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Abstract. The activation function plays a crucial role in model optimi-
sation, yet the optimal choice remains unclear. For example, the Sigmoid
activation is the de-facto activation in balanced classification tasks, how-
ever, in imbalanced classification, it proves inappropriate due to bias to-
wards frequent classes. In this work, we delve deeper in this phenomenon
by performing a comprehensive statistical analysis in the classification
and intermediate layers of both balanced and imbalanced networks and
we empirically show that aligning the activation function with the data
distribution, enhances the performance in both balanced and imbalanced
tasks. To this end, we propose the Adaptive Parametric Activation (APA)
function, a novel and versatile activation function that unifies most com-
mon activation functions under a single formula. APA can be applied
in both intermediate layers and attention layers, significantly outper-
forming the state-of-the-art on several imbalanced benchmarks such as
ImageNet-LT, iNaturalist2018, Places-LT, CIFAR100-LT and LVIS and
balanced benchmarks such as ImageNet1K, COCO and V3DET. The
code is available at https://github.com/kostas1515/AGLU.
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1 Introduction

Image recognition has witnessed tremendous progress over the last years due to
the use of deep learning, large image datasets such as ImageNet1K [17] and ad-
vances in model architectures [19,28], learning algorithms [24,25,69], activation
layers [21,27,31] and normalisation techniques [4, 40]. In this work, we focus on
the activation layer of the network.

In balanced image classification works, it was empirically shown that if the
activation function is close to the real data distribution then the model con-
verges faster because the learning objective becomes easier [27, 31]. Based on
this, the GELU [31] and the PRELU [27] were proposed as alternatives to the
commonly used RELU [21] and they were utilised inside the model’s layers to

ar
X

iv
:2

40
7.

08
56

7v
1 

 [
cs

.C
V

] 
 1

1 
Ju

l 2
02

4

https://orcid.org/0000-0002-2622-8615
https://orcid.org/0000-0002-3709-6216
https://orcid.org/0000-0002-1449-211X
https://orcid.org/0000-0003-4760-0372
https://github.com/kostas1515/AGLU


2 K. P. Alexandridis et al.

activate the intermediate features of the network. Similarly, in imbalanced im-
age classification, many works have empirically shown that the Sigmoid or the
Softmax activation functions, are inappropriate and using another activation
function increases the performance [1, 34, 63, 71]. Based on that, the Gumbel
activation [1] and the Balanced Softmax [71] activation were proposed and they
were used inside the classification layer to predict the classes. In contrast to
balanced classification, these works focused only on the classification layer and
they disregarded the importance of the intermediate activations. To this end,
there is no principled way of choosing the right activation function, and usually,
practitioners use the best activation function, according to the task, through
cross-validation or parameter-tuning.

In this work, we focus on this problem. First, we theoretically show that the
activation function enforces a prior belief of how the data is distributed and
therefore it acts as an initialisation point. In practise, a good initialisation point
enhances the convergence, therefore, having an appropriate activation function
can increase the performance. Second, we study the impact of the activation
function on balanced and imbalanced classification from two perspectives, i.e.
the classification layer, and the intermediate layers.

Our findings show that the classification logit distribution of a pretrained
model heavily depends on the degree of data imbalance. For example, in balanced
training, the classification logits align better with the Logistic distribution, while
in imbalanced learning they align better with the Gumbel distribution. Regard-
ing the intermediate layers, we study the channel attention layer as an example
and we find that it is also affected by the degree of data imbalance. We find that,
in balanced learning, the channel attention is robust for all classes, however in
imbalanced training the channel attention enhances more the frequent classes
than the rare classes.

To this end, we empirically show that the commonly used Sigmoid activation
function cannot generalise for both balanced and imbalanced learning, because
it is non-parametric and does not align with the imbalanced data distribution.
Motivated by this, we develop a novel Adaptive Parametric Activation (APA)
function. APA allows the model to align its activations to both the balanced and
imbalanced data distributions and reach great performance in both tasks. APA
has several benefits, it unifies most previous activations functions such as the
Sigmoid, the Gumbel [1], the RELU [21], the SiLU [31] and the GELU [31] under
a common formula. Also, it uses two learnable parameters that allow the network
to select the best activation function during optimisation enlarging the model’s
capacity. Moreover, our APA is versatile, it can be used as a direct replacement
to RELU, or it can replace the Sigmoid activation function inside the attention
mechanism boosting the performance significantly and consistently. Finally, APA
can be generalised to both imbalanced and balanced classification and detection
tasks and surpass the state-of-the-art (SOTA). Our contributions are:

– We demonstrate the importance of the activation function in balanced and
imbalanced data distributions, through statistical analysis;
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– We propose the novel APA function that unifies most common activation
functions under a single formula;

– We have validated the efficacy of APA on a range of long-tailed benchmarks,
including ImageNet-LT [58], iNaturalist18 [84], Places-LT [58], CIFAR100-
LT [8], LVIS [22] and balanced benchmarks such as ImageNet1k [17], COCO
[55] and V3Det [88] largely surpassing the state of the art.

2 Preliminaries

Activation function. First, we show the importance of the activation function
in model optimisation, following [1]. Let’s consider the example of binary classi-
fication, where z is the input, y ∈ {0, 1} is the target class and f(z) = WT z + b
is the classification network. The target class and the input z are related as:

y =

{
1, if f(z) + ϵ > 0

0, otherwise
(1)

where ϵ is the error, that is a random variable and it is distributed according to
the real data distribution. In this example, the classification boundary is set to
0, however, it can be adjusted by the network’s bias b during optimisation. The
probability of the class P (y = 1) is:

P (y = 1) = P (f(z) + ϵ > 0) = P (ϵ > −f(z)) = 1− F (−f(z)) (2)

where F is the cumulative distribution function. During network optimisation,
if one chooses the Sigmoid activation function σ(z) = (1+ exp(−z))−1, then the
prediction ȳ is obtained using ȳ = σ(f(z)) and the probability P (ȳ = 1) is:

P (ȳ = 1) =
1

1 + exp(−f(z))
= Flogistic(f(z); 0, 1) = 1− Flogistic(−(f(z); 0, 1)

(3)
Comparing Eq. 2 and Eq. 3, it is shown that when we use the Sigmoid, we assume
that the error term ϵ follows the standard Logistic distribution. If we use Gumbel
activation then we assume that the error follows the Gumbel distribution [1] and,
in general, any activation function assumes a different distribution of ϵ.

For this reason, the activation function can be seen as an initialisation point,
or a prior belief of how the real data are distributed. If the prior is good, then
the learning objective becomes easier and the performance is increased as it was
shown empirically by many past studies [1, 21,27,77].

2.1 Balanced versus Imbalanced learning

In this subsection, we perform a statistical analysis on the empirical distributions
of the logits and the intermediate activations, to understand the importance of
the activation function in balanced and imbalanced learning.
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Fig. 1: Top: In imbalanced learning, the logit distributions are more skewed and they
have a smaller KS distance to the Gumbel than the Logistic distribution as shown in
(d). Bottom: In balanced learning, the logit distributions are less skewed and they align
better with the Logistic, than the Gumbel distribution, as shown in (h).

Classification logits. We train a MaskRCNN [26] ResNet50 [28] on LVIS
dataset [22], which is a highly imbalanced object detection dataset containing
1203 classes. After the model has converged, we perform inference and store the
predicted classification logits, i.e., f(zy) for every class y. Next, we perform his-
togram binning on the logits and we visualise the empirical distributions for the
rare class puffin and the frequent class glove in Fig. 1 (b) and (c) respectively.

The rare class has a negative average logit value, because it is dominated
by the frequent classes, which have higher average logit values as shown in (c).
Regarding its distribution, it resembles the Gumbel distribution, because it has
a heavy right tail and it is skewed. To quantify that, we calculate the statistical
distance, using the Kolmogorov-Smirnov (KS) test [62], between all empirical
class distributions and the Gumbel and Logistic theoretical distributions, shown
in (a) and (e). As shown in (d), most classes have smaller distance to the Gum-
bel distribution. We repeat this test, using ResNet50 trained on the balanced
ImageNet1K. As shown in (f) and (g), the classification logits are different this
time, for example most average logit values are centered around zero and they
are less skewed. In general, the logit distributions are closer to the logistic dis-
tribution as shown in (h). This explains why the Sigmoid activation achieves
better performance in the balanced classification task and worse performance in
imbalanced classification [1, 34, 63, 71]. Next, we show that data imbalance also
affects the intermediate layers, by studying the channel attention as an example.
Attention layer. Attention mechanism for input X ∈ RH×W×C re-weights the
input features X by applying an attention function A(X), i.e., X ′ = A(X)⊗X.
For example, in Channel Attention (CA) [37], X ′ = σ(MLP(GAPc(X))) ⊗ X,
where GAPc ∈ R1×1×C is Global Average Pooling and ⊗ is the element-wise
product. In this case, the attention function is ACA(X) = σ(MLP(GAPc(X))).
Balanced vs Imbalanced channel attention. We train SE-ResNet50 [37]
models (SE-R5) on balanced ImageNet-1K and imbalanced ImageNet-LT. After
training the models, we analyse the average channel attention signals for a ran-
dom batch of 128 test images. Fig. 2-a shows the output ACA, in the first layer
of SE-R50, Fig. 2-b shows the output, in the last layer, and Fig. 2-c shows the
variance of ACA across all layers. As shown in Fig. 2-a, the attention is simi-
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Fig. 2: Visualisations of channel attention (A). In (a) the attention signals when train-
ing with imbalanced ImageNet and balanced ImageNet have similar variance in the
first layer but completely different in the last most semantic layer in (b). The variance
with ImageNet-LT training drops to zero for deeper layers as shown in (c), because
the attention promotes only few frequent classes. In (d) and (e) the entropy of channel
attention is smaller for the rare classes than the frequent classes in both i-Naturalist18
and ImageNet-LT training. In (f) and (g) the channel responses are smaller for the rare
classes than the frequent ones for i-Naturalist18 and ImageNet-LT respectively.

lar in the first layer and it is different in the last layer, as shown in Fig. 2-b.
As displayed in Fig. 2-c, the attention variance with ImageNet1K (blue-curve) is
larger and the attention reweights all channels and affects all classes. In contrast,
for the imbalanced case (orange-curve), the attention signal has small variance,
indicating that it is biased to some classes.
Layer-wise analysis. This phenomenon is most prevalent in the last attention
layer, which is the most semantic. To quantify which attention layers are affected
the most, we use entropy as a measure of signal complexity. Since the channel
attention produces a probabilistic weighting vector via the Sigmoid activation,
we calculate the total entropy of channel attention, for a layer l, as the sum of
the binary channel distribution entropies as follows:

El = − 1

C

C∑
i=1

[(ACA(Xl) log(ACA(Xl)) + (1−ACA(Xl) log(1−ACA(Xl))] (4)

When the layer’s entropy is closer to zero, the channel attention signals are closer
to 1 and they do not affect the original features for that layer, i.e., X ′ = 1⊗X. If
the layer’s attention entropy is closer to one, then the channel attention signals
are informative, as they affect the signal i.e., X ′ = A(X)⊗X.

To investigate the complexity of the attention signal, we propagate two
batches of 64 test images that contain only frequent and only rare classes re-
spectively, through the pretrained SE-R50 and measure the attention entropy of
ACA. In Fig. 2 (d) and (e), the average entropy is similar for both frequent and
rare classes for all layers except for the last layer which is the most semantic. The
blue curve, that corresponds to rare class channel attention, has lower entropy
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Fig. 3: Our APA unifies most activation functions under the same formula.

than the orange curve that corresponds to frequent class channel attention in the
last layer for both i-Naturalist-18 and ImageNet-LT. This indicates that channel
attention produces simpler signals for the rare classes and more complex signals
for the frequent classes. Finally, in (f) and (g), we show that the average channel
responses are smaller when the inputs are rare classes, than frequent classes,
which explains why the network cannot model the rare classes effectively. In
conclusion, this analysis shows that data imbalance affects the quality of the
activations inside the intermediate layers and it highlights the limitation of the
Sigmoid activation to model the rare classes.

3 Method

As shown in the previous section, the degree of data imbalance affects both the
classification logits and the intermediate layers. While it is possible to perform
a statistical analysis and select the appropriate activation for the classification
layer, this is difficult to do for all layers of the network, because first, the data
distributions inside the layers dynamically change during training [4, 40], and
secondly, there is no one-to-one correspondence between classes and intermediate
channels, which hinders attribution. For this reason, we propose the Adaptive
Parametric Activation (APA):

ηad(z, κ, λ) = (λ exp(−κz) + 1)
1

−λ . (5)

APA can adjust its activation rate, dynamically, according to the input’s distri-
bution using two parameters κ and λ, that can be learned during optimisation.
κ ∈ R is the gain parameter that controls the function’s sensitivity. λ ∈ (0,∞)
is the asymmetrical parameter that controls the function’s response rate to pos-
itive and negative inputs, allowing the model to have different learning degrees
when the input is positive or negative. This function is also known as Richard’s
curve [73] and it unifies the most common activation functions.

For example, if κ = λ = 1 then APA becomes the Sigmoid activation that
has a symmetric response rate for both positive and negative inputs and it is
successful for balanced classification tasks. If κ = 1, λ −→ 0 then APA becomes
the Gumbel activation that has an asymmetric response rate and it is successful
for long-tailed instance segmentation tasks [1]. This behaviour is shown in Fig. 3
left and middle. Based on Eq. 5, we also define the Adaptive Generalised Linear
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Fig. 4: AGLU derivatives with respect to κ (top), λ (middle) and z (bottom).

Unit (AGLU):

AGLU(z, κ, λ) = z · ηad(z, κ, λ) (6)

AGLU has many interesting properties, for example, if κ = λ = 1 then
AGLU becomes the Sigmoid Linear Unit (SiLU) [31]. If κ = 1.702, λ = 1, then
it becomes the Gaussian Error Linear Unit (GELU) [31]. If κ −→ ∞, then AGLU
becomes ReLU [21] and if λ −→ ∞, then AGLU becomes the identity function,
as shown in Fig. 3-right.

In other words, the κ parameter controls the RELU-ness and the λ parameter
controls the leakage. Also, AGLU could be seen as a smoother version of PRELU,
because AGLU(z, 1, λ −→ ∞) = PRELU(z, 1). We compare AGLU to most
common activation functions, in more detail, in Table 1. The derivative of AGLU
with respect to κ is:

∂AGLU(z, κ, λ)

∂κ
= z2 · ηad(z, κ, λ)

λ+ exp(κz)
(7)

the derivative of AGLU with respect to λ is:

∂AGLU(z, κ, λ)

∂λ
= − z

λ
· ηad(z, κ, λ)

λ+ exp(κz)
(8)

and the derivative of AGLU with respect to z is:

∂AGLU(z, κ, λ)

∂z
= κz · ηad(z, κ, λ)

λ+ exp(κz)
+ ηad(z, κ, λ) (9)

The proofs of the derivatives are shown in the Appendix. The derivatives of
AGLU are shown in Fig. 4. Using various κ and λ combinations AGLU has
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Table 1: Comparison of different activation functions.

Name Formula Range
RELU [21] η(z) = max(0, z) (0,∞)

Gaussian Unit [31] η(z) = zσ(1.702z) (−0.17,∞)
Sigmoid Unit [31] η(z) = zσ(z) (−0.28,∞)

Mish [64] η(z) = z tanh(ln(1 + exp(z)) (−0.31,∞)
PRELU [27] η(z, κ) = max(0, z) + κmin(0, z) (−∞,∞)

ELU [11] η(z, κ) = max(0, z) + κ(exp(min(0, z))− 1) (−κ,∞)

AGLU (ours) η(z, κ, λ) = z · (λ exp(−κz) + 1)
1

−λ (−∞,∞)

drastically different behaviour and this enhances the capacity of the network
and achieves good performance as shown in the experiments.

In the end, our APA is versatile because it can be used not only as an error
unit, replacing RELU, but also as an activation function inside the attention
mechanism, replacing the Sigmoid activation.

4 Experiment Setup

Datasets. We use CIFAR100-LT [8] with exponential imbalance factor of 100
and 10, ImageNet-LT [58], Places-LT [58] and iNaturalist2018 [84] following the
common long-tailed classification protocol. We report our results using top-1 ac-
curacy on the balanced test sets, to fairly evaluate all classes. For ImageNet-LT,
we split the categories according to their class frequency in the training set, into
Many (>100 images), Medium (20∼100 images) and Low (<20 images) and do
per-group evaluation following [58]. Also, we use the LVISv1 [22] instance seg-
mentation dataset, which has 100K training images and 1203 classes, that are
grouped according to Frequent (>100 images), Common (10∼100 images) and
Rare (<10 images) classes. For this dataset, we report mask average precision
AP , bounding box average precision AP b and AP r, AP c and AP f which is mask
average precision for rare, common and frequent classes respectively. Regarding
balanced training, we perform experiments on ImageNet1K [17], COCO [55] and
the recently proposed V3Det [88], which is a challenging large scale detection
dataset with 13K classes and 243K images. We report top-1 accuracy for Ima-
geNet1K, AP b and APm for COCO and AP b for V3Det.
Implementation Details We primarily use Squeeze and Excite [37] as our base-
line with ResNet-32 [28] for CIFAR-LT, ResNet50 for iNaturalist, ResNet50 and
ResNext50 [100] for ImageNet-LT and ResNet152 for Places-LT, which has been
pretrained on ImageNet1K according to [58]. For LVIS, we use SE-Resnets with
MaskRCNN [26], FPN [54], Normalised Mask [89], RFS sampler [22] and GOL
loss [1] as a baseline. For V3Det, we use SE-ResNet50 with FasterRCNN [72],
FPN and Wrapped Cauchy classifier [23]. All baselines use bag of tricks [109],
and strong training techniques that we discuss and ablate in the Appendix. Our
motivation for using bag of tricks is two-fold, first, it pushes the performance
even further and secondly, it showcases the generalisability of our work.

For our attention models, we replace the Sigmoid with APA, and we further
use LayerNorm [4] and attention dropout [32] with p = 0.1, for all datasets except
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Table 2: Top-1 accuracy (%) on ImageNet-LT test set. E denotes ensemble.

Method Backbone Many Medium Few Average
MiSLAS [111]

R50 [28]

61.7 51.3 35.8 52.7
KCL [43] 61.8 49.4 30.9 51.5
TSC [53] 63.5 49.7 30.4 52.4
RIDE (3E)+CMO [68] 66.4 53.9 35.6 56.2
DOC [86] 65.1 52.8 34.2 55.0
CC-SAM [116] 61.4 49.5 37.1 52.4
Our Baseline

SE-R50 [37]
66.2 53.1 37.1 56.0

APA* (ours) 67.5 54.3 39.3 57.4
APA* + AGLU (ours) 68.3+1.9 54.8+0.9 39.4+2.1 57.9+1.7

RIDE (4E) [95]

X50 [100]

68.2 53.8 36.0 56.8
SSD [52] 66.8 53.1 35.4 56.0
BCL [117] 67.9 54.2 36.6 57.1
CNT [67] 63.2 52.1 36.9 54.2
ALA [110] 64.1 49.9 34.7 53.3
ResLT [13] 63.6 55.7 38.9 56.1
ABC-Norm [36] 60.7 49.7 33.1 51.7
RIDE (3E)+CMO+CR [60] 67.3 54.6 38.4 57.4
LWS+ImbSAM [115] 63.2 53.7 38.3 55.3
Our Baseline

SE-X50 [37]
67.9 53.0 37.7 56.7

APA* (ours) 68.9 55.4 39.4 58.4
APA* + AGLU (ours) 69.8+1.6 55.70.0 41.1+2.2 59.1+1.7

iNaturalist. We denote this configuration as APA* in our Tables and we ablate
its components. For our AGLU models, we simply use it in-place of RELU.

5 Results

Long-tailed Classification Benchmark. We compare APA* against ensem-
ble and fusion models [7,13,50,95], margin adjustment [34,108,110], contrastive
learning [43, 53, 91], knowledge transfer [67], knowledge distillation [29, 52], de-
coupled methods [2,36,108,111], sharpness aware minimisation [60,115,116] and
data augmentation [68,111].

On ImageNet-LT, as shown in Table 2, our baseline models with bag of
tricks reach the state-of-the-art (SOTA) for both SE-ResNet50 (R50) and SE-
ResNeXt50 (X50). We want to point out that most performance comes from the
bag of tricks and not the SE module, as shown, in detail in the Appendix.

Our APA* outperforms the SE-R50 baseline by 1.4 percentage points (pp)
on average, by 1.3pp on frequent categories, 1.2pp on medium and 2.2pp on
few classes. Most importantly, it increases the performance of both frequent
and rare classes, which is a unique advantage compared to the previous works.
Additionally, our APA* exceeds RIDE with 3 Experts (3E) and CMO [68] by
1.2pp on average and by 3.7pp on the rare classes using a single model. When
AGLU is combined, it pushes the performance of APA* R50, by 0.5pp on average,
by 0.8pp on the frequent, 0.5pp on the medium and 0.1pp on the few classes.
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Table 3: (a) Results of AGCA and AGLU for iNaturalist and Places-LT. (b) Results
of AGCA and AGLU for CIFAR100-LT with imbalance 10 and 100.

Method iNat18 PlacesLT
DisAlign [108] 70.6 39.3
MisLAS [111] 71.6 40.4
LADE [34] 70.0 38.8
ALA [110] 70.7 40.1
TSC [53] 69.7 -
CNT [67] - 39.2
WD+MaxNorm [3] 70.2 -
DOC [86] 71.0 -
BCL [117] 71.8 -
ResLT [13] 70.5 39.8
IIF [2] - 40.2
ABC Norm [36] 71.4 -
LWS+ImbSAM [115] 71.1 -
CC-SAM [116] 70.9 40.6
AREA [10] 68.4 -
Our Baseline with SE 71.3 40.5
APA (ours) 72.3 41.3
APA +AGLU (ours) 74.8+3.0 42.0+1.4

Method 10 100
BALMS [71] 63.0 50.8
RIDE (4E) [95] - 49.4
ACE (4E) [7] - 49.6
DiVE [29] 62.0 45.4
SSD [52] 62.3 46.0
MisLas [111] 63.2 47.0
HSC [91] 63.1 46.7
LADE [34] 61.7 45.4
ResLT (3E) [13] 63.7 49.7
TLC (4E) [50] - 49.8
TSC [53] 59.0 43.8
RIDE+CMO [68] 60.2 50.0
CC-SAM [116] - 50.8
RIDE+CMO+CR [60] 61.4 50.7
AREA [10] 60.8 48.9
Our Baseline with SE 65.2 50.9
APA (ours) 65.7 51.9
APA+AGLU(ours) 66.8+1.6 52.3+1.4

(a) (b)

APA* with X50 increases the SE-X50 baseline by 1.7pp on average, 1.0pp the
many classes, 1.4pp the medium classes and 1.7pp the few classes. Furthermore, it
outperforms RIDE(3E)+CMO+CR [60] by 1.0pp on average, 1.6pp on frequent
classes, 0.8 on common and 1.0pp on rare classes using a single model. When
AGLU is combined to APA* X50, it adds 0.7pp on average, 0.9pp on the frequent
categories, 0.3pp on the medium, and 1.7pp on the few classes.

On iNaturalist18, Places-LT and CIFAR100-LT, our SE baselines with bag
of tricks again reach the SOTA, as shown in Table 3-a and b.

Regarding, iNaturalist18, APA* improves the SE-baseline by 1.0pp. It also
outperforms BCL [117] by 0.5pp, ResLT by 1.8pp and LWS+ImbSAM [115] by
1.2pp. AGLU further enhances the performance by a staggering 3.5pp compared
to SE-baseline, which is a significant increase.

On Places-LT, our APA* also increases the performance of the SE baseline
by 0.8pp. Moreover, it surpasses MisLAS [111] by 0.9pp and CC-SAM [116] by
0.7pp. When AGLU is combined with APA*, it further increases the performance
by 0.7pp reaching 42.0%.

As shown in Table 3-b, on CIFAR100-LT, APA* improves the performance by
0.5pp and 1.0pp compared to SE baseline using an imbalance factor of 10 and
100 respectively. Furthermore, compared to RIDE+CMO [68], CC-SAM [116]
and RIDE+CMO+CR [60], APA* achieves 1.9pp, 1.1pp and 1.2pp higher accu-
racy respectively, under an imbalance factor of 100 using a single model. Finally
AGLU, further boosts the performance of APA* by 1.1pp and 0.4pp for imbal-
ance factor of 10 and 100 respectively.
Activation Ablation Study. We compare APA, without the Dropout and Lay-
ernorm, against different activation functions such as the Sigmoid and the Gum-
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Table 4: For all ablations we use ImageNet-LT. In (a) we compare adaptive activation
to other learnable activation functions using SE-ResNet50. In (b) we show that adaptive
activation and AGLU generalise to other attention mechanisms. In (c) we show that
AGCA and AGLU generalise in ImageNet1K training. In (d) we show that AGCA
works effectively with deeper ResNets. In (e) we show the components of AGCA. In
(f) we compare AGLU with other activation functions.

Activation Many Med. Few Avg
Sigmoid 66.2 53.1 37.1 56.0

with Temp 65.9 53.8 40.3 56.6
Gumbel 66.2 53.2 39.3 56.3

with Temp 66.9 53.4 39.7 56.7
APA 67.1 53.8 39.6 57.0

Attention type Avg
Spatial [98] 54.8

+APA 55.2
+APA + AGLU 56.4

Spatial + Channel [98] 55.6
+APA 56.9

+APA + AGLU 57.1

Method SE APA*
CE 51.7 52.9

PC-Softmax [34] 56.0 57.4
cRT [44] 55.6 56.4

Decoupled-DRW [8] 55.1 56.6
BSCE [71] 56.0 57.0

(a) APA comparison. (b) Attention types w/ R50. (c) Classifier learning.

Method Many Med. Few Avg
SE-R101 67.5 53.3 37.6 56.7

APA*-R101 68.1 56.0 42.1 58.8
SE-R152 68.0 54.4 39.8 57.6

APA*-R152 69.0 56.8 41.2 59.4

SE APA Dropout LayerNorm Avg
55.0

✓ 56.0
✓ ✓ 57.0
✓ ✓ ✓ 57.3
✓ ✓ ✓ ✓ 57.4

Activations Avg
ReLU 57.4

PReLU [27] 54.8
ELU [11] 52.6
Mish [64] 57.4

GELU [31] 57.5
SiLU [31] 57.1
AGLU 57.9

(d)Deeper Networks. (e) APA* ablation. (f) AGLU comparison.

bel [1] using the SE-ResNet50 baseline. Also, we implement Sigmoid and Gumbel
variants with learnable temperature, to further understand their difference to our
adaptive activation. As shown in Table 4-a, Sigmoid with temperature achieves
slightly better performance for the rare classes, however it over-fits the frequent
categories. In contrast, our APA achieves the best performance, increasing the
overall performance by 0.3pp, the frequent classes by 0.2pp and the common
categories by 0.4pp compared to the second best Gumbel with temperature.
Generalisation to other Attention mechanisms. In Table 4-b, we show
that APA can be combined with other attention mechanisms. Specifically, APA
improves the performance of Spatial Attention by 0.4pp and the Spatial-Channel
Attention by 1.3pp. AGLU further increases the performance of Spatial Atten-
tion by 1.2pp and Spatial-Channel Attention by 0.2pp.
Combining APA* with Classifier Learning. APA* is an efficient module
that can be easily combined with common classifier learning techniques such as
margin adjustment [71], reweighting [8] and resampling [44]. As shown in Table
4-c, APA* consistently boosts the performance of all these methods.
Larger ResNets. We further train deeper models like ResNet-101 and ResNet-
152 on ImageNet-LT and compare the SE and APA* attention methods. As
Table 4-d shows, the APA* module enlarges the performance of all models con-
sistently for both frequent, common and rare classes. Especially, APA* with
ResNet101 promotes overall accuracy by 2.1pp, boosting the rare categories by
a significant 4.5pp compared to SE-Resnet101.
Ablation of APA* components. APA* uses Channel attention, APA, Dropout
and Layer-Norm and we show their effects in Table 4-e. The plain R50, without
channel attention, achieves 55.0% and SE increases its performance by 1.0pp.
APA increases the performance of the SE baseline by another 1.0pp. Dropout
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Table 5: Comparisons on LVISv1.0 using MaskRCNN-FPN and 2x schedule.

Method Backbone APm AP r AP c AP f AP b

RFS [22]

R50

23.7 13.3 23.0 29.0 24.7
IIF [2] 26.3 18.6 25.2 30.8 25.8

Seesaw [89] 26.4 19.6 26.1 29.8 27.4
LOCE [20] 26.6 18.5 26.2 30.7 27.4

PCB+Seesaw [30] 27.2 19.0 27.1 30.9 28.1
ECM [39] 27.4 19.7 27.0 31.1 27.9
GOL [1] 27.7 21.4 27.7 30.4 27.5

ECM+GAP [107] 26.9 20.1 26.8 30.0 27.2
GOL (baseline) SE-R50 28.2 20.6 28.9 30.8 28.1

GOL+AGLU(ours) APA*-R50 29.1+0.9 21.6+0.2 29.6+0.7 31.7+0.6 29.0+0.9

RFS [22]

R101 [28]

27.0 16.8 26.5 32.0 27.3
NorCal [65] 27.3 20.8 26.5 31.0 28.1
Seesaw [89] 28.1 20.0 28.0 31.8 28.9

GOL [1] 29.0 22.8 29.0 31.7 29.2
ECM [39] 28.7 21.9 27.9 32.3 29.4

PCB + Seesaw [30] 28.8 22.6 28.3 32.0 29.9
ROG [107] 28.8 21.1 29.1 31.8 28.8

GOL (baseline) SE-R101 29.7 23.0 29.9 32.5 30.0
GOL+AGLU(ours) APA*-R101 30.7+1.0 23.6+0.6 31.3+1.4 33.1+0.7 31.11.1

increases the performance by 0.3pp and LayerNorm enhances the performance
by an additional 0.1pp. In the Appendix, we show the full component ablation.
Comparison of AGLU. In Table 4-f, we compare AGLU to other commonly
used activations functions, using APA* ResNet50 as backbone and switching the
activation function of the intermediate layers. Our AGLU outperforms all the
other methods and it is the best choice.
Long-Tailed Instance Segmentation. As the results suggest in Table 5, the
SE-R50 backbone increases the overall mask performance compared to plain
GOL-R50 by 0.5pp but most improvement comes from the common and fre-
quent categories while the rare categories are significantly reduced by 0.8pp. In
contrast, our APA* with AGLU-R50 improves the performance by 0.9pp on aver-
age mask and bounding box precision, 1.0pp on APr, 0.7pp on APc and 0.9pp on
APf compared to SE-R50-GOL. Compared to GOL with SE-R101, APA* with
AGLU also improves the performance by 1.0pp on AP , 0.6pp on AP r, 1.4pp
on AP c, 0.7pp on AP f and 1.1pp on AP b. This highlights that our APA* and
AGLU modules are robust for the rare classes and they outperform the previous
SOTA in long-tailed instance segmentation.
Qualitative Results. We use APA* and Imagenet-LT for our qualitative anal-
ysis. In Fig. 5-(a) we show that APA* increases the variance of channel attention
for the most semantic layer by 0.04 compared to the baseline, making it diverse
and informative for all channels. In Fig. 5-(b), we show that APA* increases the
entropy of the attention signal for the deeper layers by 0.4 ∼ 0.6 compared to the
baseline, showing that our module produces informative signals that effectively
attend to the rare classes. In Fig.-c 5-top, we show that the baseline channel
attention of the rare classes, produces all-pass filters in other words, attention
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Fig. 5: a) APA* (orange curve) increases the attention variance by 0.04 in the most
semantic layer compared to the baseline (blue curve) and removes frequent category
attention bias. b) APA* increases the attention entropy in the most semantic layer and
retrieves rare class descriptors more efficiently than the baseline. c) Compared to the
baseline (top), APA* produces larger entropy attention signals and makes correct rare
class predictions. More visualisations are shown in Appendix.

signals that have small entropy, i.e., E = 0.018 for the bee house and E = 0.098
for the warthog respectively. This hinders rare class learning and it results in
misclassification. In contrast, our method in Fig. 5-bottom produces informative
channel attention signals that have larger entropy i.e. E = 0.46 and E = 0.91
for the bee house and warthog classes respectively, allowing the model to retrieve
rare class features and to make correct predictions. Visualisations of the learned
κ and λ parameters are provided in the Appendix.
Generalisation to Balanced tasks. In Table 6-a, we show that APA*+AGLU
increases the performance of SE-MaskRCNN-R50 by 0.7pp on AP b and APm on
COCO. In Table 6-b, we show that APA*+AGLU increase the performance of
SE-FasterRCNN-R50 by 2.9pp and the performance of SE-Cascade-RCNN-R50
by 2.1pp on the challenging V3Det, which are significant increases considering
that this dataset has 13K classes. In Table 6-c, we show that our methods in-
crease the performance for R50, SE-R50 and CBAM-R50, by 0.6pp, 1.2pp and
0.6pp respectively. Finally in Table 6-d, we show that our modules increase the
performance by 1.2pp on SE-R50, 0.9pp on SE-R101 and 0.5pp on SE-R101,
showing that they can generalise in balanced training.

6 Related Work

Long-tailed image recognition. Long-tailed image recognition can be grouped
according to representation learning and classifier learning techniques. Represen-
tation learning techniques improve the feature quality through rare class features
generation [85, 87, 104], contrastive objectives [15, 43, 53, 74, 91, 117], ensemble
or fusion models [7, 13, 14, 50, 51, 95, 113], knowledge distillation [29, 41, 51, 52],
knowledge transfer [58, 67, 118] and data augmentation [68, 101, 111]. Classifier
learning techniques enhance rare class classification through decoupled train-
ing [36,44,47,92,108], margin adjustment [2,8,34,39,63,65,71,89,93,110], cost-
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Table 6: Resuls on balanced tasks. In (a) and (b), we combine APA*+AGLU on
COCO dataset and V3Det dataset respectively. In (c) we combine AGLU and APA*
to ResNet50, SE-ResNet50 and CBAM-ResNet50 in ImageNet1K. In (d) we show that
APA*+AGLU generalises to deeper backbones in ImageNet1K.

Method AP b APm

MaskRCNN-R50 39.2 35.4
w/ SE 40.5 36.9

w/ APA*+AGLU 41.2 37.6

Method AP b

FasterRCNN-R50 25.4
w/ SE 27.0

w/ APA*+AGLU 29.9
CascadeRCNN-R50 31.6

w/ SE 33.3
APA*+AGLU-CRCNN 35.4

Method top-1
ResNet50 [37] 76.9

w/ AGLU 77.5
SE-ResNet50 [37] 77.5
w/ APA*+AGLU 78.7

CBAM-ResNet50 [37] 78.3
w/APA*+AGLU 78.9

Method top-1
SE-R50 77.5
+APA* 77.9

+APA* + AGLU 78.7
SE-R101 79.4
+APA* 79.2

+APA* + AGLU 80.3
SE-R152 80.3
+APA* 80.5

+APA* + AGLU 80.8

(a)COCO (b)V3Det (c)ImageNet1k (d) ImageNet1k

sensitive learning [16,38,46,96], resampling [9,22,33,61,68,76,104,120], dynamic
loss adaptation based on batch statistics [35, 80, 94], gradient statistics [49, 79],
weight norms [93] and classification scores [20, 30]. These techniques are effi-
cient, however they are applied either during the input phase or during the loss
disregarding the intermediate channel activations.
Attention Networks. Attention networks, such as spatial attention [42], chan-
nel attention [37] and spatial-channel attention [98], are widely used in image
recognition. Self-attention is the core mechanism of the Visual Transformer (ViT)
architecture [19], and recently many improvements have been made to the Trans-
former architecture [56,81,83] and its training procedure [6, 78,82].

In our work, we primarily used APA with channel attention models, but it
also works with plain ResNets, Spatial and Spatial-Channel attention models.
In the Appendix, we show results with self-attention models.
Activation functions The RELU function [21] dominates the landscape of deep
image classification, and it is especially used inside the convolutional networks,
while the GELU and SiLU [31] are more commonly used inside the transformer
network [19] or the ConNext models [57,97]. The PRELU function [27] is a gen-
eralisation of the RELU, because it linearly activates both positive and negative
inputs and the ELU [11] is a follow-up work that enforces saturation on the neg-
ative inputs after some threshold. Our AGLU activation, generalises the RELU,
the GELU and SiLU and it can also be seen as a smoother version of PRELU.

7 Conclusion

Our work highlights the impact of the activation function inside the model’s
activations for balanced and imbalanced data distributions. We have empirically
showed that the degree of data imbalance affects the logit distributions and
the intermediate signals and we have showed that the commonly used Sigmoid
activation function is unable to model the intermediate features. To this end,
we have proposed an novel adaptive parametric activation that unifies most
common activation functions under the same formula and we have tested it in
several long-tail and balanced classification and detection benchmarks showing
great generalisation.
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A Representations’ Quality

We evaluate the quality of the representations learned by the SE and APA*
models using the recently proposed Neural Collapse framework [66].

Let fk,j ∈ Rd be the features of the penultimate layer, k = {1, 2, ...,K} the
class, nk the number of samples in the class k and n =

∑K
k=1 nk the total number

of samples in the dataset. Then the global feature fG and class prototype f̄k are:

fG =
1

n

K∑
k=1

nk∑
j=1

fk,j , f̄k =
1

nk

nk∑
j=1

fk,j (10)

The within-class covariance matrix ΣW ∈ Rd×d and between-class covariance
matrix ΣB ∈ Rd×d are:

ΣW :=
1

n

K∑
k=1

nk∑
j=1

(fk,j − f̄k)(fk,j − f̄k)
⊤

Σb :=
1

K

K∑
k=1

(f̄k − fG)(f̄k − fG)
⊤

(11)

The ΣW matrix shows how distant are individual features fk,j from their class
prototype f̄k and it is an indicator of feature compactness. The Σb matrix shows
how distant are the class prototypes from the global feature, indicating the class
separability. Using these matrices we measure the Neural collapse Variability
NC1 according to [119] as follows:

NC1 :=
1

K
trace(ΣWΣ†

b ) (12)

where the † symbol denotes the pseudo inverse of Σb. NC1 measures the mag-
nitude of the within-class covariance ΣW compared to the magnitude of the
between-class covariance Σb as explained in [119].

In practise, a low NC1 measure shows that the model has more compact
features since ΣW ↓ decreases and more separable class prototypes because the
Σb ↑ increases. Having more compact features and more separable class proto-
types make the representations better and enhance the classification results as
shown empirically in previous works [99,102,103,112].

Using Equation 12, we measure the NC1 of the deep features of the penul-
timate layer of SE and APA*, in Table 7 using ImageNet-LT test-set. As the
results suggest, our APA* has lower NC1 measure for all backbones, showing
that APA* produces superior representations that are more compact and seper-
able than the baseline. This provides another qualitative explanation why our
APA* has better performance than SE.

B Implementation Details

The implementation details of APA* and AGLU are shown in Table 8. For bal-
anced ImageNet-1K, the λ parameters are initialised as random variables drawn
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Table 7: Neural Collapse NC1 measure, on ImageNet-LT test set. APA* has lower NC1
measure than the baseline, which indicates that it has learned superior representations.

Backbone SE-NC1 ↓ APA*-NC1 ↓
ResNet-50 3.04 2.71

ResNeXt-50 3.38 2.55
ResNet-101 3.15 2.69
ResNet-152 3.24 2.69

from a Uniform distribution (U), with low parameter 0, and high parameter 1.0.
The APA κ parameters are initialised with U(0, 1) and the AGLU κ parame-
ters are with initialised with U(1, 1.3). For all other downstream tasks, that use
a pretrained model, such as COCO, LVIS, Places-LT and V3Det, we don’t re-
initialise the κ and λ parameters and we simply load them from the pretained
ImageNet1K model.

B.1 Stable APA implementation

During the development of APA, we found that it is more stable to use Softplus
sf (z, β) = 1

β ln(1 + exp(βz)), than double exponents, when computing APA.
Thus our stable code implementation is:

ηad(z, κ, λ) = exp(
1

λ
sf (κz − ln(λ),−1)) (13)

and it is equivalent to the APA used in the main paper.

B.2 AGLU derivatives

Proof of Eq. 9. Then the gradient of AGLU with respect to κ is:

∂AGLU(x, κ, λ)

∂κ
= ∂

x · (λ exp(−κx) + 1)
1

−λ

∂κ

= x
(λ exp(−κx) + 1)(

−1
λ −1)

−λ
· (−λx exp(−κx))

= x2 exp(−κx)
(λ exp(−κx) + 1)(−

−1
λ )

λ exp(−κx) + 1

= x2 ηad(x, λ, κ)

λ+ exp(κx)

(14)
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Method ImageNet-LT i-Naturalist18 Places-LT C100-LT LVISv1
R50/X50 R50 R152 R32 MRCNN-R50

Batch size 256 1024 256 512 16
Optimiser SGD SGD SGD SGD SGD

LR 0.2 0.5 0.1 0.2 0.02
epochs 200 500 40 500 24

Weight Decay 1e-4 1e-4 5e-5 1e-3 1e-4
Norm Weight Decay 1e-4 0.0 5e-5 1e-3 1e-4
Bias Weight Decay 0.0 0.0 0.0 0.0 0.0
Attention Dropout 0.1 0.0 0.1 0.1 0.1

Mixup α 0.2 0.2 0.2 0.2 -
CutMix α - 1.0 1.0 - -

Label smoothing ϵ - 0.1 0.1 - -
Repeated Aug - ✓ - - -
AutoAugment ✓ - ✓ ✓ -
RandAugment - ✓ - - -
Erasing prob - 0.1 - - -

Cutout - - - ✓ -
Cos. Cls. scale 16 16 learnable learnable N/A

Norm. Mask scale N/A N/A N/A N/A learnable
Sampler random random random random RFS

APA κ Init U(-1,0) U(0,1) N/A U(-1,0) N/A
APA λ Init U(0,1) U(0,1) N/A U(0,1) N/A

AGLU κ Init U(1,1.3) U(1,1.3) N/A U(1,1.3) N/A
AGLU λ Init U(0,1) U(0,1) N/A U(0,1) N/A

Table 8: Implementation details for Long-tailed Datasets, across various architectures.

Proof of Eq. 10. Then the gradient of AGLU with respect to λ is:

∂AGLU(x, κ, λ)

∂λ
= ∂

x · (λ exp(−κx) + 1)
1

−λ

∂λ

= x
(λ exp(−κx) + 1)(

−1
λ −1)

−λ
· (exp(−κx))

=
−x

λ
exp(−κx)

(λ exp(−κx) + 1)(−
1
λ )

λ exp(−κx) + 1

=
−x

λ

ηad(x, λ, κ)

λ+ exp(κx)

(15)
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Proof of Eq. 11. Then the gradient of AGLU with respect to λ is:

∂AGLU(x, κ, λ)

∂x
= ∂

x · (λ exp(−κx) + 1)
1

−λ

∂x

= ηad(x, λ, κ) + x · ∂ (λ exp(−κx) + 1)
1

−λ

∂x

= ηad(x, λ, κ) + x
(λ exp(−κx) + 1)(

−1
λ −1)

−λ
· (−κλ exp(−κx))

= ηad(x, λ, κ) + κx exp(−κx)
(λ exp(−κx) + 1)(−

1
λ )

λ exp(−κx) + 1

= ηad(x, λ, κ) + κx
ηad(x, λ, κ)

λ+ exp(κx)
(16)

C Results

C.1 Experiments with AGLU and plain ResNets

In Table 9, we show the result of AGLU when it applied inside plain ResNet50
models, (i.e. without channel attention). As the Table suggests, by simply re-
plancing the RELU with AGLU, our method consistently increases the perfor-
mance of plain ResNet models.

Table 9: Top-1 accuracy on long-tailed classification datasets using ResNets.

Dataset CIFAR100-LT ImageNet-LT iNaturalist
Imbalance factor 10 100 256 500

Model ResNet-32 ResNet50 ResNeXt50 ResNet50
RELU 65.7 51.8 55.0 57.0 69.9

AGLU (ours) 66.8 52.0 56.0 57.6 72.4

C.2 Experiments with AGLU and Vision Transformers on
ImageNet1K

We perform a preliminary experiment with Vision Transformer models such as
ViT [19] and Swin [56] using ImageNet1K. We replace the GELU activation
with AGLU in every feedforward layer and we keep all other settings the same.
As shown in Table 10, AGLU performs comparably to GELU. We believe this
is because the Self-Attention function makes the features smooth, by removing
their harmonising components and it makes them more Gaussian-like [5, 18, 90,
114]. Consequently, the Gaussial linear error unit, GELU, might be a good choice
for the ViT network and our AGLU method has comparable performance.
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Table 10: Results of AGLU using ViT models on ImageNet1K.

Model Activation epochs top-1
ViT-B [19] GELU 200 78.3
ViT-B [19] AGLU 200 78.5
Swin-T [56] GELU 100 78.7
Swin-T [56] AGLU 100 78.9

C.3 Impact of Initialisation

In all of our experiments, we have initialised λ using the Uniform distribution
with low parameter 0 and high parameter 1 as a default. Regarding the κ param-
eter inside AGLU, we initialise it to be close to 1.0, as this works best, as shown
in Table 11. Regarding the κ parameter inside the attention layer, we found that
initialising it with Uniform(−1, 0) is slightly better than Uniform(0, 1.0) as
shown in Table 12.

Table 11: AGLU-κ parameter initialisation, using APA* ResNet50 backbone on
ImageNet-LT. The λ is initialised with Uniform(0, 1) by default.

AGLU - κ top-1
Uniform(0, 1) 57.7
Uniform(−2, 0) 57.3
Uniform(−3, 0) 57.4
Uniform(−2, 2) Failed
Uniform(1, 1.3) 57.9

Table 12: κ parameter initialisation inside the attention layer, using APA* ResNet50
backbone on ImageNet-LT. The λ is initialised with Uniform(0, 1) by default.

APA - κ top-1
Uniform(0, 1) 57.6
Uniform(−1, 0) 57.9

C.4 Channel specific λ and κ

We have also tried a variant that uses seperate λ and κ parameters for every
channel. As shown in Table 13, this variant performs worse than using shared λ
and κ parameters for the channels.

C.5 Baseline enhancements

We show the detailed ablation study for ImageNet-LT in Table 14. First, the
vanilla ResNet50 model trained for 100 epochs on ImageNet-LT achieves 44.4%.
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Table 13: Results with Channel Specific λ and κ, using APA* ResNet50 backbone on
ImageNet-LT.

APA top-1
Channel Specific 57.5
Channel Shared 57.9

Table 14: Detailed Ablation Study, using ResNet50 on ImageNet-LT.

200
epochs

C
osine

C
lassifier

SE
-nets

[37]

A
utoA

ugm
ent

[12]

M
ixup

[106]

W
eight

D
ecay

T
uning

[3]

P
C

S
[34]

A
PA

(ours)

D
ropout

[32]

L
ayerN

orm
[4]

A
G

L
U

(ours)

ImagetNet-LT

44.4
✓ 45.9
✓ ✓ 46.3
✓ ✓ ✓ 46.8
✓ ✓ 45.2
✓ ✓ ✓ 45.9
✓ ✓ ✓ ✓ 46.6
✓ ✓ ✓ ✓ ✓ 46.6
✓ ✓ ✓ ✓ ✓ 49.6
✓ ✓ ✓ ✓ ✓ ✓ 55.0
✓ ✓ ✓ ✓ ✓ ✓ 51.7
✓ ✓ ✓ ✓ ✓ ✓ ✓ 56.0
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 57.0
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 57.3
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 57.4
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 57.9

When we train for 200 epochs then it adds 1.5pp and switching from linear clas-
sifier to cosine classifier adds another 0.4pp. Stronger training techniques such
Mixup [106], Auto-Augment [12] and weight decay tuning further boost the per-
formance by 3.3pp. Post-calibrated Softmax [34] adds an additional 5.4pp and
finally the Squeeze and Excite module [37] adds another 1.0pp reaching the final
56.0%. Most baseline performance comes from the PC-Softmax and the weight
decay finetuning. On top of this strong baseline, our APA increases the perfor-
mance by 1.0pp, showing its strong generalisability. Dropout and LayerNorm
further increase the performance by 0.4pp and finally AGLU adds a respectable
0.5pp reaching 57.9% accuracy on ImageNet-LT. The absolute improvement of
all modules is 13.5pp and our proposed methods, APA and AGLU, contribute
by 1.5pp which is a relative 11% of the total absolute improvement.
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C.6 Qualitative Results

In Figure 6, we show the learned parameters, when training with the balanced
and imbalanced ImageNet. Regarding the λ inside the AGLU layers in (a), we
see that both balanced-trained and imbalanced-trained networks prefer an all-
pass filter for the early 2-3 layers, possibly, because the networks are uncertain
which features to remove. Then in the intermediate layers, we observe smaller
λ that corresponds to harder filters and in the final semantic layers we observe
larger λ, possibly, because the network prefers smoother semantic features in
order to have smoother classification boundaries. In (b), we see a ‘down-down-
up’ κ-pattern in most bottlenecks, for both balanced and imbalanced ImageNet,
showing that the networks prefer softer activations, at first, and harder activa-
tions before the residual connection. This indicates that the networks, first, keep
most information inside the bottleneck’s projections, and second, they disregard
any redundant information, using harder activation, only before performing ad-
dition using the residual connection.

Finally, in the last bottlenecks, i.e. layers 45-50, the κ parameter diminishes,
showing that the network prefers overly smooth activations, possibly, to enhance
the classification using smoother classification boundaries.

Regarding the attention layers, the κ parameter in (d) dominates over the
influence of λ in (c), showing that hard channel attention is more preferable than
soft channel attention for all layers.

Fig. 6: Visualisations of the learned λ and κ parameters for balanced ImageNet1K
(IN-IK) training in blue, and imbalanced ImageNet-LT (IN-LT) training in blue.

Visualisations on Imagenet-LT We further show more qualitative results
on ImageNet-LT with ResNet50 backbone. On the left subfigure, we show the
model’s highest prediction marked with F,C,R that stands for frequent, common
and rare class respectively and the Grad-cam activation [75]. On the right sub-
figure, we show the last layer’s channel attention signal and its corresponding
entropy denoted with (E). As the Figure shows, APA* produces higher entropy
attention signals than the baseline and predicts both frequent and rare classes
correctly.
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Fig. 7: Comparative Results between the SE-ResNet50 (baseline) and APA*-ResNet50
(ours) with respect to the activations (left) and the attention entropy (right). F,C,R
denote frequent, common and rare samples from ImageNet-LT. Our method produces
attention signals that have significantly larger entropy than the baseline for both fre-
quent and rare classes.
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Fig. 8: Calibration results using ResNets on ImageNet-LT. SE (left) is underconfident,
i.e., its confidence scores are lower than its actually accuracy due to over-regularisation.
Our APA* (right) reduces the ECE and makes more accurate predictions with higher
confidence than SE.

C.7 Calibration results

Calibration is an important property of models, since it reassures that the con-
fidence of the prediction matches the actual accuracy. When models are not
calibrated, then they give wrong predictions with high confidence score (over-
confident models) or make correct predictions with low confidence score (under-
confident models). In both situations, the miscalibrated models cannot help in
the decision making process because their predictions do not reflect their actual
accuracy.

In practice in long-tailed learning, the use of complex augmentations and
regularisations like mixup, cutmix, label-smoothing, auto-augment and cosine
classifier may improve the accuracy but it also reduces the confidence of the
model due to over regularisation. As shown in Figure 8 (left-subfigure), SE-
Resnet50 is under-confident due to the usage of complex training that includes
heavy augmentations and regularisations. When APA* is applied, it reduces the
Expected Calibration Error (ECE) as shown in Figure 8 (right-subfigure) for all
backbones.

Table 15: Comparative results using GPT2 smallest model and HellaSwag benchmark.

Method Accuracy
GELU 31.0
AGLU 31.4
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C.8 Next textual token prediction experiment

We perform one preliminary next-token prediction experiment using GPT2 [70]
and the FineWeb-Edu [59] subset that contains 10 billion GPT2 tokens. The
model is based on the GPT2 smallest architecture, which contains 117M pa-
rameters, and the code implementation follows [45]. We train the GPT2 model
for one epoch, using 8 V100 GPUs, a total batch size of 0.5M tokens, learning
rate 6e− 4 and Adam optimizer [48] with momentum. We test the model on the
HellaSwag benchmark [105] using zero-shot evaluation. To apply AGLU with
GPT2, we simply switch the GELU activation with AGLU inside all MLP layers
of the transformer. As the results suggest in Table 15, our AGLU increases the
performance of GPT2 by 0.4%, showing that AGLU could be a good alternative
for text-classification.
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