusions, viewpoint variations,
and depth ambiguity, while motion-tracking devices require
costly hardware, making them less practical for real-world
AR/VR or metaverse applications. These constraints high-
light the need for an alternative approach, such as first-
person (egocentric) view dance motion estimation.

Recently, egocentric input has been utilized to estimate
human motions in everyday activities such as walking and
running [30, 59, 80, 81]. A key challenge in egocentric
pose estimation is that much of the body often falls out-
side the camera’s view, creating ambiguities in full-body
capture. This issue is even more pronounced in dance mo-
tion, where movements are more complex and dynamic.
To overcome this, many works incorporate motion tracking
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sensors, which require costly hardware and limit accessibil-
ity [56,57]. A promising approach for accurate dance mo-
tion estimation is to leverage music as an additional modal-
ity. Research has shown that music, through its rhythm,
tempo, and dynamics, can provide meaningful cues for gen-
erating realistic movements [5,36]. Therefore, we propose
integrating music and egocentric video for dance motion es-
timation. We hypothesize that combining these two com-
plementary modalities enables more accurate human dance
motion estimation. However, the challenge lies in two fun-
damental tasks: i) creating a large-scale dataset for dance
motion estimation from egocentric and music, and ii) de-
signing a model capable of understanding the human skele-
ton structure and effectively coordinating multimodal inputs
to synchronize head and body motion with the music

To learn human motion, transformer is a widely used
technique [8, 45, 74, 77, 94]. However, transformer has
quadratic complexity and struggles to capture structure de-
pendencies. On the other hand, State Space Models (or
Mamba) [10,18] have shown great potential on several tasks
over transformer-based models, such as graph analysis [79],
video analysis [44], and image generation [24]. However,
directly adapting Mamba to human motion data presents a
challenge due to the dynamics of both spatial and tempo-
ral structures of the human body. Previous Mamba-based
models [63, 85, 95,96] on human motion usually simplify
each frame of a human pose as a single latent vector or dis-
regard the spatial order of joints within the human skeleton,
which limits their ability to capture fine-grained spatial dy-
namics. This drawback makes it challenging to generate co-
herent motion as the head and lower body may fail to align
naturally, leading to poor coordination between egocentric-
driven head and music-influenced body movement.

In this work, we first introduce a new dataset for human
dance pose estimation from egocentric and music inputs.
We then propose Skeleton Mamba, a new Mamba model de-
signed to capture spatial structures while preserving tempo-
ral coherence. Our designed method enables synchronized
head and body movements responsive to egocentric and mu-
sic inputs. Our approach explicitly models the spatial struc-
ture of joints and their hierarchical dependencies, allowing
for more coherent motion generation that preserves the nat-
ural relationships between joints. We show that our method
is theoretically supportive, and provide intensive experi-
ments to validate our method against recent state-of-the-art
approaches. Our contributions are the following:

* We propose a new dataset for human dance motion esti-
mation from the egocentric and music input.

* We propose the EgoMusic Motion Network with Skeleton
Mamba as the core to learn human body motion.

* We provide theoretical analysis and intensive experiments
to demonstrate the effectiveness of our method.

2. Related Work

Human Motion from Egocentric Video. Human motion
estimation from egocentric video has garnered significant
attention in recent years. Most existing methods assume
partial visibility of body parts in the image, often using fish-
eye cameras [30,59,75,80,81,87]. Other research addresses
the challenge of body parts not being visible in egocentric
footage [29,43,55,60]. Jiang et al. [29] introduce an innova-
tive global optimization technique that utilizes both trained
dynamic and scene classifiers along with pose coupling over
an extended period. Ng ef al. [60] model person-to-person
interactions, inferring the 3D ego-pose based on the other
person’s pose. Luo et al. [55] jointly models kinematics and
dynamics to estimate 3D human poses and human-object
interactions. EgoFormer [47] extracts motion features from
egocentric images and employs a Transformer Decoder to
autoregressively generate human poses. In [43], the authors
introduce EgoEgo, a hybrid learning method for head pose
estimation, which then was used as a conditioning factor in
a diffusion model to estimate full-body motions.

Human Motion from Music. Generating human dance
motion from Music is widely formed as a synthesis task.
Early studies used statistical retrieval techniques to gener-
ate choreography by seamlessly transitioning between ex-
isting motion clips [16,41]. However, these methods rely
on selecting pre-existing motions, often resulting in unnat-
ural dance motions. With advancements in deep learning
techniques and the availability of large-scale datasets, many
networks have been introduced to generate higher-fidelity
dance motions [2, 15, 27, 37, 39, 42, 45, 69]. The FACT
model [45] introduces an autoregressive cross-modal trans-
former to generate long continuous dance sequences. Bai-
lando [69] employs VQ-VAEs for the upper and lower body
segments to translate music and initial poses into dance se-
quences. Recent efforts have explored the use of diffu-
sion models for dance generation [45,92]. MoFusion [9]
presents a multi-condition diffusion framework capable of
generating long, realistic, and temporally coherent human
motion sequences. EDGE [77] introduces an editable dance
generation model that leverages a transformer-based diffu-
sion architecture, offering flexible editing capabilities for
dance applications. In [28], the authors propose a frame-
work that allows control of generated dance motion based
on key-frame body pose and music beat conditions. How-
ever, all these works focus on generating dance motion us-
ing only the music as input, and the egocentric views are not
taken into account. In this work, we present a new diffu-
sion framework that aligns body movements with both mu-
sic and egocentric video.

State Space Model. State Space Model (SSM) [18] has
garnered significant attention recently due to its potential
for efficiently modeling long sequences with linear com-
plexity. Its applications have been explored across vari-



ous fields, including image processing [24, 40, 46, 86, 99],
graph processing [3, 79], point cloud analysis [48, 50, 93],
and human motion generation [96]. Vim [99] presents a
bidirectional SSM block. Efforts like Mamba-ND [46] ex-
tend the capabilities of SSM to higher-dimensional data
by exploring different scan directions within a single SSM
block. In addition, several works, including ZigMa [24]
and DiffuSSM [89], utilize Mamba-based SSM blocks for
efficient image generation. MotionMamba [96] proposes
a symmetric multi-branch Mamba that processes temporal
and spatial and shows exceptional performance on text-to-
motion generation tasks. More recently, State Space Duality
(SSD) [10] is introduced as a dual-form framework that uni-
fies state space models with structured masked attention.

3. The EgoAIST++ Dataset

While several datasets have been proposed for single
input (either egocentric or music) human motion estima-
tion (Table 1), large-scale datasets that combine egocen-
tric and music for dance pose are still limited. Ego-Exo4D
dataset [17] has a subset with the egocentric view, music,
and dance motion, but this subset is only approximately 2
hours. To address this gap, we introduce EgoAIST++, a
new large-scale dataset that integrates egocentric views and
music specifically for human dance pose estimation.

Datasets Music Egocentric ~ Setup  #Images Camera Direction

Mo?Cap? [87] X v Mocap 530k Downward-facing
xr-EgoPose [75] X v Simulation 380k Downward-facing
UnrealEgo [1] X v Simulation 450k Downward-facing
EgoGTA [82] X v Simulation 320K Downward-facing
EgoBody3M [97] X v Mocap  3.4M Downward-facing
ECHP [52] X v Mocap 75k  Downward-facing
ARES [43] X v Simulation 1.6M  Forward-facing
Ego-Exo4D [17] v v Mocap / Forward-facing
DanceNet [101] v X - - -
EA-MUD [71] v X - - -
AIST++ [45] v X - - -
EgoAIST++ (ours) v/ v Mixed 39M  Forward-facing

Table 1. Human motion datasets comparison.

Setup. We first utilize the AIST++ dataset [45] as it in-
cludes real-world well-defined human motion paired with
the music. The data from AIST++ dataset was captured us-
ing a motion capture system which ensures the correctness
of the human motion. We then use the Replica 3D indoor
scene dataset [70] to provide environment for obtaining the
visual egocentric view. We randomly placed AIST++ [45]
sequences with a specified location and rotation in the 3D
mesh scene of the Replica dataset. For each sequence, we
enforce the penetration constraint as in [83] to maintain the
natural contact between the human and the objects in the
scene. Other factors such as collision with surrounding ob-
jects are resolved manually by human annotators.

Data Labelling and Statistic. We use Al Habitat [72],
to render high-quality and realistic egocentric images from
a head-mounted camera of a virtual human and 3D mesh
scene. We split the data from the AIST++ and Replica
datasets to ensure the train and test sets have distinct music
choreographies and scenes, with no overlap between them.
The test set includes 40 unique music choreographies and 5
distinct scenes, while the training set consists of 980 mu-
sic choreographies and 13 scenes for training. For each
dance sequence, we divide it into 5-second subsequences
and place them at a random location within the scene. Over-
all, our EgoAIST++ dataset has 36 hours of motion with
nearly 3.9M frames, recorded at 30 frames per second.

4. EgoMusic-driven Dance Motion Estimation
4.1. Problem Formulation

Given an egocentric video represented as a sequence of
frames, v = {v!,v2 ..., vT}, and a piece of music, a =
{a',a?,...,aT}, both of duration 7', our objective is to
generate a human dance sequence, x = {x',x2 ..., x7},
that aligns with the egocentric view and the audio. As
in [43,77], the human pose x is presented using the SMPL
model [54]. We formulate our problem using a condition
diffusion model [12,23] where we represent the target mo-
tion as x(, and combine egocentric images v and music a
as the condition z in the diffusion model. The objective of
the diffusion process [23] is to gradually add noise into a
clean dance motion x( over a series of m steps:

q(xm|x0) = N(Vamxg, (1 — an)I), (1

where a,, = [[,-,(1 — 3;), and 3,, controls the noise
schedule. The backward process is to learn the condition
distribution py(xo|z) with the condition z as in [12,23].

Our objective is to design an effective backward process.
To generate human motion that is well-aligned with egocen-
tric cues and music, we introduce a new EgoMusic Motion
Network (EMM) centered around a core Skeleton Mamba
scanning strategy to learn the structure of the human body.
We provide empirical and theoretical evidence demonstrat-
ing the contribution of our Skeleton Mamba in learning hu-
man motion during the denoising process.

4.2. EgoMusic Motion Network

The overall pipeline of our proposed method is illus-
trated in Fig. 2. First, we extract the features from the in-
put egocentric images v using a deep network [22]. For
music a, we adopt the same feature extraction process as
EDGE [77], leveraging the pre-trained JukeBox [11] model
to capture high-level music features, which are then pro-
cessed by a transformer encoder [78] to produce the final
music embedding. The visual and music embeddings are
subsequently aligned and integrated by the Fusion Module
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Figure 2. Methodology overview. (a) We propose a new diffusion model framework that generates human motion from egocentric video
and music. (b) Detail architecture of three main components: Group Scan, Joint Scan, and Temporal Scan. Our model can effectively

capture both the spatial and temporal dynamics in human motion data.

to form a joined embedding, denoted as z. This embedding
is then fed into a conditional diffusion denoising process,
which outputs the final denoised dance motion sequence.
The denoising process is guided by the proposed Skeleton
Mamba, which is designed to maintain the skeletal structure
of the human pose and enhance the smoothness of the gen-
erated motion. We use feature-wise linear DenseFiLM [61]
for timestep encoding and a Cross Attention layer to inte-
grate the condition z into the denoising process.

4.3. Skeleton Mamba

Motivation. Estimating human pose from egocentric
video and music requires spatial, temporal, and visual un-
derstanding. Previous methods [43,77,96] for human mo-
tion generation often overlook the structured patterns inher-
ent in the human body. Skeleton-based methods, widely
used in action recognition tasks [62, 90], effectively cap-
ture essential motion dynamics while handling challenges
like partial visibility and occlusions common in egocen-
tric perspectives. These methods show potential for our
task, where a semantic understanding of body part dynam-
ics is crucial. To address these needs, we propose Skeleton
Mamba, a model that learns detailed body structures to en-
hance pose accuracy, ensuring head alignment with the ego-
centric view and synchronizing body movements with mu-
sical cues. Our Skeleton Mamba includes the Group Scan
and Joint Scan strategy to learn the group-level representa-
tion (e.g., left arm, right arm) and joint-level dependencies
within the human body. Then a Temporal Scan is applied
to capture sequential dependencies over time. Our Skeleton
Mamba is thus capable of effectively modeling both spatial
and temporal dynamics within human motion data.

Human Tokenizer. Given the human representation
x € RTXJI*D wwhere T is the number of frames, .J is the
number of joints, and D is the dimension, we first tokenize
the human pose into GG overlapping joint groups, each group
containing P joints. This results in a group sequence repre-
sented as g € RT*C*E:

(@)

where g; € RT*1*E represents the embedding of each to-
ken in the group sequence, and E = P x D is the embed-
ding dimension. The joints of the human body are grouped
based on skeletal parts, with some joints shared across mul-
tiple groups. This grouping strategy reflects the symmetri-
cal structure of the human body.

Group Scan with Multi-directional SSD. Inspired by
recent works [85, 96] that employed State Space Model
(SSM) [18] for human motion data, we extend these
ideas by adopting a multi-directional approach within
the grouped structure, leveraging the State Space Duality
(SSD) [10] to encode human motion at the group level.
Our Group Scan rearranges the group tokens in multiple
ways and learns them from multiple directions to enable
a more comprehensive exploration of token relationships.
Algorithm 1 shows our Multi-directional SSD (MSSD).
We first utilize n permutation operators [71, 7o, ..., Tp],
where each 7; is the element of symmetric group Sym(G).
Each m; reorders the group tokens of the group embedding
g € RT*XGXE  For each permutation 7;, the reordered
embedding g; is obtained as g™ = [gr (1), -, 8r (a)] €
RT*G*E These n reordered embeddings are concatenated
along the group dimension, forming a combined represen-
tation g, € RTX"GXE  Embedding g. is processed by

g =[g1,82,...,8c] = HumanTokenizer(x) ,



an SSD, and the resulting output is split back into n seg-
ments: [g™,g"™2,...,g™] with g™ € RTXE*E  Each
segment is then reordered back to its original token order
using the corresponding inverse permutation 7, ! Finally,
the mean of the reordered embeddings is taken to produce
the transformed group embedding y € R7*E*F where
y; € RTXIXE represents the i-th token in the transformed
group sequence.

Algorithm 1 Multi-directional SSD (MSSD)

Input: Group Embedding g : (T, G, E);

n permutation (7, w2, . .., T, ), € Sym(G).
Output: Transformed group embedding y : (T, G, E).

1: fort=1,...,ndo

2 /* permutation sequence */

3 g™ : (T,G7E) = [gﬂi(1)7""gﬂz‘(G)]
4: end for

5. g.: (T,nG, E) + Concat([g™, g™, ...,g™])
6: g : (T,nG, E) < SSD(g.)

7: [g™,8™,...,8™] « Split(g.)

8: fori=1,...,ndo

9: /* reverse to the original order */

0: g% (TG, E)= i1y

7gﬂ;1(G)]
11: end for
12: y : (T,G, E) < Mean([g™ g™ ,...,g" |)
13: Return y

Joint Scan. To learn the human motion at the joint level,
we transform each group embedding y; to a sequence of
individual joints represented as y, € RT*F*D using a lin-
ear layer and rearrange operator. Each of these sequences is
then processed by an SSD block to obtain transformed joint
sequence embedding y// € RT*FxD:

y; = Rearrange(Linear(y;)) ,

3
vl = SSD(y)) ©

In total, G separate SSD modules with shared weights are
employed. The objective is to learn detailed intra-group de-
pendencies, ensuring that the interactions within each joint
sequence are effectively captured. Unlike group tokens,
joint tokens have an inherent order, allowing a unidirec-
tional SSD to be sufficient for learning. By integrating the
Group Scan and Joint Scan, our approach effectively cap-
tures both high-level and detailed spatial dependencies in
the human pose structure. All outputs of the SSD modules
are then concatenated and fed to the Inverse Human Tok-
enizer to restore the original pose shape t € RT*7/*D,

Y6))) -
“4)
Temporal Scan. We apply Temporal Scan to model
the temporal dependencies across the temporal domain, en-
hancing the representation of dynamic pose changes over

t = InverseHumanTokenizer((Concat(y}, y5, - . .

time. First, we swap the input dimension from t €
RTXIXD to t' € R/*T*D Then, the embedding t’ is pro-
cessed by two SSD modules that scan the sequence in both
backward and forward directions as in [44, 85], producing
tyackward and torwarq. Unlike Group Scan, which uses
multiple directions, temporal sequences must preserve nat-
ural dependencies over time, allowing only backward and
forward scanning.

toackward = BaCkWﬂrdSSD(t/) s

5
t forwarda = ForwardSSD(t') . )

Theorem 1. Let S; = Sym(J) denote the symmetric group
of J elements, and let HT,HT~* be short for the Human-
Tokenizer and InverseHumanTokenizer respectively. Sup-
pose that the HT(-) and HT ~(-) operator are fixed, such
that the set H = {0 € S;|HT(x°) = HT(x)} is a
non-empty subgroup of Sj. Then for arbitrary continuous
and H-equivariant function g : R7*P — RI*P | com-
pact set K C R7*P and € > 0, there exists a function
f o RIXP s RIXD that constructed by our Skeleton
Mamba such that:

1f(x) = 9(x)[[c <€ Vx € K.
Proof. See Supplementary Material. O

Remark 1.1. The group H in the above theorem represents
the set of human body symmetries. The function g, which
is H-equivariant, represents the unknown target function we
aim to learn. In practice, g must respect the symmetries of
the human body, meaning it must be H-equivariant. Thus,
the assumption that g is H-equivariant is natural. Intu-
itively, Theorem 1 asserts that our Skeleton Mamba can ef-
fectively learn complex human motions, including those re-
quiring precise coordination to follow both egocentric views
and musical cues, while maintaining the equivariant prop-
erties associated with human body symmetries.

4.4. Training and Inference

Auxiliary Loss. As in state-of-the-art work in human
motion generation [28, 69, 77], we employ position loss
Lpos for accurate joint positioning and velocity loss Ly
for smooth motion dynamics. To reduce the foot sliding ef-
fects, we also use the contact 10Ss L.oniact @s in [77]. The
kinematic loss is expressed as follows:

Ekin = )\pos‘cpos + )\velﬁvel + Acontactﬁcontact . (6)

Ego-Music Alignment Loss. We use L4, to align
egocentric video and music at the temporal level. This loss
ensures the high-dimensional features from both modalities
are unified in a shared space, enabling the denoising model
to generate human motion that is more coherent and con-
textually aligned with both inputs. Given the music em-
bedding z, € RT*Pe and egocentric vision embedding



z, € RT*Pe This loss averages the symmetrical con-

trastive loss between vision and music embeddings:
P (sim(z;,, z,,) /7)

lign = . ,
Latign T Z > =1 exp(sim(z, z3)/7)

where sim(z%, zJ ) represents the cosine similarity between
the music embedding at frame ¢ and the vision embedding
at frame j. The parameter 7 is a temperature scalar that
controls the sharpness of the similarity distribution.

We employ the diffusion loss Lgimpie as in [23]. The

total training loss can be formulated as follows:

Ltotal = ['si’mple + Ak:in‘ckin + Aalign‘calign . (8)

(7

Head Guidance Sampling. To enhance the consistency
of the head movements in the generated dance with egocen-
tric images, we define a goal function Gpeqq(-) that guides
the head to align closely with the head pose estimated from
the egocentric images. This goal function consists of two
components: a positional alignment term G, (+) and a ro-
tational alignment term G, (+).

ghead(x) = ’Yposgpos (X) + Wrotgrot (X) 5

gp()é TZHp ﬁZH2 b

G0 = 3" 1w (RRT) [
i=1

€))

where p’ and R’ represent the global head position and
global head rotation matrix of the generated motion, respec-
tively, and p’ and R’ are the corresponding estimated val-
ues calculated using the hybrid approach proposed in [43].

With goal function Gpeqq(-), we formulate the guided
sampling problem as optimizing the probability of con-
straint satisfaction:

p(x0|O = 1,2) o pp(x0|z)p(O = 1[x0,2)
o< po(x0|2) - €xp(Ghead()) »

where O is an indicator to check if the generated dance mo-
tion x,,, at denoising step m reaches the goal Gpeqq(-). Sim-
ilar to [26], we use the first order Taylor expansion around
X, = pto estimate p(O = 1|x,,,2):

log p(O = 1|xm,2) = (xXm — )+ C, (11)

where = pg(Xm,m,2z), C is a constant, and £ is calcu-
lated as follows:

& = Vx, log p(O = 1|x,, z)|

= Vx,, ghead(')|

Hence, we have the sampling process with a goal function:
=NXpm_1; 0+ A2E ), (13)

here ¥ = ¥¢(x,,, m,z) and A is the scaling factor.

(10)

Xm=p (12)

Xm=H

pO(Xm—1|XWL7 0= 17Z)

5. Experiments

Baselines. We compare our method EgoMusic Motion
Network (EMM) with egocentric image-driven motion esti-
mation works (PoseReg [91], Kinpoly [55], EgoEgo [43])
and music-driven motion generation works (FACT [45],
Bailando [69], EDGE [77]). Since our task involves both
egocentric video and music, for a fair comparison, we in-
corporate a music encoder, Jukebox [11], to process audio
input for PoseReg [91], Kinpoly [55], EgoEgo [43]. For the
music-driven works, we add visual features from the ego-
centric video using [22]. The implementation details of all
baselines can be found in our Supplementary Material.

Metrics. Following [43], we evaluate our method using
five standard metrics commonly used in human pose esti-
mation task: i) Opeaq, Which measures the Frobenius norm
between the predicted and actual head rotation matrices.
ii) Theaq, calculated as the average Euclidean distance be-
tween the predicted and true head translation. iii) MPJPE,
the Mean Per Joint Position Error, quantifies the average
discrepancy in joint positions. iv) Accel refers to the dif-
ference in acceleration between predicted and ground truth
joint positions. v) FS assesses foot skating, capturing unnat-
ural foot movement. vi) To evaluate how well the generated
dance motions align with the music and egocentric video,
we propose a new metric called the Motion-Music-Vision
(MMV) (please refer to our Supplementary Material).

5.1. Main Results

Baseline Opeqqd Thead! MPIPE] Accell FS| MMV?

Pose-Reg [60] 1.78 423.56 351.37 37.14 98.79 0.182
Kinpoly [55] 1.16 392.67 338.74 16.27 25.81 0.197
EgoEgo [43] 0.74 373.67 152.02 14.23 22.13 0.218

FACT [45] 1.54 407.89 173.68 14.61 15.07 0.202
Bailando [69] 1.57 411.43 17531 14.72 1546 0.210
EDGE [77] 1.52 404.62 167.43 14.37 14.75 0.224

EMM (music only) 1.43 39841 15736 14.28 14.04 -
EMM (egoonly) 0.61 355.16 186.49 16.02 13.45 -
EMM (ego + music) 0.53 342.37 137.54 11.84 12.79 0.262

Table 2. Human motion estimation results.

Table 2 presents the performance comparison between
our method and other baselines. Table 2 shows that our
EMM outperforms other baselines. EMM reduces head ori-
entation error Qp.qq by 0.21rad and head translation er-
ror Theqq by 31.3mm compared to EgoEgo [43]. Fur-
thermore, when compared to methods conditioned solely
on music [45, 69, 77], our approach offers notable improve-
ments in both accuracy in MPJPE and physical plausibility
in FS metric. We also investigate the impact of each input
modality, with results confirming that combining egocentric
and music inputs enhances overall motion accuracy.
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Baseline Opeqdd Theadd MPIPE] Accel] FS| MMVt

Pose-Reg [60] 1.21 64247 377.56 30.36 56.18 0.165
Kinpoly [55] 0.78 354.19 251.27 17.84 2531 0.187
EgoEgo [43] 0.67 347.23 23458 16.76 20.15 0.203

FACT [45] 1.37 685.81 244.89 17.54 18.53 0.195
Bailando [69] 1.44 688.54 231.77 14.23 18.67 0.211
EDGE [77] 127 644.62 21337 13.78 14.33 0.221
EMM (Ours) 0.61 322.19 191.55 12.76 13.18 0.239

Table 3. Cross-dataset experiment results.

5.2. Cross-dataset Results

To validate the generalization of our method, we conduct
a cross-dataset experiment. We use the pretrained weights
of all methods, originally trained on the EgoAIST++
dataset, to test on the EgoExo4D dataset [17]. EgoExo4D
contains approximately two hours of dance sequences,
along with egocentric videos and music captured in real-
world. Table 3 shows that our method consistently outper-
forms other baselines in the cross-dataset experiment.

5.3. Skeleton Mamba Analysis

Can Skeleton Mamba learn human skeleton? To an-
swer this, we compute the cosine similarity matrices of joint
embeddings for Transformer [77], Vanilla Mamba [10], and
our Skeleton Mamba. Fig. 3 shows that Skeleton Mamba
captures the human body structure more clearly. We high-
light the similarity between joints in the arms (green circles)
and the legs (yellow circles) in Fig. 3. In particular, the
joints of the right arm (join 17, 19, 21, and 23 in Fig. 3d)
exhibit strong similarity to each other. By contrast, joint 20,
which belongs to the left arm, shows low similarity with the
joints in the right arm, indicating effective separation be-
tween limbs. In comparison, Transformer [77] and Vanilla
Mamba [10] models display less distinct differentiation.

Scan strategy analysis. Table 4 shows the impact of dif-
ferent scanning schemes on learning human motion. When
applying the scanning to the spatial domain, unidirectional

Dimension ‘Scan Type Opeadd Theadd MPIPE| Accel| FS| MMV1
Spatial Unidirectional [10] 0.63 386.12 192.38 16.21 14.65 0.245
P Bidirectional [96]  0.58 357.81 160.12 14.02 14.12 0.255
Temporal ‘Unidirectional[lO] 0.61 371.62 181.43 15.29 1547 0.251

Temporal&Spatial‘Skeleton Mamba 0.53 342.37 137.54 11.84 12.79 0.262

Table 4. Scanning strategy analysis.

Music beats ~—— Body velocity ——Head velocity —— Optical flow

Time

Figure 4. Motion, music, and egocentric view correlation.
scanning [10] and bidirectional scanning [96] show reason-
able results but are lower than our Skeleton Mamba. Table 4
also shows that our method, which uses bidirectional scan-
ning (i.e., ForwardSSD and BackwardSDD in Equation 5)
for temporal processing, outperforms the unidirectional ap-
proach. This experiment and Theorem | confirm that by
learning in both temporal and spatial domains, our Skele-
ton Mamba can effectively handle the geometry of human

motion that aligns with both egocentric and music input.

5.4. Ablation Study

Motion, music, and egocentric correlation. We plot
the kinematic velocity, music beats, and optical flow ex-
tracted from the egocentric video to visualize the correla-
tion between these three. The music beats are calculated
using the beat extracting algorithm [58]. The motion beats
are extracted as the local extrema of the kinematic velocity.
The optical flow is extracted from the egocentric video us-
ing RAFT [73]. Fig. 4 shows that the generated dance aligns
well with the music beat and optical flow. The results show
that our model effectively synchronizes both body and head
movements with the respective audio and visual cues, gen-
erating well-coordinated motion from multimodal inputs.



Ablation Opneadd Theadd MPIPE] Accel] FS| MMV?Y

EMM 0.53 34237 137.54 11.84 12.79 0.262
EMM w.o. Gheaa 0.76  374.86 146.38 12.71 13.34 0.254
EMM w.o. Laign 0.56 350.06 142.47 12.16 13.09 0.242

Table 5. Loss analysis.
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Figure 5. Qualitative comparison. Our approach produces well-
aligned human motion with ego view and music.

Loss analysis. Table 5 shows that each loss func-
tion plays an essential role in our network. In particular,
La1ign positively impacts all metrics, especially in terms
of motion-music-vision synchronization. Additionally, the
head guidance loss Gpeq4, applied during the sampling pro-
cess, substantially increases the accuracy of head move-
ments, ensuring better consistency with the egocentric view.

Quality results. Fig. 5 shows qualitative compar-
isons between EDGE [77], EgoEgo [43] and our method.
EgoEgo [43] has difficulty generating dance motions that
follow the choreography. EDGE [77] generates dance
movements in sync with the music, but its head movements
do not correspond to the egocentric input. In contrast, our
approach demonstrates a more cohesive generation of both
dance and head movements.

5.5. Skeleton Mamba on Human Motion Tasks

To further evaluate the effectiveness of our Skeleton
Mamba in modeling human motion, we conduct experi-
ments on text-to-human motion generation and skeleton-
based action recognition tasks. Implementation details of
both tasks can be found in our Supplementary Material.

Method R Prec.t MM Dist} Div—  Method NTU60-XS Kinetics
Ground Trath  0.797 2974 9503 MS-G3D[53] 915 380
MDM [74] 0611 5566 9559 PoseConv3D [14] 93.1 47.7
MLD (8] 0772 3.196 9724  MotionBERT [100]| ~ 93.0

MMamba [96] 0.790 3.060 9.871 DSTA-Net [68] 91.5 -
Ours 0.795 2983 9.484 Ours 9.4 52.4

Table 6. Text2motion results. Table 7. Action rec. results.

Text-to-motion generation. We evaluate our Skeleton
Mamba on HumanML3D [19] dataset. We compare with
recent work MDM [74], MLD [8] and [96] using metrics
in [19]. Table 6 shows that our method outperforms other
baselines in the text-to-human motion generation task.

Human action recognition. We benchmark on two
datasets: Kinetics400 [31] and NTU RGB+D 60 [49, 67].
We compare with recent methods, including MS-G3D [53],
PoseConv3D [14], MotionBERT [100] and DSTA-Net [68].
Top-1 classification accuracy is used as the metric. Table 7
shows that our method clearly outperforms the other ac-
tion recognition baselines. Tables 6 and 7 demonstrate that
while our Skeleton Mamban is designed for human motion
modeling, it has the potential to generalize effectively to
various setups, including generative and recognition tasks.

6. Discussion

Broader Impact. We believe our work represents a sig-
nificant step toward understanding human motion dynam-
ics and potentially has a profound impact on different fields
such as VR/AR, metaverse, or film animation. For instance,
in VR dance games [7,34,66], current systems rely on ego-
centric cameras and additional motion tracking devices such
as hand VR motion controllers. By fusing music cues with
egocentric data, however, full-body motion can be accu-
rately estimated, eliminating the need for additional sen-
sors. Moreover, our Skeleton Mamba has the potential in
other tasks such as human motion synthesis [74], human
action recognition [76, 88, 90], gesture analysis [51], and
human-object interaction [32].

Limitations. Although our method achieves encourag-
ing results, it still presents certain limitations. First, while
our model effectively generates smooth motion sequences,
it is not fully optimized for producing very long motion se-
quences due to the reliance on a simple bidirectional scan in
the temporal dimension. Second, when the egocentric video
and the music input are not appropriately paired, our model
may fail to generate coherent and synchronized motion.

Conclusion. We introduce a new task and method to
estimate human dance motion from egocentric and music.
Our network with the core Skeleton Mamba effectively esti-
mates motion that aligns with both visual and musical cues.
We further contribute EgQoAIST++ dataset, which provides
egocentric, music, and dance groundtruth. Intensive exper-
iments show that our method significantly outperforms ex-
isting state-of-the-art approaches, and our Skeleton Mamba
has the potential in human motion understanding tasks.
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