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Abstract

Knowledge resources, e.g. knowledge graphs, which formally represent essential semantics and information for logic inference
and reasoning, can compensate for the unawareness nature of many natural language processing techniques based on deep neural
networks. This paper provides a focused review of the emerging but intriguing topic that fuses quality external knowledge resources
in improving the performance of natural language processing tasks. Existing methods and techniques are summarised in three main
categories: 1) static word embeddings, 2) sentence-level deep learning models, and 3) contextualised language representation
models, depending on when, how and where external knowledge is fused into the underlying learning models. We focus on the
solutions to mitigate two issues: knowledge inclusion and inconsistency between language and knowledge. Details on the design
of each representative method, as well as their strength and limitation, are discussed. We also point out some potential future
directions in view of the latest trends in natural language processing research.
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1. Introduction

Recent years have witnessed a thrilling development of deep
learning in natural language processing (NLP) tasks, enabling
machines to better comprehend and interpret human languages.
However, many techniques are, in fact, solely based on the
distributional hypothesis [1], [2], [3], thus lacking sufficient
knowledge to capture true and intended semantic meanings
from texts and to deal with knowledge-driven problems. Ex-
isting knowledge resources, such as WordNet [4], DBPedia [5]
and Freebase [6], which contain plentiful quality and useful
knowledge accumulated over the years, can be applied to many
NLP applications [7]. With appropriate use of such knowledge,
the performance of such tasks, e.g. classification [8], inference
[9] and summarisation [10], could be greatly improved. It is
particularly effective in low-resource learning applications [11],
e.g. zero-shot to few-shot scenarios. Figure 1 shows an exam-
ple that a structural resource provides the conceptual relations
between entities mentioned in the given premise and hypothe-
sis, which extensively benefits the inference process.

When fusing knowledge from external knowledge resources
into NLP applications, two major challenges need to be consid-
ered.

• Knowledge inclusion: knowledge resources, such as
knowledge graphs (KG), store an extraordinarily large
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number of entities, their literal information and relations.
It is not uncommon to have millions or even billion of en-
tities and their relations in many KGs. The scale and com-
plexity pose major challenges to techniques for knowledge
integration. How should we define the scope of the knowl-
edge bases to be used and how to make use of such knowl-
edge both effectively and efficiently?

• Inconsistency of knowledge and language: in previous
research, a number of notable models have been developed
for generating language representations, e.g. Word2Vec
[12], [13] and GloVe [14], and knowledge representations,
e.g. TransE [15] and its extensions [16], [17], [18]. These
two types of representations, however, are generated in
different and separate manners. How should we bridge
the gap between knowledge and language representations
generated in different semantic spaces?

Early research incorporates linguistic knowledge, e.g. syn-
onyms and antonyms, from external knowledge resources for
optimisation to improve the quality of word embedding [19],
[20], [21], [22], [23], [24]. To bridge the gap between knowl-
edge and language, methods based on joint representation
learning have attracted a lot of interest [25], [26], [27], [28],
[29], [30]. The basic idea is to align both words and entities
from a knowledge base into a unified semantic space, or encode
the textual data, e.g. documents and sentences, to the knowl-
edge space using deep learning models such as Long Short-
Term Memory (LSTM) [31] and Convolutional Neural Network
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Figure 1: Illustration of how external knowledge resources can benefit NLP
applications. A natural language inference (NLI) task is used as an example.
With the background knowledge in the knowledge graph, relations between
“piano” and “music” mentioned in the premise and hypothesis can be better
understood. Apart from NLI, the knowledge graph also has the potential to
facilitate a better understanding of the texts in many other NLP tasks. The
figure is adapted from [9].

(CNN) [32]. These methods have been substantially benefi-
cial to not only common tasks within the scope of KG, e.g.
triple classification [25], [27] and link prediction [28], [30], but
also those in text mining, e.g. relation extraction [33], [34] and
named entity disambiguation [26], [35].

Recently, large-scale pre-trained models (PTMs), such as
OpenAI GPT [36], BERT [37] and Roberta [38], have become
the dominant paradigms for NLP applications. They utilise the
attention-based mechanisms, e.g. Transformers [39], to capture
critical features from contextualised information, which have
been used for many downstream tasks. Following the develop-
ment of these techniques, there is an increasing interest in in-
jecting structured knowledge into PTMs to adequately explore
their capabilities of knowledge inference [40], [41], [42], [43],
[44]. With this idea, better results for many classic NLP tasks
such as text classification [40], [41] and question answering
[45], [46] can be anticipated. A reasonable analogy is that a re-
searcher in computer science is most likely to classify literature
better and answer questions on computer science than others in
economics or bioscience.

We focus on the convergence of knowledge resources, deep
learning, and NLP applications and define the scope of the
study as the methods and techniques that integrate external
knowledge resources to enhance the performance of common
NLP tasks. Although there are already some existing surveys
with an emphasis on the KG embedding [47], NLP techniques
[48] and applications [49], to the best of our knowledge, this
is the first survey that provides a comprehensive review on the
key techniques and methods for fusing external knowledge into
deep learning-based NLP applications. Figure 2 demonstrates
the taxonomy of the methods for knowledge integration in this
paper. Our main contributions are summarised as follows:

• We present a taxonomy for knowledge integration into
deep neural network-based NLP applications. More

specifically, existing works are categorised into three
groups: 1) static word embeddings, 2) sentence-level deep
learning models, and 3) contextualised language represen-
tation models.

• A comprehensive review of many representative methods
for fusing external knowledge is conducted. We provide a
specific focus on the theoretical formulation and optimisa-
tion methods of the existing studies, e.g. knowledge con-
straints in NLP techniques, and alignment processes be-
tween knowledge and language. Mathematical notations
across a plethora of publications are harmonised for better
comparison and easier understanding.

• Several promising future directions regarding knowledge-
integrated language models based on the recent research
trends are discussed, e.g. knowledgeable prompt-based
learning, continual knowledge fusion and neurosymbolic
learning.

The rest of the paper is structured as follows. In Section 2,
we briefly introduce the preliminary knowledge relating to our
study. Section 3 reviews methods on static word embedding
learning with external knowledge. Section 4 reviews methods
to bridge knowledge and language. Section 5 reviews recent
methods and techniques to integrate knowledge in PTMs. Sec-
tion 6 discusses the future directions, and finally, Section 7 con-
cludes this survey.

2. Preliminary

2.1. KG and Knowledge Resources
We categorise the KG and knowledge resources mentioned

in this study into 3 groups.

• Linguistic Knowledge Resources
Knowledge resources in this group provide useful linguis-
tic information. Thesaurus [50] can serve as a dictio-
nary, listing synonyms, antonyms and definitions of words.
WordNet [4] is a large English lexical database that con-
tains diverse semantic relations between words. The para-
phrase database (PPDB) [51] contains a large collection of
syntactic, phrasal and lexical paraphrase expression pairs,
with scores to indicate the probability and similarity of
each pair.

• Common Sense Knowledge Resources
Common sense KG, expressing real-world truths in graph-
based structures, is the most representative type of knowl-
edge resource in this group. Each instance in the KG is
usually represented as a Resource Description Framework
(RDF) triple, consisting of two entities (a head entity and
a tail entity) connected by a relation (or predicate), e.g.
(UnitedS tates, is type o f ,Country). Freebase [6], DBPe-
dia [5], Wikidata [52] and ConceptNet [53] are examples
that are collaboratively developed, automatically extracted
or transformed, and maintained by expert users. They pro-
vide different kinds of structured world knowledge with a
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Figure 2: A taxonomy of methods and techniques for knowledge integration into the deep neural network-based NLP applications

great breadth (e.g. commonsense or complex), which can
be incorporated and utilised in applications.

• Domain Specific Knowledge Resources
Knowledge bases that provide domain-specific knowledge
can be used to complement general knowledge when per-
forming tasks relating to a specific domain. Some of
the well-established domain-specific knowledge bases and
ontologies include the Unified Medical Language Sys-
tem (UMLS)1 for terminologies, classification and coding
standards, and relations in the biomedical science domain;
Medical Subject Headings (MeSH)2 thesaurus for biomed-
ical and health-related information; Gene Ontology (GO)3

for functions of genes; and DrugBank4 for the world’s
most robust drug knowledge.

2.2. KG Embeddings
To better integrate knowledge into deep learning models, KG

embedding has been proposed as an effective technique which
encodes elements of a KG, i.e. relations and entities, into a
continuous low-dimensional vector representation. This tech-
nique can reduce computational complexity while preserving
the original structural information of the KG (for comprehen-
sive literature surveys on KG embedding algorithms, please re-
fer to [47] and [54]). We only briefly describe some of the most

1https://www.nlm.nih.gov/research/umls/
2https://www.nlm.nih.gov/mesh/
3http://geneontology.org/
4https://www.drugbank.com/

well-known KG embedding techniques for knowledge integra-
tion.

TransE [15] is one of the early KG embedding techniques
based on the notion of translational distance. It encodes rela-
tions and entities in a KG to a set of numerical vectors in the
same semantic space. For each triple (h, r, t), the relation em-
bedding r should be as close as possible to the translation from
the head entity embedding h to the tail t, i.e. r ≈ t − h. The
distance function f is formulated as:

fr(h, t) = ‖r − (t − h)‖1/2 (1)

During training, both positive and negative examples are used,
and the objective function for the translational model is defined
as follows:∑

(h,r,t)∈S

∑
(h′,r′,t′)∈S′

max
{
0, γ + fr (h, t) − fr′

(
h′, t′

)}
(2)

where S is the set of positive triples and S′ is the set of negative
triples; γ is the margin to separate the positive and negative
examples.

An issue with TransE is that it is not able to handle complex
relations, e.g. many-to-many relations, due to the simplicity
of the algorithm [16]. To mitigate this issue, several extensions
have been proposed; for instance, TransD [17], and TransR [18]
suggest that the semantic space for entities and relations should
be separated, thus projecting each entity to the new space for
relation.

Recently, Graph Neural Network (GNN) [55] based models,
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such as R-GCN [56] and TransGCN [57], are becoming in-
creasingly popular. They can directly process graph structures
to model the entities and relations in a KG. The neighbourhood
information is aggregated and accumulated throughout the KG
via the message passing framework [58], i.e.

hl+1 = σ

 ∑
m∈Mi

gm

(
hl, tl

) (3)

where hl is the representation of head entity h at the l-th layer
of the graph neural network; Mi stands for the set of all in-
coming messages for h and gm(·) is the message-oriented func-
tion of message m from M. σ(·) is a non-linear function, e.g.
Sigmoid function, to activate the l-th layer. The accumulated
information from neighbours contributes to the representation
of entities at the next layer, hl+1. In this way, the topological
structure can be well leveraged to produce more effective rep-
resentations. During training, a similar objective function as
Equation 2 is usually used [59] to construct entity embeddings.

2.3. Static Word Embeddings

Word embedding is an important language representation
technique for text analysis. It has a long history of develop-
ment, from static to contextualised [60]. The objective of static
word embedding is to learn only one representation for each
word in a vocabulary V. The pre-trained embedding for each
word remains unchanged regardless of where it appears. On
the contrary, contextualised word embedding generates differ-
ent representations for each word based on its context.

Word2Vec [12], [13] is one of the most representative static
word embedding techniques. It has two model architectures
for pre-training: Continuous Bag-Of-Words (CBOW) and Skip-
Gram (SG). Both of them are 3-layer neural networks and
learn embeddings with a context window from a text corpus T .
The CBOW model maximises the log-likelihood of each centre
word given its context. The objective function for this model
can be defined as:

1
|T |

|T |∑
i=1

log p(wi|W
c
i ) (4)

where c is the size of the context window; Wc
i repre-

sents context words of the centre word wi, i.e. Wc
i =

{wi−c, ...wi−1,wi+1, ...,wi+c}.
The SG model is the reversed version of the CBOW model,

which uses the centre word to predict surrounding words. It has
the following objective function.

1
|T |

|T |∑
i=1

∑
−c≤k≤c,k,0

log p(wi+k |wi) (5)

The likelihood of the word w j given the word wi is estimated
as:

p(w j|wi) =
exp

(
w>i w̃ j

)
∑|V|

k=1 exp
(
w>i w̃k

) (6)

where wi and w̃i are input and output representations of wi, re-
spectively.

GloVe [14] is another commonly used static word embedding
technique. While the training of Word2Vec is over local context
windows, GloVe utilises the global information by including a
co-occurrence matrix M. Similar to Word2Vec, each word wi

is associated with two representations. Here wi is defined as
the target representation, and w̃i serves as the representation in
the context of other words. The objective function for GloVe is
defined as:

|V|∑
i, j=1

f
(
Mi, j

) (
w>i w̃ j + bi + b̃ j − log Mi, j

)2
(7)

where bi and b̃ j are biases for the target word wi and its context
word w j, respectively; f is a function to prevent the overweight-
ing of co-occurrences.

2.4. Sentence-level Deep Learning Models

One of the main limitations of static word embeddings is that
such representations are context-independent, while the same
word may convey slightly or completely different meanings
based on the context where it appears. To address this issue,
methods for sentence-level representations can be used.

LSTM [31] and CNN [32] are two popular models to en-
code languages. Normally, the representations of each word
in the input are initialised with static word embeddings, and
then sent to the neural networks for encoding into the deep se-
mantic space. LSTM is usually used for sequential or temporal
data modelling and contains three types of gates: input gate,
forget gate and output gate. With sufficient supervision, it can
properly perform time-series retrieval and control how much
information is remembered/forgotten. CNN can better extract
position-invariant textual features. The core components are the
convolution and pooling layers, which generate feature maps
from text input with kernels and downsample the output to pre-
serve the most important information.

2.5. Contextualised Language Representation Models

OpenAI GPT [36], BERT[37] are transformer-based contex-
tualised language representation models. OpenAI GPT cap-
tures critical features from left to right, while BERT incorpo-
rates contextual information from both directions. Specifically,
given an input sequence s = {w1,w2, ...,wn}, BERT computes
the token-level representation W0 = {w0

1,w
0
2, ...,w

0
n}, where w0

1
is the summation of token embedding, segment embedding and
position embedding of w1. The contextualised representation is
calculated recursively with bidirectional transformers [39], i.e.

Wl = TransformerBlockl(Wl−1) (8)

where Wl stands for the contextualised representation in the l-th
layer. BERT is pre-trained over two unsupervised tasks: Next
Sentence Prediction (NSP) and Masked Language Modelling
(MLM) simultaneously.
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Given two sentences sa and sb constituting the input s, the
objective of NSP is to predict whether sa is followed by sb,
which can be formalised as:

log p(y|sa, sb) (9)

where y = 1 if sa and sb are consecutive sentences, otherwise 0.
This task can help the model better understand the relationship
between sentences.

MLM is first proposed by Talyor et al.[61] to measure the
learning ability of a language model. In the pre-training stage of
the BERT model, some words in a sequence s will be randomly
masked, and MLM aims to predict the original words. The loss
function of MLM is defined as follows:∑

w∈M(s)

log p
(
w|s\M(s)

)
(10)

whereM(s) is the set of all randomly masked words in the se-
quence s; s\M(s) is the input with all masked words removed
from s.

3. Static Word Embeddings with Linguistic Resources

As discussed in Section 2.3, static word embeddings are gen-
erated according to the distribution of words, i.e. frequently
co-occurred words tend to have similar representations. This
shows that the reliability of word embeddings is subject to the
pre-training corpus. Moreover, the linguistic relations between
words are not taken into consideration.

In this section, we describe the methods and techniques that
employ knowledge from linguistic resources to improve the
quality of static word embedding. Existing research in this
line can be divided into two categories: learning from scratch
and post-processing. The former introduces additional train-
ing objectives to the distribution-based word embeddings, while
the latter refines pre-trained word embeddings with knowledge
from external resources. Such knowledge-aware word embed-
dings usually have the capability to distinguish between senses
of words, e.g. synonyms and antonyms, and can be applied to
important lexical semantic tasks, such as word analogy reason-
ing, word similarity measurement and synonym selection, to
benefit higher-level NLP applications.

3.1. Learning from Scratch

Learning representation for each word from scratch usually
employs the linear combination of the original training objec-
tives for word embeddings and additional objectives. Here we
only focus on the additional objectives as the commonly-used
static word embedding models have already been presented in
Section 2.3. We assume that the linguistic knowledge resources
that identify relations between words are given.

Yu and Dredze [19] proposed a relation-constrained objec-
tive to maximise the log-likelihood of w j given wi if there is a
lexical relation between wi and w j in the linguistic knowledge
resources (PPDB and WordNet are used in this research) during
word embedding learning, i.e.

1
|V|

∑
wi∈V

∑
w j∈R(wi)

log p(w j|wi) (11)

where p(w j|wi) can be obtained using Eq. (6), which is consis-
tent with Word2Vec [13]. R(wi) is the set of words are linked
with word wi by a lexical relation. The aim of this method is
to produce a higher probability of one word given another word
which has a relation with the previous word, complementing the
original Word2Vec [13], where only words with co-occurrence
in the pre-training corpus will be considered to be related.

Bian et al.[62] presented an auxiliary objective for CBOW.
They assign a weight λr to each relation r in the set R. The
weight indicates the importance of the relation r in linguistic
knowledge. Moreover, they predict the related word w j with
the surroundings of wi from a given training corpus T , i.e.Wc

i ,
rather than a single word wi to be compatible with the original
CBOW model. This objective function is defined as:

1
|T |

|T |∑
i=1

∑
r∈R

λr

∑
w j∈Rr(wi)

log p
(
w j|W

c
i

)
(12)

Intuitively, they believed that if two words have a relation with
each other in the linguistic knowledge resource, given the sur-
roundings of one word in the training corpus, the probability of
another word should also be higher.

Inspired by the translational model TransE [15], Xu et al.[20]
proposed R-NET to incorporate relational knowledge into SG.
Each word itself can be regarded as an entity so that each triple
comes from the triple set S. The additional objective is similar
to Eq. (2), i.e.∑

(wi,r,w j)∈S

∑
(
w′i ,r

′,w′j
)
∈S′

max
{
0, γ + fr

(
wi,w j

)
− fr′

(
w′i ,w

′
j

)} (13)

where wi and w j are words that serve as head and tail entities,
respectively; (wi, r,w j) represents a triple from the knowledge
resources. In this way, multiple relations can be better incorpo-
rated into the objective function.

Apart from relational knowledge, they suggested that cat-
egorical knowledge can also be leveraged to further improve
word representations. The idea is that words with similar at-
tributes can be grouped into the same category. If a category
only contains a few words, then it is more likely to be a specific
one, and the words in it should be highly-related. On the con-
trary, if a category includes a large number of words, it tends
to be general, which reflects the relatively low degree of sim-
ilarity between words in this category [20]. Therefore, they
proposed another additional objective to effectively make use
of this heuristic: ∑

wi∈V

∑
w j∈V

βi j

∥∥∥wi − w j

∥∥∥
2 (14)

where βi j stands for the weight, indicating the degree of similar-
ity between wi and w j according to the categorical knowledge.
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Ono et al.[21] and Nguyen et al.[63] focused on the most ba-
sic relations from linguistic knowledge resources: synonyms
and antonyms. Instead of the probabilistic approaches, they
mainly consider the semantic similarity of word embeddings.
Specifically, the methods add a constraint to enforce synonyms
to have similar representations and antonyms to have dissimilar
ones, i.e. ∑

wi∈V

∑
w j∈RS (wi)

logσ
(
sim

(
wi,w j

))
+α

∑
wi∈V

∑
w j∈RA(wi)

logσ
(
−sim

(
wi,w j

)) (15)

where sim(·) is a function to calculate the similarity score be-
tween two vectors, and σ is the Sigmoid function. RS (wi) and
RA(wi) are the synonym and antonym sets of word wi, respec-
tively. α is a parameter to control how much the antonym can
contribute to the objective function.

Liu et al.[64] defined a set of ordinal rules that take into ac-
count both relational and categorical knowledge. They gener-
ated a set O, where each instance contains 3 words: wi, w j and
wk. These 3 words meet one of the following conditions: 1)
wi and w j are synonyms while wi and wk are antonyms; 2) wi

and w j belong to the same category while wi and wk belong to
different category; 3) The distance between wi and w j is shorter
than wi and wk in the hypernym tree. Therefore, the similar-
ity score between wi and w j should be higher than wi and wk,
which forms an inequality: sim(wi,wk) > sim(wi,w j). Based
on this, they proposed the additional ordinal constraint:∑

(wi,w j,wk)∈O

σ
(
sim (wi,wk) − sim

(
wi,w j

))
(16)

Bollegala et al.[65] believed that by employing the global co-
occurrence instead of local co-occurrence, one might acquire
better representations. Hence, they used GloVe [14] as the base
model and proposed an additional objective to incorporate rela-
tional knowledge.

1
2

∑
wi∈V

∑
w j∈R(wi)

∥∥∥wi − w̃ j

∥∥∥2
(17)

where wi is the target word embedding and w̃ j is the context
word embedding. In their work, both symmetric and asym-
metric lexical relations are taken into consideration. The word
embedding, under this definition, moves closer to the context
embeddings of its related words.

3.2. Post-processing

In this category, word embeddings can be refined with im-
portant information from external knowledge resources.

Retrofitting, first proposed by Faruqui et al.[22], is a pro-
cess of updating pre-trained word embeddings based on graph-
structured data from external knowledge resources, e.g. Word-
Net. The fundamental idea is to place neighbour nodes in the
graph closer. The main objective can be formulated as follows:

∑
wi∈V

∑
w j∈R(wi)

βi j

∥∥∥wi − w j

∥∥∥2

(18)

where βi j is the associative weight between words wi and w j.

Meanwhile, it is also important to preserve the distributional
information gained during the pre-training phase. Therefore,
a regularisation term is introduced into the post-processing to
ensure that the updated word embeddings do not move too far
from the original ones, i.e.

∑
wi∈V

αi ‖wi − ŵi‖
2

(19)

where ŵi is the original word embedding for wi; αi represents
another associative weight between updated word embedding
and original word embedding.

To specialise the word embedding based on linguistic infor-
mation for word semantic similarity tasks, the method proposed
by Kiela et al.[66] maximises the log-likelihood of word w j

given wi after the pre-trained distributional word embeddings
are generated, if these two words are associated in the knowl-
edge resources. More specifically, it treats words connected by
a specific relation as the context from a corpus and performs
exactly the same optimisation as in the pre-training, i.e. Skip-
Gram, during the post-processing. Compared to retrofitting
[22], this method performs well in terms of incorporating the
auxiliary thesaurus information. However, without any regular-
isation, the original information gained from pre-training may
be lost after the post-processing.

Inspired by retrofitting, Mrksic et al.[23] proposed counter-
fitting, a method that can inherently capture more accurate sim-
ilarity by considering both synonyms and antonyms. They con-
sidered three terms in their design: Antonym Repel, Synonym
Attract, and Vector Space Preservation. The main idea is to pull
synonyms closer while pushing away antonyms from each other
during post-processing. A regularisation term is also introduced
to maintain the distributional information from the original em-
beddings, i.e.

∑
wi∈V

∑
w j∈V

max
{
0, sim(ŵi, ŵ j) − sim(wi,w j)

}
(20)

This regularisation focuses on the semantic similarity between
two words, which is more consistent with the type of knowl-
edge used in this work. Later, they refined this approach and
proposed the Attract-Repel model by introducing negative ex-
amples to fine-tune the word embeddings in a context-aware
way [67]. In particular, they created mini-batches for synonyms
and antonyms from the knowledge resources as well as negative
examples. Ideally, synonyms are enforced to have more similar
representations in the semantic space than negative examples,
while antonyms are enforced to have more dissimilar represen-
tations than negative examples. The model can be formulated
as follows:
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Table 1: Summary of learning from the scratch methods

References Base. Constraints Remarks

[19] CBOW
1
|V|

∑
wi∈V

∑
w j∈R(wi)

log p(w j|wi) Maximise the log-likelihood of w j given wi if wi has a
relation with w j during the word embedding learning.

[62] CBOW
1
|T |

|T |∑
i=1

λr

∑
w j∈Rr (wi)

log p
(
w j|W

c
i

) Maximise the log-likelihood of w j given the context of
wi from a training sequence T weighted by the relation
r.

[20] SG

∑
(wi ,r,w j)∈S

∑
(w′i ,r

′ ,w′j)∈S
′

max {0,

γ + fr

(
wi,w j

)
− fr′

(
w′i ,w

′
j

)}
;∑

wi∈V

∑
w j∈V

βi j

∥∥∥wi − w j

∥∥∥
2

Incorporate relational knowledge using TransE model
[15] and categorical knowledge with the weight βi j be-
tween wi and w j.

[21] [63] SG

∑
wi∈V

∑
w j∈RS (wi)

logσ
(
sim

(
wi,w j

))
+α

∑
wi∈V

∑
w j∈RA(wi)

logσ
(
−sim

(
wi,w j

)) Enforce synonyms/antonyms to have similar/dissimilar
embeddings.

[64] SG

∑
(wi ,w j ,wk)∈O

σ
(
sim (wi,wk) − sim

(
wi,w j

))
Constrain the word embeddings based on ordinal rules.

[65] GloVe
1
2

∑
wi∈V

∑
w j∈R(wi)

∥∥∥wi − w̃ j

∥∥∥2 Enforce words linked by relations to have similar em-
beddings.

Table 2: Summary of Post-processing method

References Main Objectives Regularisations Remarks

[22]
∑
wi∈V

∑
w j∈R(wi)

βi j

∥∥∥wi − w j

∥∥∥2 ∑
wi∈V

αi ‖wi − ŵi‖
2

Pull words linked by a relation closer.

[66]
1
|V|

∑
wi∈V

∑
w j∈R(wi)

log p(w j|wi) - -
Maximise the log-likelihood of w j given wi af-
ter the pre-trained distributional word embed-
dings are generated.

[23]

∑
wi∈V

∑
w j∈RA(wi)

max{0, sim(wi,w j)}∑
wi∈V

∑
w j∈RS (wi)

max{0,−sim(wi,w j)}

∑
wi∈V

∑
w j∈V

max {0,

sim(ŵi, ŵ j) − sim(wi,w j)
} Pull synonyms closer while pushing away

antonyms from each other.

[67]

∑
(wi ,w j)∈BS

max
{
0, (w>i w′i − w>i w j)

+(w>j w′j − w>i w j)
}∑

(wi ,w j)∈BA

max
{
0, (w>i w j − w>i w′i )

+(w>i w j − w>j w′j)
}

∑
wi∈V(BS ∪BA)

αi ‖wi − ŵi‖
2 The idea is similar to [23]; introduce negative

examples to fine-tune word embeddings in a
context-aware way.

[68]
∑

(wi ,w j ,di j)∈B

[
cos

(
f (wi) , f

(
w j

))
− di j

]2

∑
(wi ,w j)∈B

[
cos(ŵi, f (wi))

+cos(ŵ j, f (w j))
] The idea is similar to [23]; employ a non-linear

specification function f to project each word
embedding to a new semantic space.
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∑
(wi,w j)∈BS

max
{
0,

(
w>i w′i − w>i w j

)
+

(
w>j w′j − w>i w j

)}
∑

(wi,w j)∈BA

max
{
0, (w>i w j − w>i w′i) +

(
w>i w j − w>j w′j

)} (21)

where w′i is a negative sample for wi, BS and BA are mini-batch
for synonyms and antonyms, respectively.

The regularisation is similar to the retrofitting [22], avoiding
each updated word embedding moving too far away from its
original word embedding. During post-processing, the embed-
ding will be fine-tuned with negative examples, which indicate
a stronger association in the semantic space within each mini-
batches. It also outperforms similar work in [69], which only
takes synonyms into consideration, suggesting that employing
both similarity and dissimilarity constraints can be more effec-
tive, especially while using cross-lingual or multilingual lan-
guage resources.

Glavaš et al.[68] proposed a non-linear semantic specifica-
tion function f (·) to map word embeddings to a deeper space to
better capture their semantic similarity. Each instance in a batch
B contains two words wi and w j from the vocabulary and their
expected distance di j in the specified semantic space based on
their relations. Both synonyms and antonyms are considered in
the optimisation. The post-processing stage can be formulated
as follows: ∑

(wi,w j,di j)∈B

[
cos

(
f (wi) , f

(
w j

))
− di j

]2
(22)

where cos(·) is the cosine distance function (which is computed
as “1-cosine similarity”). The idea of this objective function
is to make the cosine distance of two words as close as their
expected distance in the specified semantic space. The regu-
larisation in the method aims to minimise the cosine distance
between the original word embedding in the original distribu-
tional space and the transformed word embedding by the se-
mantic specification function f (·), i.e.∑

(wi,w j)∈B

[
cos (ŵi, f (wi)) + cos

(
ŵ j, f

(
w j

))]
(23)

3.3. Discussions

Existing works reviewed in this section are further clas-
sified into two sub-categories: Learning from scratch and
Post-processing. Most of the methods under these two sub-
categories make use of auxiliary objective functions which at-
tempt to exploit linguistic constraints from external knowledge.
As such, NLP models can produce powerful and knowledge-
able word embeddings. However, there are some obvious limi-
tations with the learning from scratch methods: 1) each method
under this sub-category is limited to a certain word embedding
technique, i.e. it specifies an underlying distributional objec-
tive which is not adaptable enough; and 2) it is computation-
ally expensive, especially when the corpus size is large. On the

contrary, post-processing methods are more flexible by refin-
ing the pre-trained embeddings with knowledge from linguistic
resources while preserving the original topology.

A common problem in the studies [19], [65] and [66] is that
all relations are assigned with the same weight. This is not de-
sirable since different lexical relations often imply different de-
grees of relatedness among words. The works in [62] and [22]
use associative weights between words based on their relations
or strength of associations. However, selection of optimal pa-
rameters becomes a challenging issue, which relies heavily on
empirical evidence for different NLP tasks. The studies in [21],
[63], [23] and [67] only take two lexical relations (synonyms
and antonyms) in linguistic knowledge resources into account.
They learn word embeddings in a contrastive way to cluster
synonyms and push away antonyms in the semantic space. The
works in [20] and [64] define customised rules to construct lin-
guistic constraints. Overall, the design of these methods is in-
tuitive; however, the results of several downstream tasks sug-
gest that more fine-grained linguistic information should also
be included for semantic specialisation to deal with sophisti-
cated languages.

4. Bridging Knowledge and Language

Unlike linguistic resources such as WordNet, some KGs
contain common sense and factual data knowledge regarding
the real world. During knowledge integration, the alignment
between texts and entities from such external knowledge re-
sources is an essential process. Existing methods can be cat-
egorised into two groups: 1) Alignment with distant supervi-
sion: language and knowledge representations, e.g. word em-
beddings and KG embeddings, are first computed separately,
and then alignment is performed to map representations to a
unified space with distant supervision; and 2) Encoding with
deep learning models: deep learning models are used to di-
rectly encode texts into the KG embedding space. Bridging
the gap between knowledge and language representations can
better link and resolve the mentioned real-world entities or rela-
tions in documents with accurate references to external knowl-
edge resources. This is useful in some text mining tasks, such as
named entity recognition, mention disambiguation and relation
extraction.

4.1. Alignment with Distant Supervision

As presented in Section 2.2 and 2.3, there are several com-
mon approaches to obtaining word embeddings based on co-
occurrence from the corpora and entity/relation embeddings
based on the knowledge resources. However, these two kinds
of embeddings are represented in separate semantic spaces. To
connect them for relation extraction, Weston et al.[70] learned
a mapping function f (·) to project a mention from text into the
KG embedding space. For each mention-relation pair (mi, ri)
and an irrelevant relation r′i , they proposed a constraint with 1
as the margin, i.e.

∀(mi, ri) f (mi)> ri > 1 + f (mi)> r′i (24)
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where ri is the relation representation for ri. In this way, the
inner product of each mention is transformed by the mapping
function f (·), and its corresponding relevant relation can always
be larger than the one with an irrelevant relation. According
to this constraint, the ranking loss is employed to optimise the
function f (·) and word embeddings.

Wang et al.[25] proposed two alignment techniques: The for-
mer is to employ the Wikipedia Anchors, an external tool that
can connect words or phrases in an English Wikipedia page to
their corresponding entities in Freebase KG. The loss function
of the probabilistic-based alignment model can be written as
follows: ∑

(wi,w j)∈C

log p(wi|ew j ) (25)

where (w j, ew j ) is the connection between a word w j and en-
tity ew j from the Wikipedia Anchor; wi and w j are from the
same context, denoted as C, in one of the Wikipedia pages.
This method assumes that all words from the content in the
Wikipedia pages of an entity should be strongly-related to the
entity. Due to the unambiguity and completeness of this tool, a
similar idea is also used in [26] and [71] for the named entity
and mention disambiguation.

The latter is alignment by entity names. For a triple (h, r, t),
where h, t, r are the head entity, tail entity and their correspond-
ing relation, they generated some new triples by replacing the
entity with one or several words according to the entity name.
The alignment process is formulated as follows:∑

(h,r,t)∈S

[ fr(wh,wt) + fr(h,wt) + fr(wh, t)] (26)

where S is the set of all triples extracted from a KG; wh and wt

are names of the head and tail entities, respectively. Compared
to the alignment model with Wikipedia Anchors, this method
does not depend on any external tools, which is more straight-
forward and adaptable.

While many methods focus on representation learning from
symbolic triples, supplementary textual data, such as entity de-
scriptions [72] and text corpora [73], which usually provide
much more semantic information about an entity, can also be
well utilised for alignment between knowledge and language.
This textual data can effectively solve the sparsity issue [74] in
most KGs. Therefore, Zhong et al.[27] proposed an alignment
model based on entity descriptions. Let De = {w1,w2, ...,wn}

stands for a set containing all words appearing in the descrip-
tion of an entity ei; they defined the loss function of alignment
model as follows:∑

ei

∑
w∈Dei

[log p(w|ei) + log p(ei|w)] (27)

This method mutually updates the entity and word embeddings
to align them by maximising the probabilities of an entity given
the word from the entity description and, reversely, the word
from the entity description given the entity. Newman-Griffis
et al.[75] proposed another method to align words and entities

with distant supervision based on an unannotated text corpus.
For each entity ei, there is a corresponding word wi with an ob-
served context in the corpus, denoted asWc

i , where c is the con-
text window size. Moreover, a set of negative context words,
denoted asWc′

i is also used. The objective function is defined
as follows (σ is the Sigmoid function).∑

w∈Wc
i

logσ(w>ei) +
∑

w′∈Wc′
i

logσ(−w′>ei) (28)

where ei is the embedding for entity ei. The idea behind this
approach is to enforce an entity and context words of this entity
in the corpus to have similar representations while making the
words, not from the context, have dissimilar representations.
A similar approach is also adopted in [76] to make sure the
consistency of language and knowledge representations.

4.2. Encoding with Deep Learning Models

With the advancement of deep learning, a considerable
amount of neural network models have been proposed to en-
code language for automatic analysis and better representation
in sentence-level [77], [78], [79]. Another solution to bridge
the gap between language and knowledge is to encode textual
data with deep learning models into the KG embedding space.

Toutanova et al.[28] pre-processed sentences using depen-
dency parsing. They employed a neural network model to ex-
tract relations from annotated textual patterns. However, ac-
cording to Han et al.[34], the linguistic analysis is relatively
complicated and may lead to parsing errors, especially when
the textual data is noisy. To address this problem, they utilised
the CNN-based model proposed by Zeng et al.[80] to encode
the plain text that contains two entities. The corresponding rep-
resentations of the relation encoded by the deep CNN model
and obtained using TransE [15] are denoted as r̄ and r, respec-
tively. They used a scoring function to minimise the distance
between r̄ and r in the unified semantic space, i.e. ||r̄ − r||2.

Research in [30], [81], [82], [83] concentrates on encoding
descriptions, reference sentences or other textual information
regarding entities with deep learning techniques into the KG
embedding space. The overall procedure can be summarised in
Figure 3, where h, r and t are representations of the head en-
tity, relation and tail entity, respectively, based on the structural
knowledge from the KG. h̄ and t̄ are corresponding representa-
tions constructed from the descriptive knowledge (e.g. textual
descriptions about entities).

Xie et al.[82] used a two-layered CNN model to encode de-
scriptions of head and tail entities, and defined the scoring func-
tion based on TransE [15], i.e.

fr(h, t) =
∥∥∥h̄ + r − t̄

∥∥∥
1/2 + ‖h + r − t‖1/2

+
∥∥∥h̄ + r − t

∥∥∥
1/2 +

∥∥∥h + r − t̄
∥∥∥

1/2

(29)

However, Wu et al.[30] argued that this method is subject to
the quality of the entity description. They suggested another
way to find auxiliary textual information about an entity, which
is to consider the sentences, including the entity name from a
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Figure 3: Encoding entity descriptions into KG embedding space. This figure
is adapted from [30]

specific corpus. These selected sentences are regarded as ref-
erence sentences of an entity. Then, an attention-based LSTM
[84] model is utilised for encoding all reference sentences. Xu
et al.[81] used Bidirectional LSTM (Bi-LSTM) [85], which
processes sequential text in both forward and backward direc-
tions, to encode textual descriptions of entities. Instead of sep-
arating the scoring function based on structural and descriptive
knowledge, they proposed a gated unit to integrate these two
different types of representations. The integration of the head
entity is shown as follows:

gh � h̄ + (1 − gh) � h (30)

where � is the element-wise multiplication and gh is a gate of
the head entity. A similar way applies to the integration of the
tail entity.

4.3. Discussion

Existing studies to bridge the gap between knowledge and
language in this section are classified into two sub-categories:
Alignment with distant supervision and Encoding with deep
learning models.

Alignment methods with distant supervision exploit seman-
tic similarity and relatedness information from external knowl-
edge, and process textual data at the word-level. Tools and re-
sources for alignment include symbolic triplets in the KG [70],
[25], Wikipedia anchors [25] and other supplementary sequen-
tial data [27], [75]. The major problem with employing sym-
bolic triplets is that they may break down while dealing with
polysemy (e.g. the word “bank” may refer to a river bank or
financial bank). In this case, the KG embedding is likely to be
corrupted after the alignment. Moreover, different mentions in
the text may refer to the same relation or entity in the triple, and
it is infeasible to consider all possible mentions in the vocabu-
lary. Alignment with Wikipedia anchors can mitigate this issue
to a certain extent, while still suffering from the limitation of
the number of word-entity pairs in this entity-linking system.
The supplementary sequential data can provide the context or
description of the entity. However, the comprehension and in-
terpretation at the sentence-level are more significant due to the

context-dependent nature of languages [86], [87], especially for
the text mining and analysis tasks such as named entity recog-
nition.

Sentence-level encoding with deep learning models has the
potential to better resolve word sense ambiguity and vagueness,
and to handle descriptive knowledge. However, it still has some
obvious drawbacks, such as restrictions on the extent of words
and entity vocabularies, as well as expensive model training.

5. Injecting Knowledge into Recently-developed Language
Representation Models

Recently, large-scale pre-trained language models such as
OpenAI GPT [36], BERT [37] and Roberta [38], have deliv-
ered state-of-the-art results in a variety of NLP problems. These
models are pre-trained over unsupervised tasks with extraor-
dinarily large-scale corpora containing general world knowl-
edge. They can be further fine-tuned with extra labelled data
in a plethora of downstream tasks and applications. In order to
improve the performance or address the discrepancy between
the source and target domain, it is necessary to equip them
with more domain-specific knowledge [40]. Other than meth-
ods mentioned in Section 4.2, which implicitly learn and ex-
plore the representations in the KG embedding space, struc-
tured knowledge can also be explicitly injected into pre-trained
models. Therefore, the process of knowledge integration can be
more explainable and reasonable.

5.1. Information Fusion
One of the most intuitive ways to integrate knowledge from

external resources is information fusion. This can be done at
either the input or output of the pre-trained language represen-
tation models.

5.1.1. Fusion at Input
Fusion at the input can directly integrate external knowledge

into models and generate contextualised global representation
with auxiliary knowledge. Ke et al.[41] proposed SentiLARE,
a BERT-based model for a number of downstream tasks in sen-
timent analysis. For each word in a sentence, corresponding lin-
guistic knowledge related to the task from SentiWordNet [111]
is acquired. At the token representation level, the model per-
forms element-wise addition of the original BERT embeddings,
word-level polarity embeddings and part-of-speech (POS) em-
beddings as the final input. Levine et al.[88] proposed Sense-
BERT to incorporate the senses of each word based on Word-
Net. They introduced a linear mapping between words and
senses and merged the two representations to fit the transformer
encoder. In this way, the input embeddings have an awareness
of the senses of words, which significantly enhances the lexi-
cal understanding. Poerner et al.[89] employed a similar way
to acquire the entity embeddings from token embeddings in the
aligned Wikipedia-WordPiece vector space [26]. The token em-
beddings of the BERT model are concatenated with the cor-
responding entity embeddings to form the knowledge-enabled
embeddings as the input. To help language models better un-
derstand the words with low frequency in the corpus, Wu et
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Table 3: Summary of methods to inject knowledge into pre-trained language representation models

Categories Methods References Remarks*

Information Fusion

Input-based

[41] POS embeddings + polarity embeddings
[88], [89] Entity embeddings

[90] Entity type embeddings
[91] Note embeddings for rare words

[40], [92] Transformed triples
[93] Entity descriptions + Triples

Output-based
[42], [94], [95] Entity embeddings

[96], [97] Contextualised entity embeddings
[98] Entity embeddings + Metadata features

Extended MLM

[99], [43] MLM on synthetic knowledge-based corpus
[100] MLM at entity-level
[45] Entity replacement prediction

[101] MLM on knowledge
Knowledgeable [92], [102] MLM on language and knowledge

Pre-training

Multi-task

[103] MLM + NSP + LRC
[104] MLM + NSP + EL
[105] MLM + KE
[106] MLM + MIM + DD

Tasks over KG [107] Triple plausibility prediction
[46] Relation classification

Adaptable

KAR-based [104]
A component inside BERT model
with knowledge enhanced for
re-contextualisation

Architecture Adapter-based [103], [46] Inject different knowledge with separated
parameter-efficient adapters

Memory-based [108], [109], [110] Knowledge retrieval with interpretable
memory access via memory layers

* For the first category, the required auxiliary information is provided in the remark column. For knowledgeable
pre-training, the names of the corresponding tasks are listed.
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al.[91] employed linguistic knowledge resources to construct a
note dictionary. The note embedding will then be added to the
embedding layer to enrich the semantic information.

Apart from this, Yamada et al.[90] suggested adding entity
type embeddings for better relationship modelling. Different
from the above-mentioned methods, Liu et al.[40] converted
the original input sentence to a knowledge-integrated sentence
tree after querying the KG with all entity names. The basic
structure of the sentence tree is shown in Figure 4, which is re-
arranged and transformed to derive the input embeddings. They
also proposed the mask-self attention, a variant of the attention
mechanism proposed in [39], based on a visible matrix and soft-
position embedding scheme during knowledge incorporation.
Although providing transformed triples extracted from KG in
the input has a positive impact on understanding the relations
between entities, Xu et al.[93] argued that each entity in triples
only contains surface names, which lacks necessary descrip-
tive knowledge. Without sufficient entity descriptions, language
models may fail to fully comprehend the actual meanings of en-
tities. Therefore, in their work, descriptions of the entities from
an online dictionary, i.e. Wiktionary, are encoded along with
the text and corresponding triples by the language model.

Figure 4: The basic structure of sentence tree converted from the input sentence.
This figure is adapted from [40]

5.1.2. Fusion at Output
Language representations and knowledge from KG or other

external knowledge resources can also be fused at the output.
Since language and knowledge provide heterogeneous informa-
tion, existing works prefer to adopt separate mechanisms to en-
code the textual data and required knowledge, or, alternatively,
generate language representations in the deep semantic space
first and then dynamically extract the corresponding knowledge
from knowledge resources. All the information will be aggre-
gated with the proposed mechanisms or in the neural layers.

Zhang et al.[42] utilised the multi-head transformer as the
textual encoder to extract the semantic meanings from the input
sentences. The output of the textual encoder and the aligned en-
tities from the KG are then fed into the knowledgeable encoder
for integration but with separate attention mechanisms, i.e.

oi =

σ
(
wl

iM̄
l + el

jM
l + bl

)
∃e j

σ
(
wl

iM̄
l + bl

)
@e j

(31)

where oi is the output in the i-th position of the fused entity and
word; σ(·) is the activation function in the information fusion
layer; e j is the corresponding entity for a word wi; M̄l and Ml

are the weight matrices of word and entity representations at

the l-th layer of the knowledgeable encoder, respectively. For
words without the corresponding entities, the knowledge inte-
gration step will be simply skipped.

He et al.[94] used the same approach to integrate bio-medical
knowledge for domain-specific tasks with sub-graph construc-
tion from UMLS. However, one issue regarding the KG embed-
ding generation for output-based information fusion in [42] has
been reported in several recent studies [96], [97]. The extracted
knowledge, according to the entity mention, can not appropri-
ately match the textual context. To address this issue, they re-
fined the KG embedding with dynamic information selection
from KG based on the textual context output by the pre-trained
language models.

Yu et al.[95] employed graph attention network [112], a
GNN-based model, to encode both structural and descriptive
knowledge of mentioned entities in the given sentences, which
is then fused with the language representations from the BERT
model. For better document classification performance, Osten-
dorff et al.[98] incorporated task-specific metadata from the ex-
ternal knowledge base, e.g. the number of authors, academic ti-
tle, and author embeddings which are generated from the Wiki-
data KG. At the output layer of the BERT model, they concate-
nated BERT embeddings, metadata features and author embed-
dings as the knowledge-enabled representations for classifica-
tion.

5.2. Knowledgeable Pre-training
Pre-training is a crucial stage for models to gain essential lan-

guage understanding from large general domain corpora. Ac-
cording to [113], unsupervised pre-training tasks can perform
better generalisation and speed up model convergence during
the fine-tuning stage. Therefore, BERT adopts MLM and NSP
as its pre-training tasks, which has been introduced in Sec-
tion 2.3.

To learn common sense knowledge in the pre-training stage,
Guan et al.[99] and Bosselut et al.[43] transformed triples from
a KG to synthetic sentences based on the templates provided
by Levy et al.[114] as the pre-training corpus. However, Sun et
al.[100] identified a problem by using MLM to pre-train BERT:
it cannot capture the essential high-level semantic information
since each word in the input sentence is treated as the basic lan-
guage unit. Therefore, they presented an extension of the MLM
task at the entity-level. Instead of randomly masking single
words in each sentence, they masked the entire named entities
for the prediction task. Their results indicate that the model
pre-trained with this approach on heterogeneous data can derive
better language representations. Xiong et al.[45] proposed a re-
placement strategy at the entity-level in the pre-training stage,
in which some entities in the input sentence are replaced, and
the model predicts whether those entities have been replaced.

Even though the above-mentioned extended MLM tasks can
help the pre-trained language models to be conscious of enti-
ties, they fail to fully extract and model useful knowledge from
general plain texts for logical thinking [115]. To address this
issue, Sun et al.[92] constructed a word graph from the input
sentences and a sub-graph from knowledge resources as input.
They performed the MLM tasks on words from the word graph
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and relations and entities from the knowledge sub-graph. In this
way, both language and knowledge representations are context-
dependent. Kim et al.[102] formatted a symbolic triple as “head
entity + head description + relation + tail + tail description” as
input. Similar to Sun et al.[92], in the pre-training stage, they
randomly masked words in entities, relations and descriptions.

Banerjee et al.[101] encoded names of symbolic triple (h, r, t)
from KG using the transformer, with [SEP] as the separator, and
then performed random masking on one of three items from
the triple. Three functions fh(·), fr(·) and ft(·) with the same
transformer encoder are learned to predict the masked item, i.e.

ft(h, r)⇒ t, fh(r, t)⇒ h, fr(h, t)⇒ r (32)

In addition to MLM and NSP, another line of research at-
tempts to integrate knowledge into the language models by em-
ploying knowledge-intensive tasks to further pre-train the mod-
els. Lauscher et al.[116] proposed a new pre-training task,
called lexical relation classification (LRC), to incorporate lex-
ical information from WordNet and Thesaurus. They built a
fully-connected layer on top of the final hidden state of the
[CLS] token as the classifier for this task. Given a word pair,
the model is required to predict if these two words have a par-
ticular lexical relation, e.g. synonym and meronym. The loss
function is formalised as follows.

−
∑
i, j

[
y log p(y|wi,w j) + (1 − y) log

(
1 − p(y|wi,w j)

)]
(33)

where y ∈ {0, 1} is the true value; p(y|wi,w j) is the predicted
output of the lexical relation classifier.

Peters et al.[104] proposed KnowBERT, which is jointly pre-
trained with MLM, NSP and entity linking (EL) tasks to align
BERT with entity embeddings. Similarly, Wang et al.[105]
combined MLM and knowledge embedding (KE) loss to op-
timise the model in the pre-training stage. For the knowl-
edge embedding loss, they encoded the descriptions of enti-
ties into BERT embedding space and employed the loss func-
tion of TransE [15]. Yu et al.[106] utilised a linguistic re-
source to co-train the BERT model with MLM and two pro-
posed self-supervised tasks: mutual information maximisation
(MIM) and definition discrimination (DD). The input sentence
in their work is supplemented with two definitions of a rare
word appearing in the text and a corrupted word. The goal of
MIM is to maximise the mutual information between the con-
textualised representation of the rare word in the input text and
its definition, while DD identifies which definition is the cor-
rect one for the rare word. Yao et al.[107] and Wang et al.[46]
adopted triple plausibility prediction and relation classification
as pre-training tasks, respectively, which require more inference
and reasoning capability.

5.3. Adaptable and Interpretable Architectures

Although information fusion and pre-training can help mod-
els achieve better results on some specific NLP tasks, these
approaches still have difficulties in facilitating the construction

of more flexible models with the injection of knowledge from
multiple sources [117]. In particular, previously learned knowl-
edge may be abruptly lost when new knowledge is injected.
This phenomenon is typically evidenced in human cognition
while learning new knowledge and gradually forgetting the ear-
lier one. In the field of machine learning, this is called catas-
trophic forgetting [118], a common issue associated with most
pre-trained language models.

To make the architectures of these models more adaptable,
they need to be extended with auxiliary components for knowl-
edge injection. Peters et al.[104] proposed the Knowledge
Attention and Re-contextualisation (KAR) component inside
BERT to incorporate knowledge of different kinds. It performs
entity linking and computes the pooled contextualised span rep-
resentations for each mention with knowledge enhanced for re-
contextualisation. When computing the entity embedding for
each knowledge resource, network parameters that are not rel-
evant to the entity linking task are frozen. Following [119],
Lauscher et al.[103] investigated an adapter-based architecture
to infuse knowledge into pre-trained language models. Each
adapter layer consists of two fully-connected layers, which are
inserted into the transformer layer, i.e.

Adapter(Wl) = Wl + f
(
WlMd + bd

)
Mu + bu (34)

where Wl is the output of the l-th transformer layer; down-
projection weight matrix Md (with bias bd) and up-projection
weight matrix Mu (with bias bu) are parameters of the first and
second fully-connected layers in the adapter, respectively. The
output of the adapter, Adapter(Wl), will then be sent to the
(l + 1)-th transformer layer.

During the pre-training with knowledge from a specific re-
source, the parameters in the pre-trained language models re-
main unchanged, and only those in the adapters are adjusted.
Since the number of parameters in the adapters is much fewer
than those in the transformers, the efficiency of the pre-training
can be well guaranteed.

Wang et al.[46] proposed another adapter-based architecture
called K-adapter. Instead of adding the adapter layers inside
the transformers [103], K-adapter treats adapters as a separate
mechanism from the Roberta model. They pre-trained two in-
dependent adapters with different knowledge resources, i.e. a
linguistic adapter and a factual adapter. The overall architec-
ture is shown in Figure 5. To this extent, knowledge of multiple
kinds can be injected continually into the language representa-
tion models without knowledge forgetting.

Human accumulated knowledge is constantly evolving,
which inevitably necessitates data modification and additional
model training. To avoid expensive computation, Verga et
al.[109] proposed the Facts-as-Experts model, a transformer-
based language model with an entity memory module [108] and
a fact memory module, which is related to memory neural net-
works [120]. The entity memory module contains the learned
entity embeddings. In the fact memory module, for each triple
extracted from a KG, the head entity and relation are stored
as the key, while the tail entity is stored as the corresponding
value. The architecture of this model is shown in Figure 6, in
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Figure 6: Pre-trained language model with memory modules. The figure is
adapted from [109]

which the transformer is enriched with the entities from the en-
tity memory and then utilises the contextualised representation
to query the fact memory for the final prediction. With the su-
pervised memory access, the architecture can still work well
on factoid question-answering tasks even if the factual knowl-
edge is modified. De Jong et al.[110] also emphasised the im-
portance of internal memory enhancement for knowledge inte-
gration, especially when information assimilation and retrieval
from multiple knowledge resources are required. In their work,
each entity mentioned in the textual context interacts with the
memory that consists of dense mention representations created
from a large textual corpus with linked entities, e.g. Wikipedia.

5.4. Discussion
This section reviews the research regarding knowledge injec-

tion into recently-developed language representation models.
Existing studies are further classified into three sub-categories:
information fusion, knowledgeable pre-training and adaptable
architecture.

Information fusion can be either input-based or output-based.
Fusion at input normally supplements the textual input with the
additional information, e.g. POS [41], transformed triples from
KG [92] or the corresponding pre-trained entity embeddings
[88]. Due to the fact that many knowledge resources, espe-
cially common sense KGs, are not purely tailored for the NLP
models, directly adding such information into the textual input
unavoidably introduces some noise, posing a negative impact
on the performance of language encoding. As for the output-
based fusion, the output of the language representations by the
contextualised model is aggregated with the extracted knowl-
edge. Studies such as [42] and [94] that utilised two separate

mechanisms for encoding language and knowledge may cause
the problem that the encoded knowledge may not highly match
the textual context. This can be largely solved by the dynamic
knowledge selection according to the output of the contextu-
alised representations [96], [97].

Knowledgeable pre-training can also help models gain
awareness of external knowledge. Recent studies under this
sub-category propose some extensions to the original MLM,
adding new tasks in addition to MLM, or employing pre-
training tasks in the scope of KGs. Such extended MLM tasks
greatly improve the quality of the original MLM. However,
entity-oriented masking scheme [100], [45] ignores the essen-
tial relational information between entities in the KGs. In this
case, MLM on the given knowledge, e.g. triples [101] ap-
pears to be a more effective approach to incorporate knowledge.
Pre-trained language models can also learn language represen-
tations and understand the corresponding required knowledge
simultaneously via multi-task learning. However, the signifi-
cant discrepancy in the convergence time for each task makes it
difficult to determine the actual time of training. Another com-
mon issue of knowledgeable pre-training is that, once the model
is pre-trained with a specific knowledge resource, it is usually
extremely difficult to be adapted to other domains that require
different knowledge. Moreover, pre-training with these tasks
more or less has the risk of causing the acquisition bottleneck
of knowledge.

The adaptable design of transformer-based architectures for
knowledge fusion has been gaining popularity very recently.
Injecting multiple types of knowledge in adapter-based ar-
chitectures is efficient since each adapter is designed for a
specific type of knowledge and can be separated from the
transformer blocks; however, it lacks sufficient interpretabil-
ity. Memory-based architectures introduce interpretable mem-
ory access via memory layers, yet they often suffer from the
over-parameterisation issue.

6. Challenges and Future Directions

Research in recent years has shown that it is possible and
effective to bring different kinds of knowledge, e.g. common
sense, factual and linguistic, from external knowledge resources
into deep neural network-based models for NLP applications.
However, there are still challenges and unsolved issues accord-
ing to the research trends in recent years. In this section, we
suggest and discuss a number of notable future directions.

6.1. Extreme Zero-shot Learning

Many language representation models require a significant
amount of training data to integrate external knowledge for de-
sirable performance on NLP tasks [121], while little attention
has been given to the cases where only a small proportion of
or even no labelled data is available. To address this resource-
intensive issue, there has been some research such as [122] and
[123] that applies low-resource learning, e.g. zero-shot and
few-shot learning, with knowledge from external knowledge re-
sources for textual data analysis. However, these methods may
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fail if highly related information cannot be obtained in the train-
ing phase since the performance on unseen data is heavily de-
pendent on prior knowledge [124]. Therefore, inspired by the
idea of Yin et al.[125], a more challenging yet realistic scenario
needs to be considered: without any explicit model training, the
knowledge can be directly leveraged for problem-solving for
many NLP tasks.

6.2. Model Ability and Robustness
Computational capacity has been improving rapidly in recent

years, and more focus has been paid to model ability and ro-
bustness. For example, recent research has shown the vulnera-
bility of the state-of-the-art contextualised language models to
adversarial attacks by inconspicuous modifications of the orig-
inal textual input [126]. Adversarial learning is seen as one of
the empirically successful solutions to address this issue [127].
Due to the semantic constraint and discrete nature, crafting ad-
versarial examples for text is much more challenging in com-
parison with continuous data, e.g. images. Fortunately, with
external knowledge resources, adversarial examples that guar-
antee similar or the same semantic meanings can be effectively
and automatically generated. Nevertheless, the construction of
large-scale knowledge bases is often based on automated al-
gorithms for knowledge construction with a limited amount of
human intervention; there unavoidably exists low-quality and
noisy information [128] in which consistency, completeness
and accuracy of the constructed knowledge can not be fully as-
sured. In such situations, the performance of the language mod-
els on some common NLP tasks, such as reading comprehen-
sion, is likely to degenerate. Therefore, it is expected that more
research on automated detection of low-quality knowledge will
be needed to further improve the ability of knowledge-injected
models.

6.3. Knowledgeable Prompt-based Learning
Prompt-based learning, which aims to close the gap in the

standard “pre-training and fine-tuning” paradigm [129], has
gained popularity recently for many NLP applications. Specif-
ically, each input is wrapped into a task-oriented template to
predict the masked word, which is then projected to the label
space by a verbaliser [130]. In this way, downstream tasks can
be reduced to the MLM problem, and consequently, no extra pa-
rameters are needed. Hu et al.[131] presented an approach that
employs knowledge bases to construct the knowledgeable ver-
baliser. However, the pre-trained language model may not be
able to select the most suitable label from the expanded label set
since the model itself is not equipped with any domain-specific
knowledge. Therefore, the proposed knowledgeable prompt-
based learning approach can only deal with data in general do-
mains and needs to be enhanced to tackle domain-specific tasks.
We foresee that there is a great potential to combine prompt-
based learning with external knowledge resources to fully ex-
ploit the effectiveness of this technique.

6.4. Knowledge Reusability and Transferability
According to [132], transfer learning is the next driver of ma-

chine learning success after supervised learning. Analogical to

human behaviour of thinking, language representation models
with injected knowledge can be reused to solve related prob-
lems. For example, with profound knowledge in mathematics,
one may be able to answer questions on physics without much
effort in additional learning since these two disciplines share
much knowledge in common and mathematics is an intrinsic
foundation of physics. Existing research on transfer learning
mainly focuses on transferring features [133] or instances [134]
from the source to target domains. However, to the best of our
knowledge, the transferring of the injected knowledge has not
been studied. This is inherently a very challenging issue due
to the fact that some source domain-specific knowledge may
have a negative impact on the target domain during transferring.
Therefore, understanding the internal working of knowledge
transferring is of great significance. Both theoretical and em-
pirical studies on the reusability and transferability of injected
knowledge are needed.

6.5. Continual Knowledge Fusion

So far, existing research on integrating knowledge into lan-
guage models has not paid enough attention to the dynamic na-
ture of world knowledge, e.g. existing knowledge evolved, new
knowledge created or previously unseen knowledge brought
into the existing applications. The problem is that most of the
existing methods just build static models whose behaviour is
difficult or impossible to be adapted to the change in knowl-
edge. Re-training models from scratch every time when new
knowledge is injected is obviously intractable. Continual learn-
ing aims to learn from an infinite stream of data and to solve
the catastrophic forgetting problem, with the goal of gradually
extending the previously acquired knowledge for future learn-
ing use [135]. Section 5.3 mentioned some of the newly de-
signed models to improve the interpretability and adaptability
of knowledge injection. However, the amount and scope of
knowledge infused in these existing models are rather limited.
Moreover, the individual components for different knowledge
fusions are similar, reflecting the lack of consideration for het-
erogeneity in knowledge resources and difficulty level in pre-
training tasks for different kinds of knowledge. This problem
is closely related to the so-called stability-plasticity dilemma
[135], in which plasticity refers to the ability to integrate new
knowledge and stability for retaining previously learned knowl-
edge. Therefore, there is still a long way to go for continual
knowledge fusion in deep learning-based language representa-
tion models.

6.6. Neurosymbolic Learning

Neurosymbolic learning is an emerging research field that
attempts to draw on the strength of both cognitive learning and
symbolic manipulation [136]. Unlike conventional pure deep
learning-based approaches, it aims to integrate widely used,
auxiliary symbolic logics, such as probabilistic logic [137] and
fuzzy logic [138] for high-level cognitive tasks. In this way, the
learning and inference process can be made more transparent,
straightforwardly interpretable and easily tracked by human be-
ings. Apart from traditional rule-based logics, we believe that
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knowledge bases which are largely built on traditional descrip-
tion logics, can also be better integrated and utilised as impor-
tant resources for reasoning and decision-making in many NLP
tasks. Neurosymbolic learning stands for an exciting research
direction and would undoubtedly contribute to the grand vision
of explainable AI.

7. Conclusion

Accumulated quality knowledge can extensively benefit lan-
guage understanding to tackle many downstream NLP tasks.
With the recent emergence of representation learning of knowl-
edge and language, a plethora of studies has investigated how
to fuse external knowledge into NLP applications to further im-
prove their performance. We first briefly introduced the types of
knowledge resources, common language representation models
and KG embedding techniques. Then, we provided a taxonomy
for the related research, i.e. integrating linguistic information
into static word embeddings, bridging the gap between knowl-
edge and language, and injecting knowledge into contextualised
language models. We extensively reviewed the representative
studies published at top journals and conferences relating to
NLP and deep learning, with an emphasis on the theoretical
formulation and optimisation methods. In addition, we iden-
tified the limitations of the current state-of-the-art models and
discussed the possible future directions based on the focused
review. We hope that our work provided a valuable overview
of the status of the research and could motivate researchers to
further explore and investigate this interesting and challenging
topic.
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