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Abstract—Human action recognition is an essential topic in
computer vision and image processing. Graph convolutional net-
works (GCNs) have attracted significant attention and achieved
noteworthy performance in skeleton-based human action recog-
nition tasks. However, most of the previous graph-based works
are designed to refine skeleton topology without considering the
types of different joints and edges and the occurrence order of
the frames. Such a limitation makes them insufficient to rep-
resent intrinsic semantic information. Differently, we proposed
a dynamic semantic-based spatial-temporal graph convolution
network (DS-STGCN) to address the challenge. DS-STGCN
has two dynamic semantic modules for spatial and temporal
contexts respectively. Specifically, the joints and edge types were
encoded in the spatial module implicitly, and the occurrence
order of frames was encoded in the temporal module implicitly.
Extensive experiments on four datasets including NTU-RGB+D
60(120), Kinetics-400, and FineGYM show that our proposed two
semantic modules can bring consistent recognition performance
improvement with various backbones. Meanwhile, the proposed
DS-STGCN notably surpassed state-of-the-art methods on these
datasets. Notably, in the more challenging dataset, such as
Kinetics-400, our model significantly outperformed other state-
of-the-art GCN-based methods by a large margin. The code will
be released upon acceptance.

Index Terms—Human action recognition, Skeleton-based, Se-
mantics encoding, Joints/edge type, Frames occurrence order,
Graph convolution network

I. INTRODUCTION

HUMAN action recognition (HAR) is an essential topic
in computer vision and has a wide range of ap-

plications, such as intelligent surveillance system [1] and
human-computer interaction [2]. Recently, skeleton-based ac-
tion recognition has attracted much increased attention in
the research community. Different from image-based recog-
nition methods where RGB image sequence [3]–[6] or optical
flows [7], [8] were utilized as the model input, they use
the skeleton data extracted from images or videos [9]–[11],
which represent the human body with joints and bones. Such
topological representation explicitly provided body pose and
movement information, making it more robust to the variations
of camera viewpoint and video appearance. Meanwhile, low-
cost depth sensors such as Microsoft Kinect [12] and increas-
ing availability of powerful pose estimation algorithms [13]
make the skeleton-based HAR extensively studied.

In the field of HAR, a skeleton represents human body
as a set of coordinates of body joints. The motion patterns
are extracted from a certain skeleton sequence for action
classification. Traditional studies mainly focused on extracting

handcrafted features from skeleton sequences [10], [14]–[16],
such as features that capture the relative rotation [16] or trans-
lations [15] between various joints. However, the handcrafted
features were not generalizable for various datasets and scenar-
ios [17]. Recently, deep learning-based HAR has become the
mainstream research due to its robust feature learning ability.
For instance, To capture the temporal motion patterns, recur-
rent neural networks (RNNs) based methods [18]–[20] were
proposed for HAR. Meanwhile, convolution neural networks
(CNNs) have been adapted to represent the skeleton sequence
as pseudo-images [21]–[23]. Apart from previous methods,
spatial-temporal graph convolution networks (ST-GCNs) [9],
[24]–[29] were proposed to capture the relationship among
body joints and become the most popular pipeline for HAR
since they can capture inherent interaction between body joints
through vertices aggregation within a graph.

In the initial ST-GCN et al. [9], the human body was
represented as a predefined skeleton graph with vertices and
edges, and then the GCN was applied in spatial and temporal
dimensions, respectively. However, the predefined fixed graph
was inefficient for action recognition [29], and limited the
changeable human movement representation for GCN. Thus
some adaptive graph generation methods were proposed [25],
[28]–[30] to boost the flexibility of the model for better
recognition performance.

However, for all the aforementioned graph-based works,
they assumed all joints/edges as the same type and did not
consider the occurrence order of video frames. In other words,
they did not exploit the underlying semantic relations of the
human skeleton, which has been proven to be essential for
HAR in this work [28]. On the one hand, human actions
can be described as the relative movements of different body
parts. For example, pointing to somewhere mainly depends
on swinging the arms but kicking forward relies on swinging
legs. In this case, the types of moving nodes will be useful
information for action understanding. On the other hand, when
capturing temporal information, existing methods update the
features of the current frame by aggregating information from
its previous and later frames. This leads to misclassifying the
actions that share the same movement pattern but belong to
the different occurrence order of frames, such as put on/off
shoes.

Zhang et al. [28] first noticed this limitation and proposed
a semantics-guided neural network to explore the semantic
information in skeleton-based HAR. They enriched the input
joints feature by explicitly adding one-hot vectors of different
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node types and frame indexes. They achieved satisfying recog-
nition performance but still faced several challenges: (1) the
explicit encoding in the input is not flexible, and the semantic
information might be over-smoothed when GCNs go deeper.
In this way, the model cannot incorporate high-order semantic
information, leading to a limited semantics representation. We
have proved this in our experiments, please refer to Section.
IV.C for details. The result shows that encoding the semantics
in all ST-GCN layers can get better recognition performance
than only encoding the semantics in the initial stage of ST-
GCN. (2) The edge types between nodes were not considered.
In detail, the connection in different types of joints might
be various, even between the same type of joints but in
different directions, so the connection weight value will be
different. Taking legs and arms as an example, in a graph,
the information passing from legs to arms should be different
from that passing within arm joints. Meanwhile, within the
arm, the information passing from elbow to wrist could be
different and vice versa.

To address the aforementioned limitations, a dynamic
semantic-based spatial-temporal graph neural convolution net-
work (DS-STGCN) was proposed in this paper. Specifically,
a dynamic semantic spatial encoding module (DS-SGCN) and
a dynamic semantic temporal encoding module (DS-TGCN)
were proposed for skeleton-based human action recognition.
The main idea of the proposed method is to encode the
dynamical semantic information in the GCNs aggregation pro-
cess implicitly. Specifically, in the DS-SGCN, the individual
transform function was learned for the joints/edges in different
types. In this case, the joints/edges type can be encoded by
projecting the joint/edge feature into their specific distribution.
In the DS-TGCN, a causal convolution was designed, where
only the previous frames were utilized for aggregation when
updating the feature of the current frame. In this case, the
order information of frames can be reserved in the temporal
graph convolution progress.

Compared with the previous works, the advantages of the
proposed DS-STGCN can be elaborated threefold. (1) Since
the semantic information of joints/edges was learned from the
sample itself, the dynamic nature of each skeleton can be
maintained. (2) The joints/edges type, as well as the order
information of frames, were encoded in each ST-GCN layer
through the proposed semantic structure. Consequentially, the
semantic information can be reserved without over-smoothing
even if the model goes deeper. (3) Only the previous frames
were aggregated when capturing the temporal feature, so our
model can be utilized for live video with various lengths,
making it more flexible.

The extensive experiments on NTU-RGBD [12], [31],
Kinetics-400 [3], and FineGYM [32] show that: (1) the
proposed DS-SGCN and DS-TGCN are generalized enough
and can be plugged into various ST-GCNs structures to boost
their performance. (2) the proposed DS-STGCN is efficient.
It outperforms state-of-the-art methods notably on all four
datasets but with the smallest model size.

The main contributions are summarized as follows:
• We proposed a dynamic semantic spatial convolution

module (DS-SGCN) to encode the joint and edge type

in the skeleton graph, leading to a more reasonable and
generalizable skeleton graph modeling. Extensive experi-
ments show that the proposed semantic spatial graph can
be adapted to various state-of-the-art ST-GCN structures
to boost their classification performance.

• We proposed a semantic temporal convolution mod-
ule (DS-TGCN) to encode the occurrence order of the
frames. Extensive experiences show that the proposed
module can classify actions more accurately for the same
movement pattern but different in the occurrence order
of frames, such as taking on/off shoes. Meanwhile, it
showed the potential to be applied to live videos.

• Based on the proposed semantic modules (DS-SGCN and
DS-TGCN), a dynamic semantic-based spatial-temporal
graph neural network (DS-STGCN) was developed. Ex-
tensive experiments highlight that the proposed DS-
STGCN outperforms SOTA methods notably on NTU-
RGB+D, Kinetics-400, and FineGYM.

The rest of this paper is organized as follows. The works
related to skeleton-based human action recognition were re-
viewed in Section II. The formulation of the ST-GCN and its
variants were discussed, and the proposed DS-STGCN was
introduced then in Section III. Extensive experiments were
done in Section IV. Finally, The conclusion of the paper was
summarized in Section V.

II. RELATED WORK

In this section, graph neural network was briefly introduced
first. Then the existing GCN-based methods for skeleton-based
human action recognition were briefly reviewed. Finally, an
overview of the semantic information exploration in the human
skeleton was provided.

A. Graph neural networks

Graph neural networks (GNNs) have been widely explored
in addressing graph-based data [33]–[38]. The main idea of
these methods is message passing where the individual repre-
sentation is obtained through aggregating the information from
its h-hop neighbors. Taking the Graph Convolution Network
(GCN) [34] as an example, the node representation is updated
by averaging the information from the one-hop neighbor of
each node in the graph. Then it is followed by a linear projec-
tion and non-linear activation operations to represent the node
in a high-dimension feature space. In practice, to capture the
long-distance correlation within a graph, multi-layer GCNs are
connected. Most skeleton-based action recognition methods
[9], [24]–[29], [39] adopted the same rule, where the initial
embedding was set to the coordinates of joints; the graph
topology was either pre-defined or adaptive; the output at the
final layer corresponded to the representation of the human
skeleton.

B. GCNs for skeleton-based action recognition

GCNs have attracted increasing attention in skeleton-based
human action recognition [9], [24]–[29], [39]–[41]. Yan et
al. [9] introduced a pre-defined skeleton graph according to
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the human body’s natural link and proposed the ST-GCN
to capture the spatial and temporal patterns from the graph
structure. Upon this baseline, some spatial adaptive graph gen-
eration methods based on no-local mechanisms were proposed
to increase the flexibility of the skeleton graph structure [25],
[26], [28], [29], [39]. Instead of only applying the fixed
graph structure, these methods learned other adaptive graphs
to boost the GCNs’ representation ability. For instance, the
2S-AGCN [29] learned a data-driven adaptive graph for all
feature channels, and CTR-GCN [25] learned an adaptive
graph for each individual feature channel. Meanwhile, the
multi-scale and shift GCN were proposed [26], [27] to address
the over-smooth problem in graph long-distance transfer. In
the temporal pattern, multi-scale temporal convolution was
proposed to boost the information aggregation in temporal
space [25], [39].

C. Movement semantic information exploration

Semantic information has been exploited in RNNs for
skeleton-based human action recognition [18], [24], [42]. In
these methods, the skeleton structure was manually partitioned
into different functional parts, and processed by the individual
RNN. As the network went deeper, the feature of different
components was concatenated and progressed in a hierarchical
way. Even though such semantic information was important,
i.e. the joint types, was overlooked by most previous GCNs
for skeleton-based human action recognition. To address this,
Zhang et al. [28] proposed the SGN to encode the information
of joint types in the initial features by explicitly adding
one-hot vectors that represent different node types. However,
this pre-defined semantics encoding in the input layer was
not flexible and cannot represent such information in high-
dimension space when networks went deeper.

To tackle the above limitations, we proposed a more elegant
method to encode the semantics implicitly. In brief, the seman-
tics were encoded during the GCN processing, so that it can
be encoded in various layers of ST-GCN with more flexibility.
For example, the joints/edge types were encoded in their
corresponding distribution space by individual transformation
functions, and the occurrence of frames order was encoded by
a special temporal convolution design where only previous
frames were considered during updating the feature in the
current frame. In such cases, compared with adding pre-
defined semantics in initial features, the proposed dynamic
semantics encoding methods lead to a more flexible semantics
representation and ensure that the semantics representation re-
mains expressive without suffering from excessive smoothing
effects even as the models become deeper.

III. METHOD

In this section, The notation of ST-GCN and its variants
are formulated and discussed first, then the dynamic semantic
spatial and temporal convolution modules will be introduced
specifically. Finally, the proposed DS-STGCN will be de-
scribed in detail.

A. Preliminaries

Notation. A skeleton data is denoted as a spatial-temporal
graph G = (V,Es, Et, X) where V = {vti|t = 1, ..., T, i =
1, ..., N} as the N body joints in T frames, Es and Et as
the spatial and temporal link respectively. X ∈ RN×T×d

represents the joint coordinates as the node feature, where d is
the feature dimension. For the spatial graph Gs = (V,Es, X),
Es is formulated as an adjacent matrix A ∈ RN×N to
represent the intro-body connection. For the temporal graph
Gt = (V,Et, X), Et is constructed by connecting the same
joints along consecutive frames. Then the ST-GCNs can be
divided into two parts: the spatial-GCN (S-GCN) with regular
GCN to capture the relationship of joints within the same
frame, and the temporal-GCN (T-GCN) to capture the joint
movement along the temporal. The variants of S-GCN and
T-GCN were formulated and discussed below.

1) Spatial Graph Convolution Networks.: The previous
S-GCNs were categorized into three types in this paper:
topology-fixed, topology-adaptive, and semantic-guided spatial
graph convolution networks, which are formulated as follows:

Topology-Fixed Graph Convolution Network. The main
operation of GCN is to update the node representation by ag-
gregating information from its neighborhood. In ST-GCN [9],
A is defined as three partitions and represented as A ∈
RN×N×3. Denoting X = {Xt ∈ RN×d|t = 1, ...T} as the
input feature, the output X

′
= {X ′

t ∈ RN×C |t = 1, ...T} of
S-GCN can be formulated as Eq. 1, such as:

X
′
=

3∑
i=1

f(AiX, θ), (1)

where f is an updating function, which is a 2D convolution
network with kernel size 1; θ is the learnable parameters of the
updating function, and C is the number of the output feature
channel.

Topology-adaptive Graph Convolution Network. In most
ST-GCN variants [9], [24]–[29], [39], an adaptive matrix AD

was dynamically learned with self-attention mechanism. As
shown in Figure 3 (a), supposing two transformation functions
φ(·) and ξ(·), the correlation between two joints can be
modeled as Eq. 2.

AD = σ(φ(X)− ξ(X)), (2)

where σ(·) represents the activate function, such as Relu. The
adaptive S-GCN can be represented as Eq. 3.

X
′
=

3∑
i=1

f((Ai + λAi
D)X, θ), (3)

where λ is the predefined or learnable weight to refine the
effect of the adaptive graph.

Semantic-guided Graph Convolution Network. In explicit
semantic encoding method [28], the input feature was refined
by adding an one-hot vector of joint types, which can be
formulated as Eq. 4

X = {[Xt, Xt,k] ∈ RN×c|t = 1, ...T, k = 1, ...,m}, (4)

where m is the joint type number; c is the modified feature
channels; Xt,k is the corresponding type encoding, and the
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topology-adaptive graph convolution network then works on
this input.

2) Temporal Graph Convolution Network.: The key idea of
T-GCN is to update the joints feature at the current frame by
aggregating the feature from its K-neighbor frames. Here, the
previous T-GCNs were categorized into two types, including
the original T-GCN and the multi-scale T-GCN.

Original Temporal Graph Convolution Network. In ST-
GCN [9], the original T-GCN was proposed, where the features
in the current frame were represented as the combination of its
K-neighbor frames. This process can be formulated as Eq.5.

X
′

t =

l∑
k=−l

wk ∗Xt+k, (5)

where l is the window size of temporal convolution; w ∈
R2l−1 is the learnable weight for feature aggregating.

Multi-scale Temporal Graph Convolution Network. The
main idea of multi-scale temporal graph convolution networks
[25], [39] was applying various window sizes to capture the
movement with the different sequence lengths, then utilizing
a transform function to combine the feature from all scales.
This process can be formulated as Eq.6, such as:

X
′

t = f(Concatl∈L(

l∑
k=−l

wk ∗Xt+k), θ), (6)

where l is the window size of temporal convolution; L is the
set of temporal length; wk ∈ R2l−1 is the learnable weight
for feature aggregating; f is the updating function which is
a 2D convolution network with kernel size 1, and θ are the
learnable parameters of the updating function.

B. Dynamic semantic spatial graph convolution network (DS-
SGCN)

The general framework of the proposed DS-SGCN is
adapted to the topology-adaptive GCN. Compared with the
previous methods, the joint and edge type in the skeleton
graph were encoded dynamically when calculating the adap-
tive graph. As shown in Figure. 1, the joints and edges were
split into different types in advance. For the definition of
the joint/edge type, the human body was decomposed into
several parts (i.e. five parts in this paper, including left/right
arms, left/right legs, and one trunk) according to the natural
structure. The edge type can be determined based on the type
pair of its end nodes. For instance, the link between the left
arm and trunk differs from the link within the trunk.

Two semantic-aware modules were proposed to encode
the joint/edge type, namely, the node type-aware adaptive
graph module and the edge type-aware adaptive graph. as
shown in Figure. 2. In the node type-aware module, the
non-local mechanism was applied. But separate transform
functions were designed for each body part to project the
node representation in their specific type distributions. Thus,
the adaptive graph can generate with consideration of the
node type. Similar to the node type encoding, the edge type-
specific transform functions were designed in the edge type-
aware module, and were then applied to the adaptive skeleton

Fig. 1. Definition of joint/edge type. (a) A human body is split into five parts
shown with different colors: left/right arms, left/right legs, and one trunk. (b)
The edge type is represented as the type pair of its end nodes; the node type
is represented by using different colors, and there are fifteen edge types.

graph to encode semantic information over each edge type.
In this case, the spatial graph in our work can be defined as
a directed graph G = (V,E,A,R,X), where A denotes the
joints type mapping function for each node and is represented
as V → A : τ(v) = {τ1(v), τ2(v)}, and the R denote the
edge type mapping function E → R : ϕ(e) Supposing the
input feature X ∈ RN×d, The semantic-based adaptive graph
is calculated as Eq. 7

An
D = σ(τ1(X)− τ2(X)),

Ae
D = ϕ(AD),

(7)

where An
D represents the node type-aware graph; Ae

D repre-
sents the edge type-aware graph. The details of each part are
introduced as follows:

Fig. 2. Illustration of node and edge type-aware adaptive graph generation.
(a) represents the edge type-aware adaptive graph generation. The general
adaptive graph Ag

D ∈ RN×c is calculated first, then edge type-aware adaptive
graph Ae

D ∈ RN×c can be calculated by the edge-type specific transform
function. (b) represents the node type-aware adaptive generation. The input
was first projected into corresponding feature space by utilizing the node-type
specific transform function τ1 and τ2, then the An

D ∈ RN×c can be obtained
according to the pair-wise correction manner.

Node Type-aware adaptive topology. As shown in Fig-
ure. 3 (b), the node features were first projected into their
individual feature space with a node type mapping function:
τ(v), then the node type-aware adaptive graph can be gen-
erated according to the non-local mechanism. Specifically,
denoting s and t as two nodes of different types, xs ∈ R1×d
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Fig. 3. Illustration of the adaptive graph generation. (a) represents the standard non-local mechanism. For each transform function φ(·) and ξ(·), the node
features are updated by sharing the same parameters. (b) represents the node type-aware adaptive graph. In each transform function, the convolution kernels
are divided into several parts, each of which corresponds to a specific node type. Then the node characteristics in different types were updated by their
individual parameters set. In this case, the types of nodes can be represented dynamically. The colored circles denote different node types and the colored
squares denote different convolution kernels. (c) illustrates the edge type-aware adaptive graph generation. For each type of edge, specific convolution kernels
were designed and utilized for updating the edge feature. In this case, the types of edges can be represented in their individual feature space dynamically.
The colored circles denote node types, and mix-colored squares denote edges with corresponding node pairs.

and xt ∈ R1×d as the corresponding feature, then the node-
aware feature representation can be formulated as Eq. 8

x
′

s1 = τs1 (xs), x
′

s2 = τs2 (xs)

x
′

t1 = τ t1(xt), x
′

t2 = τ t2(xt),
(8)

where x
′

∗ ∈ R1×C , C is the output feature channels. Supposing
τ1(v) as the source feature projection, τ2(v) as the target
feature projection, the directed correction between node s and
t along channel dimension can be calculated as Eq. 9:

As→t
D = σ(x

′

s1 − x
′

t2), A
t→s
D = σ(x

′

t1 − x
′

s2), (9)

where σ is the activation function. A∗
D ∈ R1×C . For the

whole skeleton structure, the node aware-adaptive graph An
D ∈

RN×N×C can be represented as the set of A∗
D.

Edge Type-aware adaptive topology. As shown in Fig-
ure. 3 (c), the edge type was encoded by applying separate
convolution kernel ϕ(e) on the adaptive graph. Specifically,
given three nodes s, t and u of different types, the edge-type
link between these nodes can be represented as ⟨s, t⟩, ⟨s, u⟩
and ⟨t, u⟩ with the features e⟨s,t⟩, e⟨s,u⟩ and e⟨t,u⟩. Thus, the
edge type-aware adaptive correlation can be refined in Eq. 10:

A
⟨s,t⟩
D = ϕ⟨s,t⟩(e⟨s,t⟩)

A
⟨s,u⟩
D = ϕ⟨s,u⟩(e⟨s,u⟩)

A
⟨t,u⟩
D = ϕ⟨t,u⟩(e⟨t,u⟩),

(10)

where ϕ⟨∗,∗⟩(e) represents separate transform functions. In this
work, the 2D convolution kernel with kernel size equal to 1
was applied. The edge type-aware topology can be represented
as Ae

D = {A⟨s,t⟩
Dij

|i, j = 1, ..., N, s, t = 1, ...,M}, where s and
t are the node type index respectively; M is the number of
types.

Dynamic semantic spatial graph convolution: As shown
in Figure.4. In DS-SGCN, the spatial graph convolution struc-
ture was decomposed into three branches, the node-type aware
branch, the edge-type aware branch, and the general branch.
This is different from the previous ST-GCNs which utilized
the same spatial graph convolution structure on three pre-
generated skeleton graphs. A branch-wise weight is set as

learnable for the combination of a shared correction matrix
and the corresponding self-adaptive graph. Specifically, the
input was first projected into a high dimension, which was
split into three parts corresponding to different branches. For
each branch, the combination of a shared correction matrix and
a self-adaptive graph was utilized for spatial graph convolution
operation. To balance the influence of the shared skeleton for
each branch for action recognition, the pre-defined skeleton
graph was replaced by a totally learnable correction matrix.
Finally, the three branches were concatenated along the feature
channel dimension and followed by a 1×1 convolution kernel,
so that combines the information of the three branches and
projects it into the output dimension. The process of the DS-
SGCN can be formulated as Eq. 11.

X
′
= f(x, θ)

x = [xn, xe, xg] ∈ RN×3c

xn = (A1 + λ1A
n
D)f1

pre(X)

xe = (A2 + λ2A
e
D)f2

pre(X)

xg = (A3 + λ3AD)f3
pre(X),

(11)

where X ∈ RN×C , f∗
pre is the projection function to reduce

the feature channels; c is the output channels of the f∗
pre,

and equals to C/K. K is set to 8 in this work. xn, xe, xg

are the output of the node type-aware, edge type-aware, and
general branch, respectively. A∗ is the learnable correlation
matrix of each branch. λ∗ is a learnable weight to refine the
effect of each semantic-based topology-adaptive graph, which
is different between branches.

C. Semantic temporal graph convolution network

In this section, the proposed DS-TGCN is introduced in
detail. The key idea of the proposed DS-TGCN is to encode
the order of frames during the temporal aggregating, which is
critical to distinguish actions that share the same movement
pattern but occur in different orders of frames. Instead of
encoding the frame index into the joint representation, a
special temporal convolution was designed to encode the
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Fig. 4. The framework of the proposed DS-GCN. The spatial graph convolution structure was decomposed into three branches, the node-type aware
branch, the edge-type aware branch, and the general branch. In each branch, the corresponding semantic self-adaptive graph and a shared correction matrix
PAi ∈ RN×N , i = 1, 2, 3 were applied to represent the skeleton structure. Then the mix output Xmix can be obtained by contacting the three branches
along the feature channel dimension, and the final output Xout can be calculated by a 1× 1 convoluted Xmix.

temporal semantic information in an implicit way. As shown in
Fig. 5, only the features in its previous frames were aggregated
when updating the joint in the current frame. This process can
be formulated as Eq. 12

X
′

t =

0∑
k=−l

wk ∗Xt+k, (12)

where l is the window size of temporal convolution; w ∈ Rl

is the learnable weight for feature aggregating.

Fig. 5. Illustration temporal convolution. (a) is the original temporal convolu-
tion, where the Convolution 2D kernel was utilized to update the current frame
by aggregating its previous and later frames. (b)is the dynamic semantic-based
temporal convolution, where the convolution 1D kernel was adopted to update
the current frame by only aggregating its previous frames.

The framework of DS-TGCN is illustrated in Fig. 6. It
contains two branches: the first is the original temporal con-
volution to reserve the receptive field and the second is the
semantic temporal convolution to highlight the order of the
frames. These two branches were combined with a learnable
λt to refine the effect of each other.

As for the semantic temporal convolution shown in Fig. 6,
the 1D convolution kernel (1D-Conv) was utilized as the main
aggregating function. In practice, denoting the input of DS-
TGCN as X ∈ RB×Cin× T×V , where the B, Cin, T , V is the
batch size, feature channel, temporal length and the number of
joints, respectively. To adopt the input to 1D-Conv, the X was
reshaped into X

′ ∈ RBV×Cin× T first, then the aggregation

Fig. 6. The framework of DS-TGCN. The input was first reshaped to
X

′ ∈ RBV ×C× T and divided into several groups along the feature channel
dimension. For each group, a specific Conv1d kernel was designed for feature
aggregation. Thus the output can be obtained by concatenating the output of
each group along the channel dimension. Meanwhile, an original temporal
convolution kernel is applied as a res-connection to reserve the receptive field.

process was operated by a 1D-Conv with kernel size equal to
[Cin, l, Cout], where Cout is the number of output channels.

However, this process makes the model become huge. In
order to decrease the number of parameters, the input of the
temporal module was divided into several groups g along
the feature channel dimension. For each group, a specific
1D-Conv with kernel size [Cin/g, l, Cout/g] was designed
for feature aggregation. In this case, the number of whole
semantic temporal convolution kernels can be reduced to
[g, Cin/g, l, Cout/g], which is g times smaller than using the
1D-Conv directly. The final output of the semantic temporal
convolution can be obtained by stacking the output of all
groups and followed by a 2D convolution network with kernel
size 1 to combine the correlation within channels. Here, g is
set equal to Cin; in this case, the temporal semantic feature
was aggregated in a channel-wise manner. The formulation of
the proposed DS-TGCN can be represented as Eq. 13

X
′

t = f(

0∑
k=−l

wk ∗Xt+k + λt ∗
l∑

q=−l

wq ∗Xt+q, θ), (13)
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Fig. 7. The framework of multi-scale DS-TGCN. The input was first reshaped to X
′ ∈ RBV ×C× T and divided into several groups along the feature

channel dimension. For each group, a specific Conv1d kernel was designed for feature aggregation. Thus the output can be obtained by concatenating the
outputs of each group along the channel dimension.

where wk ∈ Rl is the learnable weight for semantic temporal
branch feature aggregating; wq ∈ R2l−1 is the learnable
weight for original temporal branch feature aggregating. f is
the updating function which is a 2D convolution network with
kernel size 1, and θ is the learnable parameter.

Inspired by the multi-scale temporal module [25], [39],
a multi-scale DS-TGCN was proposed and shown in Fig
7, where multiple branches with different temporal window
sizes were contained. Each branch performs DS-TGCN for a
temporal feature aggregation independently. To save amounts
of computation, the input was first transferred with a 2D
convolution network with kernel size 1 and divided into several
groups for corresponding branches. The final output of multi-
scale DS-TGCN is the representation of all branches followed
by a transformation. In practice, there are four branches in our
final framework. In each branch, a 1 × 1 convolution kernel
was utilized to reduce channel dimension, then followed by
semantic temporal convolutions with various dilation ([1,2,3,4]
here) to model actions with different duration. The output of
the temporal module can be obtained by concatenating the
result of these four branches.

D. Dynamic semantic-based spatial-temporal GCN

Based on the proposed DS-SGCN in Sec. B and DS-TGCN
Sec. C, a reasonable graph convolution network DS-STGCN
was developed for skeleton-based human action recognition.
Similar to ST-GCN [24], ten basic blocks were connected in
series, followed by a global average pooling and a softmax
classifier for action classification. The number of basic feature
channels is set as 64 and was doubled at 5th and 8th blocks.
In each basic block, a DS-SGCN and a multi-scale DS-TGCN
were contained.

IV. EXPERIMENTS

A. Datasets

To demonstrate the advantage of the proposed DS-STGCN,
four datasets were utilized in this paper: NTU RGB+D 60 [31],
NTU RGC+D 120 [12], Kinetics-400 [3], and FineGYM [32].

NTU RGB+D 60 [31].The action samples are performed by
40 volunteers and categorized into 60 classes. Each sample
contains an action and is guaranteed to have at most 2
subjects, which are captured by three Microsoft Kinect v2
cameras from different views concurrently. The authors of
this dataset recommend two benchmarks: (1) cross-subject
(NTU60-Xsub): training data comes from 20 subjects, and
testing data comes from the other 20 subjects. (2) cross-view
(NTU60–view): training data comes from camera views 2 and
3, and testing data comes from camera view 1.

NTU RGB+D 120 [12]. NTU RGB+D 120 is currently
the largest dataset with 3D joint annotations for HAR, which
extends NTU RGB+D 60 with additional 57,367 skeleton se-
quences over 60 extra action classes. Totally 113,945 samples
over 120 classes are performed by 106 volunteers, captured
with three camera views. This dataset contains 32 setups,
each denoting a specific location and background. The authors
of this dataset recommend two benchmarks: (1) cross-subject
(NTU120-Xsub): training data comes from 53 subjects, and
testing data comes from the other 53 subjects. (2) cross-setup
(NTU120-Xset): training data comes from samples with even
setup IDs, and testing data comes from samples with odd setup
IDs.

Kinetics-400 [3]. Kinetics-400 is a large-scale action recog-
nition dataset with 400 actions. The skeletons utilized in
this paper were provided by [43], where the Openose algo-
rithm [44] was applied for joint estimation. The box threshold
of human detection is set as 0.5. After the validation, there are
a total of 236,489 skeleton sequences for training and 19,505
skeleton sequences for testing.

FineGYM [32]. FineGYM is a fine-grained action recogni-
tion dataset with 29000 videos of 99 fine-grained gymnastic
action classes. In this paper, skeletons are extracted with
ground-truth human bounding boxes as described in [23].

B. Implementations Details

All experiments are conducted on one A100 GPU with the
PyTorch deep learning framework. All models are trained for
100 epochs with the Cosine Annealing learning rate scheduler
by using SGD with momentum 0.9, weight decay 5e−4.
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Method NTU60-XSub NTU120-XSet GFLOPs Params
ST-GCN [24] 87.8 85.0 3.27 3.10M
ST-GCN w/ T 88.3 86.2 3.55 3.37M
2s-GCN [29] 89.2 85.4 3.74 3.47M
2s-GCN w/ T 89.5 85.8 5.30 4.78M
2s-GCN w/ S 89.6 85.6 4.02 3.74M

2s-GCN w/ ST 89.9 86.2 5.59 5.05M
CTR-GCN [25] 89.7 85.8 1.69 1.45M
CTR-GCN w/ S 89.8 86.1 1.94 1.67M
CTR-GCN w/ T 90.0 86.2 1.75 1.50M

CTR-GCN w/ ST 90.4 86.3 2.00 1.72M
DS-STGCN w/o ST 90.0 86.4 1.11 1.31M
DS-STGCN w/o S 90.7 87.3 1.14 1.34M
DS-STGCN w/o T 90.8 87.2 1.19 1.38M

DS-STGCN 90.8 87.6 1.23 1.41M

TABLE I
GENERALIZATION OF DS-SGCN AND DS-TGCN, AND EFFECTIVENESS
OF DS-STGCN. THE PROPOSED SEMANTICS ENCODING MODULES ARE
GENERALIZED ENOUGH THAT CAN BE ADAPTED TO VARIOUS ST-GCNS.
THE PROPOSED DS-STGCN CAN ACHIEVE THE BEST PERFORMANCE.

The initial learning rate was set to 0.1. The batch size was
set to 128. To accelerate the training process, the input of
temporal length was set to 64 in the ablation study. For a fair
comparison, the input of temporal length was set to 100 when
comparing the stare-of-the-arts. The pre-processing approach
follows the setting in [43].

C. Ablation Study

In this section, two benchmarks (NTU60-Xsub and 120-
Xset) were utilized for validation. At first, the effectiveness of
the proposed DS-STGCN and its two semantic modules were
assessed. Then the components for each semantic module were
analyzed separately. The joint coordinates were utilized as the
node feature in this part, and the initial adjacent matrix for the
spatial graph was set to totally learnable.

1) Effectiveness of DS-STGCN: In order to validate the
effectiveness of the proposed DS-STGCN, various ST-GCNs,
vanilla ST-GCN [24], 2s-GCN [29] and CTR-GCN [25] were
utilized as the backbones in this experiment. The results are
shown in Table I, it can be observed that the topology-
adaptive graph convolution network (2s-GCN, CTR-GCN, and
DS-STGCN) achieves better performance than the topology-
fixed graph convolution network (ST-GCN). Compared with
the CTR-GCN [25], the accuracy of the proposed DS-STGCN
observes a 1.1% and 1.8% increase in NTU60 Xsub and
NTU120 Xset respectively. In terms of the model size, The
DS-STGCN is the smallest compared with the others.

In order to analyze the classification performance in more
detail, we performed some statistical analysis of the classi-
fication distribution in the whole dataset. For each sample,
the max prediction probability but not the predicted label
was utilized as the final result, then the violin map was
generated to represent the distribution of classification results,
the result is shown in Figure. 8. It is clear that, in the
multi-class classification task, the greater the max prediction
probability, the more accurate and confident the classification.
When looking in Figure. 8 (a) and (d), we can observe that the
distribution for the proposed DS-STGCN is more compact and
the center of distribution is located near 1, which can explain
the superiority of the proposed DS-STGCN. Meanwhile, to

make the results more reasonable, we set 0.5 as the threshold
to define the range of confidence, and the samples with a
max prediction probability lower than 0.5 were utilized for
another violin map generation. As shown in Figure. 8 (b) and
(e). It can be found that the numbers of samples with a max
prediction probability lower than 0.5 are significantly reduced
in DS-STGCN when compared with STGCN and AAGCN,
which indicates that the proposed algorithm can classify the
indistinguishable samples more confidently.

2) Effectiveness and Generalization of DS-SGCN and DS-
TGCN: In this part, we first verified the generalization of
proposed semantic modules by introducing the DS-SGCN and
DS-TGCN in several ST-GCNs (ST-GCN, 2s-GCN, and CTR-
GCN). Then ablation experiments were done to explore the
effectiveness of two semantic modules of the proposed DS-
STGCN. The results are shown in Table I.

Generalization of DS-SGCN and DS-TGCN: In practice,
the proposed DS-SGCN and DS-TGCN were adapted and uti-
lized to replace the corresponding modules in these backbones.
As shown in Table I, S and T represent the DS-SGCN and
DS-TGCN respectively, and w/ and w/o represent with and
without respectively. For instance, 2s-GCN w/ T means the
original temporal convolution module in 2s-GCN was replaced
by DS-TGCN. 2s-GCN w/ ST means the original temporal
and spatial convolution module in 2s-GCN was replaced by
DS-TGCN and DS-SGCN respectively. In detail, in ST-GCN,
since there is no adaptive spatial graph generation, Only
DS-TGCN was verified, meanwhile, in CTR-GCN, the muti-
scale DS-TGCN was utilized. Noted that, because the spatial
module in 2s-GCN and CTR-GCN shared the same structure in
three branches. To keep this characteristic, the DS-SGCN was
regenerated for a fair comparison as follows: The node/edge
type-aware adaptive graph modules were combined in series.
For each spatial branch, the node type-aware adaptive graph
was calculated according to Eq 9, then the node type-aware
adaptive module was applied on the An

D. The semantic-based
adaptive graph ANE

D can be formulated as Eq. 14.

ANE
D = ϕ(An

D) = ϕ(τ1(X)− τ2(X)) (14)

The results are presented in Table I. It can be observed that
both proposed two semantic modules can introduce specific
positive effects when utilized in three backbones respectively,
and the combination of two semantic modules can achieve the
best performance when compared with the original backbones.

In order to explain the performance of the proposed seman-
tic modules, violin map was generated for each backbone.
As shown in Figure. 8 (c) and (f), for each backbone, the
left part denotes the result for the backbone with semantic
modules and is represented as color orange, the right part
denotes the result for the backbone without semantic modules
and is represented as the color green. The samples with a
max prediction probability lower than 0.5 were utilized for
the result explanation. In each backbone, it can be observed
that the area of the violin map for the model with semantic
encoding shows a significant decrease when compared with
the area for the model without semantic encoding, which
means that the proposed semantic encoding algorithm can
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Fig. 8. Analysis of the classification distribution for each backbone. (a-c) represent the classification result distribution for all samples in NTU60 Xsub.
(d-f) represent the classification result distribution for all samples in NTU120 Xset. The max probability of each sample was utilized as the final result. In
(a)and (d), the samples with max probability ranging from 0 to 1 were analyzed. In (b-c) and (e-f), the samples with a max probability lower than 0.5 were
analyzed. In (e) and (f), w means that backbone with semantic modules, and w/o means that backbone without semantic modules. The area for each violin
map indicates the number of samples. Observing in (a) and (d), we can observe that the distribution generated by the proposed DS-STGCN is more compact,
also in (b) and (e), it can be found that the numbers of samples with max probability lower than 0.5 are significantly reduced when comparing with STGCN
and AAGCN. When looking at (e) and (f), we can see that for each backbone, the area for a model with semantic encoding is decreased significantly when
compared with the model without semantic encoding, implying the proposed semantic modules can make the classification more accurate.

provide positive effects on classifying the indistinguishable
samples without changing the model structure. Meanwhile,
these results also proved that the proposed semantic modules
are generalized and can be adjusted into various ST-GCNs.

Effectiveness of DS-SGCN and DS-TGCN: In this part,
the effectiveness of each semantic module in DS-STGCN was
verified. As shown in Table I, the DS-STGCN w/o ST was
utilized as the backbone, where all of the node and edge type-
aware branches in spatial-GCN were replaced by the general
branch, and all of the DS-TGCNs were replaced by the original
temporal-GCN. To verify the effectiveness of DS-TGCN, only
DS-TGCN was added in the backbone as a temporal module
and represented as DS-STGCN w/o S. Similarly, adding
the DS-SGCN to the backbone for spatial semantic module
verification, and is represented as DS-STGCN w/o T . The
result shows that all of the semantic modules can help to
improve classification performance, the combination of two
semantic modules can get the best, 0.8% and 1.2% increase
in NTU60-Xsub and NTU120-Xset when compared with DS-
STGCN w/o ST .

3) Configuration Exploration on DS-SGCN: In this part,
the components of DS-SGCN were analyzed, and the original
multi-scale temporal graph convolution was utilized.

Ablation on the edge/node type encoding: The effects of
node and edge type-aware branches were studied separately,
the results are shown in Table II. Specifically, the node type-
aware adaptive branch was replaced with the general branch
to justify the effect of edge-type encoding. In this case, there
are two general adaptive branches and one edge-type adaptive

Method NTU60-XSub NTU120-XSet
DS-SGCN w/o N&E 90.0 86.4

DS-SGCN w/o N 90.3 86.5
DS-SGCN w/o E 90.5 87.0

DS-SGCN 90.8 87.2

TABLE II
ABLATION ON THE EDGE/NODE TYPE ENCODING. N REPRESENTS THE

NODE TYPE-AWARE ENCODING, AND E REPRESENTS THE EDGE
TYPE-AWARE ENCODING. w/o MEANS WITHOUT, REPRESENTING THAT
THE CORRESPONDING SEMANTIC ENCODING IS REPLACED WITH THE

GENERAL BRANCH.

graph in the model which is represented as DS-SGCN w/o N.
Similarly, the edge-type adaptive branch was replaced by the
general branch to validate the effect of node-type encoding,
and the model is represented as DS-SGCN w/o E. The base-
line is the model with three general branches and is represented
as DS-SGCN w/o NE. It can be seen that after encoding the
node or edge type in the graph separately, the performance
of action recognition can have a stable increase, combining
both semantic branches can achieve the best performance. It
can be observed that the Top1-acc of the DS-SGCN has a
0.8% increase in both NTU60-Xsub and NTU1200-Xset when
compared with the baseline.

Configuration Exploration. The spatial learnable weight
λs is analyzed in this section and the result is shown in
Table III. Different from other topology-adaptive structures
where one shared λ was utilized in all branches, in DS-SGCN,
the branch-wised λs was applied. Specifically, an individual
refinement weight is learned for each branch. Thus the DS-
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Method NTU60-XSub NTU120-XSet
DS-SGCNshared 90.1 86.8
DS-SGCNB-wise 90.8 87.2

TABLE III
COMPARISON OF DS-SGCN WITH DIFFERENT LEARNABLE WEIGHT

MANNERS. DS-SGCNshared REPRESENTS THE DS-SGCN WITH SHARED
λs FOR ALL BRANCHED, DS-SGCNB-wise REPRESENT THE DS-SGCN

WITH INDIVIDUAL λs FOR DIFFERENT BRANCHES.

Module Encode stage NTU60-XSub
DS-SGCN w/o N&E - 90.0

DS-SGCNini [1-4] 90.2
DS-SGCNmid [5-7] 90.7
DS-SGCNend [8-10] 90.5

DS-SGCN [1-10] 90.8

TABLE IV
EXPLORATION ON THE SPATIAL SEMANTIC ENCODING STAGE. DS-SGCN

W/O N&E REPRESENTS THAT NO SEMANTIC MODULE IS UTILIZED,
DS-SGCNini REPRESENTS JUST UTILIZED DS-SGCN IN LAYER [1-4],
DS-SGCNmid REPRESENTS JUST UTILIZED DS-SGCN IN LAYER [5-7],
DS-SGCNend REPRESENTS JUST UTILIZED DS-SGCN IN LAYER [8-10],

DS-SGCN REPRESENTS DS-SGC IS UTILIZED IN ALL LAYER.

SGCN was trained in two ways: on the one hand, utilizing a
shared λs and represented as DS-SGCNshared, on the other
hand, setting a specific λs for each branch and denoted as DS-
SGCNB-wise. The results in Table III show that DS-SGCN
learned with branch-wised λs can achieve better performance.

Exploration in the spatial semantics encoding stage.
There are ten layers in the implemented DS-STGCN. In order
to study the effects of spatial semantics in different layers, the
whole model was divided into three stages: the initial stage
represented as DS-SGCNini which contains the layers from
1st to 4th, the middle stage DS-SGCNmid with layers 5th-7th,
and the end stage DS-SGCNend with 8th-10th. Then DS-
SGCN was utilized in different stages alone for comparison.
For instance, to justify the effects of semantic information
in the initial stage, the DS-SGCN is only utilized in layers
1st to 4th, meanwhile, in the rest layers, all semantic-based
modules are replaced with the general adaptive branch. The
result shows in Table. IV, it can be observed that the spatial
semantic encoding can introduce a positive effect no matter
at which stages the DS-SGCN is utilized, but when utilizing
DS-SGCN in all layers, the model shows the best performance.

When comparing the performance within different stages, It
can be seen that the semantics encoded in the middle stage is
the most important. This can be explained as over-smoothing
problems, the semantic information encoded in the initial stage
might be over-smoothed when the layer goes deeper, also in
the case of encoding semantics in the end stage, the joints
feature was already over-smoothed during the former stages,
thus the correlation matrix plays weakly effect on feature
updating, which limited the ability of the semantic encoding
module.

4) Configuration Exploration on DS-TGCN: In this part,
the components of DS-TGCN were analyzed, and the branches
in the DS-SGCN were replaced by the general branch.

Ablation on the original/semantic temporal convolution.
In DS-TGCN, there are two branches corresponding to orig-
inal temporal convolution and semantic temporal convolution

Method NTU60-XSub NTU120-XSet
DS-TGCN w/o Sem 90.0 86.4
DS-TGCN w/o Ori 90.5 86.7

DS-TGCN 90.7 87.3

TABLE V
ABLATION ON THE ORIGINAL/SEMANTIC TEMPORAL CONVOLUTION,
DS-TGCN w/o Ori REPRESENTS JUST THE SEMANTIC TEMPORAL

CONVOLUTION WAS APPLIED, DS-TGCN w/o Sem REPRESENTS ONLY
ORIGINAL TEMPORAL CONVOLUTION WAS CONTAINED. IT CAN BE

OBSERVED THAT SEMANTIC TEMPORAL CONVOLUTION CAN IMPROVE THE
ACCURACY OF ACTION RECOGNITION. MEANWHILE, THE RESULT OF THE

COMBINATION OF THE TWO BRANCHES DEMONSTRATED THE BEST
PERFORMANCE.

respectively. In this part, the effectiveness of each branch
was verified, and the results are shown in Table. V. In
practice, to justify the semantic temporal convolution, the
res-connection was removed from DS-TGCN, and the model
was represented as DS-TGCN w/o Ori. The model only
containing the original temporal convolution was represented
as DS-TGCN w/o Sem and was utilized as a backbone. It
can be observed that, compared with the original temporal
convolution, the proposed semantic temporal convolution can
improve the accuracy of action recognition. Meanwhile, the
results of the combination of the two branches achieved the
best performance, which means that the original temporal
convolution has specific advantages in temporal information
capturing, and can be included to obtain a more complete
temporal feature description.

In terms of visualization, the classification confusion matrix
for DS-TGCN w/o Ori and DS-TGCN w/o Sem in NTU60
XSub was generated and shown in Figure. 9. It can be seen that
the proposed semantic temporal convolution is more powerful
when distinguishing the actions with the same movement but
different in order of occurrence. Taking put-on/off shoes for
example, the semantic temporal modules can achieve a more
than 10% improvement for each action.

Fig. 9. Visualization of classification. The action index is as follows: taking on
shoes (16), taking off shoes (17), (a) the confusion matrix for DS-TGCN w/o
Sem, (b) the confusion matrix for DS-TGCN w/o Ori. It can be observed
that semantic temporal modules can achieve a more than 10% improvement
for each action.

Configuration Exploration. In this section, the learnable
weight λt in DS-TGCN is analyzed. As shown in Table. VI. To
justify the influence of λt, two different settings were applied,
the one using the fixed λt equal to 1 and is represented as
DS-TGCNfix, the other one applying a learnable λt and is
represented as DS-TGCNadap. It can be observed that the
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Method NTU60-XSub NTU120-XSet
DS-TGCNfix 90.4 86.3

DS-TGCNadap 90.7 87.3

TABLE VI
COMPARISON ON λ. DS-TGCNfix REPRESENTS THE FIX λ IN DS-TGCN,

TGCNadap REPRESENTS THE ADAPTIVE λ IN DS-TGCN. THE RESULT
SHOWS THAT TWO BRANCHES COMBINED BY A LEARNABLE λ ACHIEVED

BETTER PERFORMANCE.

Module 60-Xsub 60-Xview 120-Xsub 120-Xset
ST-GCN [24] 81.5 88.3 70.7 73.2

SGN [28] 86.6 93.4 - -
AS-GCN [46] 86.8 94.2 78.3 79.8
RA-GCN [47] 87.3 93.6 78.3 79.8
2s-GCN [29] 88.5 95.1 - -
DGNN [48] 89.9 96.1 - -
FGCN [49] 90.2 96.3 85.4 87.4

ShiftGCN [26] 90.7 96.5 85.9 87.6
DSTA-Net [50] 91.5 96.4 86.6 89.0
MS-G3D [27] 91.5 96.2 86.9 88.4

CTR-GCN [25] 92.4 96.8 88.9 90.6
ST-GCN++ [43] 92.6 97.4 88.6 90.8

PoseConv3D [23]∗ 94.1 97.1 86.9 90.3
infoGCN [11] 93.0 97.1 89.4 90.7
DS-STGCN 93.2 97.5 89.4 91.2

TABLE VII
COMPARISONS OF CLASSIFICATION ACCURACY AGAINST

STATE-OF-THE-ART METHODS ON THE NTU RGB+D DATASET. ∗
REPRESENT THE CNN-BASED METHODS

DS-SGCN with an adaptive combination manner can obtain a
better performance in both NTU60 XSub and NTU120 XSet.

D. Comparisons with the State-of-the-Art

In order to make a fair comparison with the state-of-the-art
(SOTA) methods, The input of temporal length was set to 100,
and the multi-stream fusion proposed in [45] was utilized in
this part. According to the multi-stream practice, the proposed
DS-STGCN was trained on four input modalities which are
joints (j), joints motion (jm), bone (b), and bone motion
(bm), then the final result can be obtained by summering
the prediction from all streams. The performance of the
DS-STGCN was compared with state-of-the-art methods on
NTURGB+D [12], [31] in Table VII, and Kinetics-400 [3], as
well as FineGYM [32], in Table VIII. It can be observed that
on most of the datasets, the proposed DS-STGCN outperforms
all the compared existing methods. Compared with the SOTA
GCN-based method, the proposed DS-STGCN can achieve a
much more significant improvement on Kinetics-400, confirm-
ing its more powerful performance when modeling complex
action movement.

V. CONCLUSION

In this work, a dynamic semantic-based spatial-temporal
graph convolution network was proposed to encode the
joints/edge types of the human skeleton for skeleton-based
HAR, where two dynamic semantic modules were proposed to
encode the semantic information implicitly in both spatial and
temporal dimensions. In particular, in the dynamic semantic-
based temporal graph convolution network, a causal convolu-
tion was designed, and the occurrence order of the frames

Module Kinetics-400 FineGYM
ST-GCN [24] 30.7 25.2∗
AS-GCN [46] 34.8 -
RA-GCN [47] 34.8 -
2s-GCN [29] 36.1 -
DGNN [48] 36.9 -

MS-G3D [27] 38.0 92.6∗
DG-STGCN [39] 40.3 -

PoseConv3D [23]∗ 47.7 94.3
DS-STGCN 50.6 95.1

TABLE VIII
CLASSIFICATION ACCURACY COMPARISONS AGAINST STATE-OF-THE-ART

METHODS ON THE KINETICS-400 AND FINEGYM. MODEL WITH ∗
REPRESENT THE CNN-BASED METHODS, RESULT WITH * ARE REPORTED

BY [23]

was encoded during the feature aggregation. Furthermore,
extensive ablation experiments have shown that the proposed
two semantics encoding modules are generalized enough to be
exploited in various backbones, and can introduce a positive
influence on boosting HAR performance. Meanwhile, the
proposed DS-STGCN outperforms the state-of-the-art meth-
ods on four challenging benchmarks, especially in modeling
complex action movements, showing its impressive capability
and effectiveness.
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