
Addressing Non-IID Problem in Federated Autonomous Driving
with Contrastive Divergence Loss

Tuong Do1, Binh X. Nguyen1, Hien Nguyen1 Erman Tjiputra1, Quang D. Tran1, Anh Nguyen2

Abstract— Federated learning has been widely applied in
autonomous driving since it enables training a learning model
among vehicles without sharing users’ data. However, data from
autonomous vehicles usually suffer from the non-independent-
and-identically-distributed (non-IID) problem, which may cause
negative effects on the convergence of the learning process. In
this paper, we propose a new contrastive divergence loss to
address the non-IID problem in autonomous driving by reduc-
ing the impact of divergence factors from transmitted models
during the local learning process of each silo. We also analyze
the effects of contrastive divergence in various autonomous
driving scenarios, under multiple network infrastructures, and
with different centralized/distributed learning schemes. Our
intensive experiments on three datasets demonstrate that our
proposed contrastive divergence loss further improves the
performance over current state-of-the-art approaches.

I. INTRODUCTION

Autonomous driving is an emerging field that enables
vehicles to operate without a human driver by using a
combination of vision, learning, and control algorithms to
observe and respond to changes in the environment [1]. Re-
cently, many works have been proposed to address different
problems in autonomous driving [2]–[14]. While significant
progress has been made in the field, traditional works utilize
supervised learning methods and require data collection
to train the model [15]–[19]. Although collecting data is
necessary to improve the accuracy of the system, it strongly
violates user privacy since the users’ data are shared with
third parties. To overcome this limitation, recent works have
adapted federated learning as a new learning mechanism.
Federated learning allows multiple parties to collaboratively
train a model without sharing their data [20]–[23]. In prac-
tice, federated learning enables autonomous vehicles to learn
a shared prediction model together, involves more diverse
data, and yields real-time predictions while preserving users
privacy [24].

Typically, there are two main federated learning sce-
narios [25]: Server-based Federated Learning (SFL) which
has a central node to orchestrate the training process and
receive the contributions of all clients, and Decentralized
Federated Learning (DFL) which utilizes a fully peer-to-peer
(P2P) setup between data silos using a predefined topology.
Although SFL can enhance data privacy since only model
weights are transmitted, having orchestration nodes poten-
tially represents a bottleneck of the system since most of the
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Fig. 1. Sample viewpoints over three different vehicles accompanied with
their steering angle distributions in Carla dataset [20]. As we can see, the
data from the three vehicles have differences in visual input as well as
output steering angle distribution.

data transmission has to go through the central nodes. On the
other hand, DFL does not require a server and uses a fully
distributed network. Therefore, it is straightforward in DFL
to remove or add new silos using a dynamic topology [26]
whenever a silo is within the communication range of other
silos. In autonomous driving, several works have explored
both DFL and SFL to address different problems such as
collision avoidance [21], [27], trajectory prediction [28]–
[30], and steering prediction [20], [22], [31].

In practice, while SFL or DFL approaches have their own
advantages and limitations, both of them suffer from the
non-IID problem in federated learning. According to [32],
[33], the non-IID (identically and independently distributed)
problem occurs when data partitioning across silos has a
significant distribution shift. Although the non-IID problem
occurred in many contexts, it is an immense problem in
autonomous driving and causes difficulties when the accu-
mulation process for all vehicle silos is conducted [34]. In
practice, each vehicle has its unique driving patterns, weather
conditions, and road types, which can cause differences
in the data distribution. For example, data collected from
a car driving on a highway may be different from data
collected from a car driving in a busy city center. When the
accumulation process for all vehicle silos is conducted, the
non-IID problem can cause difficulties in building a robust
and accurate machine-learning model. E.g., if the model is
trained mainly on data from highways, it may perform poorly
in urban environments, where the distribution of the data is
different. Figure 1 illustrates different scenarios when we
have the non-IID problem in autonomous driving.

In this paper, we propose a new Contrastive Divergence
Loss (CDL) function to address the non-IID problem in
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autonomous driving. Unlike prior works that address the
non-IID problem by optimizing the accumulation step [34],
[35], we directly reduce the impact of divergence factors
from transmitted models during the learning process of each
local silo. We apply our proposed CDL in the context of the
Siamese network and show that it can significantly improve
over state-of-the-art methods.

II. RELATED WORKS

Autonomous Driving. Autonomous driving is an emerg-
ing field that has attracted significant research interests in
recent years. Several works have focused on using deep
learning for autonomous vehicle control, such as anomaly de-
tection [8], [9], [36], [37], object detection and tracking [10]–
[12], trajectory prediction [13], [14], autonomous braking
and steering [3]–[5], [7], [38]–[40]. Recently, Xin et al. [41]
proposed a recursive backstepping steering controller that
effectively links yaw-rate-based path following commands to
the steering angle. Xiong et al. [31] analyzed the nonlinear
dynamics behavior using a proportional control law. Yi et
al. [42] presented an algorithm to select the instantaneous
center of rotation within the self-reconfigurable robot’s area
and perform static rotation to adjust its heading angle during
waypoint navigation while avoiding collisions. Recently, Yin
et al. [28] combined model predictive control with covariance
steering theory to obtain a robust controller for general
nonlinear autonomous driving systems.

Federated Learning for Autonomous Driving. Fed-
erated learning allows many participants to cooperatively
train a machine learning model without disclosing their
local data [24]. Federated learning offers a privacy-aware
solution to many automotive systems, such as coopera-
tive autonomous driving and intelligent transport systems,
which require efficient communication, computation, and
storage [43]. Recently, many works have been proposed to
address different problems in autonomous driving using fed-
erated learning [44]–[48]. Liang et al. [21] presented an on-
line federated reinforcement transfer learning process where
all the vehicles make actions from the knowledge learned by
others. The authors in [22] proposed an autonomous driving
system to preserve vehicle privacy by using a server to store
shared training models between vehicles. Zhang et al. [44]
proposed a real-time end-to-end approach that included a
unique asynchronous model aggregation mechanism. The
authors in [20] introduced a deep federated network for
steering angle prediction. Recently, Doomra et al. [49] used
federated learning to predict the turning signal.

Although applying federated learning in autonomous driv-
ing is trendy, there are several open challenges. Besides
the crucial disadvantages correlated to the availability and
quality of the local computing devices, the variability in data
distribution across the participants is also a fundamental dif-
ficulty. Specifically, the data of various vehicles are usually
non-independent and identically distributed (i.e., non-IID).
While non-IID is a critical problem, most of the recent works
focus on addressing it through the accumulation process [34],
[35] and do not focus on local silos optimization.

Contrastive Divergence. Contrastive models have been
studied in federated learning recently for dealing with the
heterogeneity of local data distribution across parties [22].
This type of model has been applied to vision datasets [50]–
[54], language datasets [55], and signal datasets [56]. Indeed,
contrastive learning is a valuable candidate for dealing with
the non-IID problem in federated autonomous driving, which
is mostly caused by local data heterogeneity. It is worth
noting that most contrastive-related works focus on building
optimized frameworks in server-based [57], [58], modifying
topology in P2P federated learning [53], or adjusting the
accumulation process [59], [60]. As far as our knowledge,
no works have considered the contrastive behavior in the
divergence situation of loss during the optimization process
in local siloes in federated autonomous driving.

In this work, unlike other approaches that focus on the
accumulation step, we propose a new Contrastive Divergence
Loss (CDL) to address the non-IID problem in the local silos.
Our method can be applied in both SFL and DFL scenarios
and improve the performance of the network.

III. PRELIMINARY

A. Notation

We summarize the mathematical notations of our paper in
Table I.

TABLE I
MATHEMATICAL NOTATIONS.

Not. Description Not. Description

ξ Data in a mini-batch i, j Workers (silos)
α Learning rate m Mini-batch size
A Consensus matrix L Loss
k One specific iteration ϑ ∈ {0, 1} Aggregation status

x
Input image of ξ
in k-th iteration x′

Input image of ξ
in (k − 1)-th iteration

H Kullback-Leibler
Divergence θ

Learnable
parameters

β
Pulling control parameter for
Kullback-Leibler Divergence N

+
i

In-neighbors
of silo i

K
Transition
kernel k1

1-st transitional
kernel constraint

B. Federated Learning for Autonomous Driving

In autonomous driving, we consider each autonomous
vehicle as a data silo. Our goal is to collaboratively train
a global driving policy θ from N silos by aggregating all
local learnable weights θi of each silo. Each silo computes
the current gradient of its local loss function and then updates
the model parameter using an optimizer. After completing
the local update, each silo engages in several inter-silo
interactions using network topology. Mathematically, in the
local update stage, at each silo i, in each iteration k, the
model weights of the local silo can be computed as:

θi (k + 1) = θi (k)− αk
1

m

m∑
h=1

∇Llr

(
θi (k) , ξ

h
i (k)

)
(1)

where Llr is the local regression loss for autonomous steer-
ing. To update the global model, each silo interacts with the



associated ones through a predefined topology. The global
model is then updated as:

θ (k + 1) =

N−1∑
i=0

ϑiθi (k) (2)

In practice, the local model in each silo is trained using the
regression loss, parameterized by a deep network that takes
RGB images as inputs and predicts the associated steering
angles [20].

IV. METHODOLOGY

In this section, we discuss the distribution synchronization
challenge which is the key motivation that leads to our
proposed contrastive divergence loss. We then discuss the
Siamese network and the detail of our contrastive divergence
loss to handle the non-IID problem for autonomous driving.

A. Overview

Motivation. Due to the non-IID problem, the federated
learning algorithms for autonomous driving only achieve
good results when two conditions are met: i) the local
silo i can effectively learn from its local data, and ii)
the synchronization between nearby silos is sufficient to
minimize the effect of the non-IID problem. Currently, most
recent works address both of these problems by optimizing
the accumulation progress and optimizer [34], [47], [48],
proposing new topologies [45], or utilizing high-performed
deep networks that are robust to the non-identical characteris-
tic of distributed data [35], [61]. However, according to [62],
naively adopting high-performed deep architecture on cen-
tralized local learning and its corresponding optimizations
into federated scenarios can increase the weight variance of
local silo weights during the weights accumulation between
silos. As a consequence, it affects the convergence ability of
the model and may also cause divergence.

Siamese Network. In this work, we propose to address the
non-IID problem directly from each local silo by solving the
learning good feature problem and synchronization challenge
separately. Consequently, we want to have two networks in
each silo. One network is responsible for learning meaningful
features from the local image data, and the other network is
responsible for minimizing the distribution gap between the
current model weight and other nearby weights. To this end,
the Siamese Network [63] which includes two networks is
well-fitted to our needs. In particular, the Siamese network
has two branches. We consider the first branch (backbone
network) of the Siamese to have the local regression loss Llr

to learn the local image features for autonomous steering and
the positive contrastive divergence loss Lcd+ to learn knowl-
edge transmitted from neighbor silos. The second branch
(sub-network) is ultilized to control the divergence factors
from knowledge of the backbone through the contrastive
regularizer term Lcd− (See Fig. 2).

In practice, the sub-network shares the same weights
with the backbone during the first communication round.
However, from the next communication round, after the

Fig. 2. The Siamese setup when our CDL is applied for training federated
autonomous driving model. ResNet-8 is used in the backbone and sub-
network in the Siamese setup. During inference, the sub-network will be
removed. Dotted lines represent the backward process. Our CDL has two
components: the positive contrastive divergence loss Lcd+ and the negative
regularize term Lcd− . The local regression loss Llr for automatic steering
prediction is calculated only from the backbone network.

backbone is accumulated using Equation 1, the local model
of each silo is trained by the contrastive divergence loss. The
sub-network outputs support features that have the same size
as the output features of the backbone. During the training,
we expect that the weights between the backbone and the
sub-network should not have significant differences while
applying the contrastive divergence loss. The weights of all
silos are synchronized whenever gradients from the learning
process of the backbone and the sub-network of all silos are
not significantly different.

B. Contrastive Divergence Loss

In practice, we observe that the early stages of federated
learning mostly have poor accumulated models. Different
from other works that deal with the non-IID problem by
optimizing the accumulation step whenever silos transmit
their models, we directly decrease the effect of divergence
factors during the local learning process of each silo. To
achieve that, we reduce the distance between distribution
from accumulated weights θbi at silo i in the backbone
network, which contains information from other silos known
as divergence factors, and its i-th silo weights θsi in the
sub-network, which only contains knowledge learned from
local data. When the distribution between silos has been syn-
chronized at an acceptable rate, we lower the effectiveness
of the sub-network and focus more on the steering angle
prediction task. Our proposed Contrastive Divergence Loss
is motivated by the contrastive loss from the original Siamese
Network [63] and is defined as:

Lcd = βLcd+ + (1− β)Lcd−

= βH(θbi , θsi ) + (1− β)H(θsi , θbi )
(3)

where Lcd+ is the positive contrastive divergence term and
Lcd− is the negative regularizer term; H is the Kullback-
Leibler Divergence loss function [64]:

H(ŷ, y) =
∑

f(ŷ) log

(
f(ŷ)

f(y)

)
(4)



where ŷ is the predicted representation, y is dynamic soft
label.

Consider Lcd+ in Equation 3 as a Bayesian statistical in-
ference task, our goal is to estimate the model parameters θb∗

by minimizing the Kullback-Leibler divergence H(θbi , θsi )
between the measured regression probability distribution of
the observed local silo P0(x|θsi ) and the accumulated model
P (x|θbi ). Hence, we can assume that the model distribution
has a form of P (x|θbi ) = e−E(x,θbi )/Z(θbi ), where Z(θbi ) is
the normalization term. However, evaluating the normaliza-
tion term Z(θbi ) is not trivial, which leads to risks of getting
stuck in a local minimum. Inspired by Hinton [65], we
use samples obtained through a Markov Chain Monte Carlo
(MCMC) procedure with a specific initialization strategy
to deal with the mentioned problem. Additionally inferred
from Equation 1, the Lcd+ can be expressed under the SGD
algorithm in a local silo by setting:

Lcd+ = −
∑
x

P0(x|θsi )
∂E(x; θbi )

∂θbi
+

∑
x

Qθbi
(x|θsi )

∂E(x; θbi )

∂θbi
(5)

where Qθbi (x|θ
s
i ) is the measured probability distribution on

the samples obtained by initializing the chain at P0(x|θsi ) and
running the Markov chain forward for a defined step. The
convergence analysis of Lcd+ can be found in our Appendix.

Consider Lcd− regularizer in Equation 3 as a Bayesian
statistical inference task, we can calculate Lcd− as in Equa-
tion 5, however, the role of θs and θb is inverse:

Lcd− = −
∑
x

P0(x|θbi )
∂E(x; θsi )

∂θsi
+

∑
x

Qθsi (x|θ
b
i )
∂E(x; θsi )

∂θsi
(6)

We note that although Equation 5 and Equation 6 share the
same structure, the key difference is that while the weight θbi
of the backbone is updated by the accumulation process from
Equation 2, the weight θsi of the sub-network, instead, is not.
This lead to different convergence behavior of contrastive
divergence in Lcd+ and Lcd− . The negative regularizer term
Lcd− will converge to state θs∗i provided ∂E

∂θsi
is bounded:

g(x, θsi ) =
∂E(x; θsi )

∂θsi
−
∑
x

P0(x|(θbi , θsi ))
∂E(x; θsi )

∂θsi
(7)

and

(θsi − θs∗i ) ·

∑
x

P0(x)g(x, θ
s
i )−

∑
x′,x

P0(x
′)Km

θsi
(x′, x)g(x, θs∗i )

 ≥
k1|θsi − θs∗i |2

(8)
for any k1 constraint. Note that, Km

θs is the transition kernel.
The proof for the above result is analyzed in [66].

Note that the negative regularizer term Lcd− is only used
in training models on local silos. Thus, it does not contribute
to the accumulation process of federated training.

C. Total Training Loss

Local Regression Loss. We use mean square error (MAE)
to compute loss for predicting the steering angle in each local

silo. Note that, we only use features from the backbone for
predicting steering angles.

Llr = MAE(θbi , ξ̂i) (9)

where ξ̂i is the ground-truth steering angle of the data sample
ξi collected from silo i.

Local Silo Loss. The local silo loss computed in each
communication round at each silo before applying the accu-
mulation process is described as:

Lfinal = Llr + Lcd (10)

In practice, we observe that both the contrastive diver-
gence loss Lcd to handle the non-IID problem and the
local regression loss Llr for predicting the steering angle is
equally important and indispensable. Hence, we do not set a
parameter to control their contributions in Equation 10.

Combining all losses together, at each iteration k, the
update in the backbone network is defined as:

θbi (k + 1)

=

{∑
j∈N+

i ∪{i}
Ai,jθbj (k) , if k ≡ 0 (mod u+ 1),

θbi (k)− αk 1
m

∑m
h=1∇Lb

(
θbi (k) , ξ

h
i (k)

)
, otherwise.

(11)
where Lb = Llr + Lcd+ , u is the number of local updates.

In parallel, the update in the sub-network at each iteration
k is described as:

θsi (k + 1) = θsi (k)− αk
1

m

m∑
h=1

∇Lcd−
(
θsi (k) , ξ

h
i (k)

)
(12)

V. EXPERIMENTAL RESULTS

A. Implementation

Dataset. We use three datasets (Table II) in our experi-
ment: Udacity+ [67], Gazebo Indoor [20], and Carla Outdoor
dataset [20]. Gazebo and Calar are non-IID datasets while
Udacity+ is the non-IID version of Udacity dataset.

TABLE II
THE STATISTIC OF DATASETS IN OUR EXPERIMENTS.

Dataset Total
samples

Average samples in each silo
Gaia [68]
(11 silos)

NWS [69]
(22 silos)

Exodus [68]
(79 silos)

Udacity+ 38,586 3,508 1,754 488
Gazebo 66,806 6,073 3,037 846
Carla 73,235 6,658 3,329 927

Network Topology. Following [25], we conduct experi-
ments on three federated topologies: the Internet Topology
Zoo [68] (Gaia), the North American data centers [69]
(NWS), and the Zoo Exodus network (Exodus) [68]. We
use Gaia topology in our main experiment and provide the
comparison of two other topologies in our ablation study.

Training. The model in a silo is trained with a batch size
of 32 and a learning rate of 0.001 using Adam optimizer.
In each communication round, the local training process



TABLE III
PERFORMANCE COMPARISON BETWEEN DIFFERENT METHODS. THE GAIA TOPOLOGY IS USED.

Model Main
Focus

Learning
Method

RMSE MAE # Training
Parameters

Avg. Cycle
Time (ms)Udacity+ Gazebo Carla Udacity+ Gazebo Carla

Random [70] 0.358 0.117 0.464 0.265 0.087 0.361
Constant [70] Statistical 0.311 0.092 0.348 0.209 0.067 0.232

Inception [71]
Architecture

Design
CLL [70]

0.209 0.085 0.297 0.197 0.062 0.207 21,787,617
MobileNet [72] 0.193 0.083 0.286 0.176 0.057 0.200 2,225,153
VGG-16 [73] 0.190 0.083 0.316 0.161 0.050 0.184 7,501,587
DroNet [70] 0.183 0.082 0.333 0.150 0.053 0.218 314,657

FedAvg [74]
Aggregation
Optimization

SFL [32]
0.212 0.094 0.269 0.185 0.064 0.222 314,657 152.4

FedProx [75] 0.152 0.077 0.226 0.118 0.063 0.151 314,657 111.5
STAR [32] 0.179 0.062 0.208 0.149 0.053 0.155 314,657 299.9

MATCHA [76]
Topology
Design

DFL [20]
0.182 0.069 0.208 0.148 0.058 0.215 314,657 171.3

MBST [25], [77] 0.183 0.072 0.214 0.149 0.058 0.206 314,657 82.1
FADNet [20] 0.162 0.069 0.203 0.134 0.055 0.197 317,729 62.6

CDL (ours) Loss
Optimization

CLL [20] 0.169 0.074 0.266 0.149 0.053 0.172 629,314
SFL [20] 0.150 0.060 0.208 0.104 0.052 0.150 629,314 102.2
DFL [20] 0.141 0.062 0.183 0.083 0.052 0.147 629,314 72.7

is done in each silo before their models are transmitted
and aggregated using Equation 2. The training process is
conducted with 3, 600 communication rounds. We apply the
simulation as in [20] to do the training with an NVIDIA
1080 11GB GPU.

Baselines. We compare our results with various recent
methods in different learning scenarios. For the non-learning
scenario, we compare our method with the Random baseline
and the Constant baseline [70]. For the Centralized Local
Learning (CLL) scenario, Inception-V3 [71], MobileNet-
V2 [72], VGG-16 [73], and Dronet [70] are used as baselines.
For the Server-based Federated Learning (SFL) scenario,
we compare our method with FedAvg [74], FedProx [75],
and STAR [32]. For the Decentralized Federated Learning
(DFL), MATCHA [76], MBST [25], and FADNet [20] are
used as baselines. Note that the Centralized Local Learning
(CLL [70]) strategy has the data collected and model trained
in one local machine; Server-based Federated Learning
(SFL [32]) strategy has models trained in distributed clients
and collected by a server; Decentralized Federated Learning
(DFL [20]) has models trained in a fully P2P manner.

Evaluation Metric. We use the Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE) to evaluate the
effectiveness of models. Besides, cycle time (ms) and wall-
clock time (ms) are used to calculate the time needed for
training and testing each method.

B. Results

Table III summarises the performance of our method and
recent state-of-the-art approaches. This table clearly shows
the proposed CDL under Siamese setup with two ResNet-8
outperforms other methods by a large margin. In particular,
our proposal significantly reduces both RMSE and MAE in
all three datasets, including Udacity+, Carla, and Gazebo.
These results validate that our method reduces the negative
effect of the non-IID problem during the training. As a loss

TABLE IV
PERFORMANCE UNDER DIFFERENT TOPOLOGIES.

Topology Architecture Dataset
Udacity+ Gazebo Carla

Gaia
(11 silos)

DroNet [70] 0.177 0.073 0.244
FADNet [20] 0.162 0.069 0.203
CDL (ours) 0.141 0.062 0.183

NWS
(22 silos)

DroNet [70] 0.183 0.075 0.239
FADNet [20] 0.165 0.070 0.200
CDL (ours) 0.138 0.058 0.182

Exodus
(79 silos)

DroNet [70] 0.448 0.208 0.556
FADNet [20] 0.179 0.081 0.238
CDL (ours) 0.138 0.061 0.176

function, CDL does not increase the number of parameters
of the network. However, under the Siamese setup, the model
size during the training is increased as the Siamese requires
an additional sub-network.

Table III also summarises the accuracy of our CDL with
ResNet-8 backbone and other baselines when we train them
under different learning scenarios: CLL, SFL, and DFL.
We can see that our CDL with ResNet-8 outperforms other
baselines by a large margin in the DFL learning scenario, and
by a moderate value in SFL and CLL setup. This confirms
that our method is not only a good solution for dealing with
the non-IID problem in federated autonomous driving, but
also improves the convergence ability of the backbone in
different training setups. Moreover, the outperformed gaps
are stable among all three benchmarking datasets.

C. Ablation Study

CDL on Different Topologies. In practice, it is usually
more challenging to train federated algorithms when the
topology has more vehicle data silos. To verify the effective-



(a) Udacity+ (b) Gazebo (c) Carla

Fig. 3. Performance of our CDL when we use different networks under
Siamese setup. Note that, we train on the train set and test on the test set
of the Udacity+, Gazebo, and Carla datasets. We use Gaia topology under
the DFL scenario for the training. The results are reported using the RMSE.
Best viewed in color.

ness of our CDL, we train our method and compare it with
other baselines on topologies with different numbers of silos.
Table IV illustrates the performance of DroNet, FADNet, and
our CDL with ResNet-8 backbone when we train them using
DFL under three distributed network infrastructures with
different numbers of silos: Gaia (11 silos), NWS (22 silos),
and Exodus (79). This table shows that our CDL clearly
achieves the highest results in all topology setups, while
DroNet meets divergence, and FADNet does not perform
well in the Exodus topology which has 79 silos.

CDL on Different Backbones. Since our proposed CDL
is a loss function, it can be applied to different networks
under the Siamese setup to improve performance. Figure 3
illustrates the effectiveness of CDL when we change the
network inside the Siamese to DroNet, FADNet, Inception,
MobileNet, and VGG-16 under Gaia Network in the DFL
scenario. The results show that CDL works well with differ-
ent architectures to address the non-IID problem. In all cases,
CDL greatly improves performance on different datasets with
different networks inside the Siamese setup.

Convergence Analysis. Figure 4 illustrates the training
results in RMSE of our two baselines DroNet and FADNet as
well as our proposed CDL. The results show the convergence
ability of mentioned methods in three datasets (Udacity+,
Gazebo, Carla), and in Gaia (11 silos), NWS Amazon (22
silos), and Exodus (79 silos) networks. The results indicate
that our proposed CDL can reach a better convergence point
in comparison with the two baselines. While other methods
(Dronet and FADNet) converged with difficulty or do not
show good convergence trend, our proposed CDL can get
over local optimal points better than other methods and also
be less biased into any specific silo.

CDL on IID Data. Figure 5 demonstrates the effective-
ness of CDL in different data distributions. Although CDL
is designed for dealing with the non-IID problem, it also
slightly improves the performance of models trained on IID
data distribution. Based on the Siamese setup, CDL inherits
the behavior and characteristic of triplet loss form. Since
triplet loss is proven to be effective in IID data [78], it is
clear that CDL can also improve the performance of models
when we train them with the IID data.

(a) Udacity+ (b) Gazebo (c) Carla

Fig. 4. The convergence ability of different methods under Gaia topology
(first row), NWS topology (second row), and Exodus topology (third row).
Note that the results are reported in the train set.

(a) IID data: Udacity (b) Non-IID data: Udacity+

Fig. 5. Performance of different methods on IID dataset (Udacity) and non-
IID dataset (Udacity+). Note that all methods are trained on Gaia topology.
The number of communication rounds is set to 900 and 1200 on Udacity and
Undacity+ datasets, respectively. The results are reported using the RMSE.
Best viewed in color.

VI. CONCLUSION

This paper has presented a new method to address the non-
IID problem during the federated learning of autonomous
steering using contrastive divergence loss. Our method di-
rectly reduces the effect of divergence factors from transmit-
ted models during the local learning process of each silo. We
analyze the proposed contrastive divergence loss in theories,
on various autonomous driving scenarios, under multiple
network topologies, and with different centralized/distributed
learning schemes. The thorough experimental findings on
three benchmarking datasets demonstrate that our proposed
contrastive divergence loss performs substantially better than
current state-of-the-art approaches. In the future, we plan to
test our strategy with more data silos and deploy the trained
model using an autonomous vehicle on roads. We will also
release our source code to encourage further study.
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