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Abstract— Affordance detection and pose estimation are of
great importance in many robotic applications. Their combina-
tion helps the robot gain an enhanced manipulation capability,
in which the generated pose can facilitate the corresponding
affordance task. Previous methods for affodance-pose joint
learning are limited to a predefined set of affordances, thus lim-
iting the adaptability of robots in real-world environments. In
this paper, we propose a new method for language-conditioned
affordance-pose joint learning in 3D point clouds. Given a 3D
point cloud object, our method detects the affordance region
and generates appropriate 6-DoF poses for any unconstrained
affordance label. Our method consists of an open-vocabulary
affordance detection branch and a language-guided diffusion
model that generates 6-DoF poses based on the affordance
text. We also introduce a new high-quality dataset for the task
of language-driven affordance-pose joint learning. Intensive
experimental results demonstrate that our proposed method
works effectively on a wide range of open-vocabulary affor-
dances and outperforms other baselines by a large margin. In
addition, we illustrate the usefulness of our method in real-
world robotic applications. Our code and dataset are publicly
available at https://3DAPNet.github.io.

I. INTRODUCTION
In robotic research, affordance detection and pose esti-

mation are among the most important and well-concerned
problems [1], [2]. Understanding object affordance helps
robots decide the inherent possibilities and potential actions
within an environment, while pose estimation is considered
a prerequisite for robots to interact with and manipulate
their surrounding objects effectively. Combining affordance
detection and pose estimation holds the potential to help
robots gain a more comprehensive understanding of their
environment’s possibilities and, at the same time, achieve
enhanced manipulation abilities [3]. However, prior research
has predominantly focused on solving these problems inde-
pendently, while less works tackled both tasks simultane-
ously [4]–[6]. This is because the concept of affordance can
be arbitrary, and without extra information (e.g., text input),
it is challenging to detect the associated pose.

Recently, with the availability of depth cameras, several
works have addressed the task of affordance detection in 3D
point clouds [5], [7]–[10]. Most of them treated the problem
as a supervised task of labeling predefined affordance labels
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Fig. 1. Our framework allows the simultaneous detection of affordance
region and corresponding supporting poses given the input point cloud object
and an arbitrary affordance text.

for each point in the point cloud [5], [8]. Lately, the authors
in [10] explored the open-vocabulary affordance detection
task, a new research direction liberating the constraint of
a predefined affordance label set with the utilization of
language models [11], [12]. The work in [10] increased
the flexibility of the affordance learning process, getting
closer to universal affordance detection, however, it does
not provide 6-DoF poses that supports the corresponding
affordance. As a result, the task remains a visionary problem
and currently hinders its practical application on real robots.
Other works exhibit a combination of affordance detection
and pose estimation [5], [13]–[15], yet their methods are still
limited to a predefined set of affordance tasks.

In this research, we take a step further by integrating the
tasks of open-vocabulary affordance detection and language-
driven pose estimation. Given a 3D point cloud, our goal is
to simultaneously detect the unconstrained affordance and
generate poses based on the input text query. To realize that
objective, we first establish a new dataset for the task of
3D Affordance-Pose joint learning, namely 3DAP dataset.
Our dataset is composed of several triplets of a 3D point
cloud, an affordance label in the form of the natural text,
and a set of multiple 6-DoF poses associated with the
affordance. We then present a joint learning framework
consisting of a language-driven affordance detection branch
and a pose estimation branch which is a guided diffusion
model that generates 6-DoF poses conditioned on the given
point cloud object and the affordance text. Our choice of
the diffusion model is motivated by its recent remarkable
results in generating diverse data modalities from multiple
conditions [16]–[18], yet its application to pose estimation
remains limitedly explored [19]. Our method is an end-to-
end pipeline where via a text prompt, the robot can perform
a manipulation task using the affordance and the detected
pose. Figure 1 shows the main concept of our work.
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Our contributions are summarized as follows:
• We introduce 3DAP, a new dataset of 3D point cloud

objects with affordance language labels and affordance-
specific 6-DoF poses.

• We propose 3DAPNet, a new method that effectively
tackles the task of affordance-pose joint learning.

• We validate our method through intensive experiments
and demonstrate the usefulness of 3DAPNet in several
real-world robotic manipulation tasks.

II. RELATED WORK

Affordance Detection. Many works tackled the task of
affordance detection in RGB images [20]–[24] and 3D point
clouds [5], [8]–[10], [25]. In particular, Luo et al. [22]
leveraged affinity from human-object interaction to detect
affordances of non-interactive objects in 2D images. Authors
in [7] detected affordance maps on 3D point cloud scenes
through interactive manipulation. Also working on point
clouds, authors in [9] proposed a framework that detects af-
fordance maps from object-object interaction. Most of these
works focus on detecting a set of predefined affordances
rather than open-vocabulary setting. Lately, Nguyen et
al. [10] introduced a framework that allows the detection
of arbitrary affordance given in form of a text description.
While achieving promising results, the common shortcoming
of previous methods is that they solely detect the affordance
regions while usually neglecting the corresponding poses
that support the detected affordances. This limitation poses
a challenge for the robot to effectively execute necessary
affordance tasks in real-world manipulation settings.

3D Pose Generation. Given a single object or mul-
tiple objects in a cluttered environment, the goal of 3D
pose generation algorithms is to find a pose configura-
tion that can support manipulation tasks [2], [3]. Initial
works addressed the problem by employing analytical ap-
proaches [26], [27], which are practically limited since they
assume complete knowledge of object properties like shape,
geometry, and material. The rapid development of grasping
simulators [28]–[30] in the following years led to the rise of
data-driven approaches. Early data-driven methods primarily
used whether hand-crafted features [31]–[33] or traditional
machine learning algorithms [34]–[36]. Recently witnessed
the groundbreaking performances of deep learning methods
for pose estimation [5], [37]–[41]. In particular, Lou et
al. [39] presented a method that can generate collision-free
poses in challenging environments, while authors in [38]
synthesized poses using a variational autoencoder network.
With the recent remarkable results in various generation
tasks, diffusion models have also been applied for the task of
pose generation [19], [42]. Different from these approaches
which are affordance-agnostic, our proposed diffusion model
tackles the task of affordance-specific pose generation. Some
other earlier works leveraged the affordance learning for the
problem of task-specific grasping [5], [13], [14]. Nonethe-
less, their methods are restricted to a predetermined set of
affordance tasks. In comparison, our method focuses on the
open-vocabulary setting.

wrap-grasp cut open grasp to pour

stab listen lift wear
Fig. 2. Affordance-specific pose examples.

Language-Conditioned Robotic Manipulation. With the
stunning advancements of large language models [12], [43]–
[47], several recent works [48]–[54] have utilized the rich
semantics of language for the tasks of robotic manipula-
tion. For instance, Ahn et al. [50] proposed a method that
constrains the language model to recommend actions that
are both plausible to the robot and contextually appropriate.
Silva et al. [49] proposed to use language to support gen-
eralization in multi-task manipulation. The authors in [51]
presented a framework that can learn meaningful skill ab-
stractions from language-based expert demonstrations. More
recently, Ren et al. [53] introduced a language-conditioned
and meta-learning approach that learns efficient policies
adaptable to novel tools from text descriptions. Different
from these works, our method addresses the task of language-
conditioned affordance-pose joint learning, where the af-
fordance language simultaneously grounds the affordance
region and 6-DoF pose configurations.

III. THE 3D AFFORDANCE-POSE DATASET

We present the 3D Affordance-Pose dataset (3DAP) as a
dataset for affordance-pose joint learning. To construct this
dataset, we apply a semi-automatic pipeline in which we
first collect affordance-annotated 3D point clouds from 3D
AffordanceNet [8], a widely-used and currently the largest
dataset for affordance detection in 3D point clouds. Next, we
leverage 6-DoF GraspNet [38] method to generate a large
number of 6-DoF pose candidates. Afterwards, we manually
select the affordance-specific poses for each affordance that
the object affords.

Point Cloud Collection. We collect affordance-annotated
point clouds from the recent 3D AffordanceNet dataset [8].
Each point cloud represents a single object and is an un-
order set of 2, 048 points. Each point is represented by its
Euclidean coordinate. The point coordinate of every point
cloud are normalized to be in [0, 1]. In order to well represent
the real-world objects, we scale the point clouds by different
scale factors so that the longest side of an axis-aligned
bounding box for each object is from 5 cm to 30 cm. The
collected objects are of well-used categories in the daily
manipulation tasks, such as knife, bottle, or mug, etc.
We express affordance labels as natural language descriptors.
This facilitates open-vocabulary affordance detection, so
that methods trained on our 3DAP dataset can potentially
generalize to unseen affordances.
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Fig. 3. The overview of our 3DAPNet. Our network includes two branches: one for affordance detection and one for pose generation. The unrestricted
affordance label represented in natural language form enables the open-vocabulary setting. In inference, the predicted affordance map and the generated
pose are combined to further support the appropriate task.

Poses Collection. We utilize 6-DoF GraspNet [38] to
automatically generate a large number of pose candidates for
each collected point clouds. In particular, for each object,
we pick 1, 000 successful parallel-jaw poses with highest
evaluating scores. Following the Robotiq 2F-85 setting [55],
the collected poses have the maximum grip aperture of
85mm. From the generated poses, we manually select the
affordance-specific poses for each object. Given an object
and an affordance, we select among 1, 000 candidates ones
that best support the affordance task. For example, with a
bottle and affordance open, the poses whose contact
points lie on the lid are curated. In total, our dataset contains
28K gripper poses for a wide variety of affordance tasks.
Examples of affordance-specific poses in our dataset are
presented in Figure 2.

IV. AFFORDANCE-POSE JOINT LEARNING

A. Problem Formulation

We present 3DAPNet, a new method for affordance-pose
joint learning. Given the captured 3D point cloud of an
object and a set of affordance labels conveyed through
natural language texts, our objective is to jointly produce
both the relevant affordance regions and the appropriate
pose configurations that facilitate the affordances. Particu-
larly, 3DAPNet takes as input a point cloud denoted by
C = {p1,p2, ...,pn}, containing n points in 3D Euclidean
space, alongside m arbitrary affordance labels articulated in
natural language. The desired output from our framework
encompasses an affordance map A = {a1, a2, ..., an} that
assigns an affordance label to each point, and m sets of
6-DoF poses that facilitate corresponding affordances. We
consider a 6-DoF pose as configured by [gqu,gtr], in which
gqu is a unit-norm quaternion representing the rotation and
gtr is a translation vector. The overview of our network is
illustrated in Figure 3.

B. Open-Vocabulary Affordance Detection

We follow the recent work [10] to detect affordances
with open-vocabulary setting. The input point cloud C is
plugged into a PointNet++ model [56] to extract n point-
wise feature vectors P1,P2, ...,Pn. Next, the m affordance
language labels are fed into a text encoder T to extract m
text embeddings t1, t2, ..., tm. Similar to other works [10],
[57], [58], the choices for the text encoder are versatile.

To enable open-vocabulary affordance detection, we com-
pute the semantic relations between the point cloud af-
fordance and its potential labels by correlating the text
embeddings and point features using cosine similarity func-
tion. Concretely, the Fi,j element at the i-th row and j-th
column of the correlation matrix F ∈ Rn×m, which is the
correlation score of the point feature Pi and the affordance
text embedding tj , is computed as:

Fi,j =
P⊤

i tj
∥Pi∥ ∥tj∥

. (1)

During the training, we optimize the PointNet++ to pro-
vide point embeddings that are close to the corresponding
label text embeddings. The point-wise softmax output of
every point i is then computed as:

Si,j =
exp (Fi,j/η)∑m
k=1 exp(Fi,k/η)

, (2)

where η is a learned parameter. The loss function for affor-
dance detection is computed as the negative log-likelihood
of the softmax output over the entire point cloud:

Laff = −
n∑

i=1

logSi,ai
. (3)

C. Language-Conditioned Pose Generation

Our key contribution is a new guided diffusion model to
address the task of affordance-specific pose generation. Our



diffusion model is designed to produce poses that not only
based on the point cloud, but also facilitate the affordance
task by conditioning on the input text.

Forward Process. Given a pose from the dataset g0 ∼
q(g), in the forward process, we gradually add to the pose
small amounts of Gaussian noise in T steps, creating a
sequence of noisy poses g1, g2, . . . , gT . When T → ∞, gT is
equivalent to N (0, I) [59]. The noise step sizes are specified
by a predefined variance schedule {βt ∈ (0, 1)}Tt=1. From
that, the forward process is formulated as q (gt | gt−1) =
N

(√
1− βtgt−1, βtI

)
. The noisy sample at any arbitrary

time step t can be obtained in a closed form of:

gt =
√
ᾱtg0 +

√
1− ᾱtϵ, (4)

where ᾱt =
∏t

i=1 αt with αt = 1− βt and ϵ ∼ N (0, I).
Reverse Process. The reverse process allows us to gener-

ate a pose from the Gaussian noise by gradually denoising
through T steps via the reverse probability q (gt−1 | gt, c, t).
In this probability, c is the point cloud feature produced
by the PointNet++ encoder and t is the text embedding of
the affordance of interest. c and t represent two guidances
that our model need to condition on, i.e., the point cloud
object and the affordance text. As q (gt−1 | gt, c, t) is in-
tractable [59], we approximate it with a neural network. More
particularly, we approximate the noise ϵ at every timestep
t by a denoising network ϵθ (gt, c, t, t). ϵ is updated to
minimize the difference between the real and approximated
noises. The loss function for pose generation is therefore
computed as:

Lpose = Eϵ,g0,c,t,t

[
∥ϵ− ϵθ (gt, c, t, t)∥2

]
. (5)

Following other works [60], to balance between the quality
and the diversity of the generated poses, we randomly
drop the conditions c and t to train unconditionally with
a probability puncond. Our design allows conditional training
and unconditional training to use a single network.

Subsequently, we detail the design of our denoising net-
work ϵθ. Kindly refer to Figure 3 for an illustrative demon-
stration. In particular, following other works of diffusion
models [59], we employ a downscale-upscale U-Net archi-
tecture [61] for the network. The noisy pose gt at timestep t
is first plugged into three consecutive downscaling MLPs,
and then, three other consecutive MLPs are used in the
upscaling phase. To form the input to each upscaling MLP,
we combine the output of the preceding one, the feature from
skip connection, the time embedding τ computed from the
timestep t, and the unified context u combining the point
cloud feature c and the text feature t. The unified context
u is obtained via a ContextNet module. In this ContextNet,
we first compute the point cloud influence mask mc and text
influence mask mt using two MLPs and a softmax layer. The
influence masks are at the same size as the two features. The
unified context u is then computed as:

u = c⊙mc + t⊙mt, (6)

where ⊙ represents the element-wise multiplication.

Pose Sampling. When finishing the model training, we
can sample poses from Gaussian noise by applying the
reverse process from timestep T to 0 using the formulation:

gt−1 =
1

√
αt

(
gt −

1− αt√
1− ᾱt

ϵ̄θ (gt, c, t, t)

)
+
√

βtz, (7)

where z ∼ N (0, I) if t > 1, else z = 0, and ϵ̄θ (gt, c, t, t)
is calculated as:

ϵ̄θ (gt, c, t, t) = (w + 1)ϵθ (gt, c, t, t)− wϵθ (gt, t) , (8)

where w is a guidance scale hyperparameter and ϵθ (gt, t)
is the predicted noise when the conditions are discarded.

D. Training and Inference

We define the overall loss function as L = Laff+Lpose. The
number of points in each point cloud is fixed to n = 2, 048.
We utilize the state-of-the-art CLIP text encoder [11] and
freeze it during training. For the diffusion model, we set
T = 1, 000, and set the forward diffusion variances to
constants increasing linearly from β1 = 10−4 to βT = 0.02.
The unconditional training probability is set to puncond =
0.05. The whole network is trained end-to-end over 200
epochs on a 24GB-RAM NVIDIA GeForce RTX 3090 Ti
with a batch size of 32. The Adam optimizer [62] with the
learning rate 10−3 and the weight decay 10−4 is used. When
sampling poses, we set the guidance scale to w = 0.2. Our
framework takes 180ms to detect affordances and generate
2, 000 corresponding 6-DoF poses for one point cloud.

V. EXPERIMENTS

In this section, we conduct several experiments to demon-
strate the effectiveness of our proposed 3DAPNet trained on
our 3DAP dataset. We start by comparing our method with
other baselines. Second, we present 3DAPNet’s notable qual-
itative results. Third, we provide different ablation studies
for a more in-depth investigation of our method. Finally, we
validate our framework in real robotic experiments.

A. Quantitative Comparisons

Baselines. We compare our 3DAPNet with the following
methods: 6D-TGD [5], OpenAD [10], 6D-GraspNet [38].
Note that, OpenAD does not support pose estimation, while
6D-GraspNet does not support affordance detection. We
tailor 6D-GraspNet [38] to open-vocabulary setting by in-
corporating the affordance text branch to the network input.
All methods are trained on our dataset with the splitting ratio
for training, evaluation, and testing of 7:1:2.

Metrics. For affordance detection, following [10], we
evaluate the methods using three metrics, i.e., mIoU (mean
IoU over all affordance classes), Acc (overall accuracy of all
points), and mAcc (mean accuracy over all affordances). For
pose generation, we use two metrics as in recent works: the
mean evaluated similarity metric (mESM) [5] and the mean
coverage rate (mCR) [38]. To validate the pose estimation
results, we generate 200 poses for each pair of object-
affordance during the testing.



6D
-G

ra
sp

N
et

6D
-T

G
D

O
ur

s

grasp to cut listen grasp to pour open
Fig. 4. Qualitative comparison. Green color denotes poses that are related
to the input text, while red indicates poses not related to the input text.

TABLE I
BASELINE COMPARISONS

Method Affordance Detection Pose Estimation

mIoU↑ Acc↑ mAcc↑ mESM↓ mCR↑

OpenAD [10] 55.20 58.89 58.22 – –
6D-GraspNet [38] – – – 0.373 22.81
6D-TGD [5] 55.38 60.14 57.99 0.219 30.10
3DAPNet (ours) 56.18 61.77 59.26 0.120 44.63

Result. Table I illustrates the performance of our 3DAP-
Net across both tasks, consistently achieving the highest
scores across all five metrics when compared to alternative
approaches. Specifically, in the affordance detection task,
3DAPNet exhibits improvements of 0.8% on mIoU, 1.63%
on Acc, and 1.04% on mAcc relative to its closest competi-
tors. Regarding pose estimation, 3DAPNet is nearly twice as
good as the runner up 6D-TGD on mESM metric (0.120
compared to 0.219). Furthermore, 3DAPNet significantly
outperforms competitors in the mCR metric, with a score
of 44.63% compared to the second-best 6D-TGD’s 30.10%.

B. Qualitative Results
Qualitative Comparison. We present qualitative results to

compare our 3DAPNet with other methods in pose genera-
tion capability. Particularly, we select poses generated by our
method, 6D-GraspNet [38], and 6D-TGD [5]. The example
poses are shown in Figure 4. We observe that our method
produces more poses that directly support the affordance
tasks, while in contrast, the other two baselines generate a
large number of poses that do not facilitate them. This result
further highlights the enhanced effectiveness of our approach.

Generalization to Unseen Affordances. We present sev-
eral examples demonstrating 3DAPNet’s ability to generalize
to unseen affordances in Figure 5. For affordances in the
training set, 3DAPNet yields high-quality results both in
affordance detection and pose generation. With the reference
of seen affordances, when evaluating on unseen affordances,
our method still succeeds in detecting the associated regions
and generating the corresponding appropriate poses, though
those affordances do not appear in the training set.

Generalization to Unseen Objects. We extend our as-
sessment to the broader context of unseen object categories.
Concretely, we curate new objects from the ShapeNetCore
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Fig. 5. Qualitative results of 3DAPNet’s generalization to unseen affor-
dances. The unseen affordances are shown in orange.
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grasp to stab pierce

Teapot

open swathe
Fig. 6. Qualitative results of 3DAPNet’s generalization to unseen object
categories. The unseen affordances are shown in orange.

dataset [63] and feed both seen and unseen affordances to the
model. The reasonable outcomes shown in Figure 6 reaffirm
the generalization of our 3DAPNet.

C. Ablation Study

Single branch vs. jointly learned network. We investi-
gate the performance of each branch in our 3DAPNet on its
corresponding task while excluding the other. The results are
detailed in Table II. In the case of pose generation only, we
retain the usage of the point cloud and text embeddings by
keeping the PointNet++ encoder and the CLIP text encoder,
while remove the PointNet++ decoder and the correlation
head. The results indicate that the combination of the two
branches yields the highest performance on both tasks when
compared to each branch operating individually. This further
validates the efficacy of our design, where the learning
processes of the two tasks mutually benefit each other.

Effectiveness of ContextNet. We further validate the
effectiveness of our framework design by performing an
ablation experiment on the ContextNet. Specifically, we
report the performances of our framework with and without
the ContextNet in Table III. In the case of ContextNet is



TABLE II
SINGLE-BRANCH VS. JOINTLY LEARNED NETWORK

Method Affordance Detection Pose Estimation

mIoU↑ Acc↑ mAcc↑ mESM↓ mCR↑

Affordance Only 55.65 60.73 58.80 – –
Pose Only – – – 0.147 41.29

Both 56.18 61.77 59.26 0.120 44.63

TABLE III
THE EFFECTIVENESS OF CONTEXTNET

ContextNet Affordance Detection Pose Estimation

mIoU↑ Acc↑ mAcc↑ mESM↓ mCR↑

% 53.97 60.20 58.49 0.433 12.61
! 56.18 61.77 59.26 0.120 44.63

removed, we combine the point cloud and affordance text
conditions naively by adding them. The empirical result
shows that our framework with ContextNet completely dom-
inates the other one, with a very large gap on the task of pose
generation, which is the main target of our design.

TABLE IV
TEXT ENCODER ANALYSIS

Text Encoder Affordance Detection Pose Estimation

mIoU↑ Acc↑ mAcc↑ mESM↓ mCR↑

BERT [12] 52.89 59.77 59.25 0.182 30.46
RoBERTa [64] 53.92 58.13 57.01 0.277 30.11

CLIP [11] 56.18 61.77 59.26 0.120 44.63

Text Encoder. As the text encoder is critical in our
framework, we conduct extensive study to investigate the
performances of different text encoders. In particular, we
use three state-of-the-art text encoder, which are BERT [12],
RoBERTa [64], and CLIP [11]. The result is shown in
Table IV. We observe that the CLIP encoder significantly
outperforms its counterparts on both tasks, especially on pose
generation. This result demonstrates the superiority of CLIP
in language-vision understanding.

D. Robotic Demonstration

The experiment setup, shown in Figure 7, comprises three
main modules, i.e., the inference module, the ROS module,
and the real-time controller module. In the inference module,
after receiving point cloud data of the environment from
the RealSense D435i camera, we utilize the state-of-the-
art object localization method [66] to identify the object,
then perform point sampling to get 2, 048 points. We then
feed this point cloud with a text affordance command into
our proposed 3DAPNet. Then, the generated affordance pose
from 3DAPNet is sent to ROS for planning and trajectory
generation. Analytical inverse kinematics [65] and trajectory
optimization [67] are employed to compute optimal trajec-
tories of the robot to reach the computed pose provided by
our network. Note that, using our 3DAPNet, we can have a
general input command and are not restricted to a predefined
affordance label set. Several demonstrations can be found in
our Demonstration Video.

Realsense D435i

point cloudaffordance text

Robotiq 2F-85

Real time control

3DAPNet

ROS

Trajectory
optimization [65]

Object
localization [66]

NIC

TwinCAT

Fig. 7. The overview of the robot experiment setup. More qualitative results
can be found in our Demonstration Video.

rotate seize grasp to pour wear

Faucet Knife Bowl Hat

Fig. 8. Some wrong cases of our method.

E. Discussion

Despite promising results, it is important to acknowledge
that our method has not fulfilled the perfect ability in univer-
sal affordance detection and pose estimation. There are cases
where our method shows its limitations, which are presented
in Figure 8. Particularly, on the left are two cases of fail and
false-positive detection of unseen affordances. In two cases
on the right, we show examples where our method generates
poses that do not facilitate the corresponding affordances.
Furthermore, our method can only detect affordance from
single objects due to the dataset limitation. This leads to the
fact that it is not straightforward to perform evaluation on
real robots with other methods. Therefore, having a large-
scale dataset with cluttered point cloud scenes would enable
more qualitative comparisons and applications.

VI. CONCLUSIONS

We have tackled the task of open-vocabulary affordance
detection and pose estimation in 3D point clouds. In par-
ticular, we have presented the 3DAP dataset for affordance-
pose joint learning and proposed the 3DAPNet method that
can simultaneously detect open-vocabulary affordances and
generate affordance-specific 6-DoF poses. Experimental re-
sults show that our approach outperforms other methods by a
large margin on both tasks. We extensively demonstrated the
effectiveness of 3DAPNet in real-world robotic manipulation
applications. We hope that the prospective results of our
3DAPNet could encourage more future researchers to further
investigate this important yet challenging problem. Our code
and trained model will be made publicly available.
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