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Abstract— Affordance detection presents intricate challenges
and has a wide range of robotic applications. Previous works
have faced limitations such as the complexities of 3D object
shapes, the wide range of potential affordances on real-world
objects, and the lack of open-vocabulary support for affor-
dance understanding. In this paper, we introduce a new open-
vocabulary affordance detection method in 3D point clouds,
leveraging knowledge distillation and text-point correlation.
Our approach employs pre-trained 3D models through knowl-
edge distillation to enhance feature extraction and semantic
understanding in 3D point clouds. We further introduce a
new text-point correlation method to learn the semantic links
between point cloud features and open-vocabulary labels. The
intensive experiments show that our approach outperforms
previous works and adapts to new affordance labels and unseen
objects. Notably, our method achieves the improvement of
7.96% mIOU score compared to the baselines. Furthermore,
it offers real-time inference which is well-suitable for robotic
manipulation applications.

I. INTRODUCTION
Intelligent robotic systems capable of interacting with ob-

jects and comprehending their affordances are of paramount
importance across a wide array of real-world applications [1].
These robotic applications encompass a diverse range of
tasks, including object recognition [2], [3], action anticipa-
tion [4], [5], agent’s activity recognition [6], [7], and object
grasping understanding [8]. In these tasks, the concept of
affordance plays an important role as it refers to the potential
actions or functionalities that an object can offer to its
users. While affordance detection has received significant
research interest in robotics, detecting object affordances
poses significant challenges due to the inherent complexity
and diverse shapes and functionalities of objects [9].

Classical affordance detection techniques have predomi-
nantly relied on traditional machine learning methods ap-
plied to images [11], texture-based cues [12], relational
affordance models [13] and human-object interactions [14].
Deep learning, particularly Convolutional Neural Networks
(CNNs) [15], has also been employed for affordance-related
tasks [16]–[23]. However, these methods confront challenges
arising from the variability of visual information associated
with object affordances despite their shared functionalities.
Although leveraging 3D point clouds has gained popularity
in robotics for supplying direct 3D object and environmental
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Fig. 1. The comparison between: (a) traditional affordance detection
methods, (b) OpenAD [10], and (c) our proposed method. We leverage
a point cloud teacher model and learn the text-point correlation to improve
the open-vocabulary affordance detection results.

data, existing research [24]–[27] has encountered limitations
imposed by a fixed label set tailored to specific tasks, limiting
their support for broader or unsupervised inquiries. Further-
more, conventional approaches often encounter difficulties in
capturing nuanced associations between localized point cloud
regions and their corresponding labeled affordances [21].

To overcome the fixed label set problem, the authors
in [10] introduced an open-vocabulary approach for 3D point
cloud affordance detection that allows unrestricted natural
language input, expanding the model’s applicability. Despite
promising strides, several limitations continue to challenge
the effectiveness of existing methods for open-vocabulary
affordance detection [10]. First, the inherent intricacies of 3D
object shapes and the diverse range of potential affordances
pose obstacles in the precise prediction and identification of
object interactions [28]. Second, the predicament of entirely
novel or unseen affordances in real-world scenarios remains
a formidable hurdle, necessitating the reinforcement of de-
tection models’ resilience and adaptability [25]. Finally, the
intricate interplay between vision and language within the 3D
environment mandates a more comprehensive comprehension
of object-affordance relationships [29].
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To tackle these limitations, we introduce a new open-
vocabulary affordance detection in 3D point clouds using
knowledge distillation and text-point correlation. Our method
utilizes knowledge distillation to leverage 3D models pre-
trained on large-scale datasets for the affordance detection
task. Knowledge distillation fuses intricate local shape in-
tricacies and dynamic interactions in 3D point clouds, re-
inforcing feature extraction without class-specific guidance.
This enhancement, driven by attention knowledge transfer,
enriches semantic comprehension in open-vocabulary affor-
dance detection. Moreover, we introduce the text-point cor-
relation to refine semantic connections between point cloud
features and affordance labels. This approach, employing an
established attention mechanism [30], centers on relevant
point cloud regions to strengthen the text-point relationships.
The intensive experiment shows that our method demon-
strates substantial improvements, achieving faster running
time while improving 7.96 mIOU score over the baselines.
Ablation studies and qualitative results further validate the
effectiveness of our approach and provide insights for future
research directions.

Our main contributions are summarized as follows:
• We propose a new approach to address the challenges

of open-vocabulary affordance detection in 3D point
clouds using knowledge distillation and text-point cor-
relation.

• We intensively evaluate our method against prior meth-
ods and show its effectiveness in real-world robotic
applications. Our code will be made available.

II. RELATED WORK

Affordance Detection. Affordance detection is commonly
approached as a pixel-wise labeling task, and numerous
studies have focused on this area, as evident in [18], [19],
[21], [31]–[35]. The authors in [21] developed a method to
detect object affordances in real-world scenes by utilizing an
object detector and dense conditional random fields. In [19],
the authors introduced a two-branch framework that simul-
taneously identifies multiple objects and their corresponding
affordances from RGB images. Chen et al. [34] presented
a multi-task dense affordance architecture. More recently,
Luo et al. [35] proposed a cross-view knowledge transfer
framework to extract invariant affordances from exocentric
observations. Hassan et al. [14] predicted high-level affor-
dances by exploring the mutual contexts of humans, objects,
and the surrounding environment, while Chen et al. [36]
learned meaningful affordance indicators for predicting ac-
tions in autonomous driving scenarios.

Affordance detection in the context of 3D point cloud
data has been also the subject of extensive research [24]–
[27]. Kim et al. [37] proposed a method that extracts
geometric features from point cloud segments and employs
logistic regression for affordance classification. Later, Kim
and Sukhame [38] introduced a technique that voxelizes
point cloud objects and generates an affordance map using
interactive manipulation. Similarly, Kokic et al. [24] devel-
oped a system to model relationships between tasks, objects,

and grasping. Iriondo et al. [26] focused on detecting affor-
dances for industrial bin-picking applications. Additionally,
Mo et al. [27] learned affordance heatmaps from object-
object interactions. Yang et al. [39] explores the task of
linking 3D object affordances to 2D interactions in images.
While these studies have made substantial contributions to
affordance detection, the task of open-vocabulary affordance
detection remains unexplored by these methods [10].

Open-Vocabulary Affordance Detection. Recently, ex-
pansive vision language models have exhibited promising
outcomes in robotic tasks [40], [41]. Peng et al. [29] har-
nessed a pre-trained textual encoder from CLIP [42] to fuse
2D and 3D characteristics, aligning them with text embed-
ding to address the challenge of open-vocabulary 3D scene
comprehension. While these contributions have indeed pro-
pelled the advancements in affordance detection, they have
yet to explicitly tackle the intricacies of open-vocabulary af-
fordance detection. The authors in [10] introduced OpenAD,
an open-vocabulary affordance detection method to identify
a wide array of affordances in 3D point clouds. OpenAD
effectively learns both textual and point-based affordance
features, capitalizing on the semantic relationships among
different affordances. However, a limitation of OpenAD lies
in its generalization capability, particularly concerning out-
of-domain 3D objects and novel affordances.

Knowledge Distillation. Knowledge distillation entails
the transfer of information from one network to another [43].
Recently, there has been a shift towards cross-domain knowl-
edge distillation [44]–[47], wherein knowledge is conveyed
from a data-rich domain to one with limited diversity. For
instance, Li et al. [45] effectively employed cross-domain
and cross-modal knowledge distillation to enhance 3D point
cloud semantic segmentation across diverse scenarios. While
cross-domain knowledge distillation has been extensively
explored, its application to open-vocabulary affordance de-
tection and its associated techniques remain relatively un-
charted. Our study focuses on 3D open-vocabulary affor-
dance detection, with the aim of harnessing diverse 3D
point cloud models to transfer this knowledge to the open-
vocabulary affordance detection task.

Differing from existing approaches that primarily focus
on multi-modal student-teacher frameworks [29], [45], [48],
our contribution centers on refining knowledge distillation
for open-vocabulary affordance detection in 3D point clouds.
Our method involves training a lightweight student model
using insights from a well-parameterized teacher model. By
transferring attention knowledge from teacher to student,
our method enhances feature extraction at the point level,
amplifying differentiation capabilities independently of class-
specific guidance. Additionally, we heighten semantic con-
nections between point cloud affordances and labels through
the established attention mechanism [30]. This strategy fo-
cuses on relevant point cloud regions to establish connec-
tions between point regions and labeled affordances, hence
improving the point-text matching process and improving the
final affordance detection results.
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Fig. 2. An overview of our proposed open-vocabulary affordance detection method using knowledge distillation and text-point correlation.

III. OPEN-VOCABULARY AFFORDANCE DETECTION

A. Overview

Following [10], we address open-vocabulary affordance
detection where the input cloud C contains n unordered
points pi ∈ R3, and the corresponding affordance labels are
represented by natural language descriptions. The number of
possible labels, denoted by m, can be unlimited, allowing
adaptation to various affordance labels, even unseen ones
during testing. Fig. 2 shows an overview of our approach
which has two branches: point-point attention with knowl-
edge distillation and text-point correlation learning.

B. Point-Point Attention with Knowledge Distillation

We utilize a teacher model (pre-trained on large
datasets [49]) to transfer its knowledge to the student model
via a cross-attention distillation mechanism that minimizes
the dissimilarity between the student and teacher attention
maps. In particular, the point cloud network processes n
input points, resulting in an embedding vector for each point,
represented as P1,P2, ...,Pn ∈ RD, for both the student and
teacher models. Following [50], to model the geometry of
the point cloud, we first use Farthest Point Sampling (FPS)
on the input point cloud to uniformly sample r-proportional
points (the number is ⌊Z = r ∗ n⌋) as anchors {Ca}Za=1. We
then calculate the Euclidean distance between each point
and the anchors and apply K-Nearest Neighbors (KNN) to
sample the nearest K points Ca,k, k ∈ N (a) to form local
areas reflecting the geometric structures. Based on this, we
represent the point-wise relative relationships Ra within the
geometric neighbors, which contain the structured knowledge

for migration and can be formulated as:

Ra =
1

K

∑
k∈N (a)

(
pa,k
n − pa

n

)
⊕

(
Pa,k

n −Pa
n

)
, (1)

where pn are xyz coordinates of points in the set C of n
input points, Pn are the embedding vector for every input
point pn, ⊕ indicates the concatenation operation. The point-
wise feature relations of the teacher and student model can
be expressed as Ra

te and Ra
st respectively. We transfer the

knowledge of the teacher to the student via the MSE loss:

Lgeo_transfer =
1

Z

Z∑
a=1

∥Ra
te −Ra

st∥ , (2)

Subsequently, the Cross-Attention Projector transforms
the feature space of both the student and teacher point
clouds into the transformer attention space. It is achieved by
mapping point features into query, key, and value matrices.
The self-attention [51] is used to capture local relationships
among objects by first generating query, key, and value
embeddings from the feature matrix P ∈ Rn×D, where
Q = PWQ, K = PWK , and V = PWV . Here, WQ, WK ,
and WV ∈ Rd×dh are trainable parameters, with d denotes
the query size and dh is the output embedding dimension. We
compute matrix representations Qst,Kst,Vst to model the
attention in the student’s space, and matrix representations
Qte,Kte,Vte for the teacher’s attention space. The self-
attention mechanism for the student is computed as:

Ωst = softmax(
Qst(Kst)

⊤
√
d

)Vst, (3)



The calculation of Ωte for the teacher is similar. Hence, we
can minimize the distance between the attention maps of the
teacher and the student to guide the student network using
the following objective function:

Latt_transfer = MSE(Ωte,Ωst), (4)

where MSE(·) is the mean square error function.

C. Text-Point Correlation

In our approach, following previous works [10], we use
the text encoder from CLIP [42], which produces m word
embeddings T = [T1,T2, ...,Tm] ∈ Rm×D for text-
affordance labels. To understand the interaction between
vision and language, we focus on the correlation in the
feature space of each text-affordance. Let Ti and Pj refer
to the feature representation of the i-th affordance query
and j-th points, respectively. We compute the correlation by
calculating the Pj’s attention weight with respect to text-
affordance Ti as:

wi,j = σ(T⊤
i Pj), i ∈ [1,m], j ∈ [1, n], (5)

where σ is the activation function.
The attention features T̂i for the affordance text Ti, is

defined from the point feature Pj and a weighted summation
of keypoint features, as in the following equation:

T̂i =

∑n
j=1 σ(wi,jPj)∑n

j=1 wi,j
, i ∈ [1,m], j ∈ [1, n], (6)

The overall relevance score for the text-point correlation
attention matrix is then computed as follows:

Aj,i =
P⊤

j T̂i

∥Pj∥
∥∥∥T̂i

∥∥∥ , j ∈ [1, n], i ∈ [1,m]. (7)

Following [10], the point-wise softmax output of a single
point i is then computed in the form:

sj,i =
exp (Aj,i/τ)∑m
k=1 exp(Ak,i/τ)

, (8)

where τ is a learnable parameter [52]. We aim to maximize
the value of the entry sj,i that is the attention correlation
of Pj and the text attention embedding T̂i corresponding to
the ground-truth label i = yi. This can be accomplished by
optimizing the weighted negative log-likelihood loss of the
point-wise softmax output over the entire point cloud in the
form:

Lpoint_wise = −
n∑

j=1

ωyi
log sj,yi

, (9)

where ωyi
is the weighting parameter to the imbalance

problem of the label classes during the training.
Finally, the overall training objective is the combination

of both loss terms Ltotal:

Ltotal = Lpoint_wise + λaLatt_transfer + λtLgeo_transfer (10)

where λa, λt is hyper-parameter to balance loss.

IV. EXPERIMENTS

A. Experimental Setup

Dataset. We employ the 3D AffordanceNet dataset [25]
and its open affordance labels by [10] for our experiments.
This dataset is the large-scale dataset for affordance detection
using 3D point clouds, containing 22, 949 instances across
23 object categories. Following [10], [25], we evaluate our
approach on two tasks: full-shape and partial-view. The
partial-view setup is particularly relevant in robotics, as it
reflects the limited observation capability of robots, where
only a partial view of the object’s point cloud is available.

Baselines and Evaluation Metrics. We conduct a com-
parative analysis of our method with recent approaches
in zero-shot learning for affordance detection in 3D point
clouds, including ZSLPC [53], TZSLPC [54], 3DGenZ [55],
and OpenAD [10]. To evaluate the results, we utilize three
metrics commonly used in related studies [10], namely, mIoU
(mean IoU over all classes), Acc (overall accuracy over
all points), and mAcc (mean accuracy over all classes).
During training, we keep the text encoder and pre-trained
teacher model fixed, then train the rest end-to-end. Point
cloud size is fixed at n = 2048 and D at 512 as in [10].
The hyperparameters τ , λa and λt are set to ln (1/0.07), 0.9
and 0.7, respectively. Finally, we use Adam optimizer with
α = 10−3 and γ = 10−4 for 200 epochs on an NVIDIA
A100 40GB and batch size of 16.

TABLE I
ZERO-SHOT OPEN-VOCABULARY DETECTION RESULTS

Task Method mIoU Acc mAcc Params CPU(s) GPU(s)

Fu
ll-

sh
ap

e TZSLPC [54] 3.86 42.97 10.37 1.7M 0.75 0.13
3DGenZ [55] 6.46 45.47 18.33 1.79M 0.76 0.14
ZSLPC [53] 9.97 40.13 18.70 1.96M 0.82 0.16
OpenAD [10] 14.37 46.31 19.51 1.8M 0.77 0.14
Ours 22.33 49.72 34.29 0.58M 0.43 0.12

Pa
rt

ia
l-

vi
ew TZSLPC [54] 4.14 42.76 8.49 1.7M 0.75 0.13

3DGenZ [55] 6.03 45.24 15.86 1.79M 0.76 0.14
ZSLPC [53] 9.52 40.91 17.16 1.96M 0.82 0.16
OpenAD [10] 12.50 45.25 17.37 1.8M 0.77 0.14
Ours 20.48 48.72 32.86 0.58M 0.43 0.12

B. Quantitative Results

The comparison results of evaluation metrics are shown
in Table I. As can be seen, our approach achieves supe-
rior results on both tasks and all three evaluation metrics.
Particularly on the full-shape task, our method outperforms
the runner-up model (OpenAD) by a substantial margin of
7.96% in mIoU. Additionally, our method shows significant
superiority over the other approaches, surpassing OpenAD
by 14.78% in mAcc and by 3.41% in Acc.

In terms of operational efficiency, our method also sig-
nificantly outperforms other baselines. On CPU, we achieve
a 1.5 times speedup. Moreover, the number of parameters
during inference is scaled down by 3 times. Importantly,
these efficiency gains do not compromise our method’s
performance superiority compared with other methods.
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C. Quantitative Results

Seen Affordances. Fig. 3 presents a visual comparison
between our method and OpenAD [10]. While detecting
seen affordances is relatively straightforward, this illustration
underscores OpenAD’s struggles in accurately identifying
known affordance areas when they overlap with other re-
gions. For instance, for objects like monitor, laptop,
faucet, and refrigerator, OpenAD often misidenti-
fies non-affordance areas as affordance zones. In contrast, our
approach consistently delivers precise results for affordance
regions, avoiding confusion with other areas.

Unseen Affordance. Fig. 4 shows the comparison with
unseen affordance inputs. While it is more challenging to de-
tect unseen affordances, this figure illustrates that our method
still achieves better results compared to OpenAD [10]. For
instance, when considering a laptop object, the baseline
method struggles to distinguish between the keyboard and
screen areas. In contrast, our method adeptly addresses these
challenges, exhibiting an enhanced ability to discern subtle
differences among affordance regions.

Unseen Objects. We assess the robustness of our method
in dealing with new object categories, a key evaluation
criterion. Our approach outperforms the baseline model,
demonstrating superior adaptability to previously unseen
objects, as shown in Fig. 5. This showcases our method’s
effectiveness and its potential value in scenarios requiring
adaptability to novel objects.

Failure Cases. While our method significantly enhances
generalizability to unseen affordances and objects, challenges
persist with highly semantic affordances and unfamiliar
objects featuring intricate geometric structures. In some
cases, the semantic information varies when these objects
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are placed in diverse contexts, as illustrated in Fig. 6.
For instance, the resemblance between a keyboard and
a piano, or a refrigerator and a speaker, presents
difficulties due to their similar box-like shapes and planes.
This makes it challenging to pinpoint the affordance zones.

TABLE II
EFFECTIVENESS OF KNOWLEDGE DISTILLATION (KD) AND

TEXT-POINT CORRELATION (TPC) IN OUR METHOD.

Task KD TPC mIoU Acc mAcc

Full-shape 14.37 46.31 19.51
✓ 21.19 48.29 32.32

✓ 21.13 48.33 32.45
✓ ✓ 22.33 49.72 34.29

Partial-view 12.50 45.25 17.37
✓ 19.06 47.65 28.13

✓ 19.72 48.02 29.11
✓ ✓ 20.48 48.72 32.86

D. Knowledge Distillation and Text-Point Attention Analysis

Effectiveness of Knowledge Distillation. The impact of
knowledge distillation is demonstrated in Table II. Addi-
tionally, we visually assess the effectiveness of Knowledge
Distillation in Fig. 7, where the left side illustrates the student
embeddings without Knowledge Distillation (KD), and the
right side shows the student representations learned with KD.
These results illustrate that Knowledge Distillation directs
the model’s attention towards interactive regions, facilitating
the extraction of interaction contexts.

Effectiveness of Text-Point Correlation. Table II re-
ports the impact of the Text-Point Correlation (TPC) in our
method. Additionally, we demonstrate the representation of
the input text and learned embeddings in the latent space
via t-SNE visualizations [56] in Fig. 8. The results show
that without TPC, the decision boundaries for most of the
affordance are obscure and difficult to distinguish during the
training. On the other hand, applying TPC increases both the
accuracy and learned features of the network.
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E. Ablation Study

Pre-trained Teacher Models. Table III shows the influ-
ence of the teacher models on our method’s performance.
Recent state-of-the-art point cloud networks (PointTrans-
former [57], PointNet++ [58], DGCNN [59], PointMAE [60],
and PAConv [61]) are used as the teacher model. They are
all trained on the 3D segmentation task with a large source
dataset [49]. This table shows that while all recent point
cloud networks achieve competitive results, PointNet++ [58]
shows the best performance. Therefore, we use PointNet++
in all of our experiments.

Robotic Demonstration. Figure 9 shows our robotic ex-
perimental setup. We used five key components: the KUKA
LBR iiwa R820 robot, PC1 running Beckhoff TwinCAT
software, an Intel RealSense D435i camera, the Robotiq 2F-
85 gripper, and PC2 running ROS Noetic 20.04. PC1 controls
the robot via EtherCAT, while PC2 operates the gripper
and camera via USB within ROS. These PCs communicate
via Ethernet. As in [10], we use an object localization
method [62] to identify objects and then sample them to 2048
points from the scene point cloud. Our framework supports
general input commands and generates an affordance region
for useful manipulation tasks. The planning and trajectory
optimization in [63], [64] is used to execute the action.
Our Demonstration Video includes several demonstrations
that illustrate the versatility of open-vocabulary affordance
detection of our method.

F. Discussion

While our proposed framework has shown significant
improvement in open-vocabulary affordance detection in
comparison with recent methods, it is imperative to recog-
nize its limitations and potential for future enhancements.
Complex semantic affordances, objects with contextual ge-
ometry variations, and challenges in novel scenarios can
impact our method’s effectiveness as we show in the failure

TABLE III
TEACHER MODELS COMPARISON

Task Method mIoU Acc mAcc

Full-shape Point Transformer [57] 40.32 64.38 65.22
PointNet++ [58] 42.47 68.60 66.55
DGCNN [59] 41.83 67.43 64.41
PointMAE [60] 40.17 63.52 64.28
PAConv [61] 38.52 58.14 59.48

Partial-view Point Transformer [57] 40.18 64.29 64.52
PointNet++ [58] 41.94 68.72 66.58
DGCNN [59] 41.52 67.01 63.22
PointMAE [60] 39.18 63.13 62.09
PAConv [61] 37.09 57.14 60.97
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Object
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Fig. 9. Overview of the robotic experiment.

cases in Fig. 6. Addressing the gap between the semantic
concept of text prompts and the geometry of the point
cloud is still a challenging problem, especially when the
objects’ parts share the same geometry but have different
affordances. Moving forward, we intend to explore open-
vocabulary affordance detection in cluttered scenes to foster
quantitative evaluation and direct applications on real robots.
Techniques like augmentation, and cross-modal learning [65]
can be useful. Furthermore, combining our open-vocabulary
affordance system with long-term manipulation tasks is also
an interesting direction [66]. Finally, as recognized by [10],
having a new large-scale language-driven affordance dataset
with natural point cloud scenes would be more beneficial to
real-world robotic applications.

V. CONCLUSIONS

We have presented a new approach for open-vocabulary
affordance detection in 3D point clouds. Our proposed
method takes advantage of large-scale pre-trained models
and text-point correlation to improve the detection results.
By integrating attention mechanisms and knowledge trans-
fer, we outperform other baselines in terms of robustness,
generalization, and inference time. These enhancements hold
substantial promise to apply our proposed method to different
robotic applications. Our source code and trained model will
be made publicly available.
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