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Abstract— Affordance detection is a challenging problem
with a wide variety of robotic applications. Traditional af-
fordance detection methods are limited to a predefined set of
affordance labels, hence potentially restricting the adaptability
of intelligent robots in complex and dynamic environments.
In this paper, we present the Open-Vocabulary Affordance
Detection (OpenAD) method, which is capable of detecting
an unbounded number of affordances in 3D point clouds. By
simultaneously learning the affordance text and the point fea-
ture, OpenAD successfully exploits the semantic relationships
between affordances. Therefore, our proposed method enables
zero-shot detection and can be able to detect previously unseen
affordances without a single annotation example. Intensive
experimental results show that OpenAD works effectively on
a wide range of affordance detection setups and outperforms
other baselines by a large margin. Additionally, we demonstrate
the practicality of the proposed OpenAD in real-world robotic
applications with a fast inference speed (≈ 100ms). Our project
is available at https://openad2023.github.io.

I. INTRODUCTION

The concept of affordance, proposed by the ecological
psychologist James Gibson [1], plays an important role in
various robotic applications, such as object recognition [2],
[3], action anticipation [4], [5], agent’s activity recogni-
tion [6]–[8], and object functionality understanding [9], [10].
In these applications, affordances are used to illustrate the
potential interactions between the robot and its surrounding
environment. For instance, with a general cutting task, the
knife’s affordances can guide the robot to use the knife’s
blade to achieve requirements such as mincing meat or
carving wood. Detecting object affordances, however, is not
a trivial task since the robots need to understand in real-
time the arbitrary correlations between objects, actions, and
effects in complex and dynamic environments [11].

Traditional methods for affordance detection utilize clas-
sical machine learning methods on the images, such as
Support Vector Machine (SVM) based affordance predic-
tion [12], texture-based and object-level monocular appear-
ance cues [13], relational affordance model [14], and human-
object interactions [15]. With the rise of deep learning,
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Fig. 1. The comparison between traditional affordance detection methods
(a) and our method (b). Traditional methods are restricted to predefined
affordance label sets, while our OpenAD enables open-set affordance labels.

several works have employed Convolutional Neural Net-
works (CNN) [16] for different affordance-related tasks, such
as affordance reasoning [17], [18], pixel-based affordance
detection [19]–[22], and functional scene understanding [23],
[24]. The key challenge in detecting object affordances via
the imagery data is that object affordances may differ in
terms of visual information such as shape, size, or geometry
while being similar in object functionality [25]. In practice,
object affordance detection from the images requires an
additional step to be applied to downstream robotic tasks,
as we need to transform the detected results from 2D to 3D
using the depth information [26].

With the increasing availability of advanced depth cam-
eras, 3D point cloud has become a popular modality for
robotic applications [27]. Compared to conventional images,
3D point clouds directly provide the robot with 3D informa-
tion about surrounding objects and the environment. Con-
sequently, several recent works directly utilize the 3D point
clouds for affordance detection [26], [28]–[30]. For instance,
Kim et al. [31] detected affordances by dividing point clouds
into segments and classifying them using logistic regression.
The authors in [32] proposed a new grasp detection method
in point cloud data. More recently, Mo et al. [26] predicted
affordance heat maps from human-object interaction via the
scene point cloud. In this work, we address the task of
affordance detection in 3D point clouds to directly apply
the results to robotic application tasks. More specifically, we
consider the affordances of point-level objects and propose a
new method to generalize the affordance understanding using
the open-vocabulary setting.

While several works have been proposed for affordance
understanding using 2D images or 3D point clouds, they are
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mostly restricted to a predefined affordance label set. This
limitation prevents robots from quickly adapting to a wide
range of real-world scenarios or responding to changes in the
operating environments. Recently, increasing the flexibility
of affordance labels has been studied as a one-shot or
few-shot learning problem [33], [34]. However, they only
consider the 2D images as input and treat the problem as
the classical pixel-wise affordance segmentation task. In this
work, we overcome the limitation of the fixed affordance
label set by addressing the affordance detection in 3D point
clouds under the open-vocabulary setting. Our key idea is
to learn collaboratively the mapping between the language
labels and the visual features of the point cloud. In contrast
to traditional methods that are limited to a predefined set of
affordance labels, our approach allows the robot to utilize an
unrestricted number of natural language texts as input and,
therefore, can be used in a broader range of applications.
Unlike [34], our method does not require annotation exam-
ples for unseen affordances and can also work directly with
3D data instead of 2D images.

In this paper, we present Open-Vocabulary Affordance De-
tection (OpenAD). Our main goal is to provide a framework
that does not restrict the application to a fixed affordance
label set. Our method takes advantage of the recent large-
scale language models, i.e., CLIP [35], and enhances the
generalizability of the affordance detection task in 3D point
clouds. Particularly, we propose a simple, yet effective
method for learning the affordance label and the visual
feature together in a shared space. Our method enables zero-
shot learning with the ability to process new open-language
texts as query affordances.

Our contributions are summarized as follows:
• We present OpenAD, a simple but effective method to

tackle the task of open-vocabulary affordance detection.
• We conduct intensive experiments to validate our

method and demonstrate the usability of OpenAD in
real-world robotic applications.

II. RELATED WORK

Pixel-Wise Affordance Detection. A large number of
works consider affordance detection as a pixel-wise labeling
task, see, e.g., [19], [20], [22], [36]–[39]. Nguyen et al. [22]
detected object affordances in real-world scenes using an
object detector and dense conditional random fields (CRF).
The authors in [20] proposed a two-branch framework
that simultaneously recognizes multiple objects and their
affordances from RGB images. Chen et al. [38] presented
a multi-task dense prediction architecture and a tailored
training framework to address the problem of joint semantic,
affordance, and attribute parsing. More recently, Luo et
al. [39] proposed a cross-view knowledge transfer framework
to extract invariant affordances from exocentric observations
and transfer them to egocentric views. Some other works
designed different settings for their task of affordance detec-
tion on images [15], [40]. In particular, Hassan et al. [15]
predicted high-level affordances by investigating mutual con-
texts of humans, objects, and the ambient environment, while

Chen et al. [40] learned meaningful affordance indicators to
predict actions for autonomous driving.

Affordance Detection in 3D Point Clouds. Affordance
detection is also studied on 3D point cloud data [26], [28]–
[31], [41]. Particularly, Kim et al. [31] presented a method
to extract geometric features from point cloud segments
and classify affordances by logistic regression. Subsequently,
Kim and Sukhame [41] presented a technique that voxelizes
point cloud objects and creates an affordance map through
interactive manipulation. Kokic et al. [28] proposed a system
for modeling relationships between task, object, and a grasp
to address the problem of task-specific robot grasping. Also
focusing on detecting affordances for the task of grasping, the
authors in [29] localized grasping affordances for industrial
bin-picking applications. Lately, Mo et al. [30] learned affor-
dance heatmaps from object-object interaction. Regardless of
performing on images or 3D point clouds, none of the above
methods addressed the task of open-vocabulary affordance
detection.

Language-Driven Segmentation. Language-driven seg-
mentation has recently attracted research interest in computer
vision and machine learning. Promising results of language-
driven segmentation are achieved by large-scale language
models such as CLIP [35] or BERT [42]. Inspired by these
works, several researchers attempted to apply the same
idea to other domains, including semantic segmentation. For
instance, Li et al. [43] aligned pixel-wise features and text
features to tackle the task of zero-shot semantic segmenta-
tion. With a similar focus, Xu et al. [44] proposed a two-
stage framework that first extracts mask proposals and then
performs classification on the masked image crops gener-
ated. Rozenberszki et al. [45] proposed a language-driven
contrastive pre-training method to address the task of indoor
semantic segmentation. Using the pre-trained text encoder
from CLIP for open-vocabulary 3D scene understanding,
Peng et al. [46] proposed a technique that fused 2D and 3D
features and aligned the combination with text embeddings.
Despite recent development in the field of language-driven
segmentation, most recent works have focused only on
2D images, while the task of open-vocabulary affordance
detection in 3D point clouds remains an open problem.

III. OPEN-VOCABULARY AFFORDANCE DETECTION

A. Problem Formulation

We consider the task of open-vocabulary affordance de-
tection in 3D point clouds by training a combined vision-
language model. Specially, we take into account an input
point cloud C = {p1,p2, ...,pn} of n unordered points, pi ∈
R3, i = 1, ..., n. Each point is represented by its coordinate
in Euclidean space. The affordance labels are presented in
a natural language form, i.e., L = {l1, l2, ..., lm}. Note that,
in our open-vocabulary label setting, the number of labels
m can ideally be unlimited. The testing label set can differ
from the training label set and can contain unseen affordance
labels.

Our goal is to jointly learn the affordance labels and the
input point cloud. We first extract the point cloud feature
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Fig. 2. The overview of the proposed Open-Vocabulary Affordance Detection (OpenAD) network. First, the input point cloud is fed into a point cloud
network to extract per-point embeddings. Second, the affordance labels are passed into a text encoder to extract the text embeddings. Subsequently, the
correlation between the point-wise features and the corresponding text embeddings is computed using the cosine similarity function. Finally, a softmax
layer is employed to predict language-driven affordances.

using a deep point cloud network. The affordance label is
encoded by a text encoder. We then introduce a simple,
however, effective correlation metric to jointly learn the
point cloud visual feature and the text embedding features.
In this manner, our method leverages the similarities of
text embeddings of unseen affordances that are semantically
related to the ones seen in the training process. The overall
framework of our method is depicted in Figure 2.

B. Open-Vocabulary Affordance Detection

Text encoder. The text encoder ftext (·) embeds the set
of potential affordance labels into an embedding space RD.
Similar to other works [43], [44], the text encoder can be an
arbitrary network. In this work, we employ the state-of-the-
art pre-trained ViT-B/32 text encoder from CLIP [35]. The
text encoder produces m word embeddings T1,T2, ...,Tm ∈
RD as the presentation of the input affordance labels. Note
that we only use the CLIP text encoder to extract the text
features and freeze ftext (·) during both training and testing.

Point cloud network. The second component of our
method is the point cloud network. The n input points are
plugged into the point cloud network fpc (·) producing an
embedding vector for every input point. Similar to the text
encoder, the architecture of the point cloud network can be
various. In this work, we use the state-of-the-art point cloud
model, i.e., PointNet++ [47] as the underlying architecture.
Furthermore, we append to the end of the backbone with
a convolutional layer with D output units shared across all
points, followed by a batch norm layer. More specifically,
the point cloud network fpc (·) produces a set of n vectors
P1,P2, ...,Pn ∈ RD. In contrast to the text encoder, the
weights of the point cloud network fpc (·) are updated during
the training.

Learning text-point correlation. To enable open-
vocabulary affordance detection, the semantic relationships
between the point cloud affordance and its potential labels
have to be computed. Particularly, we correlate point-wise
embeddings of the input point cloud Pi and text embeddings
of affordance labels Tj using the cosine similarity function.
The correlation value Fi,j , which is an element of the i-th

row and j-th column of the correlation matrix F ∈ Rn×m,
is computed as

Fi,j =
P>i Tj

‖Pi‖ ‖Tj‖
. (1)

The point-wise softmax output of a single point i is then
computed in the form

Si,j =
exp (Fi,j/τ)∑m
k=1 exp(Fi,k/τ)

, (2)

where τ is a learnable parameter [48]. This computation is
applied for every point in the point cloud.

During the training, we encourage the point cloud network
fpc (·) to provide point embeddings that are close to the
text embeddings. These text embeddings are produced by
the text encoder ftext (·) of the corresponding ground-truth
classes. Specifically, given the embedding Pi ∈ RD of point
i, we aim to maximize the value of the entry Fi,j that is the
similarity of Pi and the text embedding Tj corresponding
to the ground-truth label j = yi. This can be accomplished
by optimizing the weighted negative log-likelihood loss of
the point-wise softmax output over the entire point cloud in
the form

L = −
n∑

i=1

wyi logSi,yi , (3)

where wyi
is the weighting parameter to the imbalance

problem of the label classes during the training. Inspired
by [47], we define this weight as

wj =

(
max {c1, c2, ..., cm}

cj

)1/3

, (4)

where cj is the number of points of the class j of the training
set.

C. Training and Inference

During the training, we fix the text encoder and train the
rest of the network end-to-end. Similar to [26], we fix the
number of points in a point cloud to n = 2048. We set D to
512. We train our network using the Adam optimizer with
the learning rate α = 10−3 and the weight decay γ = 10−4.



The proposed framework is trained over 200 epochs on a
24GB-RAM NVIDIA Geforce RTX 3090 Ti with a batch
size of 16. We initialize the value of ln (1/0.07) for τ . During
the inference, we feed the point cloud and any text as the
input label to detect the wanted affordance from the point
cloud. The inference process takes approximately 100ms on
average with our proposed network.

IV. EXPERIMENTS

In this section, we perform several experiments to validate
the effectiveness of our OpenAD. We start with a zero-
shot detection setting to verify the ability of OpenAD to
generalize to previously unseen affordances. Secondly, we
present OpenAD’s notable qualitative results together with
visualizations. Finally, we conduct additional ablation studies
to further investigate other aspects of OpenAD.

A. Zero-Shot Open-Vocabulary Affordance Detection

Dataset. We use the 3D AffordanceNet dataset [26] in
our experiments. 3D AffordanceNet dataset is currently the
largest dataset for affordance understanding using 3D point
cloud data with 22, 949 instances from 23 object categories
and 18 affordance labels. As in other zero-shot setups [49]–
[51], we need more label classes to verify the robustness of
the methods, therefore, we re-label the 3D AffordanceNet
with the extra 18 affordance classes and also consider the
background as a class, hence making the total number of
affordance labels 37. Following [26], we benchmark on the
two tasks: the full-shape and partial-view tasks. The partial-
view setup is more useful in robotics as the robot usually
can only observe a partial-view of the object’s point cloud.

Baselines and Evaluation Metrics. We compare our
method with the following recent methods for zero-shot
learning in 3D point clouds: ZSLPC [49], TZSLPC [50],
and 3DGenZ [51]. Note that, since these baselines used
GloVe [52] or Word2Vec [53] for word embedding, which are
less powerful models than CLIP, we replace their original text
encoders with CLIP for a fair comparison. For ZSLPC [49]
and TZSLPC [50], we change their classification heads to
the segmentation task. As in [47], [54], [55], we use three
metrics to evaluate the results: mIoU (mean IoU over all
classes), Acc (overall accuracy over all points), and mAcc
(mean accuracy over all classes).

Resutls. Table I shows that our OpenAD achieves the
best results on both tasks and all three metrics. In particular,
on the full-shape task, OpenAD significantly surpasses the
runner-up model (ZSLPC) by 4.40% on mIoU. OpenAD also
outperforms others on Acc (0.84% over 3DGenZ) and on
mAcc (0.81% over ZSLPC). Similarly, for the partial-view
task, our method has the highest mIoU (3.98% higher than
the second-best ZSLPC), and also the highest Acc and mAcc.

B. Qualitative Results

We present several examples to demonstrate the generality
and flexibility of OpenAD. Primarily, we use objects from
the 3D AffordanceNet [26] for our visualizations. We also
select objects from the ShapeNetCore dataset [56] to analyze

TABLE I
ZERO-SHOT OPEN-VOCABULARY DETECTION RESULTS

Task Method mIoU Acc mAcc

Full-shape TZSLPC [50] 3.86 42.97 10.37
3DGenZ [51] 6.46 45.47 18.33
ZSLPC [49] 9.97 40.13 18.70
OpenAD (ours) 14.37 46.31 19.51

Partial-view TZSLPC [50] 4.14 42.76 8.49
3DGenZ [51] 6.03 45.24 15.86
ZSLPC [49] 9.52 40.91 17.16
OpenAD (ours) 12.50 45.25 17.37

the capability of OpenAD to generalize to unseen object
categories and new affordance labels.

Generalization to New Affordance Labels. We illustrate
several examples showing the ability of OpenAD to general-
ize to unseen affordance classes in Figure 3. In the upper row
of Figure 3, we present the detection results of OpenAD for
nine seen affordances on appropriate objects. As trained on
these affordances, OpenAD produces good detection results.
Next, for each object, we feed new affordance labels to the
models while keeping the same corresponding object, and
present the detection results in the two rows below. The
visualization shows that OpenAD successfully detects the
associated regions for the queried new affordance labels,
even though the labels are not included in the training set.

Generalization to Unseen Object Categories. In this
work, OpenAD is trained on 3D AffordanceNet dataset [26],
which covers 23 object categories. To verify the generaliza-
tion ability of our method on new unseen objects, we select
new novel objects from the ShapeNetCore dataset [56] and
test them in both cases: seen and open-vocabulary affordance
labels. We use the farthest point sampling algorithm to uni-
formly sample 2, 048 points from the surface of each object.
All points are then centered and scaled before being fed into
OpenAD. Figure 4 summarises the results. This figure shows
that OpenAD is able to detect the affordance classes on new
object categories. This confirms the generalization of our
OpenAD for downstream robotic tasks.

Multi-Affordance Detection. In OpenAD, the number of
affordances in the label set, m, can vary. This flexible design
allows OpenAD to detect multiple affordances at once. Fig-
ure 5 presents the detection results of two objects given label
sets with different numbers of affordances. Moreover, we
observe a notable ability of OpenAD that it does not fix the
label for a particular point but finds the most suitable label in
a specific label set. Concretely, given an object, OpenAD first
detects affordances in a particular label set. By maintaining
the earlier affordances, once a new affordance label is added
to the label set, there are certain points will be labeled by
new affordances over the previous affordance classes. For
instance, in the left column of Figure 5, the points in the
upper body of the bottle are labeled as contain in the first
run, then they are re-labeled as wrap-grasp in the second
run and finally as grasp in the last run. This OpenAD’s
ability can also be observed in the case of the knife object
in the right column of Figure 5. It further demonstrates our
OpenAD’s flexibility.
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C. Ablation Study

Will language-driven architecture affect the detection
results? In this work, we mainly focus on jointly learning
a vision-language model to improve the generalization in
downstream robotic tasks, and do not aim for improving
the accuracy of the traditional affordance detection tasks.
This leads to the question that whether our language-driven
model affects the accuracy of the traditional affordance
detection task. To verify this, we train our OpenAD on
the original 3D AffordanceNet with its original label set
and training split, and compare our result with other state-
of-the-art methods, including PointNet++ [47], Dynamic
Graph CNN (DGCNN) [54] and Point Transformer [55]. For

TABLE II
CLOSED-SET DETECTION RESULTS

Task Method mIoU Acc mAcc

Full-shape Point Transformer [55] 41.26 68.67 67.03
PointNet++ [47] 41.26 68.51 68.14
DGCNN [54] 42.09 68.47 61.47
OpenAD (ours) 42.00 69.03 67.31

Partial-view Point Transformer [55] 40.51 69.22 65.34
PointNet++ [47] 41.10 69.40 66.74
DGCNN [54] 41.93 69.38 63.12
OpenAD (ours) 41.87 69.91 66.34

PointNet++ and DGCNN, we follow similar designs in [26]
and change the final classifier to a linear layer detecting
the affordance classes. For Point Transformer, we apply the
same architecture in [55]. Table II presents the results of
all methods on 3D AffordanceNet [26]. From this table, we
find that OpenAD performs competitively when compared
to other methods. Therefore, we can conclude that while our
method is designed for a different purpose, it still can be used
as a strong benchmark for closed-set affordance detection.

Backbones and Text Encoders. In table III, we conduct
an ablation study on two different point cloud backbones,
i.e., PointNet++ [47] and DGCNN [54], and two different
pre-trained text encoders, i.e., CLIP ViT-B/32 [35] and
BERT [42]. Note that with BERT, the parameter D is set to
768. We observe that different combinations of backbones
and text encoders perform equivalently on the closed-set
tasks. Meanwhile, on the open-vocabulary tasks, PointNet++
performs better than DGCNN, and CLIP performs better
than BERT. The gap in the performance of frameworks
using CLIP ViT-B/32 text encoder compared to those using
BERT is significant, demonstrating the superiority of CLIP
in semantic language-vision understanding.

D. Robotic Demonstration

The experiment setup, shown in Figure 6, comprises five
main components, i.e. the robot KUKA LBR iiwa R820,
the PC1 running the real-time automation software Beckhoff
TwinCAT, the Intel RealSense D435i camera, the Robotiq
2F-85 gripper, and the PC2 running Robot Operating System
(ROS) Noetic 20.04. PC1 communicates with the robot via a
network interface card (NIC) using the EtherCAT protocol,



TABLE III
ABLATION STUDY ON POINT CLOUD BACKBONE AND TEXT ENCODER

Task &
setting

Point cloud
backbone

Text
encoder mIoU Acc mAcc

Full-shape & PointNet++ CLIP 14.37 46.31 19.51
Open-vocabulary PointNet++ BERT 10.55 46.81 16.02

DGCNN CLIP 10.88 45.21 15.40
DGCNN BERT 9.43 46.37 14.61

Partial-view & PointNet++ CLIP 12.50 45.25 17.37
Open-vocabulary PointNet++ BERT 9.33 45.71 14.45

DGCNN CLIP 11.19 44.21 16.43
DGCNN BERT 7.00 44.93 10.97

Full-shape & PointNet++ CLIP 42.00 69.03 67.31
Closed-set PointNet++ BERT 41.04 68.79 67.22

DGCNN CLIP 42.11 68.59 61.31
DGCNN BERT 42.06 68.31 61.26

Partial-view & PointNet++ CLIP 41.87 69.91 66.34
Closed-set PointNet++ BERT 41.50 69.77 65.55

DGCNN CLIP 41.20 69.16 64.16
DGCNN BERT 41.27 69.62 58.09

marked by the blue region in Figure 6. Note that the robot
control is implemented in a C++ module in PC1. The
sampling time is set to 125 µs for the robot sensors and actu-
ators. PC2 controls the gripper and the camera via the USB
protocol in the ROS environment. Additionally, the two PCs
communicate with each other via an Ethernet connection.
After receiving point cloud data of the environment from
the RealSense D435i camera, we utilize the state-of-the-art
object localization method [57] to identify the object, then
perform point sampling to get 2048 points. We then feed this
point cloud with a natural language affordance command.
Note that, using our OpenAD, we can have a general input
command and are not restricted to a predefined affordance
label set. Our OpenAD returns the affordance region, which
can be used for the grasp pose detection module [32], the
analytical inverse kinematics module [58], and the trajectory
optimization module [59]. Several demonstrations, such as
holding and raising a bag, wrapping a bottle, and pushing an
earphone, can be found in our supplementary material.

E. Discussion

Despite achieving promising results, OpenAD has its limi-
tation. Our method is still far from being able to detect com-
pletely unseen affordances. The upper row of Figure 7 shows
cases when OpenAD fails to detect unseen affordances on
seen objects. Moreover, we present false-positive predictions
of OpenAD in the lower row of Figure 7. In these cases,
OpenAD detects affordances that the objects do not provide,
i.e., display for the bag, support for the microwave, and
openable for the hat. From our intensive experiments, we
see several improvement points for future work: i) learning
the visual-language correlation plays an important role in this
task and can be further improved by using more complicated
techniques such that cross-attention mechanism [60] , ii) ap-
plying a stronger point cloud backbone would likely improve
the result, and iii) having a large-scale dataset with several
affordance classes would be beneficial for benchmarking and
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Fig. 6. Example of a robot demonstration. (a) Experimental setup. (b)
Result from OpenAD.
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Fig. 7. Failure cases of OpenAD. Upper row: Cases when OpenAD fails
to detect unseen affordances. Lower row: OpenAD detects affordances that
are not furnished by the objects.

real-world robotic applications. Finally, we will also release
our source code to encourage further study.

V. CONCLUSIONS

We proposed OpenAD, a simple yet effective method for
open-vocabulary affordance detection in 3D point clouds.
Different from traditional approaches, OpenAD, with its
capability of semantic understanding, can effectively detect
unseen affordances without requiring annotated examples.
Empirical results show that OpenAD outperforms other
methods by a large margin. We further verified the capability
of OpenAD to detect unseen affordances on both known and
unseen objects. We additionally demonstrated the usability of
OpenAD in real-world robotic applications. Although there is
ongoing work to be accomplished, OpenAD’s results provide
encouraging evidence that intelligent robots understand many
possibilities and perform better in complex environments.
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