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Abstract. In surgical oncology, it is challenging for surgeons to iden-
tify lymph nodes and completely resect cancer even with pre-operative
imaging systems like PET and CT, because of the lack of reliable intraop-
erative visualization tools. Endoscopic radio-guided cancer detection and
resection has recently been evaluated whereby a novel tethered laparo-
scopic gamma detector is used to localize a preoperatively injected radio-
tracer. This can both enhance the endoscopic imaging and complement
preoperative nuclear imaging data. However, gamma activity visualiza-
tion is challenging to present to the operator because the probe is non-
imaging and it does not visibly indicate the activity origination on the tis-
sue surface. Initial failed attempts used segmentation or geometric meth-
ods, but led to the discovery that it could be resolved by leveraging high-
dimensional image features and probe position information. To demon-
strate the effectiveness of this solution, we designed and implemented a
simple regression network that successfully addressed the problem. To
further validate the proposed solution, we acquired and publicly released
two datasets captured using a custom-designed, portable stereo laparo-
scope system. Through intensive experimentation, we demonstrated that
our method can successfully and effectively detect the sensing area, es-
tablishing a new performance benchmark. Code and data are available
at https://github.com/br0202/Sensing area detection.git.

Keywords: Laparoscopic Image-guided Intervention · Minimally Inva-
sive Surgery · Detection of Sensing Area

1 Introduction

Cancer remains a significant public health challenge worldwide, with a new di-
agnosis occurring every two minutes in the UK (Cancer Research UK1). Surgery
is one of the main curative treatment options for cancer. However, despite sub-
stantial advances in pre-operative imaging such as CT, MRI, or PET/SPECT
to aid diagnosis, surgeons still rely on the sense of touch and naked eye to de-
tect cancerous tissues and disease metastases intra-operatively due to the lack of

1 https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk

https://github.com/br0202/Sensing_area_detection.git
https://www.cancerresearchuk.org/health-professional/cancer-statistics-for-the-uk
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Fig. 1. (a) Hardware set-up for experiments, including a customized portable stereo
laparoscope system and the ‘SENSEI’ probe, a rotation stage, a laparoscopic lighting
source, and a phantom; (b) An example of the use of the ‘SENSEI’ probe in MIS.

reliable intraoperative visualization tools. In practice, imprecise intraoperative
cancer tissue detection and visualization results in missed cancer or the unnec-
essary removal of healthy tissues, which leads to increased costs and potential
harm to the patient. There is a pressing need for more reliable and accurate in-
traoperative visualization tools for minimally invasive surgery (MIS) to improve
surgical outcomes and enhance patient care.

A recent miniaturized cancer detection probe (i.e., ‘SENSEI®’ developed
by Lightpoint Medical Ltd.) leverages the cancer-targeting ability of nuclear
agents typically used in nuclear imaging to more accurately identify cancer intra-
operatively from the emitted gamma signal (see Fig. 1b)[6]. However, the use of
this probe presents a visualization challenge as the probe is non-imaging and is
air-gapped from the tissue, making it challenging for the surgeon to locate the
probe-sensing area on the tissue surface.

It is crucial to accurately determine the sensing area, with positive signal
potentially indicating cancer or affected lymph nodes. Geometrically, the sensing
area is defined as the intersection point between the gamma probe axis and
the tissue surface in 3D space, but projected onto the 2D laparoscopic image.
However, it is not trivial to determine this using traditional methods due to
poor textural definition of tissues and lack of per-pixel ground truth depth data.
Similarly, it is also challenging to acquire the probe pose during the surgery.

Problem redefinition. In this study, in order to provide sensing area visu-
alization ground truth, we modified a non-functional ‘SENSEI’ probe by adding
a miniaturized laser module to clearly optically indicate the sensing area on
the laparoscopic images - i.e. the ‘probe axis-surface intersection’. Our system
consists of four main components: a customized stereo laparoscope system for
capturing stereo images, a rotation stage for automatic phantom movement, a
shutter for illumination control, and a DAQ-controlled switchable laser module
(see Fig. 1a). With this setup, we aim to transform the sensing area localization
problem from a geometrical issue to a high-level content inference problem in
2D. It is noteworthy that this remains a challenging task, as ultimately we need
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to infer the probe axis-surface intersection without the aid of the laser module
to realistically simulate the use of the ‘SENSEI’ probe.

2 Related Work

Laparoscopic images play an important role in computer-assisted surgery and
have been used in several problems such as object detection [9], image segmenta-
tion [23], depth estimation [20] or 3D reconstruction [13]. Recently, supervised
or unsupervised depth estimation methods have been introduced [14]. Ye et
al. [22] proposed a deep learning framework for surgical scene depth estimation
in self-supervised mode and achieved scalable data acquisition by incorporating
a differentiable spatial transformer and an autoencoder into their framework.
A 3D displacement module was explored in [21] and 3D geometric consistency
was utilized in [8] for self-supervised monocular depth estimation. Tao et al.
[19] presented a spatiotemporal vision transformer-based method and a self-
supervised generative adversarial network was introduced in [7] for depth esti-
mation of stereo laparoscopic images. Recently, fully supervised methods were
summarized in [1] for depth estimation. However, acquiring per-pixel ground
truth depth data is challenging, especially for laparoscopic images, which makes
it difficult for large-scale supervised training [8].

Laparoscopic segmentation is another important task in computer-assisted
surgery as it allows for accurate and efficient identification of instrument po-
sition, anatomical structures, and pathological tissue. For instance, a unified
framework for depth estimation and surgical tool segmentation in laparoscopic
images was proposed in [5], with simultaneous depth estimation and segmen-
tation map generation. In [12], self-supervised depth estimation was utilized to
regularize the semantic segmentation in knee arthroscopy. Marullo et al. [16]
introduced a multi-task convolutional neural network for event detection and se-
mantic segmentation in laparoscopic surgery. The dual swin transformer U-Net
was proposed in [11] to enhance the medical image segmentation performance,
which leveraged the hierarchical swin transformer into both the encoder and the
decoder of the standard U-shaped architecture, benefiting from the self-attention
computation in swin transformer as well as the dual-scale encoding design.

Although the intermediate depth information was not our final aim and can
be bypassed, the 3D surface information was necessary in the intersection point
inference. ResNet [3] has been commonly used as the encoder to extract the
image features and geometric information of the scene. In particular, in [21],
concatenated stereo image pairs were used as inputs to achieve better results,
and such stereo image types are also typical in robot-assisted minimally invasive
surgery with stereo laparoscopes. Hence, stereo image data was also adopted in
this paper.

If the problem of inferring the intersection point is treated as a geometric
problem, both data collection and intra-operative registration would be difficult,
which inspired us to approach this problem differently. In practice, we utilize the
laser module to collect the ground truth of the intersection points when the laser



4 Huang et al.

is on. We note that the standard illumination image from the laparoscopic probe
is also captured with the same setup when the laser module is on. Therefore, we
can establish a dataset with an image pair (RGB image and laser image) that
shares the same intersection point ground truth from the laser image (see Fig. 2a
and Fig. 2b). The assumptions made are that the probe’s 3D pose when projected
into the two 2D images is the observed 2D pose, and that the intersection point
is located on its axis. Hence, we input these axes to the network as another
branch and randomly sampled points along them to represent the probe.

3 Dataset

To validate our proposed solution for the newly formulated problem, we acquired
and publicly released two new datasets. In this section, we introduce the hard-
ware and software design that was used to achieve our final goal, while Fig. 2
shows a sample from our dataset.

(a) (b) (c)

Laser spot Laser spot

(d)

Left
image

Left
image

Right
image

Right
image

Fig. 2. Example data. (a) Standard illumination left RGB image; (b) left image with
laser on and laparoscopic light off; same for (c) and (d) but for right images.

Data Collection. Two miniaturized, high-resolution cameras were coupled
onto a stereo laparoscope using a custom-designed connector. The accompany-
ing API allowed for automatic image acquisition, exposure time adjustment, and
white balancing. An electrically controllable shutter was incorporated into the
standard laparoscopic illumination path. To indicate the probe axis-surface in-
tersection, we incorporated a DAQ controlled cylindrical miniature laser module
into a ‘SENSEI’ probe shell so that the adapted tool was visually identical to
the real probe. The laser module emitted a red laser beam (wavelength 650 nm)
that was visible as a red spot on the tissue surface.

We acquired the dataset on a silicone tissue phantom which was 30× 21× 8
cm and was rendered with tissue color manually by hand to be visually realistic.
The phantom was placed on a rotation stage that stepped 10 times per revolution
to provide views separated by a 36-degree angle. At each position, stereo RGB
images were captured i) under normal laparoscopic illumination with the laser
off; ii) with the laparoscopic light blocked and the laser on; and iii) with the
laparoscopic light blocked and the laser off. Subtraction of the images with laser
on and off readily allowed segmentation of the laser area and calculation of its
central point, i.e. the ground truth probe axis-surface intersection.
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All data acquisition and devices were controlled by Python and LABVIEW
programs, and complete data sets of the above images were collected on visually
realistic phantoms for multiple probe and laparoscope positions. This provided
10 tissue surface profiles for a specific camera-probe pose, repeated for 120 dif-
ferent camera-probe poses, mimicking how the probe may be used in practice.
Therefore, our first newly acquired dataset, named Jerry, contains 1200 sets
of images. Since it is important to report errors in 3D and in millimeters, we
recorded another dataset similar to Jerry but also including ground truth depth
map for all frames by using structured-lighting system [8] — namely theCoffbee
dataset.

These datasets have multiple uses such as:

– Intersection point detection: detecting intersection points is an important
problem that can bring accurate surgical cancer visualization. We believe
this is an under-investigated problem in surgical vision.

– Depth estimation: corresponding ground truth will be released.

– Tool segmentation: corresponding ground truth will be released.

4 Probe Axis-Surface Intersection Detection

4.1 Overview

The problem of detecting the intersection point is trivial when the laser is on and
can be solved by training a deep segmentation network. However, segmentation
requires images with a laser spot as input, while the real gamma probe produces
no visible mark and therefore this approach produces inferior results.

An alternative approach to detect the intersection point is to reconstruct the
3D tissue surface and estimate the pose of the probe in real time. A tracking
and pose estimation method for the gamma probe [6] involved attaching a dual-
pattern marker to the probe to improve detection accuracy. This enabled the
derivation of a 6D pose, comprising a rotation matrix and translation matrix with
respect to the laparoscope camera coordinate. To obtain the intersection point,
the authors used the Structure From Motion (SFM) method to compute the
3D tissue surface, combining it with the estimated pose of the probe, all within
the laparoscope coordinate system. However, marker-based tracking and pose
estimation methods have sterilization implications for the instrument, and the
SFM method requires the surgeon to constantly move the laparoscope, reducing
the practicality of these methods for surgery.

In this work, we propose a simple, yet effective regression approach to ad-
dress this problem. Our approach relies solely on the 2D information and works
well without the need for the laser module after training. Furthermore, this sim-
ple methodology facilitated an average inference time of 50 frames per second,
enabling real-time sensing area map generation for intraoperative surgery.
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(a) (b) (c)

Laser spotSampled points

Fig. 3. Sensing area detection. (a) The input RGB image, (b) The estimated line using
PCA for obtaining principal points, (c) The image with laser on that we used to detect
the intersection ground truth.
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Fig. 4. An overview of our approach using ResNet and MLP.

4.2 Intersection Detection as Segmentation

We utilized different deep segmentation networks as a first attempt to address
our problem [18,10]. Please refer to the Supplementary Material for the imple-
mentation details of the networks. We observed that when we do not use images
with the laser, the network was not able to make any good predictions. This is
understandable as the red laser spot provides the key information for the seg-
mentation. Therefore the network does not have any visual information to make
predictions from images of the gamma probe. We note that to enable real-world
applications, we need to estimate the intersection point using the images when
the laser module is turned off.

4.3 Intersection Detection as Regression

Problem Formulation. Formally, given a pair of stereo images Il, Ir, n points
{Pl

1,P
l
2, ...,P

l
n} were sampled along the principal axis of the probe, Pl

i ∈ R2

from the left image. The same process was repeated for the right image. The
goal was to predict the intersection point Pintersect on the surface of the tissue.
During the training, the ground truth intersection point position was provided
by the laser source, while during testing the intersection was estimated solely
based on visual information without laser guidance (see Fig. 3).
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Fig. 5. Qualitative results. (a) and (c) are standard illumination images and (b) and
(d) are images with laser on and laparoscopic light off. The predicted intersection
point is shown in blue and the green point indicates the ground truth, which are
further indicated by arrows for clarity.

Network Architecture. Unlike the segmentation approach, the intersection
point was directly predicted using a regression network. The images fed to the
network were ‘laser off’ stereo RGB, but crucially, the intersection point for these
images was known a priori from the paired ‘laser on’ images. The raw image
resolution was 4896×3680 but these were binned to 896×896. Principal Compo-
nent Analysis (PCA) [15] was used to extract the central axis of the probe and
50 points were sampled along this axis as an extra input dimension. A network
was designed with two branches, one branch for extracting visual features from
the image and one branch for learning the features from the sequence of principal
points using ResNet [3] and Vision Transformer (ViT) [2] as two backbones. The
principal points were learned through a multi-layer perception (MLP) or a long
short-term memory (LSTM) network [4]. The features from both branches were
concatenated and used for regressing the intersection point (see Fig. 4). Finally,
the whole network is trained end-to-end using the mean square error loss.

4.4 Implementation

Evaluation Metrics. To evaluate sensing area location errors, Euclidean dis-
tance was adopted to measure the error between the predicted intersection points
and the ground truth laser points. We reported the mean absolute error, the
standard derivation, and the median in pixel units.

Implementation Details. The networks were implemented in PyTorch [17],
with an input resolution of 896× 896 and a batch size of 12. We partitioned the
Jerry dataset into three subsets, the training, validation, and test set, consisting
of 800, 200, and 200 images, respectively, and the same for the Coffbee dataset.
The learning rate was set to 10−5 for the first 300 epochs, then halved until
epoch 400, and quartered until the end of the training. The model was trained
for 700 epochs using the Adam optimizer on two NVIDIA 2080 Ti GPUs, taking
approximately 4 hours to complete.
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ResNet ✓ ✓ ✓ ✓ ✓

MLP ✓ ✓

LSTM ✓

Stereo ✓ ✓ ✓

Mono ✓ ✓

2D Mean E. 73.5 70.5 73.7 75.6 76.7

2D Std. 65.1 56.8 62.1 62.9 64.4

2D Median 57.5 59.8 56.9 58.8 68.4

2D Mean E. 63.2 52.9 62.0 55.8 60.2

2D Std. 71.4 42.9 63.4 55.3 42.1

2D Median 44.9 44.6 43.4 42.5 52.3

R2 Score 0.55 0.82 0.63 0.73 0.78

3D Mean E. 8.5 7.4 6.5 6.4 11.2

3D Std. 15.7 6.7 6.8 7.1 18.2

3D Median 4.5 4.6 4.0 4.3 5.4

Table 1. Results using ResNet50. Grey
color denotes the Jerry dataset and Blue
color is for Coffbee dataset (2D errors are
in pixels and 3D errors are in mm).

ViTNet ✓ ✓ ✓ ✓ ✓

MLP ✓ ✓

LSTM ✓

Stereo ✓ ✓ ✓

Mono ✓ ✓

2D Mean E. 77.9 92.3 80.9 87.7 112.1

2D Std. 69.1 71.0 67.4 68.6 84.2

2D Median 59.0 75.0 64.8 74.9 90.0

2D Mean E. 76.3 75.0 88.0 56.5 82.7

2D Std. 69.8 60.6 83.3 75.8 63.9

2D Median 59.9 59.6 68.3 34.5 69.1

R2 Score 0.58 0.66 0.33 0.65 0.60

3D Mean E. 7.9 9.1 11.4 11.6 7.7

3D Std. 6.9 8.2 16.7 21.3 7.0

3D Median 6.0 5.9 7.1 5.3 6.2

Table 2. Results using ViT. Grey color de-
notes the Jerry dataset and Blue color is for
Coffbee dataset (2D errors are in pixels and
3D errors are in mm).

5 Results

Quantitative results on the released datasets are shown in Table 1 and Table
2 with different backbones for extracting image features, ResNet and ViT. For
the 2D error on two datasets, among the different settings, the combination of
ResNet and MLP gave the best performance with a mean error of 70.5 pixels
and a standard deviation of 56.8. The median error of this setting was 59.8 pixels
while the R2 score was 0.82 (higher is better for R2 score). Comparing the Table
1 and Table 2, we found that the ResNet backbone was better than the ViT
backbone in the image processing task, while MLP was better than LSTM in
probe pose representation. ResNet processed the input images as a whole, which
was better suited for utilizing the global context of a unified scene composed of
the tissue and the probe, compared to the ViT scheme, which treated the whole
scene as several patches. Similarly, the sampled 50 principal points on the probe
axis were better processed using the simple MLP rather than using a recurrent
procedure LSTM. It is worth noting that the results from stereo inputs exceeded
those from mono inputs, which can be attributed to the essential 3D information
included in the stereo image pairs.

For the 3D error, the ResNet backbone still gave generally better performance
than the ViT backbone while under the ResNet backbone, LSTM and MLP gave
competitive results and they are all in sub-milimiter level. We note that the 3D
error subjected to the quality of the acquired ground truth depth maps, which
had limited resolution and non-uniformly distributed valid data due to hardware
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constraints. Hence, we used the median depth value of a square area of 5 pixels
around the points where depth value was not available.

Fig. 5 shows visualization results of our method using ResNet and MLP. This
figure illustrates that our proposed method successfully detected the intersection
point using solely standard RGB laparoscopic images as the input. Furthermore,
based on the simple design, our method achieved the inference time of 50 frames
per second, making it well-suitable for intraoperative surgery.

6 Conclusion

In this work, a new framework for using a laparoscopic drop-in gamma detector
in manual or robotic-assisted minimally invasive cancer surgery was presented,
where a laser module mock probe was utilized to provide training guidance and
the problem of detecting the probe axis-tissue intersection point was transformed
to laser point position inference. Both the hardware and software design of the
proposed solution were illustrated and two newly acquired datasets were publicly
released. Extensive experiments were conducted on various backbones and the
best results were achieved using a simple network design, enabling real time
inference of the sensing area. We believe that our problem reformulation and
dataset release, together with the initial experimental results, will establish a
new benchmark for the surgical vision community.
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