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Abstract

Vision models excel in image classification but struggle to generalize to unseen data,
such as classifying images from unseen domains or discovering novel categories. In
this paper, we explore the relationship between logical reasoning and deep learning
generalization in visual classification. A logical regularization termed L-Reg is de-
rived which bridges a logical analysis framework to image classification. Our work
reveals that L-Reg reduces the complexity of the model in terms of the feature dis-
tribution and classifier weights. Specifically, we unveil the interpretability brought
by L-Reg, as it enables the model to extract the salient features, such as faces to
persons, for classification. Theoretical analysis and experiments demonstrate that
L-Reg enhances generalization across various scenarios, including multi-domain
generalization and generalized category discovery. In complex real-world scenar-
ios where images span unknown classes and unseen domains, L-Reg consistently
improves generalization, highlighting its practical efficacy.

1 Introduction
Without L-Reg
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Figure 1: GradCAM [45] visualizations for the unknown
class ‘person’ across seen and unseen domains of the GMDG
baseline with L2 regularization that is trained without and
with L-Reg, respectively. Both experiments share the same
hyper-parameters, except the latter uses the L-Reg.

One critical challenge in visual classi-
fication models is their ability to gen-
eralize effectively to unseen samples
or unknown classes. For instance, a
model trained on real images of vari-
ous animals should ideally classify an-
imal sketches accurately (referred to
as multi-domain generalization classi-
fication [20, 35, 34, 23, 25, 37, 50]) or
discover novel categories not present
in the training set (referred to as gen-
eralized category discovery [54, 16]).
These problems are prevalent in real-
world scenarios, where training data-
target pairs are usually insufficient, and labeling is time-consuming so that not every data is paired
with a label. Meanwhile, test data is likely to contain shifts in both data and targets, making it
essential to propose methods that generalize to border scenarios.

Regularization terms, such as L2 regularization leading to weight decay, are commonly employed
during training to improve a model’s generalization capabilities. However, the L2 regularization
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is parametric-based rather than sample-based, which may lead to ambiguous interpretability [58].
As illustrated in Fig. 1, the model trained solely with L2 regularization exhibits low interpretability.
Other regularization terms [57–59] attempt to improve the interpretability of deep learning models
for sequential signals rather than vision, whereas [39] proposes a regularization term to enhance
interpretability for robustness in visual classification models rather than generalization. Drawing
inspiration from logical reasoning has shown promise for better generalization and interpretability
in various tasks. Current work unveils the effectiveness of logical reasoning in generalization tasks,
such as boosting performance in length generalization [1, 3, 2, 60] and abstract symbol relational
reasoning [10, 36] (e.g., mathematical solving and psychological tests). Several efforts, such as [6],
explore the explicit entropy-based logical explanations of neural networks for image classification,
confirming the presence and interpretability of logical reasoning within visual tasks. Yet, there are
limited studies tackling the generalization of visual classification tasks through the lens of logical
reasoning.

This paper studies two pivotal questions corresponding to the above: 1) How does logical reasoning
relate to visual tasks such as image classification? 2) How can we derive a logical reasoning-based
regularization term to benefit generalization? To achieve these, we correlate the image classification
procedure in computer vision with the framework of logic studies [4], positing that training an image
classifier involves learning a good general logical relationship between images and labels via an
encoder. This good general logic is attained when the semantics generated by the encoder and
classifier can be combined to form atomic formulas. Our exploration leads to the introduction of a
sample-based Logical regularization term named L-Reg. We reveal that L-Reg efficiently reduces the
complexity of the model from two aspects: 1) L-Reg leads to a balanced feature distribution in the
semantic space; 2) L-Reg reduces the number of weights with extreme values in the classifier.

Intuitively, the complexity reduction achieved by L-Reg stems from its ability to filter out redundant
features or semantics, focusing instead on the minimal yet sufficient semantics for classification -
defined as semantic support in Definition 3.2, where the interpretability also emerges. This filtering
feature benefits the generalization when there is a domain shift in data where the domain-dependent
features are ignored for classification. Moreover, it further promotes generalization when unlabeled
data from the unknown classes is present. If such data lacks the semantic support associated with
known classes, it is then classified as belonging to an unknown class, and its corresponding semantic
supports are extracted. These capabilities equip L-Reg with explicit interpretability. As Fig. 1 shows,
with L-Reg, the model can identify the unknown class ‘person’, and pinpoint faces which are the
crucial features for classifying this category. In contrast, the model trained solely with L2 (without
L-Reg) focuses on the ambiguous features for classification.

Rigorous theoretical analysis and experimental results validate that L-Reg yields better generalization
across diverse scenarios. Specifically, L-Reg facilitates better performance under the aforementioned
multi-domain generalization and generalized category discovery tasks, whose settings are presented
in Fig. 2 (a)(b). Furthermore, to evaluate L-Reg’s robustness, we introduce a more complex real-world
scenario, as shown in Fig. 2 (c), where unlabeled images may not only belong to unknown classes,
but also originate from unseen domains. Even in this challenging context, L-Reg is still able to
consistently demonstrate notable improvements in generalization, underscoring its practical utility and
effectiveness. Our code is available at https://github.com/zhaorui-tan/L-Reg_NeurIPS24.

2 Preliminaries and generalization settings for visual classification
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Figure 2: Diagrams of different generaliza-
tion settings in visual classification tasks.

Consider paired (X,Y ) ∼ (X ,Y), (Xs, Ys) ∼
(Xs,Ys), and (Xu, Yu) ∼ (Xu,Yu) denote all sets
of inputs and labels, seen paired subsets of (X,Y ),
and unseen paired subsets of (X,Y ), respectively.
Note that Xu, Yu may be accessible for the model
separately, but their pairing relationships are not ac-
cessible. Let D denote the possible domains, with
Ds, Du ⊂ D representing the seen and unseen do-
mains. In classification tasks, an encoding function
g(x) → Z ∈ RM is commonly introduced to map X
into the latent feature set Z, where each latent feature
has M dimensions. A predictor h(Z) → Ŷ ∈ RK maps Z to predictions Ŷ , where K denotes

2

https://github.com/zhaorui-tan/L-Reg_NeurIPS24


Kn
ow

n 
U

nk
no

w
n 

With L-RegWithout L-Reg

All classes

With L-Reg

Without L-Reg

Known  classes Unknown  classes

(b). Distribution of values of classifer’s weights under classes(a). Heatmap of classifer’s weights

Figure 3: Visualizations of classifiers’ weights form models trained using GMDG on PACS dataset
without and with L-Reg under mDG+GCD setting, respectively. Both experiments share the same
hyper-parameters using Regnety-16g backbone, except the latter uses additional L-Reg.

the number of classes and the dimensions of predictions. P (·) and H(·) symbolize probability and
entropy, respectively. This paper discusses two typical cases for generalization in image classification
tasks: (1) Data-shift generalization: Xs and Xu have distribution shifts, such as multi-domain
generalization (mDG); and (2) Target-shift generalization: Ys and Yu have distribution shifts, which
stands for tasks like generalized category discovery (GCD). We additionally explore a challenging
scenario called All-shift generalization: both Xs and Xu, Ys and Yu have distribution shifts, which is
a combination of mDG and GCD tasks (mDG + GCD). The following lists the detailed settings for
generalization. Please refer to Fig. 2 for brief diagrams.

Data-shift generalization: Problem setting for mDG. Illustrated in Fig. 2 (a), mDG [9] intends to
generalize well to unseen domains having the objective of minH(Xs, Ys | Ds) and expecting the
model to be generalized to Xu when predicting Yu from the unseen domain Du. In such cases, Yu is
fully accessible to the model since Ys and Yu share the same domain: Ys = Yu but there are shifts in
X where Xs ̸= Xu.

Target-shift generalization: Problem setting for GCD. GCD [54] (Fig. 2 (b)) aims to discover
possible unseen labels among unlabeled datasets Xu. The challenge is that the samples in Xu may
belong to known classes or unknown classes: Ys ̸= Yu and probably Ys∩Yu ̸= ∅. The model should
be able to distinguish the samples from the known classes and cluster the samples for unknown
classes simultaneously. Note that Xu is used for model training, but the relationship between Xu and
Yu is unseen for the model. In summary, shifts exist between Ys and Yu but not between Xs and Xu.

All-shift generalization: Problem setting for mDG + GCD. To explore the generalization problem
further, we introduce a setting that is the combination of mDG and GCD as shown in Fig. 2 (c).
Specifically, the model is trained on the labeled pairs (Xs, Ys) and unlabeled set Xu from the seen
domains Ds; Xu may belong to known and unknown classes. Furthermore, the model is tested on
Xu from the unseen domain Du, where Xu may also come from the known and unknown classes. In
this setting, the model is expected to 1) classify samples to the seen classes and discover the unseen
classes among unlabeled samples from seen domains and 2) generalize this ability to the samples
from the unseen domain. In this scenario, Xs and Xu have shifts, and so do Ys and Yu.

For all aforementioned generalization settings, the objective can be summarized as minimizing the
generalization loss:

Definition 2.1 (Generalization loss). Let the target model f∗ : f∗(X,Y ) : X → Y , can generalize
across both seen and unseen sets X,Y . Denote its trainable f , which is only trained on the seen sets.
The generalization loss for the unseen sets is defined as:

GL(f, f∗, (Xu, Yu)) = E(x,y)∈(Xu,Yu)||f(x, y)− f∗(x, y)||2. (1)

3 Logical regularization for generalization in image classification

Under the problem settings defined in Section 2, we introduce Logic regularization (L-Reg) targeting
the objective:

min
h,g

Ezi∈z,z∈Z [H(Ŷ |zi, D)]−Ez∈Z [H(Ŷ |Z,D)], (2)
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where Ŷ ∈ RK = h ◦ g(X) is the prediction set. The corresponding Logic regularization loss
(L-Reg) is defined as:

LL−Reg=
1

M

M∑
i=1

 K∑
j=1

[σ(Ŷ T
j Zi) log σ(Ŷ

T
j Zi)]− [

1

K

K∑
j=1

σ(Ŷ T
j Zi) log(

1

K

K∑
j=1

σ(Ŷ T
j Zi)]

, (3)

where σ(Ŷ T
j Zi) denotes the value at the i, j position of softmax(Ŷ TZ) and the soft-max function

is applied at the last dimension. By incorporating other existing methods’ losses denoted by Lmain,
the overall loss is formulated as:

Lall = Lmain + αLL−Reg, (4)

with a weight α applied to balance two losses. As depicted in Fig. 1, L-Reg plays a pivotal role in
extracting crucial features for image classification, thus enhancing generalization capabilities. This
beneficial outcome can be attributed to two primary factors:

Reducing classifier complexity: L-Reg streamlines the complexity of the classifier itself, as depicted
in Fig. 3 (a). Notably, the heat map of the model with L-Reg displays fewer extremely valued
weights, evidenced by the diminished presence of intense blue and red colors. This reduction implies
that the classifier focuses on leveraging semantically rich and relevant features for decision-making
(classification), sidelining the less relevant ones. Additionally, Fig. 3 (b) reveals a reduction in the
number of semantic features used to classify each class.

Distance between values with most counts of known and unknown classes

Without L-Reg With L-Reg

Figure 4: Visualizations of latent fea-
tures form models trained using GMDG
on PACS dataset without and with L-
Reg under mDD+GCD setting using
RegNetY-16G backbone, respectively.

Balancing feature complexity: L-Reg results in a more
balanced distribution of features compared to the base-
line, as illustrated in Fig. 4. This balanced distribution
suggests the elimination of certain extracted semantics
characterized by dominant frequencies across all sam-
ples. Semantics that occur frequently across samples of-
ten lack decisiveness for classification. Hence, reducing
their prominence contributes to more expressive feature
space and less complex feature distributions. Coupled with
the reduced classifier complexity, a simplified classifier
achieved through L-Reg facilitates improved generaliza-
tion across various settings. Specifically, the top row also
indicates the distance between the feature distributions of
the known and unknown classes, which is enlarged; thus,
they are more dividable, leading to classification improvements.

We present a logical-based theoretical analysis in Section 3.1 and provide the derivation details of
L-Reg in Section 3.2. In addition, we discuss the efficacy of L-Reg under various generalization
settings in Section 4. Furthermore, L-Reg serves as a plug-and-play loss function that is compatible
with most existing frameworks. We conduct experiments applying L-Reg to various established
approaches across different generalization settings, as outlined in Section 5.

3.1 Logical framework for visual classification

This part provides the connections between logical reasoning and visual classification tasks. We
would like to remind readers of the framework for studying logics and link it with our practical
scenarios.

Definition 3.1. Following [4], a logic L is defined as a five-tuple in the form:

L = ⟨FL,ML, |=L,mngL,⊢L, ⟩ , (5)

where 1) FL denotes the set of formulas formed by images and labels (X,Y ); 2) ML represents
different domains D of X; 3) |=L is a binary relation relating the truth of whether the formulas
are true or false, which has |=L⊆ ML × FL; 4) mngL : FL ×ML −→ Sets defines the meaning
of X as determined by classifiers, where Sets indicate the class of all sets. (5) ⊢L symbolizes the
provability relation of L, evaluating formulas formed by mngL is true or false in one possible world,
such as the estimation criteria. More details of L can be seen in Appendix B.
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For clarity, we specify L(Xs,Ys) =
〈
F(Xs,Ys), D, |=(Xs,Ys), h,⊢(h(X),Y )

〉
as the logic formed on

the given X,Y sets. With the goal for logic to generalize across a broader scenario and provide
extrapolation across all possible formulas in L, a good general logic L∗ should be derived from L
through the feature extractor g:

L∗ =
〈
F(g(Xs),Ys), D, |=(g(Xs),Ys), h,⊢(h◦g(X),Y )

〉
, s.t.,⊢(h◦g(X),Y )=|=(g(Xs),Ys) . (6)

Importantly, as a good general logic, F(g(Xs),Ys) and h in L∗ should form the atomic formulas,
i.e., the tuple of terms with a predicate: h ◦ g(x) belongs/not belongs to class y in domain d →
Ture/False, where x, y, d ∈ X,Y,D, which makes that ⊢(h◦g(Xu),Yu)=|=(g(Xs),Ys) still holds.
We simply denote one atomic formula in the form of h(g(x), y, d) mapping to binary values. Addi-
tionally, ⊢(h◦g(X),Y )=|=(g(Xs),Ys) in Eq. (6) can be safely omitted in the rest of the paper. Please
see more details about the conditions of the good general logic in Appendix B.

An additional tool is necessary to convert the logic problem into a continuous form, enabling the
application of machine learning algorithms. The conditional entropy-based method enables a logically
sound derivation of knowledge from the provided dataset with constraints [43]. Specifically, the
probabilistic inference process adheres to a probabilistic version of Modus Ponens: A→ B,A ⊢ B (if
A then B; not A therefore not B). It is important to note that the logical propositions in probabilistic
Modus Ponens are uncertain, with the conditional probability replacing the material implication
A → B. This framework allows us to interpret logical deduction through the lens of entropy.
Therefore, for Eq. (6) which implies

∃h ◦ g, ∀(x, y) ∈ (X,Y ), ∀d ∈ D, h ◦ g(x) → y, (7)

finding h ◦ g through optimization is equivalent to

max
h,g

E(x,y)∈(X,Y ),d∈DP (y|g(x), d)−R ⇐⇒ min
h,g

E(x,y)∈(X,Y ),d∈DH(y|g(x), d) +R, (8)

where R denotes any other possible regularization.

As the logical framework for image classification takes shape, it becomes evident that the unresolved
question of identifying an appropriate function g to generate suitable atomic formulas emerges as a
critical factor in ensuring the effectiveness of the overarching logic L∗. This paper proposes L-Reg
as the regularization to ensure F(g(Xs),Ys) are formed by atomic formulas in Section 3.2.

3.2 Constructing atomic formulas using L-Reg

In this part, we show the derivation details of L-Reg the aims to ensure the formation of suitable
atomic formulas, as depicted in Eq. (6). As highlighted in [1], current algorithms may induce
implicit biases towards unseen data, resulting in varied solutions for such data. However, expecting
an algorithm to generalize effectively to unseen data domains without appropriate incentivization,
such as specifically designed regularization, is unreasonable. Therefore, we aim to enhance the
generalization capability of models by employing a logic-based regularization approach. To this end,
we introduce the concept of semantic support for image classification.
Definition 3.2 (Semantic support). We denote z = g(x), where z ∈ Z, as a set of compositions of
these semantics: z := {zi}Mi=1, where M is the number of dimensions or semantics. Notably, not
all semantics in z may be useful for deduction or inference. We define the subset γ of z, extracted
from the sample x ∼ X , as the semantic support of x if γ is sufficient for deducing the relationship
between x and a y ∼ Y .

For instance, if the subset {z1, z2} ⊆ z is sufficient for accurate inference, the values of other
semantics {zi}Mi=3 will not impact the inference process. When {z1, z2} constitutes the minimal
combination of semantics required for inference, it is termed the semantic support. We denote Γ as
the set of semantic supports of X for deducing each individual class.

Derivation of L-Reg. Regarding Eq. (6), if the semantic supports and their relationship with Y form
atomic formulas, Eq. (6) holds as a good general logic, and the generalization would be improved.
Thus, we aim to learn the latent features Z, which contain sufficient semantic supports for the
deduction of Y :

∃γ ∈ Γ, γ ⊆ z, ∀(z, y) ∈ (Z, Y ),∀d ∈ D, h(γ|d) → y. (9)
Specifically, g(·) should meet the following:

∀(Γi, yi), (Γj , yj) ∈ (Z, Y ),∀d ∈ D, yi ̸= yj ⇐⇒ Γi ̸= Γj , (10)
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i.e., the semantic support set for each class should be distinct. The multiple-class classification task
has that ∀Γ, |Γ| ≤M . Under the constraints demonstrated in Eq. (9) and Eq. (10), we need to achieve
the following through optimization:

min
h,g

H(Y |g(Γ), D),max
h,g

H(Y |g(Γ̄), D) ⇐⇒ min
h,g

H(Y |g(Γ), D)−H(Y |g(Γ̄), D), (11)

where Γ̄ denotes the negation of Γ, i.e., the set of semantics which does not include semantic support.

Intuitively, Eq. (11) regularizes that the model should be able to judge whether a sample belongs to
a class by using a minimal set of semantic supports; simultaneously, the semantic support sets are
also implicitly disentangled for each class, not only for maintaining rich and useful semantics but
also for enhancing the independence of deduction of each class. The actual collection of Γ appears to
be intractable during optimization. Hence, we resort to deriving its bounds. Regarding Eq. (11), its
former term can be elaborated as follows:

H(Y |g(Γ), D) ≤ H(Y |h(zi), D) ≤ Ezi∼z[H(Y |g(zi), D)], (12)

where zi is minimal semantics form z, and EM
i=1H(Y |g(zi), D) is the upper-bound for

minh,gH(Y |g(Γ), D). Therefore, minimizing EM
i=1H(Y |g(zi), D) is equivalent to minimizing

H(Y |g(Γ), D). Meanwhile, for the latter in Eq. (11), we have:

H(Y |g(Γ̄), D) ≥ H(Y |g(z), D), (13)

whereH(Y |h(z)), D) is the lower-bound for maxh,gH(Y |g(Γ̄), D). Combining the aforementioned
bounds, we have the L-Reg objective as Eq. (2).

Interpretability of semantic supports roots in forming atomic formulas. The atomic formula Ay

is of the form h(g(x), y, d). Our aim is to find the good (most) general Ay∗ ∈ Ay for y class from
which the interpretability of L-Reg is derived. Consider Ay

1,A
y
2 ∈ Ay, if Ay

1 is more general than
Ay

2 , there will be a substitution ψ such that Ay
1ψ = Ay

2 [52]. Ay∗ should meet Ay∗ψ = Ay
i ∈ Ay,

which infers that γyψ = zy (cf. Eq. (9)) for predication of y where γy is the semantic support. Note
here that the form of Ay is constructed for y ∈ Y , i.e., predicate whether the sample belongs to
the y class. Considering multiple classes yi, yj ∈ Y, i ̸= j, it has Ayi∗ ̸= Ayj∗ thus γyi ̸= γyj (cf.
Eq. (10)), which constrains that different minimal semantic supports should be used for predicting
different classes. The interpretability of L-Reg is based on Ay∗, compelling the model to use distinct
minimal semantic supports for each class. These minimal semantic supports can be interpreted as the
most critical features for efficient prediction. For example, as shown in Fig. 1, the model with L-Reg
has learned the facial features of the person class (see more examples in Appendix Figs. 7 to 12),
forming the (informal) atomic formula h(has a human face, is person, d ∈ D) → True. Similarly, it
also leads to h(not has a human face, is person, d ∈ D) → False.

4 L-Reg under different generalization settings

L-Reg under data-shift generalization. The task mDG endeavors to facilitate a model’s ability
to generalize to unseen domains by fostering invariance across seen domains [50]. In the context
of mDG, the term |D| ≥ 2 in Eq. (8) typically denotes multiple domains. Traditionally, existing
methods focus on minimizing domain gaps, leading to remarkable results [25, 50]. However, it is
noteworthy that even when the domain gap is effectively minimized, and |D| = 1 for the latent
features can be considered, L-Reg still demonstrates its efficacy in promoting the generalization of
Xu from Du.
Proposition 4.1 (Effectiveness of L-Reg in enhancing data-shift generalization.). Assume the gap
across all domains is well minimized. Let f∗ denote the target model that generalizes to the data Xu

from the unseen domain with the lowest complexity. For a model fR(Xs,Ys)
, f(Xs,Ys) trained under the

data-shift generalization setting (i.e., (Xs, Ys) is accessible and Ys = Yu). We have:

GL(fR(Xs,Ys)
, f∗, Xu) ≤ GL(f(Xs,Ys), f

∗, Xu). (14)

Please see proof details in Proposition C.1. To illustrate Proposition 4.1, consider the following
intuitive example: In the seen domains, all cats are either black or white, while all dogs are brown.
Now, imagine encountering a sample labeled ‘a brown cat’ from an unseen domain. Without the
application of L-Reg, the model might erroneously classify it as a dog. However, with L-Reg in

6



Table 1: MDG results: Comparison between the proposed and previous non-ensemble and ensemble
mDG methods. The best results for each group are highlighted in bold. Improvement and degradation
in our approach from GMDG are highlighted in red.

Test domain PACS VLCS OfficeHome TerraIncognita DomainNet Avg.
MMD [33] 84.7±0.5 77.5±0.9 66.3±0.1 42.2±1.6 23.4±9.5 58.8
Mixstyle [62] 85.2±0.3 77.9±0.5 60.4±0.3 44.0±0.7 34.0±0.1 60.3
GroupDRO [44] 84.4±0.8 76.7±0.6 66.0±0.7 43.2±1.1 33.3±0.2 60.7
IRM [5] 83.5±0.8 78.5±0.5 64.3±2.2 47.6±0.8 33.9±2.8 61.6
ARM [61] 85.1±0.4 77.6±0.3 64.8±0.3 45.5±0.3 35.5±0.2 61.7
VREx [30] 84.9±0.6 78.3±0.2 66.4±0.6 46.4±0.6 33.6±2.9 61.9
CDANN [35] 82.6±0.9 77.5±0.1 65.8±1.3 45.8±1.6 38.3±0.3 62.0
DANN [20] 83.6±0.4 78.6±0.4 65.9±0.6 46.7±0.5 38.3±0.1 62.6
RSC [24] 85.2±0.9 77.1±0.5 65.5±0.9 46.6±1.0 38.9±0.5 62.7
MTL [8] 84.6±0.5 77.2±0.4 66.4±0.5 45.6±1.2 40.6±0.1 62.9
MLDG [31] 84.9±1.0 77.2±0.4 66.8±0.6 47.7±0.9 41.2±0.1 63.6
Fish [46] 85.5±0.3 77.8±0.3 68.6±0.4 45.1±1.3 42.7±0.2 63.9
ERM [53] 84.2±0.1 77.3±0.1 67.6±0.2 47.8±0.6 44.0±0.1 64.2
SagNet [40] 86.3±0.2 77.8±0.5 68.1±0.1 48.6±1.0 40.3±0.1 64.2
SelfReg [26] 85.6±0.4 77.8±0.9 67.9±0.7 47.0±0.3 42.8±0.0 64.2
CORAL [48] 86.2±0.3 78.8±0.6 68.7±0.3 47.6±1.0 41.5±0.1 64.5
mDSDI [12] 86.2±0.2 79.0±0.3 69.2±0.4 48.1±1.4 42.8±0.1 65.1

Use RegNetY-16GF [47] as oracle model.
MIRO [25] (ECCV23) 97.4±0.2 79.9±0.6 80.4±0.2 58.9±1.3 53.8±0.1 74.1
GMDG [50] (CVPR24) 97.3±0.1 82.4±0.6 80.8±0.6 60.7±1.8 54.6±0.1 75.1
GMDG + L-Reg 97.4±0.20.1↑ 82.4±0.00.1↑ 80.9±0.50.1↑ 62.9±0.92.2↑ 55.3±0.00.8↑ 75.80.7↑

place, the model is compelled to rely on minimal semantics for classification. This means filtering
out irrelevant features such as color terms, thus enabling more accurate deductions.

L-Reg under target-shift generalization. We demonstrate how L-Reg enhances generalized discov-
ery in scenarios where only a subset of classes (Ys) is available for training, and there may exist an
overlap between the unseen classes (Yu) and the seen classes (Ys), denoted as Yu∩Ys ̸= ∅. We define
Yu/Ys as the novel classes not included in Ys, and Yu ∼ Ys as the seen classes for Xu classification,
where |D| = 1. Building upon Proposition 4.1, L-Reg further enhances GCG by improving the
generalization performance on Yu.
Proposition 4.2 (L-Reg improves target-shift generalization). When |D| = 1, L-Reg promotes
generalization performance on Yu under the target-shift scenario.

Proof. When |D| = 1, since all Y belongs to a close set, minimizing −H(Ys|g(Γ̄), D) is equivalent
to the following:

min
h,g

−H(Ys|g(Γ̄)) ⇐⇒ min
h,g

H(Ȳs|g(Γ̄)), (15)

where Ȳs is the negation of Ys, i.e., Yu/Ys. In this situation, if one sample does not contain sufficient
semantic support to be classified under Ys, it otherwise will be assigned under Y/Ys, promoting
performance for both Yu/Ys and Yu ∼ Ys. Therefore, the generalization performance on the unseen
classes will be improved by L-Reg.

L-Reg under all-shift generalization. When the domain gap is sufficiently minimized and |D| = 1
can be considered, the combination of Proposition 4.1 and Proposition 4.2 demonstrates that L-Reg
enhances generalization performance on both novel classes (Yu/Ys) and seen classes (Yu ∼ Ys)
for Xu from other domains. Our experiments validate that L-Reg, when applied in scenarios with
well-minimized domain gaps, consistently improves generalization across all shifts.

5 Experiments

To validate L-Reg, three groups of experiments under the three kinds of settings are conducted.
Notably, all baselines we used already incorporate the L2 regulation in the form of weight decay.
We also compare other commonly used regularization terms, such as independence or sparsity
regularization on Z. More results in Appendix Findicate that our L-Reg also surpasses them.

5.1 Experiments on mDG

Experimental settings. We operate on the DomainBed suite [21] and leverage standard leave-
one-out cross-validation as the evaluation protocol. We test L-Reg with GMDG [50] on 5 real-
world benchmark datasets: PACS [32], VLCS [18], OfficeHome [55], TerraIncognita [7], and
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DomainNet [42]. Following MIRO [25] and GMDG [50], the RegNetY-16GF backbone with SWAG
pre-training [47]) is used. Specifically, we train the backbone using GMDG with L-Reg. Accuracy is
adopted as the evaluation metric, and the results of the averages from three trials of each experiment,
with standard deviations, are presented. See Supplementary H for more experimental details.

Results. The experimental results presented in Table 1 demonstrate the efficacy of L-Reg in improving
the performance of GMDG across all datasets in mDG classification tasks. Notably, more substantial
improvements are observed when the GMDG baseline achieves relatively low accuracy. These
observed enhancements provide empirical support for Proposition 4.1. Please see using L-Reg with
basic ERM in Appendix E. For detailed insights into each domain within each dataset, please refer to
Appendix H.1.

5.2 Experiments on GCD
Table 2: GCD results: Average results
across all datasets of PIM with L-Reg.
Improvements and degradation are high-
lighted in red and blue, respectively.

Average All Known Unknown

K-means [38] 44.7 46.0 43.9
RankStats+ [22] (TPAMI-21) 38.6 54.6 25.6
UNO+ [19] (ICCV-21) 51.2 74.5 36.7
ORCA [13] (ICLR-22) 46.3 51.3 41.2
ORCA - ViTB16 56.7 65.6 49.9
GCD [54] (CVPR-22) 60.4 71.8 52.9
RIM [27] (NeurIPS-10) 62.0 72.5 55.4
TIM [11] (NeurIPS-20) 62.7 72.6 56.4

PIM [16] (ICCV-23) 67.4 79.3 59.9
PIM + L-Reg 68.81.4↑ 79.00.3↓ 62.72.8↑

Table 3: MDG+GCD results: Averaged
accuracy scores for all, known and un-
known classes across all five datasets.
Improvements and degradation are high-
lighted in red and blue respectively.

Method Domain gap All Known Unknown
ERM Not 44.69 59.33 23.54

+L-Reg minimized 45.50 61.43 21.63
Imp. 0.81 2.09 -1.91
PIM Not 46.95 60.35 26.90

+L-Reg minimized 47.27 60.83 26.34
Imp. 0.32 0.48 -0.57

MIRO Not sufficiently 49.67 68.86 25.79
+L-Reg minimized 52.11 71.26 26.49

Imp. 2.44 2.39 0.71
GMDG 47.94 68.75 20.68
+L-Reg Minimized 51.94 69.87 27.68

Imp. 4.00 1.12 7.01

Experimental settings. We validate our approach through
training PIM additionally with L-Reg. Six image datasets
are adopted to validate the feasibility of our proposed
RPIM compared to other competitors, including three
generic object recognition datasets, CIFAR10 [29], CI-
FAR100 [29] and ImageNet-100 [17]; two fine-grained
datasets CUB [56] and Stanford Cars [28]; and the long-
tail dataset Herbarium19 [49]. Following prior works
[54, 16], we use the proposed accuracy metric from [54]
of all classes, known classes, and unknown classes for
evaluation. Please see a detailed description of the exper-
imental setup in Appendix H.2.

Results. The average results across all datasets for uti-
lizing L-Reg with PIM are presented in Table 2, while
detailed dataset-specific information is available in Ap-
pendix H Table 17. The results highlight that L-Reg con-
sistently increases the accuracy of all unknown classes
across all datasets, thus confirming the validity of Proposi-
tion 4.2. However, it is notable that L-Reg may marginally
compromise the performance of known classes, as it re-
duces the size of semantic support for deducing Y , thereby
reducing the information available for known classifica-
tion. Nevertheless, this compromise is deemed acceptable
given the significant improvements observed for the un-
known classes.

5.3 Experiments on mDG + GCD

Experimental settings. We utilize datasets designed for mDG tasks to conduct mDG + GCD
experiments. During the training stage, only samples from seen domains are available, with half of
the classes masked as unknown, and only their unlabeled data are utilized. Notably, even though
all the unlabeled data originates from unknown classes during training, this prior knowledge is not
assumed or constrained, aligning the setting with GCD. Similar to mDG, we adopt the leave-one-out
cross-validation method. This entails testing each domain in each dataset as the unseen domain. The
performance is tested on unseen domains by employing GCD metrics. To validate L-Reg’s efficacy
comprehensively, we re-implement four methods under the mDG + GCD setting, testing them both
with and without L-Reg. The four methods include ERM, PIM, MIRO, and GMDG. ERM serves as
the baseline approach without additional regularization, while PIM maximizes information without
minimizing domain gaps. MIRO and GMDG focus on minimizing domain gaps, with GMDG offering
a comprehensive approach in this regard. It is worth noting that PIM has been re-implemented. For
further experimental details, please refer to Appendix H.3.

Results. The averaged results across all unseen domains of all datasets are summarized in Table 3.
For a detailed breakdown of results for each domain in each dataset, please refer to Appendix H.3.
As discussed in Proposition 4.1 and Proposition 4.2, a noticeable trend is observed wherein, as the
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domain gap is gradually minimized, the improvements for unknown classes increase, with the best
results achieved using GMDG with L-Reg.
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Figure 5: GradCAM visualizations of GMDG
trained without and with L-Reg. The seen,
unseen domains and known, unknown classes
are denoted.

L-Reg forms atomic formulas and improves in-
terpretability. Furthermore, Fig. 5 provides visual
insights into the behavior of models trained with L-
Reg. Evidently, these models tend to focus on min-
imal semantics sufficient for class distinctions. For
the known classes, the efficacy of L-Reg can be intu-
itively understood as extracting the minimal semantic
supports for a given class label. For instance, the
presence of a guitar’s fingerboard, even in unseen
domains, helps classify a sample as belonging to the
guitar category, whose informal forms can be denoted
as h(has fingerboard, is guitar, d ∈ D) → True and
h(not has fingerboard, is guitar, d ∈ D) → False.
For all known classes, samples with these minimal
semantic supports are recognized accordingly. In con-
trast, if a sample lacks these minimal supports for any
known class, it is very likely categorized as an un-
known class. This behavior stems from Paper Eq.10
which ensures Ayi∗ ̸= Ayj∗ through constraining
γyi ̸= γyj . L-Reg further enhances the model’s abil-
ity to identify minimal supports for unknown classes
by filtering out co-covariant features associated with other classes and thus generalizing to unseen
domains. Therefore, the very interpretable features for unknown classes from unseen domains can
be extracted using L-Reg. Fig. 5 (right side) demonstrates that the model with L-Reg can even
extract facial features for the unknown person class and can generalize this to the unseen domain.
Similarly, here we obtain (informal) atomic formulas as h(has a face, is person, d ∈ D) → True,
h(not has a face, is person, d ∈ D) → False.

However, as shown in Row 3, significant domain shifts, such as those between the sketch domain
and other domains, pose challenges. Specifically, the differences between the stick-figure style of
sketches of persons and figures from other domains can hinder the model’s ability to cluster sketches
with other domains’ figures when the class label is unknown. Thus, under this circumstance, the
model may fail to extract meaningful features from those sketches. We acknowledge this limitation
and will explore solutions in future work.

Table 4: Averaged results of applying L-Reg
to different layers across domains in PACS.

All Known Unkown

GMDG 58.33 91.46 10.18
L-Reg: Deep layer 67.82 91.86 31.33
L-Reg: Earlier and the deep layers 58.97 80.73 35.05

L-Reg should be applied to features from deep
layers. One crucial precondition highlighted in the
theoretical analysis is that L-Reg operates effectively
with a representation Z, where each dimension repre-
sents independent semantics. The semantic features
usually come from the deeper layers of the model
architecture [51]. However, Table 4 shows that applying L-Reg to features from earlier layers, which
may not necessarily represent semantics, leads to a degradation in performance for known classes,
albeit improving performance for unknown classes. This phenomenon arises due to the potential
interdependence among features from earlier layers, resulting in penalization that may hinder the
capture of semantic supports essential for known classes. To ensure generalization improvements
without significant compromise to the performance of known classes, we advocate for applying L-Reg
specifically to features extracted from deeper layers, such as the bottleneck layer. These suggest
that the compromised results observed in Table 2 could be attributed to the less depth of the model
structure, which fails to provide the expected semantic features.

5.4 Apply L-Reg to congestion prediction for circuit design.

Experimental settings. We also test L-Reg in Congestion prediction on the CircuitNet [15] dataset
by using CircuitFormer [63] backbone. The congestion prediction is for circuit design and benefits
from logical reasoning-based approaches. All parameters, except for L-Reg, remain consistent with
CircuitFormer, and we follow its metrics.
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Table 5: Results of Congestion prediction: Con-
gestion prediction is proposed for circuit design.

pearson spearman kendall
Gpdl with UNet++ 0.6085 0.5202 0.3855

CircuitFormer (SOTA) 0.6374 0.5282 0.3935
CircuitFormer + L-Reg (Ours) 0.6553 0.5289 0.3944

Results. Table 5 shows the results of predic-
tion results on the CircuitNet dataset. We also
include the results of Gpdl with UNet++ and Cir-
cuitFormer for better comparison. Notably, the
improvements brought by CircuitFormer with L-
Reg across all metrics, especially for the pearson
metric can be observed. The consistent improve-
ment with L-Reg across all metrics indicates L-Reg’s feasibility.

6 Related work

Logical reasoning for deep learning. Current studies focus on length generalization or symbolic
reasoning in the logic-based scope. For length generalization, [1] proposes the generalization to
the unseen setting, theoretically verifying that commonly used models can generalize to the unseen
and degree curriculum promotes the generalization ability of the transformer, followed by [3, 2, 60].
Another branch is to improve the logical reasoning ability for abstract symbols, such as learning
the logical-based temples and expecting the model to generalize to unseen samples [10, 36]. These
studies are closely related to languages, such as generating longer answering sequences or solving
mathematical problems in large language models, lacking explicit connections to visual tasks. [6]
delves into the logical explanations in image classification by explicitly extracting logical relationships.
While this logical-based approach sheds light on the interpretability of image classification models,
its specific benefits for visual generalization remain relatively unexplored.

Multi-domain generalization. Current approaches for mDG in image classification focus on learning
invariant representation across domains. Previous approaches like DANN [20] minimize feature
divergences between source domains. CDANN [35], CIDG [34], and MDA [23] consider conditions
for learning conditionally invariant features. MIRO [25] and GMDG [50] take advantage of pre-
trained models to improve generalization. Specifically, in comparison to MIRO, GMDG proposes
a general entropy-based learning objective for mDG and sufficiently minimizes the domain gaps,
yielding better generalization results.

Generalized category discovery. Generalized category discovery, pioneered by [54], addresses
unlabeled samples with both known and unknown classes. Furthermore, PIM [16] integrates InfoMax
into generalized category discovery, effectively handling imbalanced datasets and surpassing GCD
on both short- and long-tailed datasets.

7 Conclusion

This paper presents L-Reg, a logical regularization approach tailored for image classification tasks
using logic analysis frameworks. L-Reg yields better generalization across different settings by fos-
tering balanced feature distributions and streamlining the classification model’s complexity. Rigorous
theoretical analyses and empirical validations underscore its efficacy, as L-reg consistently improves
generalization performance with different frameworks under various scenarios.

Limitation. L-Reg narrows the extent of semantic supports, potentially diminishing the amount of
information available for classification and leading to certain trade-offs in the performance of seen
datasets. This effect is evidenced by the slight decline in the accuracy of known classes when L-Reg
is applied, as shown in Table 2. A similar phenomenon is observed in Fig. 5, where the model fails to
recognize a person in the sketch domain lacking facial features. Analysis from Table 4 suggests that
these compromises may result from improper Z. Future work should focus on mitigating potential
compromises on seen datasets by exploring strategies for better capturing Z through improved model
architecture design. We offer more experimental results of possible solutions to this limitation in
Appendix G, such as further constraining the independence of each dimension in Z. Those results
may suggest a direction for future work.
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A Broader impact

Our regularization term based on logic for image classification offers significant potential beyond
academia. By integrating logical constraints, our approach enhances model robustness, interpretability,
and ethical alignment. This translates into improved performance on real-world tasks such as
disease diagnosis in healthcare and mitigating biases in decision-making systems. Our work fosters
interdisciplinary collaboration and contributes to the responsible deployment of AI technologies,
ultimately benefiting society through enhanced efficiency, fairness, and transparency in machine
learning applications.

B Details of the logical framework for visual classification task

We provide more details of the connections between logical reasoning and visual classification tasks.
Definition B.1. Following [4], a logic L is a five-tuple defined in the form:

L = ⟨FL,ML, |=L,mngL,⊢L⟩ , (16)

where

• FL is a set of all formulas of L. FL arbitrarily refers to any collections that can be ‘expressed’
by language L. Therefore, FL could be not only a collection of languages but also images
and labels (X,Y ) for computer vision cases.

• ML is a class called the class of all models (or possible worlds) of L; intuitively, this can be
considered as different domains D of X .

• |=L is a binary relation, |=L⊆ML × FL, called the validity relation of L. For example, in
the known set, the ground truth label of the image is given as truth, which is the validity
relation.

• mngL : FL ×ML −→ Sets where Sets is the class of all sets. mngL is a function with
domain FL×ML, called the meaning function of L: Intuitively, mngL extracts the meaning
of the expressions can be understood as the classifiers.

• ⊢L represents the provability relation of L, telling us which formulas are ‘true’ in which
possible world and usually is definable from mngL, such as the estimation criteria in the
machine learning system.

Accordingly and still following [4], a good general logic is defined as:
Definition B.2 (General logic). : A general logic is a class:

L∗ :=
〈
LP : P ∈ Sig

〉
, (17)

where Sig is a class of sets; LP =
〈
FP
L ,M

P
L , |=P

L ,mng
P
L ,⊢P

L ,
〉

is a compositional logic in the
sense of Definition B.1 for P ∈ Sig, and for any sets P,Q ∈ Sig satisfies the following conditions:

1. P is the set of atomic formulas of LP .

2. Cn(LP ) = Cn(LQ) := Cn(L∗) where Cn(·) is called the set of logical connectives of the
given logic (these are operation symbols with finite or infinite ranks).

3. Any bijection f : PßQ that extends to a bijection between the tautological formula algebras
of LP and LQ induces an isomorphism between LP and LQ.

4. If P ⊆ Q, then LP is a sublogic of LQ.

5. For any P ∈ Sig and set H , there is a P ′ ∈ Sig such that P ′ is disjoint from H and LP ′
is

an isomorphic copy of LP .

6. The union of a system Pi, i ∈ I of pairwise disjoint sets Pi from Sig belongs to
Sig, whenever I is not empty. Let Fr(·) denotes free algebra, Algm(L) represents
{mngM(F) : M ∈M} where F denotes the term algebra. Further, the tautological congru-
ence of the logic belonging to the disjoint union P is generated in Fr

(
Algm

(
LP

)
, P

)
as a
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congruence by the union of the tautological congruence relations of the logics belonging to
Pi, i ∈ I .

7. Sig contains at least one non-empty set.

Our L-Reg aims to regularize the semantics extracted by g and the classifier to satisfy condition 1.

⊢(h◦g(X),Y )=|=(g(Xs),Ys) in Eq. (6) can be safely omitted in the rest of the paper. Consider
the logic formed on X,Y : L(Xs,Ys) =

〈
F(Xs,Ys), D, |=(Xs,Ys), h,⊢(h(X),Y )

〉
. Assume we want

to study the logic of ⊢ which can be defined in the form of L⊢ :
def
= ⟨FXs,Ys

, D⊢, h⊢, |=⊢⟩, where
D⊢, h⊢, |=⊢ are pseudo-components associated with ⊢. Particularly, D⊢ is a subset of all possible
world/domains from F(Xs,Ys): D⊢

def
= {T ⊆ F(Xs,Ys) : T is closed under ⊢(h(X),Y )}. For any

T ∈ D⊢ and a ∈ F(Xs,Ys), it has h⊢(a, T )
def
= {b ∈ F : T ⊢ (a ↔ b)}. Further, |=⊢ in T ∈ D⊢ is

defined as T |=⊢ a
def⇔ a ∈ T . [4] points out that the following condition is almost always satisfied:

(Cond) ∀a, b ∈ F⊢, d ∈ D⊢, we have (h⊢(a, d) = h⊢(b, d)) and d |=⊢ a⇒ d |=⊢ b. Therefore, the
semantical consequence relation induced by |=⊢ coincides with the original syntactical ⊢(h◦g(X),Y )

while Cond holds. Due to that D⊢ ⊆ D, it infers that |=(g(Xs),Ys) coincides with |=⊢. Therefore,
⊢(h◦g(X),Y )=|=(g(Xs),Ys) can be safely omitted in the rest of the paper.

C Details of proofs

Proposition C.1 (L-Reg reduces the complexity of the model, promoting data-shift generalization
performance.). Assume the domain gap is well minimized. Consider a f∗ is the target model that
generalizes to the unseen with the lowest complexity. There are fR(Xs,Ys)

, f(Xs,Ys) trained under the
setting of data-shift generalization (i.e., (Xs, Ys) is accessible and Ys = Yu), it has that:

GL(fR(Xs,Ys)
, f∗, Xu) ≤ GL(f(Xs,Ys), f

∗, Xu), (18)

Proof. We assume the loss is achieved for the tractable form by minimizing the mean squared error.
In that case, we have f∗(Xs,Ys)

for the given training set as:

f∗(X,Y ) = (g(X)T g(X))−1h ◦ g(X)TYs = (ZTZ)−1h(ZT )Y, (19)

In comparison to f∗, f(Xs,Ys) for the given seen sets is as:

f(Xs,Ys) = (ZT
s Zs)

−1h(ZT
s )Ys, (20)

and fR(Xs,Ys)
is derived from f(Xs,Ys), where Zs is constrained additionally by L-Reg and the

constrained Zs is denoted as ZR
s :

fR(Xs,Ys)
= (ZR T

s Zs)
−1h(ZR T

s )Ys. (21)

For simplification, we denote (ZTZ)−1ZT , (ZT
s Zs)

−1ZT
s , and (ZR T

s Zs)
−1ZR T

s as N ∗, N , and
NR, respectively.

The form of N . For multi-domain generalization, the model is tested on the unseen domain, referring
thatXu contains some unseen semantics besides the seen: Zs ∼ Zs, Zu ∼ Zu,Zs ̸= Zu,Zs∩Zu ̸=
∅. Considering each dimension of Z represents a specific semantics, we denote Γ as the dimensions
of Z that contain the seen semantics support in Xs and Γ̄ for the unseen, we can decompose N as:

N =

[
ΓT Γ̄ ΓT Γ̄
Γ̄TΓ Γ̄T Γ̄

]−1

[h(Γ) h(Γ̄)]T . (22)

The form of N ∗. Assume Γ already contains semantic support for deducting Y ; thus, Γ̄ would not
affect the deduction of Y . In such case, it has that ΓT Γ̄ = 0 and Γ̄TΓ = 0 and Γ̄T Γ̄ = 1 where 0, 1
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denote zero matrix and identity matrix:

N ∗ =

[
ΓTΓ 0

0 1

]−1

[h(Γ) h(Γ̄)]T

=

[
(ΓTΓ) 0

0 1

]−1

[h(Γ) h(Γ̄)]T

=

[
(ΓTΓ)−1h(Γ)

h(Γ̄)

]
,

(23)

where we also expect h(Γ̄) = 0 so that zu does not influence the deduction. We now have N ∗:

N ∗ =

[
ΓTΓ 0

0 1

]−1

[h(Γ) h(Γ̄)]T , s.t., h(Γ̄) = 0. (24)

Note that for N in f(Xs,Ys), Γ
T Γ̄ and Γ̄TΓ are not constrained. Please refer to Lemma C.2. Further-

more, h(Γ̄) is also not constrained.

The form of NR. Now we discuss the trainable NR obtained with the application of L-Reg. The
form of NR is similar to N ∗. However, Eq. (11) indicates that L-Reg minimizes ||ΓT Γ̄||2 and
||Γ̄TΓ||2 through −H(Y |g(Γ̄)), D) and also minimizing ||h(Γ̄)||2:

NR =

[
ΓT Γ̄ ΓT Γ̄
Γ̄TΓ Γ̄T Γ̄

]−1

[h(Γ) h(Γ̄)]T , s.t.,min ||ΓT Γ̄||2 + ||Γ̄TΓ||2 + |h(Γ̄)||2. (25)

Compare GL(fR(Xs,Ys)
, f∗, Xu) with GL(f(Xs,Ys), f

∗, Xu). By comparing the forms of NR,N
and N ∗, it is obvious that ||NR − N ∗||2 ≤ ||N − N ∗||2. Therefore, we have that:
GL(fR(Xs,Ys)

, f∗, Xu) ≤ GL(f(Xs,Ys), f
∗, Xu).

Lemma C.2 (Minimizing H(Y |g(X), D) +R solely may cause generalization degradation). Mini-
mizing H(Y |g(X), D) +R solely without L-Reg may conflict with maxh,gH(Y |g(Γ̄), D), causing
invalid semantics for decision process and degrading the generalization.

Proof. We have the following relationship for H(Y |g(z), D):

H(Y |g(z), D) = H(Y |g(Γ̄), g(Γ), D)

H(Y, g(Γ)|g(Γ̄), D)−H(g(Γ)|g(Γ̄), D) = H(Y |g(Γ̄), g(Γ), D) +H(g(Γ̄)|g(Γ), D).
(26)

Since the independence between {zi}Mi=1 is unconstrained, H(Y, g(Γ)|g(Γ̄), D) may cause that Y
can be deducted from Γ̄. Therefore, ΓT Γ̄ and Γ̄TΓ are not constrained even when the domain gap is
minimized where |D| = 1, causing the sub-optimal generalization.

D One toy example

We present a simplified informal illustrative example to compare the efficacy of our proposed L-Reg
against conventional L1 and L2 regularization methods. As depicted in Fig. 6, the ground truth (GT)
image represents the underlying data, generated according to f∗(x1, x2) = sin(2πx1) · sin(2πx2),
where x1 and x2 denote the horizontal and vertical coordinates respectively, and the pixel color
corresponds to the value of f∗(x1, x2). The training domain is delineated by the black box, while the
testing domain encompasses the area outside of this boundary.

For our experiments, we use a 6-linear-layer size-110 ReLU model network. Mean squared error
serves as the loss function.

Our experimental results reveal that L-Reg enhances the model’s ability to extrapolate beyond the
training domain. Notably, our proposed L-Reg demonstrates superior extrapolative capabilities
compared to traditional L1 and L2 regularization methods. This observation highlights the efficacy
of L-Reg in fostering improved generalization.
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Base model  + �1 Regularization  + �2 Regularization  + L-RegGT

Figure 6: Prediction visualizations of MLP with different regularization terms.

E Apply L-Reg to ERM Baseline for mDG

To further validate L-Reg’s efficacy for mDG, we use ERM as the baseline on the TerraIncognita
dataset. For a fair comparison, all experiments share the same hyperparameter settings and use the
Regnety-16gf backbone. Original ERM results are also included alongside our reproduced results.
The results in Table 8 reveal that ERM with L-Reg significantly improves mDG performance (from
49.9% to 52.9%).

F Compare L-Reg with more regularization terms

We also compare L-Reg with other regularization terms: The Ortho-Reg - the orthogonality regular-
ization that constrains the independence of each dimension of the semantic feature z; and Sparsity
- implemented as Bernoulli Sample of the latent features from the sparse linear concept discovery
models [41] on our used PIM backbone. To investigate this fairly, we re-implemented the Bernoulli
Sample of the latent features from the Sparse Linear Concept Discovery Models [41] on the same PIM
backbone that we used, to achieve the sparsity. Table 6&Table 7 demonstrate that L-Reg outperforms
Ortho-Reg and Sparsity.

Especially, while a common sparse concept model may be able to achieve γyψ = zy by filtering
irrelevant features through the sparsity, it may not ensure γyi ̸= γyj , which is crucial for disentangling
features used for predicting different classes. This limitation can potentially lead to degradation
in generalization performance for common sparse concept models. 6&7 indicate that while L-Reg
consistently achieves overall improvement, the sparse concept-based approach does not consistently
improve generalization, validating the aforementioned difference.

G Limitation of L-Reg and possible solutions

As analyzed and discussed in the paper, L-Reg is based on the precondition that each dimension of
the latent features represents an independent semantic.

We hypothesize this is due to the fact that our L-Reg is derived based on the precondition that
zi, zj ∈ z, I ̸= j is independent of each other. This condition holds for most deep-layer features but
may not apply to shallow layers. Thus, applying L-Reg to the semantic features from the deep layers
may improve the performance for unknown classes without negatively impacting known classes.

Derived from this hypothesis, another possible solution is further regularizing the independence,
which may lead to further improvements. To validate this hypothesis, we test L-Reg by reinforcing
independence with Ortho-Reg. MDG results in Table 8 and GCD results in Table 6&Table 7 show that
combining L-Reg with Ortho-Reg leads to further improvements, whereas Ortho-Reg alone may not
guarantee improvements. These findings support our hypothesis and suggest that L-Reg, particularly
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Table 6: Results of GCD: Averaged results across all datasets of PIM with different regularization
applied to the latent features: Sparsity: achieved through Bernoulli Sample; Ortho-Reg: orthogonality
regularization. +L-Reg outperforms other regularization terms when they are applied solely; +L-
Reg+Ortho-Reg achieves the best performance and alleviates the performance degradation of unknown
classes, validating our hypothesis in the paper that the improper Z may result in compromises and
constraining the independence of each zi ∈ z, z ∈ Z may be helpful.

Avg
All Known Unknown

PIM 67.4 79.3 59.9
+Sparsity 66.6 77.3 60.0
Improvements -0.7 -2.0 0.1
+Ortho-Reg 68.4 79.2 61.9
Improvements 1.0 -0.1 2.0
+L-Reg 68.8 79.0 62.7
Improvements 1.4 -0.3 2.8
+L-Reg+Ortho-Reg 69.3 79.6 63.4
Improvements 2.0 0.3 3.5

Table 7: Results of GCD: Detailed results across all datasets of PIM with different regularization
applied to the latent features: Sparsity: achieved through Bernoulli Sample; Ortho-Reg: orthogonality
regularization.

CUB Stanford Cars Herbarium19
All Known Unknown All Known Unknown All Known Unknown

PIM 62.7 75.7 56.2 43.1 66.9 31.6 42.3 56.1 34.8
PIM + Sparsity 60.1 72.7 53.8 40.4 61.7 30.1 42.0 53.7 35.8
Improvements -2.6 -3.0 -2.4 -2.7 -5.2 -1.5 -0.3 -2.4 1.0
PIM + Ortho-Reg 64.9 76.7 58.9 44.3 65.6 34.1 42.9 57.2 35.1
Improvements 2.2 1.0 2.7 1.2 -1.3 2.5 0.6 1.1 0.3
PIM + L-Reg 65.3 76.0 60.0 44.8 66.0 34.6 43.7 55.8 37.2
Improvements 2.6 0.3 3.8 1.7 -0.9 3.0 1.4 -0.3 2.4
PIM + L-Reg + Ortho-Reg 66.8 77.3 61.6 45.8 67.3 35.5 43.3 57.5 35.6
Improvements 4.1 1.6 5.4 2.7 0.4 3.9 1.0 1.4 0.8

CIFAR10 CIFAR100 ImageNet-100
All Known Unknown All Known Unknown All Known Unknown

PIM 94.7 97.4 93.3 78.3 84.2 66.5 83.1 95.3 77.0
PIM + Sparsity 94.2 97.4 92.6 79.7 84.6 69.7 83.4 93.7 78.2
Improvements -0.5 0.0 -0.7 1.4 0.4 3.2 0.3 -1.6 1.2
PIM + Ortho-Reg 95.1 97.4 93.9 80.2 84.6 71.4 83.0 93.4 77.7
Improvements 0.4 0.0 0.6 1.9 0.4 4.9 -0.1 -1.9 0.7
PIM + L-Reg 94.8 97.6 93.4 80.8 84.6 73.2 83.4 94.0 78.0
Improvements 0.1 0.2 0.1 2.5 0.4 6.7 0.3 -1.3 1.0
PIM + L-Reg + Ortho-Reg 95.1 97.6 93.9 81.2 84.2 75.0 83.7 93.6 78.7
Improvements 0.4 0.2 0.6 2.9 0.0 8.5 0.6 -1.7 1.7

when applied to deep layers or in conjunction with Ortho-Reg, is beneficial. This suggests a direction
for future work.

H More experimental details and results

All experiments can be conducted on one NVIDIA GeForce RTX 3090 GPU.

H.1 Multi-domain generalization

Competitors. We listed results from previous important work in the mDG field for better validation.
They are: MMD [33], Mixstyle [62], GroupDRO [44], IRM [5], ARM [61], VREx [30], CDANN [35],
DANN [20], RSC [24], MTL [8], MLDG [31], Fish [46], ERM [53], SagNet [40], SelfReg [26],
CORAL [48], mDSDI [12], MIRO [25], and GMDG [50]. Among them, GMDG is treated as our
baseline since it sufficiently minimizes the domain gaps.

Datasets. We use PACS (4 domains, 9,991 samples, 7 classes) [32], VLCS (4 domains, 10, 729
samples, 5 classes) [18], OfficeHome (4 domains, 15,588 samples, 65 classes) [55], TerraIncognita
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Table 8: Results of mDG: Results of using ERM as the baseline. We use the ERM method as the
baseline to test L-Reg’s efficacy. Ortho-Reg: orthogonality regularization. This table includes results:
(1) The improved performance of L-Reg on ERM baseline. (2) Comparison between L-Reg and the
Ortho-Reg on ERM baseline. (3) Using L-Reg and Ortho-Reg together yields further promotion,
validating our ‘improper z’ hypothesis in the Paper limitation part. The used dataset is TerraIncognita.
All experiments share the same hyperparameters except the added regularization term. Each group of
experiments is run with seeds [0,1,2], and the averaged results for each domain and additionally with
the standard deviation (Std) are reported.

TerraIncognita Location 100 Location 38 Location 43 Location 46 Avg ± Std.
ERM 54.3 42.5 55.6 38.8 47.8
ERM Reproduced 50.6 49.7 58 41.2 49.9±3.6
+Ortho-Reg 50.7 52.6 60.5 42.7 51.6±2.5
+L-Reg 52.7 51.7 61.3 45.8 52.9±4.2
+L-Reg+Ortho-Reg 61.5 48.6 60.3 44 53.6±0.5

Table 9: Parameters for mDG task
Use RegNetY-16GF lr mult α
TerraIncognita 2.5 1e-3
OfficeHome 0.1 1e-3
VLCS 0.1 1e-4
PACS 0.1 5e-4
DomainNet 5.0 1e-3

(TerraIncognita, 4 domains, 24, 778 samples, 10 classes) [7], and DomainNet (6 domains, 586,575
samples, 345 classes) [42].

Training details. We use GMDG [50] as our baseline. Especially, we use all loss terms proposed
in GMDG as Lmain. The training procedure is the same as MIRO [25] and GMDG. We use seeds
0, 1, 2 for all three trails training.

Parameters. We adhere to the parameters proposed by GMDG, particularly focusing on its recom-
mended loss terms. Furthermore, we provide a detailed listing of the hyper-parameters pertaining to
L-Reg, along with the tuned ‘lr mult’, as outlined in Table 9, to facilitate the reproducibility of our
results.

Evaluation metric. The models undergo training on known domains and subsequent testing on
unseen domains. For each trial, a distinct domain within the datasets is designated as the unseen
domain. The evaluation metric reports the prediction accuracy achieved on these unseen domains. The
aggregated results across all unseen domains within the datasets provide a comprehensive assessment
of the algorithm’s performance in domain generalization for the given datasets.

More results. Results of each domain for each dataset are presented in Tables 10 to 14.

H.2 Generalized category discovery

Competitors. We compare our proposed method with existing generalized category discovery
methods: GCD [54], and PIM [16]. In particular, PIM based on information maximization is the
current state-of-the-art (SOTA) generalized category discovery method. Additionally, the traditional
machine learning method, k-means [38]; three novel category discovery methods: RankStats+ [22],
UNO+ [19], ORCA [13]; and several information maximization methods: RIM [27], and TIM [11]
are adapted for generalized category discovery as competitors. The results of the modified novel
category discovery methods are reported in [54], and the modified information maximization methods
are reported in [16].

Usage details of datasets for GCD. Following the protocols of GCD and PIM [54, 16], the initial
training set of each dataset is divided into labeled and unlabeled subsets; samples from half of the
classes are assigned as unlabeled, and their labels are not used for training. Specifically, half of the
image samples from known classes are allocated to the labeled subset, while the remaining half are
assigned to the unlabeled subset. Additionally, the unlabeled subset includes all image samples from
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the novel classes in the original dataset. As a result, the unlabeled subset consists of instances from
K different classes. The detailed statistics of datasets are listed in Table 15.

Training details. Consistent with PIM, we utilize latent features extracted by the feature encoder
DINO (VIT-B/16) [14] that is pre-trained on ImageNet [17] through self-supervised learning. The
losses proposed in PIM are treated as Lmain. The original PIM freezes the feature extractor during
the training, directly using the pre-saved extracted features as the model input. For a fair comparison,
we only added one linear layer as g on the extracted features, which is the minimal modification.

L2 (weight decay) value searching. For a more fair comparison, we conduct weight decay value
searching to ensure that the weight of L2 is the best. To address this, we devised a methodology
for weight decay searching involving the construction of smaller labeled and unlabeled subsets
derived solely from the labeled data. To conduct parameter searching, we split the labeled samples to
construct a ’smaller’ sub-labeled and sub-unlabeled set. Specifically, we take 50% of the samples
from known classes as sub-unlabeled samples from unknown classes. Additionally, we take 25% of
the samples from the remaining 50% of known classes as sub-unlabeled samples from known classes.
The remaining samples are treated as sub-labeled samples. Hyper-parameters are then searched on
these sub-labeled and sub-unlabeled sets.

Parameters of L-Reg. The hyper-parameters of L-Reg values are shown in Table 16.

Evaluation metric. Following prior works [54, 16], we use the proposed accuracy metric from [54]
of all classes, known classes, and unknown classes for evaluation.

More results. The results for each dataset are presented in Table 17. It is evident that L-Reg yields
enhanced performance across half of the datasets for both known and unknown classes. On the
remaining datasets, while L-Reg may slightly compromise the performance of known classes, it
demonstrates significant improvements in the unknown classes, resulting in an overall enhancement
in the performance across all classes.

More ablation results. Due to the introduction of tuned weight decay and the additional g component,
we have conducted ablation studies to assess their impact. The results are summarized in Table 18. It
is observed that the baseline model utilizing the tuned weight decays performs slightly better than
the original weight decay settings. Notably, the tuned weight decays contribute to improvements
in unknown classes while often leading to slight decreases in known classes across most datasets.
Inclusion of the proposed extra component g results in marginal improvements in both known and
unknown classes compared to the tuned baseline. Our proposed L-Reg demonstrates significant
improvements specifically in the unknown classes, thereby corroborating Proposition 4.2. However,
as discussed in the main paper, it is acknowledged that L-Reg may entail compromises in the
performance of known classes.

H.3 Combination of multi-domain generalization and generalized category discovery

Datasets. We leverage the datasets utilized in mDG tasks to construct the mDG+GCD datasets.
Specifically, during the seen domains of training, labels from approximately half of the classes are
masked. For instance, in the PCAS dataset comprising 7 classes, classes labeled within the range
[0, 1, 2, 3] are retained, while classes in [4, 5, 6] are masked. It is noteworthy that data categorized
as unknown classes in our setup are from unknown classes. However, we acknowledge that this
prior is not explicitly known. To align with the GCD setting, we operate under the assumption
that the unlabeled set may potentially include samples from known classes. Consequently, we
refrain from constraining the model by mandating that unlabeled data be classified solely as unknown
classes. This adjustment introduces a more challenging generalization scenario.

Training details. For all experiments, the implementation directly adds L-Reg to their previously
proposed loss sets. The models are trained with the aforementioned labeled and unlabeled sets from
the seen domains and tested on the samples from the unseen domain.

Parameters. We include all the parameters for reproducing our experiments in the code. Please refer
to the code for details.

Evaluation metric. We use the same metric from the GCD task for the mDG+GCD task. Similarly,
the metrics include the accuracy for all, known and unknown classes.
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More results. The averaged results of each dataset are exhibited in Table 19, while the detailed
results of each dataset are presented in Tables 20 to 24.

H.4 More GradCAM visualizations

We provide more visualized examples of L-Reg. Examples of known classes can be seen in Figs. 7
to 10 and unknown classes in Figs. 11 and 12. Compromises in known sets, as discussed in the
limitations, can be seen in Figs. 8 and 12.
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Table 10: MDG experiments on TerraIncognita: More results of full GMDG+L-Reg for each category.
TerraIncognita Location 100 Location 38 Location 43 Location 46 Avg.
ERM [21] 54.3 42.5 55.6 38.8 47.8
MIRO [25] (use ResNet-50) - - - - 50.4
GMDG [50] (use ResNet-50) 59.8±1.0 45.3±1.7 57.1±1.8 38.2±5 50.1±1.2

MIRO [25] (use RegNetY-16GF) - - - - 58.9±1.3
GMDG [50] (use RegNetY-16GF) 73.3±3.3 54.7±1.4 67.1±0.3 48.6±6.5 60.7±1.8

GMDG + L-Reg (use RegNetY-16GF) 73.9±0.8 57.1±2.3 67.9±1.1 52.7±4.0 62.9±0.9

Table 11: MDG experiments on OfficeHome: More results of full GMDG+L-Reg for each category.
OfficeHome art clipart product real Avg.
ERM [21] 63.1 51.9 77.2 78.1 67.6
MIRO [25] (use ResNet-50) - - - - 70.5±0.4
GMDG [50] (use ResNet-50) 68.9±0.3 56.2±1.7 79.9±0.6 82.0±0.4 70.7±0.2

MIRO [25] (use RegNetY-16GF) - - - - 80.4±0.2
GMDG [50] (use RegNetY-16GF) 79.7±1.6 67.7±1.8 87.8±0.8 87.9±0.7 80.8±0.6

GMDG + L-Reg (use RegNetY-16GF) 78.4±0.3 69.3±0.7 87.9±0.6 88.0±0.8 80.9±0.5

Table 12: MDG experiments on VLCS: More results of full GMDG+L-Reg for each category.
VLCS caltech101 labelme sun09 voc2007 Avg.
ERM [21] 97.7 64.3 73.4 74.6 77.3
MIRO [25] (use ResNet-50) - - - - 79.0±0.0
GMDG [50] (use ResNet-50) 98.3±0.4 65.9±1 73.4±0.8 79.3±1.3 79.2±0.3

MIRO [25] (use RegNetY-16GF) - - - - 79.9±0.6
GMDG [50] (use RegNetY-16GF) 97.9±1.3 66.8±2.1 80.8±1 83.9±1.8 82.4±0.6

GMDG + L-Reg (use RegNetY-16GF) 98.6±0.1 67.1±0.1 80.7±0.7 83.0±0.8 82.4±0.0

Table 13: MDG experiments on PACS: More results of full GMDG+L-Reg for each category.
PACS art_painting cartoon photo sketch Avg.
ERM [21] 84.7 80.8 97.2 79.3 84.2
MIRO [25] (use ResNet-50) - - - - 85.4±0.4
GMDG [50] (use ResNet-50) 84.7±1.0 81.7±2.4 97.5±0.4 80.5±1.8 85.6±0.3

MIRO [25] (use RegNetY-16GF) - - - - 97.4±0.2
GMDG [50] (use RegNetY-16GF) 97.5±1.0 97.0±0.2 99.4±0.2 95.2±0.4 97.3±0.1

GMDG + L-Reg (use RegNetY-16GF) 97.6±0.8 97.1±0.3 99.3±0.2 95.3±0.9 97.4±0.2

Table 14: MDG experiments on DomainNet: More results of full GMDG+L-Reg for each category.
DomainNet clipart info painting quickdraw real sketch Avg.
ERM [21] 50.1 63.0 21.2 63.7 13.9 52.9 44.0
MIRO [25] (use ResNet-50) - - - - - - 44.3±0.2
GMDG (use ResNet-50) 63.4±0.3 22.4±0.4 51.4±0.4 13.4±0.8 64.4±0.3 52.4±0.4 44.6±0.1

MIRO [25] (use RegNetY-16GF) - - - - - - 53.8±0.1
GMDG (use RegNetY-16GF) 74.0±0.3 39.5±1.5 61.5±0.3 16.3±1.2 73.9±1.5 62.8±2.4 54.6±0.1

GMDG + L-Reg (use RegNetY-16GF) 74.1±0.1 42.6±1.0 62.3±2.9 12.7±0.9 75.9±0.8 64.6±0.2 55.4±0.0
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Table 15: Statistics of datasets.
CUB Standford Cars Herbarium19 CIFAR10 CIFAR100 ImageNet-100

Known classes 100 98 341 5 80 50
Seen data 1.5K 2.0K 8.9K 12.5K 20K 31.9K
Known classes 200 196 683 10 100 100
Unseen data 4.5K 6.1K 25.4K 37.5K 30K 95.3K

Table 16: Tuned weight decay values for each dataset.
CUB Standford Cars Herbarium19 CIFAR10 CIFAR100 ImageNet-100

Tuned weighted decay 0.02/2 0.02/2 0.02/2 0.05/2 0.005/2 0.005/2
α of L-Reg 0.1 0.001 0.2 0.01 0.0025 0.01

Table 17: GCD results: Accuracy scores across fine-grained and generic PIM datasets with our L-Reg
and other competitors. The best results of each group are highlighted in bold. Improvement and
degradation in our approach from PIM are highlighted in red and blue, respectively.

CUB Stanford Cars Herbarium19
Approach All Known Unknown All Known Unknown All Known Unknown
K-means 34.3 38.9 32.1 12.8 10.6 13.8 12.9 12.9 12.8
RankStats+ [22] (TPAMI-21) 33.3 51.6 24.2 28.3 61.8 12.1 27.9 55.8 12.8
UNO+ [19] (ICCV-21) 35.1 49.0 28.1 35.5 70.5 18.6 28.3 53.7 14.7
ORCA [13] (ICLR-22) 27.5 20.1 31.1 15.9 17.1 15.3 22.9 25.9 21.3
ORCA [13] - ViTB16 38.0 45.6 31.8 33.8 52.5 25.1 25.0 30.6 19.8
GCD [54] (CVPR-22) 51.3 56.6 48.7 39.0 57.6 29.9 35.4 51.0 27.0

InfoMax based methods
RIM [27] (NeurIPS-10) 52.3 51.8 52.5 38.9 57.3 30.1 40.1 57.6 30.7
TIM [11] (NeurIPS-20) 53.4 51.8 54.2 39.3 56.8 30.8 40.1 57.4 30.7
PIM [16] (ICCV-23) 62.7 75.7 56.2 43.1 66.9 31.6 42.3 56.1 34.8
PIM + L-Reg (Ours) 65.32.6↑ 76.0 0.3↑ 60.03.8↑ 44.81.7↑ 66.01.4↓ 34.63.0↑ 43.72.4↑ 55.80.3↓ 37.21.6↑

CIFAR10 CIFAR100 ImageNet-100
Approach All Known Unknown All Known Unknown All Known Unknown
K-means 83.6 85.7 82.5 52.0 52.2 50.8 72.7 75.5 71.3
RankStats+ [22] (TPAMI-21) 46.8 19.2 60.5 58.2 77.6 19.3 37.1 61.6 24.8
UNO+ [19] (ICCV-21) 68.6 98.3 53.8 69.5 80.6 47.2 70.3 95.0 57.9
ORCA [13] (ICLR-22) 88.9 88.2 89.2 55.1 65.5 34.4 67.6 90.9 56.0
ORCA [13] - ViTB16 97.1 96.2 97.6 69.6 76.4 56.1 76.5 92.2 68.9
GCD [54] (CVPR-22) 91.5 97.9 88.2 70.8 77.6 57.0 74.1 89.8 66.3

InfoMax based methods
RIM [27] (NeurIPS-10) 92.4 98.1 89.5 73.8 78.9 63.4 74.4 91.2 66.0
TIM [11] (NeurIPS-20) 93.1 98.0 90.6 73.4 78.3 63.4 76.7 93.1 68.4
PIM [16] (ICCV-23) 94.7 97.4 93.3 78.3 84.2 66.5 83.1 95.3 77.0
PIM + L-Reg(Ours) 94.80.1↑ 97.6 0.2↑ 93.40.1↑ 80.82.5↑ 84.60.2↑ 73.26.7↑ 83.40.3↑ 94.01.3↓ 78.01.0↑

Table 18: GCD results: Accuracy scores across fine-grained and generic datasets of each setting. The
best results are highlighted in bold. To eliminate the impact of hyper-parameters on performance, we
also present the results of PIM with tuned hyper-parameters (termed baseline tuned). Lmain denotes
the losses used in PIM. g denotes the transformation applied to the input features.

CUB Stanford Cars Herbarium19
ID Settings All Known Unknown All Known Unknown All Known Unknown
1 Baseline (Lmain) 62.7 75.7 56.2 43.1 66.9 31.6 42.3 56.1 34.8
2 Baseline tuned (Lmain) 64.8 75.1 59.6 42.6 59.3 34.6 43.1 57.6 35.4
6 Lmain + g 64.9 76.7 58.9 44.7 65.8 34.6 43.0 57.4 35.2
9 Ours (Lmain+h+LL−Reg) 65.3 76.0 60.0 44.8 66.0 34.6 43.7 55.8 37.2

CIFAR10 CIFAR100 ImageNet-100
ID Settings All Known Unknown All Known Unknown All Known Unknown
1 Baseline (Lmain) 94.7 97.4 93.3 78.3 84.2 66.5 83.1 95.3 77.0
2 Baseline tuned (Lmain) 95.0 96.1 94.4 80.3 84.6 71.8 83.5 95.0 77.7
6 Lmain+ g 94.7 97.5 93.3 80.8 84.6 73.1 83.1 95.0 77.1
9 Ours (Lmain+g+LL−Reg) 94.8 97.6 93.4 80.8 84.6 73.2 83.4 94.0 78.0
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Table 19: MDG+GCD results: accuracy scores of each dataset. Improvements are highlighted in red.
PACS HomeOffice VLCS TerraIncognita DomainNet

Method Domain gap All Known Unknown All Known Unknown All Known Unknown All Known Unknown All Known Unknown

ERM Not 57.26 77.77 22.33 44.80 74.67 8.50 61.51 82.89 34.88 37.34 20.46 45.15 22.56 40.89 6.85
+L-Reg minimized 55.86 77.69 19.06 43.56 71.78 9.68 61.49 81.33 36.65 40.73 29.27 35.56 25.86 47.07 7.19
Improvements -1.40 -0.08 -3.27 -1.24 -2.89 1.18 -0.02 -1.55 1.77 3.38 8.81 -9.58 3.31 6.18 0.34

PIM Not 56.35 71.06 27.43 43.42 72.44 8.13 63.19 80.34 40.24 47.75 35.31 50.85 24.03 42.59 7.86
+L-Reg minimized 58.47 76.49 26.22 44.20 71.75 10.85 59.29 77.96 36.81 49.74 34.08 50.01 24.66 43.86 7.78
Improvements 2.12 5.43 -1.21 0.78 -0.70 2.72 -3.90 -2.38 -3.43 2.00 -1.23 -0.84 0.63 1.27 -0.08

MIRO Minimized 56.83 85.62 24.85 48.28 80.61 9.03 61.53 82.72 35.03 50.22 39.92 49.45 31.49 55.44 10.57
+L-Reg 68.44 97.77 25.64 53.59 79.50 22.21 62.07 83.18 35.21 44.85 40.87 38.42 31.58 54.97 10.98
Improvements 11.61 12.14 0.79 5.31 -1.11 13.18 0.54 0.46 0.18 -5.37 0.95 -11.03 0.10 -0.47 0.41

GMDG Sufficiently 58.33 91.46 10.18 48.85 81.41 9.22 61.36 83.31 33.75 40.02 32.38 40.07 31.15 55.17 10.18
+L-Reg minimized 67.82 91.86 31.33 51.96 79.74 18.15 62.32 82.77 36.09 45.86 39.77 41.55 31.75 55.18 11.30
Improvements 9.50 0.40 21.15 3.11 -1.68 8.92 0.97 -0.54 2.34 5.83 7.39 1.49 0.60 0.01 1.13

Table 20: MDG+GCD results: accuracy scores of each domain in PACS dataset.
PACS Avg art_painting cartoon photo sketch
Method All Known Unknown All Known Unknown All Known Unknown All Known Unknown All Known Unknown
ERM 57.26 77.77 22.33 47.77 90.00 0.00 56.08 83.49 20.47 59.13 47.35 68.85 66.06 90.23 0.00
with our reg 55.86 77.69 19.06 45.33 85.40 0.00 50.91 90.09 0.00 63.70 48.51 76.23 63.52 86.75 0.00
Improvements -1.40 -0.08 -3.27 -2.44 -4.60 0.00 -5.17 6.60 -20.47 4.57 1.16 7.38 -2.54 -3.48 0.00
PIM 56.35 71.06 27.43 46.80 55.17 37.32 50.37 89.15 0.00 62.05 49.50 72.40 66.19 90.40 0.00
with our reg 58.47 76.49 26.22 46.74 88.05 0.00 56.50 78.77 27.57 64.30 48.51 77.32 66.35 90.62 0.00
Improvements 2.12 5.43 -1.21 -0.06 32.87 -37.32 6.13 -10.38 27.57 2.25 -0.99 4.92 0.16 0.22 0.00
MIRO 56.83 85.62 24.85 51.86 97.70 0.00 56.45 99.91 0.00 48.35 75.17 26.23 70.64 69.72 73.16
with our reg 68.44 97.77 25.64 68.46 97.82 35.24 61.51 98.02 14.09 72.60 98.84 50.96 71.18 96.39 2.26
Improvements 11.61 12.14 0.79 16.60 0.11 35.24 5.06 -1.89 14.09 24.25 23.68 24.73 0.54 26.67 -70.90
GMDG 58.33 91.46 10.18 51.92 97.82 0.00 54.80 96.98 0.00 56.14 74.83 40.71 70.45 96.22 0.00
with our reg 67.82 91.86 31.33 79.26 98.05 58.00 68.18 99.25 27.82 52.40 74.50 34.15 71.47 95.66 5.34
Improvements 9.50 0.40 21.15 27.33 0.23 58.00 13.38 2.26 27.82 -3.74 -0.33 -6.56 1.02 -0.56 5.34

Table 21: MDG+GCD results: accuracy scores of each domain in HomeOffice dataset.
HomeOffice Avg Art Clipart Product Real World
Method All Known Unknown All Known Unknown All Known Unknown All Known Unknown All Known Unknown
ERM 44.80 74.67 8.50 45.26 72.68 3.26 37.94 64.48 10.19 46.71 78.74 9.87 49.28 82.80 10.68
with our reg 43.56 71.78 9.68 41.30 62.72 8.47 35.91 60.78 9.90 48.34 78.95 13.14 48.68 84.67 7.22
Improvements -1.24 -2.89 1.18 -3.96 -9.96 5.22 -2.03 -3.70 -0.29 1.63 0.21 3.27 -0.60 1.88 -3.46
PIM 43.42 72.44 8.13 42.53 68.09 3.39 35.77 56.75 13.83 47.27 77.58 12.41 48.11 87.35 2.90
with our reg 44.20 71.75 10.85 44.64 68.85 7.56 35.48 60.90 8.90 47.49 76.32 14.35 49.17 80.92 12.59
Improvements 0.78 -0.70 2.72 2.11 0.77 4.17 -0.29 4.15 -4.92 0.23 -1.26 1.94 1.06 -6.43 9.69
MIRO 48.28 80.61 9.03 50.57 79.57 6.13 39.55 67.23 10.60 51.35 86.16 11.32 51.66 89.50 8.09
with our reg 53.59 79.50 22.21 54.02 77.87 17.47 43.87 70.98 15.52 59.94 83.95 32.32 56.54 85.21 23.52
Improvements 5.31 -1.11 13.18 3.45 -1.70 11.34 4.32 3.75 4.92 8.59 -2.21 21.00 4.88 -4.29 15.43
GMDG 48.85 81.41 9.22 51.60 81.96 5.08 40.89 69.30 11.19 51.15 87.53 9.32 51.75 86.87 11.30
with our reg 51.96 79.74 18.15 52.83 79.15 12.52 43.59 69.02 16.99 56.31 83.11 25.48 55.11 87.67 17.59
Improvements 3.11 -1.68 8.92 1.24 -2.81 7.43 2.69 -0.28 5.80 5.15 -4.42 16.16 3.36 0.80 6.30

Table 22: MDG+GCD results: accuracy scores of each domain in VLCS dataset.
VLCS Avg Caltech101 LabelMe SUN09 VOC2007
Method All Known Unknown All Known Unknown All Known Unknown All Known Unknown All Known Unknown
ERM 61.51 82.89 34.88 82.07 74.87 85.85 50.54 92.01 4.85 62.07 95.15 11.38 51.35 69.51 37.45
with our reg 61.49 81.33 36.65 76.59 75.13 77.36 50.64 91.02 6.13 60.70 92.83 11.48 58.02 66.35 51.63
Improvements -0.02 -1.55 1.77 -5.48 0.26 -8.49 0.09 -0.99 1.29 -1.37 -2.33 0.10 6.66 -3.16 14.18

PIM 63.19 80.34 40.24 80.39 72.05 84.77 53.84 91.74 12.07 62.22 94.21 13.21 56.31 63.36 50.92
with our reg 59.29 77.96 36.81 72.61 73.33 72.24 53.98 90.75 13.45 56.85 83.64 15.81 53.72 64.13 45.75
Improvements -3.90 -2.38 -3.43 -7.77 1.28 -12.53 0.14 -0.99 1.38 -5.37 -10.57 2.60 -2.59 0.77 -5.16

MIRO 61.53 82.72 35.03 82.77 74.10 87.33 51.81 91.83 7.72 62.22 95.59 11.09 49.32 69.34 33.99
with our reg 62.07 83.18 35.21 82.51 74.62 86.66 49.51 94.43 0.00 60.97 94.65 9.35 55.31 69.00 44.84
Improvements 0.54 0.46 0.18 -0.27 0.51 -0.67 -2.31 2.60 -7.72 -1.26 -0.94 -1.74 6.00 -0.34 10.85

GMDG 61.36 83.31 33.75 82.51 74.87 86.52 49.93 95.24 0.00 59.86 93.96 7.62 53.13 69.17 40.85
with our reg 62.32 82.77 36.09 84.54 74.62 89.76 49.98 92.01 3.66 61.39 95.03 9.84 53.39 69.43 41.11
Improvements 0.97 -0.54 2.34 2.03 -0.26 3.23 0.05 -3.23 3.66 1.52 1.07 2.22 0.26 0.26 0.26

Table 23: MDG+GCD results: accuracy scores of each domain in TerraIncognita dataset.
TerraIncognita Avg art_painting cartoon photo sketch
Method All Known Unknown All Known Unknown All Known Unknown All Known Unknown All Known Unknown
ERM 37.34 20.46 45.15 46.51 1.25 57.07 39.88 28.22 44.91 29.41 24.65 40.25 33.59 27.70 38.36
with our reg 40.73 29.27 35.56 52.94 0.14 65.27 39.26 33.76 41.64 40.24 57.45 1.03 30.47 25.71 34.32
Improvements 3.38 8.81 -9.58 6.43 -1.11 8.20 -0.62 5.53 -3.27 10.83 32.80 -39.22 -3.12 -1.99 -4.04

PIM 47.75 35.31 50.85 50.20 28.97 55.15 56.22 19.71 71.99 46.69 47.94 43.86 37.88 44.64 32.40
with our reg 49.74 34.08 50.01 53.94 34.12 58.57 59.87 19.58 77.26 47.07 62.75 11.35 38.09 19.88 52.87
Improvements 2.00 -1.23 -0.84 3.74 5.15 3.41 3.65 -0.13 5.28 0.38 14.82 -32.51 0.21 -24.76 20.47

MIRO 50.22 39.92 49.45 52.23 51.25 52.46 55.54 14.73 73.16 48.93 62.89 17.13 44.19 30.79 55.06
with our reg 44.85 40.87 38.42 56.26 22.42 64.16 31.27 23.75 34.52 54.03 65.11 28.79 37.84 52.18 26.20
Improvements -5.37 0.95 -11.03 4.03 -28.83 11.71 -24.26 9.03 -38.64 5.10 2.22 11.66 -6.35 21.39 -28.86

GMDG 40.02 32.38 40.07 36.70 35.65 36.94 36.69 20.86 43.53 49.46 61.76 21.47 37.24 11.24 58.33
with our reg 45.86 39.77 41.55 51.89 38.16 55.09 41.30 22.05 49.61 50.47 65.29 16.72 39.77 33.59 44.79
Improvements 5.83 7.39 1.49 15.19 2.51 18.15 4.61 1.19 6.08 1.01 3.53 -4.75 2.53 22.34 -13.54
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Table 24: MDG+GCD results: accuracy scores of each domain in DomainNet dataset.
DomainNet Avg clipart info painting
Method All Known Unknown All Known Unknown All Known Unknown All Known Unknown
ERM 22.56 40.89 6.85 31.04 58.32 7.15 17.94 34.71 6.85 30.59 51.82 9.34
with our reg 25.86 47.07 7.19 32.03 58.43 8.91 18.17 34.31 7.50 31.93 52.58 11.24
Improvements 3.31 6.18 0.34 0.99 0.11 1.76 0.23 -0.41 0.65 1.33 0.76 1.90

PIM 24.03 42.59 7.86 32.01 57.38 9.80 18.80 33.56 9.03 22.22 36.62 7.80
with our reg 24.66 43.86 7.78 31.91 57.76 9.26 16.99 30.77 7.89 28.17 45.94 10.37
Improvements 0.63 1.27 -0.08 -0.11 0.38 -0.54 -1.80 -2.79 -1.15 5.95 9.32 2.57

MIRO 31.49 55.44 10.57 40.13 67.55 16.11 25.84 48.53 10.84 37.89 62.45 13.29
with our reg 31.58 54.97 10.98 40.61 66.72 17.75 25.58 45.83 12.19 36.74 62.29 11.15
Improvements 0.10 -0.47 0.41 0.49 -0.83 1.64 -0.26 -2.70 1.35 -1.15 -0.16 -2.14

GMDG 31.15 55.17 10.18 40.38 70.69 13.84 24.96 46.50 10.72 36.29 59.80 12.75
with our reg 31.75 55.18 11.30 40.91 68.17 17.05 26.60 49.11 11.71 36.82 60.76 12.85
Improvements 0.60 0.01 1.13 0.53 -2.52 3.21 1.63 2.61 0.99 0.53 0.96 0.10
DomainNet Avg quickdraw real sketch
Method All Known Unknown All Known Unknown All Known Unknown All Known Unknown
ERM - - - 8.88 12.83 4.91 17.88 31.20 4.10 29.01 56.45 8.76
with our reg - - - 9.04 14.73 3.31 34.34 63.94 3.69 29.68 58.41 8.49
Improvements - - - 0.16 1.91 -1.59 16.45 32.74 -0.41 0.67 1.96 -0.27

PIM - - - 9.92 14.73 5.09 29.09 53.88 3.42 32.12 59.35 12.03
with our reg - - - 9.94 15.11 4.74 30.26 56.13 3.47 30.68 57.43 10.95
Improvements - - - 0.02 0.38 -0.35 1.17 2.25 0.05 -1.44 -1.93 -1.08

MIRO - - - 8.06 12.12 3.98 42.19 75.49 7.72 34.83 66.51 11.46
with our reg - - - 9.36 15.73 2.95 42.00 74.36 8.50 35.23 64.89 13.34
Improvements - - - 1.30 3.61 -1.03 -0.20 -1.14 0.78 0.40 -1.62 1.88

GMDG - - - 7.43 11.83 3.01 42.84 75.27 9.27 35.01 66.95 11.46
with our reg - - - 9.11 13.51 4.70 42.63 74.42 9.72 34.44 65.13 11.80
Improvements - - - 1.68 1.67 1.69 -0.21 -0.84 0.45 -0.58 -1.81 0.34
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Figure 7: GradCAM visualizations: Baseline is GMDG. The used dataset is PACS. The model
is trained under uDG+GCD setting with and without L-Reg, respectively. It can be seen that for
the known class ‘dog,’ the model trained with L-Reg extracts the area around the nose area for
classification across all seen and unseen domains.
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Figure 8: GradCAM visualizations: Baseline is GMDG. The used dataset is PACS. The model is
trained under uDG+GCD setting with and without L-Reg, respectively. It can be seen that for the
known class ‘elephant,’ the model trained with L-Reg extracts the shape of long noses, teeth, and big
ears for classification across all seen and unseen domains. The compromise of the known sets can be
seen in the sketch domain, where those features are not significant.
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Figure 9: GradCAM visualizations: Baseline is GMDG. The used dataset is PACS. The model
is trained under uDG+GCD setting with and without L-Reg, respectively. It can be seen that for
the known class ‘giraffe,’ the model trained with L-Reg extracts the feature of the long necks for
classifying across all seen and unseen domains.

29



Unseen domain: Art painting

W
ith

ou
t 

L-
R

eg
W

ith
 

L-
R

eg

Seen domain: Photo

W
ith

ou
t 

L-
R

eg
W

ith
 

L-
R

eg
W

ith
ou

t 
L-

R
eg

W
ith

 
L-

R
eg

Seen domain: Sketch

W
ith

ou
t 

L-
R

eg
W

ith
 

L-
R

eg

Seen domain: Cartoon

Figure 10: GradCAM visualizations: Baseline is GMDG. The used dataset is PACS. The model is
trained under uDG+GCD setting with and without L-Reg, respectively. It can be seen that for the
known class ‘guitar,’ the model trained with L-Reg extracts the features of the necks and the strings
of the guitar for classification across all seen and unseen domains.
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Figure 11: GradCAM visualizations: Baseline is GMDG. The used dataset is PACS. The model is
trained under uDG+GCD setting with and without L-Reg, respectively. It can be seen that for the
unknown class ‘horse,’ the model trained with L-Reg extracts the features of the overall outline
shapes of horses for classification across all seen and unseen domains.
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Figure 12: GradCAM visualizations: Baseline is GMDG. The used dataset is PACS. The model
is trained under uDG+GCD setting with and without L-Reg, respectively. It can be seen that for
the unknown class ‘person,’ the model trained with L-Reg extracts the features of human faces for
classification across all seen and unseen domains. The compromise of the known sets can be seen in
the sketch domain, where those faces are not drawn.
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