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Inverse Image Frequency for Long-tailed Image
Recognition

Konstantinos Panagiotis Alexandridis1,2, Shan Luo1,2,∗, Anh Nguyen2, Jiankang Deng3 and Stefanos Zafeiriou3

Abstract—The long-tailed distribution is a common phe-
nomenon in the real world. Extracted large scale image datasets
inevitably demonstrate the long-tailed property and models
trained with imbalanced data can obtain high performance
for the over-represented categories, but struggle for the under-
represented categories, leading to biased predictions and per-
formance degradation. To address this challenge, we propose a
novel de-biasing method named Inverse Image Frequency (IIF).
IIF is a multiplicative margin adjustment transformation of
the logits in the classification layer of a convolutional neural
network. Our method achieves stronger performance than similar
works and it is especially useful for downstream tasks such
as long-tailed instance segmentation as it produces fewer false
positive detections. Our extensive experiments show that IIF
surpasses the state of the art on many long-tailed benchmarks
such as ImageNet-LT, CIFAR-LT, Places-LT and LVIS, reaching
55.8% top-1 accuracy with ResNet50 on ImageNet-LT and 26.3%
segmentation AP with MaskRCNN ResNet50 on LVIS. Code
available at https://github.com/kostas1515/iif

Index Terms—Long tail, margin adjustment, image classifica-
tion, instance segmentation, object detection.

I. INTRODUCTION

GREAT advancements have been made in the field of
image recognition due to deep learning techniques and

the use of massive parallel computer systems. As a result,
amazing technologies have been developed in the fields of
automation, medicine, transportation and internet of things
that make human life better. Most of these technologies use
a large amount of data in order to train a deep convolutional
neural network that solves the problem at hand. Even though
this technique is efficient, it relies heavily on the availability
of data. Models trained with curated balanced datasets like
CIFAR [1], ImageNet [2] and COCO [3] achieve good perfor-
mance in many image recognition tasks such as classification,
object detection and instance segmentation. However, in the
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Fig. 1. Previous works that use additive margin adjustment may produce a
lot of false positives when used in long-tailed instance segmentation. Given
a background proposal R1 which has negative logits, an additive margin
adjustment may alter the sign of logits into being positive and confuse the
background class for rare classes, as shown in the top branch. In the bottom
branch, we propose a multiplicative IIF adjustment that keeps the sign of
the original predictions unchanged, thus producing less false positives while
debiasing the model in favour of rare classes. In this way the model achieves
better overall AP , rare category APr and makes less False Positives ∆APFP

than previous works such as BSCE [8] and Log. Adj [9].

real world the data are rarely balanced, instead they follow
a long-tailed distribution [4], i.e. the data are imbalanced and
not uniform, resulting in a major performance degradation [5]–
[7]. In essence, the models trained with long-tailed data can
recognise the frequent (head) classes of the dataset but they
fail to recognise the rare (tail) classes. As a consequence, the
models that disregard the long-tailed nature of the problem,
become unreliable and might raise serious concerns in critical
scenarios (e.g. autonomous driving).

The cause of the performance drop in long-tailed datasets
is classification imbalance [7], [10]. In detail, the frequent
classes of those datasets dominate the training procedure and
the network learns more about them and less about the rare
classes. One way to solve this problem is to collect more
samples from the rare categories so that in the end the data
distribution will be balanced. Unfortunately, this solution costs
a lot of effort and it cannot address the issue completely, as
the more samples one gathers, the more categories will appear
making the annotation procedure intractable. For example, if
one wants to gather more images of a rare class i.e., “remote
control” object, then one should also annotate the “television”
object and perhaps all other objects that appear inside the
living room scene that will have a higher frequency than the
“remote control”. This is a natural phenomenon of our physical
world that the object frequencies follow the Zipf’s law [4],
making the class distribution long-tailed.

Recent approaches tackle long-tailed classification by im-
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proving the classification layer of the model [8], [9], [11]–
[20]. Margin adjustment techniques like [8], [9], [11]–[13],
[20], are popular and intuitive classifier learning methods that
have a strong theoretical foundation in label distribution shift
and demonstrate performance.

However, most of margin adjustment techniques use an
additive hand-crafted margin [8], [9], [11], [20] that is suitable
for image classification but falls short of downstream tasks
such as long-tailed instance segmentation because of the
background class. For example, given a background object
proposal, the additive margin adjustment may force the rare
class logits of the background proposal to become positive.
Consequently, false positive detections will be produced by
confusing the background class for a rare class as shown in
the top branch of Figure 1. In contrast to this, our method
uses a multiplicative margin, which only amplifies the original
logits, without changing their sign, thus it does not produce
false positives as shown in the bottom branch of Figure 1. This
problem does not apply in long-tailed classification because all
categories are foreground and the trade-off exists only between
frequent and rare classes. In long-tailed instance segmentation
however, a trade-off exists between both foreground and
background classes and between frequent and rare categories.

To make this concrete, we use the TIDE toolkit [21] to
measure the false positive detections and average precision
(AP ) [22] of popular margin-adjustment methods like Logit
Adjustment [9] and Balanced Softmax [8]. TIDE has some
limitations, i.e., its error metrics do not complement AP
(∆AP + AP ̸= 1). Nevertheless, it is useful for comparing
the relative errors among models. TIDE breaks down the error
into many types such as classification, localisation and miss-
detection. In this analysis, we use only ∆APFP which is the
AP 50 performance loss due to false positives. As shown in
Figure 1, Softmax has low AP , because it fails to detect
rare categories, i.e., it has low APr. Hand-crafted margin
techniques like Logit Adjustment [9] and Balanced Softmax
(BSCE) [8] boost the performance of rare classes but they
make a lot of false positives as they have increased ∆APFP

compared to Softmax.
There are a few ways to reduce false positives in long-

tailed instance segmentation. Recent works [8], [12], [13],
[23] calculate learnable margin transformations during two-
stage learning. However, their margins cannot not be easily
explained and it requires additional training resources to learn
them. Other works, disentangle foreground from background
classes by introducing an objectness branch or use zero margin
for the background class. However, it is difficult to find a
suitable margin for the background class, as this depends on
the architecture of the detector (i.e., two-stage vs one-stage)
and it cannot be calculated from the dataset.

Motivated by this, we develop a strong dataset-dependent
margin adjustment technique called Inverse Image Frequency
(IIF ). Our IIF uses a multiplicative adjustment, thus it
reduces false positives compared to additive adjustment meth-
ods, as it only amplifies the original predictions keeping
their sign unchanged, as shown in Figure 1, bottom branch.
Moreover, our vanilla IIF method has the best instance
segmentation performance and produces less false positives

as it achieves lower ∆APFP , compared to similar margin
adjustment techniques like Balanced Softmax (BSCE) [8] and
Logit Adjustment (Log. Adj.) [9].

At the same time, it achieves strong performance on long-
tailed image classification reaching 55.8% top-1 accuracy on
ImageNet-LT when using ResNet50 [24] backbone surpassing
the state-of-the-art methods by up to 3%. Moreover, it outper-
forms the state-of-the-art methods in the long-tailed instance
segmentation LVIS benchmark [5] boosting the rare category
performance by 17.5% compared to vanilla Softmax.

We describe our contributions as follows:
• We show that previous handcrafted margin adjustment

techniques used in classification may produce false pos-
itives in long-tailed instance segmentation as a result of
background class.

• We develop a robust margin adjustment method IIF
that boosts the performance of rare categories and makes
fewer false positive detections compared to other margin
adjustment methods.

• We evaluate our IIF method on CIFAR10-LT,
CIFAR100-LT, ImageNet-LT, Places-LT, LVISv1 and we
show that it surpasses the state-of-the-art methods by a
significant margin.

II. RELATED WORK

Long-tailed image recognition has received a lot of interest
in recent years and many works have been developed, a sum-
mary of them can be found in these surveys [10], [25]. Many
long-tailed datasets have been created for object classification
[4], [20], scene classification [4], [17], species classification
[26], faces recognition [27], [28], object detection [5], [29]
and instance segmentation [5]. Recently, more datasets [30]–
[32] and works [33], [34] were proposed that tackle both the
long-tailed and domain adaptation problem simultaneously.
The datasets are created either by extracting datasets from the
wild, or by sub-sampling balanced datasets. These datasets can
be characterised by their imbalance factor β = nmax/nmin

which is the ratio between the maximum and minimum class
frequency on the training set. As shown in Table I, the most
imbalanced dataset is LVIS [5] and the least imbalanced is
CIFAR-LT [20]. Note that COCO [3] is artificially balanced
in the sense that all classes have a large and diverse set
of images. However, COCO has a larger imbalance factor
than common long-tailed classification datasets as the class
frequencies are not uniform. This is due to the fact that COCO
is a densely annotated scene-centric dataset and this makes it
difficult to have totally balanced classes due to the Zipfean
distribution. Regarding the testing set in these datasets, most
of them adopt a balanced test set, so that the performance
is evaluated fairly on all categories. For the case of object
detection, it is difficult to have balanced test set, due to scene-
centric images. Despite that, when using mAP, every category
is evaluated independently and has equal contribution to the
final performance.

Many solutions have been developed inside the long-tailed
paradigm and they can be categorised in representation learn-
ing and classifier learning techniques as shown in Table II.
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TABLE I
CHARACTERISTICS OF IMAGE RECOGNITION DATASETS. TABLE ADJUSTED

FROM [25]

Dataset β Train Distribution # of Images
CIFAR-LT [20] 100 Exponential 50K

ImageNet-LT [4] 256 Pareto 186K
Places-LT [4] 996 Pareto 62.5K

COCO [3] 1,325 Balanced 118K
LVISv1 [5] 50,552 Long-tailed 99K

TABLE II
RELATED WORKS

Family Method Reference

Representation
Learning

Re-sampling [5], [13], [35]–[38]
Distillation [15], [39]

Feature Generation [40]–[43]
Contrastive Learning [44], [45]

Fusion [46]–[48]
Data Augmentation [49]–[54]

Classifier
Learning

Cost-sensitive Loss [16]–[19]
Gradient Balancing [23], [55]–[60]
Two-Stage Methods [7], [12]–[14], [61]
Margin Adjustment [8], [9], [11]–[13], [20], [62]

A. Representation Learning

A simple representation learning technique is to re-sample
the data distribution [5], [13], [35]–[38], by either oversam-
pling or downsampling the classes of datasets. Despite hav-
ing satisfactory performance, oversampling requires additional
computing resources and may cause overfitting for tail classes
while undersampling does not exploit efficiently the available
data and may cause underfitting for head classes.

Other representation learning techniques enhance the quality
of the deep feature extractor by using contrastive learning and
supervised learning [44], [45]. However, such methods require
a laborious multi-stage training pipeline or the construction of
multi-branch networks in order to combine the supervised and
contrastive objectives effectively.

Some techniques enhance the feature extractor by generating
rare category samples [40]–[43]. However, generated features
are usually perturbed versions of the old features thus they
improve the quantity, rather than the quality of features. In
addition to this, distillation methods [15], [39] have been
proposed to efficiently exploit the representation quality of
larger capacity models. These methods have good results,
but they require additional training resources for learning the
teacher models. Fusing methods use a two-branch network
trained with random and oversampling strategy [47], [48]
or learn ensemble models [46] that specialise in rare and
frequent categories. They have shown good performance but
it is at expense of additional training resources. Finally, data
augmentation methods such as mixup [49], cutmix [50], label
smoothing [51], [52] and AutoAugment [53], [54] improve the
generalisation ability of the model for all classes.

B. Classifier Learning

1) Cost-sensitive Learning: [16]–[19], [63] methods assign
costs to samples according to the dataset’s distribution in order
to balance the training and learn all classes. They can produce
good results without the need of extra training resources but

they require careful calibration, hyper-parameter tuning and
they are difficult to design and optimise as the costs may be
excessive and destabilise training.

2) Gradient Balancing: [23], [55]–[59] methods assign
weights to the gradients produced by positive and negative
samples, or use different activation functions for gradient
balancing [60]. These techniques are most useful in long-
tailed object detection and long-tailed instance segmentation
as in such tasks the special background class magnifies the
imbalance and increases the complexity of the task.

3) Two-stage Techniques: [7], [12]–[14], [61] first optimise
the model to classify the head classes and in the latter stage,
they finetune or retrain it for the rare classes. This is achieved
using re-sampling techniques, weight normalisation techniques
or transfer learning so that in the end the model can classify
both head and tail classes effectively. This technique can
alleviate the bias of the classifiers and it is task agnostic.
Nevertheless, it may require the construction of a complex
pipeline and additional training resources.

4) Margin Adjustment: [8], [9], [11]–[13], [20], [62] alter
the decision boundary of the classifier either during training
or a posterior to shift the predicted distribution. The resulting
classification boundary is closer to the head classes and further
away from the tail classes and the feature space of head classes
becomes smaller while the space of tail classes is enlarged.
This way, during inference the adjusted classifier is less biased
towards predicting the head classes.

The margin adjustment techniques produce good results, but
they have limitations. For example, [8], [9], [11], [20] use an
additive adjustment for long-tailed image classification but this
may produce many false positives in downstream tasks such
as long-tailed instance segmentation, as they do not explic-
itly model the background class margin. Moreover, learnable
margin transformation techniques [12], [13] require a two-
stage strategy and therefore additional computing resources.
They alleviate false positives in downstream tasks as they learn
foreground and background category margins simultaneously
but their margins are difficult to explain.

In contrast to these, our IIF uses dataset-dependent mar-
gins that are easy to explain and use in both long-tailed image
classification and long-tailed instance segmentation.

III. PRELIMINARIES

IIF is closely related to ideas from label distribution shift,
we follow a similar analysis as in [8], [9], [12]. Let ps(y|x)
and pt(y|x) be the source and target distributions respectively.
By using the Bayes theorem, the source distribution can be
written as:

ps(y|x) =
ps(x|y)ps(y)

ps(x)
(1)

and the target distribution can be written as:

pt(y|x) =
pt(x|y)pt(y)

pt(x)
(2)
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If one assumes that the data generating functions are equal
ps(x|y) = pt(x|y) then by dividing Eq. 1 and Eq. 2, one can
rewrite the target distribution as:

ps(y|x)
pt(y|x)

=c(x)
ps(y)

pt(y)

pt(y|x) =
1

c(x)

pt(y)

ps(y)
ps(y|x)

(3)

where c(x) = pt(x)
ps(x)

. During training ps(y|x) is approximated
by the model fy(x; θ) and a scorer function s(x) = ex:

ps(y|x) ∝ efy(x;θ) (4)

By using Eq. 3 and Eq. 4 one can compensate for label
distribution shift using the following Equation:

pt(y|x) ∝
1

c(x)

pt(y)

ps(y)
efy(x;θ)

=efy(x;θ)+log(pt(y))−log(ps(y))−log(c(x))

(5)

During inference, one is interested to predict a single class ȳ
and this is usually achieved by taking the maximum value of
Eq. 5:

ȳ = argmax
y

(fy(x; θ) + log(pt(y))

− log(ps(y))− log(c(x)))
(6)

Moreover, one can simplify Eq. 6 by eliminating c(x) because
it is invariant to argmaxy as follows:

ȳ = argmax
y

(fy(x; θ) + log(pt(y))

− log(ps(y)))
(7)

Using Eq. 7 one can solve the label distribution shift problem.
However, in the real world, ps(y) and pt(y) may be unknown.
Luckily, one can still solve the label shift problem by estimat-
ing ps(y) and pt(y) from the data.

A. Training-Set Distribution

First, even though ps(y) is unknown, one has access to
a training set D that is sampled uniformly from the source
distribution s. Thus, instead of calculating ps(y) one can use
pD(y), which is the class distribution on the training set.
Accordingly, as |D| grows larger then one can be more certain
that pD(y) will be a good estimate of ps(y).

B. Test-Set Distribution

Generally, pt(y) can be any arbitrary distribution and when
pt(y) ̸= ps(y) there exists label shift. If the label shift is
unknown, i.e. pt(y) is not known, then it can be estimated
using the model’s predictions as suggested in [64]. In the
case of long-tailed image recognition, the target distribution
is uniform because the test set is balanced. The reason is that,
in long tailed visual benchmarks, every category is evaluated
fairly and it contributes equally to the final performance [4],
[8], [9], [20]. Therefore, pt(y) = 1

C where C is the total
number of classes in the dataset.

To this end, we can rewrite Eq. 7 as:

ȳ = argmax
y

(fy(x; θ)− log(pD(y))) (8)

In essence, Eq. 8 suggests that one can compensate for
this label distribution shift by translating the model’s output
fy(x; θ) = z by the training set’s class probability:

z′ = z − log(pD(y)) (9)

C. Limitations

Despite that, in downstream tasks like instance segmentation
or object detection, there is also the special background class
b, that depends on the model’s configuration, i.e., one-stage
detectors [65], [66] have a different estimate of b than two-
stage detectors [67], [68] that use region proposals. The back-
ground class is usually handled by predicting C+1 categories
using softmax, but in this way, Eq. 9 is not directly applicable
as pD(y = b) cannot be easily calculated. Additionally, if a
bad background probability estimate is used, this may cause
false positives and deteriorate the model’s performance.

Some works [12], [13] alleviate this problem by learning the
foreground and background class margins during two-stage
learning but these margins are difficult to explain, and may
cause concerns in safety critical applications. Other works
like [23] use an objectness branch to reduce false positives.
They predict two extra logits that determine whether the
sample belongs to foreground and background respectively.
This technique disentangles the classification task to two sub-
tasks, i.e. background and foreground prediction; in this way,
foreground class margins can be applied easily to foreground
samples. However, the usage of objectness branch hurts the
model’s Fixed-AP performance [69], as it only improves the
cross category rankings as suggested by [69]. Recently, Hsieh
et al. [57] studied the background category problem and
propose DropLoss, a loss that assigns weights to background
gradients in an adaptive manner. However, they utilised a
gradient re-balancing method which is different from margin
adjustment techniques.

For these reasons, we develop IIF using dataset-dependent
margins that are easy to explain and use in long-tailed
classification and long-tailed instance segmentation. Our IIF
alleviates for label distribution shift in long-tailed benchmarks.
At the same time it uses a multiplicative adjustment, that keeps
the original sign of the predictions unchanged thus it reduces
the false positive detections compared to other additive margin
adjustment methods.

IV. METHODOLOGY

A. Inverse Image Frequency

Inverse Image Frequency (IIF) is inspired by Inverse Docu-
ment Frequency (IDF). IDF is an important heuristic method
that reweights textual terms according to their relevance and
it has been extensively used in text retrieval tasks [70]–[73].
IDF reweighs a term according to the number of documents the
term appears in the corpus. In our work, instead of measuring
the number of documents where a term appears, we measure
the number of images where an object appears.
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In detail, given a set of training images D sampled from
the source distribution s, Image Frequency IF (y,D) of a class
y ∈ N is computed as the number of images in which an object
oy appears:

IF (y,D) = |{image ∈ D : oy ∈ image}| (10)

The class probability pD(y) of class y is defined as:

pD(y) =
IF (y,D)

K
(11)

where K =
∑y=C

y=1 IF (y,D) and C is the total number of
classes in D. Next, IIF is measured by taking the logarithm
of the inverse of p(y)1, i.e.,

IIF (y) = log
K

IF (y)
= − log(p(y)) (12)

Next, one can transform the logits z of the classification layer
using the IIF transformation.

zIIF = −z log(p(y)) (13)

This feature transformation is similar to the IDF feature
transformation whose justification is explained in [74].

The use of the logarithm is convenient because it links the
probability space (0, 1) to real space enhancing the compat-
ibility of the predicted logits z and IIF weights. Other link
functions are discussed in Table III.

When IIF is multiplied with the logits of the classification
layer, it redistributes the weights across different classes. The
weights of IIF are larger for the rare classes than the frequent
classes thus, it can be used to remove the frequent category
bias and alleviate class imbalance.

The Eq. 13 resembles Eq. 9. Its difference is that instead of
additive adjustment, it performs multiplicative adjustment. The
multiplicative adjustment benefits both long-tailed classifica-
tion and long-tailed instance segmentation as it alleviates class
imbalance and it makes fewer false positive detections since
it maintains the sign of the original predictions intact. If the
detector predicts logits that are negative for one background
region, then an additive adjustment may force them inside
the detection threshold, making the model overconfident and
producing false detections. In contrast to that, the multiplica-
tive adjustment will only amplify the logits, in other words,
it will not affect their sign and keep background predictions
outside the detection threshold as shown in the bottom branch
of Figure 1.

1) Connection to Softmax: In practice, neural networks
typically produce a probabilistic vector q by using a softmax
output layer σ. This converts the logit zi for each class i
into a probability qi, by comparing zi with the other logits
qi =

exp(zi)∑C
j=1 exp(zj)

.
The dominant prediction qi can be found by computing

argmaxi∈C zi, and this holds true because all zi are activated
by the same strictly increasing activation function f(x) = ex.
Changing the base of the activation function from e to any
α ∈ IR would not affect the ranking and this is fair for

1We omit D for simplicity since all following calculations are performed
in the training set D.

balanced datasets. For imbalanced datasets, we can change
the base of the activation function for each zi according to the
inverse class probability i.e., f i(x) = ( 1

p(i) )
x and compensate

for imbalance. In this way, we allow logits that correspond
to rare classes to get easily activated. We can achieve this by
applying IIF transformation Eq. 13:

qIIF,i =
exp(zi log (

1
p(i) ))∑C

j=1 exp(zj log (
1

p(j) ))

=
( 1
p(i) )

zi∑C
j=1(

1
p(j) )

zj

(14)

Note that, here the class index starts from 1 to C, but in the
case of instance segmentation there exist a background class
b that is usually encoded as the “0” class. In this case, there
could be C+1 classes in softmax and the index starts from 0
to C.

Equation 14 has two beneficial properties. First, it maintains
the property that

∑C
i qIIF,i = 1, this means that qIIF,i is a

probabilistic vector, the proof is provided in Appendix. Sec-
ondly, re-balancing occurs naturally, as logits zi corresponding
to frequent classes i.e., p(i) −→ 1 will not contribute as much
in softmax because they will be irrelevant, ( 1

p(i) )
zi −→ 1,∀zi.

On the other hand, logits zi corresponding to rare classes
i.e., p(i) −→ 0, will determine the final outcome of softmax
( 1
p(i) )

zi −→ +∞.
To make the second point concrete, one can consider an

extreme example of binary classification where p(y = 0) =
0.99999 and p(y = 1) = 0.00001. IIF will significantly
downgrade z0 rendering it irrelevant and it will make z1
the dominant factor in softmax. In other words, IIF will
make softmax more sensitive to z1 than z0 which is the class
that matters most in this hypothetical example. Compared to
previous works that perform additive adjustment, IIF makes
stronger adjustment, because of the multiplicative function,
and it enlarges the rare class probabilities with a faster rate
than the additive case.

2) Variants: Moreover, one can define IIF variants by
using different log bases or different link functions in order
to transform the probability space into the real space. The
motivation is that the imbalance factor changes according to
the dataset thus, it may be beneficial to use different variants
that provide stronger debiasing effects.

In Table III, some basic variants are summarised and in
Figure 2 their behaviour is illustrated.

• The raw IIF is the most straightforward way to trans-
form the probabilities into weights. The different log-
bases can be used to control the magnitude of the weights
when dealing with very low probabilities.

• The smooth IIF has similar behaviour to raw IIF , but
it has the advantage of handling zero image frequency
values, thus it can be used either on the full training
dataset D or on the mini-batch d in online fashion using
the mini-batch statistics.

• The relative IIF uses the inverse logit link function and it
has a bigger range of values than the smooth or raw IIF .
It is a symmetrical function around 0.5 and it is useful
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TABLE III
INVERSE IMAGE FREQUENCY VARIATIONS, Φ DENOTES THE INVERSE
CUMULATIVE DISTRIBUTION FUNCTION OF NORMAL DISTRIBUTION

IIF Formula Range
Raw log K

IFy
(0,∞)

Smooth log K+1
IFy+1

+ 1 [1,∞)

Relative log
K−IFy

IFy
(−∞,∞)

Base 10 log10
K

IFy
(0,∞)

Base 2 log2
K

IFy
(0,∞)

Gombit − log− log(1− IFy

K
) (−∞,∞)

Normit Φ−1( K
IFy

) (−∞,∞) Fig. 2. Inverse Image Frequency curves. Variations of Table III are illustrated.
The x-axis denotes the input and the y-axis denotes the output of IIF .

when modelling binary events. In the long tail scenario,
usually most class probabilities are below 0.5 thus the
relative link will produce only positive weights and will
have similar behaviour with the raw IIF .

• The Normit IIF assumes that the data follow Gaussian
Distribution. It is has similar properties to the relative
IIF , it is also symmetrical around 0.5, but it has a
smoother slope.

• The Gombit IIF assumes that the data follow Gompertz
Distribution. It uses an asymmetrical link function that
puts more emphasis to small probability events as it
produces increasingly larger positive weights compared
to high probability events. In other words, the growth
rate for the response value is larger as the probability
gets smaller.

In addition to Inverse Image Frequency, one can calculate
Inverse Object Frequency IOF by counting object instances
instead of images. In tasks such as image classification, IIF
and IOF will produce the same result as objects and images
have a one-to-one relationship. For other tasks such as instance
segmentation, multiple objects can coexist in a single image
thus the two methods are different and they produce different
weights.

3) IIF Cross Entropy: IIF can be integrated during train-
ing by optimising the IIF Cross Entropy loss. Let Y be the
ground truth one-hot encoded vector of class y then by using
Eq. 14 the loss is:

CEIIF (q,Y) = −
C∑
i=1

Yi log(qIIF,i)

= − log
exp(zy log (

1
p(y) ))∑C

j=1 exp(zj log (
1

p(j) ))

= −zy log(
1

p(y)
) + log(

C∑
j=1

(
1

p(j)
)zj )

(15)

It can be seen that when the class probability is higher i.e.,
p(y) −→ 1, then there is loss only for the negative classes and
the network does not receive any information about the target
class y. On the other hand, when the class probability is low,
i.e p(y) −→ 0, then the positive class y dominates the loss,
forcing the model to focus on the rare class. In the end, this

allows the model to learn more about the categories whose
class probability is low.

For long-tailed image classification, all classes are fore-
ground and IIF can be used without modifications. That is
not the case for long-tailed instance segmentation as there exist
background samples.

In instance segmentation, many models encode the back-
ground samples as the “0” class. Thus they predict a logit
vector z = [z0, z1, ..., zC ]. To apply our IIF in this
case, we set the background weight as 1, i.e. IIF =
[1,− log(p(1)), ...,− log(p(C))], to keep the background ob-
ject’s estimation unaltered and only change the foreground
objects’ estimations.

Using IIF Cross Entropy Loss Eq. 15, the gradient is
shown in Eq. 16. The proof is provided in appendix.

∂CEIIF

∂zi
=

{
− log(p(i))(qIIF,i − 1) if i = y
− log(p(i))qIIF,i otherwise (16)

It can be seen that the positive gradient, i.e., when i = y
will be larger in magnitude when the class probability p(i)
of the target is low. This will encourage the model to learn
more about the rare classes of the dataset. Additionally, the
negative gradients i.e., when i ̸= y, will be weighted according
to their class probabilities. This means that negative gradients
occurring from frequent categories will be suppressed. In the
end, using IIF the model becomes more sensitive to rare
classes as their gradients will be upweighted.

4) Post-process IIF: Moreover, IIF can be applied during
inference using Eq. 14 as a post-processing method. If post-
processing IIF is applied then it is no longer necessary to use
Eq. 15. Instead, vanilla Cross Entropy can be used to train
a model and only during inference Eq. 14 can be injected
into the model’s output in order to de-bias the predictions. In
conclusion, all IIF strategies can be illustrated in Fig. 3.

B. IIF Cross Entropy versus Cost Sensitive Learning

IIF Cross Entropy re-weights the gradient of each sample
i according to its Inverse Image Frequency − log(p(i)), as
shown in Eq. 13. This differs from Cost-Sensitive Learning
method (CSL) that re-weights all samples based on scalar
weight αy . In principle, CSL applies weight multiplication to
the loss rather than the logits, more details on CSL can be
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Fig. 3. IIF strategies. Left: IIF can be used in decoupled strategy, where
first the whole model is trained with Softmax and in the second stage only
the classifier is retrained using IIF Cross Entropy (Eq. 15). Middle: the
whole model is trained with IIF Cross Entropy (Eq. 15). Right: the model
is trained with Softmax and only during inference IIF weights are injected
in the model’s predictions using Eq. 14 as post-processing method.

found in this work [19]. The gradient of CSL for a sample i
is:

∂LCSL

∂zi
=

{
αy(qi − 1) if i = y
αyqi otherwise (17)

To better understand how CSL differs from IIF , we can
set αy = − log(p(y)) and assume that qi = qIIF,i. The
positive gradient of CSL, (i.e. i = y), will be the same with
IIF whereas the negative will differ. In CSL, the negative
gradient will be multiplied by the scalar − log(p(y)) which is
the weight of the target class, whereas in IIF it is multiplied
by its class respective weight − log(p(i)). The latter balances
negative gradients more efficiently and suggests that positive
and negative gradients should not be valued the same.

In practice, CSL might be unstable during the early phases
of training because of the imbalance between positive and
negative gradients which is magnified by the weight αy . Con-
sequently, it requires careful hyperparameter tuning to balance
the dynamics in mini-batch training. IIF on the other hand,
suppresses the imbalance caused by the negative gradients as
it re-weights them based on their class probabilities.

C. Connection to Other Works

IIF has a similar idea to recent successful margin adjust-
ment techniques shown in Table IV as all of these methods
reweight the logits based on either probabilities, image fre-
quencies or learnable weights. The important detail of IIF
is that it does multiplicative adjustment, thus it makes fewer
false positives than additive handcrafted margin adjustment
techniques for downstream tasks. Moreover, since it is a
dataset-dependent method, it is easier to interpret and justify
than other learnable margin adjustment approaches.

In addition to this, our method can also be compared to
calibration techniques such as Platt Scaling [75], Temperature
Scaling [62], [76] or NorCal [77]. In comparison to [75], IIF
reweights the classification logits based on dataset statistics
rather than learnable parameters, in contrast to [76] it uses
class specific weights instead of a single global temperature
and different from [62], [77] IIF does not require additional
hyperparameters.

TABLE IV
MARGIN ADJUSTMENT TECHNIQUES

Method Type Adjustment

LDAM [20] Dataset-Dependent z′i = zi − c/IF (i)
1
4

LWS [13] Learnable z′ = αizi
Balanced Softmax [8] Dataset-Dependent z′i = zi + log(IF (i))
Log. Adj. PostHoc [9] Dataset-Dependent z′i = zi + log(IIF (i))

Log. Adj. Loss [9] Dataset-Dependent z′i = zi − log(IIF (i))
DisAlign [12] Learnable z′i = αizi + βi

IIF Dataset-Dependent z′i = IIF (i)zi

V. LONG-TAILED CLASSIFICATION EXPERIMENTS

A. Datasets and Evaluation

In long-tailed image classification, we use CIFAR10-LT and
CIFAR100-LT with exponential imbalance ratio 100 as in [20],
ImageNet-LT [4] and Places-LT [4] following the common
long-tailed classification protocol. These datasets show a sig-
nificant label shift as they have long-tailed train distribution
and balanced test distribution. The balanced test distribution
is artificially constructed so that the model’s performance can
be fairly evaluated on each class. These datasets have the
characteristics described in subsection III-A and III-B and our
method can alleviate their shift from long-tailed distribution
to balanced distribution.

To measure the performance of IIF we use top-1 accuracy
following the common evaluation protocol.

B. Implementation Details

We have observed that the standard implementation is
suboptimal and can be significantly enhanced. Therefore, we
create Squeeze-and-Excitation (SE) [78] ResNets to increase
the capacity of our representation models. We choose this
attention mechanism as it adds minimal complexity and has
good performance. We use an SE-ResNet32 with reduction
factor r = 4 for CIFAR-LT, SE-ResNet50 and SE-ResNeXt50-
4x32 with r = 16 for ImageNet-LT. For Places-LT, we pre-
train a SE-ResNet152 with r = 16 on full ImageNet and
then we finetune it according to [4]. For all SE modules we
use the Average squeeze operator and the Sigmoid excitation
operator and all linear layers have the same dimensions as
in [78] implementation. The ResNet implementation follows
official Pytorch implementation [79]. All models are trained
using Pytorch framework and 4 Nvidia V100 GPUs.

1) Longer Training: We have observed that training for
more epochs improves the performance of the representation
model. For CIFAR-LT datasets we use a batch size of 64 and
a training schedule of 400 epochs, a learning rate of 0.1 with
learning rate decay at epoch 360 and 380. For ImageNet-
LT, the model is trained for 200 epochs using a batch size
of 256, a learning rate of 0.2 and cosine learning schedule.
For Places-LT [4] dataset we use an ImageNet pre-trained
ResNet152 backbone. Then, we finetune its last residual block
and classifier for 30 epochs using batch size 256, learning rate
0.1 and cosine scheduler.

2) Regularisation and Augmentations: We use cosine clas-
sifier with scale s = 16 for ImageNet-LT and CIFAR-LT
and learnable scale for Places-LT. Moreover, we use Mixup
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[49] with the factor of 0.2 for all datasets. Regarding aug-
mentations, we use the optimal AutoAugment [53] policies
for CIFAR-LT and ImageNet-LT and RandAugment [54] for
Places-LT. In addition to this, we observed that the recom-
mended weight decay used in CIFAR-LT [20] and ImageNet-
LT [13] is suboptimal for our model. After conducting a grid
search, we found that the value 1e-4 works well for all datasets
and improves the performance.

Our findings confirm that weight decay tuning is important
and should not be overlooked as also mentioned in [80].

3) Two-stage Strategy: Inspired by [13], we perform exper-
iments using the two-stage strategy when training the models
with IIF . We use random sampling in all stages. In the first
stage we pre-train the models using Softmax Cross-Entropy
and in the second stage, we retrain only the classifier’s weights
using IIF . For ImageNet-LT, we use a learning rate of 2e-5
and we train the classifier for 5 epochs; for Places-LT, we use
1e-5 and we train for 10 epochs; and for CIFAR-LT, we use a
learning rate of 1e-4 and we train the classifier for 20 epochs.

C. Classifier Learning using IIF

1) Training Strategies: We start our analysis by studying
strategies to improve classification using IIF . We explore
IIF as decoupled strategy, as a post-processing method and
as a cost-sensitive learning method.

Table V suggests that using IIF with decoupled training
achieves the best performance, reaching 84.1% in CIFAR10-
LT, 48.9% in CIFAR100-LT and 56.0% in ImageNet-LT. The
decoupled training is better than end-to-end training because
the representations are learned more efficiently with Softmax
Cross Entropy rather than other techniques as described in
[13]. After learning the representations, IIF can be used to
retrain only the classifier and remove the frequent category
bias from the model. Moreover, IIF has good results when
used as a post-processing method. Under this setup, the model
is first trained with Softmax and only during inference the
IIF weights are injected. This technique achieves slightly
worse results than decoupled IIF , because it does not involve
re-training the classifier. However, it does not cost additional
computing resources and it is useful when there are computing
limitations. In particular for CIFAR datasets, post-processing
IIF drops the performance by −0.9% while for ImageNet-
LT it achieves the same result compared to the decoupling
strategy. This is due to the fact that, the CIFAR-LT datasets
have larger variance than ImageNet-LT thus the decoupling
strategy allows the model to explore better solutions and
achieve slightly better results.

In the end, decoupled-IIF is best as it improves the perfor-
mance in CIFAR10-LT by 5.5%, in CIFAR100-LT by 5.9 and
in ImageNet-LT by 3.8% compared to Softmax. Regarding the
datasets, the best performance boost is observed in CIFAR100-
LT, because this dataset has larger vocabulary than CIFAR10-
LT and it is less complex than ImageNet-LT.

2) IIF Variants: Next, we explore the IIF variants listed
in Table III with respect to the post-processing strategy and the
decoupled training strategy. Starting from the post-processing
IIF strategy, as Table VI indicates, the best variant for

TABLE V
IIF STRATEGIES ON LONG-TAILED DATASETS

Method Strategy Cifar10-LT Cifar100-LT ImageNet-LT
Softmax End-to-End 78.6 43.0 52.2
IIFCSL 79.7 40.1 52.0

IIF
Post-Process 83.2 48.0 56.0
Decoupled 84.1 48.9 56.0

TABLE VI
POST-PROCESSING IIF VARIANTS ON LONG-TAILED DATASETS

Variant CIFAR10-LT CIFAR100-LT ImageNet-LT
Softmax 78.6 43.0 52.2

Raw/Base2/Base10 83.2 48.0 56.0
Smooth 84.0 48.3 55.9

Rel 77.2 47.9 56.0
Gombit 81.2 48.0 56.0
Normit 77.4 48.2 55.3

CIFAR10-LT and CIFAR100-LT datasets is smooth IIF that
improves the performance by 5.4% and 5.3% respectively. For
ImageNet-LT the best variants are the raw, gombit and relative
IIF as they boost performance by 3.8%. Other variants
produce similar results for ImageNet-LT, except for Normit
IIF . This is because ImageNet-LT has a large vocabulary
and the majority of its class probabilities are within a specific
range of values that cause similar re-weighting for most IIF
variants.

In the end, smooth IIF is the best choice as it generalises
better than other variants and achieves the best performance
in both small and large vocabulary datasets under various
imbalance factors.

Notice that the variants raw, base2 and base10 have the
same performance (i.e. 83.2%, 48.0%, 56.0% for CIFAR10-
LT, CIFAR100-LT and ImageNet-LT respectively) under the
post-processing strategy. That’s because they produce exactly
the same rankings, however, when using the decoupled training
strategy, they have slightly different results due to different
optimisation.

To illustrate this, we use the decoupled IIF strategy with
random sampling. As Table VII suggests, smooth IIF has
the best performance for CIFAR10-LT as it boosts the per-
formance by 6.0%. Regarding CIFAR100-LT, the gombit IIF
has the best performance as it surpasses Softmax by 6.0%.
Finally, in ImageNet-LT the raw, the relative and the base10
have the best performances boosting the accuracy by 3.8%.

Under the decoupling strategy, we notice that for datasets
CIFAR100-LT and ImageNet-LT all variants except for normit
IIF produce similar results and their differences in perfor-

TABLE VII
IIF VARIANTS WITH DECOUPLED STRATEGY AND RANDOM SAMPLING

Variant CIFAR10-LT CIFAR100-LT ImageNet-LT
Softmax 78.6 43.0 52.2

Raw 84.1 48.9 56.0
Smooth 84.6 48.8 55.8

Rel 81.2 48.8 56.0
Base2 84.1 48.9 55.9
Base10 84.4 48.9 56.0
Gombit 82.9 49.0 55.9
Normit 80.5 48.6 55.1
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mance are marginal. This is because the class probabilities in
these datasets are within a small range of values that produce
similar weights when using the aforementioned IIF variants.
In the end, the smooth IIF is the best variant as it achieves
the best performance in CIFAR10-LT and generalises well to
both CIFAR100-LT and ImageNet-LT.

In conclusion, we use decoupled strategy as it produces
better results than the post-processing IIF strategy. Regarding
the variants, we use smooth IIF because it provides good
performance and it generalises better than other IIF variants
in all datasets and strategies.

D. Comparison with other Methods
Long-tailed image classification has been advancing rapidly

during the recent years and diverse solutions have been
proposed. We compare our method against many families of
methods such as:

• Two Stage Methods. We show the efficacy of our IIF by
comparing it to other two stage methods such as DisAlign
[12], LWS [13], cRT [13] and MiSLAS [81].

• Self-supervised. We highlight the simplicity and stronger
performance of IIF against self-supervised methods such
as Hybrid SC [44] and DRO-LT [45].

• Higher Capacity Models. IIF is additionally compared
against higher capacity models like ensemble RIDE [46],
knowledge distilled CBD [15] and DiVE [39] and two
branch network BBN [47].

• Margin Adjustment. Finally, IIF is compared with
other margin adjustment techniques like Balanced Soft-
max [8], LADE [11] and Logit Adjustment [9].

In summary, for our models we use smooth IIF with
decoupled strategy as this produces the best performance.
We compare IIF in common long-tailed classification bench-
marks such as CIFAR-LT, ImageNet-LT and Places-LT and we
show that IIF surpasses the state-of-the-art.

1) ImageNet-LT: Our method has on average better top-
1 accuracy than all state-of-the-art methods on ImageNet-LT
as shown in Table VIII. Our IIF significantly surpasses the
best two-stage DisAlign method by 2.9% on average accuracy
using ResNet50 and by 2.8% using ResNeXt50. Secondly,
it overcomes the best margin adjustment LADE method by
3.2% using ResNeXt50 under a similar training budget. Addi-
tionally, it outperforms higher capacity models like ensemble
RIDE by 1.4% and self-supervised models like DRO-LT by
2.3% using ResNet50. Furthermore, it outperforms knowledge
distilled models like CBD by 4.2% using ResNet50 and DiVE
by 3.1% using ResNeXt50, having a more straightforward
training pipeline.

2) CIFAR-LT: Our method shows great performance on
the CIFAR-LT datasets as well, highlighting its generalisation
ability. As Table IX suggests, IIF surpasses the best margin
adjustment method LADE [11] by 3.4% on CIFAR100-LT.
Moreover, it overcomes the best two-stage MisLAS by 2.5%
on CIFAR10-LT and by 1.8% on CIFAR100-LT. Furthermore,
it outperforms self-supervised methods like the Hybrid SC
method [44] by 3.2% on CIFAR10-LT and by 2.1% on
CIFAR100-LT. Finally it is better than ensemble methods like
RIDE by 1.8% on CIFAR100-LT, using a single model.

TABLE VIII
COMPARATIVE RESULTS ON IMAGENET-LT TEST SET

Method ResNet50 ResNeXt50
Softmax 52.2 52.8
cRT [13] 47.3 49.6
LWS [13] 47.7 49.9

Logit Adjustment Loss [9] 51.1 -
Logit Adjustment Post-Hoc [9] 50.3 -

TDE [82] - 51.8
EQL [55] - 46.0

Seesaw [23] - 50.4
CBD [15] 51.6 -

LADE [11] - 53.0
NorCal [77] 49.7 -

MisLAS [81] 52.7 -
DiVE [39] - 53.1

DRO-LT [45] 53.5 -
DisAlign [12] 52.9 53.4

RIDE (2 experts) [46] 54.4 55.9
IIF (ours) 55.8 56.2

TABLE IX
RESULTS ON CIFAR-LT DATASETS USING IMBALANCE RATIO 100

Dataset CIFAR10-LT CIFAR100-LT
Softmax 78.6 43.0

Logit-Adjustment PostHoc [9] 78.9 43.2
Logit-Adjustment Loss [9] 79.1 43.0

LDAM-DRW [20] 77.0 42.0
LDAM-DRW-RSG [40] 79.6 44.6

BBN [47] 79.2 42.6
CBD [15] - 44.8
DiVE [39] - 45.4

TailCalibX + CBD [41] - 46.6
NorCal [77] 77.8 -
LADE [11] - 45.4

DRO-LT [45] - 47.3
Hybrid SC [44] 81.4 46.7

Hybrid SPC [44] 78.8 45.0
MiSLAS [81] 82.1 47.0

RIDE (2 experts) [46] - 47.0
IIF (ours) 84.6 48.8

3) Places-LT: Finally, in Table X the results on Places-
LT are displayed. IIF outperforms all other methods on
average accuracy, achieving 40.2% top-1 accuracy. It achieves
an absolute 9.1% increase compared to Softmax and 4.3%
increase compared to OLTR [4]. Additionally, it surpasses the
margin adjustment LADE method, by an overall 1.4% in top-1
accuracy and the two-stage DisAlign by 0.9%.

TABLE X
RESULTS ON PLACES-LT

Method Top-1 Accuracy
Softmax 31.1

OLTR [4] 35.9
LWS [13] 37.6
cRT [13] 36.7

Balanced Softmax [8] 38.7
DisAlign [12] 39.3

LADE [11] 38.8
IIF (ours) 40.2

4) Comparison against LWS: Our IIF significantly sur-
passes the LWS method in both ImageNet-LT and Places-LT
datasets. LWS [13] uses multiplicative adjustment as shown in
Table IV, like our IIF . However, the class margins in LWS,
need to be learned in two stage training, whereas in IIF , the
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margins can be injected during inference using Post-Process
IIF , without the need for classifier retraining. Furthermore,
the margins of IIF are easier to explain as they are calculated
directly from the training dataset, whereas the LWS margins
are learnable and more difficult to explain.

VI. LONG-TAILED INSTANCE SEGMENTATION

In the previous section, we showed that IIF can achieve
good performance in long-tailed classification. In this section,
we show that IIF can generalise to downstream tasks such
as long-tailed instance segmentation.

A. Experiment Setup

1) Dataset: We use LVIS version 1 (LVISv1) which con-
tains 99k images for training and 19.8k images for validation.
LVISv1 is a heavily class imbalanced dataset that contains
1, 203 categories that are grouped according to their image
frequency into rare categories (those with 1-10 images in the
dataset), common categories (11 to 100 images in the dataset)
and frequent categories (those with > 100 images in the
dataset). We report our results using average mask precision
AP , average mask precision for rare APr, common APc and
frequent categories APf and average box precision APb. The
imbalance factor of LVISv1 is shown in Table I.

2) Implementation Details: We use a plethora of architec-
tures such as MaskRCNN [68], Cascade MaskRCNN [83] and
Hybrid Task Cascade [84]. For our intermediate experiments,
we use the 1x schedule in order to reduce the computational
time and still showcase the performance of IIF . When we
compare against the state-of-the-art we use a longer training
schedule that is 2x and standard model enhancements such
as Cosine Classifier [12] and Normalised Mask [23]. We
also use RFS [5] as our sampling policy and FASA [42] as
our augmentation policy and we train all models using the
MMdetection framework [85].

B. IIF in Long-tailed Instance Segmentation

We analyse IIF in conjunction to training strategies,
sampling strategies, IIF variants and model architectures.
Unless specified, for all experiments we use MaskRCNN with
ResNet50 as our main architecture.

1) Training Strategies: The task of long-tailed instance
segmentation is different and more complex than long-tailed
classification as it contains the special background class, it has
a larger imbalance factor as shown in Table I and the target
distribution is not uniform but long-tailed.

For this reason, we examine two strategies of applying IIF :
either end-to-end training or decoupled strategy. As shown
in Table XI the best strategy is end-to-end training, as this
gives the best mask AP and box APb. In detail, the 12-epoch
schedule IIF boosts mask AP by 4.6% and box AP by 2.6%
while the 24-epoch schedule increases mask AP by 3.4% and
box AP 2.5% compared to Softmax. The decoupled strategy
also increases the performance by 3.1% in mask AP and by
1.9% in box AP compared to Softmax trained for 12-epochs.
However, decoupling strategy costs more training resources

TABLE XI
END-TO-END AGAINST DECOUPLED STRATEGY USING IIF

MaskRCNN Epochs LVISv1
APb AP

Softmax 12 16.9 15.2
Softmax 24 19.5 18.7

End to End 12 19.5 19.8
End to End 24 22.0 22.1
Decoupled 12/12 18.8 18.3

TABLE XII
SAMPLING STRATEGIES USING IIF

E2E Epochs Sampler AP APr APc APf APb

✓
12 rand 19.8 7.5 17.7 27.6 19.5
24 22.1 9.9 20.3 29.6 22.0

✓

12

RFS

22.6 12.6 21.7 28.0 22.6
16 22.8 11.9 21.8 28.7 23.0
18 22.8 11.9 21.7 28.9 23.1
24 22.9 10.9 21.9 29.2 23.5

12/12 rand/rand 18.3 5.4 15.9 26.7 18.8
12/12 rand/RFS 19.0 8.0 16.5 26.6 19.2
12/12 RFS/RFS 18.8 6.9 16.6 26.5 19.5

and achieves lower performance than the end-to-end training.
To this end, end-to-end trainning is better for long-tailed
instance segmentation in contrast to long-tailed classification
where decoupled training works best. The reason is that the
long-tail instance segmentation task is a finetuning task which
typically uses a backbone pretrained on ImageNet-1K. Thus,
the network has already learned good representations [13]
and IIF can be used end-to-end to finetune the model in
the downstream task. Also, end-to-end training is preferable
because it converges faster than decoupled training as shown
in Table XI.

Finally, end-to-end IIF training is a superior because
it reduces not only the foreground imbalance but also the
foreground to background imbalance, allowing the model to
distinguish rare categories from the background.

2) Sampling Strategies: Next, we examine sampling strate-
gies, in particular, oversampling and random sampling. In
contrast to long-tailed classification, the oversampling strategy
is essential to the performance of long-tailed instance segmen-
tation methods and many works use it [8], [23], [57], [59],
[77]. Similar to these works, we explore RFS sampling [5],
and random sampling and we compare them with end-to-end

TABLE XIII
COMPARATIVE SEGMENTATION RESULTS ON (M)ASKRCNN [68],

(C)ASCADE MASK-RCNN [83] AND (H)YBRID TASK CASCADE [84]
USING (R)ESNET [24] OR RESNE(X)T [86]

Method Framework AP AP50 AP75 APr APc APf

Softmax M.R50 15.2 24.4 16.1 0.0 10.6 26.9
IIF 19.8 32.3 20.7 7.5 17.7 27.6

Softmax M.R101 16.7 26.5 17.6 0.5 12.5 28.5
IIF 21.3 34.3 22.1 7.5 19.5 29.2

Softmax M.X101 18.6 29.1 19.6 0.6 14.5 31.1
IIF 23.5 37.4 24.9 9.2 21.9 31.5

Sofmax C.R101 18.8 28.7 20.1 0.6 15.7 30.3
IIF 24.2 36.6 25.8 9.5 23.8 31.0

Sofmax H.R101 19.1 28.9 20.5 0.6 15.8 31.0
IIF 24.7 36.9 26.5 9.3 24.4 31.9
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training and decoupling strategy. As shown in Table XII, the
best sampling strategy is RFS [5] used in End-to-End (E2E)
for 24 epochs as this has the best overall AP . In detail, it
achieves 22.9% in overall mask AP and 23.5% in overall
box AP . It also increases the APr by 1.0% and APc by 1.6%
compared to random sampling used in End-to-End training for
24 epochs. However, this technique reduces the performance of
frequent categories slightly by 0.4% compared to end-to-end
random sampling, as also noted by [5]. Moreover, the end-
to-end 12-epoch RFS schedule achieves the best APr adding
a further boost of 1.7%, but at the same time it lowers the
performance of the frequent categories 1.6%, compared to
the end-to-end 24-epoch RFS schedule. This indicates that
there exists a trade-off for frequent and rare categories that
depends on the training schedule, i.e. the longer schedule may
be suboptimal for the rare categories but it benefits frequent
categories and vice versa. Regarding the decoupling strategy,
we use three different sampling combinations for the two stage
training; random sampling for both stages, random sampling
first and RFS secondly and finally RFS for both stages. All
decoupling strategies require more training resources and have
worst performance than training end-to-end. This is because,
in long-tailed instance segmentation, the backbone is already
pretrained on Imagenet-1K, thus the decoupled strategy con-
verges slower than the end-to-end training. In the end, we
adopt the end-to-end 24-epoch schedule as this has the best
overall performance.

3) Extension to Deeper Architectures: We show the gen-
eralisability of IIF by applying it to the popular instance
segmentation models such as MaskRCNN, Cascade MaskR-
CNN and Hybrid Task Cascade using 1x schedule and random
sampling. As shown in Table XIII, IIF improves the perfor-
mance of all models significantly. Furthermore, the gains in
performance become larger as models become deeper linearly,
which indicates that our method can generalise well to larger
architectures. IIF increases MaskRCNN ResNet50 by 4.6%,
MaskRCNN ResNet101 by 4.6%, MaskRCNN ResNeXt101
by 4.9%, Cascade MaskRCNN ResNet101 by 5.4% and Hy-
brid Task Cascade ResNet101 by 5.6% in overall mask AP .
Moreover, IIF increases the performance of all categories,
both head and tail, for all architectures. This is due to the
fact that even frequent categories may have lower expectations
compared to the dominant background class, especially for the
edge locations of an image. IIF can alleviate such imbalance
and increase the performance for all categories, thus it is a
robust method for long-tailed instance segmentation.

4) IIF Variants: We conduct an extensive ablation study
of different IIF variants in Table XIV. All IIF variants
significantly improve the baseline in both mask and box AP
and the best variant is base10 IOF .

The base10 IOF achieves 20.0% overall box AP and
19.9% overall mask AP and it boosts the detection perfor-
mance by 4.5% and segmentation performance by 5.7% for
rare categories. There are other variants that achieve better
segmentation performance for rare categories like the relative
IIF that boosts performance by 7.3%. However, in the task
of long-tailed instance segmentation it is better to opt for
a variant that achieves high bounding box performance, as

this enables the mask AP to improve further by combining
this technique with other sampling strategies and methods. In
our experiments we have observed that, during MaskRCNN
inference, the bounding box performance, determines the seg-
mentation performance, thus the bounding box performance is
the bottleneck. For this reason, we use base10 IOF to achieve
the best possible box AP and this enables the creation of better
models as we show in the following section.

5) IIF Enhancements: We use the base10 IOF variant
and end-to-end training. Moreover, we use standard techniques
that have been previously used by other state-of-the-art such
as Normalisation Mask [23], Cosine classifier [12], RFS [5]
and FASA [42]. Additionally, we use a stricter Non-maximum
suppression threshold that is 0.3, mask threshold of 0.4 and a
longer training schedule that is 2x.

Starting from the Softmax model, we replace the Dot-
product Classifier wit Cosine Classifier following [12], this
adds 1.4% in mask AP . Next, we adopt a Normalisation Mask
[23] that further increases the performance by 0.7%. Recently,
Zang et. al. proposed FASA [42] which is a novel feature
augmentation technique. Using FASA we further improve the
model by 2.5%. Using IIF in addition to these methods,
the model’s performance is further increased by 0.8%. If we
adopt RFS [5] as our sampling strategy, this further increments
the performance by 1.7% compared to FASA. Finally, using
base10 IOF , a stricter NMS threshold of 0.3 and mask
threshold of 0.4, we further increase performance by 1.3%
achieving 26.3% in overall mask AP .

C. Comparison to Other Methods
We compare our IIF method against the state-of-the-art

in Table XVI. Using ResNet50, our method has the best
overall segmentation performance, surpassing EQLv2 [56] by
0.8% and NorCal [77] by 1.1% in overall AP . Furthermore,
our method achieves the best AP in common and frequent
categories. Also, it increases the AP by 7.6%, APr by 17.5%,
APc by 9.0%, APf by 1.6% and APb by 6.3% compared to
vanilla Softmax.

We further investigate the performance of ResNet50-RSB
[88] which is a ResNet50 backbone pretrained with better
augmentations and regularisations. As the compared methods
did not use this backbone, we have reproduced them for fair
comparison. Using ResNet50-RSB [88], IIF surpasses the
state-of-the-art in overall mask and box performance reaching
27.4% in both metrics. Also, it outperforms NorCal [77] by
0.3% and RFS [5] by 1.7%. Moreover, it achieves the best
performance in rare, common and frequent categories reaching
19.4%, 26.9% and 32.1% respectively.

We notice that IIF generally improves all categories, which
is different from long-tailed image classification where there is
a performance trade-off between rare and frequent categories.
This is because in long-tailed instance segmentation the trade-
off is not only between foreground but also between back-
ground and foreground categories. In long-tailed segmentation,
the background samples dominate the training process and
render all foreground classes as the minority. Thus, using IIF
all categories can benefit resulting in the general performance
boost.
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TABLE XIV
ABLATION STUDY OF IIF VARIANTS WITH MASKRCNN ON LVIS

LVISv1.0 Box AP Mask AP
Variant Method AP AP50 AP75 APr APc APf AP AP50 AP75 APr APc APf

Baseline Softmax 16.1 26.5 16.9 0.4 10.5 29.2 15.2 24.4 16.1 0.5 10.6 26.9
Raw

IIF

19.5 34.7 18.5 6.6 15.4 29.7 19.8 32.3 20.7 7.5 17.7 27.6
Smooth 19.0 34.3 18.0 5.4 14.9 29.6 19.5 32.0 20.3 6.8 17.3 27.6
Relative 19.7 34.8 18.9 6.8 15.5 30.0 19.9 32.4 20.8 7.3 17.8 27.9
Base2 19.0 34.3 17.7 6.4 14.5 29.5 19.5 31.9 20.4 7.6 17.0 27.6
Base10 19.5 33.2 19.7 3.2 16.6 29.9 19.2 30.9 20.2 4.2 17.7 27.4
Normit 19.3 33.1 19.5 2.5 16.3 30.1 19.0 30.7 19.9 3.7 17.2 27.7
Gombit 19.7 34.7 19.1 5.9 16.0 29.9 19.8 32.3 20.7 6.9 17.9 27.7

Raw

IOF

19.0 34.2 17.7 6.0 14.6 29.6 19.5 32.1 20.3 7.4 17.1 27.6
Smooth 18.7 34.0 17.6 5.8 14.4 29.3 19.5 31.8 20.2 7.4 17.0 27.5
Relative 19.0 34.1 17.9 6.6 14.4 29.6 19.5 31.9 20.2 7.8 17.0 27.5
Base2 18.2 33.8 16.6 5.6 13.6 28.9 19.1 31.6 19.9 7.1 16.4 27.3
Base10 20.0 34.2 20.3 4.9 17.0 30.0 19.9 32.0 20.9 6.2 18.2 27.7
Normit 19.4 33.3 19.4 2.9 16.3 30.1 19.1 30.8 20.0 3.7 17.4 27.7
Gombit 18.9 34.3 17.4 5.0 14.7 29.6 19.5 32.1 20.3 7.0 17.2 27.5

TABLE XV
ABLATION STUDY OF COMPONENTS USED WITH IIF

Cos. Cls. Norm. M. FASA RFS base10-IOF AP
18.7

✓ 20.1
✓ ✓ 20.8
✓ ✓ ✓ 23.3
✓ ✓ ✓ ✓ 25.0
✓ ✓ ✓ ✓ 24.1
✓ ✓ ✓ ✓ ✓ 26.3

D. Model Analysis

Inspired by [13] we analyse the weight norms of the
classification layer of MaskRCNN trained with our method.
As seen in Figure 5, IIF produces a more balanced weight
norm distribution compared to Softmax. In this way, it removes
classification bias by increasing the norms associated with
rare classes and decreasing the norms associated with frequent
classes. Lastly, we compare instance segmentation results of
our method against Softmax, shown in five images from LVIS
validation set using MaskRCNN in Figure 4. Our IIF model
recognises correctly the rare classes like the parrot, owl, horse-
carriage and giant panda, in contrast to vanilla Softmax,
that either classifies them as the common classes bird, polar
bear or does not recognise them at all. However, not all rare
categories can be correctly recognised with IIF as our method
did not detect the eagle in the last image. Nevertheless, IIF
shows promising results as it predicted a more interesting
and rare class that is duck instead of the common class bird,
probably because the context around the image is water. This
shows that this method can be further improved by explicitly
modeling the context around the images or by capturing the
relationship between objects inside the image.

VII. DISCUSSIONS

As presented in the above experiments, IIF has proven
to be a robust method that can be used in many long-tailed
tasks such as long-tailed classification and long-tailed instance
segmentation to boost the performance of rare categories.

Moreover, it generalises well to many backbones and ar-
chitectures and therefore it can be a valuable component to
long-tailed methods.

As shown in classification, IIF can be used either as a
post-processing strategy or as decoupled strategy. The de-
coupling strategy has slightly better performance than the
post-processing strategy but it costs additional training. After
exploring many IIF variants, we showed that IIF is robust
and we used the smooth IIF variant as this produced the best
performance. On the other hand, IIF uses weight multipli-
cation. This may be disadvantageous as it makes the model’s
output non-smooth and close to one-hot distribution thus it
may increase the expected calibration error of the model.
However, the multiplicative adjustment generalises better in
downstream tasks as it produces fewer false positives than ad-
ditive margin adjustment methods. To this end, we developed
IIF for long-tailed instance segmentation. We compared the
end-to-end strategy against decoupled strategy and found that
the former is better. This is because end-to-end training allows
the model to compensate for the background-to-foreground
imbalance and foreground-to-foreground imbalance simultane-
ously during optimisation in a stronger fashion than decoupled
strategy.

Moreover, we used IIF along with sampling strategies
and long-tailed techniques and we found that IIF can boost
their performance. By combining IIF with standard enhance-
ments, we outperformed all the state-of-the-art methods. We
also showed that our IIF model generally increases the
performance of both frequent and rare categories as it tackles
background and foreground imbalance.

However, IIF has a lot of variants and choosing the
right variant is not trivial as this depends on the dataset’s
statistics. This has been tackled by previous works using
learnable margins but these may not be suitable for safety-
critical applications as they are not explainable. In contrast,
our IIF uses dataset-dependent margins that are easy to use
and achieve great performance in long-tailed classification. At
the same time, IIF produces fewer false positives than previ-
ous handcrafted margin-adjustment techniques in downstream
tasks, thus it is a superior choice. Finally, we have also tested
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TABLE XVI
COMPARISON AGAINST THE STATE-OF-THE-ART ON LVISV1.0, USING MASKRCNN. THE SYMBOL † DENOTES THAT THE RESULTS HAVE BEEN

REPRODUCED.

Method Backbone AP APr APc APf APb

Softmax

ResNet-50-FPN

18.7 1.1 16.2 29.2 19.5
EQL [55] 21.6 3.8 21.7 29.2 22.5

DropLoss [57] 22.3 12.4 22.3 26.5 22.9
Forest-RCNN [87] 23.2 14.2 22.7 27.7 24.6

RFS† [5] 23.7 13.3 23.0 29.0 24.7
FASA [42] 24.1 17.3 22.9 28.5 -

DisAlign [12] 24.2 13.2 23.8 29.3 24.7
NorCal [77] 25.2 19.3 24.2 29.0 26.1
EQLv2 [56] 25.5 17.7 24.3 30.2 26.1
IIF (ours) 26.3 18.6 25.2 30.8 25.8

Softmax

ResNet-50-FPN (RSB)

23.4 8.4 22.5 30.8 23.1
EQL† [55] 23.9 14.0 23.4 28.9 236
RFS† [5] 25.4 13.0 25.5 30.9 24.9

FASA† [42] 25.5 14.3 25.2 30.7 24.9
DropLoss† [57] 25.7 14.4 26.6 29.7 25.1

NorCal† [77] 27.1 18.4 26.6 31.5 26.8
IIF (ours) 27.4 19.4 26.8 31.5 27.4

Fig. 4. MaskRCNN-ResNet50 detections on LVISv1 validation set using Softmax versus our IIF method. IIF can correctly detect rare classes such as
parrot, owl, horse-carriage and giant panda in contrast to Softmax method. However, both methods fail to detect the rare class eagle in the last image.

Fig. 5. Visualisation of MaskRCNN classifier’s weight norms on LVIS using
Softmax and IIF . IIF produces a more balanced weight-norm distribution
in comparison to Softmax, thus it reduces the frequent category bias.

IIF in the general object detection benchmark COCO, using
both one-stage and two stage detectors, showing promising
results in the Appendix.

VIII. CONCLUSION

In this work, we proposed the novel Inverse Image Fre-
quency (IIF ) to address the long-tailed problem that is
a common issue in most real-world datasets. Our method
reweights the classification logits of the deep model to improve
the recognition performance of the rare classes in the dataset.
We investigated IIF with many training strategies and varia-
tions on four classification datasets, one instance segmentation
dataset and one object detection dataset. We showed that
decoupled smooth IIF works the best in the classification
task; the end-to-end base-10 IOF works the best in the long-
tailed instance segmentation task. Our IIF models can largely
improve the rare category performance and surpass the state-
of-the-art by a large margin (e.g., ∼ 3.0% on ImageNet-LT
compared to similar methods and ∼ 0.7% on LVIS in overall
performance), thus it can serve as a valuable component in
the long-tailed recognition methodology. Our models can be
used in a variety of applications such as autonomous vehicles,
Internet of Things and medical applications where data follow
a long-tailed distribution. In the future, we will expand IIF
to other tasks such as semantic segmentation and few-shot
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learning and explore optimal sampling strategies to further
boost the performance of rare classes.
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APPENDIX

Proof of Eq. 15. Let wi = log ( 1
p(i) ) and Y be the onehot

encoded vector of class y. Then the gradient of IIF Cross
Entropy can be computed as follows:

∂CEIIF (q,Y)

∂zi
= − ∂

∂zi

C∑
i=1

Yi log(q
IIF
i )

= − ∂

∂zi
log

exp(wyzy)∑C
j=1 exp(wjzj)

= − ∂

∂zi
(wyzy − log(

C∑
j=1

exp(wjzj)))

=

 −wi + wi
exp(wizi)∑C

j=1 exp(wjzj)

wi
exp(wizi)∑C

j=1 exp(wjzj)

=

{
wi(q

IIF
i − 1)

wiq
IIF
i

=

{
− log(p(i))(qIIFi − 1) if i = y
− log(p(i))qIIFi otherwise
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Proof of
∑C

i qIIF,i = 1. Let wi = log ( 1
p(i) ).

For C = 1,

1∑
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exp(z1w1)

exp(z1w1)
= 1. (19)

For C = k ∈ N, assume
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Additionally, we perform experiments on MS-COCO
dataset [3], which in contrast to LVIS has 80 classes. COCO
is considered balanced dataset because it has plenty of diverse
instances per class. However, in COCO there is still imbalance
between classes as categories such as person dominate the
dataset and this results in a large imbalance factor as shown
in Table 1. For COCO dataset we report only bounding box
AP and since it does not group the classes according to
their frequency, we further report tail-k AP for the most rare
categories, where k denotes the group size.

A. Implementation Details

For our experiments in object detection, we used YOLOv3
[65], Faster-RCNN [67]), Mask-RCNN [68], SSD [89] and
DetectoRS [90]. Models without our IIF method are used as
the baselines. All the other settings were kept the same except
that we train these models with or without IIF .

1) Faster RCNN: It was implemented in PyTorch and the
backbone network was the pre-trained ResNet50-FPN. We
used a learning rate of 0.02, weight decay of 0.0001, the
momentum of 0.9, batch size of 16 and the 2x training
schedule.

2) MaskRCNN: The model was implemented using MMde-
tection framework [85] and the default training settings using
a 1x schedule.

3) YOLOv3: Bayesian Optimisation was used to determine
the optimal hyper-parameters of YOLOv3 and the pre-trained
Darknet53 was taken as the backbone network. Furthermore,
Focal Loss [66] was used for objectness optimisation, com-
plete IoU [91] for bounding box regression and Cross-Entropy
for classification. The model was trained for 70 epochs using
SGD, image augmentations, momentum of 0.9, weight decay
of 0.0005 and an initial learning rate of 0.002 that drops by
a factor of 10 at epochs 35 and 55, batch size 32, batch
normalisation and multi-scale training at 640-pixel input.

4) SSD: The SSD with VGG16 as the backbone was
used. The model was trained for 120 epochs on images of
300x300 resolution using SGD and a learning rate of 0.002
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Fig. 6. Softmax vs IIF using YOLOV3. In (i) IIF can correctly detect and classify the rare class toaster in contrast to Softmax that predicted cup. In
(ii) the confidence heatmap is illustrated, both Softmax and IIF correctly identify the center of the object. In (iii) the class heatmap for the high confidence
region is shown, using the 80 classes of COCO. Softmax, predicts the class 60 with high score which is the class cup, while IIF predicts the class 70
with high score which is the correct toaster class. In (iv) the activations are illustrated using GradCam, both Softmax and IIF show large activations, but
only IIF has made a correct prediction. This highlights that IIF performance boost is due to rare category classification rather than other factors such as
localisation or confidence prediction.

TABLE XVII
IIF VARIANTS USING MASKRCNN ON COCO FOR OBJECT DETECTION

Variant Method AP AP50 AP75 tail-5 tail-10 tail-20
Baseline Softmax 38.1 58.9 41.4 31.4 41.4 40.9

Raw

IIF

38.5 59.3 41.9 33.5 42.6 41.6
Smooth 38.9 59.6 42.7 34.8 43.7 42.3
Relative 38.6 59.4 42.0 34.1 42.8 41.4
Base2 38.8 59.8 42.5 35.2 44.0 42.4
Base10 38.3 59.1 41.7 31.5 41.9 41.0
Normit 38.3 59.1 42.0 31.9 41.9 41.3
Gombit 38.6 59.3 42.1 34.5 43.0 41.7

Raw

IOF

38.9 59.8 42.5 35.1 43.8 42.5
Smooth 38.9 59.5 42.4 36.2 44.5 42.7
Relative 38.6 59.5 42.0 33.2 42.5 41.6
Base2 38.6 59.4 41.9 33.2 42.0 41.3
Base10 38.5 59.4 41.9 34.9 43.1 41.5
Normit 38.4 59.2 42.0 32.2 41.8 41.2
Gombit 38.5 59.3 41.8 32.5 42.3 41.5

that drops by a factor of 10 at epochs 80 and 110. The model
was implemented using the recommended settings from the
PyTorch implementation for simplicity and reproducibility.

5) End-to-end Training: When we train our IIF models for
object detection, we use end-to-end training as we observed
that a two-stage strategy does not produce better results and
it costs extra training time.

B. IIF Variants

We expand the analysis of IIF variants using MaskRCNN
on the MS-COCO dataset. As seen in Table XVII, the best
variants are smooth IIF , raw IOF and smooth IOF as they
achieve the best overall performance, boosting AP by 0.8%.
Smooth IOF achieves the best performance on rare classes
as it increases tail-5 by 1.1%, and tail-10 by 0.7%. In general,
all IIF variants boost the performance consistently, in the
end, we choose to use the smooth IIF variant because it
generalises well in many object detection architectures and
has the best performance.

C. Results

Using the smooth IIF , we conduct experiments with com-
mon object detectors. As the results indicate in Table XVIII,
the models equipped with our proposed IIF outperform the
vanilla object detectors consistently on the COCO dataset for
all the object detectors.

Regarding overall AP , IIF improves FasterRCNN by
0.5%, MaskRCNN by 0.8%, YOLOv3 and SSD by 0.7%.
For the detection performance of AP50, an improvement of
1.1% was achieved for FasterRCNN and YOLOv3, 0.7% for
MaskRCNN and 2.1% for SSD. Finally, regarding AP75, IIF
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TABLE XVIII
COMPARATIVE RESULTS FOR MASK-RCNN, FASTER-RCNN, YOLOV3 AND SSD IN TERMS OF AVERAGE PRECISION (AP). TAIL-k REFERS TO TAIL

CATEGORIES, GROUPED AT k

Model Method AP AP50 AP75 tail-5 tail-10 tail-20
FasterRCNN Softmax 37.0 58.2 39.9 23.1 29.3 35.9
FasterRCNN IIF 37.5 59.3 40.5 25.0 30.3 36.2
MaskRCNN Softmax 38.1 58.9 41.4 31.4 41.4 40.9
MaskRCNN IIF 38.9 59.6 42.7 34.8 43.7 42.3

YOLOv3 Softmax 33.9 58.6 35.2 19.3 24.8 31.3
YOLOv3 IIF 34.6 59.7 35.7 21.8 26.8 32.7

SSD Softmax 25.0 41.5 25.9 14.7 17.2 22.3
SSD IIF 25.7 43.6 26.4 18.5 20.0 24.3

increments performance of FasterRCNN by 0.6%, MaskR-
CNN by 1.3%, YOLOv3 and SSD by 0.5%. The increase
in performance is smaller in this task than the long-tailed
instance segmentation task because the COCO dataset is less
imbalanced than LVIS dataset and it contains more diverse
samples per category.

Nevertheless, our method significantly increases the per-
formance of rare categories showing consistent improvements
among all the detectors. In particular, IIF improves the tail-5
classes of the dataset by 1.9% for FasterRCNN, by 3.4% for
MaskRCNN, by 2.5% for YOLOv3 and by 3.8% for SSD.
Regarding the tail-10, our method improves FasterRCNN by
1.0%, MaskRCNN by 2.3%, YOLOv3 by 2.0% and SSD
by 2.8%. Finally, IIF improves the tail-20 performance by
0.3% for FasterRCNN, by 1.4% for MaskRCNN, by 1.4% for
YOLOv3 and by 2.0% for SSD.

D. Model Analysis

We use YOLOv3 [65] to analyse the performance of IIF .
YOLOv3 is a one-stage object detector that disentangles
background from foreground using an objectness branch and
classification branch. In Figure 6 we show one image contain-
ing the rare class toaster from COCO validation set. Softmax
and IIF both localise the object correctly as shown in (i) and
have high confidence for the object’s location as shown in (ii).
However, only IIF predicts the correct class that is toaster,
which is the class 70 in COCO, as shown (iii). Softmax on the
other hand, mis-predicts the class 60, which is the cup class
with a high score. Finally, both Softmax and IIF produce
large activations using GradCam [92] as displayed in (iv). This
demonstrates that IIF increases the classification ability of
the network particularly for the rare classes, while it keeps its
localisation and confidence prediction skill intact.
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